1/* Copyright (c) 2014, Google Inc.
2 *
3 * Permission to use, copy, modify, and/or distribute this software for any
4 * purpose with or without fee is hereby granted, provided that the above
5 * copyright notice and this permission notice appear in all copies.
6 *
7 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14
15#include <assert.h>
16#include <limits.h>
17#include <string.h>
18
19#include <openssl/aead.h>
20#include <openssl/cipher.h>
21#include <openssl/err.h>
22#include <openssl/hmac.h>
23#include <openssl/md5.h>
24#include <openssl/mem.h>
25#include <openssl/sha.h>
26#include <openssl/type_check.h>
27
28#include "../crypto/internal.h"
29#include "internal.h"
30
31
32typedef struct {
33  EVP_CIPHER_CTX cipher_ctx;
34  HMAC_CTX hmac_ctx;
35  /* mac_key is the portion of the key used for the MAC. It is retained
36   * separately for the constant-time CBC code. */
37  uint8_t mac_key[EVP_MAX_MD_SIZE];
38  uint8_t mac_key_len;
39  /* implicit_iv is one iff this is a pre-TLS-1.1 CBC cipher without an explicit
40   * IV. */
41  char implicit_iv;
42} AEAD_TLS_CTX;
43
44OPENSSL_COMPILE_ASSERT(EVP_MAX_MD_SIZE < 256, mac_key_len_fits_in_uint8_t);
45
46static void aead_tls_cleanup(EVP_AEAD_CTX *ctx) {
47  AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)ctx->aead_state;
48  EVP_CIPHER_CTX_cleanup(&tls_ctx->cipher_ctx);
49  HMAC_CTX_cleanup(&tls_ctx->hmac_ctx);
50  OPENSSL_cleanse(&tls_ctx->mac_key, sizeof(tls_ctx->mac_key));
51  OPENSSL_free(tls_ctx);
52  ctx->aead_state = NULL;
53}
54
55static int aead_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len,
56                         size_t tag_len, enum evp_aead_direction_t dir,
57                         const EVP_CIPHER *cipher, const EVP_MD *md,
58                         char implicit_iv) {
59  if (tag_len != EVP_AEAD_DEFAULT_TAG_LENGTH &&
60      tag_len != EVP_MD_size(md)) {
61    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_TAG_SIZE);
62    return 0;
63  }
64
65  if (key_len != EVP_AEAD_key_length(ctx->aead)) {
66    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH);
67    return 0;
68  }
69
70  size_t mac_key_len = EVP_MD_size(md);
71  size_t enc_key_len = EVP_CIPHER_key_length(cipher);
72  assert(mac_key_len + enc_key_len +
73         (implicit_iv ? EVP_CIPHER_iv_length(cipher) : 0) == key_len);
74  /* Although EVP_rc4() is a variable-length cipher, the default key size is
75   * correct for TLS. */
76
77  AEAD_TLS_CTX *tls_ctx = OPENSSL_malloc(sizeof(AEAD_TLS_CTX));
78  if (tls_ctx == NULL) {
79    OPENSSL_PUT_ERROR(CIPHER, ERR_R_MALLOC_FAILURE);
80    return 0;
81  }
82  EVP_CIPHER_CTX_init(&tls_ctx->cipher_ctx);
83  HMAC_CTX_init(&tls_ctx->hmac_ctx);
84  assert(mac_key_len <= EVP_MAX_MD_SIZE);
85  memcpy(tls_ctx->mac_key, key, mac_key_len);
86  tls_ctx->mac_key_len = (uint8_t)mac_key_len;
87  tls_ctx->implicit_iv = implicit_iv;
88
89  ctx->aead_state = tls_ctx;
90  if (!EVP_CipherInit_ex(&tls_ctx->cipher_ctx, cipher, NULL, &key[mac_key_len],
91                         implicit_iv ? &key[mac_key_len + enc_key_len] : NULL,
92                         dir == evp_aead_seal) ||
93      !HMAC_Init_ex(&tls_ctx->hmac_ctx, key, mac_key_len, md, NULL)) {
94    aead_tls_cleanup(ctx);
95    ctx->aead_state = NULL;
96    return 0;
97  }
98  EVP_CIPHER_CTX_set_padding(&tls_ctx->cipher_ctx, 0);
99
100  return 1;
101}
102
103static int aead_tls_seal(const EVP_AEAD_CTX *ctx, uint8_t *out,
104                         size_t *out_len, size_t max_out_len,
105                         const uint8_t *nonce, size_t nonce_len,
106                         const uint8_t *in, size_t in_len,
107                         const uint8_t *ad, size_t ad_len) {
108  AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)ctx->aead_state;
109  size_t total = 0;
110
111  if (!tls_ctx->cipher_ctx.encrypt) {
112    /* Unlike a normal AEAD, a TLS AEAD may only be used in one direction. */
113    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_OPERATION);
114    return 0;
115  }
116
117  if (in_len + EVP_AEAD_max_overhead(ctx->aead) < in_len ||
118      in_len > INT_MAX) {
119    /* EVP_CIPHER takes int as input. */
120    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
121    return 0;
122  }
123
124  if (max_out_len < in_len + EVP_AEAD_max_overhead(ctx->aead)) {
125    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
126    return 0;
127  }
128
129  if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) {
130    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE);
131    return 0;
132  }
133
134  if (ad_len != 13 - 2 /* length bytes */) {
135    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_AD_SIZE);
136    return 0;
137  }
138
139  /* To allow for CBC mode which changes cipher length, |ad| doesn't include the
140   * length for legacy ciphers. */
141  uint8_t ad_extra[2];
142  ad_extra[0] = (uint8_t)(in_len >> 8);
143  ad_extra[1] = (uint8_t)(in_len & 0xff);
144
145  /* Compute the MAC. This must be first in case the operation is being done
146   * in-place. */
147  uint8_t mac[EVP_MAX_MD_SIZE];
148  unsigned mac_len;
149  if (!HMAC_Init_ex(&tls_ctx->hmac_ctx, NULL, 0, NULL, NULL) ||
150      !HMAC_Update(&tls_ctx->hmac_ctx, ad, ad_len) ||
151      !HMAC_Update(&tls_ctx->hmac_ctx, ad_extra, sizeof(ad_extra)) ||
152      !HMAC_Update(&tls_ctx->hmac_ctx, in, in_len) ||
153      !HMAC_Final(&tls_ctx->hmac_ctx, mac, &mac_len)) {
154    return 0;
155  }
156
157  /* Configure the explicit IV. */
158  if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE &&
159      !tls_ctx->implicit_iv &&
160      !EVP_EncryptInit_ex(&tls_ctx->cipher_ctx, NULL, NULL, NULL, nonce)) {
161    return 0;
162  }
163
164  /* Encrypt the input. */
165  int len;
166  if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, out, &len, in,
167                         (int)in_len)) {
168    return 0;
169  }
170  total = len;
171
172  /* Feed the MAC into the cipher. */
173  if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, out + total, &len, mac,
174                         (int)mac_len)) {
175    return 0;
176  }
177  total += len;
178
179  unsigned block_size = EVP_CIPHER_CTX_block_size(&tls_ctx->cipher_ctx);
180  if (block_size > 1) {
181    assert(block_size <= 256);
182    assert(EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE);
183
184    /* Compute padding and feed that into the cipher. */
185    uint8_t padding[256];
186    unsigned padding_len = block_size - ((in_len + mac_len) % block_size);
187    memset(padding, padding_len - 1, padding_len);
188    if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, out + total, &len, padding,
189                           (int)padding_len)) {
190      return 0;
191    }
192    total += len;
193  }
194
195  if (!EVP_EncryptFinal_ex(&tls_ctx->cipher_ctx, out + total, &len)) {
196    return 0;
197  }
198  total += len;
199
200  *out_len = total;
201  return 1;
202}
203
204static int aead_tls_open(const EVP_AEAD_CTX *ctx, uint8_t *out,
205                         size_t *out_len, size_t max_out_len,
206                         const uint8_t *nonce, size_t nonce_len,
207                         const uint8_t *in, size_t in_len,
208                         const uint8_t *ad, size_t ad_len) {
209  AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)ctx->aead_state;
210
211  if (tls_ctx->cipher_ctx.encrypt) {
212    /* Unlike a normal AEAD, a TLS AEAD may only be used in one direction. */
213    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_OPERATION);
214    return 0;
215  }
216
217  if (in_len < HMAC_size(&tls_ctx->hmac_ctx)) {
218    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
219    return 0;
220  }
221
222  if (max_out_len < in_len) {
223    /* This requires that the caller provide space for the MAC, even though it
224     * will always be removed on return. */
225    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
226    return 0;
227  }
228
229  if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) {
230    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE);
231    return 0;
232  }
233
234  if (ad_len != 13 - 2 /* length bytes */) {
235    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_AD_SIZE);
236    return 0;
237  }
238
239  if (in_len > INT_MAX) {
240    /* EVP_CIPHER takes int as input. */
241    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
242    return 0;
243  }
244
245  /* Configure the explicit IV. */
246  if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE &&
247      !tls_ctx->implicit_iv &&
248      !EVP_DecryptInit_ex(&tls_ctx->cipher_ctx, NULL, NULL, NULL, nonce)) {
249    return 0;
250  }
251
252  /* Decrypt to get the plaintext + MAC + padding. */
253  size_t total = 0;
254  int len;
255  if (!EVP_DecryptUpdate(&tls_ctx->cipher_ctx, out, &len, in, (int)in_len)) {
256    return 0;
257  }
258  total += len;
259  if (!EVP_DecryptFinal_ex(&tls_ctx->cipher_ctx, out + total, &len)) {
260    return 0;
261  }
262  total += len;
263  assert(total == in_len);
264
265  /* Remove CBC padding. Code from here on is timing-sensitive with respect to
266   * |padding_ok| and |data_plus_mac_len| for CBC ciphers. */
267  int padding_ok;
268  unsigned data_plus_mac_len, data_len;
269  if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE) {
270    padding_ok = EVP_tls_cbc_remove_padding(
271        &data_plus_mac_len, out, total,
272        EVP_CIPHER_CTX_block_size(&tls_ctx->cipher_ctx),
273        (unsigned)HMAC_size(&tls_ctx->hmac_ctx));
274    /* Publicly invalid. This can be rejected in non-constant time. */
275    if (padding_ok == 0) {
276      OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
277      return 0;
278    }
279  } else {
280    padding_ok = 1;
281    data_plus_mac_len = total;
282    /* |data_plus_mac_len| = |total| = |in_len| at this point. |in_len| has
283     * already been checked against the MAC size at the top of the function. */
284    assert(data_plus_mac_len >= HMAC_size(&tls_ctx->hmac_ctx));
285  }
286  data_len = data_plus_mac_len - HMAC_size(&tls_ctx->hmac_ctx);
287
288  /* At this point, |padding_ok| is 1 or -1. If 1, the padding is valid and the
289   * first |data_plus_mac_size| bytes after |out| are the plaintext and
290   * MAC. Either way, |data_plus_mac_size| is large enough to extract a MAC. */
291
292  /* To allow for CBC mode which changes cipher length, |ad| doesn't include the
293   * length for legacy ciphers. */
294  uint8_t ad_fixed[13];
295  memcpy(ad_fixed, ad, 11);
296  ad_fixed[11] = (uint8_t)(data_len >> 8);
297  ad_fixed[12] = (uint8_t)(data_len & 0xff);
298  ad_len += 2;
299
300  /* Compute the MAC and extract the one in the record. */
301  uint8_t mac[EVP_MAX_MD_SIZE];
302  size_t mac_len;
303  uint8_t record_mac_tmp[EVP_MAX_MD_SIZE];
304  uint8_t *record_mac;
305  if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE &&
306      EVP_tls_cbc_record_digest_supported(tls_ctx->hmac_ctx.md)) {
307    if (!EVP_tls_cbc_digest_record(tls_ctx->hmac_ctx.md, mac, &mac_len,
308                                   ad_fixed, out, data_plus_mac_len, total,
309                                   tls_ctx->mac_key, tls_ctx->mac_key_len)) {
310      OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
311      return 0;
312    }
313    assert(mac_len == HMAC_size(&tls_ctx->hmac_ctx));
314
315    record_mac = record_mac_tmp;
316    EVP_tls_cbc_copy_mac(record_mac, mac_len, out, data_plus_mac_len, total);
317  } else {
318    /* We should support the constant-time path for all CBC-mode ciphers
319     * implemented. */
320    assert(EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) != EVP_CIPH_CBC_MODE);
321
322    unsigned mac_len_u;
323    if (!HMAC_Init_ex(&tls_ctx->hmac_ctx, NULL, 0, NULL, NULL) ||
324        !HMAC_Update(&tls_ctx->hmac_ctx, ad_fixed, ad_len) ||
325        !HMAC_Update(&tls_ctx->hmac_ctx, out, data_len) ||
326        !HMAC_Final(&tls_ctx->hmac_ctx, mac, &mac_len_u)) {
327      return 0;
328    }
329    mac_len = mac_len_u;
330
331    assert(mac_len == HMAC_size(&tls_ctx->hmac_ctx));
332    record_mac = &out[data_len];
333  }
334
335  /* Perform the MAC check and the padding check in constant-time. It should be
336   * safe to simply perform the padding check first, but it would not be under a
337   * different choice of MAC location on padding failure. See
338   * EVP_tls_cbc_remove_padding. */
339  unsigned good = constant_time_eq_int(CRYPTO_memcmp(record_mac, mac, mac_len),
340                                       0);
341  good &= constant_time_eq_int(padding_ok, 1);
342  if (!good) {
343    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
344    return 0;
345  }
346
347  /* End of timing-sensitive code. */
348
349  *out_len = data_len;
350  return 1;
351}
352
353static int aead_rc4_md5_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
354                                 size_t key_len, size_t tag_len,
355                                 enum evp_aead_direction_t dir) {
356  return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_rc4(), EVP_md5(),
357                       0);
358}
359
360static int aead_rc4_sha1_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
361                                  size_t key_len, size_t tag_len,
362                                  enum evp_aead_direction_t dir) {
363  return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_rc4(), EVP_sha1(),
364                       0);
365}
366
367static int aead_aes_128_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
368                                          size_t key_len, size_t tag_len,
369                                          enum evp_aead_direction_t dir) {
370  return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_128_cbc(),
371                       EVP_sha1(), 0);
372}
373
374static int aead_aes_128_cbc_sha1_tls_implicit_iv_init(
375    EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len,
376    enum evp_aead_direction_t dir) {
377  return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_128_cbc(),
378                       EVP_sha1(), 1);
379}
380
381static int aead_aes_128_cbc_sha256_tls_init(EVP_AEAD_CTX *ctx,
382                                            const uint8_t *key, size_t key_len,
383                                            size_t tag_len,
384                                            enum evp_aead_direction_t dir) {
385  return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_128_cbc(),
386                       EVP_sha256(), 0);
387}
388
389static int aead_aes_256_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
390                                          size_t key_len, size_t tag_len,
391                                          enum evp_aead_direction_t dir) {
392  return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_256_cbc(),
393                       EVP_sha1(), 0);
394}
395
396static int aead_aes_256_cbc_sha1_tls_implicit_iv_init(
397    EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len,
398    enum evp_aead_direction_t dir) {
399  return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_256_cbc(),
400                       EVP_sha1(), 1);
401}
402
403static int aead_aes_256_cbc_sha256_tls_init(EVP_AEAD_CTX *ctx,
404                                            const uint8_t *key, size_t key_len,
405                                            size_t tag_len,
406                                            enum evp_aead_direction_t dir) {
407  return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_256_cbc(),
408                       EVP_sha256(), 0);
409}
410
411static int aead_aes_256_cbc_sha384_tls_init(EVP_AEAD_CTX *ctx,
412                                            const uint8_t *key, size_t key_len,
413                                            size_t tag_len,
414                                            enum evp_aead_direction_t dir) {
415  return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_256_cbc(),
416                       EVP_sha384(), 0);
417}
418
419static int aead_des_ede3_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx,
420                                           const uint8_t *key, size_t key_len,
421                                           size_t tag_len,
422                                           enum evp_aead_direction_t dir) {
423  return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_des_ede3_cbc(),
424                       EVP_sha1(), 0);
425}
426
427static int aead_des_ede3_cbc_sha1_tls_implicit_iv_init(
428    EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len,
429    enum evp_aead_direction_t dir) {
430  return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_des_ede3_cbc(),
431                       EVP_sha1(), 1);
432}
433
434static int aead_rc4_tls_get_rc4_state(const EVP_AEAD_CTX *ctx,
435                                      const RC4_KEY **out_key) {
436  const AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX*) ctx->aead_state;
437  if (EVP_CIPHER_CTX_cipher(&tls_ctx->cipher_ctx) != EVP_rc4()) {
438    return 0;
439  }
440
441  *out_key = (const RC4_KEY*) tls_ctx->cipher_ctx.cipher_data;
442  return 1;
443}
444
445static int aead_tls_get_iv(const EVP_AEAD_CTX *ctx, const uint8_t **out_iv,
446                           size_t *out_iv_len) {
447  const AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX*) ctx->aead_state;
448  const size_t iv_len = EVP_CIPHER_CTX_iv_length(&tls_ctx->cipher_ctx);
449  if (iv_len <= 1) {
450    return 0;
451  }
452
453  *out_iv = tls_ctx->cipher_ctx.iv;
454  *out_iv_len = iv_len;
455  return 1;
456}
457
458static int aead_null_sha1_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
459                                   size_t key_len, size_t tag_len,
460                                   enum evp_aead_direction_t dir) {
461  return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_enc_null(),
462                       EVP_sha1(), 1 /* implicit iv */);
463}
464
465static const EVP_AEAD aead_rc4_md5_tls = {
466    MD5_DIGEST_LENGTH + 16, /* key len (MD5 + RC4) */
467    0,                      /* nonce len */
468    MD5_DIGEST_LENGTH,      /* overhead */
469    MD5_DIGEST_LENGTH,      /* max tag length */
470    NULL,                   /* init */
471    aead_rc4_md5_tls_init,
472    aead_tls_cleanup,
473    aead_tls_seal,
474    aead_tls_open,
475    aead_rc4_tls_get_rc4_state, /* get_rc4_state */
476    NULL,                       /* get_iv */
477};
478
479static const EVP_AEAD aead_rc4_sha1_tls = {
480    SHA_DIGEST_LENGTH + 16, /* key len (SHA1 + RC4) */
481    0,                      /* nonce len */
482    SHA_DIGEST_LENGTH,      /* overhead */
483    SHA_DIGEST_LENGTH,      /* max tag length */
484    NULL,                   /* init */
485    aead_rc4_sha1_tls_init,
486    aead_tls_cleanup,
487    aead_tls_seal,
488    aead_tls_open,
489    aead_rc4_tls_get_rc4_state, /* get_rc4_state */
490    NULL,                       /* get_iv */
491};
492
493static const EVP_AEAD aead_aes_128_cbc_sha1_tls = {
494    SHA_DIGEST_LENGTH + 16, /* key len (SHA1 + AES128) */
495    16,                     /* nonce len (IV) */
496    16 + SHA_DIGEST_LENGTH, /* overhead (padding + SHA1) */
497    SHA_DIGEST_LENGTH,      /* max tag length */
498    NULL, /* init */
499    aead_aes_128_cbc_sha1_tls_init,
500    aead_tls_cleanup,
501    aead_tls_seal,
502    aead_tls_open,
503    NULL,                   /* get_rc4_state */
504    NULL,                   /* get_iv */
505};
506
507static const EVP_AEAD aead_aes_128_cbc_sha1_tls_implicit_iv = {
508    SHA_DIGEST_LENGTH + 16 + 16, /* key len (SHA1 + AES128 + IV) */
509    0,                           /* nonce len */
510    16 + SHA_DIGEST_LENGTH,      /* overhead (padding + SHA1) */
511    SHA_DIGEST_LENGTH,           /* max tag length */
512    NULL, /* init */
513    aead_aes_128_cbc_sha1_tls_implicit_iv_init,
514    aead_tls_cleanup,
515    aead_tls_seal,
516    aead_tls_open,
517    NULL,                        /* get_rc4_state */
518    aead_tls_get_iv,             /* get_iv */
519};
520
521static const EVP_AEAD aead_aes_128_cbc_sha256_tls = {
522    SHA256_DIGEST_LENGTH + 16, /* key len (SHA256 + AES128) */
523    16,                        /* nonce len (IV) */
524    16 + SHA256_DIGEST_LENGTH, /* overhead (padding + SHA256) */
525    SHA256_DIGEST_LENGTH,      /* max tag length */
526    NULL, /* init */
527    aead_aes_128_cbc_sha256_tls_init,
528    aead_tls_cleanup,
529    aead_tls_seal,
530    aead_tls_open,
531    NULL,                      /* get_rc4_state */
532    NULL,                      /* get_iv */
533};
534
535static const EVP_AEAD aead_aes_256_cbc_sha1_tls = {
536    SHA_DIGEST_LENGTH + 32, /* key len (SHA1 + AES256) */
537    16,                     /* nonce len (IV) */
538    16 + SHA_DIGEST_LENGTH, /* overhead (padding + SHA1) */
539    SHA_DIGEST_LENGTH,      /* max tag length */
540    NULL, /* init */
541    aead_aes_256_cbc_sha1_tls_init,
542    aead_tls_cleanup,
543    aead_tls_seal,
544    aead_tls_open,
545    NULL,                   /* get_rc4_state */
546    NULL,                   /* get_iv */
547};
548
549static const EVP_AEAD aead_aes_256_cbc_sha1_tls_implicit_iv = {
550    SHA_DIGEST_LENGTH + 32 + 16, /* key len (SHA1 + AES256 + IV) */
551    0,                           /* nonce len */
552    16 + SHA_DIGEST_LENGTH,      /* overhead (padding + SHA1) */
553    SHA_DIGEST_LENGTH,           /* max tag length */
554    NULL, /* init */
555    aead_aes_256_cbc_sha1_tls_implicit_iv_init,
556    aead_tls_cleanup,
557    aead_tls_seal,
558    aead_tls_open,
559    NULL,                        /* get_rc4_state */
560    aead_tls_get_iv,             /* get_iv */
561};
562
563static const EVP_AEAD aead_aes_256_cbc_sha256_tls = {
564    SHA256_DIGEST_LENGTH + 32, /* key len (SHA256 + AES256) */
565    16,                        /* nonce len (IV) */
566    16 + SHA256_DIGEST_LENGTH, /* overhead (padding + SHA256) */
567    SHA256_DIGEST_LENGTH,      /* max tag length */
568    NULL, /* init */
569    aead_aes_256_cbc_sha256_tls_init,
570    aead_tls_cleanup,
571    aead_tls_seal,
572    aead_tls_open,
573    NULL,                      /* get_rc4_state */
574    NULL,                      /* get_iv */
575};
576
577static const EVP_AEAD aead_aes_256_cbc_sha384_tls = {
578    SHA384_DIGEST_LENGTH + 32, /* key len (SHA384 + AES256) */
579    16,                        /* nonce len (IV) */
580    16 + SHA384_DIGEST_LENGTH, /* overhead (padding + SHA384) */
581    SHA384_DIGEST_LENGTH,      /* max tag length */
582    NULL, /* init */
583    aead_aes_256_cbc_sha384_tls_init,
584    aead_tls_cleanup,
585    aead_tls_seal,
586    aead_tls_open,
587    NULL,                      /* get_rc4_state */
588    NULL,                      /* get_iv */
589};
590
591static const EVP_AEAD aead_des_ede3_cbc_sha1_tls = {
592    SHA_DIGEST_LENGTH + 24, /* key len (SHA1 + 3DES) */
593    8,                      /* nonce len (IV) */
594    8 + SHA_DIGEST_LENGTH,  /* overhead (padding + SHA1) */
595    SHA_DIGEST_LENGTH,      /* max tag length */
596    NULL, /* init */
597    aead_des_ede3_cbc_sha1_tls_init,
598    aead_tls_cleanup,
599    aead_tls_seal,
600    aead_tls_open,
601    NULL,                   /* get_rc4_state */
602    NULL,                   /* get_iv */
603};
604
605static const EVP_AEAD aead_des_ede3_cbc_sha1_tls_implicit_iv = {
606    SHA_DIGEST_LENGTH + 24 + 8, /* key len (SHA1 + 3DES + IV) */
607    0,                          /* nonce len */
608    8 + SHA_DIGEST_LENGTH,      /* overhead (padding + SHA1) */
609    SHA_DIGEST_LENGTH,          /* max tag length */
610    NULL, /* init */
611    aead_des_ede3_cbc_sha1_tls_implicit_iv_init,
612    aead_tls_cleanup,
613    aead_tls_seal,
614    aead_tls_open,
615    NULL,                       /* get_rc4_state */
616    aead_tls_get_iv,            /* get_iv */
617};
618
619static const EVP_AEAD aead_null_sha1_tls = {
620    SHA_DIGEST_LENGTH,          /* key len */
621    0,                          /* nonce len */
622    SHA_DIGEST_LENGTH,          /* overhead (SHA1) */
623    SHA_DIGEST_LENGTH,          /* max tag length */
624    NULL,                       /* init */
625    aead_null_sha1_tls_init,
626    aead_tls_cleanup,
627    aead_tls_seal,
628    aead_tls_open,
629    NULL,                       /* get_rc4_state */
630    NULL,                       /* get_iv */
631};
632
633const EVP_AEAD *EVP_aead_rc4_md5_tls(void) { return &aead_rc4_md5_tls; }
634
635const EVP_AEAD *EVP_aead_rc4_sha1_tls(void) { return &aead_rc4_sha1_tls; }
636
637const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls(void) {
638  return &aead_aes_128_cbc_sha1_tls;
639}
640
641const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls_implicit_iv(void) {
642  return &aead_aes_128_cbc_sha1_tls_implicit_iv;
643}
644
645const EVP_AEAD *EVP_aead_aes_128_cbc_sha256_tls(void) {
646  return &aead_aes_128_cbc_sha256_tls;
647}
648
649const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls(void) {
650  return &aead_aes_256_cbc_sha1_tls;
651}
652
653const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls_implicit_iv(void) {
654  return &aead_aes_256_cbc_sha1_tls_implicit_iv;
655}
656
657const EVP_AEAD *EVP_aead_aes_256_cbc_sha256_tls(void) {
658  return &aead_aes_256_cbc_sha256_tls;
659}
660
661const EVP_AEAD *EVP_aead_aes_256_cbc_sha384_tls(void) {
662  return &aead_aes_256_cbc_sha384_tls;
663}
664
665const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls(void) {
666  return &aead_des_ede3_cbc_sha1_tls;
667}
668
669const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv(void) {
670  return &aead_des_ede3_cbc_sha1_tls_implicit_iv;
671}
672
673const EVP_AEAD *EVP_aead_null_sha1_tls(void) { return &aead_null_sha1_tls; }
674