pthread_test.cpp revision a60fd09e2692e17c8bfa210d3cb64b490aea4c9d
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include <gtest/gtest.h>
18
19#include <errno.h>
20#include <inttypes.h>
21#include <limits.h>
22#include <malloc.h>
23#include <pthread.h>
24#include <signal.h>
25#include <stdio.h>
26#include <sys/mman.h>
27#include <sys/syscall.h>
28#include <time.h>
29#include <unistd.h>
30
31#include <atomic>
32#include <regex>
33#include <vector>
34
35#include <base/file.h>
36#include <base/stringprintf.h>
37
38#include "private/bionic_macros.h"
39#include "private/ScopeGuard.h"
40#include "BionicDeathTest.h"
41#include "ScopedSignalHandler.h"
42
43extern "C" pid_t gettid();
44
45TEST(pthread, pthread_key_create) {
46  pthread_key_t key;
47  ASSERT_EQ(0, pthread_key_create(&key, NULL));
48  ASSERT_EQ(0, pthread_key_delete(key));
49  // Can't delete a key that's already been deleted.
50  ASSERT_EQ(EINVAL, pthread_key_delete(key));
51}
52
53TEST(pthread, pthread_keys_max) {
54  // POSIX says PTHREAD_KEYS_MAX should be at least _POSIX_THREAD_KEYS_MAX.
55  ASSERT_GE(PTHREAD_KEYS_MAX, _POSIX_THREAD_KEYS_MAX);
56}
57
58TEST(pthread, sysconf_SC_THREAD_KEYS_MAX_eq_PTHREAD_KEYS_MAX) {
59  int sysconf_max = sysconf(_SC_THREAD_KEYS_MAX);
60  ASSERT_EQ(sysconf_max, PTHREAD_KEYS_MAX);
61}
62
63TEST(pthread, pthread_key_many_distinct) {
64  // As gtest uses pthread keys, we can't allocate exactly PTHREAD_KEYS_MAX
65  // pthread keys, but We should be able to allocate at least this many keys.
66  int nkeys = PTHREAD_KEYS_MAX / 2;
67  std::vector<pthread_key_t> keys;
68
69  auto scope_guard = make_scope_guard([&keys]{
70    for (auto key : keys) {
71      EXPECT_EQ(0, pthread_key_delete(key));
72    }
73  });
74
75  for (int i = 0; i < nkeys; ++i) {
76    pthread_key_t key;
77    // If this fails, it's likely that LIBC_PTHREAD_KEY_RESERVED_COUNT is wrong.
78    ASSERT_EQ(0, pthread_key_create(&key, NULL)) << i << " of " << nkeys;
79    keys.push_back(key);
80    ASSERT_EQ(0, pthread_setspecific(key, reinterpret_cast<void*>(i)));
81  }
82
83  for (int i = keys.size() - 1; i >= 0; --i) {
84    ASSERT_EQ(reinterpret_cast<void*>(i), pthread_getspecific(keys.back()));
85    pthread_key_t key = keys.back();
86    keys.pop_back();
87    ASSERT_EQ(0, pthread_key_delete(key));
88  }
89}
90
91TEST(pthread, pthread_key_not_exceed_PTHREAD_KEYS_MAX) {
92  std::vector<pthread_key_t> keys;
93  int rv = 0;
94
95  // Pthread keys are used by gtest, so PTHREAD_KEYS_MAX should
96  // be more than we are allowed to allocate now.
97  for (int i = 0; i < PTHREAD_KEYS_MAX; i++) {
98    pthread_key_t key;
99    rv = pthread_key_create(&key, NULL);
100    if (rv == EAGAIN) {
101      break;
102    }
103    EXPECT_EQ(0, rv);
104    keys.push_back(key);
105  }
106
107  // Don't leak keys.
108  for (auto key : keys) {
109    EXPECT_EQ(0, pthread_key_delete(key));
110  }
111  keys.clear();
112
113  // We should have eventually reached the maximum number of keys and received
114  // EAGAIN.
115  ASSERT_EQ(EAGAIN, rv);
116}
117
118TEST(pthread, pthread_key_delete) {
119  void* expected = reinterpret_cast<void*>(1234);
120  pthread_key_t key;
121  ASSERT_EQ(0, pthread_key_create(&key, NULL));
122  ASSERT_EQ(0, pthread_setspecific(key, expected));
123  ASSERT_EQ(expected, pthread_getspecific(key));
124  ASSERT_EQ(0, pthread_key_delete(key));
125  // After deletion, pthread_getspecific returns NULL.
126  ASSERT_EQ(NULL, pthread_getspecific(key));
127  // And you can't use pthread_setspecific with the deleted key.
128  ASSERT_EQ(EINVAL, pthread_setspecific(key, expected));
129}
130
131TEST(pthread, pthread_key_fork) {
132  void* expected = reinterpret_cast<void*>(1234);
133  pthread_key_t key;
134  ASSERT_EQ(0, pthread_key_create(&key, NULL));
135  ASSERT_EQ(0, pthread_setspecific(key, expected));
136  ASSERT_EQ(expected, pthread_getspecific(key));
137
138  pid_t pid = fork();
139  ASSERT_NE(-1, pid) << strerror(errno);
140
141  if (pid == 0) {
142    // The surviving thread inherits all the forking thread's TLS values...
143    ASSERT_EQ(expected, pthread_getspecific(key));
144    _exit(99);
145  }
146
147  int status;
148  ASSERT_EQ(pid, waitpid(pid, &status, 0));
149  ASSERT_TRUE(WIFEXITED(status));
150  ASSERT_EQ(99, WEXITSTATUS(status));
151
152  ASSERT_EQ(expected, pthread_getspecific(key));
153  ASSERT_EQ(0, pthread_key_delete(key));
154}
155
156static void* DirtyKeyFn(void* key) {
157  return pthread_getspecific(*reinterpret_cast<pthread_key_t*>(key));
158}
159
160TEST(pthread, pthread_key_dirty) {
161  pthread_key_t key;
162  ASSERT_EQ(0, pthread_key_create(&key, NULL));
163
164  size_t stack_size = 128 * 1024;
165  void* stack = mmap(NULL, stack_size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
166  ASSERT_NE(MAP_FAILED, stack);
167  memset(stack, 0xff, stack_size);
168
169  pthread_attr_t attr;
170  ASSERT_EQ(0, pthread_attr_init(&attr));
171  ASSERT_EQ(0, pthread_attr_setstack(&attr, stack, stack_size));
172
173  pthread_t t;
174  ASSERT_EQ(0, pthread_create(&t, &attr, DirtyKeyFn, &key));
175
176  void* result;
177  ASSERT_EQ(0, pthread_join(t, &result));
178  ASSERT_EQ(nullptr, result); // Not ~0!
179
180  ASSERT_EQ(0, munmap(stack, stack_size));
181  ASSERT_EQ(0, pthread_key_delete(key));
182}
183
184TEST(pthread, static_pthread_key_used_before_creation) {
185#if defined(__BIONIC__)
186  // See http://b/19625804. The bug is about a static/global pthread key being used before creation.
187  // So here tests if the static/global default value 0 can be detected as invalid key.
188  static pthread_key_t key;
189  ASSERT_EQ(nullptr, pthread_getspecific(key));
190  ASSERT_EQ(EINVAL, pthread_setspecific(key, nullptr));
191  ASSERT_EQ(EINVAL, pthread_key_delete(key));
192#else
193  GTEST_LOG_(INFO) << "This test tests bionic pthread key implementation detail.\n";
194#endif
195}
196
197static void* IdFn(void* arg) {
198  return arg;
199}
200
201class SpinFunctionHelper {
202 public:
203  SpinFunctionHelper() {
204    SpinFunctionHelper::spin_flag_ = true;
205  }
206  ~SpinFunctionHelper() {
207    UnSpin();
208  }
209  auto GetFunction() -> void* (*)(void*) {
210    return SpinFunctionHelper::SpinFn;
211  }
212
213  void UnSpin() {
214    SpinFunctionHelper::spin_flag_ = false;
215  }
216
217 private:
218  static void* SpinFn(void*) {
219    while (spin_flag_) {}
220    return NULL;
221  }
222  static volatile bool spin_flag_;
223};
224
225// It doesn't matter if spin_flag_ is used in several tests,
226// because it is always set to false after each test. Each thread
227// loops on spin_flag_ can find it becomes false at some time.
228volatile bool SpinFunctionHelper::spin_flag_ = false;
229
230static void* JoinFn(void* arg) {
231  return reinterpret_cast<void*>(pthread_join(reinterpret_cast<pthread_t>(arg), NULL));
232}
233
234static void AssertDetached(pthread_t t, bool is_detached) {
235  pthread_attr_t attr;
236  ASSERT_EQ(0, pthread_getattr_np(t, &attr));
237  int detach_state;
238  ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &detach_state));
239  pthread_attr_destroy(&attr);
240  ASSERT_EQ(is_detached, (detach_state == PTHREAD_CREATE_DETACHED));
241}
242
243static void MakeDeadThread(pthread_t& t) {
244  ASSERT_EQ(0, pthread_create(&t, NULL, IdFn, NULL));
245  ASSERT_EQ(0, pthread_join(t, NULL));
246}
247
248TEST(pthread, pthread_create) {
249  void* expected_result = reinterpret_cast<void*>(123);
250  // Can we create a thread?
251  pthread_t t;
252  ASSERT_EQ(0, pthread_create(&t, NULL, IdFn, expected_result));
253  // If we join, do we get the expected value back?
254  void* result;
255  ASSERT_EQ(0, pthread_join(t, &result));
256  ASSERT_EQ(expected_result, result);
257}
258
259TEST(pthread, pthread_create_EAGAIN) {
260  pthread_attr_t attributes;
261  ASSERT_EQ(0, pthread_attr_init(&attributes));
262  ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, static_cast<size_t>(-1) & ~(getpagesize() - 1)));
263
264  pthread_t t;
265  ASSERT_EQ(EAGAIN, pthread_create(&t, &attributes, IdFn, NULL));
266}
267
268TEST(pthread, pthread_no_join_after_detach) {
269  SpinFunctionHelper spinhelper;
270
271  pthread_t t1;
272  ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
273
274  // After a pthread_detach...
275  ASSERT_EQ(0, pthread_detach(t1));
276  AssertDetached(t1, true);
277
278  // ...pthread_join should fail.
279  ASSERT_EQ(EINVAL, pthread_join(t1, NULL));
280}
281
282TEST(pthread, pthread_no_op_detach_after_join) {
283  SpinFunctionHelper spinhelper;
284
285  pthread_t t1;
286  ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
287
288  // If thread 2 is already waiting to join thread 1...
289  pthread_t t2;
290  ASSERT_EQ(0, pthread_create(&t2, NULL, JoinFn, reinterpret_cast<void*>(t1)));
291
292  sleep(1); // (Give t2 a chance to call pthread_join.)
293
294#if defined(__BIONIC__)
295  ASSERT_EQ(EINVAL, pthread_detach(t1));
296#else
297  ASSERT_EQ(0, pthread_detach(t1));
298#endif
299  AssertDetached(t1, false);
300
301  spinhelper.UnSpin();
302
303  // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
304  void* join_result;
305  ASSERT_EQ(0, pthread_join(t2, &join_result));
306  ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
307}
308
309TEST(pthread, pthread_join_self) {
310  ASSERT_EQ(EDEADLK, pthread_join(pthread_self(), NULL));
311}
312
313struct TestBug37410 {
314  pthread_t main_thread;
315  pthread_mutex_t mutex;
316
317  static void main() {
318    TestBug37410 data;
319    data.main_thread = pthread_self();
320    ASSERT_EQ(0, pthread_mutex_init(&data.mutex, NULL));
321    ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
322
323    pthread_t t;
324    ASSERT_EQ(0, pthread_create(&t, NULL, TestBug37410::thread_fn, reinterpret_cast<void*>(&data)));
325
326    // Wait for the thread to be running...
327    ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
328    ASSERT_EQ(0, pthread_mutex_unlock(&data.mutex));
329
330    // ...and exit.
331    pthread_exit(NULL);
332  }
333
334 private:
335  static void* thread_fn(void* arg) {
336    TestBug37410* data = reinterpret_cast<TestBug37410*>(arg);
337
338    // Let the main thread know we're running.
339    pthread_mutex_unlock(&data->mutex);
340
341    // And wait for the main thread to exit.
342    pthread_join(data->main_thread, NULL);
343
344    return NULL;
345  }
346};
347
348// Even though this isn't really a death test, we have to say "DeathTest" here so gtest knows to
349// run this test (which exits normally) in its own process.
350
351class pthread_DeathTest : public BionicDeathTest {};
352
353TEST_F(pthread_DeathTest, pthread_bug_37410) {
354  // http://code.google.com/p/android/issues/detail?id=37410
355  ASSERT_EXIT(TestBug37410::main(), ::testing::ExitedWithCode(0), "");
356}
357
358static void* SignalHandlerFn(void* arg) {
359  sigset_t wait_set;
360  sigfillset(&wait_set);
361  return reinterpret_cast<void*>(sigwait(&wait_set, reinterpret_cast<int*>(arg)));
362}
363
364TEST(pthread, pthread_sigmask) {
365  // Check that SIGUSR1 isn't blocked.
366  sigset_t original_set;
367  sigemptyset(&original_set);
368  ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, NULL, &original_set));
369  ASSERT_FALSE(sigismember(&original_set, SIGUSR1));
370
371  // Block SIGUSR1.
372  sigset_t set;
373  sigemptyset(&set);
374  sigaddset(&set, SIGUSR1);
375  ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, &set, NULL));
376
377  // Check that SIGUSR1 is blocked.
378  sigset_t final_set;
379  sigemptyset(&final_set);
380  ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, NULL, &final_set));
381  ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
382  // ...and that sigprocmask agrees with pthread_sigmask.
383  sigemptyset(&final_set);
384  ASSERT_EQ(0, sigprocmask(SIG_BLOCK, NULL, &final_set));
385  ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
386
387  // Spawn a thread that calls sigwait and tells us what it received.
388  pthread_t signal_thread;
389  int received_signal = -1;
390  ASSERT_EQ(0, pthread_create(&signal_thread, NULL, SignalHandlerFn, &received_signal));
391
392  // Send that thread SIGUSR1.
393  pthread_kill(signal_thread, SIGUSR1);
394
395  // See what it got.
396  void* join_result;
397  ASSERT_EQ(0, pthread_join(signal_thread, &join_result));
398  ASSERT_EQ(SIGUSR1, received_signal);
399  ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
400
401  // Restore the original signal mask.
402  ASSERT_EQ(0, pthread_sigmask(SIG_SETMASK, &original_set, NULL));
403}
404
405TEST(pthread, pthread_setname_np__too_long) {
406  // The limit is 15 characters --- the kernel's buffer is 16, but includes a NUL.
407  ASSERT_EQ(0, pthread_setname_np(pthread_self(), "123456789012345"));
408  ASSERT_EQ(ERANGE, pthread_setname_np(pthread_self(), "1234567890123456"));
409}
410
411TEST(pthread, pthread_setname_np__self) {
412  ASSERT_EQ(0, pthread_setname_np(pthread_self(), "short 1"));
413}
414
415TEST(pthread, pthread_setname_np__other) {
416  SpinFunctionHelper spinhelper;
417
418  pthread_t t1;
419  ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
420  ASSERT_EQ(0, pthread_setname_np(t1, "short 2"));
421}
422
423TEST(pthread, pthread_setname_np__no_such_thread) {
424  pthread_t dead_thread;
425  MakeDeadThread(dead_thread);
426
427  // Call pthread_setname_np after thread has already exited.
428  ASSERT_EQ(ENOENT, pthread_setname_np(dead_thread, "short 3"));
429}
430
431TEST(pthread, pthread_kill__0) {
432  // Signal 0 just tests that the thread exists, so it's safe to call on ourselves.
433  ASSERT_EQ(0, pthread_kill(pthread_self(), 0));
434}
435
436TEST(pthread, pthread_kill__invalid_signal) {
437  ASSERT_EQ(EINVAL, pthread_kill(pthread_self(), -1));
438}
439
440static void pthread_kill__in_signal_handler_helper(int signal_number) {
441  static int count = 0;
442  ASSERT_EQ(SIGALRM, signal_number);
443  if (++count == 1) {
444    // Can we call pthread_kill from a signal handler?
445    ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
446  }
447}
448
449TEST(pthread, pthread_kill__in_signal_handler) {
450  ScopedSignalHandler ssh(SIGALRM, pthread_kill__in_signal_handler_helper);
451  ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
452}
453
454TEST(pthread, pthread_detach__no_such_thread) {
455  pthread_t dead_thread;
456  MakeDeadThread(dead_thread);
457
458  ASSERT_EQ(ESRCH, pthread_detach(dead_thread));
459}
460
461TEST(pthread, pthread_detach_no_leak) {
462  size_t initial_bytes = 0;
463  // Run this loop more than once since the first loop causes some memory
464  // to be allocated permenantly. Run an extra loop to help catch any subtle
465  // memory leaks.
466  for (size_t loop = 0; loop < 3; loop++) {
467    // Set the initial bytes on the second loop since the memory in use
468    // should have stabilized.
469    if (loop == 1) {
470      initial_bytes = mallinfo().uordblks;
471    }
472
473    pthread_attr_t attr;
474    ASSERT_EQ(0, pthread_attr_init(&attr));
475    ASSERT_EQ(0, pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE));
476
477    std::vector<pthread_t> threads;
478    for (size_t i = 0; i < 32; ++i) {
479      pthread_t t;
480      ASSERT_EQ(0, pthread_create(&t, &attr, IdFn, NULL));
481      threads.push_back(t);
482    }
483
484    sleep(1);
485
486    for (size_t i = 0; i < 32; ++i) {
487      ASSERT_EQ(0, pthread_detach(threads[i])) << i;
488    }
489  }
490
491  size_t final_bytes = mallinfo().uordblks;
492  int leaked_bytes = (final_bytes - initial_bytes);
493
494  ASSERT_EQ(0, leaked_bytes);
495}
496
497TEST(pthread, pthread_getcpuclockid__clock_gettime) {
498  SpinFunctionHelper spinhelper;
499
500  pthread_t t;
501  ASSERT_EQ(0, pthread_create(&t, NULL, spinhelper.GetFunction(), NULL));
502
503  clockid_t c;
504  ASSERT_EQ(0, pthread_getcpuclockid(t, &c));
505  timespec ts;
506  ASSERT_EQ(0, clock_gettime(c, &ts));
507}
508
509TEST(pthread, pthread_getcpuclockid__no_such_thread) {
510  pthread_t dead_thread;
511  MakeDeadThread(dead_thread);
512
513  clockid_t c;
514  ASSERT_EQ(ESRCH, pthread_getcpuclockid(dead_thread, &c));
515}
516
517TEST(pthread, pthread_getschedparam__no_such_thread) {
518  pthread_t dead_thread;
519  MakeDeadThread(dead_thread);
520
521  int policy;
522  sched_param param;
523  ASSERT_EQ(ESRCH, pthread_getschedparam(dead_thread, &policy, &param));
524}
525
526TEST(pthread, pthread_setschedparam__no_such_thread) {
527  pthread_t dead_thread;
528  MakeDeadThread(dead_thread);
529
530  int policy = 0;
531  sched_param param;
532  ASSERT_EQ(ESRCH, pthread_setschedparam(dead_thread, policy, &param));
533}
534
535TEST(pthread, pthread_join__no_such_thread) {
536  pthread_t dead_thread;
537  MakeDeadThread(dead_thread);
538
539  ASSERT_EQ(ESRCH, pthread_join(dead_thread, NULL));
540}
541
542TEST(pthread, pthread_kill__no_such_thread) {
543  pthread_t dead_thread;
544  MakeDeadThread(dead_thread);
545
546  ASSERT_EQ(ESRCH, pthread_kill(dead_thread, 0));
547}
548
549TEST(pthread, pthread_join__multijoin) {
550  SpinFunctionHelper spinhelper;
551
552  pthread_t t1;
553  ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
554
555  pthread_t t2;
556  ASSERT_EQ(0, pthread_create(&t2, NULL, JoinFn, reinterpret_cast<void*>(t1)));
557
558  sleep(1); // (Give t2 a chance to call pthread_join.)
559
560  // Multiple joins to the same thread should fail.
561  ASSERT_EQ(EINVAL, pthread_join(t1, NULL));
562
563  spinhelper.UnSpin();
564
565  // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
566  void* join_result;
567  ASSERT_EQ(0, pthread_join(t2, &join_result));
568  ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
569}
570
571TEST(pthread, pthread_join__race) {
572  // http://b/11693195 --- pthread_join could return before the thread had actually exited.
573  // If the joiner unmapped the thread's stack, that could lead to SIGSEGV in the thread.
574  for (size_t i = 0; i < 1024; ++i) {
575    size_t stack_size = 64*1024;
576    void* stack = mmap(NULL, stack_size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0);
577
578    pthread_attr_t a;
579    pthread_attr_init(&a);
580    pthread_attr_setstack(&a, stack, stack_size);
581
582    pthread_t t;
583    ASSERT_EQ(0, pthread_create(&t, &a, IdFn, NULL));
584    ASSERT_EQ(0, pthread_join(t, NULL));
585    ASSERT_EQ(0, munmap(stack, stack_size));
586  }
587}
588
589static void* GetActualGuardSizeFn(void* arg) {
590  pthread_attr_t attributes;
591  pthread_getattr_np(pthread_self(), &attributes);
592  pthread_attr_getguardsize(&attributes, reinterpret_cast<size_t*>(arg));
593  return NULL;
594}
595
596static size_t GetActualGuardSize(const pthread_attr_t& attributes) {
597  size_t result;
598  pthread_t t;
599  pthread_create(&t, &attributes, GetActualGuardSizeFn, &result);
600  pthread_join(t, NULL);
601  return result;
602}
603
604static void* GetActualStackSizeFn(void* arg) {
605  pthread_attr_t attributes;
606  pthread_getattr_np(pthread_self(), &attributes);
607  pthread_attr_getstacksize(&attributes, reinterpret_cast<size_t*>(arg));
608  return NULL;
609}
610
611static size_t GetActualStackSize(const pthread_attr_t& attributes) {
612  size_t result;
613  pthread_t t;
614  pthread_create(&t, &attributes, GetActualStackSizeFn, &result);
615  pthread_join(t, NULL);
616  return result;
617}
618
619TEST(pthread, pthread_attr_setguardsize) {
620  pthread_attr_t attributes;
621  ASSERT_EQ(0, pthread_attr_init(&attributes));
622
623  // Get the default guard size.
624  size_t default_guard_size;
625  ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &default_guard_size));
626
627  // No such thing as too small: will be rounded up to one page by pthread_create.
628  ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 128));
629  size_t guard_size;
630  ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
631  ASSERT_EQ(128U, guard_size);
632  ASSERT_EQ(4096U, GetActualGuardSize(attributes));
633
634  // Large enough and a multiple of the page size.
635  ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024));
636  ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
637  ASSERT_EQ(32*1024U, guard_size);
638
639  // Large enough but not a multiple of the page size; will be rounded up by pthread_create.
640  ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024 + 1));
641  ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
642  ASSERT_EQ(32*1024U + 1, guard_size);
643}
644
645TEST(pthread, pthread_attr_setstacksize) {
646  pthread_attr_t attributes;
647  ASSERT_EQ(0, pthread_attr_init(&attributes));
648
649  // Get the default stack size.
650  size_t default_stack_size;
651  ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &default_stack_size));
652
653  // Too small.
654  ASSERT_EQ(EINVAL, pthread_attr_setstacksize(&attributes, 128));
655  size_t stack_size;
656  ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
657  ASSERT_EQ(default_stack_size, stack_size);
658  ASSERT_GE(GetActualStackSize(attributes), default_stack_size);
659
660  // Large enough and a multiple of the page size; may be rounded up by pthread_create.
661  ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024));
662  ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
663  ASSERT_EQ(32*1024U, stack_size);
664  ASSERT_GE(GetActualStackSize(attributes), 32*1024U);
665
666  // Large enough but not aligned; will be rounded up by pthread_create.
667  ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024 + 1));
668  ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
669  ASSERT_EQ(32*1024U + 1, stack_size);
670#if defined(__BIONIC__)
671  ASSERT_GT(GetActualStackSize(attributes), 32*1024U + 1);
672#else // __BIONIC__
673  // glibc rounds down, in violation of POSIX. They document this in their BUGS section.
674  ASSERT_EQ(GetActualStackSize(attributes), 32*1024U);
675#endif // __BIONIC__
676}
677
678TEST(pthread, pthread_rwlockattr_smoke) {
679  pthread_rwlockattr_t attr;
680  ASSERT_EQ(0, pthread_rwlockattr_init(&attr));
681
682  int pshared_value_array[] = {PTHREAD_PROCESS_PRIVATE, PTHREAD_PROCESS_SHARED};
683  for (size_t i = 0; i < sizeof(pshared_value_array) / sizeof(pshared_value_array[0]); ++i) {
684    ASSERT_EQ(0, pthread_rwlockattr_setpshared(&attr, pshared_value_array[i]));
685    int pshared;
686    ASSERT_EQ(0, pthread_rwlockattr_getpshared(&attr, &pshared));
687    ASSERT_EQ(pshared_value_array[i], pshared);
688  }
689
690  int kind_array[] = {PTHREAD_RWLOCK_PREFER_READER_NP,
691                      PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP};
692  for (size_t i = 0; i < sizeof(kind_array) / sizeof(kind_array[0]); ++i) {
693    ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_array[i]));
694    int kind;
695    ASSERT_EQ(0, pthread_rwlockattr_getkind_np(&attr, &kind));
696    ASSERT_EQ(kind_array[i], kind);
697  }
698
699  ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr));
700}
701
702TEST(pthread, pthread_rwlock_init_same_as_PTHREAD_RWLOCK_INITIALIZER) {
703  pthread_rwlock_t lock1 = PTHREAD_RWLOCK_INITIALIZER;
704  pthread_rwlock_t lock2;
705  ASSERT_EQ(0, pthread_rwlock_init(&lock2, NULL));
706  ASSERT_EQ(0, memcmp(&lock1, &lock2, sizeof(lock1)));
707}
708
709TEST(pthread, pthread_rwlock_smoke) {
710  pthread_rwlock_t l;
711  ASSERT_EQ(0, pthread_rwlock_init(&l, NULL));
712
713  // Single read lock
714  ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
715  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
716
717  // Multiple read lock
718  ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
719  ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
720  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
721  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
722
723  // Write lock
724  ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
725  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
726
727  // Try writer lock
728  ASSERT_EQ(0, pthread_rwlock_trywrlock(&l));
729  ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
730  ASSERT_EQ(EBUSY, pthread_rwlock_tryrdlock(&l));
731  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
732
733  // Try reader lock
734  ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
735  ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
736  ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
737  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
738  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
739
740  // Try writer lock after unlock
741  ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
742  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
743
744  // EDEADLK in "read after write"
745  ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
746  ASSERT_EQ(EDEADLK, pthread_rwlock_rdlock(&l));
747  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
748
749  // EDEADLK in "write after write"
750  ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
751  ASSERT_EQ(EDEADLK, pthread_rwlock_wrlock(&l));
752  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
753
754  ASSERT_EQ(0, pthread_rwlock_destroy(&l));
755}
756
757static void WaitUntilThreadSleep(std::atomic<pid_t>& pid) {
758  while (pid == 0) {
759    usleep(1000);
760  }
761  std::string filename = android::base::StringPrintf("/proc/%d/stat", pid.load());
762  std::regex regex {R"(\s+S\s+)"};
763
764  while (true) {
765    std::string content;
766    ASSERT_TRUE(android::base::ReadFileToString(filename, &content));
767    if (std::regex_search(content, regex)) {
768      break;
769    }
770    usleep(1000);
771  }
772}
773
774struct RwlockWakeupHelperArg {
775  pthread_rwlock_t lock;
776  enum Progress {
777    LOCK_INITIALIZED,
778    LOCK_WAITING,
779    LOCK_RELEASED,
780    LOCK_ACCESSED
781  };
782  std::atomic<Progress> progress;
783  std::atomic<pid_t> tid;
784};
785
786static void pthread_rwlock_reader_wakeup_writer_helper(RwlockWakeupHelperArg* arg) {
787  arg->tid = gettid();
788  ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
789  arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;
790
791  ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&arg->lock));
792  ASSERT_EQ(0, pthread_rwlock_wrlock(&arg->lock));
793  ASSERT_EQ(RwlockWakeupHelperArg::LOCK_RELEASED, arg->progress);
794  ASSERT_EQ(0, pthread_rwlock_unlock(&arg->lock));
795
796  arg->progress = RwlockWakeupHelperArg::LOCK_ACCESSED;
797}
798
799TEST(pthread, pthread_rwlock_reader_wakeup_writer) {
800  RwlockWakeupHelperArg wakeup_arg;
801  ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, NULL));
802  ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock));
803  wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
804  wakeup_arg.tid = 0;
805
806  pthread_t thread;
807  ASSERT_EQ(0, pthread_create(&thread, NULL,
808    reinterpret_cast<void* (*)(void*)>(pthread_rwlock_reader_wakeup_writer_helper), &wakeup_arg));
809  WaitUntilThreadSleep(wakeup_arg.tid);
810  ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
811
812  wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED;
813  ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
814
815  ASSERT_EQ(0, pthread_join(thread, NULL));
816  ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress);
817  ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
818}
819
820static void pthread_rwlock_writer_wakeup_reader_helper(RwlockWakeupHelperArg* arg) {
821  arg->tid = gettid();
822  ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
823  arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;
824
825  ASSERT_EQ(EBUSY, pthread_rwlock_tryrdlock(&arg->lock));
826  ASSERT_EQ(0, pthread_rwlock_rdlock(&arg->lock));
827  ASSERT_EQ(RwlockWakeupHelperArg::LOCK_RELEASED, arg->progress);
828  ASSERT_EQ(0, pthread_rwlock_unlock(&arg->lock));
829
830  arg->progress = RwlockWakeupHelperArg::LOCK_ACCESSED;
831}
832
833TEST(pthread, pthread_rwlock_writer_wakeup_reader) {
834  RwlockWakeupHelperArg wakeup_arg;
835  ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, NULL));
836  ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock));
837  wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
838  wakeup_arg.tid = 0;
839
840  pthread_t thread;
841  ASSERT_EQ(0, pthread_create(&thread, NULL,
842    reinterpret_cast<void* (*)(void*)>(pthread_rwlock_writer_wakeup_reader_helper), &wakeup_arg));
843  WaitUntilThreadSleep(wakeup_arg.tid);
844  ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
845
846  wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED;
847  ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
848
849  ASSERT_EQ(0, pthread_join(thread, NULL));
850  ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress);
851  ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
852}
853
854class RwlockKindTestHelper {
855 private:
856  struct ThreadArg {
857    RwlockKindTestHelper* helper;
858    std::atomic<pid_t>& tid;
859
860    ThreadArg(RwlockKindTestHelper* helper, std::atomic<pid_t>& tid)
861      : helper(helper), tid(tid) { }
862  };
863
864 public:
865  pthread_rwlock_t lock;
866
867 public:
868  RwlockKindTestHelper(int kind_type) {
869    InitRwlock(kind_type);
870  }
871
872  ~RwlockKindTestHelper() {
873    DestroyRwlock();
874  }
875
876  void CreateWriterThread(pthread_t& thread, std::atomic<pid_t>& tid) {
877    tid = 0;
878    ThreadArg* arg = new ThreadArg(this, tid);
879    ASSERT_EQ(0, pthread_create(&thread, NULL,
880                                reinterpret_cast<void* (*)(void*)>(WriterThreadFn), arg));
881  }
882
883  void CreateReaderThread(pthread_t& thread, std::atomic<pid_t>& tid) {
884    tid = 0;
885    ThreadArg* arg = new ThreadArg(this, tid);
886    ASSERT_EQ(0, pthread_create(&thread, NULL,
887                                reinterpret_cast<void* (*)(void*)>(ReaderThreadFn), arg));
888  }
889
890 private:
891  void InitRwlock(int kind_type) {
892    pthread_rwlockattr_t attr;
893    ASSERT_EQ(0, pthread_rwlockattr_init(&attr));
894    ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_type));
895    ASSERT_EQ(0, pthread_rwlock_init(&lock, &attr));
896    ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr));
897  }
898
899  void DestroyRwlock() {
900    ASSERT_EQ(0, pthread_rwlock_destroy(&lock));
901  }
902
903  static void WriterThreadFn(ThreadArg* arg) {
904    arg->tid = gettid();
905
906    RwlockKindTestHelper* helper = arg->helper;
907    ASSERT_EQ(0, pthread_rwlock_wrlock(&helper->lock));
908    ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock));
909    delete arg;
910  }
911
912  static void ReaderThreadFn(ThreadArg* arg) {
913    arg->tid = gettid();
914
915    RwlockKindTestHelper* helper = arg->helper;
916    ASSERT_EQ(0, pthread_rwlock_rdlock(&helper->lock));
917    ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock));
918    delete arg;
919  }
920};
921
922TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_READER_NP) {
923  RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_READER_NP);
924  ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock));
925
926  pthread_t writer_thread;
927  std::atomic<pid_t> writer_tid;
928  helper.CreateWriterThread(writer_thread, writer_tid);
929  WaitUntilThreadSleep(writer_tid);
930
931  pthread_t reader_thread;
932  std::atomic<pid_t> reader_tid;
933  helper.CreateReaderThread(reader_thread, reader_tid);
934  ASSERT_EQ(0, pthread_join(reader_thread, NULL));
935
936  ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock));
937  ASSERT_EQ(0, pthread_join(writer_thread, NULL));
938}
939
940TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP) {
941  RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP);
942  ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock));
943
944  pthread_t writer_thread;
945  std::atomic<pid_t> writer_tid;
946  helper.CreateWriterThread(writer_thread, writer_tid);
947  WaitUntilThreadSleep(writer_tid);
948
949  pthread_t reader_thread;
950  std::atomic<pid_t> reader_tid;
951  helper.CreateReaderThread(reader_thread, reader_tid);
952  WaitUntilThreadSleep(reader_tid);
953
954  ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock));
955  ASSERT_EQ(0, pthread_join(writer_thread, NULL));
956  ASSERT_EQ(0, pthread_join(reader_thread, NULL));
957}
958
959static int g_once_fn_call_count = 0;
960static void OnceFn() {
961  ++g_once_fn_call_count;
962}
963
964TEST(pthread, pthread_once_smoke) {
965  pthread_once_t once_control = PTHREAD_ONCE_INIT;
966  ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
967  ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
968  ASSERT_EQ(1, g_once_fn_call_count);
969}
970
971static std::string pthread_once_1934122_result = "";
972
973static void Routine2() {
974  pthread_once_1934122_result += "2";
975}
976
977static void Routine1() {
978  pthread_once_t once_control_2 = PTHREAD_ONCE_INIT;
979  pthread_once_1934122_result += "1";
980  pthread_once(&once_control_2, &Routine2);
981}
982
983TEST(pthread, pthread_once_1934122) {
984  // Very old versions of Android couldn't call pthread_once from a
985  // pthread_once init routine. http://b/1934122.
986  pthread_once_t once_control_1 = PTHREAD_ONCE_INIT;
987  ASSERT_EQ(0, pthread_once(&once_control_1, &Routine1));
988  ASSERT_EQ("12", pthread_once_1934122_result);
989}
990
991static int g_atfork_prepare_calls = 0;
992static void AtForkPrepare1() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 1; }
993static void AtForkPrepare2() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 2; }
994static int g_atfork_parent_calls = 0;
995static void AtForkParent1() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 1; }
996static void AtForkParent2() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 2; }
997static int g_atfork_child_calls = 0;
998static void AtForkChild1() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 1; }
999static void AtForkChild2() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 2; }
1000
1001TEST(pthread, pthread_atfork_smoke) {
1002  ASSERT_EQ(0, pthread_atfork(AtForkPrepare1, AtForkParent1, AtForkChild1));
1003  ASSERT_EQ(0, pthread_atfork(AtForkPrepare2, AtForkParent2, AtForkChild2));
1004
1005  int pid = fork();
1006  ASSERT_NE(-1, pid) << strerror(errno);
1007
1008  // Child and parent calls are made in the order they were registered.
1009  if (pid == 0) {
1010    ASSERT_EQ(12, g_atfork_child_calls);
1011    _exit(0);
1012  }
1013  ASSERT_EQ(12, g_atfork_parent_calls);
1014
1015  // Prepare calls are made in the reverse order.
1016  ASSERT_EQ(21, g_atfork_prepare_calls);
1017  int status;
1018  ASSERT_EQ(pid, waitpid(pid, &status, 0));
1019}
1020
1021TEST(pthread, pthread_attr_getscope) {
1022  pthread_attr_t attr;
1023  ASSERT_EQ(0, pthread_attr_init(&attr));
1024
1025  int scope;
1026  ASSERT_EQ(0, pthread_attr_getscope(&attr, &scope));
1027  ASSERT_EQ(PTHREAD_SCOPE_SYSTEM, scope);
1028}
1029
1030TEST(pthread, pthread_condattr_init) {
1031  pthread_condattr_t attr;
1032  pthread_condattr_init(&attr);
1033
1034  clockid_t clock;
1035  ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1036  ASSERT_EQ(CLOCK_REALTIME, clock);
1037
1038  int pshared;
1039  ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
1040  ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared);
1041}
1042
1043TEST(pthread, pthread_condattr_setclock) {
1044  pthread_condattr_t attr;
1045  pthread_condattr_init(&attr);
1046
1047  ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_REALTIME));
1048  clockid_t clock;
1049  ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1050  ASSERT_EQ(CLOCK_REALTIME, clock);
1051
1052  ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
1053  ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1054  ASSERT_EQ(CLOCK_MONOTONIC, clock);
1055
1056  ASSERT_EQ(EINVAL, pthread_condattr_setclock(&attr, CLOCK_PROCESS_CPUTIME_ID));
1057}
1058
1059TEST(pthread, pthread_cond_broadcast__preserves_condattr_flags) {
1060#if defined(__BIONIC__)
1061  pthread_condattr_t attr;
1062  pthread_condattr_init(&attr);
1063
1064  ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
1065  ASSERT_EQ(0, pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED));
1066
1067  pthread_cond_t cond_var;
1068  ASSERT_EQ(0, pthread_cond_init(&cond_var, &attr));
1069
1070  ASSERT_EQ(0, pthread_cond_signal(&cond_var));
1071  ASSERT_EQ(0, pthread_cond_broadcast(&cond_var));
1072
1073  attr = static_cast<pthread_condattr_t>(*reinterpret_cast<uint32_t*>(cond_var.__private));
1074  clockid_t clock;
1075  ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1076  ASSERT_EQ(CLOCK_MONOTONIC, clock);
1077  int pshared;
1078  ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
1079  ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared);
1080#else  // !defined(__BIONIC__)
1081  GTEST_LOG_(INFO) << "This tests a bionic implementation detail.\n";
1082#endif  // !defined(__BIONIC__)
1083}
1084
1085class pthread_CondWakeupTest : public ::testing::Test {
1086 protected:
1087  pthread_mutex_t mutex;
1088  pthread_cond_t cond;
1089
1090  enum Progress {
1091    INITIALIZED,
1092    WAITING,
1093    SIGNALED,
1094    FINISHED,
1095  };
1096  std::atomic<Progress> progress;
1097  pthread_t thread;
1098
1099 protected:
1100  virtual void SetUp() {
1101    ASSERT_EQ(0, pthread_mutex_init(&mutex, NULL));
1102    ASSERT_EQ(0, pthread_cond_init(&cond, NULL));
1103    progress = INITIALIZED;
1104    ASSERT_EQ(0,
1105      pthread_create(&thread, NULL, reinterpret_cast<void* (*)(void*)>(WaitThreadFn), this));
1106  }
1107
1108  virtual void TearDown() {
1109    ASSERT_EQ(0, pthread_join(thread, NULL));
1110    ASSERT_EQ(FINISHED, progress);
1111    ASSERT_EQ(0, pthread_cond_destroy(&cond));
1112    ASSERT_EQ(0, pthread_mutex_destroy(&mutex));
1113  }
1114
1115  void SleepUntilProgress(Progress expected_progress) {
1116    while (progress != expected_progress) {
1117      usleep(5000);
1118    }
1119    usleep(5000);
1120  }
1121
1122 private:
1123  static void WaitThreadFn(pthread_CondWakeupTest* test) {
1124    ASSERT_EQ(0, pthread_mutex_lock(&test->mutex));
1125    test->progress = WAITING;
1126    while (test->progress == WAITING) {
1127      ASSERT_EQ(0, pthread_cond_wait(&test->cond, &test->mutex));
1128    }
1129    ASSERT_EQ(SIGNALED, test->progress);
1130    test->progress = FINISHED;
1131    ASSERT_EQ(0, pthread_mutex_unlock(&test->mutex));
1132  }
1133};
1134
1135TEST_F(pthread_CondWakeupTest, signal) {
1136  SleepUntilProgress(WAITING);
1137  progress = SIGNALED;
1138  pthread_cond_signal(&cond);
1139}
1140
1141TEST_F(pthread_CondWakeupTest, broadcast) {
1142  SleepUntilProgress(WAITING);
1143  progress = SIGNALED;
1144  pthread_cond_broadcast(&cond);
1145}
1146
1147TEST(pthread, pthread_mutex_timedlock) {
1148  pthread_mutex_t m;
1149  ASSERT_EQ(0, pthread_mutex_init(&m, NULL));
1150
1151  // If the mutex is already locked, pthread_mutex_timedlock should time out.
1152  ASSERT_EQ(0, pthread_mutex_lock(&m));
1153
1154  timespec ts;
1155  ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
1156  ts.tv_nsec += 1;
1157  ASSERT_EQ(ETIMEDOUT, pthread_mutex_timedlock(&m, &ts));
1158
1159  // If the mutex is unlocked, pthread_mutex_timedlock should succeed.
1160  ASSERT_EQ(0, pthread_mutex_unlock(&m));
1161
1162  ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
1163  ts.tv_nsec += 1;
1164  ASSERT_EQ(0, pthread_mutex_timedlock(&m, &ts));
1165
1166  ASSERT_EQ(0, pthread_mutex_unlock(&m));
1167  ASSERT_EQ(0, pthread_mutex_destroy(&m));
1168}
1169
1170TEST(pthread, pthread_attr_getstack__main_thread) {
1171  // This test is only meaningful for the main thread, so make sure we're running on it!
1172  ASSERT_EQ(getpid(), syscall(__NR_gettid));
1173
1174  // Get the main thread's attributes.
1175  pthread_attr_t attributes;
1176  ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1177
1178  // Check that we correctly report that the main thread has no guard page.
1179  size_t guard_size;
1180  ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
1181  ASSERT_EQ(0U, guard_size); // The main thread has no guard page.
1182
1183  // Get the stack base and the stack size (both ways).
1184  void* stack_base;
1185  size_t stack_size;
1186  ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1187  size_t stack_size2;
1188  ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1189
1190  // The two methods of asking for the stack size should agree.
1191  EXPECT_EQ(stack_size, stack_size2);
1192
1193  // What does /proc/self/maps' [stack] line say?
1194  void* maps_stack_hi = NULL;
1195  FILE* fp = fopen("/proc/self/maps", "r");
1196  ASSERT_TRUE(fp != NULL);
1197  char line[BUFSIZ];
1198  while (fgets(line, sizeof(line), fp) != NULL) {
1199    uintptr_t lo, hi;
1200    char name[10];
1201    sscanf(line, "%" PRIxPTR "-%" PRIxPTR " %*4s %*x %*x:%*x %*d %10s", &lo, &hi, name);
1202    if (strcmp(name, "[stack]") == 0) {
1203      maps_stack_hi = reinterpret_cast<void*>(hi);
1204      break;
1205    }
1206  }
1207  fclose(fp);
1208
1209  // The stack size should correspond to RLIMIT_STACK.
1210  rlimit rl;
1211  ASSERT_EQ(0, getrlimit(RLIMIT_STACK, &rl));
1212  uint64_t original_rlim_cur = rl.rlim_cur;
1213#if defined(__BIONIC__)
1214  if (rl.rlim_cur == RLIM_INFINITY) {
1215    rl.rlim_cur = 8 * 1024 * 1024; // Bionic reports unlimited stacks as 8MiB.
1216  }
1217#endif
1218  EXPECT_EQ(rl.rlim_cur, stack_size);
1219
1220  auto guard = make_scope_guard([&rl, original_rlim_cur]() {
1221    rl.rlim_cur = original_rlim_cur;
1222    ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1223  });
1224
1225  // The high address of the /proc/self/maps [stack] region should equal stack_base + stack_size.
1226  // Remember that the stack grows down (and is mapped in on demand), so the low address of the
1227  // region isn't very interesting.
1228  EXPECT_EQ(maps_stack_hi, reinterpret_cast<uint8_t*>(stack_base) + stack_size);
1229
1230  //
1231  // What if RLIMIT_STACK is smaller than the stack's current extent?
1232  //
1233  rl.rlim_cur = rl.rlim_max = 1024; // 1KiB. We know the stack must be at least a page already.
1234  rl.rlim_max = RLIM_INFINITY;
1235  ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1236
1237  ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1238  ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1239  ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1240
1241  EXPECT_EQ(stack_size, stack_size2);
1242  ASSERT_EQ(1024U, stack_size);
1243
1244  //
1245  // What if RLIMIT_STACK isn't a whole number of pages?
1246  //
1247  rl.rlim_cur = rl.rlim_max = 6666; // Not a whole number of pages.
1248  rl.rlim_max = RLIM_INFINITY;
1249  ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1250
1251  ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1252  ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1253  ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1254
1255  EXPECT_EQ(stack_size, stack_size2);
1256  ASSERT_EQ(6666U, stack_size);
1257}
1258
1259static void pthread_attr_getstack_18908062_helper(void*) {
1260  char local_variable;
1261  pthread_attr_t attributes;
1262  pthread_getattr_np(pthread_self(), &attributes);
1263  void* stack_base;
1264  size_t stack_size;
1265  pthread_attr_getstack(&attributes, &stack_base, &stack_size);
1266
1267  // Test whether &local_variable is in [stack_base, stack_base + stack_size).
1268  ASSERT_LE(reinterpret_cast<char*>(stack_base), &local_variable);
1269  ASSERT_LT(&local_variable, reinterpret_cast<char*>(stack_base) + stack_size);
1270}
1271
1272// Check whether something on stack is in the range of
1273// [stack_base, stack_base + stack_size). see b/18908062.
1274TEST(pthread, pthread_attr_getstack_18908062) {
1275  pthread_t t;
1276  ASSERT_EQ(0, pthread_create(&t, NULL,
1277            reinterpret_cast<void* (*)(void*)>(pthread_attr_getstack_18908062_helper),
1278            NULL));
1279  pthread_join(t, NULL);
1280}
1281
1282#if defined(__BIONIC__)
1283static void* pthread_gettid_np_helper(void* arg) {
1284  *reinterpret_cast<pid_t*>(arg) = gettid();
1285  return NULL;
1286}
1287#endif
1288
1289TEST(pthread, pthread_gettid_np) {
1290#if defined(__BIONIC__)
1291  ASSERT_EQ(gettid(), pthread_gettid_np(pthread_self()));
1292
1293  pid_t t_gettid_result;
1294  pthread_t t;
1295  pthread_create(&t, NULL, pthread_gettid_np_helper, &t_gettid_result);
1296
1297  pid_t t_pthread_gettid_np_result = pthread_gettid_np(t);
1298
1299  pthread_join(t, NULL);
1300
1301  ASSERT_EQ(t_gettid_result, t_pthread_gettid_np_result);
1302#else
1303  GTEST_LOG_(INFO) << "This test does nothing.\n";
1304#endif
1305}
1306
1307static size_t cleanup_counter = 0;
1308
1309static void AbortCleanupRoutine(void*) {
1310  abort();
1311}
1312
1313static void CountCleanupRoutine(void*) {
1314  ++cleanup_counter;
1315}
1316
1317static void PthreadCleanupTester() {
1318  pthread_cleanup_push(CountCleanupRoutine, NULL);
1319  pthread_cleanup_push(CountCleanupRoutine, NULL);
1320  pthread_cleanup_push(AbortCleanupRoutine, NULL);
1321
1322  pthread_cleanup_pop(0); // Pop the abort without executing it.
1323  pthread_cleanup_pop(1); // Pop one count while executing it.
1324  ASSERT_EQ(1U, cleanup_counter);
1325  // Exit while the other count is still on the cleanup stack.
1326  pthread_exit(NULL);
1327
1328  // Calls to pthread_cleanup_pop/pthread_cleanup_push must always be balanced.
1329  pthread_cleanup_pop(0);
1330}
1331
1332static void* PthreadCleanupStartRoutine(void*) {
1333  PthreadCleanupTester();
1334  return NULL;
1335}
1336
1337TEST(pthread, pthread_cleanup_push__pthread_cleanup_pop) {
1338  pthread_t t;
1339  ASSERT_EQ(0, pthread_create(&t, NULL, PthreadCleanupStartRoutine, NULL));
1340  pthread_join(t, NULL);
1341  ASSERT_EQ(2U, cleanup_counter);
1342}
1343
1344TEST(pthread, PTHREAD_MUTEX_DEFAULT_is_PTHREAD_MUTEX_NORMAL) {
1345  ASSERT_EQ(PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_DEFAULT);
1346}
1347
1348TEST(pthread, pthread_mutexattr_gettype) {
1349  pthread_mutexattr_t attr;
1350  ASSERT_EQ(0, pthread_mutexattr_init(&attr));
1351
1352  int attr_type;
1353
1354  ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL));
1355  ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1356  ASSERT_EQ(PTHREAD_MUTEX_NORMAL, attr_type);
1357
1358  ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK));
1359  ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1360  ASSERT_EQ(PTHREAD_MUTEX_ERRORCHECK, attr_type);
1361
1362  ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE));
1363  ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1364  ASSERT_EQ(PTHREAD_MUTEX_RECURSIVE, attr_type);
1365
1366  ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
1367}
1368
1369struct PthreadMutex {
1370  pthread_mutex_t lock;
1371
1372  PthreadMutex(int mutex_type) {
1373    init(mutex_type);
1374  }
1375
1376  ~PthreadMutex() {
1377    destroy();
1378  }
1379
1380 private:
1381  void init(int mutex_type) {
1382    pthread_mutexattr_t attr;
1383    ASSERT_EQ(0, pthread_mutexattr_init(&attr));
1384    ASSERT_EQ(0, pthread_mutexattr_settype(&attr, mutex_type));
1385    ASSERT_EQ(0, pthread_mutex_init(&lock, &attr));
1386    ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
1387  }
1388
1389  void destroy() {
1390    ASSERT_EQ(0, pthread_mutex_destroy(&lock));
1391  }
1392
1393  DISALLOW_COPY_AND_ASSIGN(PthreadMutex);
1394};
1395
1396TEST(pthread, pthread_mutex_lock_NORMAL) {
1397  PthreadMutex m(PTHREAD_MUTEX_NORMAL);
1398
1399  ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1400  ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1401}
1402
1403TEST(pthread, pthread_mutex_lock_ERRORCHECK) {
1404  PthreadMutex m(PTHREAD_MUTEX_ERRORCHECK);
1405
1406  ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1407  ASSERT_EQ(EDEADLK, pthread_mutex_lock(&m.lock));
1408  ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1409  ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
1410  ASSERT_EQ(EBUSY, pthread_mutex_trylock(&m.lock));
1411  ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1412  ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock));
1413}
1414
1415TEST(pthread, pthread_mutex_lock_RECURSIVE) {
1416  PthreadMutex m(PTHREAD_MUTEX_RECURSIVE);
1417
1418  ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1419  ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1420  ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1421  ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1422  ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
1423  ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1424  ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock));
1425}
1426
1427TEST(pthread, pthread_mutex_init_same_as_static_initializers) {
1428  pthread_mutex_t lock_normal = PTHREAD_MUTEX_INITIALIZER;
1429  PthreadMutex m1(PTHREAD_MUTEX_NORMAL);
1430  ASSERT_EQ(0, memcmp(&lock_normal, &m1.lock, sizeof(pthread_mutex_t)));
1431  pthread_mutex_destroy(&lock_normal);
1432
1433  pthread_mutex_t lock_errorcheck = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
1434  PthreadMutex m2(PTHREAD_MUTEX_ERRORCHECK);
1435  ASSERT_EQ(0, memcmp(&lock_errorcheck, &m2.lock, sizeof(pthread_mutex_t)));
1436  pthread_mutex_destroy(&lock_errorcheck);
1437
1438  pthread_mutex_t lock_recursive = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;
1439  PthreadMutex m3(PTHREAD_MUTEX_RECURSIVE);
1440  ASSERT_EQ(0, memcmp(&lock_recursive, &m3.lock, sizeof(pthread_mutex_t)));
1441  ASSERT_EQ(0, pthread_mutex_destroy(&lock_recursive));
1442}
1443class MutexWakeupHelper {
1444 private:
1445  PthreadMutex m;
1446  enum Progress {
1447    LOCK_INITIALIZED,
1448    LOCK_WAITING,
1449    LOCK_RELEASED,
1450    LOCK_ACCESSED
1451  };
1452  std::atomic<Progress> progress;
1453  std::atomic<pid_t> tid;
1454
1455  static void thread_fn(MutexWakeupHelper* helper) {
1456    helper->tid = gettid();
1457    ASSERT_EQ(LOCK_INITIALIZED, helper->progress);
1458    helper->progress = LOCK_WAITING;
1459
1460    ASSERT_EQ(0, pthread_mutex_lock(&helper->m.lock));
1461    ASSERT_EQ(LOCK_RELEASED, helper->progress);
1462    ASSERT_EQ(0, pthread_mutex_unlock(&helper->m.lock));
1463
1464    helper->progress = LOCK_ACCESSED;
1465  }
1466
1467 public:
1468  MutexWakeupHelper(int mutex_type) : m(mutex_type) {
1469  }
1470
1471  void test() {
1472    ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1473    progress = LOCK_INITIALIZED;
1474    tid = 0;
1475
1476    pthread_t thread;
1477    ASSERT_EQ(0, pthread_create(&thread, NULL,
1478      reinterpret_cast<void* (*)(void*)>(MutexWakeupHelper::thread_fn), this));
1479
1480    WaitUntilThreadSleep(tid);
1481    ASSERT_EQ(LOCK_WAITING, progress);
1482
1483    progress = LOCK_RELEASED;
1484    ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1485
1486    ASSERT_EQ(0, pthread_join(thread, NULL));
1487    ASSERT_EQ(LOCK_ACCESSED, progress);
1488  }
1489};
1490
1491TEST(pthread, pthread_mutex_NORMAL_wakeup) {
1492  MutexWakeupHelper helper(PTHREAD_MUTEX_NORMAL);
1493  helper.test();
1494}
1495
1496TEST(pthread, pthread_mutex_ERRORCHECK_wakeup) {
1497  MutexWakeupHelper helper(PTHREAD_MUTEX_ERRORCHECK);
1498  helper.test();
1499}
1500
1501TEST(pthread, pthread_mutex_RECURSIVE_wakeup) {
1502  MutexWakeupHelper helper(PTHREAD_MUTEX_RECURSIVE);
1503  helper.test();
1504}
1505
1506TEST(pthread, pthread_mutex_owner_tid_limit) {
1507#if defined(__BIONIC__) && !defined(__LP64__)
1508  FILE* fp = fopen("/proc/sys/kernel/pid_max", "r");
1509  ASSERT_TRUE(fp != NULL);
1510  long pid_max;
1511  ASSERT_EQ(1, fscanf(fp, "%ld", &pid_max));
1512  fclose(fp);
1513  // Bionic's pthread_mutex implementation on 32-bit devices uses 16 bits to represent owner tid.
1514  ASSERT_LE(pid_max, 65536);
1515#else
1516  GTEST_LOG_(INFO) << "This test does nothing as 32-bit tid is supported by pthread_mutex.\n";
1517#endif
1518}
1519
1520class StrictAlignmentAllocator {
1521 public:
1522  void* allocate(size_t size, size_t alignment) {
1523    char* p = new char[size + alignment * 2];
1524    allocated_array.push_back(p);
1525    while (!is_strict_aligned(p, alignment)) {
1526      ++p;
1527    }
1528    return p;
1529  }
1530
1531  ~StrictAlignmentAllocator() {
1532    for (auto& p : allocated_array) {
1533      delete [] p;
1534    }
1535  }
1536
1537 private:
1538  bool is_strict_aligned(char* p, size_t alignment) {
1539    return (reinterpret_cast<uintptr_t>(p) % (alignment * 2)) == alignment;
1540  }
1541
1542  std::vector<char*> allocated_array;
1543};
1544
1545TEST(pthread, pthread_types_allow_four_bytes_alignment) {
1546#if defined(__BIONIC__)
1547  // For binary compatibility with old version, we need to allow 4-byte aligned data for pthread types.
1548  StrictAlignmentAllocator allocator;
1549  pthread_mutex_t* mutex = reinterpret_cast<pthread_mutex_t*>(
1550                             allocator.allocate(sizeof(pthread_mutex_t), 4));
1551  ASSERT_EQ(0, pthread_mutex_init(mutex, NULL));
1552  ASSERT_EQ(0, pthread_mutex_lock(mutex));
1553  ASSERT_EQ(0, pthread_mutex_unlock(mutex));
1554  ASSERT_EQ(0, pthread_mutex_destroy(mutex));
1555
1556  pthread_cond_t* cond = reinterpret_cast<pthread_cond_t*>(
1557                           allocator.allocate(sizeof(pthread_cond_t), 4));
1558  ASSERT_EQ(0, pthread_cond_init(cond, NULL));
1559  ASSERT_EQ(0, pthread_cond_signal(cond));
1560  ASSERT_EQ(0, pthread_cond_broadcast(cond));
1561  ASSERT_EQ(0, pthread_cond_destroy(cond));
1562
1563  pthread_rwlock_t* rwlock = reinterpret_cast<pthread_rwlock_t*>(
1564                               allocator.allocate(sizeof(pthread_rwlock_t), 4));
1565  ASSERT_EQ(0, pthread_rwlock_init(rwlock, NULL));
1566  ASSERT_EQ(0, pthread_rwlock_rdlock(rwlock));
1567  ASSERT_EQ(0, pthread_rwlock_unlock(rwlock));
1568  ASSERT_EQ(0, pthread_rwlock_wrlock(rwlock));
1569  ASSERT_EQ(0, pthread_rwlock_unlock(rwlock));
1570  ASSERT_EQ(0, pthread_rwlock_destroy(rwlock));
1571
1572#else
1573  GTEST_LOG_(INFO) << "This test tests bionic implementation details.";
1574#endif
1575}
1576