CFG.cpp revision 432c478fe0fec3946610d5dc7905daf5fbadf47b
1//===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the CFG and CFGBuilder classes for representing and
11//  building Control-Flow Graphs (CFGs) from ASTs.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Analysis/Support/SaveAndRestore.h"
16#include "clang/Analysis/CFG.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/StmtVisitor.h"
19#include "clang/AST/PrettyPrinter.h"
20#include "clang/AST/CharUnits.h"
21#include "llvm/Support/GraphWriter.h"
22#include "llvm/Support/Allocator.h"
23#include "llvm/Support/Format.h"
24#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/OwningPtr.h"
27
28using namespace clang;
29
30namespace {
31
32static SourceLocation GetEndLoc(Decl* D) {
33  if (VarDecl* VD = dyn_cast<VarDecl>(D))
34    if (Expr* Ex = VD->getInit())
35      return Ex->getSourceRange().getEnd();
36  return D->getLocation();
37}
38
39class CFGBuilder;
40
41/// The CFG builder uses a recursive algorithm to build the CFG.  When
42///  we process an expression, sometimes we know that we must add the
43///  subexpressions as block-level expressions.  For example:
44///
45///    exp1 || exp2
46///
47///  When processing the '||' expression, we know that exp1 and exp2
48///  need to be added as block-level expressions, even though they
49///  might not normally need to be.  AddStmtChoice records this
50///  contextual information.  If AddStmtChoice is 'NotAlwaysAdd', then
51///  the builder has an option not to add a subexpression as a
52///  block-level expression.
53///
54class AddStmtChoice {
55public:
56  enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };
57
58  AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}
59
60  bool alwaysAdd(CFGBuilder &builder,
61                 const Stmt *stmt) const;
62
63  /// Return a copy of this object, except with the 'always-add' bit
64  ///  set as specified.
65  AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
66    return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd);
67  }
68
69private:
70  Kind kind;
71};
72
73/// LocalScope - Node in tree of local scopes created for C++ implicit
74/// destructor calls generation. It contains list of automatic variables
75/// declared in the scope and link to position in previous scope this scope
76/// began in.
77///
78/// The process of creating local scopes is as follows:
79/// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
80/// - Before processing statements in scope (e.g. CompoundStmt) create
81///   LocalScope object using CFGBuilder::ScopePos as link to previous scope
82///   and set CFGBuilder::ScopePos to the end of new scope,
83/// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
84///   at this VarDecl,
85/// - For every normal (without jump) end of scope add to CFGBlock destructors
86///   for objects in the current scope,
87/// - For every jump add to CFGBlock destructors for objects
88///   between CFGBuilder::ScopePos and local scope position saved for jump
89///   target. Thanks to C++ restrictions on goto jumps we can be sure that
90///   jump target position will be on the path to root from CFGBuilder::ScopePos
91///   (adding any variable that doesn't need constructor to be called to
92///   LocalScope can break this assumption),
93///
94class LocalScope {
95public:
96  typedef BumpVector<VarDecl*> AutomaticVarsTy;
97
98  /// const_iterator - Iterates local scope backwards and jumps to previous
99  /// scope on reaching the beginning of currently iterated scope.
100  class const_iterator {
101    const LocalScope* Scope;
102
103    /// VarIter is guaranteed to be greater then 0 for every valid iterator.
104    /// Invalid iterator (with null Scope) has VarIter equal to 0.
105    unsigned VarIter;
106
107  public:
108    /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
109    /// Incrementing invalid iterator is allowed and will result in invalid
110    /// iterator.
111    const_iterator()
112        : Scope(NULL), VarIter(0) {}
113
114    /// Create valid iterator. In case when S.Prev is an invalid iterator and
115    /// I is equal to 0, this will create invalid iterator.
116    const_iterator(const LocalScope& S, unsigned I)
117        : Scope(&S), VarIter(I) {
118      // Iterator to "end" of scope is not allowed. Handle it by going up
119      // in scopes tree possibly up to invalid iterator in the root.
120      if (VarIter == 0 && Scope)
121        *this = Scope->Prev;
122    }
123
124    VarDecl* const* operator->() const {
125      assert (Scope && "Dereferencing invalid iterator is not allowed");
126      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
127      return &Scope->Vars[VarIter - 1];
128    }
129    VarDecl* operator*() const {
130      return *this->operator->();
131    }
132
133    const_iterator& operator++() {
134      if (!Scope)
135        return *this;
136
137      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
138      --VarIter;
139      if (VarIter == 0)
140        *this = Scope->Prev;
141      return *this;
142    }
143    const_iterator operator++(int) {
144      const_iterator P = *this;
145      ++*this;
146      return P;
147    }
148
149    bool operator==(const const_iterator& rhs) const {
150      return Scope == rhs.Scope && VarIter == rhs.VarIter;
151    }
152    bool operator!=(const const_iterator& rhs) const {
153      return !(*this == rhs);
154    }
155
156    operator bool() const {
157      return *this != const_iterator();
158    }
159
160    int distance(const_iterator L);
161  };
162
163  friend class const_iterator;
164
165private:
166  BumpVectorContext ctx;
167
168  /// Automatic variables in order of declaration.
169  AutomaticVarsTy Vars;
170  /// Iterator to variable in previous scope that was declared just before
171  /// begin of this scope.
172  const_iterator Prev;
173
174public:
175  /// Constructs empty scope linked to previous scope in specified place.
176  LocalScope(BumpVectorContext &ctx, const_iterator P)
177      : ctx(ctx), Vars(ctx, 4), Prev(P) {}
178
179  /// Begin of scope in direction of CFG building (backwards).
180  const_iterator begin() const { return const_iterator(*this, Vars.size()); }
181
182  void addVar(VarDecl* VD) {
183    Vars.push_back(VD, ctx);
184  }
185};
186
187/// distance - Calculates distance from this to L. L must be reachable from this
188/// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
189/// number of scopes between this and L.
190int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
191  int D = 0;
192  const_iterator F = *this;
193  while (F.Scope != L.Scope) {
194    assert (F != const_iterator()
195        && "L iterator is not reachable from F iterator.");
196    D += F.VarIter;
197    F = F.Scope->Prev;
198  }
199  D += F.VarIter - L.VarIter;
200  return D;
201}
202
203/// BlockScopePosPair - Structure for specifying position in CFG during its
204/// build process. It consists of CFGBlock that specifies position in CFG graph
205/// and  LocalScope::const_iterator that specifies position in LocalScope graph.
206struct BlockScopePosPair {
207  BlockScopePosPair() : block(0) {}
208  BlockScopePosPair(CFGBlock* b, LocalScope::const_iterator scopePos)
209      : block(b), scopePosition(scopePos) {}
210
211  CFGBlock *block;
212  LocalScope::const_iterator scopePosition;
213};
214
215/// TryResult - a class representing a variant over the values
216///  'true', 'false', or 'unknown'.  This is returned by tryEvaluateBool,
217///  and is used by the CFGBuilder to decide if a branch condition
218///  can be decided up front during CFG construction.
219class TryResult {
220  int X;
221public:
222  TryResult(bool b) : X(b ? 1 : 0) {}
223  TryResult() : X(-1) {}
224
225  bool isTrue() const { return X == 1; }
226  bool isFalse() const { return X == 0; }
227  bool isKnown() const { return X >= 0; }
228  void negate() {
229    assert(isKnown());
230    X ^= 0x1;
231  }
232};
233
234/// CFGBuilder - This class implements CFG construction from an AST.
235///   The builder is stateful: an instance of the builder should be used to only
236///   construct a single CFG.
237///
238///   Example usage:
239///
240///     CFGBuilder builder;
241///     CFG* cfg = builder.BuildAST(stmt1);
242///
243///  CFG construction is done via a recursive walk of an AST.  We actually parse
244///  the AST in reverse order so that the successor of a basic block is
245///  constructed prior to its predecessor.  This allows us to nicely capture
246///  implicit fall-throughs without extra basic blocks.
247///
248class CFGBuilder {
249  typedef BlockScopePosPair JumpTarget;
250  typedef BlockScopePosPair JumpSource;
251
252  ASTContext *Context;
253  llvm::OwningPtr<CFG> cfg;
254
255  CFGBlock* Block;
256  CFGBlock* Succ;
257  JumpTarget ContinueJumpTarget;
258  JumpTarget BreakJumpTarget;
259  CFGBlock* SwitchTerminatedBlock;
260  CFGBlock* DefaultCaseBlock;
261  CFGBlock* TryTerminatedBlock;
262
263  // Current position in local scope.
264  LocalScope::const_iterator ScopePos;
265
266  // LabelMap records the mapping from Label expressions to their jump targets.
267  typedef llvm::DenseMap<LabelDecl*, JumpTarget> LabelMapTy;
268  LabelMapTy LabelMap;
269
270  // A list of blocks that end with a "goto" that must be backpatched to their
271  // resolved targets upon completion of CFG construction.
272  typedef std::vector<JumpSource> BackpatchBlocksTy;
273  BackpatchBlocksTy BackpatchBlocks;
274
275  // A list of labels whose address has been taken (for indirect gotos).
276  typedef llvm::SmallPtrSet<LabelDecl*, 5> LabelSetTy;
277  LabelSetTy AddressTakenLabels;
278
279  bool badCFG;
280  const CFG::BuildOptions &BuildOpts;
281
282  // State to track for building switch statements.
283  bool switchExclusivelyCovered;
284  Expr::EvalResult *switchCond;
285
286  CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry;
287
288public:
289  explicit CFGBuilder(ASTContext *astContext,
290                      const CFG::BuildOptions &buildOpts)
291    : Context(astContext), cfg(new CFG()), // crew a new CFG
292      Block(NULL), Succ(NULL),
293      SwitchTerminatedBlock(NULL), DefaultCaseBlock(NULL),
294      TryTerminatedBlock(NULL), badCFG(false), BuildOpts(buildOpts),
295      switchExclusivelyCovered(false), switchCond(0),
296      cachedEntry(0) {}
297
298  // buildCFG - Used by external clients to construct the CFG.
299  CFG* buildCFG(const Decl *D, Stmt *Statement);
300
301  bool alwaysAdd(const Stmt *stmt);
302
303private:
304  // Visitors to walk an AST and construct the CFG.
305  CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
306  CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
307  CFGBlock *VisitBlockExpr(BlockExpr* E, AddStmtChoice asc);
308  CFGBlock *VisitBreakStmt(BreakStmt *B);
309  CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
310  CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E,
311      AddStmtChoice asc);
312  CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
313  CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
314  CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
315                                      AddStmtChoice asc);
316  CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
317  CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
318                                       AddStmtChoice asc);
319  CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
320                                        AddStmtChoice asc);
321  CFGBlock *VisitCXXMemberCallExpr(CXXMemberCallExpr *C, AddStmtChoice asc);
322  CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
323  CFGBlock *VisitCaseStmt(CaseStmt *C);
324  CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
325  CFGBlock *VisitCompoundStmt(CompoundStmt *C);
326  CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C,
327                                     AddStmtChoice asc);
328  CFGBlock *VisitContinueStmt(ContinueStmt *C);
329  CFGBlock *VisitDeclStmt(DeclStmt *DS);
330  CFGBlock *VisitDeclSubExpr(DeclStmt* DS);
331  CFGBlock *VisitDefaultStmt(DefaultStmt *D);
332  CFGBlock *VisitDoStmt(DoStmt *D);
333  CFGBlock *VisitForStmt(ForStmt *F);
334  CFGBlock *VisitGotoStmt(GotoStmt* G);
335  CFGBlock *VisitIfStmt(IfStmt *I);
336  CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
337  CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
338  CFGBlock *VisitLabelStmt(LabelStmt *L);
339  CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
340  CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
341  CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
342  CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
343  CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
344  CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
345  CFGBlock *VisitReturnStmt(ReturnStmt* R);
346  CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
347                                          AddStmtChoice asc);
348  CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
349  CFGBlock *VisitSwitchStmt(SwitchStmt *S);
350  CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
351  CFGBlock *VisitWhileStmt(WhileStmt *W);
352
353  CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd);
354  CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
355  CFGBlock *VisitChildren(Stmt* S);
356
357  // Visitors to walk an AST and generate destructors of temporaries in
358  // full expression.
359  CFGBlock *VisitForTemporaryDtors(Stmt *E, bool BindToTemporary = false);
360  CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E);
361  CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E);
362  CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(CXXBindTemporaryExpr *E,
363      bool BindToTemporary);
364  CFGBlock *
365  VisitConditionalOperatorForTemporaryDtors(AbstractConditionalOperator *E,
366                                            bool BindToTemporary);
367
368  // NYS == Not Yet Supported
369  CFGBlock* NYS() {
370    badCFG = true;
371    return Block;
372  }
373
374  void autoCreateBlock() { if (!Block) Block = createBlock(); }
375  CFGBlock *createBlock(bool add_successor = true);
376
377  CFGBlock *addStmt(Stmt *S) {
378    return Visit(S, AddStmtChoice::AlwaysAdd);
379  }
380  CFGBlock *addInitializer(CXXCtorInitializer *I);
381  void addAutomaticObjDtors(LocalScope::const_iterator B,
382                            LocalScope::const_iterator E, Stmt* S);
383  void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
384
385  // Local scopes creation.
386  LocalScope* createOrReuseLocalScope(LocalScope* Scope);
387
388  void addLocalScopeForStmt(Stmt* S);
389  LocalScope* addLocalScopeForDeclStmt(DeclStmt* DS, LocalScope* Scope = NULL);
390  LocalScope* addLocalScopeForVarDecl(VarDecl* VD, LocalScope* Scope = NULL);
391
392  void addLocalScopeAndDtors(Stmt* S);
393
394  // Interface to CFGBlock - adding CFGElements.
395  void appendStmt(CFGBlock *B, Stmt *S) {
396    if (cachedEntry) {
397      assert(cachedEntry->first == S);
398      cachedEntry->second = B;
399      cachedEntry = 0;
400    }
401
402    B->appendStmt(S, cfg->getBumpVectorContext());
403  }
404  void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
405    B->appendInitializer(I, cfg->getBumpVectorContext());
406  }
407  void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
408    B->appendBaseDtor(BS, cfg->getBumpVectorContext());
409  }
410  void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
411    B->appendMemberDtor(FD, cfg->getBumpVectorContext());
412  }
413  void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
414    B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
415  }
416
417  void insertAutomaticObjDtors(CFGBlock* Blk, CFGBlock::iterator I,
418    LocalScope::const_iterator B, LocalScope::const_iterator E, Stmt* S);
419  void appendAutomaticObjDtors(CFGBlock* Blk, LocalScope::const_iterator B,
420      LocalScope::const_iterator E, Stmt* S);
421  void prependAutomaticObjDtorsWithTerminator(CFGBlock* Blk,
422      LocalScope::const_iterator B, LocalScope::const_iterator E);
423
424  void addSuccessor(CFGBlock *B, CFGBlock *S) {
425    B->addSuccessor(S, cfg->getBumpVectorContext());
426  }
427
428  /// Try and evaluate an expression to an integer constant.
429  bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) {
430    if (!BuildOpts.PruneTriviallyFalseEdges)
431      return false;
432    return !S->isTypeDependent() &&
433    !S->isValueDependent() &&
434    S->Evaluate(outResult, *Context);
435  }
436
437  /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
438  /// if we can evaluate to a known value, otherwise return -1.
439  TryResult tryEvaluateBool(Expr *S) {
440    Expr::EvalResult Result;
441    if (!tryEvaluate(S, Result))
442      return TryResult();
443
444    if (Result.Val.isInt())
445      return Result.Val.getInt().getBoolValue();
446
447    if (Result.Val.isLValue()) {
448      Expr *e = Result.Val.getLValueBase();
449      const CharUnits &c = Result.Val.getLValueOffset();
450      if (!e && c.isZero())
451        return false;
452    }
453    return TryResult();
454  }
455
456};
457
458inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder,
459                                     const Stmt *stmt) const {
460  return builder.alwaysAdd(stmt) || kind == AlwaysAdd;
461}
462
463bool CFGBuilder::alwaysAdd(const Stmt *stmt) {
464  if (!BuildOpts.forcedBlkExprs)
465    return false;
466
467  CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs;
468
469  if (!fb)
470    return false;
471
472  CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt);
473  if (itr == fb->end())
474    return false;
475
476  cachedEntry = &*itr;
477  return true;
478}
479
480// FIXME: Add support for dependent-sized array types in C++?
481// Does it even make sense to build a CFG for an uninstantiated template?
482static const VariableArrayType *FindVA(const Type *t) {
483  while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
484    if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
485      if (vat->getSizeExpr())
486        return vat;
487
488    t = vt->getElementType().getTypePtr();
489  }
490
491  return 0;
492}
493
494/// BuildCFG - Constructs a CFG from an AST (a Stmt*).  The AST can represent an
495///  arbitrary statement.  Examples include a single expression or a function
496///  body (compound statement).  The ownership of the returned CFG is
497///  transferred to the caller.  If CFG construction fails, this method returns
498///  NULL.
499CFG* CFGBuilder::buildCFG(const Decl *D, Stmt* Statement) {
500  assert(cfg.get());
501  if (!Statement)
502    return NULL;
503
504  // Create an empty block that will serve as the exit block for the CFG.  Since
505  // this is the first block added to the CFG, it will be implicitly registered
506  // as the exit block.
507  Succ = createBlock();
508  assert(Succ == &cfg->getExit());
509  Block = NULL;  // the EXIT block is empty.  Create all other blocks lazily.
510
511  if (BuildOpts.AddImplicitDtors)
512    if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
513      addImplicitDtorsForDestructor(DD);
514
515  // Visit the statements and create the CFG.
516  CFGBlock *B = addStmt(Statement);
517
518  if (badCFG)
519    return NULL;
520
521  // For C++ constructor add initializers to CFG.
522  if (const CXXConstructorDecl *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
523    for (CXXConstructorDecl::init_const_reverse_iterator I = CD->init_rbegin(),
524        E = CD->init_rend(); I != E; ++I) {
525      B = addInitializer(*I);
526      if (badCFG)
527        return NULL;
528    }
529  }
530
531  if (B)
532    Succ = B;
533
534  // Backpatch the gotos whose label -> block mappings we didn't know when we
535  // encountered them.
536  for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
537                                   E = BackpatchBlocks.end(); I != E; ++I ) {
538
539    CFGBlock* B = I->block;
540    GotoStmt* G = cast<GotoStmt>(B->getTerminator());
541    LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
542
543    // If there is no target for the goto, then we are looking at an
544    // incomplete AST.  Handle this by not registering a successor.
545    if (LI == LabelMap.end()) continue;
546
547    JumpTarget JT = LI->second;
548    prependAutomaticObjDtorsWithTerminator(B, I->scopePosition,
549                                           JT.scopePosition);
550    addSuccessor(B, JT.block);
551  }
552
553  // Add successors to the Indirect Goto Dispatch block (if we have one).
554  if (CFGBlock* B = cfg->getIndirectGotoBlock())
555    for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
556                              E = AddressTakenLabels.end(); I != E; ++I ) {
557
558      // Lookup the target block.
559      LabelMapTy::iterator LI = LabelMap.find(*I);
560
561      // If there is no target block that contains label, then we are looking
562      // at an incomplete AST.  Handle this by not registering a successor.
563      if (LI == LabelMap.end()) continue;
564
565      addSuccessor(B, LI->second.block);
566    }
567
568  // Create an empty entry block that has no predecessors.
569  cfg->setEntry(createBlock());
570
571  return cfg.take();
572}
573
574/// createBlock - Used to lazily create blocks that are connected
575///  to the current (global) succcessor.
576CFGBlock* CFGBuilder::createBlock(bool add_successor) {
577  CFGBlock* B = cfg->createBlock();
578  if (add_successor && Succ)
579    addSuccessor(B, Succ);
580  return B;
581}
582
583/// addInitializer - Add C++ base or member initializer element to CFG.
584CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
585  if (!BuildOpts.AddInitializers)
586    return Block;
587
588  bool IsReference = false;
589  bool HasTemporaries = false;
590
591  // Destructors of temporaries in initialization expression should be called
592  // after initialization finishes.
593  Expr *Init = I->getInit();
594  if (Init) {
595    if (FieldDecl *FD = I->getAnyMember())
596      IsReference = FD->getType()->isReferenceType();
597    HasTemporaries = isa<ExprWithCleanups>(Init);
598
599    if (BuildOpts.AddImplicitDtors && HasTemporaries) {
600      // Generate destructors for temporaries in initialization expression.
601      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
602          IsReference);
603    }
604  }
605
606  autoCreateBlock();
607  appendInitializer(Block, I);
608
609  if (Init) {
610    if (HasTemporaries) {
611      // For expression with temporaries go directly to subexpression to omit
612      // generating destructors for the second time.
613      return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
614    }
615    return Visit(Init);
616  }
617
618  return Block;
619}
620
621/// addAutomaticObjDtors - Add to current block automatic objects destructors
622/// for objects in range of local scope positions. Use S as trigger statement
623/// for destructors.
624void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
625                                      LocalScope::const_iterator E, Stmt* S) {
626  if (!BuildOpts.AddImplicitDtors)
627    return;
628
629  if (B == E)
630    return;
631
632  autoCreateBlock();
633  appendAutomaticObjDtors(Block, B, E, S);
634}
635
636/// addImplicitDtorsForDestructor - Add implicit destructors generated for
637/// base and member objects in destructor.
638void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
639  assert (BuildOpts.AddImplicitDtors
640      && "Can be called only when dtors should be added");
641  const CXXRecordDecl *RD = DD->getParent();
642
643  // At the end destroy virtual base objects.
644  for (CXXRecordDecl::base_class_const_iterator VI = RD->vbases_begin(),
645      VE = RD->vbases_end(); VI != VE; ++VI) {
646    const CXXRecordDecl *CD = VI->getType()->getAsCXXRecordDecl();
647    if (!CD->hasTrivialDestructor()) {
648      autoCreateBlock();
649      appendBaseDtor(Block, VI);
650    }
651  }
652
653  // Before virtual bases destroy direct base objects.
654  for (CXXRecordDecl::base_class_const_iterator BI = RD->bases_begin(),
655      BE = RD->bases_end(); BI != BE; ++BI) {
656    if (!BI->isVirtual()) {
657      const CXXRecordDecl *CD = BI->getType()->getAsCXXRecordDecl();
658      if (!CD->hasTrivialDestructor()) {
659        autoCreateBlock();
660        appendBaseDtor(Block, BI);
661      }
662    }
663  }
664
665  // First destroy member objects.
666  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
667      FE = RD->field_end(); FI != FE; ++FI) {
668    // Check for constant size array. Set type to array element type.
669    QualType QT = FI->getType();
670    if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
671      if (AT->getSize() == 0)
672        continue;
673      QT = AT->getElementType();
674    }
675
676    if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
677      if (!CD->hasTrivialDestructor()) {
678        autoCreateBlock();
679        appendMemberDtor(Block, *FI);
680      }
681  }
682}
683
684/// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
685/// way return valid LocalScope object.
686LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
687  if (!Scope) {
688    llvm::BumpPtrAllocator &alloc = cfg->getAllocator();
689    Scope = alloc.Allocate<LocalScope>();
690    BumpVectorContext ctx(alloc);
691    new (Scope) LocalScope(ctx, ScopePos);
692  }
693  return Scope;
694}
695
696/// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
697/// that should create implicit scope (e.g. if/else substatements).
698void CFGBuilder::addLocalScopeForStmt(Stmt* S) {
699  if (!BuildOpts.AddImplicitDtors)
700    return;
701
702  LocalScope *Scope = 0;
703
704  // For compound statement we will be creating explicit scope.
705  if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
706    for (CompoundStmt::body_iterator BI = CS->body_begin(), BE = CS->body_end()
707        ; BI != BE; ++BI) {
708      Stmt *SI = *BI;
709      if (LabelStmt *LS = dyn_cast<LabelStmt>(SI))
710        SI = LS->getSubStmt();
711      if (DeclStmt *DS = dyn_cast<DeclStmt>(SI))
712        Scope = addLocalScopeForDeclStmt(DS, Scope);
713    }
714    return;
715  }
716
717  // For any other statement scope will be implicit and as such will be
718  // interesting only for DeclStmt.
719  if (LabelStmt *LS = dyn_cast<LabelStmt>(S))
720    S = LS->getSubStmt();
721  if (DeclStmt *DS = dyn_cast<DeclStmt>(S))
722    addLocalScopeForDeclStmt(DS);
723}
724
725/// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
726/// reuse Scope if not NULL.
727LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt* DS,
728                                                 LocalScope* Scope) {
729  if (!BuildOpts.AddImplicitDtors)
730    return Scope;
731
732  for (DeclStmt::decl_iterator DI = DS->decl_begin(), DE = DS->decl_end()
733      ; DI != DE; ++DI) {
734    if (VarDecl* VD = dyn_cast<VarDecl>(*DI))
735      Scope = addLocalScopeForVarDecl(VD, Scope);
736  }
737  return Scope;
738}
739
740/// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
741/// create add scope for automatic objects and temporary objects bound to
742/// const reference. Will reuse Scope if not NULL.
743LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl* VD,
744                                                LocalScope* Scope) {
745  if (!BuildOpts.AddImplicitDtors)
746    return Scope;
747
748  // Check if variable is local.
749  switch (VD->getStorageClass()) {
750  case SC_None:
751  case SC_Auto:
752  case SC_Register:
753    break;
754  default: return Scope;
755  }
756
757  // Check for const references bound to temporary. Set type to pointee.
758  QualType QT = VD->getType();
759  if (const ReferenceType* RT = QT.getTypePtr()->getAs<ReferenceType>()) {
760    QT = RT->getPointeeType();
761    if (!QT.isConstQualified())
762      return Scope;
763    if (!VD->getInit() || !VD->getInit()->Classify(*Context).isRValue())
764      return Scope;
765  }
766
767  // Check for constant size array. Set type to array element type.
768  if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
769    if (AT->getSize() == 0)
770      return Scope;
771    QT = AT->getElementType();
772  }
773
774  // Check if type is a C++ class with non-trivial destructor.
775  if (const CXXRecordDecl* CD = QT->getAsCXXRecordDecl())
776    if (!CD->hasTrivialDestructor()) {
777      // Add the variable to scope
778      Scope = createOrReuseLocalScope(Scope);
779      Scope->addVar(VD);
780      ScopePos = Scope->begin();
781    }
782  return Scope;
783}
784
785/// addLocalScopeAndDtors - For given statement add local scope for it and
786/// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
787void CFGBuilder::addLocalScopeAndDtors(Stmt* S) {
788  if (!BuildOpts.AddImplicitDtors)
789    return;
790
791  LocalScope::const_iterator scopeBeginPos = ScopePos;
792  addLocalScopeForStmt(S);
793  addAutomaticObjDtors(ScopePos, scopeBeginPos, S);
794}
795
796/// insertAutomaticObjDtors - Insert destructor CFGElements for variables with
797/// automatic storage duration to CFGBlock's elements vector. Insertion will be
798/// performed in place specified with iterator.
799void CFGBuilder::insertAutomaticObjDtors(CFGBlock* Blk, CFGBlock::iterator I,
800    LocalScope::const_iterator B, LocalScope::const_iterator E, Stmt* S) {
801  BumpVectorContext& C = cfg->getBumpVectorContext();
802  I = Blk->beginAutomaticObjDtorsInsert(I, B.distance(E), C);
803  while (B != E)
804    I = Blk->insertAutomaticObjDtor(I, *B++, S);
805}
806
807/// appendAutomaticObjDtors - Append destructor CFGElements for variables with
808/// automatic storage duration to CFGBlock's elements vector. Elements will be
809/// appended to physical end of the vector which happens to be logical
810/// beginning.
811void CFGBuilder::appendAutomaticObjDtors(CFGBlock* Blk,
812    LocalScope::const_iterator B, LocalScope::const_iterator E, Stmt* S) {
813  insertAutomaticObjDtors(Blk, Blk->begin(), B, E, S);
814}
815
816/// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
817/// variables with automatic storage duration to CFGBlock's elements vector.
818/// Elements will be prepended to physical beginning of the vector which
819/// happens to be logical end. Use blocks terminator as statement that specifies
820/// destructors call site.
821void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock* Blk,
822    LocalScope::const_iterator B, LocalScope::const_iterator E) {
823  insertAutomaticObjDtors(Blk, Blk->end(), B, E, Blk->getTerminator());
824}
825
826/// Visit - Walk the subtree of a statement and add extra
827///   blocks for ternary operators, &&, and ||.  We also process "," and
828///   DeclStmts (which may contain nested control-flow).
829CFGBlock* CFGBuilder::Visit(Stmt * S, AddStmtChoice asc) {
830tryAgain:
831  if (!S) {
832    badCFG = true;
833    return 0;
834  }
835  switch (S->getStmtClass()) {
836    default:
837      return VisitStmt(S, asc);
838
839    case Stmt::AddrLabelExprClass:
840      return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
841
842    case Stmt::BinaryConditionalOperatorClass:
843      return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc);
844
845    case Stmt::BinaryOperatorClass:
846      return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
847
848    case Stmt::BlockExprClass:
849      return VisitBlockExpr(cast<BlockExpr>(S), asc);
850
851    case Stmt::BreakStmtClass:
852      return VisitBreakStmt(cast<BreakStmt>(S));
853
854    case Stmt::CallExprClass:
855    case Stmt::CXXOperatorCallExprClass:
856      return VisitCallExpr(cast<CallExpr>(S), asc);
857
858    case Stmt::CaseStmtClass:
859      return VisitCaseStmt(cast<CaseStmt>(S));
860
861    case Stmt::ChooseExprClass:
862      return VisitChooseExpr(cast<ChooseExpr>(S), asc);
863
864    case Stmt::CompoundStmtClass:
865      return VisitCompoundStmt(cast<CompoundStmt>(S));
866
867    case Stmt::ConditionalOperatorClass:
868      return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
869
870    case Stmt::ContinueStmtClass:
871      return VisitContinueStmt(cast<ContinueStmt>(S));
872
873    case Stmt::CXXCatchStmtClass:
874      return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
875
876    case Stmt::ExprWithCleanupsClass:
877      return VisitExprWithCleanups(cast<ExprWithCleanups>(S), asc);
878
879    case Stmt::CXXBindTemporaryExprClass:
880      return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);
881
882    case Stmt::CXXConstructExprClass:
883      return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);
884
885    case Stmt::CXXFunctionalCastExprClass:
886      return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);
887
888    case Stmt::CXXTemporaryObjectExprClass:
889      return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);
890
891    case Stmt::CXXMemberCallExprClass:
892      return VisitCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), asc);
893
894    case Stmt::CXXThrowExprClass:
895      return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
896
897    case Stmt::CXXTryStmtClass:
898      return VisitCXXTryStmt(cast<CXXTryStmt>(S));
899
900    case Stmt::DeclStmtClass:
901      return VisitDeclStmt(cast<DeclStmt>(S));
902
903    case Stmt::DefaultStmtClass:
904      return VisitDefaultStmt(cast<DefaultStmt>(S));
905
906    case Stmt::DoStmtClass:
907      return VisitDoStmt(cast<DoStmt>(S));
908
909    case Stmt::ForStmtClass:
910      return VisitForStmt(cast<ForStmt>(S));
911
912    case Stmt::GotoStmtClass:
913      return VisitGotoStmt(cast<GotoStmt>(S));
914
915    case Stmt::IfStmtClass:
916      return VisitIfStmt(cast<IfStmt>(S));
917
918    case Stmt::ImplicitCastExprClass:
919      return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);
920
921    case Stmt::IndirectGotoStmtClass:
922      return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
923
924    case Stmt::LabelStmtClass:
925      return VisitLabelStmt(cast<LabelStmt>(S));
926
927    case Stmt::MemberExprClass:
928      return VisitMemberExpr(cast<MemberExpr>(S), asc);
929
930    case Stmt::ObjCAtCatchStmtClass:
931      return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
932
933    case Stmt::ObjCAtSynchronizedStmtClass:
934      return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
935
936    case Stmt::ObjCAtThrowStmtClass:
937      return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
938
939    case Stmt::ObjCAtTryStmtClass:
940      return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
941
942    case Stmt::ObjCForCollectionStmtClass:
943      return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
944
945    case Stmt::ParenExprClass:
946      S = cast<ParenExpr>(S)->getSubExpr();
947      goto tryAgain;
948
949    case Stmt::NullStmtClass:
950      return Block;
951
952    case Stmt::ReturnStmtClass:
953      return VisitReturnStmt(cast<ReturnStmt>(S));
954
955    case Stmt::UnaryExprOrTypeTraitExprClass:
956      return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
957                                           asc);
958
959    case Stmt::StmtExprClass:
960      return VisitStmtExpr(cast<StmtExpr>(S), asc);
961
962    case Stmt::SwitchStmtClass:
963      return VisitSwitchStmt(cast<SwitchStmt>(S));
964
965    case Stmt::UnaryOperatorClass:
966      return VisitUnaryOperator(cast<UnaryOperator>(S), asc);
967
968    case Stmt::WhileStmtClass:
969      return VisitWhileStmt(cast<WhileStmt>(S));
970  }
971}
972
973CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
974  if (asc.alwaysAdd(*this, S)) {
975    autoCreateBlock();
976    appendStmt(Block, S);
977  }
978
979  return VisitChildren(S);
980}
981
982/// VisitChildren - Visit the children of a Stmt.
983CFGBlock *CFGBuilder::VisitChildren(Stmt* Terminator) {
984  CFGBlock *lastBlock = Block;
985  for (Stmt::child_range I = Terminator->children(); I; ++I)
986    if (Stmt *child = *I)
987      if (CFGBlock *b = Visit(child))
988        lastBlock = b;
989
990  return lastBlock;
991}
992
993CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
994                                         AddStmtChoice asc) {
995  AddressTakenLabels.insert(A->getLabel());
996
997  if (asc.alwaysAdd(*this, A)) {
998    autoCreateBlock();
999    appendStmt(Block, A);
1000  }
1001
1002  return Block;
1003}
1004
1005CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U,
1006           AddStmtChoice asc) {
1007  if (asc.alwaysAdd(*this, U)) {
1008    autoCreateBlock();
1009    appendStmt(Block, U);
1010  }
1011
1012  return Visit(U->getSubExpr(), AddStmtChoice());
1013}
1014
1015CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
1016                                          AddStmtChoice asc) {
1017  if (B->isLogicalOp()) { // && or ||
1018    CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
1019    appendStmt(ConfluenceBlock, B);
1020
1021    if (badCFG)
1022      return 0;
1023
1024    // create the block evaluating the LHS
1025    CFGBlock* LHSBlock = createBlock(false);
1026    LHSBlock->setTerminator(B);
1027
1028    // create the block evaluating the RHS
1029    Succ = ConfluenceBlock;
1030    Block = NULL;
1031    CFGBlock* RHSBlock = addStmt(B->getRHS());
1032
1033    if (RHSBlock) {
1034      if (badCFG)
1035        return 0;
1036    } else {
1037      // Create an empty block for cases where the RHS doesn't require
1038      // any explicit statements in the CFG.
1039      RHSBlock = createBlock();
1040    }
1041
1042    // See if this is a known constant.
1043    TryResult KnownVal = tryEvaluateBool(B->getLHS());
1044    if (KnownVal.isKnown() && (B->getOpcode() == BO_LOr))
1045      KnownVal.negate();
1046
1047    // Now link the LHSBlock with RHSBlock.
1048    if (B->getOpcode() == BO_LOr) {
1049      addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
1050      addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
1051    } else {
1052      assert(B->getOpcode() == BO_LAnd);
1053      addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
1054      addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
1055    }
1056
1057    // Generate the blocks for evaluating the LHS.
1058    Block = LHSBlock;
1059    return addStmt(B->getLHS());
1060  }
1061
1062  if (B->getOpcode() == BO_Comma) { // ,
1063    autoCreateBlock();
1064    appendStmt(Block, B);
1065    addStmt(B->getRHS());
1066    return addStmt(B->getLHS());
1067  }
1068
1069  if (B->isAssignmentOp()) {
1070    if (asc.alwaysAdd(*this, B)) {
1071      autoCreateBlock();
1072      appendStmt(Block, B);
1073    }
1074    Visit(B->getLHS());
1075    return Visit(B->getRHS());
1076  }
1077
1078  if (asc.alwaysAdd(*this, B)) {
1079    autoCreateBlock();
1080    appendStmt(Block, B);
1081  }
1082
1083  CFGBlock *RBlock = Visit(B->getRHS());
1084  CFGBlock *LBlock = Visit(B->getLHS());
1085  // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
1086  // containing a DoStmt, and the LHS doesn't create a new block, then we should
1087  // return RBlock.  Otherwise we'll incorrectly return NULL.
1088  return (LBlock ? LBlock : RBlock);
1089}
1090
1091CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr *E, AddStmtChoice asc) {
1092  if (asc.alwaysAdd(*this, E)) {
1093    autoCreateBlock();
1094    appendStmt(Block, E);
1095  }
1096  return Block;
1097}
1098
1099CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
1100  // "break" is a control-flow statement.  Thus we stop processing the current
1101  // block.
1102  if (badCFG)
1103    return 0;
1104
1105  // Now create a new block that ends with the break statement.
1106  Block = createBlock(false);
1107  Block->setTerminator(B);
1108
1109  // If there is no target for the break, then we are looking at an incomplete
1110  // AST.  This means that the CFG cannot be constructed.
1111  if (BreakJumpTarget.block) {
1112    addAutomaticObjDtors(ScopePos, BreakJumpTarget.scopePosition, B);
1113    addSuccessor(Block, BreakJumpTarget.block);
1114  } else
1115    badCFG = true;
1116
1117
1118  return Block;
1119}
1120
1121static bool CanThrow(Expr *E, ASTContext &Ctx) {
1122  QualType Ty = E->getType();
1123  if (Ty->isFunctionPointerType())
1124    Ty = Ty->getAs<PointerType>()->getPointeeType();
1125  else if (Ty->isBlockPointerType())
1126    Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
1127
1128  const FunctionType *FT = Ty->getAs<FunctionType>();
1129  if (FT) {
1130    if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
1131      if (Proto->isNothrow(Ctx))
1132        return false;
1133  }
1134  return true;
1135}
1136
1137CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
1138  // If this is a call to a no-return function, this stops the block here.
1139  bool NoReturn = false;
1140  if (getFunctionExtInfo(*C->getCallee()->getType()).getNoReturn()) {
1141    NoReturn = true;
1142  }
1143
1144  bool AddEHEdge = false;
1145
1146  // Languages without exceptions are assumed to not throw.
1147  if (Context->getLangOptions().Exceptions) {
1148    if (BuildOpts.AddEHEdges)
1149      AddEHEdge = true;
1150  }
1151
1152  if (FunctionDecl *FD = C->getDirectCallee()) {
1153    if (FD->hasAttr<NoReturnAttr>())
1154      NoReturn = true;
1155    if (FD->hasAttr<NoThrowAttr>())
1156      AddEHEdge = false;
1157  }
1158
1159  if (!CanThrow(C->getCallee(), *Context))
1160    AddEHEdge = false;
1161
1162  if (!NoReturn && !AddEHEdge)
1163    return VisitStmt(C, asc.withAlwaysAdd(true));
1164
1165  if (Block) {
1166    Succ = Block;
1167    if (badCFG)
1168      return 0;
1169  }
1170
1171  Block = createBlock(!NoReturn);
1172  appendStmt(Block, C);
1173
1174  if (NoReturn) {
1175    // Wire this to the exit block directly.
1176    addSuccessor(Block, &cfg->getExit());
1177  }
1178  if (AddEHEdge) {
1179    // Add exceptional edges.
1180    if (TryTerminatedBlock)
1181      addSuccessor(Block, TryTerminatedBlock);
1182    else
1183      addSuccessor(Block, &cfg->getExit());
1184  }
1185
1186  return VisitChildren(C);
1187}
1188
1189CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
1190                                      AddStmtChoice asc) {
1191  CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
1192  appendStmt(ConfluenceBlock, C);
1193  if (badCFG)
1194    return 0;
1195
1196  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1197  Succ = ConfluenceBlock;
1198  Block = NULL;
1199  CFGBlock* LHSBlock = Visit(C->getLHS(), alwaysAdd);
1200  if (badCFG)
1201    return 0;
1202
1203  Succ = ConfluenceBlock;
1204  Block = NULL;
1205  CFGBlock* RHSBlock = Visit(C->getRHS(), alwaysAdd);
1206  if (badCFG)
1207    return 0;
1208
1209  Block = createBlock(false);
1210  // See if this is a known constant.
1211  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1212  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1213  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1214  Block->setTerminator(C);
1215  return addStmt(C->getCond());
1216}
1217
1218
1219CFGBlock* CFGBuilder::VisitCompoundStmt(CompoundStmt* C) {
1220  addLocalScopeAndDtors(C);
1221  CFGBlock* LastBlock = Block;
1222
1223  for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
1224       I != E; ++I ) {
1225    // If we hit a segment of code just containing ';' (NullStmts), we can
1226    // get a null block back.  In such cases, just use the LastBlock
1227    if (CFGBlock *newBlock = addStmt(*I))
1228      LastBlock = newBlock;
1229
1230    if (badCFG)
1231      return NULL;
1232  }
1233
1234  return LastBlock;
1235}
1236
1237CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C,
1238                                               AddStmtChoice asc) {
1239  const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C);
1240  const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : NULL);
1241
1242  // Create the confluence block that will "merge" the results of the ternary
1243  // expression.
1244  CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
1245  appendStmt(ConfluenceBlock, C);
1246  if (badCFG)
1247    return 0;
1248
1249  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1250
1251  // Create a block for the LHS expression if there is an LHS expression.  A
1252  // GCC extension allows LHS to be NULL, causing the condition to be the
1253  // value that is returned instead.
1254  //  e.g: x ?: y is shorthand for: x ? x : y;
1255  Succ = ConfluenceBlock;
1256  Block = NULL;
1257  CFGBlock* LHSBlock = 0;
1258  const Expr *trueExpr = C->getTrueExpr();
1259  if (trueExpr != opaqueValue) {
1260    LHSBlock = Visit(C->getTrueExpr(), alwaysAdd);
1261    if (badCFG)
1262      return 0;
1263    Block = NULL;
1264  }
1265  else
1266    LHSBlock = ConfluenceBlock;
1267
1268  // Create the block for the RHS expression.
1269  Succ = ConfluenceBlock;
1270  CFGBlock* RHSBlock = Visit(C->getFalseExpr(), alwaysAdd);
1271  if (badCFG)
1272    return 0;
1273
1274  // Create the block that will contain the condition.
1275  Block = createBlock(false);
1276
1277  // See if this is a known constant.
1278  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1279  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1280  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1281  Block->setTerminator(C);
1282  Expr *condExpr = C->getCond();
1283
1284  if (opaqueValue) {
1285    // Run the condition expression if it's not trivially expressed in
1286    // terms of the opaque value (or if there is no opaque value).
1287    if (condExpr != opaqueValue)
1288      addStmt(condExpr);
1289
1290    // Before that, run the common subexpression if there was one.
1291    // At least one of this or the above will be run.
1292    return addStmt(BCO->getCommon());
1293  }
1294
1295  return addStmt(condExpr);
1296}
1297
1298CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
1299  if (DS->isSingleDecl())
1300    return VisitDeclSubExpr(DS);
1301
1302  CFGBlock *B = 0;
1303
1304  // FIXME: Add a reverse iterator for DeclStmt to avoid this extra copy.
1305  typedef llvm::SmallVector<Decl*,10> BufTy;
1306  BufTy Buf(DS->decl_begin(), DS->decl_end());
1307
1308  for (BufTy::reverse_iterator I = Buf.rbegin(), E = Buf.rend(); I != E; ++I) {
1309    // Get the alignment of the new DeclStmt, padding out to >=8 bytes.
1310    unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8
1311               ? 8 : llvm::AlignOf<DeclStmt>::Alignment;
1312
1313    // Allocate the DeclStmt using the BumpPtrAllocator.  It will get
1314    // automatically freed with the CFG.
1315    DeclGroupRef DG(*I);
1316    Decl *D = *I;
1317    void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A);
1318    DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
1319
1320    // Append the fake DeclStmt to block.
1321    B = VisitDeclSubExpr(DSNew);
1322  }
1323
1324  return B;
1325}
1326
1327/// VisitDeclSubExpr - Utility method to add block-level expressions for
1328/// DeclStmts and initializers in them.
1329CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt* DS) {
1330  assert(DS->isSingleDecl() && "Can handle single declarations only.");
1331
1332  VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
1333
1334  if (!VD) {
1335    autoCreateBlock();
1336    appendStmt(Block, DS);
1337    return Block;
1338  }
1339
1340  bool IsReference = false;
1341  bool HasTemporaries = false;
1342
1343  // Destructors of temporaries in initialization expression should be called
1344  // after initialization finishes.
1345  Expr *Init = VD->getInit();
1346  if (Init) {
1347    IsReference = VD->getType()->isReferenceType();
1348    HasTemporaries = isa<ExprWithCleanups>(Init);
1349
1350    if (BuildOpts.AddImplicitDtors && HasTemporaries) {
1351      // Generate destructors for temporaries in initialization expression.
1352      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
1353          IsReference);
1354    }
1355  }
1356
1357  autoCreateBlock();
1358  appendStmt(Block, DS);
1359
1360  if (Init) {
1361    if (HasTemporaries)
1362      // For expression with temporaries go directly to subexpression to omit
1363      // generating destructors for the second time.
1364      Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
1365    else
1366      Visit(Init);
1367  }
1368
1369  // If the type of VD is a VLA, then we must process its size expressions.
1370  for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr());
1371       VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
1372    Block = addStmt(VA->getSizeExpr());
1373
1374  // Remove variable from local scope.
1375  if (ScopePos && VD == *ScopePos)
1376    ++ScopePos;
1377
1378  return Block;
1379}
1380
1381CFGBlock* CFGBuilder::VisitIfStmt(IfStmt* I) {
1382  // We may see an if statement in the middle of a basic block, or it may be the
1383  // first statement we are processing.  In either case, we create a new basic
1384  // block.  First, we create the blocks for the then...else statements, and
1385  // then we create the block containing the if statement.  If we were in the
1386  // middle of a block, we stop processing that block.  That block is then the
1387  // implicit successor for the "then" and "else" clauses.
1388
1389  // Save local scope position because in case of condition variable ScopePos
1390  // won't be restored when traversing AST.
1391  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1392
1393  // Create local scope for possible condition variable.
1394  // Store scope position. Add implicit destructor.
1395  if (VarDecl* VD = I->getConditionVariable()) {
1396    LocalScope::const_iterator BeginScopePos = ScopePos;
1397    addLocalScopeForVarDecl(VD);
1398    addAutomaticObjDtors(ScopePos, BeginScopePos, I);
1399  }
1400
1401  // The block we were proccessing is now finished.  Make it the successor
1402  // block.
1403  if (Block) {
1404    Succ = Block;
1405    if (badCFG)
1406      return 0;
1407  }
1408
1409  // Process the false branch.
1410  CFGBlock* ElseBlock = Succ;
1411
1412  if (Stmt* Else = I->getElse()) {
1413    SaveAndRestore<CFGBlock*> sv(Succ);
1414
1415    // NULL out Block so that the recursive call to Visit will
1416    // create a new basic block.
1417    Block = NULL;
1418
1419    // If branch is not a compound statement create implicit scope
1420    // and add destructors.
1421    if (!isa<CompoundStmt>(Else))
1422      addLocalScopeAndDtors(Else);
1423
1424    ElseBlock = addStmt(Else);
1425
1426    if (!ElseBlock) // Can occur when the Else body has all NullStmts.
1427      ElseBlock = sv.get();
1428    else if (Block) {
1429      if (badCFG)
1430        return 0;
1431    }
1432  }
1433
1434  // Process the true branch.
1435  CFGBlock* ThenBlock;
1436  {
1437    Stmt* Then = I->getThen();
1438    assert(Then);
1439    SaveAndRestore<CFGBlock*> sv(Succ);
1440    Block = NULL;
1441
1442    // If branch is not a compound statement create implicit scope
1443    // and add destructors.
1444    if (!isa<CompoundStmt>(Then))
1445      addLocalScopeAndDtors(Then);
1446
1447    ThenBlock = addStmt(Then);
1448
1449    if (!ThenBlock) {
1450      // We can reach here if the "then" body has all NullStmts.
1451      // Create an empty block so we can distinguish between true and false
1452      // branches in path-sensitive analyses.
1453      ThenBlock = createBlock(false);
1454      addSuccessor(ThenBlock, sv.get());
1455    } else if (Block) {
1456      if (badCFG)
1457        return 0;
1458    }
1459  }
1460
1461  // Now create a new block containing the if statement.
1462  Block = createBlock(false);
1463
1464  // Set the terminator of the new block to the If statement.
1465  Block->setTerminator(I);
1466
1467  // See if this is a known constant.
1468  const TryResult &KnownVal = tryEvaluateBool(I->getCond());
1469
1470  // Now add the successors.
1471  addSuccessor(Block, KnownVal.isFalse() ? NULL : ThenBlock);
1472  addSuccessor(Block, KnownVal.isTrue()? NULL : ElseBlock);
1473
1474  // Add the condition as the last statement in the new block.  This may create
1475  // new blocks as the condition may contain control-flow.  Any newly created
1476  // blocks will be pointed to be "Block".
1477  Block = addStmt(I->getCond());
1478
1479  // Finally, if the IfStmt contains a condition variable, add both the IfStmt
1480  // and the condition variable initialization to the CFG.
1481  if (VarDecl *VD = I->getConditionVariable()) {
1482    if (Expr *Init = VD->getInit()) {
1483      autoCreateBlock();
1484      appendStmt(Block, I);
1485      addStmt(Init);
1486    }
1487  }
1488
1489  return Block;
1490}
1491
1492
1493CFGBlock* CFGBuilder::VisitReturnStmt(ReturnStmt* R) {
1494  // If we were in the middle of a block we stop processing that block.
1495  //
1496  // NOTE: If a "return" appears in the middle of a block, this means that the
1497  //       code afterwards is DEAD (unreachable).  We still keep a basic block
1498  //       for that code; a simple "mark-and-sweep" from the entry block will be
1499  //       able to report such dead blocks.
1500
1501  // Create the new block.
1502  Block = createBlock(false);
1503
1504  // The Exit block is the only successor.
1505  addAutomaticObjDtors(ScopePos, LocalScope::const_iterator(), R);
1506  addSuccessor(Block, &cfg->getExit());
1507
1508  // Add the return statement to the block.  This may create new blocks if R
1509  // contains control-flow (short-circuit operations).
1510  return VisitStmt(R, AddStmtChoice::AlwaysAdd);
1511}
1512
1513CFGBlock* CFGBuilder::VisitLabelStmt(LabelStmt *L) {
1514  // Get the block of the labeled statement.  Add it to our map.
1515  addStmt(L->getSubStmt());
1516  CFGBlock *LabelBlock = Block;
1517
1518  if (!LabelBlock)              // This can happen when the body is empty, i.e.
1519    LabelBlock = createBlock(); // scopes that only contains NullStmts.
1520
1521  assert(LabelMap.find(L->getDecl()) == LabelMap.end() &&
1522         "label already in map");
1523  LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos);
1524
1525  // Labels partition blocks, so this is the end of the basic block we were
1526  // processing (L is the block's label).  Because this is label (and we have
1527  // already processed the substatement) there is no extra control-flow to worry
1528  // about.
1529  LabelBlock->setLabel(L);
1530  if (badCFG)
1531    return 0;
1532
1533  // We set Block to NULL to allow lazy creation of a new block (if necessary);
1534  Block = NULL;
1535
1536  // This block is now the implicit successor of other blocks.
1537  Succ = LabelBlock;
1538
1539  return LabelBlock;
1540}
1541
1542CFGBlock* CFGBuilder::VisitGotoStmt(GotoStmt* G) {
1543  // Goto is a control-flow statement.  Thus we stop processing the current
1544  // block and create a new one.
1545
1546  Block = createBlock(false);
1547  Block->setTerminator(G);
1548
1549  // If we already know the mapping to the label block add the successor now.
1550  LabelMapTy::iterator I = LabelMap.find(G->getLabel());
1551
1552  if (I == LabelMap.end())
1553    // We will need to backpatch this block later.
1554    BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
1555  else {
1556    JumpTarget JT = I->second;
1557    addAutomaticObjDtors(ScopePos, JT.scopePosition, G);
1558    addSuccessor(Block, JT.block);
1559  }
1560
1561  return Block;
1562}
1563
1564CFGBlock* CFGBuilder::VisitForStmt(ForStmt* F) {
1565  CFGBlock* LoopSuccessor = NULL;
1566
1567  // Save local scope position because in case of condition variable ScopePos
1568  // won't be restored when traversing AST.
1569  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1570
1571  // Create local scope for init statement and possible condition variable.
1572  // Add destructor for init statement and condition variable.
1573  // Store scope position for continue statement.
1574  if (Stmt* Init = F->getInit())
1575    addLocalScopeForStmt(Init);
1576  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
1577
1578  if (VarDecl* VD = F->getConditionVariable())
1579    addLocalScopeForVarDecl(VD);
1580  LocalScope::const_iterator ContinueScopePos = ScopePos;
1581
1582  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), F);
1583
1584  // "for" is a control-flow statement.  Thus we stop processing the current
1585  // block.
1586  if (Block) {
1587    if (badCFG)
1588      return 0;
1589    LoopSuccessor = Block;
1590  } else
1591    LoopSuccessor = Succ;
1592
1593  // Save the current value for the break targets.
1594  // All breaks should go to the code following the loop.
1595  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
1596  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1597
1598  // Because of short-circuit evaluation, the condition of the loop can span
1599  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1600  // evaluate the condition.
1601  CFGBlock* ExitConditionBlock = createBlock(false);
1602  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1603
1604  // Set the terminator for the "exit" condition block.
1605  ExitConditionBlock->setTerminator(F);
1606
1607  // Now add the actual condition to the condition block.  Because the condition
1608  // itself may contain control-flow, new blocks may be created.
1609  if (Stmt* C = F->getCond()) {
1610    Block = ExitConditionBlock;
1611    EntryConditionBlock = addStmt(C);
1612    if (badCFG)
1613      return 0;
1614    assert(Block == EntryConditionBlock ||
1615           (Block == 0 && EntryConditionBlock == Succ));
1616
1617    // If this block contains a condition variable, add both the condition
1618    // variable and initializer to the CFG.
1619    if (VarDecl *VD = F->getConditionVariable()) {
1620      if (Expr *Init = VD->getInit()) {
1621        autoCreateBlock();
1622        appendStmt(Block, F);
1623        EntryConditionBlock = addStmt(Init);
1624        assert(Block == EntryConditionBlock);
1625      }
1626    }
1627
1628    if (Block) {
1629      if (badCFG)
1630        return 0;
1631    }
1632  }
1633
1634  // The condition block is the implicit successor for the loop body as well as
1635  // any code above the loop.
1636  Succ = EntryConditionBlock;
1637
1638  // See if this is a known constant.
1639  TryResult KnownVal(true);
1640
1641  if (F->getCond())
1642    KnownVal = tryEvaluateBool(F->getCond());
1643
1644  // Now create the loop body.
1645  {
1646    assert(F->getBody());
1647
1648   // Save the current values for Block, Succ, and continue targets.
1649   SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
1650   SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
1651
1652    // Create a new block to contain the (bottom) of the loop body.
1653    Block = NULL;
1654
1655    // Loop body should end with destructor of Condition variable (if any).
1656    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, F);
1657
1658    if (Stmt* I = F->getInc()) {
1659      // Generate increment code in its own basic block.  This is the target of
1660      // continue statements.
1661      Succ = addStmt(I);
1662    } else {
1663      // No increment code.  Create a special, empty, block that is used as the
1664      // target block for "looping back" to the start of the loop.
1665      assert(Succ == EntryConditionBlock);
1666      Succ = Block ? Block : createBlock();
1667    }
1668
1669    // Finish up the increment (or empty) block if it hasn't been already.
1670    if (Block) {
1671      assert(Block == Succ);
1672      if (badCFG)
1673        return 0;
1674      Block = 0;
1675    }
1676
1677    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
1678
1679    // The starting block for the loop increment is the block that should
1680    // represent the 'loop target' for looping back to the start of the loop.
1681    ContinueJumpTarget.block->setLoopTarget(F);
1682
1683    // If body is not a compound statement create implicit scope
1684    // and add destructors.
1685    if (!isa<CompoundStmt>(F->getBody()))
1686      addLocalScopeAndDtors(F->getBody());
1687
1688    // Now populate the body block, and in the process create new blocks as we
1689    // walk the body of the loop.
1690    CFGBlock* BodyBlock = addStmt(F->getBody());
1691
1692    if (!BodyBlock)
1693      BodyBlock = ContinueJumpTarget.block;//can happen for "for (...;...;...);"
1694    else if (badCFG)
1695      return 0;
1696
1697    // This new body block is a successor to our "exit" condition block.
1698    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
1699  }
1700
1701  // Link up the condition block with the code that follows the loop.  (the
1702  // false branch).
1703  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
1704
1705  // If the loop contains initialization, create a new block for those
1706  // statements.  This block can also contain statements that precede the loop.
1707  if (Stmt* I = F->getInit()) {
1708    Block = createBlock();
1709    return addStmt(I);
1710  }
1711
1712  // There is no loop initialization.  We are thus basically a while loop.
1713  // NULL out Block to force lazy block construction.
1714  Block = NULL;
1715  Succ = EntryConditionBlock;
1716  return EntryConditionBlock;
1717}
1718
1719CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
1720  if (asc.alwaysAdd(*this, M)) {
1721    autoCreateBlock();
1722    appendStmt(Block, M);
1723  }
1724  return Visit(M->getBase());
1725}
1726
1727CFGBlock* CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt* S) {
1728  // Objective-C fast enumeration 'for' statements:
1729  //  http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
1730  //
1731  //  for ( Type newVariable in collection_expression ) { statements }
1732  //
1733  //  becomes:
1734  //
1735  //   prologue:
1736  //     1. collection_expression
1737  //     T. jump to loop_entry
1738  //   loop_entry:
1739  //     1. side-effects of element expression
1740  //     1. ObjCForCollectionStmt [performs binding to newVariable]
1741  //     T. ObjCForCollectionStmt  TB, FB  [jumps to TB if newVariable != nil]
1742  //   TB:
1743  //     statements
1744  //     T. jump to loop_entry
1745  //   FB:
1746  //     what comes after
1747  //
1748  //  and
1749  //
1750  //  Type existingItem;
1751  //  for ( existingItem in expression ) { statements }
1752  //
1753  //  becomes:
1754  //
1755  //   the same with newVariable replaced with existingItem; the binding works
1756  //   the same except that for one ObjCForCollectionStmt::getElement() returns
1757  //   a DeclStmt and the other returns a DeclRefExpr.
1758  //
1759
1760  CFGBlock* LoopSuccessor = 0;
1761
1762  if (Block) {
1763    if (badCFG)
1764      return 0;
1765    LoopSuccessor = Block;
1766    Block = 0;
1767  } else
1768    LoopSuccessor = Succ;
1769
1770  // Build the condition blocks.
1771  CFGBlock* ExitConditionBlock = createBlock(false);
1772  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1773
1774  // Set the terminator for the "exit" condition block.
1775  ExitConditionBlock->setTerminator(S);
1776
1777  // The last statement in the block should be the ObjCForCollectionStmt, which
1778  // performs the actual binding to 'element' and determines if there are any
1779  // more items in the collection.
1780  appendStmt(ExitConditionBlock, S);
1781  Block = ExitConditionBlock;
1782
1783  // Walk the 'element' expression to see if there are any side-effects.  We
1784  // generate new blocks as necesary.  We DON'T add the statement by default to
1785  // the CFG unless it contains control-flow.
1786  EntryConditionBlock = Visit(S->getElement(), AddStmtChoice::NotAlwaysAdd);
1787  if (Block) {
1788    if (badCFG)
1789      return 0;
1790    Block = 0;
1791  }
1792
1793  // The condition block is the implicit successor for the loop body as well as
1794  // any code above the loop.
1795  Succ = EntryConditionBlock;
1796
1797  // Now create the true branch.
1798  {
1799    // Save the current values for Succ, continue and break targets.
1800    SaveAndRestore<CFGBlock*> save_Succ(Succ);
1801    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
1802        save_break(BreakJumpTarget);
1803
1804    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1805    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
1806
1807    CFGBlock* BodyBlock = addStmt(S->getBody());
1808
1809    if (!BodyBlock)
1810      BodyBlock = EntryConditionBlock; // can happen for "for (X in Y) ;"
1811    else if (Block) {
1812      if (badCFG)
1813        return 0;
1814    }
1815
1816    // This new body block is a successor to our "exit" condition block.
1817    addSuccessor(ExitConditionBlock, BodyBlock);
1818  }
1819
1820  // Link up the condition block with the code that follows the loop.
1821  // (the false branch).
1822  addSuccessor(ExitConditionBlock, LoopSuccessor);
1823
1824  // Now create a prologue block to contain the collection expression.
1825  Block = createBlock();
1826  return addStmt(S->getCollection());
1827}
1828
1829CFGBlock* CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt* S) {
1830  // FIXME: Add locking 'primitives' to CFG for @synchronized.
1831
1832  // Inline the body.
1833  CFGBlock *SyncBlock = addStmt(S->getSynchBody());
1834
1835  // The sync body starts its own basic block.  This makes it a little easier
1836  // for diagnostic clients.
1837  if (SyncBlock) {
1838    if (badCFG)
1839      return 0;
1840
1841    Block = 0;
1842    Succ = SyncBlock;
1843  }
1844
1845  // Add the @synchronized to the CFG.
1846  autoCreateBlock();
1847  appendStmt(Block, S);
1848
1849  // Inline the sync expression.
1850  return addStmt(S->getSynchExpr());
1851}
1852
1853CFGBlock* CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt* S) {
1854  // FIXME
1855  return NYS();
1856}
1857
1858CFGBlock* CFGBuilder::VisitWhileStmt(WhileStmt* W) {
1859  CFGBlock* LoopSuccessor = NULL;
1860
1861  // Save local scope position because in case of condition variable ScopePos
1862  // won't be restored when traversing AST.
1863  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1864
1865  // Create local scope for possible condition variable.
1866  // Store scope position for continue statement.
1867  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
1868  if (VarDecl* VD = W->getConditionVariable()) {
1869    addLocalScopeForVarDecl(VD);
1870    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
1871  }
1872
1873  // "while" is a control-flow statement.  Thus we stop processing the current
1874  // block.
1875  if (Block) {
1876    if (badCFG)
1877      return 0;
1878    LoopSuccessor = Block;
1879    Block = 0;
1880  } else
1881    LoopSuccessor = Succ;
1882
1883  // Because of short-circuit evaluation, the condition of the loop can span
1884  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1885  // evaluate the condition.
1886  CFGBlock* ExitConditionBlock = createBlock(false);
1887  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1888
1889  // Set the terminator for the "exit" condition block.
1890  ExitConditionBlock->setTerminator(W);
1891
1892  // Now add the actual condition to the condition block.  Because the condition
1893  // itself may contain control-flow, new blocks may be created.  Thus we update
1894  // "Succ" after adding the condition.
1895  if (Stmt* C = W->getCond()) {
1896    Block = ExitConditionBlock;
1897    EntryConditionBlock = addStmt(C);
1898    // The condition might finish the current 'Block'.
1899    Block = EntryConditionBlock;
1900
1901    // If this block contains a condition variable, add both the condition
1902    // variable and initializer to the CFG.
1903    if (VarDecl *VD = W->getConditionVariable()) {
1904      if (Expr *Init = VD->getInit()) {
1905        autoCreateBlock();
1906        appendStmt(Block, W);
1907        EntryConditionBlock = addStmt(Init);
1908        assert(Block == EntryConditionBlock);
1909      }
1910    }
1911
1912    if (Block) {
1913      if (badCFG)
1914        return 0;
1915    }
1916  }
1917
1918  // The condition block is the implicit successor for the loop body as well as
1919  // any code above the loop.
1920  Succ = EntryConditionBlock;
1921
1922  // See if this is a known constant.
1923  const TryResult& KnownVal = tryEvaluateBool(W->getCond());
1924
1925  // Process the loop body.
1926  {
1927    assert(W->getBody());
1928
1929    // Save the current values for Block, Succ, and continue and break targets
1930    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
1931    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
1932        save_break(BreakJumpTarget);
1933
1934    // Create an empty block to represent the transition block for looping back
1935    // to the head of the loop.
1936    Block = 0;
1937    assert(Succ == EntryConditionBlock);
1938    Succ = createBlock();
1939    Succ->setLoopTarget(W);
1940    ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
1941
1942    // All breaks should go to the code following the loop.
1943    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1944
1945    // NULL out Block to force lazy instantiation of blocks for the body.
1946    Block = NULL;
1947
1948    // Loop body should end with destructor of Condition variable (if any).
1949    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
1950
1951    // If body is not a compound statement create implicit scope
1952    // and add destructors.
1953    if (!isa<CompoundStmt>(W->getBody()))
1954      addLocalScopeAndDtors(W->getBody());
1955
1956    // Create the body.  The returned block is the entry to the loop body.
1957    CFGBlock* BodyBlock = addStmt(W->getBody());
1958
1959    if (!BodyBlock)
1960      BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;"
1961    else if (Block) {
1962      if (badCFG)
1963        return 0;
1964    }
1965
1966    // Add the loop body entry as a successor to the condition.
1967    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
1968  }
1969
1970  // Link up the condition block with the code that follows the loop.  (the
1971  // false branch).
1972  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
1973
1974  // There can be no more statements in the condition block since we loop back
1975  // to this block.  NULL out Block to force lazy creation of another block.
1976  Block = NULL;
1977
1978  // Return the condition block, which is the dominating block for the loop.
1979  Succ = EntryConditionBlock;
1980  return EntryConditionBlock;
1981}
1982
1983
1984CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt* S) {
1985  // FIXME: For now we pretend that @catch and the code it contains does not
1986  //  exit.
1987  return Block;
1988}
1989
1990CFGBlock* CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt* S) {
1991  // FIXME: This isn't complete.  We basically treat @throw like a return
1992  //  statement.
1993
1994  // If we were in the middle of a block we stop processing that block.
1995  if (badCFG)
1996    return 0;
1997
1998  // Create the new block.
1999  Block = createBlock(false);
2000
2001  // The Exit block is the only successor.
2002  addSuccessor(Block, &cfg->getExit());
2003
2004  // Add the statement to the block.  This may create new blocks if S contains
2005  // control-flow (short-circuit operations).
2006  return VisitStmt(S, AddStmtChoice::AlwaysAdd);
2007}
2008
2009CFGBlock* CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr* T) {
2010  // If we were in the middle of a block we stop processing that block.
2011  if (badCFG)
2012    return 0;
2013
2014  // Create the new block.
2015  Block = createBlock(false);
2016
2017  if (TryTerminatedBlock)
2018    // The current try statement is the only successor.
2019    addSuccessor(Block, TryTerminatedBlock);
2020  else
2021    // otherwise the Exit block is the only successor.
2022    addSuccessor(Block, &cfg->getExit());
2023
2024  // Add the statement to the block.  This may create new blocks if S contains
2025  // control-flow (short-circuit operations).
2026  return VisitStmt(T, AddStmtChoice::AlwaysAdd);
2027}
2028
2029CFGBlock *CFGBuilder::VisitDoStmt(DoStmt* D) {
2030  CFGBlock* LoopSuccessor = NULL;
2031
2032  // "do...while" is a control-flow statement.  Thus we stop processing the
2033  // current block.
2034  if (Block) {
2035    if (badCFG)
2036      return 0;
2037    LoopSuccessor = Block;
2038  } else
2039    LoopSuccessor = Succ;
2040
2041  // Because of short-circuit evaluation, the condition of the loop can span
2042  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2043  // evaluate the condition.
2044  CFGBlock* ExitConditionBlock = createBlock(false);
2045  CFGBlock* EntryConditionBlock = ExitConditionBlock;
2046
2047  // Set the terminator for the "exit" condition block.
2048  ExitConditionBlock->setTerminator(D);
2049
2050  // Now add the actual condition to the condition block.  Because the condition
2051  // itself may contain control-flow, new blocks may be created.
2052  if (Stmt* C = D->getCond()) {
2053    Block = ExitConditionBlock;
2054    EntryConditionBlock = addStmt(C);
2055    if (Block) {
2056      if (badCFG)
2057        return 0;
2058    }
2059  }
2060
2061  // The condition block is the implicit successor for the loop body.
2062  Succ = EntryConditionBlock;
2063
2064  // See if this is a known constant.
2065  const TryResult &KnownVal = tryEvaluateBool(D->getCond());
2066
2067  // Process the loop body.
2068  CFGBlock* BodyBlock = NULL;
2069  {
2070    assert(D->getBody());
2071
2072    // Save the current values for Block, Succ, and continue and break targets
2073    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2074    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2075        save_break(BreakJumpTarget);
2076
2077    // All continues within this loop should go to the condition block
2078    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
2079
2080    // All breaks should go to the code following the loop.
2081    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2082
2083    // NULL out Block to force lazy instantiation of blocks for the body.
2084    Block = NULL;
2085
2086    // If body is not a compound statement create implicit scope
2087    // and add destructors.
2088    if (!isa<CompoundStmt>(D->getBody()))
2089      addLocalScopeAndDtors(D->getBody());
2090
2091    // Create the body.  The returned block is the entry to the loop body.
2092    BodyBlock = addStmt(D->getBody());
2093
2094    if (!BodyBlock)
2095      BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
2096    else if (Block) {
2097      if (badCFG)
2098        return 0;
2099    }
2100
2101    if (!KnownVal.isFalse()) {
2102      // Add an intermediate block between the BodyBlock and the
2103      // ExitConditionBlock to represent the "loop back" transition.  Create an
2104      // empty block to represent the transition block for looping back to the
2105      // head of the loop.
2106      // FIXME: Can we do this more efficiently without adding another block?
2107      Block = NULL;
2108      Succ = BodyBlock;
2109      CFGBlock *LoopBackBlock = createBlock();
2110      LoopBackBlock->setLoopTarget(D);
2111
2112      // Add the loop body entry as a successor to the condition.
2113      addSuccessor(ExitConditionBlock, LoopBackBlock);
2114    }
2115    else
2116      addSuccessor(ExitConditionBlock, NULL);
2117  }
2118
2119  // Link up the condition block with the code that follows the loop.
2120  // (the false branch).
2121  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2122
2123  // There can be no more statements in the body block(s) since we loop back to
2124  // the body.  NULL out Block to force lazy creation of another block.
2125  Block = NULL;
2126
2127  // Return the loop body, which is the dominating block for the loop.
2128  Succ = BodyBlock;
2129  return BodyBlock;
2130}
2131
2132CFGBlock* CFGBuilder::VisitContinueStmt(ContinueStmt* C) {
2133  // "continue" is a control-flow statement.  Thus we stop processing the
2134  // current block.
2135  if (badCFG)
2136    return 0;
2137
2138  // Now create a new block that ends with the continue statement.
2139  Block = createBlock(false);
2140  Block->setTerminator(C);
2141
2142  // If there is no target for the continue, then we are looking at an
2143  // incomplete AST.  This means the CFG cannot be constructed.
2144  if (ContinueJumpTarget.block) {
2145    addAutomaticObjDtors(ScopePos, ContinueJumpTarget.scopePosition, C);
2146    addSuccessor(Block, ContinueJumpTarget.block);
2147  } else
2148    badCFG = true;
2149
2150  return Block;
2151}
2152
2153CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
2154                                                    AddStmtChoice asc) {
2155
2156  if (asc.alwaysAdd(*this, E)) {
2157    autoCreateBlock();
2158    appendStmt(Block, E);
2159  }
2160
2161  // VLA types have expressions that must be evaluated.
2162  if (E->isArgumentType()) {
2163    for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr());
2164         VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
2165      addStmt(VA->getSizeExpr());
2166  }
2167
2168  return Block;
2169}
2170
2171/// VisitStmtExpr - Utility method to handle (nested) statement
2172///  expressions (a GCC extension).
2173CFGBlock* CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
2174  if (asc.alwaysAdd(*this, SE)) {
2175    autoCreateBlock();
2176    appendStmt(Block, SE);
2177  }
2178  return VisitCompoundStmt(SE->getSubStmt());
2179}
2180
2181CFGBlock* CFGBuilder::VisitSwitchStmt(SwitchStmt* Terminator) {
2182  // "switch" is a control-flow statement.  Thus we stop processing the current
2183  // block.
2184  CFGBlock* SwitchSuccessor = NULL;
2185
2186  // Save local scope position because in case of condition variable ScopePos
2187  // won't be restored when traversing AST.
2188  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2189
2190  // Create local scope for possible condition variable.
2191  // Store scope position. Add implicit destructor.
2192  if (VarDecl* VD = Terminator->getConditionVariable()) {
2193    LocalScope::const_iterator SwitchBeginScopePos = ScopePos;
2194    addLocalScopeForVarDecl(VD);
2195    addAutomaticObjDtors(ScopePos, SwitchBeginScopePos, Terminator);
2196  }
2197
2198  if (Block) {
2199    if (badCFG)
2200      return 0;
2201    SwitchSuccessor = Block;
2202  } else SwitchSuccessor = Succ;
2203
2204  // Save the current "switch" context.
2205  SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
2206                            save_default(DefaultCaseBlock);
2207  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2208
2209  // Set the "default" case to be the block after the switch statement.  If the
2210  // switch statement contains a "default:", this value will be overwritten with
2211  // the block for that code.
2212  DefaultCaseBlock = SwitchSuccessor;
2213
2214  // Create a new block that will contain the switch statement.
2215  SwitchTerminatedBlock = createBlock(false);
2216
2217  // Now process the switch body.  The code after the switch is the implicit
2218  // successor.
2219  Succ = SwitchSuccessor;
2220  BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
2221
2222  // When visiting the body, the case statements should automatically get linked
2223  // up to the switch.  We also don't keep a pointer to the body, since all
2224  // control-flow from the switch goes to case/default statements.
2225  assert(Terminator->getBody() && "switch must contain a non-NULL body");
2226  Block = NULL;
2227
2228  // For pruning unreachable case statements, save the current state
2229  // for tracking the condition value.
2230  SaveAndRestore<bool> save_switchExclusivelyCovered(switchExclusivelyCovered,
2231                                                     false);
2232
2233  // Determine if the switch condition can be explicitly evaluated.
2234  assert(Terminator->getCond() && "switch condition must be non-NULL");
2235  Expr::EvalResult result;
2236  bool b = tryEvaluate(Terminator->getCond(), result);
2237  SaveAndRestore<Expr::EvalResult*> save_switchCond(switchCond,
2238                                                    b ? &result : 0);
2239
2240  // If body is not a compound statement create implicit scope
2241  // and add destructors.
2242  if (!isa<CompoundStmt>(Terminator->getBody()))
2243    addLocalScopeAndDtors(Terminator->getBody());
2244
2245  addStmt(Terminator->getBody());
2246  if (Block) {
2247    if (badCFG)
2248      return 0;
2249  }
2250
2251  // If we have no "default:" case, the default transition is to the code
2252  // following the switch body.  Moreover, take into account if all the
2253  // cases of a switch are covered (e.g., switching on an enum value).
2254  addSuccessor(SwitchTerminatedBlock,
2255               switchExclusivelyCovered || Terminator->isAllEnumCasesCovered()
2256               ? 0 : DefaultCaseBlock);
2257
2258  // Add the terminator and condition in the switch block.
2259  SwitchTerminatedBlock->setTerminator(Terminator);
2260  Block = SwitchTerminatedBlock;
2261  Block = addStmt(Terminator->getCond());
2262
2263  // Finally, if the SwitchStmt contains a condition variable, add both the
2264  // SwitchStmt and the condition variable initialization to the CFG.
2265  if (VarDecl *VD = Terminator->getConditionVariable()) {
2266    if (Expr *Init = VD->getInit()) {
2267      autoCreateBlock();
2268      appendStmt(Block, Terminator);
2269      addStmt(Init);
2270    }
2271  }
2272
2273  return Block;
2274}
2275
2276static bool shouldAddCase(bool &switchExclusivelyCovered,
2277                          const Expr::EvalResult *switchCond,
2278                          const CaseStmt *CS,
2279                          ASTContext &Ctx) {
2280  if (!switchCond)
2281    return true;
2282
2283  bool addCase = false;
2284
2285  if (!switchExclusivelyCovered) {
2286    if (switchCond->Val.isInt()) {
2287      // Evaluate the LHS of the case value.
2288      Expr::EvalResult V1;
2289      CS->getLHS()->Evaluate(V1, Ctx);
2290      assert(V1.Val.isInt());
2291      const llvm::APSInt &condInt = switchCond->Val.getInt();
2292      const llvm::APSInt &lhsInt = V1.Val.getInt();
2293
2294      if (condInt == lhsInt) {
2295        addCase = true;
2296        switchExclusivelyCovered = true;
2297      }
2298      else if (condInt < lhsInt) {
2299        if (const Expr *RHS = CS->getRHS()) {
2300          // Evaluate the RHS of the case value.
2301          Expr::EvalResult V2;
2302          RHS->Evaluate(V2, Ctx);
2303          assert(V2.Val.isInt());
2304          if (V2.Val.getInt() <= condInt) {
2305            addCase = true;
2306            switchExclusivelyCovered = true;
2307          }
2308        }
2309      }
2310    }
2311    else
2312      addCase = true;
2313  }
2314  return addCase;
2315}
2316
2317CFGBlock* CFGBuilder::VisitCaseStmt(CaseStmt* CS) {
2318  // CaseStmts are essentially labels, so they are the first statement in a
2319  // block.
2320  CFGBlock *TopBlock = 0, *LastBlock = 0;
2321
2322  if (Stmt *Sub = CS->getSubStmt()) {
2323    // For deeply nested chains of CaseStmts, instead of doing a recursion
2324    // (which can blow out the stack), manually unroll and create blocks
2325    // along the way.
2326    while (isa<CaseStmt>(Sub)) {
2327      CFGBlock *currentBlock = createBlock(false);
2328      currentBlock->setLabel(CS);
2329
2330      if (TopBlock)
2331        addSuccessor(LastBlock, currentBlock);
2332      else
2333        TopBlock = currentBlock;
2334
2335      addSuccessor(SwitchTerminatedBlock,
2336                   shouldAddCase(switchExclusivelyCovered, switchCond,
2337                                 CS, *Context)
2338                   ? currentBlock : 0);
2339
2340      LastBlock = currentBlock;
2341      CS = cast<CaseStmt>(Sub);
2342      Sub = CS->getSubStmt();
2343    }
2344
2345    addStmt(Sub);
2346  }
2347
2348  CFGBlock* CaseBlock = Block;
2349  if (!CaseBlock)
2350    CaseBlock = createBlock();
2351
2352  // Cases statements partition blocks, so this is the top of the basic block we
2353  // were processing (the "case XXX:" is the label).
2354  CaseBlock->setLabel(CS);
2355
2356  if (badCFG)
2357    return 0;
2358
2359  // Add this block to the list of successors for the block with the switch
2360  // statement.
2361  assert(SwitchTerminatedBlock);
2362  addSuccessor(SwitchTerminatedBlock,
2363               shouldAddCase(switchExclusivelyCovered, switchCond,
2364                             CS, *Context)
2365               ? CaseBlock : 0);
2366
2367  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2368  Block = NULL;
2369
2370  if (TopBlock) {
2371    addSuccessor(LastBlock, CaseBlock);
2372    Succ = TopBlock;
2373  } else {
2374    // This block is now the implicit successor of other blocks.
2375    Succ = CaseBlock;
2376  }
2377
2378  return Succ;
2379}
2380
2381CFGBlock* CFGBuilder::VisitDefaultStmt(DefaultStmt* Terminator) {
2382  if (Terminator->getSubStmt())
2383    addStmt(Terminator->getSubStmt());
2384
2385  DefaultCaseBlock = Block;
2386
2387  if (!DefaultCaseBlock)
2388    DefaultCaseBlock = createBlock();
2389
2390  // Default statements partition blocks, so this is the top of the basic block
2391  // we were processing (the "default:" is the label).
2392  DefaultCaseBlock->setLabel(Terminator);
2393
2394  if (badCFG)
2395    return 0;
2396
2397  // Unlike case statements, we don't add the default block to the successors
2398  // for the switch statement immediately.  This is done when we finish
2399  // processing the switch statement.  This allows for the default case
2400  // (including a fall-through to the code after the switch statement) to always
2401  // be the last successor of a switch-terminated block.
2402
2403  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2404  Block = NULL;
2405
2406  // This block is now the implicit successor of other blocks.
2407  Succ = DefaultCaseBlock;
2408
2409  return DefaultCaseBlock;
2410}
2411
2412CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
2413  // "try"/"catch" is a control-flow statement.  Thus we stop processing the
2414  // current block.
2415  CFGBlock* TrySuccessor = NULL;
2416
2417  if (Block) {
2418    if (badCFG)
2419      return 0;
2420    TrySuccessor = Block;
2421  } else TrySuccessor = Succ;
2422
2423  CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
2424
2425  // Create a new block that will contain the try statement.
2426  CFGBlock *NewTryTerminatedBlock = createBlock(false);
2427  // Add the terminator in the try block.
2428  NewTryTerminatedBlock->setTerminator(Terminator);
2429
2430  bool HasCatchAll = false;
2431  for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
2432    // The code after the try is the implicit successor.
2433    Succ = TrySuccessor;
2434    CXXCatchStmt *CS = Terminator->getHandler(h);
2435    if (CS->getExceptionDecl() == 0) {
2436      HasCatchAll = true;
2437    }
2438    Block = NULL;
2439    CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
2440    if (CatchBlock == 0)
2441      return 0;
2442    // Add this block to the list of successors for the block with the try
2443    // statement.
2444    addSuccessor(NewTryTerminatedBlock, CatchBlock);
2445  }
2446  if (!HasCatchAll) {
2447    if (PrevTryTerminatedBlock)
2448      addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
2449    else
2450      addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
2451  }
2452
2453  // The code after the try is the implicit successor.
2454  Succ = TrySuccessor;
2455
2456  // Save the current "try" context.
2457  SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock);
2458  TryTerminatedBlock = NewTryTerminatedBlock;
2459
2460  assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
2461  Block = NULL;
2462  Block = addStmt(Terminator->getTryBlock());
2463  return Block;
2464}
2465
2466CFGBlock* CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt* CS) {
2467  // CXXCatchStmt are treated like labels, so they are the first statement in a
2468  // block.
2469
2470  // Save local scope position because in case of exception variable ScopePos
2471  // won't be restored when traversing AST.
2472  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2473
2474  // Create local scope for possible exception variable.
2475  // Store scope position. Add implicit destructor.
2476  if (VarDecl* VD = CS->getExceptionDecl()) {
2477    LocalScope::const_iterator BeginScopePos = ScopePos;
2478    addLocalScopeForVarDecl(VD);
2479    addAutomaticObjDtors(ScopePos, BeginScopePos, CS);
2480  }
2481
2482  if (CS->getHandlerBlock())
2483    addStmt(CS->getHandlerBlock());
2484
2485  CFGBlock* CatchBlock = Block;
2486  if (!CatchBlock)
2487    CatchBlock = createBlock();
2488
2489  CatchBlock->setLabel(CS);
2490
2491  if (badCFG)
2492    return 0;
2493
2494  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2495  Block = NULL;
2496
2497  return CatchBlock;
2498}
2499
2500CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E,
2501    AddStmtChoice asc) {
2502  if (BuildOpts.AddImplicitDtors) {
2503    // If adding implicit destructors visit the full expression for adding
2504    // destructors of temporaries.
2505    VisitForTemporaryDtors(E->getSubExpr());
2506
2507    // Full expression has to be added as CFGStmt so it will be sequenced
2508    // before destructors of it's temporaries.
2509    asc = asc.withAlwaysAdd(true);
2510  }
2511  return Visit(E->getSubExpr(), asc);
2512}
2513
2514CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
2515                                                AddStmtChoice asc) {
2516  if (asc.alwaysAdd(*this, E)) {
2517    autoCreateBlock();
2518    appendStmt(Block, E);
2519
2520    // We do not want to propagate the AlwaysAdd property.
2521    asc = asc.withAlwaysAdd(false);
2522  }
2523  return Visit(E->getSubExpr(), asc);
2524}
2525
2526CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C,
2527                                            AddStmtChoice asc) {
2528  autoCreateBlock();
2529  if (!C->isElidable())
2530    appendStmt(Block, C);
2531
2532  return VisitChildren(C);
2533}
2534
2535CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
2536                                                 AddStmtChoice asc) {
2537  if (asc.alwaysAdd(*this, E)) {
2538    autoCreateBlock();
2539    appendStmt(Block, E);
2540    // We do not want to propagate the AlwaysAdd property.
2541    asc = asc.withAlwaysAdd(false);
2542  }
2543  return Visit(E->getSubExpr(), asc);
2544}
2545
2546CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
2547                                                  AddStmtChoice asc) {
2548  autoCreateBlock();
2549  appendStmt(Block, C);
2550  return VisitChildren(C);
2551}
2552
2553CFGBlock *CFGBuilder::VisitCXXMemberCallExpr(CXXMemberCallExpr *C,
2554                                             AddStmtChoice asc) {
2555  autoCreateBlock();
2556  appendStmt(Block, C);
2557  return VisitChildren(C);
2558}
2559
2560CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E,
2561                                            AddStmtChoice asc) {
2562  if (asc.alwaysAdd(*this, E)) {
2563    autoCreateBlock();
2564    appendStmt(Block, E);
2565  }
2566  return Visit(E->getSubExpr(), AddStmtChoice());
2567}
2568
2569CFGBlock* CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt* I) {
2570  // Lazily create the indirect-goto dispatch block if there isn't one already.
2571  CFGBlock* IBlock = cfg->getIndirectGotoBlock();
2572
2573  if (!IBlock) {
2574    IBlock = createBlock(false);
2575    cfg->setIndirectGotoBlock(IBlock);
2576  }
2577
2578  // IndirectGoto is a control-flow statement.  Thus we stop processing the
2579  // current block and create a new one.
2580  if (badCFG)
2581    return 0;
2582
2583  Block = createBlock(false);
2584  Block->setTerminator(I);
2585  addSuccessor(Block, IBlock);
2586  return addStmt(I->getTarget());
2587}
2588
2589CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool BindToTemporary) {
2590tryAgain:
2591  if (!E) {
2592    badCFG = true;
2593    return NULL;
2594  }
2595  switch (E->getStmtClass()) {
2596    default:
2597      return VisitChildrenForTemporaryDtors(E);
2598
2599    case Stmt::BinaryOperatorClass:
2600      return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E));
2601
2602    case Stmt::CXXBindTemporaryExprClass:
2603      return VisitCXXBindTemporaryExprForTemporaryDtors(
2604          cast<CXXBindTemporaryExpr>(E), BindToTemporary);
2605
2606    case Stmt::BinaryConditionalOperatorClass:
2607    case Stmt::ConditionalOperatorClass:
2608      return VisitConditionalOperatorForTemporaryDtors(
2609          cast<AbstractConditionalOperator>(E), BindToTemporary);
2610
2611    case Stmt::ImplicitCastExprClass:
2612      // For implicit cast we want BindToTemporary to be passed further.
2613      E = cast<CastExpr>(E)->getSubExpr();
2614      goto tryAgain;
2615
2616    case Stmt::ParenExprClass:
2617      E = cast<ParenExpr>(E)->getSubExpr();
2618      goto tryAgain;
2619  }
2620}
2621
2622CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E) {
2623  // When visiting children for destructors we want to visit them in reverse
2624  // order. Because there's no reverse iterator for children must to reverse
2625  // them in helper vector.
2626  typedef llvm::SmallVector<Stmt *, 4> ChildrenVect;
2627  ChildrenVect ChildrenRev;
2628  for (Stmt::child_range I = E->children(); I; ++I) {
2629    if (*I) ChildrenRev.push_back(*I);
2630  }
2631
2632  CFGBlock *B = Block;
2633  for (ChildrenVect::reverse_iterator I = ChildrenRev.rbegin(),
2634      L = ChildrenRev.rend(); I != L; ++I) {
2635    if (CFGBlock *R = VisitForTemporaryDtors(*I))
2636      B = R;
2637  }
2638  return B;
2639}
2640
2641CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E) {
2642  if (E->isLogicalOp()) {
2643    // Destructors for temporaries in LHS expression should be called after
2644    // those for RHS expression. Even if this will unnecessarily create a block,
2645    // this block will be used at least by the full expression.
2646    autoCreateBlock();
2647    CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getLHS());
2648    if (badCFG)
2649      return NULL;
2650
2651    Succ = ConfluenceBlock;
2652    Block = NULL;
2653    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
2654
2655    if (RHSBlock) {
2656      if (badCFG)
2657        return NULL;
2658
2659      // If RHS expression did produce destructors we need to connect created
2660      // blocks to CFG in same manner as for binary operator itself.
2661      CFGBlock *LHSBlock = createBlock(false);
2662      LHSBlock->setTerminator(CFGTerminator(E, true));
2663
2664      // For binary operator LHS block is before RHS in list of predecessors
2665      // of ConfluenceBlock.
2666      std::reverse(ConfluenceBlock->pred_begin(),
2667          ConfluenceBlock->pred_end());
2668
2669      // See if this is a known constant.
2670      TryResult KnownVal = tryEvaluateBool(E->getLHS());
2671      if (KnownVal.isKnown() && (E->getOpcode() == BO_LOr))
2672        KnownVal.negate();
2673
2674      // Link LHSBlock with RHSBlock exactly the same way as for binary operator
2675      // itself.
2676      if (E->getOpcode() == BO_LOr) {
2677        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
2678        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
2679      } else {
2680        assert (E->getOpcode() == BO_LAnd);
2681        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
2682        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
2683      }
2684
2685      Block = LHSBlock;
2686      return LHSBlock;
2687    }
2688
2689    Block = ConfluenceBlock;
2690    return ConfluenceBlock;
2691  }
2692
2693  if (E->isAssignmentOp()) {
2694    // For assignment operator (=) LHS expression is visited
2695    // before RHS expression. For destructors visit them in reverse order.
2696    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
2697    CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
2698    return LHSBlock ? LHSBlock : RHSBlock;
2699  }
2700
2701  // For any other binary operator RHS expression is visited before
2702  // LHS expression (order of children). For destructors visit them in reverse
2703  // order.
2704  CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
2705  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
2706  return RHSBlock ? RHSBlock : LHSBlock;
2707}
2708
2709CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
2710    CXXBindTemporaryExpr *E, bool BindToTemporary) {
2711  // First add destructors for temporaries in subexpression.
2712  CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr());
2713  if (!BindToTemporary) {
2714    // If lifetime of temporary is not prolonged (by assigning to constant
2715    // reference) add destructor for it.
2716    autoCreateBlock();
2717    appendTemporaryDtor(Block, E);
2718    B = Block;
2719  }
2720  return B;
2721}
2722
2723CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
2724    AbstractConditionalOperator *E, bool BindToTemporary) {
2725  // First add destructors for condition expression.  Even if this will
2726  // unnecessarily create a block, this block will be used at least by the full
2727  // expression.
2728  autoCreateBlock();
2729  CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getCond());
2730  if (badCFG)
2731    return NULL;
2732  if (BinaryConditionalOperator *BCO
2733        = dyn_cast<BinaryConditionalOperator>(E)) {
2734    ConfluenceBlock = VisitForTemporaryDtors(BCO->getCommon());
2735    if (badCFG)
2736      return NULL;
2737  }
2738
2739  // Try to add block with destructors for LHS expression.
2740  CFGBlock *LHSBlock = NULL;
2741  Succ = ConfluenceBlock;
2742  Block = NULL;
2743  LHSBlock = VisitForTemporaryDtors(E->getTrueExpr(), BindToTemporary);
2744  if (badCFG)
2745    return NULL;
2746
2747  // Try to add block with destructors for RHS expression;
2748  Succ = ConfluenceBlock;
2749  Block = NULL;
2750  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getFalseExpr(),
2751                                              BindToTemporary);
2752  if (badCFG)
2753    return NULL;
2754
2755  if (!RHSBlock && !LHSBlock) {
2756    // If neither LHS nor RHS expression had temporaries to destroy don't create
2757    // more blocks.
2758    Block = ConfluenceBlock;
2759    return Block;
2760  }
2761
2762  Block = createBlock(false);
2763  Block->setTerminator(CFGTerminator(E, true));
2764
2765  // See if this is a known constant.
2766  const TryResult &KnownVal = tryEvaluateBool(E->getCond());
2767
2768  if (LHSBlock) {
2769    addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
2770  } else if (KnownVal.isFalse()) {
2771    addSuccessor(Block, NULL);
2772  } else {
2773    addSuccessor(Block, ConfluenceBlock);
2774    std::reverse(ConfluenceBlock->pred_begin(), ConfluenceBlock->pred_end());
2775  }
2776
2777  if (!RHSBlock)
2778    RHSBlock = ConfluenceBlock;
2779  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
2780
2781  return Block;
2782}
2783
2784} // end anonymous namespace
2785
2786/// createBlock - Constructs and adds a new CFGBlock to the CFG.  The block has
2787///  no successors or predecessors.  If this is the first block created in the
2788///  CFG, it is automatically set to be the Entry and Exit of the CFG.
2789CFGBlock* CFG::createBlock() {
2790  bool first_block = begin() == end();
2791
2792  // Create the block.
2793  CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
2794  new (Mem) CFGBlock(NumBlockIDs++, BlkBVC);
2795  Blocks.push_back(Mem, BlkBVC);
2796
2797  // If this is the first block, set it as the Entry and Exit.
2798  if (first_block)
2799    Entry = Exit = &back();
2800
2801  // Return the block.
2802  return &back();
2803}
2804
2805/// buildCFG - Constructs a CFG from an AST.  Ownership of the returned
2806///  CFG is returned to the caller.
2807CFG* CFG::buildCFG(const Decl *D, Stmt* Statement, ASTContext *C,
2808    const BuildOptions &BO) {
2809  CFGBuilder Builder(C, BO);
2810  return Builder.buildCFG(D, Statement);
2811}
2812
2813const CXXDestructorDecl *
2814CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const {
2815  switch (getKind()) {
2816    case CFGElement::Invalid:
2817    case CFGElement::Statement:
2818    case CFGElement::Initializer:
2819      llvm_unreachable("getDestructorDecl should only be used with "
2820                       "ImplicitDtors");
2821    case CFGElement::AutomaticObjectDtor: {
2822      const VarDecl *var = cast<CFGAutomaticObjDtor>(this)->getVarDecl();
2823      QualType ty = var->getType();
2824      ty = ty.getNonReferenceType();
2825      if (const ArrayType *arrayType = astContext.getAsArrayType(ty)) {
2826        ty = arrayType->getElementType();
2827      }
2828      const RecordType *recordType = ty->getAs<RecordType>();
2829      const CXXRecordDecl *classDecl =
2830      cast<CXXRecordDecl>(recordType->getDecl());
2831      return classDecl->getDestructor();
2832    }
2833    case CFGElement::TemporaryDtor: {
2834      const CXXBindTemporaryExpr *bindExpr =
2835        cast<CFGTemporaryDtor>(this)->getBindTemporaryExpr();
2836      const CXXTemporary *temp = bindExpr->getTemporary();
2837      return temp->getDestructor();
2838    }
2839    case CFGElement::BaseDtor:
2840    case CFGElement::MemberDtor:
2841
2842      // Not yet supported.
2843      return 0;
2844  }
2845  llvm_unreachable("getKind() returned bogus value");
2846  return 0;
2847}
2848
2849bool CFGImplicitDtor::isNoReturn(ASTContext &astContext) const {
2850  if (const CXXDestructorDecl *cdecl = getDestructorDecl(astContext)) {
2851    QualType ty = cdecl->getType();
2852    return cast<FunctionType>(ty)->getNoReturnAttr();
2853  }
2854  return false;
2855}
2856
2857//===----------------------------------------------------------------------===//
2858// CFG: Queries for BlkExprs.
2859//===----------------------------------------------------------------------===//
2860
2861namespace {
2862  typedef llvm::DenseMap<const Stmt*,unsigned> BlkExprMapTy;
2863}
2864
2865static void FindSubExprAssignments(Stmt *S,
2866                                   llvm::SmallPtrSet<Expr*,50>& Set) {
2867  if (!S)
2868    return;
2869
2870  for (Stmt::child_range I = S->children(); I; ++I) {
2871    Stmt *child = *I;
2872    if (!child)
2873      continue;
2874
2875    if (BinaryOperator* B = dyn_cast<BinaryOperator>(child))
2876      if (B->isAssignmentOp()) Set.insert(B);
2877
2878    FindSubExprAssignments(child, Set);
2879  }
2880}
2881
2882static BlkExprMapTy* PopulateBlkExprMap(CFG& cfg) {
2883  BlkExprMapTy* M = new BlkExprMapTy();
2884
2885  // Look for assignments that are used as subexpressions.  These are the only
2886  // assignments that we want to *possibly* register as a block-level
2887  // expression.  Basically, if an assignment occurs both in a subexpression and
2888  // at the block-level, it is a block-level expression.
2889  llvm::SmallPtrSet<Expr*,50> SubExprAssignments;
2890
2891  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I)
2892    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI)
2893      if (const CFGStmt *S = BI->getAs<CFGStmt>())
2894        FindSubExprAssignments(S->getStmt(), SubExprAssignments);
2895
2896  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I) {
2897
2898    // Iterate over the statements again on identify the Expr* and Stmt* at the
2899    // block-level that are block-level expressions.
2900
2901    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI) {
2902      const CFGStmt *CS = BI->getAs<CFGStmt>();
2903      if (!CS)
2904        continue;
2905      if (Expr* Exp = dyn_cast<Expr>(CS->getStmt())) {
2906
2907        if (BinaryOperator* B = dyn_cast<BinaryOperator>(Exp)) {
2908          // Assignment expressions that are not nested within another
2909          // expression are really "statements" whose value is never used by
2910          // another expression.
2911          if (B->isAssignmentOp() && !SubExprAssignments.count(Exp))
2912            continue;
2913        } else if (const StmtExpr* Terminator = dyn_cast<StmtExpr>(Exp)) {
2914          // Special handling for statement expressions.  The last statement in
2915          // the statement expression is also a block-level expr.
2916          const CompoundStmt* C = Terminator->getSubStmt();
2917          if (!C->body_empty()) {
2918            unsigned x = M->size();
2919            (*M)[C->body_back()] = x;
2920          }
2921        }
2922
2923        unsigned x = M->size();
2924        (*M)[Exp] = x;
2925      }
2926    }
2927
2928    // Look at terminators.  The condition is a block-level expression.
2929
2930    Stmt* S = (*I)->getTerminatorCondition();
2931
2932    if (S && M->find(S) == M->end()) {
2933        unsigned x = M->size();
2934        (*M)[S] = x;
2935    }
2936  }
2937
2938  return M;
2939}
2940
2941CFG::BlkExprNumTy CFG::getBlkExprNum(const Stmt* S) {
2942  assert(S != NULL);
2943  if (!BlkExprMap) { BlkExprMap = (void*) PopulateBlkExprMap(*this); }
2944
2945  BlkExprMapTy* M = reinterpret_cast<BlkExprMapTy*>(BlkExprMap);
2946  BlkExprMapTy::iterator I = M->find(S);
2947  return (I == M->end()) ? CFG::BlkExprNumTy() : CFG::BlkExprNumTy(I->second);
2948}
2949
2950unsigned CFG::getNumBlkExprs() {
2951  if (const BlkExprMapTy* M = reinterpret_cast<const BlkExprMapTy*>(BlkExprMap))
2952    return M->size();
2953
2954  // We assume callers interested in the number of BlkExprs will want
2955  // the map constructed if it doesn't already exist.
2956  BlkExprMap = (void*) PopulateBlkExprMap(*this);
2957  return reinterpret_cast<BlkExprMapTy*>(BlkExprMap)->size();
2958}
2959
2960//===----------------------------------------------------------------------===//
2961// Filtered walking of the CFG.
2962//===----------------------------------------------------------------------===//
2963
2964bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
2965        const CFGBlock *From, const CFGBlock *To) {
2966
2967  if (To && F.IgnoreDefaultsWithCoveredEnums) {
2968    // If the 'To' has no label or is labeled but the label isn't a
2969    // CaseStmt then filter this edge.
2970    if (const SwitchStmt *S =
2971        dyn_cast_or_null<SwitchStmt>(From->getTerminator().getStmt())) {
2972      if (S->isAllEnumCasesCovered()) {
2973        const Stmt *L = To->getLabel();
2974        if (!L || !isa<CaseStmt>(L))
2975          return true;
2976      }
2977    }
2978  }
2979
2980  return false;
2981}
2982
2983//===----------------------------------------------------------------------===//
2984// Cleanup: CFG dstor.
2985//===----------------------------------------------------------------------===//
2986
2987CFG::~CFG() {
2988  delete reinterpret_cast<const BlkExprMapTy*>(BlkExprMap);
2989}
2990
2991//===----------------------------------------------------------------------===//
2992// CFG pretty printing
2993//===----------------------------------------------------------------------===//
2994
2995namespace {
2996
2997class StmtPrinterHelper : public PrinterHelper  {
2998  typedef llvm::DenseMap<const Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
2999  typedef llvm::DenseMap<const Decl*,std::pair<unsigned,unsigned> > DeclMapTy;
3000  StmtMapTy StmtMap;
3001  DeclMapTy DeclMap;
3002  signed currentBlock;
3003  unsigned currentStmt;
3004  const LangOptions &LangOpts;
3005public:
3006
3007  StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
3008    : currentBlock(0), currentStmt(0), LangOpts(LO)
3009  {
3010    for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
3011      unsigned j = 1;
3012      for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
3013           BI != BEnd; ++BI, ++j ) {
3014        if (const CFGStmt *SE = BI->getAs<CFGStmt>()) {
3015          const Stmt *stmt= SE->getStmt();
3016          std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
3017          StmtMap[stmt] = P;
3018
3019          switch (stmt->getStmtClass()) {
3020            case Stmt::DeclStmtClass:
3021                DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P;
3022                break;
3023            case Stmt::IfStmtClass: {
3024              const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable();
3025              if (var)
3026                DeclMap[var] = P;
3027              break;
3028            }
3029            case Stmt::ForStmtClass: {
3030              const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable();
3031              if (var)
3032                DeclMap[var] = P;
3033              break;
3034            }
3035            case Stmt::WhileStmtClass: {
3036              const VarDecl *var =
3037                cast<WhileStmt>(stmt)->getConditionVariable();
3038              if (var)
3039                DeclMap[var] = P;
3040              break;
3041            }
3042            case Stmt::SwitchStmtClass: {
3043              const VarDecl *var =
3044                cast<SwitchStmt>(stmt)->getConditionVariable();
3045              if (var)
3046                DeclMap[var] = P;
3047              break;
3048            }
3049            case Stmt::CXXCatchStmtClass: {
3050              const VarDecl *var =
3051                cast<CXXCatchStmt>(stmt)->getExceptionDecl();
3052              if (var)
3053                DeclMap[var] = P;
3054              break;
3055            }
3056            default:
3057              break;
3058          }
3059        }
3060      }
3061    }
3062  }
3063
3064
3065  virtual ~StmtPrinterHelper() {}
3066
3067  const LangOptions &getLangOpts() const { return LangOpts; }
3068  void setBlockID(signed i) { currentBlock = i; }
3069  void setStmtID(unsigned i) { currentStmt = i; }
3070
3071  virtual bool handledStmt(Stmt* S, llvm::raw_ostream& OS) {
3072    StmtMapTy::iterator I = StmtMap.find(S);
3073
3074    if (I == StmtMap.end())
3075      return false;
3076
3077    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3078                          && I->second.second == currentStmt) {
3079      return false;
3080    }
3081
3082    OS << "[B" << I->second.first << "." << I->second.second << "]";
3083    return true;
3084  }
3085
3086  bool handleDecl(const Decl* D, llvm::raw_ostream& OS) {
3087    DeclMapTy::iterator I = DeclMap.find(D);
3088
3089    if (I == DeclMap.end())
3090      return false;
3091
3092    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3093                          && I->second.second == currentStmt) {
3094      return false;
3095    }
3096
3097    OS << "[B" << I->second.first << "." << I->second.second << "]";
3098    return true;
3099  }
3100};
3101} // end anonymous namespace
3102
3103
3104namespace {
3105class CFGBlockTerminatorPrint
3106  : public StmtVisitor<CFGBlockTerminatorPrint,void> {
3107
3108  llvm::raw_ostream& OS;
3109  StmtPrinterHelper* Helper;
3110  PrintingPolicy Policy;
3111public:
3112  CFGBlockTerminatorPrint(llvm::raw_ostream& os, StmtPrinterHelper* helper,
3113                          const PrintingPolicy &Policy)
3114    : OS(os), Helper(helper), Policy(Policy) {}
3115
3116  void VisitIfStmt(IfStmt* I) {
3117    OS << "if ";
3118    I->getCond()->printPretty(OS,Helper,Policy);
3119  }
3120
3121  // Default case.
3122  void VisitStmt(Stmt* Terminator) {
3123    Terminator->printPretty(OS, Helper, Policy);
3124  }
3125
3126  void VisitForStmt(ForStmt* F) {
3127    OS << "for (" ;
3128    if (F->getInit())
3129      OS << "...";
3130    OS << "; ";
3131    if (Stmt* C = F->getCond())
3132      C->printPretty(OS, Helper, Policy);
3133    OS << "; ";
3134    if (F->getInc())
3135      OS << "...";
3136    OS << ")";
3137  }
3138
3139  void VisitWhileStmt(WhileStmt* W) {
3140    OS << "while " ;
3141    if (Stmt* C = W->getCond())
3142      C->printPretty(OS, Helper, Policy);
3143  }
3144
3145  void VisitDoStmt(DoStmt* D) {
3146    OS << "do ... while ";
3147    if (Stmt* C = D->getCond())
3148      C->printPretty(OS, Helper, Policy);
3149  }
3150
3151  void VisitSwitchStmt(SwitchStmt* Terminator) {
3152    OS << "switch ";
3153    Terminator->getCond()->printPretty(OS, Helper, Policy);
3154  }
3155
3156  void VisitCXXTryStmt(CXXTryStmt* CS) {
3157    OS << "try ...";
3158  }
3159
3160  void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) {
3161    C->getCond()->printPretty(OS, Helper, Policy);
3162    OS << " ? ... : ...";
3163  }
3164
3165  void VisitChooseExpr(ChooseExpr* C) {
3166    OS << "__builtin_choose_expr( ";
3167    C->getCond()->printPretty(OS, Helper, Policy);
3168    OS << " )";
3169  }
3170
3171  void VisitIndirectGotoStmt(IndirectGotoStmt* I) {
3172    OS << "goto *";
3173    I->getTarget()->printPretty(OS, Helper, Policy);
3174  }
3175
3176  void VisitBinaryOperator(BinaryOperator* B) {
3177    if (!B->isLogicalOp()) {
3178      VisitExpr(B);
3179      return;
3180    }
3181
3182    B->getLHS()->printPretty(OS, Helper, Policy);
3183
3184    switch (B->getOpcode()) {
3185      case BO_LOr:
3186        OS << " || ...";
3187        return;
3188      case BO_LAnd:
3189        OS << " && ...";
3190        return;
3191      default:
3192        assert(false && "Invalid logical operator.");
3193    }
3194  }
3195
3196  void VisitExpr(Expr* E) {
3197    E->printPretty(OS, Helper, Policy);
3198  }
3199};
3200} // end anonymous namespace
3201
3202static void print_elem(llvm::raw_ostream &OS, StmtPrinterHelper* Helper,
3203                       const CFGElement &E) {
3204  if (const CFGStmt *CS = E.getAs<CFGStmt>()) {
3205    Stmt *S = CS->getStmt();
3206
3207    if (Helper) {
3208
3209      // special printing for statement-expressions.
3210      if (StmtExpr* SE = dyn_cast<StmtExpr>(S)) {
3211        CompoundStmt* Sub = SE->getSubStmt();
3212
3213        if (Sub->children()) {
3214          OS << "({ ... ; ";
3215          Helper->handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
3216          OS << " })\n";
3217          return;
3218        }
3219      }
3220      // special printing for comma expressions.
3221      if (BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
3222        if (B->getOpcode() == BO_Comma) {
3223          OS << "... , ";
3224          Helper->handledStmt(B->getRHS(),OS);
3225          OS << '\n';
3226          return;
3227        }
3228      }
3229    }
3230    S->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3231
3232    if (isa<CXXOperatorCallExpr>(S)) {
3233      OS << " (OperatorCall)";
3234    } else if (isa<CXXBindTemporaryExpr>(S)) {
3235      OS << " (BindTemporary)";
3236    }
3237
3238    // Expressions need a newline.
3239    if (isa<Expr>(S))
3240      OS << '\n';
3241
3242  } else if (const CFGInitializer *IE = E.getAs<CFGInitializer>()) {
3243    const CXXCtorInitializer *I = IE->getInitializer();
3244    if (I->isBaseInitializer())
3245      OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
3246    else OS << I->getAnyMember()->getName();
3247
3248    OS << "(";
3249    if (Expr* IE = I->getInit())
3250      IE->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3251    OS << ")";
3252
3253    if (I->isBaseInitializer())
3254      OS << " (Base initializer)\n";
3255    else OS << " (Member initializer)\n";
3256
3257  } else if (const CFGAutomaticObjDtor *DE = E.getAs<CFGAutomaticObjDtor>()){
3258    const VarDecl* VD = DE->getVarDecl();
3259    Helper->handleDecl(VD, OS);
3260
3261    const Type* T = VD->getType().getTypePtr();
3262    if (const ReferenceType* RT = T->getAs<ReferenceType>())
3263      T = RT->getPointeeType().getTypePtr();
3264    else if (const Type *ET = T->getArrayElementTypeNoTypeQual())
3265      T = ET;
3266
3267    OS << ".~" << T->getAsCXXRecordDecl()->getName().str() << "()";
3268    OS << " (Implicit destructor)\n";
3269
3270  } else if (const CFGBaseDtor *BE = E.getAs<CFGBaseDtor>()) {
3271    const CXXBaseSpecifier *BS = BE->getBaseSpecifier();
3272    OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
3273    OS << " (Base object destructor)\n";
3274
3275  } else if (const CFGMemberDtor *ME = E.getAs<CFGMemberDtor>()) {
3276    const FieldDecl *FD = ME->getFieldDecl();
3277
3278    const Type *T = FD->getType().getTypePtr();
3279    if (const Type *ET = T->getArrayElementTypeNoTypeQual())
3280      T = ET;
3281
3282    OS << "this->" << FD->getName();
3283    OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()";
3284    OS << " (Member object destructor)\n";
3285
3286  } else if (const CFGTemporaryDtor *TE = E.getAs<CFGTemporaryDtor>()) {
3287    const CXXBindTemporaryExpr *BT = TE->getBindTemporaryExpr();
3288    OS << "~" << BT->getType()->getAsCXXRecordDecl()->getName() << "()";
3289    OS << " (Temporary object destructor)\n";
3290  }
3291}
3292
3293static void print_block(llvm::raw_ostream& OS, const CFG* cfg,
3294                        const CFGBlock& B,
3295                        StmtPrinterHelper* Helper, bool print_edges) {
3296
3297  if (Helper) Helper->setBlockID(B.getBlockID());
3298
3299  // Print the header.
3300  OS << "\n [ B" << B.getBlockID();
3301
3302  if (&B == &cfg->getEntry())
3303    OS << " (ENTRY) ]\n";
3304  else if (&B == &cfg->getExit())
3305    OS << " (EXIT) ]\n";
3306  else if (&B == cfg->getIndirectGotoBlock())
3307    OS << " (INDIRECT GOTO DISPATCH) ]\n";
3308  else
3309    OS << " ]\n";
3310
3311  // Print the label of this block.
3312  if (Stmt* Label = const_cast<Stmt*>(B.getLabel())) {
3313
3314    if (print_edges)
3315      OS << "    ";
3316
3317    if (LabelStmt* L = dyn_cast<LabelStmt>(Label))
3318      OS << L->getName();
3319    else if (CaseStmt* C = dyn_cast<CaseStmt>(Label)) {
3320      OS << "case ";
3321      C->getLHS()->printPretty(OS, Helper,
3322                               PrintingPolicy(Helper->getLangOpts()));
3323      if (C->getRHS()) {
3324        OS << " ... ";
3325        C->getRHS()->printPretty(OS, Helper,
3326                                 PrintingPolicy(Helper->getLangOpts()));
3327      }
3328    } else if (isa<DefaultStmt>(Label))
3329      OS << "default";
3330    else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
3331      OS << "catch (";
3332      if (CS->getExceptionDecl())
3333        CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper->getLangOpts()),
3334                                      0);
3335      else
3336        OS << "...";
3337      OS << ")";
3338
3339    } else
3340      assert(false && "Invalid label statement in CFGBlock.");
3341
3342    OS << ":\n";
3343  }
3344
3345  // Iterate through the statements in the block and print them.
3346  unsigned j = 1;
3347
3348  for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
3349       I != E ; ++I, ++j ) {
3350
3351    // Print the statement # in the basic block and the statement itself.
3352    if (print_edges)
3353      OS << "    ";
3354
3355    OS << llvm::format("%3d", j) << ": ";
3356
3357    if (Helper)
3358      Helper->setStmtID(j);
3359
3360    print_elem(OS,Helper,*I);
3361  }
3362
3363  // Print the terminator of this block.
3364  if (B.getTerminator()) {
3365    if (print_edges)
3366      OS << "    ";
3367
3368    OS << "  T: ";
3369
3370    if (Helper) Helper->setBlockID(-1);
3371
3372    CFGBlockTerminatorPrint TPrinter(OS, Helper,
3373                                     PrintingPolicy(Helper->getLangOpts()));
3374    TPrinter.Visit(const_cast<Stmt*>(B.getTerminator().getStmt()));
3375    OS << '\n';
3376  }
3377
3378  if (print_edges) {
3379    // Print the predecessors of this block.
3380    OS << "    Predecessors (" << B.pred_size() << "):";
3381    unsigned i = 0;
3382
3383    for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
3384         I != E; ++I, ++i) {
3385
3386      if (i == 8 || (i-8) == 0)
3387        OS << "\n     ";
3388
3389      OS << " B" << (*I)->getBlockID();
3390    }
3391
3392    OS << '\n';
3393
3394    // Print the successors of this block.
3395    OS << "    Successors (" << B.succ_size() << "):";
3396    i = 0;
3397
3398    for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
3399         I != E; ++I, ++i) {
3400
3401      if (i == 8 || (i-8) % 10 == 0)
3402        OS << "\n    ";
3403
3404      if (*I)
3405        OS << " B" << (*I)->getBlockID();
3406      else
3407        OS  << " NULL";
3408    }
3409
3410    OS << '\n';
3411  }
3412}
3413
3414
3415/// dump - A simple pretty printer of a CFG that outputs to stderr.
3416void CFG::dump(const LangOptions &LO) const { print(llvm::errs(), LO); }
3417
3418/// print - A simple pretty printer of a CFG that outputs to an ostream.
3419void CFG::print(llvm::raw_ostream &OS, const LangOptions &LO) const {
3420  StmtPrinterHelper Helper(this, LO);
3421
3422  // Print the entry block.
3423  print_block(OS, this, getEntry(), &Helper, true);
3424
3425  // Iterate through the CFGBlocks and print them one by one.
3426  for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
3427    // Skip the entry block, because we already printed it.
3428    if (&(**I) == &getEntry() || &(**I) == &getExit())
3429      continue;
3430
3431    print_block(OS, this, **I, &Helper, true);
3432  }
3433
3434  // Print the exit block.
3435  print_block(OS, this, getExit(), &Helper, true);
3436  OS.flush();
3437}
3438
3439/// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
3440void CFGBlock::dump(const CFG* cfg, const LangOptions &LO) const {
3441  print(llvm::errs(), cfg, LO);
3442}
3443
3444/// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
3445///   Generally this will only be called from CFG::print.
3446void CFGBlock::print(llvm::raw_ostream& OS, const CFG* cfg,
3447                     const LangOptions &LO) const {
3448  StmtPrinterHelper Helper(cfg, LO);
3449  print_block(OS, cfg, *this, &Helper, true);
3450}
3451
3452/// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
3453void CFGBlock::printTerminator(llvm::raw_ostream &OS,
3454                               const LangOptions &LO) const {
3455  CFGBlockTerminatorPrint TPrinter(OS, NULL, PrintingPolicy(LO));
3456  TPrinter.Visit(const_cast<Stmt*>(getTerminator().getStmt()));
3457}
3458
3459Stmt* CFGBlock::getTerminatorCondition() {
3460  Stmt *Terminator = this->Terminator;
3461  if (!Terminator)
3462    return NULL;
3463
3464  Expr* E = NULL;
3465
3466  switch (Terminator->getStmtClass()) {
3467    default:
3468      break;
3469
3470    case Stmt::ForStmtClass:
3471      E = cast<ForStmt>(Terminator)->getCond();
3472      break;
3473
3474    case Stmt::WhileStmtClass:
3475      E = cast<WhileStmt>(Terminator)->getCond();
3476      break;
3477
3478    case Stmt::DoStmtClass:
3479      E = cast<DoStmt>(Terminator)->getCond();
3480      break;
3481
3482    case Stmt::IfStmtClass:
3483      E = cast<IfStmt>(Terminator)->getCond();
3484      break;
3485
3486    case Stmt::ChooseExprClass:
3487      E = cast<ChooseExpr>(Terminator)->getCond();
3488      break;
3489
3490    case Stmt::IndirectGotoStmtClass:
3491      E = cast<IndirectGotoStmt>(Terminator)->getTarget();
3492      break;
3493
3494    case Stmt::SwitchStmtClass:
3495      E = cast<SwitchStmt>(Terminator)->getCond();
3496      break;
3497
3498    case Stmt::BinaryConditionalOperatorClass:
3499      E = cast<BinaryConditionalOperator>(Terminator)->getCond();
3500      break;
3501
3502    case Stmt::ConditionalOperatorClass:
3503      E = cast<ConditionalOperator>(Terminator)->getCond();
3504      break;
3505
3506    case Stmt::BinaryOperatorClass: // '&&' and '||'
3507      E = cast<BinaryOperator>(Terminator)->getLHS();
3508      break;
3509
3510    case Stmt::ObjCForCollectionStmtClass:
3511      return Terminator;
3512  }
3513
3514  return E ? E->IgnoreParens() : NULL;
3515}
3516
3517bool CFGBlock::hasBinaryBranchTerminator() const {
3518  const Stmt *Terminator = this->Terminator;
3519  if (!Terminator)
3520    return false;
3521
3522  Expr* E = NULL;
3523
3524  switch (Terminator->getStmtClass()) {
3525    default:
3526      return false;
3527
3528    case Stmt::ForStmtClass:
3529    case Stmt::WhileStmtClass:
3530    case Stmt::DoStmtClass:
3531    case Stmt::IfStmtClass:
3532    case Stmt::ChooseExprClass:
3533    case Stmt::BinaryConditionalOperatorClass:
3534    case Stmt::ConditionalOperatorClass:
3535    case Stmt::BinaryOperatorClass:
3536      return true;
3537  }
3538
3539  return E ? E->IgnoreParens() : NULL;
3540}
3541
3542
3543//===----------------------------------------------------------------------===//
3544// CFG Graphviz Visualization
3545//===----------------------------------------------------------------------===//
3546
3547
3548#ifndef NDEBUG
3549static StmtPrinterHelper* GraphHelper;
3550#endif
3551
3552void CFG::viewCFG(const LangOptions &LO) const {
3553#ifndef NDEBUG
3554  StmtPrinterHelper H(this, LO);
3555  GraphHelper = &H;
3556  llvm::ViewGraph(this,"CFG");
3557  GraphHelper = NULL;
3558#endif
3559}
3560
3561namespace llvm {
3562template<>
3563struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
3564
3565  DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
3566
3567  static std::string getNodeLabel(const CFGBlock* Node, const CFG* Graph) {
3568
3569#ifndef NDEBUG
3570    std::string OutSStr;
3571    llvm::raw_string_ostream Out(OutSStr);
3572    print_block(Out,Graph, *Node, GraphHelper, false);
3573    std::string& OutStr = Out.str();
3574
3575    if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
3576
3577    // Process string output to make it nicer...
3578    for (unsigned i = 0; i != OutStr.length(); ++i)
3579      if (OutStr[i] == '\n') {                            // Left justify
3580        OutStr[i] = '\\';
3581        OutStr.insert(OutStr.begin()+i+1, 'l');
3582      }
3583
3584    return OutStr;
3585#else
3586    return "";
3587#endif
3588  }
3589};
3590} // end namespace llvm
3591