1dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond/*
2dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * Licensed to the Apache Software Foundation (ASF) under one or more
3dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * contributor license agreements.  See the NOTICE file distributed with
4dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * this work for additional information regarding copyright ownership.
5dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * The ASF licenses this file to You under the Apache License, Version 2.0
6dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * (the "License"); you may not use this file except in compliance with
7dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * the License.  You may obtain a copy of the License at
8dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *
9dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *      http://www.apache.org/licenses/LICENSE-2.0
10dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *
11dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * Unless required by applicable law or agreed to in writing, software
12dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * distributed under the License is distributed on an "AS IS" BASIS,
13dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * See the License for the specific language governing permissions and
15dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * limitations under the License.
16dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond */
17dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
18dee0849a9704d532af0b550146cbafbaa6ee1d19Raymondpackage org.apache.commons.math.ode.nonstiff;
19dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
20dee0849a9704d532af0b550146cbafbaa6ee1d19Raymondimport java.util.Arrays;
21dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
22dee0849a9704d532af0b550146cbafbaa6ee1d19Raymondimport org.apache.commons.math.linear.Array2DRowRealMatrix;
23dee0849a9704d532af0b550146cbafbaa6ee1d19Raymondimport org.apache.commons.math.linear.RealMatrixPreservingVisitor;
24dee0849a9704d532af0b550146cbafbaa6ee1d19Raymondimport org.apache.commons.math.ode.DerivativeException;
25dee0849a9704d532af0b550146cbafbaa6ee1d19Raymondimport org.apache.commons.math.ode.FirstOrderDifferentialEquations;
26dee0849a9704d532af0b550146cbafbaa6ee1d19Raymondimport org.apache.commons.math.ode.IntegratorException;
27dee0849a9704d532af0b550146cbafbaa6ee1d19Raymondimport org.apache.commons.math.ode.sampling.NordsieckStepInterpolator;
28dee0849a9704d532af0b550146cbafbaa6ee1d19Raymondimport org.apache.commons.math.ode.sampling.StepHandler;
29dee0849a9704d532af0b550146cbafbaa6ee1d19Raymondimport org.apache.commons.math.util.FastMath;
30dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
31dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
32dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond/**
33dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * This class implements implicit Adams-Moulton integrators for Ordinary
34dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * Differential Equations.
35dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *
36dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <p>Adams-Moulton methods (in fact due to Adams alone) are implicit
37dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * multistep ODE solvers. This implementation is a variation of the classical
38dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * one: it uses adaptive stepsize to implement error control, whereas
39dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * classical implementations are fixed step size. The value of state vector
40dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * at step n+1 is a simple combination of the value at step n and of the
41dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * derivatives at steps n+1, n, n-1 ... Since y'<sub>n+1</sub> is needed to
42dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * compute y<sub>n+1</sub>,another method must be used to compute a first
43dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * estimate of y<sub>n+1</sub>, then compute y'<sub>n+1</sub>, then compute
44dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * a final estimate of y<sub>n+1</sub> using the following formulas. Depending
45dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * on the number k of previous steps one wants to use for computing the next
46dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * value, different formulas are available for the final estimate:</p>
47dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <ul>
48dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *   <li>k = 1: y<sub>n+1</sub> = y<sub>n</sub> + h y'<sub>n+1</sub></li>
49dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *   <li>k = 2: y<sub>n+1</sub> = y<sub>n</sub> + h (y'<sub>n+1</sub>+y'<sub>n</sub>)/2</li>
50dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *   <li>k = 3: y<sub>n+1</sub> = y<sub>n</sub> + h (5y'<sub>n+1</sub>+8y'<sub>n</sub>-y'<sub>n-1</sub>)/12</li>
51dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *   <li>k = 4: y<sub>n+1</sub> = y<sub>n</sub> + h (9y'<sub>n+1</sub>+19y'<sub>n</sub>-5y'<sub>n-1</sub>+y'<sub>n-2</sub>)/24</li>
52dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *   <li>...</li>
53dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * </ul>
54dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *
55dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <p>A k-steps Adams-Moulton method is of order k+1.</p>
56dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *
57dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <h3>Implementation details</h3>
58dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *
59dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <p>We define scaled derivatives s<sub>i</sub>(n) at step n as:
60dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <pre>
61dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * s<sub>1</sub>(n) = h y'<sub>n</sub> for first derivative
62dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * s<sub>2</sub>(n) = h<sup>2</sup>/2 y''<sub>n</sub> for second derivative
63dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * s<sub>3</sub>(n) = h<sup>3</sup>/6 y'''<sub>n</sub> for third derivative
64dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * ...
65dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * s<sub>k</sub>(n) = h<sup>k</sup>/k! y(k)<sub>n</sub> for k<sup>th</sup> derivative
66dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * </pre></p>
67dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *
68dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <p>The definitions above use the classical representation with several previous first
69dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * derivatives. Lets define
70dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <pre>
71dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *   q<sub>n</sub> = [ s<sub>1</sub>(n-1) s<sub>1</sub>(n-2) ... s<sub>1</sub>(n-(k-1)) ]<sup>T</sup>
72dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * </pre>
73dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * (we omit the k index in the notation for clarity). With these definitions,
74dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * Adams-Moulton methods can be written:
75dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <ul>
76dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *   <li>k = 1: y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n+1)</li>
77dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *   <li>k = 2: y<sub>n+1</sub> = y<sub>n</sub> + 1/2 s<sub>1</sub>(n+1) + [ 1/2 ] q<sub>n+1</sub></li>
78dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *   <li>k = 3: y<sub>n+1</sub> = y<sub>n</sub> + 5/12 s<sub>1</sub>(n+1) + [ 8/12 -1/12 ] q<sub>n+1</sub></li>
79dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *   <li>k = 4: y<sub>n+1</sub> = y<sub>n</sub> + 9/24 s<sub>1</sub>(n+1) + [ 19/24 -5/24 1/24 ] q<sub>n+1</sub></li>
80dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *   <li>...</li>
81dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * </ul></p>
82dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *
83dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <p>Instead of using the classical representation with first derivatives only (y<sub>n</sub>,
84dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * s<sub>1</sub>(n+1) and q<sub>n+1</sub>), our implementation uses the Nordsieck vector with
85dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * higher degrees scaled derivatives all taken at the same step (y<sub>n</sub>, s<sub>1</sub>(n)
86dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * and r<sub>n</sub>) where r<sub>n</sub> is defined as:
87dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <pre>
88dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * r<sub>n</sub> = [ s<sub>2</sub>(n), s<sub>3</sub>(n) ... s<sub>k</sub>(n) ]<sup>T</sup>
89dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * </pre>
90dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * (here again we omit the k index in the notation for clarity)
91dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * </p>
92dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *
93dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <p>Taylor series formulas show that for any index offset i, s<sub>1</sub>(n-i) can be
94dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * computed from s<sub>1</sub>(n), s<sub>2</sub>(n) ... s<sub>k</sub>(n), the formula being exact
95dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * for degree k polynomials.
96dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <pre>
97dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * s<sub>1</sub>(n-i) = s<sub>1</sub>(n) + &sum;<sub>j</sub> j (-i)<sup>j-1</sup> s<sub>j</sub>(n)
98dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * </pre>
99dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * The previous formula can be used with several values for i to compute the transform between
100dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * classical representation and Nordsieck vector. The transform between r<sub>n</sub>
101dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * and q<sub>n</sub> resulting from the Taylor series formulas above is:
102dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <pre>
103dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * q<sub>n</sub> = s<sub>1</sub>(n) u + P r<sub>n</sub>
104dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * </pre>
105dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * where u is the [ 1 1 ... 1 ]<sup>T</sup> vector and P is the (k-1)&times;(k-1) matrix built
106dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * with the j (-i)<sup>j-1</sup> terms:
107dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <pre>
108dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *        [  -2   3   -4    5  ... ]
109dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *        [  -4  12  -32   80  ... ]
110dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *   P =  [  -6  27 -108  405  ... ]
111dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *        [  -8  48 -256 1280  ... ]
112dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *        [          ...           ]
113dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * </pre></p>
114dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *
115dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <p>Using the Nordsieck vector has several advantages:
116dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <ul>
117dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *   <li>it greatly simplifies step interpolation as the interpolator mainly applies
118dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *   Taylor series formulas,</li>
119dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *   <li>it simplifies step changes that occur when discrete events that truncate
120dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *   the step are triggered,</li>
121dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *   <li>it allows to extend the methods in order to support adaptive stepsize.</li>
122dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * </ul></p>
123dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *
124dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <p>The predicted Nordsieck vector at step n+1 is computed from the Nordsieck vector at step
125dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * n as follows:
126dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <ul>
127dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *   <li>Y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n) + u<sup>T</sup> r<sub>n</sub></li>
128dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *   <li>S<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, Y<sub>n+1</sub>)</li>
129dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *   <li>R<sub>n+1</sub> = (s<sub>1</sub>(n) - S<sub>1</sub>(n+1)) P<sup>-1</sup> u + P<sup>-1</sup> A P r<sub>n</sub></li>
130dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * </ul>
131dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * where A is a rows shifting matrix (the lower left part is an identity matrix):
132dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <pre>
133dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *        [ 0 0   ...  0 0 | 0 ]
134dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *        [ ---------------+---]
135dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *        [ 1 0   ...  0 0 | 0 ]
136dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *    A = [ 0 1   ...  0 0 | 0 ]
137dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *        [       ...      | 0 ]
138dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *        [ 0 0   ...  1 0 | 0 ]
139dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *        [ 0 0   ...  0 1 | 0 ]
140dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * </pre>
141dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * From this predicted vector, the corrected vector is computed as follows:
142dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <ul>
143dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *   <li>y<sub>n+1</sub> = y<sub>n</sub> + S<sub>1</sub>(n+1) + [ -1 +1 -1 +1 ... &plusmn;1 ] r<sub>n+1</sub></li>
144dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *   <li>s<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, y<sub>n+1</sub>)</li>
145dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *   <li>r<sub>n+1</sub> = R<sub>n+1</sub> + (s<sub>1</sub>(n+1) - S<sub>1</sub>(n+1)) P<sup>-1</sup> u</li>
146dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * </ul>
147dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * where the upper case Y<sub>n+1</sub>, S<sub>1</sub>(n+1) and R<sub>n+1</sub> represent the
148dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * predicted states whereas the lower case y<sub>n+1</sub>, s<sub>n+1</sub> and r<sub>n+1</sub>
149dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * represent the corrected states.</p>
150dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *
151dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * <p>The P<sup>-1</sup>u vector and the P<sup>-1</sup> A P matrix do not depend on the state,
152dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * they only depend on k and therefore are precomputed once for all.</p>
153dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond *
154dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * @version $Revision: 1073158 $ $Date: 2011-02-21 22:46:52 +0100 (lun. 21 févr. 2011) $
155dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond * @since 2.0
156dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond */
157dee0849a9704d532af0b550146cbafbaa6ee1d19Raymondpublic class AdamsMoultonIntegrator extends AdamsIntegrator {
158dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
159dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    /** Integrator method name. */
160dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    private static final String METHOD_NAME = "Adams-Moulton";
161dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
162dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    /**
163dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     * Build an Adams-Moulton integrator with the given order and error control parameters.
164dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     * @param nSteps number of steps of the method excluding the one being computed
165dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     * @param minStep minimal step (must be positive even for backward
166dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     * integration), the last step can be smaller than this
167dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     * @param maxStep maximal step (must be positive even for backward
168dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     * integration)
169dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     * @param scalAbsoluteTolerance allowed absolute error
170dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     * @param scalRelativeTolerance allowed relative error
171dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     * @exception IllegalArgumentException if order is 1 or less
172dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     */
173dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    public AdamsMoultonIntegrator(final int nSteps,
174dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                                  final double minStep, final double maxStep,
175dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                                  final double scalAbsoluteTolerance,
176dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                                  final double scalRelativeTolerance)
177dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        throws IllegalArgumentException {
178dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        super(METHOD_NAME, nSteps, nSteps + 1, minStep, maxStep,
179dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond              scalAbsoluteTolerance, scalRelativeTolerance);
180dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    }
181dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
182dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    /**
183dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     * Build an Adams-Moulton integrator with the given order and error control parameters.
184dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     * @param nSteps number of steps of the method excluding the one being computed
185dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     * @param minStep minimal step (must be positive even for backward
186dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     * integration), the last step can be smaller than this
187dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     * @param maxStep maximal step (must be positive even for backward
188dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     * integration)
189dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     * @param vecAbsoluteTolerance allowed absolute error
190dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     * @param vecRelativeTolerance allowed relative error
191dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     * @exception IllegalArgumentException if order is 1 or less
192dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     */
193dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    public AdamsMoultonIntegrator(final int nSteps,
194dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                                  final double minStep, final double maxStep,
195dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                                  final double[] vecAbsoluteTolerance,
196dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                                  final double[] vecRelativeTolerance)
197dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        throws IllegalArgumentException {
198dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        super(METHOD_NAME, nSteps, nSteps + 1, minStep, maxStep,
199dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond              vecAbsoluteTolerance, vecRelativeTolerance);
200dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    }
201dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
202dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
203dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    /** {@inheritDoc} */
204dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    @Override
205dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    public double integrate(final FirstOrderDifferentialEquations equations,
206dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                            final double t0, final double[] y0,
207dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                            final double t, final double[] y)
208dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        throws DerivativeException, IntegratorException {
209dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
210dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        final int n = y0.length;
211dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        sanityChecks(equations, t0, y0, t, y);
212dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        setEquations(equations);
213dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        resetEvaluations();
214dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        final boolean forward = t > t0;
215dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
216dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        // initialize working arrays
217dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        if (y != y0) {
218dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            System.arraycopy(y0, 0, y, 0, n);
219dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        }
220dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        final double[] yDot = new double[y0.length];
221dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        final double[] yTmp = new double[y0.length];
222dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        final double[] predictedScaled = new double[y0.length];
223dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        Array2DRowRealMatrix nordsieckTmp = null;
224dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
225dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        // set up two interpolators sharing the integrator arrays
226dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        final NordsieckStepInterpolator interpolator = new NordsieckStepInterpolator();
227dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        interpolator.reinitialize(y, forward);
228dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
229dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        // set up integration control objects
230dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        for (StepHandler handler : stepHandlers) {
231dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            handler.reset();
232dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        }
233dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        setStateInitialized(false);
234dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
235dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        // compute the initial Nordsieck vector using the configured starter integrator
236dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        start(t0, y, t);
237dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        interpolator.reinitialize(stepStart, stepSize, scaled, nordsieck);
238dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        interpolator.storeTime(stepStart);
239dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
240dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        double hNew = stepSize;
241dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        interpolator.rescale(hNew);
242dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
243dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        isLastStep = false;
244dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        do {
245dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
246dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            double error = 10;
247dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            while (error >= 1.0) {
248dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
249dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                stepSize = hNew;
250dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
251dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                // predict a first estimate of the state at step end (P in the PECE sequence)
252dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                final double stepEnd = stepStart + stepSize;
253dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                interpolator.setInterpolatedTime(stepEnd);
254dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                System.arraycopy(interpolator.getInterpolatedState(), 0, yTmp, 0, y0.length);
255dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
256dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                // evaluate a first estimate of the derivative (first E in the PECE sequence)
257dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                computeDerivatives(stepEnd, yTmp, yDot);
258dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
259dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                // update Nordsieck vector
260dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                for (int j = 0; j < y0.length; ++j) {
261dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                    predictedScaled[j] = stepSize * yDot[j];
262dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                }
263dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                nordsieckTmp = updateHighOrderDerivativesPhase1(nordsieck);
264dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                updateHighOrderDerivativesPhase2(scaled, predictedScaled, nordsieckTmp);
265dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
266dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                // apply correction (C in the PECE sequence)
267dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                error = nordsieckTmp.walkInOptimizedOrder(new Corrector(y, predictedScaled, yTmp));
268dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
269dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                if (error >= 1.0) {
270dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                    // reject the step and attempt to reduce error by stepsize control
271dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                    final double factor = computeStepGrowShrinkFactor(error);
272dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                    hNew = filterStep(stepSize * factor, forward, false);
273dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                    interpolator.rescale(hNew);
274dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                }
275dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            }
276dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
277dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            // evaluate a final estimate of the derivative (second E in the PECE sequence)
278dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            final double stepEnd = stepStart + stepSize;
279dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            computeDerivatives(stepEnd, yTmp, yDot);
280dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
281dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            // update Nordsieck vector
282dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            final double[] correctedScaled = new double[y0.length];
283dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            for (int j = 0; j < y0.length; ++j) {
284dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                correctedScaled[j] = stepSize * yDot[j];
285dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            }
286dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            updateHighOrderDerivativesPhase2(predictedScaled, correctedScaled, nordsieckTmp);
287dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
288dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            // discrete events handling
289dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            System.arraycopy(yTmp, 0, y, 0, n);
290dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            interpolator.reinitialize(stepEnd, stepSize, correctedScaled, nordsieckTmp);
291dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            interpolator.storeTime(stepStart);
292dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            interpolator.shift();
293dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            interpolator.storeTime(stepEnd);
294dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            stepStart = acceptStep(interpolator, y, yDot, t);
295dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            scaled    = correctedScaled;
296dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            nordsieck = nordsieckTmp;
297dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
298dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            if (!isLastStep) {
299dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
300dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                // prepare next step
301dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                interpolator.storeTime(stepStart);
302dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
303dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                if (resetOccurred) {
304dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                    // some events handler has triggered changes that
305dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                    // invalidate the derivatives, we need to restart from scratch
306dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                    start(stepStart, y, t);
307dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                    interpolator.reinitialize(stepStart, stepSize, scaled, nordsieck);
308dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
309dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                }
310dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
311dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                // stepsize control for next step
312dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                final double  factor     = computeStepGrowShrinkFactor(error);
313dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                final double  scaledH    = stepSize * factor;
314dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                final double  nextT      = stepStart + scaledH;
315dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                final boolean nextIsLast = forward ? (nextT >= t) : (nextT <= t);
316dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                hNew = filterStep(scaledH, forward, nextIsLast);
317dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
318dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                final double  filteredNextT      = stepStart + hNew;
319dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                final boolean filteredNextIsLast = forward ? (filteredNextT >= t) : (filteredNextT <= t);
320dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                if (filteredNextIsLast) {
321dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                    hNew = t - stepStart;
322dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                }
323dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
324dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                interpolator.rescale(hNew);
325dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            }
326dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
327dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        } while (!isLastStep);
328dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
329dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        final double stopTime  = stepStart;
330dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        stepStart = Double.NaN;
331dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        stepSize  = Double.NaN;
332dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        return stopTime;
333dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
334dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    }
335dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
336dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    /** Corrector for current state in Adams-Moulton method.
337dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     * <p>
338dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     * This visitor implements the Taylor series formula:
339dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     * <pre>
340dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     * Y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n+1) + [ -1 +1 -1 +1 ... &plusmn;1 ] r<sub>n+1</sub>
341dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     * </pre>
342dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     * </p>
343dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond     */
344dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    private class Corrector implements RealMatrixPreservingVisitor {
345dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
346dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        /** Previous state. */
347dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        private final double[] previous;
348dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
349dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        /** Current scaled first derivative. */
350dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        private final double[] scaled;
351dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
352dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        /** Current state before correction. */
353dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        private final double[] before;
354dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
355dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        /** Current state after correction. */
356dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        private final double[] after;
357dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
358dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        /** Simple constructor.
359dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond         * @param previous previous state
360dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond         * @param scaled current scaled first derivative
361dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond         * @param state state to correct (will be overwritten after visit)
362dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond         */
363dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        public Corrector(final double[] previous, final double[] scaled, final double[] state) {
364dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            this.previous = previous;
365dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            this.scaled   = scaled;
366dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            this.after    = state;
367dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            this.before   = state.clone();
368dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        }
369dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
370dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        /** {@inheritDoc} */
371dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        public void start(int rows, int columns,
372dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                          int startRow, int endRow, int startColumn, int endColumn) {
373dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            Arrays.fill(after, 0.0);
374dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        }
375dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
376dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        /** {@inheritDoc} */
377dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        public void visit(int row, int column, double value) {
378dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            if ((row & 0x1) == 0) {
379dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                after[column] -= value;
380dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            } else {
381dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                after[column] += value;
382dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            }
383dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        }
384dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
385dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        /**
386dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond         * End visiting the Nordsieck vector.
387dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond         * <p>The correction is used to control stepsize. So its amplitude is
388dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond         * considered to be an error, which must be normalized according to
389dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond         * error control settings. If the normalized value is greater than 1,
390dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond         * the correction was too large and the step must be rejected.</p>
391dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond         * @return the normalized correction, if greater than 1, the step
392dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond         * must be rejected
393dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond         */
394dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        public double end() {
395dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
396dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            double error = 0;
397dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            for (int i = 0; i < after.length; ++i) {
398dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                after[i] += previous[i] + scaled[i];
399dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                if (i < mainSetDimension) {
400dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                    final double yScale = FastMath.max(FastMath.abs(previous[i]), FastMath.abs(after[i]));
401dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                    final double tol = (vecAbsoluteTolerance == null) ?
402dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                                       (scalAbsoluteTolerance + scalRelativeTolerance * yScale) :
403dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                                       (vecAbsoluteTolerance[i] + vecRelativeTolerance[i] * yScale);
404dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                    final double ratio  = (after[i] - before[i]) / tol;
405dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                    error += ratio * ratio;
406dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond                }
407dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            }
408dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
409dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond            return FastMath.sqrt(error / mainSetDimension);
410dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
411dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond        }
412dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond    }
413dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond
414dee0849a9704d532af0b550146cbafbaa6ee1d19Raymond}
415