rotation.h revision 0ae28bd5885b5daa526898fcf7c323dc2c3e1963
1// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9//   this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11//   this list of conditions and the following disclaimer in the documentation
12//   and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14//   used to endorse or promote products derived from this software without
15//   specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: keir@google.com (Keir Mierle)
30//         sameeragarwal@google.com (Sameer Agarwal)
31//
32// Templated functions for manipulating rotations. The templated
33// functions are useful when implementing functors for automatic
34// differentiation.
35//
36// In the following, the Quaternions are laid out as 4-vectors, thus:
37//
38//   q[0]  scalar part.
39//   q[1]  coefficient of i.
40//   q[2]  coefficient of j.
41//   q[3]  coefficient of k.
42//
43// where: i*i = j*j = k*k = -1 and i*j = k, j*k = i, k*i = j.
44
45#ifndef CERES_PUBLIC_ROTATION_H_
46#define CERES_PUBLIC_ROTATION_H_
47
48#include <algorithm>
49#include <cmath>
50#include "glog/logging.h"
51
52namespace ceres {
53
54// Convert a value in combined axis-angle representation to a quaternion.
55// The value angle_axis is a triple whose norm is an angle in radians,
56// and whose direction is aligned with the axis of rotation,
57// and quaternion is a 4-tuple that will contain the resulting quaternion.
58// The implementation may be used with auto-differentiation up to the first
59// derivative, higher derivatives may have unexpected results near the origin.
60template<typename T>
61void AngleAxisToQuaternion(T const* angle_axis, T* quaternion);
62
63// Convert a quaternion to the equivalent combined axis-angle representation.
64// The value quaternion must be a unit quaternion - it is not normalized first,
65// and angle_axis will be filled with a value whose norm is the angle of
66// rotation in radians, and whose direction is the axis of rotation.
67// The implemention may be used with auto-differentiation up to the first
68// derivative, higher derivatives may have unexpected results near the origin.
69template<typename T>
70void QuaternionToAngleAxis(T const* quaternion, T* angle_axis);
71
72// Conversions between 3x3 rotation matrix (in column major order) and
73// axis-angle rotation representations.  Templated for use with
74// autodifferentiation.
75template <typename T>
76void RotationMatrixToAngleAxis(T const * R, T * angle_axis);
77template <typename T>
78void AngleAxisToRotationMatrix(T const * angle_axis, T * R);
79
80// Conversions between 3x3 rotation matrix (in row major order) and
81// Euler angle (in degrees) rotation representations.
82//
83// The {pitch,roll,yaw} Euler angles are rotations around the {x,y,z}
84// axes, respectively.  They are applied in that same order, so the
85// total rotation R is Rz * Ry * Rx.
86template <typename T>
87void EulerAnglesToRotationMatrix(const T* euler, int row_stride, T* R);
88
89// Convert a 4-vector to a 3x3 scaled rotation matrix.
90//
91// The choice of rotation is such that the quaternion [1 0 0 0] goes to an
92// identity matrix and for small a, b, c the quaternion [1 a b c] goes to
93// the matrix
94//
95//         [  0 -c  b ]
96//   I + 2 [  c  0 -a ] + higher order terms
97//         [ -b  a  0 ]
98//
99// which corresponds to a Rodrigues approximation, the last matrix being
100// the cross-product matrix of [a b c]. Together with the property that
101// R(q1 * q2) = R(q1) * R(q2) this uniquely defines the mapping from q to R.
102//
103// The rotation matrix is row-major.
104//
105// No normalization of the quaternion is performed, i.e.
106// R = ||q||^2 * Q, where Q is an orthonormal matrix
107// such that det(Q) = 1 and Q*Q' = I
108template <typename T> inline
109void QuaternionToScaledRotation(const T q[4], T R[3 * 3]);
110
111// Same as above except that the rotation matrix is normalized by the
112// Frobenius norm, so that R * R' = I (and det(R) = 1).
113template <typename T> inline
114void QuaternionToRotation(const T q[4], T R[3 * 3]);
115
116// Rotates a point pt by a quaternion q:
117//
118//   result = R(q) * pt
119//
120// Assumes the quaternion is unit norm. This assumption allows us to
121// write the transform as (something)*pt + pt, as is clear from the
122// formula below. If you pass in a quaternion with |q|^2 = 2 then you
123// WILL NOT get back 2 times the result you get for a unit quaternion.
124template <typename T> inline
125void UnitQuaternionRotatePoint(const T q[4], const T pt[3], T result[3]);
126
127// With this function you do not need to assume that q has unit norm.
128// It does assume that the norm is non-zero.
129template <typename T> inline
130void QuaternionRotatePoint(const T q[4], const T pt[3], T result[3]);
131
132// zw = z * w, where * is the Quaternion product between 4 vectors.
133template<typename T> inline
134void QuaternionProduct(const T z[4], const T w[4], T zw[4]);
135
136// xy = x cross y;
137template<typename T> inline
138void CrossProduct(const T x[3], const T y[3], T x_cross_y[3]);
139
140template<typename T> inline
141T DotProduct(const T x[3], const T y[3]);
142
143// y = R(angle_axis) * x;
144template<typename T> inline
145void AngleAxisRotatePoint(const T angle_axis[3], const T pt[3], T result[3]);
146
147// --- IMPLEMENTATION
148
149template<typename T>
150inline void AngleAxisToQuaternion(const T* angle_axis, T* quaternion) {
151  const T& a0 = angle_axis[0];
152  const T& a1 = angle_axis[1];
153  const T& a2 = angle_axis[2];
154  const T theta_squared = a0 * a0 + a1 * a1 + a2 * a2;
155
156  // For points not at the origin, the full conversion is numerically stable.
157  if (theta_squared > T(0.0)) {
158    const T theta = sqrt(theta_squared);
159    const T half_theta = theta * T(0.5);
160    const T k = sin(half_theta) / theta;
161    quaternion[0] = cos(half_theta);
162    quaternion[1] = a0 * k;
163    quaternion[2] = a1 * k;
164    quaternion[3] = a2 * k;
165  } else {
166    // At the origin, sqrt() will produce NaN in the derivative since
167    // the argument is zero.  By approximating with a Taylor series,
168    // and truncating at one term, the value and first derivatives will be
169    // computed correctly when Jets are used.
170    const T k(0.5);
171    quaternion[0] = T(1.0);
172    quaternion[1] = a0 * k;
173    quaternion[2] = a1 * k;
174    quaternion[3] = a2 * k;
175  }
176}
177
178template<typename T>
179inline void QuaternionToAngleAxis(const T* quaternion, T* angle_axis) {
180  const T& q1 = quaternion[1];
181  const T& q2 = quaternion[2];
182  const T& q3 = quaternion[3];
183  const T sin_squared_theta = q1 * q1 + q2 * q2 + q3 * q3;
184
185  // For quaternions representing non-zero rotation, the conversion
186  // is numerically stable.
187  if (sin_squared_theta > T(0.0)) {
188    const T sin_theta = sqrt(sin_squared_theta);
189    const T& cos_theta = quaternion[0];
190
191    // If cos_theta is negative, theta is greater than pi/2, which
192    // means that angle for the angle_axis vector which is 2 * theta
193    // would be greater than pi.
194    //
195    // While this will result in the correct rotation, it does not
196    // result in a normalized angle-axis vector.
197    //
198    // In that case we observe that 2 * theta ~ 2 * theta - 2 * pi,
199    // which is equivalent saying
200    //
201    //   theta - pi = atan(sin(theta - pi), cos(theta - pi))
202    //              = atan(-sin(theta), -cos(theta))
203    //
204    const T two_theta =
205        T(2.0) * ((cos_theta < 0.0)
206                  ? atan2(-sin_theta, -cos_theta)
207                  : atan2(sin_theta, cos_theta));
208    const T k = two_theta / sin_theta;
209    angle_axis[0] = q1 * k;
210    angle_axis[1] = q2 * k;
211    angle_axis[2] = q3 * k;
212  } else {
213    // For zero rotation, sqrt() will produce NaN in the derivative since
214    // the argument is zero.  By approximating with a Taylor series,
215    // and truncating at one term, the value and first derivatives will be
216    // computed correctly when Jets are used.
217    const T k(2.0);
218    angle_axis[0] = q1 * k;
219    angle_axis[1] = q2 * k;
220    angle_axis[2] = q3 * k;
221  }
222}
223
224// The conversion of a rotation matrix to the angle-axis form is
225// numerically problematic when then rotation angle is close to zero
226// or to Pi. The following implementation detects when these two cases
227// occurs and deals with them by taking code paths that are guaranteed
228// to not perform division by a small number.
229template <typename T>
230inline void RotationMatrixToAngleAxis(const T * R, T * angle_axis) {
231  // x = k * 2 * sin(theta), where k is the axis of rotation.
232  angle_axis[0] = R[5] - R[7];
233  angle_axis[1] = R[6] - R[2];
234  angle_axis[2] = R[1] - R[3];
235
236  static const T kOne = T(1.0);
237  static const T kTwo = T(2.0);
238
239  // Since the right hand side may give numbers just above 1.0 or
240  // below -1.0 leading to atan misbehaving, we threshold.
241  T costheta = std::min(std::max((R[0] + R[4] + R[8] - kOne) / kTwo,
242                                 T(-1.0)),
243                        kOne);
244
245  // sqrt is guaranteed to give non-negative results, so we only
246  // threshold above.
247  T sintheta = std::min(sqrt(angle_axis[0] * angle_axis[0] +
248                             angle_axis[1] * angle_axis[1] +
249                             angle_axis[2] * angle_axis[2]) / kTwo,
250                        kOne);
251
252  // Use the arctan2 to get the right sign on theta
253  const T theta = atan2(sintheta, costheta);
254
255  // Case 1: sin(theta) is large enough, so dividing by it is not a
256  // problem. We do not use abs here, because while jets.h imports
257  // std::abs into the namespace, here in this file, abs resolves to
258  // the int version of the function, which returns zero always.
259  //
260  // We use a threshold much larger then the machine epsilon, because
261  // if sin(theta) is small, not only do we risk overflow but even if
262  // that does not occur, just dividing by a small number will result
263  // in numerical garbage. So we play it safe.
264  static const double kThreshold = 1e-12;
265  if ((sintheta > kThreshold) || (sintheta < -kThreshold)) {
266    const T r = theta / (kTwo * sintheta);
267    for (int i = 0; i < 3; ++i) {
268      angle_axis[i] *= r;
269    }
270    return;
271  }
272
273  // Case 2: theta ~ 0, means sin(theta) ~ theta to a good
274  // approximation.
275  if (costheta > 0.0) {
276    const T kHalf = T(0.5);
277    for (int i = 0; i < 3; ++i) {
278      angle_axis[i] *= kHalf;
279    }
280    return;
281  }
282
283  // Case 3: theta ~ pi, this is the hard case. Since theta is large,
284  // and sin(theta) is small. Dividing by theta by sin(theta) will
285  // either give an overflow or worse still numerically meaningless
286  // results. Thus we use an alternate more complicated formula
287  // here.
288
289  // Since cos(theta) is negative, division by (1-cos(theta)) cannot
290  // overflow.
291  const T inv_one_minus_costheta = kOne / (kOne - costheta);
292
293  // We now compute the absolute value of coordinates of the axis
294  // vector using the diagonal entries of R. To resolve the sign of
295  // these entries, we compare the sign of angle_axis[i]*sin(theta)
296  // with the sign of sin(theta). If they are the same, then
297  // angle_axis[i] should be positive, otherwise negative.
298  for (int i = 0; i < 3; ++i) {
299    angle_axis[i] = theta * sqrt((R[i*4] - costheta) * inv_one_minus_costheta);
300    if (((sintheta < 0.0) && (angle_axis[i] > 0.0)) ||
301        ((sintheta > 0.0) && (angle_axis[i] < 0.0))) {
302      angle_axis[i] = -angle_axis[i];
303    }
304  }
305}
306
307template <typename T>
308inline void AngleAxisToRotationMatrix(const T * angle_axis, T * R) {
309  static const T kOne = T(1.0);
310  const T theta2 = DotProduct(angle_axis, angle_axis);
311  if (theta2 > 0.0) {
312    // We want to be careful to only evaluate the square root if the
313    // norm of the angle_axis vector is greater than zero. Otherwise
314    // we get a division by zero.
315    const T theta = sqrt(theta2);
316    const T wx = angle_axis[0] / theta;
317    const T wy = angle_axis[1] / theta;
318    const T wz = angle_axis[2] / theta;
319
320    const T costheta = cos(theta);
321    const T sintheta = sin(theta);
322
323    R[0] =     costheta   + wx*wx*(kOne -    costheta);
324    R[1] =  wz*sintheta   + wx*wy*(kOne -    costheta);
325    R[2] = -wy*sintheta   + wx*wz*(kOne -    costheta);
326    R[3] =  wx*wy*(kOne - costheta)     - wz*sintheta;
327    R[4] =     costheta   + wy*wy*(kOne -    costheta);
328    R[5] =  wx*sintheta   + wy*wz*(kOne -    costheta);
329    R[6] =  wy*sintheta   + wx*wz*(kOne -    costheta);
330    R[7] = -wx*sintheta   + wy*wz*(kOne -    costheta);
331    R[8] =     costheta   + wz*wz*(kOne -    costheta);
332  } else {
333    // At zero, we switch to using the first order Taylor expansion.
334    R[0] =  kOne;
335    R[1] = -angle_axis[2];
336    R[2] =  angle_axis[1];
337    R[3] =  angle_axis[2];
338    R[4] =  kOne;
339    R[5] = -angle_axis[0];
340    R[6] = -angle_axis[1];
341    R[7] =  angle_axis[0];
342    R[8] = kOne;
343  }
344}
345
346template <typename T>
347inline void EulerAnglesToRotationMatrix(const T* euler,
348                                        const int row_stride,
349                                        T* R) {
350  const double kPi = 3.14159265358979323846;
351  const T degrees_to_radians(kPi / 180.0);
352
353  const T pitch(euler[0] * degrees_to_radians);
354  const T roll(euler[1] * degrees_to_radians);
355  const T yaw(euler[2] * degrees_to_radians);
356
357  const T c1 = cos(yaw);
358  const T s1 = sin(yaw);
359  const T c2 = cos(roll);
360  const T s2 = sin(roll);
361  const T c3 = cos(pitch);
362  const T s3 = sin(pitch);
363
364  // Rows of the rotation matrix.
365  T* R1 = R;
366  T* R2 = R1 + row_stride;
367  T* R3 = R2 + row_stride;
368
369  R1[0] = c1*c2;
370  R1[1] = -s1*c3 + c1*s2*s3;
371  R1[2] = s1*s3 + c1*s2*c3;
372
373  R2[0] = s1*c2;
374  R2[1] = c1*c3 + s1*s2*s3;
375  R2[2] = -c1*s3 + s1*s2*c3;
376
377  R3[0] = -s2;
378  R3[1] = c2*s3;
379  R3[2] = c2*c3;
380}
381
382template <typename T> inline
383void QuaternionToScaledRotation(const T q[4], T R[3 * 3]) {
384  // Make convenient names for elements of q.
385  T a = q[0];
386  T b = q[1];
387  T c = q[2];
388  T d = q[3];
389  // This is not to eliminate common sub-expression, but to
390  // make the lines shorter so that they fit in 80 columns!
391  T aa = a * a;
392  T ab = a * b;
393  T ac = a * c;
394  T ad = a * d;
395  T bb = b * b;
396  T bc = b * c;
397  T bd = b * d;
398  T cc = c * c;
399  T cd = c * d;
400  T dd = d * d;
401
402  R[0] =  aa + bb - cc - dd; R[1] = T(2) * (bc - ad); R[2] = T(2) * (ac + bd);  // NOLINT
403  R[3] = T(2) * (ad + bc); R[4] =  aa - bb + cc - dd; R[5] = T(2) * (cd - ab);  // NOLINT
404  R[6] = T(2) * (bd - ac); R[7] = T(2) * (ab + cd); R[8] =  aa - bb - cc + dd;  // NOLINT
405}
406
407template <typename T> inline
408void QuaternionToRotation(const T q[4], T R[3 * 3]) {
409  QuaternionToScaledRotation(q, R);
410
411  T normalizer = q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3];
412  CHECK_NE(normalizer, T(0));
413  normalizer = T(1) / normalizer;
414
415  for (int i = 0; i < 9; ++i) {
416    R[i] *= normalizer;
417  }
418}
419
420template <typename T> inline
421void UnitQuaternionRotatePoint(const T q[4], const T pt[3], T result[3]) {
422  const T t2 =  q[0] * q[1];
423  const T t3 =  q[0] * q[2];
424  const T t4 =  q[0] * q[3];
425  const T t5 = -q[1] * q[1];
426  const T t6 =  q[1] * q[2];
427  const T t7 =  q[1] * q[3];
428  const T t8 = -q[2] * q[2];
429  const T t9 =  q[2] * q[3];
430  const T t1 = -q[3] * q[3];
431  result[0] = T(2) * ((t8 + t1) * pt[0] + (t6 - t4) * pt[1] + (t3 + t7) * pt[2]) + pt[0];  // NOLINT
432  result[1] = T(2) * ((t4 + t6) * pt[0] + (t5 + t1) * pt[1] + (t9 - t2) * pt[2]) + pt[1];  // NOLINT
433  result[2] = T(2) * ((t7 - t3) * pt[0] + (t2 + t9) * pt[1] + (t5 + t8) * pt[2]) + pt[2];  // NOLINT
434}
435
436
437template <typename T> inline
438void QuaternionRotatePoint(const T q[4], const T pt[3], T result[3]) {
439  // 'scale' is 1 / norm(q).
440  const T scale = T(1) / sqrt(q[0] * q[0] +
441                              q[1] * q[1] +
442                              q[2] * q[2] +
443                              q[3] * q[3]);
444
445  // Make unit-norm version of q.
446  const T unit[4] = {
447    scale * q[0],
448    scale * q[1],
449    scale * q[2],
450    scale * q[3],
451  };
452
453  UnitQuaternionRotatePoint(unit, pt, result);
454}
455
456template<typename T> inline
457void QuaternionProduct(const T z[4], const T w[4], T zw[4]) {
458  zw[0] = z[0] * w[0] - z[1] * w[1] - z[2] * w[2] - z[3] * w[3];
459  zw[1] = z[0] * w[1] + z[1] * w[0] + z[2] * w[3] - z[3] * w[2];
460  zw[2] = z[0] * w[2] - z[1] * w[3] + z[2] * w[0] + z[3] * w[1];
461  zw[3] = z[0] * w[3] + z[1] * w[2] - z[2] * w[1] + z[3] * w[0];
462}
463
464// xy = x cross y;
465template<typename T> inline
466void CrossProduct(const T x[3], const T y[3], T x_cross_y[3]) {
467  x_cross_y[0] = x[1] * y[2] - x[2] * y[1];
468  x_cross_y[1] = x[2] * y[0] - x[0] * y[2];
469  x_cross_y[2] = x[0] * y[1] - x[1] * y[0];
470}
471
472template<typename T> inline
473T DotProduct(const T x[3], const T y[3]) {
474  return (x[0] * y[0] + x[1] * y[1] + x[2] * y[2]);
475}
476
477template<typename T> inline
478void AngleAxisRotatePoint(const T angle_axis[3], const T pt[3], T result[3]) {
479  T w[3];
480  T sintheta;
481  T costheta;
482
483  const T theta2 = DotProduct(angle_axis, angle_axis);
484  if (theta2 > 0.0) {
485    // Away from zero, use the rodriguez formula
486    //
487    //   result = pt costheta +
488    //            (w x pt) * sintheta +
489    //            w (w . pt) (1 - costheta)
490    //
491    // We want to be careful to only evaluate the square root if the
492    // norm of the angle_axis vector is greater than zero. Otherwise
493    // we get a division by zero.
494    //
495    const T theta = sqrt(theta2);
496    w[0] = angle_axis[0] / theta;
497    w[1] = angle_axis[1] / theta;
498    w[2] = angle_axis[2] / theta;
499    costheta = cos(theta);
500    sintheta = sin(theta);
501    T w_cross_pt[3];
502    CrossProduct(w, pt, w_cross_pt);
503    T w_dot_pt = DotProduct(w, pt);
504    for (int i = 0; i < 3; ++i) {
505      result[i] = pt[i] * costheta +
506          w_cross_pt[i] * sintheta +
507          w[i] * (T(1.0) - costheta) * w_dot_pt;
508    }
509  } else {
510    // Near zero, the first order Taylor approximation of the rotation
511    // matrix R corresponding to a vector w and angle w is
512    //
513    //   R = I + hat(w) * sin(theta)
514    //
515    // But sintheta ~ theta and theta * w = angle_axis, which gives us
516    //
517    //  R = I + hat(w)
518    //
519    // and actually performing multiplication with the point pt, gives us
520    // R * pt = pt + w x pt.
521    //
522    // Switching to the Taylor expansion at zero helps avoid all sorts
523    // of numerical nastiness.
524    T w_cross_pt[3];
525    CrossProduct(angle_axis, pt, w_cross_pt);
526    for (int i = 0; i < 3; ++i) {
527      result[i] = pt[i] + w_cross_pt[i];
528    }
529  }
530}
531
532}  // namespace ceres
533
534#endif  // CERES_PUBLIC_ROTATION_H_
535