CFG.cpp revision 5c3ea5c57971317c35b120ef0a2a2c79bd171008
1  //===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the CFG and CFGBuilder classes for representing and
11//  building Control-Flow Graphs (CFGs) from ASTs.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Support/SaveAndRestore.h"
16#include "clang/Analysis/CFG.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/StmtVisitor.h"
20#include "clang/AST/PrettyPrinter.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/Basic/AttrKinds.h"
23#include "llvm/Support/GraphWriter.h"
24#include "llvm/Support/Allocator.h"
25#include "llvm/Support/Format.h"
26#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/ADT/OwningPtr.h"
29
30using namespace clang;
31
32namespace {
33
34static SourceLocation GetEndLoc(Decl *D) {
35  if (VarDecl *VD = dyn_cast<VarDecl>(D))
36    if (Expr *Ex = VD->getInit())
37      return Ex->getSourceRange().getEnd();
38  return D->getLocation();
39}
40
41class CFGBuilder;
42
43/// The CFG builder uses a recursive algorithm to build the CFG.  When
44///  we process an expression, sometimes we know that we must add the
45///  subexpressions as block-level expressions.  For example:
46///
47///    exp1 || exp2
48///
49///  When processing the '||' expression, we know that exp1 and exp2
50///  need to be added as block-level expressions, even though they
51///  might not normally need to be.  AddStmtChoice records this
52///  contextual information.  If AddStmtChoice is 'NotAlwaysAdd', then
53///  the builder has an option not to add a subexpression as a
54///  block-level expression.
55///
56class AddStmtChoice {
57public:
58  enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };
59
60  AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}
61
62  bool alwaysAdd(CFGBuilder &builder,
63                 const Stmt *stmt) const;
64
65  /// Return a copy of this object, except with the 'always-add' bit
66  ///  set as specified.
67  AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
68    return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd);
69  }
70
71private:
72  Kind kind;
73};
74
75/// LocalScope - Node in tree of local scopes created for C++ implicit
76/// destructor calls generation. It contains list of automatic variables
77/// declared in the scope and link to position in previous scope this scope
78/// began in.
79///
80/// The process of creating local scopes is as follows:
81/// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
82/// - Before processing statements in scope (e.g. CompoundStmt) create
83///   LocalScope object using CFGBuilder::ScopePos as link to previous scope
84///   and set CFGBuilder::ScopePos to the end of new scope,
85/// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
86///   at this VarDecl,
87/// - For every normal (without jump) end of scope add to CFGBlock destructors
88///   for objects in the current scope,
89/// - For every jump add to CFGBlock destructors for objects
90///   between CFGBuilder::ScopePos and local scope position saved for jump
91///   target. Thanks to C++ restrictions on goto jumps we can be sure that
92///   jump target position will be on the path to root from CFGBuilder::ScopePos
93///   (adding any variable that doesn't need constructor to be called to
94///   LocalScope can break this assumption),
95///
96class LocalScope {
97public:
98  typedef BumpVector<VarDecl*> AutomaticVarsTy;
99
100  /// const_iterator - Iterates local scope backwards and jumps to previous
101  /// scope on reaching the beginning of currently iterated scope.
102  class const_iterator {
103    const LocalScope* Scope;
104
105    /// VarIter is guaranteed to be greater then 0 for every valid iterator.
106    /// Invalid iterator (with null Scope) has VarIter equal to 0.
107    unsigned VarIter;
108
109  public:
110    /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
111    /// Incrementing invalid iterator is allowed and will result in invalid
112    /// iterator.
113    const_iterator()
114        : Scope(NULL), VarIter(0) {}
115
116    /// Create valid iterator. In case when S.Prev is an invalid iterator and
117    /// I is equal to 0, this will create invalid iterator.
118    const_iterator(const LocalScope& S, unsigned I)
119        : Scope(&S), VarIter(I) {
120      // Iterator to "end" of scope is not allowed. Handle it by going up
121      // in scopes tree possibly up to invalid iterator in the root.
122      if (VarIter == 0 && Scope)
123        *this = Scope->Prev;
124    }
125
126    VarDecl *const* operator->() const {
127      assert (Scope && "Dereferencing invalid iterator is not allowed");
128      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
129      return &Scope->Vars[VarIter - 1];
130    }
131    VarDecl *operator*() const {
132      return *this->operator->();
133    }
134
135    const_iterator &operator++() {
136      if (!Scope)
137        return *this;
138
139      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
140      --VarIter;
141      if (VarIter == 0)
142        *this = Scope->Prev;
143      return *this;
144    }
145    const_iterator operator++(int) {
146      const_iterator P = *this;
147      ++*this;
148      return P;
149    }
150
151    bool operator==(const const_iterator &rhs) const {
152      return Scope == rhs.Scope && VarIter == rhs.VarIter;
153    }
154    bool operator!=(const const_iterator &rhs) const {
155      return !(*this == rhs);
156    }
157
158    operator bool() const {
159      return *this != const_iterator();
160    }
161
162    int distance(const_iterator L);
163  };
164
165  friend class const_iterator;
166
167private:
168  BumpVectorContext ctx;
169
170  /// Automatic variables in order of declaration.
171  AutomaticVarsTy Vars;
172  /// Iterator to variable in previous scope that was declared just before
173  /// begin of this scope.
174  const_iterator Prev;
175
176public:
177  /// Constructs empty scope linked to previous scope in specified place.
178  LocalScope(BumpVectorContext &ctx, const_iterator P)
179      : ctx(ctx), Vars(ctx, 4), Prev(P) {}
180
181  /// Begin of scope in direction of CFG building (backwards).
182  const_iterator begin() const { return const_iterator(*this, Vars.size()); }
183
184  void addVar(VarDecl *VD) {
185    Vars.push_back(VD, ctx);
186  }
187};
188
189/// distance - Calculates distance from this to L. L must be reachable from this
190/// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
191/// number of scopes between this and L.
192int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
193  int D = 0;
194  const_iterator F = *this;
195  while (F.Scope != L.Scope) {
196    assert (F != const_iterator()
197        && "L iterator is not reachable from F iterator.");
198    D += F.VarIter;
199    F = F.Scope->Prev;
200  }
201  D += F.VarIter - L.VarIter;
202  return D;
203}
204
205/// BlockScopePosPair - Structure for specifying position in CFG during its
206/// build process. It consists of CFGBlock that specifies position in CFG graph
207/// and  LocalScope::const_iterator that specifies position in LocalScope graph.
208struct BlockScopePosPair {
209  BlockScopePosPair() : block(0) {}
210  BlockScopePosPair(CFGBlock *b, LocalScope::const_iterator scopePos)
211      : block(b), scopePosition(scopePos) {}
212
213  CFGBlock *block;
214  LocalScope::const_iterator scopePosition;
215};
216
217/// TryResult - a class representing a variant over the values
218///  'true', 'false', or 'unknown'.  This is returned by tryEvaluateBool,
219///  and is used by the CFGBuilder to decide if a branch condition
220///  can be decided up front during CFG construction.
221class TryResult {
222  int X;
223public:
224  TryResult(bool b) : X(b ? 1 : 0) {}
225  TryResult() : X(-1) {}
226
227  bool isTrue() const { return X == 1; }
228  bool isFalse() const { return X == 0; }
229  bool isKnown() const { return X >= 0; }
230  void negate() {
231    assert(isKnown());
232    X ^= 0x1;
233  }
234};
235
236/// CFGBuilder - This class implements CFG construction from an AST.
237///   The builder is stateful: an instance of the builder should be used to only
238///   construct a single CFG.
239///
240///   Example usage:
241///
242///     CFGBuilder builder;
243///     CFG* cfg = builder.BuildAST(stmt1);
244///
245///  CFG construction is done via a recursive walk of an AST.  We actually parse
246///  the AST in reverse order so that the successor of a basic block is
247///  constructed prior to its predecessor.  This allows us to nicely capture
248///  implicit fall-throughs without extra basic blocks.
249///
250class CFGBuilder {
251  typedef BlockScopePosPair JumpTarget;
252  typedef BlockScopePosPair JumpSource;
253
254  ASTContext *Context;
255  OwningPtr<CFG> cfg;
256
257  CFGBlock *Block;
258  CFGBlock *Succ;
259  JumpTarget ContinueJumpTarget;
260  JumpTarget BreakJumpTarget;
261  CFGBlock *SwitchTerminatedBlock;
262  CFGBlock *DefaultCaseBlock;
263  CFGBlock *TryTerminatedBlock;
264
265  // Current position in local scope.
266  LocalScope::const_iterator ScopePos;
267
268  // LabelMap records the mapping from Label expressions to their jump targets.
269  typedef llvm::DenseMap<LabelDecl*, JumpTarget> LabelMapTy;
270  LabelMapTy LabelMap;
271
272  // A list of blocks that end with a "goto" that must be backpatched to their
273  // resolved targets upon completion of CFG construction.
274  typedef std::vector<JumpSource> BackpatchBlocksTy;
275  BackpatchBlocksTy BackpatchBlocks;
276
277  // A list of labels whose address has been taken (for indirect gotos).
278  typedef llvm::SmallPtrSet<LabelDecl*, 5> LabelSetTy;
279  LabelSetTy AddressTakenLabels;
280
281  bool badCFG;
282  const CFG::BuildOptions &BuildOpts;
283
284  // State to track for building switch statements.
285  bool switchExclusivelyCovered;
286  Expr::EvalResult *switchCond;
287
288  CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry;
289  const Stmt *lastLookup;
290
291  // Caches boolean evaluations of expressions to avoid multiple re-evaluations
292  // during construction of branches for chained logical operators.
293  typedef llvm::DenseMap<Expr *, TryResult> CachedBoolEvalsTy;
294  CachedBoolEvalsTy CachedBoolEvals;
295
296public:
297  explicit CFGBuilder(ASTContext *astContext,
298                      const CFG::BuildOptions &buildOpts)
299    : Context(astContext), cfg(new CFG()), // crew a new CFG
300      Block(NULL), Succ(NULL),
301      SwitchTerminatedBlock(NULL), DefaultCaseBlock(NULL),
302      TryTerminatedBlock(NULL), badCFG(false), BuildOpts(buildOpts),
303      switchExclusivelyCovered(false), switchCond(0),
304      cachedEntry(0), lastLookup(0) {}
305
306  // buildCFG - Used by external clients to construct the CFG.
307  CFG* buildCFG(const Decl *D, Stmt *Statement);
308
309  bool alwaysAdd(const Stmt *stmt);
310
311private:
312  // Visitors to walk an AST and construct the CFG.
313  CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
314  CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
315  CFGBlock *VisitBreakStmt(BreakStmt *B);
316  CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
317  CFGBlock *VisitCaseStmt(CaseStmt *C);
318  CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
319  CFGBlock *VisitCompoundStmt(CompoundStmt *C);
320  CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C,
321                                     AddStmtChoice asc);
322  CFGBlock *VisitContinueStmt(ContinueStmt *C);
323  CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
324                                      AddStmtChoice asc);
325  CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
326  CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
327  CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S);
328  CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
329                                       AddStmtChoice asc);
330  CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
331                                        AddStmtChoice asc);
332  CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
333  CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
334  CFGBlock *VisitDeclStmt(DeclStmt *DS);
335  CFGBlock *VisitDeclSubExpr(DeclStmt *DS);
336  CFGBlock *VisitDefaultStmt(DefaultStmt *D);
337  CFGBlock *VisitDoStmt(DoStmt *D);
338  CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E, AddStmtChoice asc);
339  CFGBlock *VisitForStmt(ForStmt *F);
340  CFGBlock *VisitGotoStmt(GotoStmt *G);
341  CFGBlock *VisitIfStmt(IfStmt *I);
342  CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
343  CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
344  CFGBlock *VisitLabelStmt(LabelStmt *L);
345  CFGBlock *VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc);
346  CFGBlock *VisitLogicalOperator(BinaryOperator *B);
347  CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
348  CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
349  CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
350  CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
351  CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
352  CFGBlock *VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S);
353  CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
354  CFGBlock *VisitPseudoObjectExpr(PseudoObjectExpr *E);
355  CFGBlock *VisitReturnStmt(ReturnStmt *R);
356  CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
357  CFGBlock *VisitSwitchStmt(SwitchStmt *S);
358  CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
359                                          AddStmtChoice asc);
360  CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
361  CFGBlock *VisitWhileStmt(WhileStmt *W);
362
363  CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd);
364  CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
365  CFGBlock *VisitChildren(Stmt *S);
366  CFGBlock *VisitNoRecurse(Expr *E, AddStmtChoice asc);
367
368  // Visitors to walk an AST and generate destructors of temporaries in
369  // full expression.
370  CFGBlock *VisitForTemporaryDtors(Stmt *E, bool BindToTemporary = false);
371  CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E);
372  CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E);
373  CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(CXXBindTemporaryExpr *E,
374      bool BindToTemporary);
375  CFGBlock *
376  VisitConditionalOperatorForTemporaryDtors(AbstractConditionalOperator *E,
377                                            bool BindToTemporary);
378
379  // NYS == Not Yet Supported
380  CFGBlock *NYS() {
381    badCFG = true;
382    return Block;
383  }
384
385  void autoCreateBlock() { if (!Block) Block = createBlock(); }
386  CFGBlock *createBlock(bool add_successor = true);
387  CFGBlock *createNoReturnBlock();
388
389  CFGBlock *addStmt(Stmt *S) {
390    return Visit(S, AddStmtChoice::AlwaysAdd);
391  }
392  CFGBlock *addInitializer(CXXCtorInitializer *I);
393  void addAutomaticObjDtors(LocalScope::const_iterator B,
394                            LocalScope::const_iterator E, Stmt *S);
395  void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
396
397  // Local scopes creation.
398  LocalScope* createOrReuseLocalScope(LocalScope* Scope);
399
400  void addLocalScopeForStmt(Stmt *S);
401  LocalScope* addLocalScopeForDeclStmt(DeclStmt *DS, LocalScope* Scope = NULL);
402  LocalScope* addLocalScopeForVarDecl(VarDecl *VD, LocalScope* Scope = NULL);
403
404  void addLocalScopeAndDtors(Stmt *S);
405
406  // Interface to CFGBlock - adding CFGElements.
407  void appendStmt(CFGBlock *B, const Stmt *S) {
408    if (alwaysAdd(S) && cachedEntry)
409      cachedEntry->second = B;
410
411    // All block-level expressions should have already been IgnoreParens()ed.
412    assert(!isa<Expr>(S) || cast<Expr>(S)->IgnoreParens() == S);
413    B->appendStmt(const_cast<Stmt*>(S), cfg->getBumpVectorContext());
414  }
415  void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
416    B->appendInitializer(I, cfg->getBumpVectorContext());
417  }
418  void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
419    B->appendBaseDtor(BS, cfg->getBumpVectorContext());
420  }
421  void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
422    B->appendMemberDtor(FD, cfg->getBumpVectorContext());
423  }
424  void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
425    B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
426  }
427  void appendAutomaticObjDtor(CFGBlock *B, VarDecl *VD, Stmt *S) {
428    B->appendAutomaticObjDtor(VD, S, cfg->getBumpVectorContext());
429  }
430
431  void prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
432      LocalScope::const_iterator B, LocalScope::const_iterator E);
433
434  void addSuccessor(CFGBlock *B, CFGBlock *S) {
435    B->addSuccessor(S, cfg->getBumpVectorContext());
436  }
437
438  /// Try and evaluate an expression to an integer constant.
439  bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) {
440    if (!BuildOpts.PruneTriviallyFalseEdges)
441      return false;
442    return !S->isTypeDependent() &&
443           !S->isValueDependent() &&
444           S->EvaluateAsRValue(outResult, *Context);
445  }
446
447  /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
448  /// if we can evaluate to a known value, otherwise return -1.
449  TryResult tryEvaluateBool(Expr *S) {
450    if (!BuildOpts.PruneTriviallyFalseEdges ||
451        S->isTypeDependent() || S->isValueDependent())
452      return TryResult();
453
454    if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(S)) {
455      if (Bop->isLogicalOp()) {
456        // Check the cache first.
457        CachedBoolEvalsTy::iterator I = CachedBoolEvals.find(S);
458        if (I != CachedBoolEvals.end())
459          return I->second; // already in map;
460
461        // Retrieve result at first, or the map might be updated.
462        TryResult Result = evaluateAsBooleanConditionNoCache(S);
463        CachedBoolEvals[S] = Result; // update or insert
464        return Result;
465      }
466    }
467
468    return evaluateAsBooleanConditionNoCache(S);
469  }
470
471  /// \brief Evaluate as boolean \param E without using the cache.
472  TryResult evaluateAsBooleanConditionNoCache(Expr *E) {
473    if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(E)) {
474      if (Bop->isLogicalOp()) {
475        TryResult LHS = tryEvaluateBool(Bop->getLHS());
476        if (LHS.isKnown()) {
477          // We were able to evaluate the LHS, see if we can get away with not
478          // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
479          if (LHS.isTrue() == (Bop->getOpcode() == BO_LOr))
480            return LHS.isTrue();
481
482          TryResult RHS = tryEvaluateBool(Bop->getRHS());
483          if (RHS.isKnown()) {
484            if (Bop->getOpcode() == BO_LOr)
485              return LHS.isTrue() || RHS.isTrue();
486            else
487              return LHS.isTrue() && RHS.isTrue();
488          }
489        } else {
490          TryResult RHS = tryEvaluateBool(Bop->getRHS());
491          if (RHS.isKnown()) {
492            // We can't evaluate the LHS; however, sometimes the result
493            // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
494            if (RHS.isTrue() == (Bop->getOpcode() == BO_LOr))
495              return RHS.isTrue();
496          }
497        }
498
499        return TryResult();
500      }
501    }
502
503    bool Result;
504    if (E->EvaluateAsBooleanCondition(Result, *Context))
505      return Result;
506
507    return TryResult();
508  }
509
510};
511
512inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder,
513                                     const Stmt *stmt) const {
514  return builder.alwaysAdd(stmt) || kind == AlwaysAdd;
515}
516
517bool CFGBuilder::alwaysAdd(const Stmt *stmt) {
518  bool shouldAdd = BuildOpts.alwaysAdd(stmt);
519
520  if (!BuildOpts.forcedBlkExprs)
521    return shouldAdd;
522
523  if (lastLookup == stmt) {
524    if (cachedEntry) {
525      assert(cachedEntry->first == stmt);
526      return true;
527    }
528    return shouldAdd;
529  }
530
531  lastLookup = stmt;
532
533  // Perform the lookup!
534  CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs;
535
536  if (!fb) {
537    // No need to update 'cachedEntry', since it will always be null.
538    assert(cachedEntry == 0);
539    return shouldAdd;
540  }
541
542  CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt);
543  if (itr == fb->end()) {
544    cachedEntry = 0;
545    return shouldAdd;
546  }
547
548  cachedEntry = &*itr;
549  return true;
550}
551
552// FIXME: Add support for dependent-sized array types in C++?
553// Does it even make sense to build a CFG for an uninstantiated template?
554static const VariableArrayType *FindVA(const Type *t) {
555  while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
556    if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
557      if (vat->getSizeExpr())
558        return vat;
559
560    t = vt->getElementType().getTypePtr();
561  }
562
563  return 0;
564}
565
566/// BuildCFG - Constructs a CFG from an AST (a Stmt*).  The AST can represent an
567///  arbitrary statement.  Examples include a single expression or a function
568///  body (compound statement).  The ownership of the returned CFG is
569///  transferred to the caller.  If CFG construction fails, this method returns
570///  NULL.
571CFG* CFGBuilder::buildCFG(const Decl *D, Stmt *Statement) {
572  assert(cfg.get());
573  if (!Statement)
574    return NULL;
575
576  // Create an empty block that will serve as the exit block for the CFG.  Since
577  // this is the first block added to the CFG, it will be implicitly registered
578  // as the exit block.
579  Succ = createBlock();
580  assert(Succ == &cfg->getExit());
581  Block = NULL;  // the EXIT block is empty.  Create all other blocks lazily.
582
583  if (BuildOpts.AddImplicitDtors)
584    if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
585      addImplicitDtorsForDestructor(DD);
586
587  // Visit the statements and create the CFG.
588  CFGBlock *B = addStmt(Statement);
589
590  if (badCFG)
591    return NULL;
592
593  // For C++ constructor add initializers to CFG.
594  if (const CXXConstructorDecl *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
595    for (CXXConstructorDecl::init_const_reverse_iterator I = CD->init_rbegin(),
596        E = CD->init_rend(); I != E; ++I) {
597      B = addInitializer(*I);
598      if (badCFG)
599        return NULL;
600    }
601  }
602
603  if (B)
604    Succ = B;
605
606  // Backpatch the gotos whose label -> block mappings we didn't know when we
607  // encountered them.
608  for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
609                                   E = BackpatchBlocks.end(); I != E; ++I ) {
610
611    CFGBlock *B = I->block;
612    GotoStmt *G = cast<GotoStmt>(B->getTerminator());
613    LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
614
615    // If there is no target for the goto, then we are looking at an
616    // incomplete AST.  Handle this by not registering a successor.
617    if (LI == LabelMap.end()) continue;
618
619    JumpTarget JT = LI->second;
620    prependAutomaticObjDtorsWithTerminator(B, I->scopePosition,
621                                           JT.scopePosition);
622    addSuccessor(B, JT.block);
623  }
624
625  // Add successors to the Indirect Goto Dispatch block (if we have one).
626  if (CFGBlock *B = cfg->getIndirectGotoBlock())
627    for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
628                              E = AddressTakenLabels.end(); I != E; ++I ) {
629
630      // Lookup the target block.
631      LabelMapTy::iterator LI = LabelMap.find(*I);
632
633      // If there is no target block that contains label, then we are looking
634      // at an incomplete AST.  Handle this by not registering a successor.
635      if (LI == LabelMap.end()) continue;
636
637      addSuccessor(B, LI->second.block);
638    }
639
640  // Create an empty entry block that has no predecessors.
641  cfg->setEntry(createBlock());
642
643  return cfg.take();
644}
645
646/// createBlock - Used to lazily create blocks that are connected
647///  to the current (global) succcessor.
648CFGBlock *CFGBuilder::createBlock(bool add_successor) {
649  CFGBlock *B = cfg->createBlock();
650  if (add_successor && Succ)
651    addSuccessor(B, Succ);
652  return B;
653}
654
655/// createNoReturnBlock - Used to create a block is a 'noreturn' point in the
656/// CFG. It is *not* connected to the current (global) successor, and instead
657/// directly tied to the exit block in order to be reachable.
658CFGBlock *CFGBuilder::createNoReturnBlock() {
659  CFGBlock *B = createBlock(false);
660  B->setHasNoReturnElement();
661  addSuccessor(B, &cfg->getExit());
662  return B;
663}
664
665/// addInitializer - Add C++ base or member initializer element to CFG.
666CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
667  if (!BuildOpts.AddInitializers)
668    return Block;
669
670  bool IsReference = false;
671  bool HasTemporaries = false;
672
673  // Destructors of temporaries in initialization expression should be called
674  // after initialization finishes.
675  Expr *Init = I->getInit();
676  if (Init) {
677    if (FieldDecl *FD = I->getAnyMember())
678      IsReference = FD->getType()->isReferenceType();
679    HasTemporaries = isa<ExprWithCleanups>(Init);
680
681    if (BuildOpts.AddImplicitDtors && HasTemporaries) {
682      // Generate destructors for temporaries in initialization expression.
683      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
684          IsReference);
685    }
686  }
687
688  autoCreateBlock();
689  appendInitializer(Block, I);
690
691  if (Init) {
692    if (HasTemporaries) {
693      // For expression with temporaries go directly to subexpression to omit
694      // generating destructors for the second time.
695      return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
696    }
697    return Visit(Init);
698  }
699
700  return Block;
701}
702
703/// \brief Retrieve the type of the temporary object whose lifetime was
704/// extended by a local reference with the given initializer.
705static QualType getReferenceInitTemporaryType(ASTContext &Context,
706                                              const Expr *Init) {
707  while (true) {
708    // Skip parentheses.
709    Init = Init->IgnoreParens();
710
711    // Skip through cleanups.
712    if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init)) {
713      Init = EWC->getSubExpr();
714      continue;
715    }
716
717    // Skip through the temporary-materialization expression.
718    if (const MaterializeTemporaryExpr *MTE
719          = dyn_cast<MaterializeTemporaryExpr>(Init)) {
720      Init = MTE->GetTemporaryExpr();
721      continue;
722    }
723
724    // Skip derived-to-base and no-op casts.
725    if (const CastExpr *CE = dyn_cast<CastExpr>(Init)) {
726      if ((CE->getCastKind() == CK_DerivedToBase ||
727           CE->getCastKind() == CK_UncheckedDerivedToBase ||
728           CE->getCastKind() == CK_NoOp) &&
729          Init->getType()->isRecordType()) {
730        Init = CE->getSubExpr();
731        continue;
732      }
733    }
734
735    // Skip member accesses into rvalues.
736    if (const MemberExpr *ME = dyn_cast<MemberExpr>(Init)) {
737      if (!ME->isArrow() && ME->getBase()->isRValue()) {
738        Init = ME->getBase();
739        continue;
740      }
741    }
742
743    break;
744  }
745
746  return Init->getType();
747}
748
749/// addAutomaticObjDtors - Add to current block automatic objects destructors
750/// for objects in range of local scope positions. Use S as trigger statement
751/// for destructors.
752void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
753                                      LocalScope::const_iterator E, Stmt *S) {
754  if (!BuildOpts.AddImplicitDtors)
755    return;
756
757  if (B == E)
758    return;
759
760  // We need to append the destructors in reverse order, but any one of them
761  // may be a no-return destructor which changes the CFG. As a result, buffer
762  // this sequence up and replay them in reverse order when appending onto the
763  // CFGBlock(s).
764  SmallVector<VarDecl*, 10> Decls;
765  Decls.reserve(B.distance(E));
766  for (LocalScope::const_iterator I = B; I != E; ++I)
767    Decls.push_back(*I);
768
769  for (SmallVectorImpl<VarDecl*>::reverse_iterator I = Decls.rbegin(),
770                                                   E = Decls.rend();
771       I != E; ++I) {
772    // If this destructor is marked as a no-return destructor, we need to
773    // create a new block for the destructor which does not have as a successor
774    // anything built thus far: control won't flow out of this block.
775    QualType Ty;
776    if ((*I)->getType()->isReferenceType()) {
777      Ty = getReferenceInitTemporaryType(*Context, (*I)->getInit());
778    } else {
779      Ty = Context->getBaseElementType((*I)->getType());
780    }
781
782    const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
783    if (cast<FunctionType>(Dtor->getType())->getNoReturnAttr())
784      Block = createNoReturnBlock();
785    else
786      autoCreateBlock();
787
788    appendAutomaticObjDtor(Block, *I, S);
789  }
790}
791
792/// addImplicitDtorsForDestructor - Add implicit destructors generated for
793/// base and member objects in destructor.
794void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
795  assert (BuildOpts.AddImplicitDtors
796      && "Can be called only when dtors should be added");
797  const CXXRecordDecl *RD = DD->getParent();
798
799  // At the end destroy virtual base objects.
800  for (CXXRecordDecl::base_class_const_iterator VI = RD->vbases_begin(),
801      VE = RD->vbases_end(); VI != VE; ++VI) {
802    const CXXRecordDecl *CD = VI->getType()->getAsCXXRecordDecl();
803    if (!CD->hasTrivialDestructor()) {
804      autoCreateBlock();
805      appendBaseDtor(Block, VI);
806    }
807  }
808
809  // Before virtual bases destroy direct base objects.
810  for (CXXRecordDecl::base_class_const_iterator BI = RD->bases_begin(),
811      BE = RD->bases_end(); BI != BE; ++BI) {
812    if (!BI->isVirtual()) {
813      const CXXRecordDecl *CD = BI->getType()->getAsCXXRecordDecl();
814      if (!CD->hasTrivialDestructor()) {
815        autoCreateBlock();
816        appendBaseDtor(Block, BI);
817      }
818    }
819  }
820
821  // First destroy member objects.
822  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
823      FE = RD->field_end(); FI != FE; ++FI) {
824    // Check for constant size array. Set type to array element type.
825    QualType QT = FI->getType();
826    if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
827      if (AT->getSize() == 0)
828        continue;
829      QT = AT->getElementType();
830    }
831
832    if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
833      if (!CD->hasTrivialDestructor()) {
834        autoCreateBlock();
835        appendMemberDtor(Block, *FI);
836      }
837  }
838}
839
840/// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
841/// way return valid LocalScope object.
842LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
843  if (!Scope) {
844    llvm::BumpPtrAllocator &alloc = cfg->getAllocator();
845    Scope = alloc.Allocate<LocalScope>();
846    BumpVectorContext ctx(alloc);
847    new (Scope) LocalScope(ctx, ScopePos);
848  }
849  return Scope;
850}
851
852/// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
853/// that should create implicit scope (e.g. if/else substatements).
854void CFGBuilder::addLocalScopeForStmt(Stmt *S) {
855  if (!BuildOpts.AddImplicitDtors)
856    return;
857
858  LocalScope *Scope = 0;
859
860  // For compound statement we will be creating explicit scope.
861  if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
862    for (CompoundStmt::body_iterator BI = CS->body_begin(), BE = CS->body_end()
863        ; BI != BE; ++BI) {
864      Stmt *SI = (*BI)->stripLabelLikeStatements();
865      if (DeclStmt *DS = dyn_cast<DeclStmt>(SI))
866        Scope = addLocalScopeForDeclStmt(DS, Scope);
867    }
868    return;
869  }
870
871  // For any other statement scope will be implicit and as such will be
872  // interesting only for DeclStmt.
873  if (DeclStmt *DS = dyn_cast<DeclStmt>(S->stripLabelLikeStatements()))
874    addLocalScopeForDeclStmt(DS);
875}
876
877/// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
878/// reuse Scope if not NULL.
879LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt *DS,
880                                                 LocalScope* Scope) {
881  if (!BuildOpts.AddImplicitDtors)
882    return Scope;
883
884  for (DeclStmt::decl_iterator DI = DS->decl_begin(), DE = DS->decl_end()
885      ; DI != DE; ++DI) {
886    if (VarDecl *VD = dyn_cast<VarDecl>(*DI))
887      Scope = addLocalScopeForVarDecl(VD, Scope);
888  }
889  return Scope;
890}
891
892/// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
893/// create add scope for automatic objects and temporary objects bound to
894/// const reference. Will reuse Scope if not NULL.
895LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl *VD,
896                                                LocalScope* Scope) {
897  if (!BuildOpts.AddImplicitDtors)
898    return Scope;
899
900  // Check if variable is local.
901  switch (VD->getStorageClass()) {
902  case SC_None:
903  case SC_Auto:
904  case SC_Register:
905    break;
906  default: return Scope;
907  }
908
909  // Check for const references bound to temporary. Set type to pointee.
910  QualType QT = VD->getType();
911  if (QT.getTypePtr()->isReferenceType()) {
912    if (!VD->extendsLifetimeOfTemporary())
913      return Scope;
914
915    QT = getReferenceInitTemporaryType(*Context, VD->getInit());
916  }
917
918  // Check for constant size array. Set type to array element type.
919  while (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
920    if (AT->getSize() == 0)
921      return Scope;
922    QT = AT->getElementType();
923  }
924
925  // Check if type is a C++ class with non-trivial destructor.
926  if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
927    if (!CD->hasTrivialDestructor()) {
928      // Add the variable to scope
929      Scope = createOrReuseLocalScope(Scope);
930      Scope->addVar(VD);
931      ScopePos = Scope->begin();
932    }
933  return Scope;
934}
935
936/// addLocalScopeAndDtors - For given statement add local scope for it and
937/// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
938void CFGBuilder::addLocalScopeAndDtors(Stmt *S) {
939  if (!BuildOpts.AddImplicitDtors)
940    return;
941
942  LocalScope::const_iterator scopeBeginPos = ScopePos;
943  addLocalScopeForStmt(S);
944  addAutomaticObjDtors(ScopePos, scopeBeginPos, S);
945}
946
947/// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
948/// variables with automatic storage duration to CFGBlock's elements vector.
949/// Elements will be prepended to physical beginning of the vector which
950/// happens to be logical end. Use blocks terminator as statement that specifies
951/// destructors call site.
952/// FIXME: This mechanism for adding automatic destructors doesn't handle
953/// no-return destructors properly.
954void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
955    LocalScope::const_iterator B, LocalScope::const_iterator E) {
956  BumpVectorContext &C = cfg->getBumpVectorContext();
957  CFGBlock::iterator InsertPos
958    = Blk->beginAutomaticObjDtorsInsert(Blk->end(), B.distance(E), C);
959  for (LocalScope::const_iterator I = B; I != E; ++I)
960    InsertPos = Blk->insertAutomaticObjDtor(InsertPos, *I,
961                                            Blk->getTerminator());
962}
963
964/// Visit - Walk the subtree of a statement and add extra
965///   blocks for ternary operators, &&, and ||.  We also process "," and
966///   DeclStmts (which may contain nested control-flow).
967CFGBlock *CFGBuilder::Visit(Stmt * S, AddStmtChoice asc) {
968  if (!S) {
969    badCFG = true;
970    return 0;
971  }
972
973  if (Expr *E = dyn_cast<Expr>(S))
974    S = E->IgnoreParens();
975
976  switch (S->getStmtClass()) {
977    default:
978      return VisitStmt(S, asc);
979
980    case Stmt::AddrLabelExprClass:
981      return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
982
983    case Stmt::BinaryConditionalOperatorClass:
984      return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc);
985
986    case Stmt::BinaryOperatorClass:
987      return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
988
989    case Stmt::BlockExprClass:
990      return VisitNoRecurse(cast<Expr>(S), asc);
991
992    case Stmt::BreakStmtClass:
993      return VisitBreakStmt(cast<BreakStmt>(S));
994
995    case Stmt::CallExprClass:
996    case Stmt::CXXOperatorCallExprClass:
997    case Stmt::CXXMemberCallExprClass:
998    case Stmt::UserDefinedLiteralClass:
999      return VisitCallExpr(cast<CallExpr>(S), asc);
1000
1001    case Stmt::CaseStmtClass:
1002      return VisitCaseStmt(cast<CaseStmt>(S));
1003
1004    case Stmt::ChooseExprClass:
1005      return VisitChooseExpr(cast<ChooseExpr>(S), asc);
1006
1007    case Stmt::CompoundStmtClass:
1008      return VisitCompoundStmt(cast<CompoundStmt>(S));
1009
1010    case Stmt::ConditionalOperatorClass:
1011      return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
1012
1013    case Stmt::ContinueStmtClass:
1014      return VisitContinueStmt(cast<ContinueStmt>(S));
1015
1016    case Stmt::CXXCatchStmtClass:
1017      return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
1018
1019    case Stmt::ExprWithCleanupsClass:
1020      return VisitExprWithCleanups(cast<ExprWithCleanups>(S), asc);
1021
1022    case Stmt::CXXBindTemporaryExprClass:
1023      return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);
1024
1025    case Stmt::CXXConstructExprClass:
1026      return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);
1027
1028    case Stmt::CXXFunctionalCastExprClass:
1029      return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);
1030
1031    case Stmt::CXXTemporaryObjectExprClass:
1032      return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);
1033
1034    case Stmt::CXXThrowExprClass:
1035      return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
1036
1037    case Stmt::CXXTryStmtClass:
1038      return VisitCXXTryStmt(cast<CXXTryStmt>(S));
1039
1040    case Stmt::CXXForRangeStmtClass:
1041      return VisitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
1042
1043    case Stmt::DeclStmtClass:
1044      return VisitDeclStmt(cast<DeclStmt>(S));
1045
1046    case Stmt::DefaultStmtClass:
1047      return VisitDefaultStmt(cast<DefaultStmt>(S));
1048
1049    case Stmt::DoStmtClass:
1050      return VisitDoStmt(cast<DoStmt>(S));
1051
1052    case Stmt::ForStmtClass:
1053      return VisitForStmt(cast<ForStmt>(S));
1054
1055    case Stmt::GotoStmtClass:
1056      return VisitGotoStmt(cast<GotoStmt>(S));
1057
1058    case Stmt::IfStmtClass:
1059      return VisitIfStmt(cast<IfStmt>(S));
1060
1061    case Stmt::ImplicitCastExprClass:
1062      return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);
1063
1064    case Stmt::IndirectGotoStmtClass:
1065      return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
1066
1067    case Stmt::LabelStmtClass:
1068      return VisitLabelStmt(cast<LabelStmt>(S));
1069
1070    case Stmt::LambdaExprClass:
1071      return VisitLambdaExpr(cast<LambdaExpr>(S), asc);
1072
1073    case Stmt::MemberExprClass:
1074      return VisitMemberExpr(cast<MemberExpr>(S), asc);
1075
1076    case Stmt::NullStmtClass:
1077      return Block;
1078
1079    case Stmt::ObjCAtCatchStmtClass:
1080      return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
1081
1082    case Stmt::ObjCAutoreleasePoolStmtClass:
1083    return VisitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(S));
1084
1085    case Stmt::ObjCAtSynchronizedStmtClass:
1086      return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
1087
1088    case Stmt::ObjCAtThrowStmtClass:
1089      return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
1090
1091    case Stmt::ObjCAtTryStmtClass:
1092      return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
1093
1094    case Stmt::ObjCForCollectionStmtClass:
1095      return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
1096
1097    case Stmt::OpaqueValueExprClass:
1098      return Block;
1099
1100    case Stmt::PseudoObjectExprClass:
1101      return VisitPseudoObjectExpr(cast<PseudoObjectExpr>(S));
1102
1103    case Stmt::ReturnStmtClass:
1104      return VisitReturnStmt(cast<ReturnStmt>(S));
1105
1106    case Stmt::UnaryExprOrTypeTraitExprClass:
1107      return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
1108                                           asc);
1109
1110    case Stmt::StmtExprClass:
1111      return VisitStmtExpr(cast<StmtExpr>(S), asc);
1112
1113    case Stmt::SwitchStmtClass:
1114      return VisitSwitchStmt(cast<SwitchStmt>(S));
1115
1116    case Stmt::UnaryOperatorClass:
1117      return VisitUnaryOperator(cast<UnaryOperator>(S), asc);
1118
1119    case Stmt::WhileStmtClass:
1120      return VisitWhileStmt(cast<WhileStmt>(S));
1121  }
1122}
1123
1124CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
1125  if (asc.alwaysAdd(*this, S)) {
1126    autoCreateBlock();
1127    appendStmt(Block, S);
1128  }
1129
1130  return VisitChildren(S);
1131}
1132
1133/// VisitChildren - Visit the children of a Stmt.
1134CFGBlock *CFGBuilder::VisitChildren(Stmt *Terminator) {
1135  CFGBlock *lastBlock = Block;
1136  for (Stmt::child_range I = Terminator->children(); I; ++I)
1137    if (Stmt *child = *I)
1138      if (CFGBlock *b = Visit(child))
1139        lastBlock = b;
1140
1141  return lastBlock;
1142}
1143
1144CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
1145                                         AddStmtChoice asc) {
1146  AddressTakenLabels.insert(A->getLabel());
1147
1148  if (asc.alwaysAdd(*this, A)) {
1149    autoCreateBlock();
1150    appendStmt(Block, A);
1151  }
1152
1153  return Block;
1154}
1155
1156CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U,
1157           AddStmtChoice asc) {
1158  if (asc.alwaysAdd(*this, U)) {
1159    autoCreateBlock();
1160    appendStmt(Block, U);
1161  }
1162
1163  return Visit(U->getSubExpr(), AddStmtChoice());
1164}
1165
1166CFGBlock *CFGBuilder::VisitLogicalOperator(BinaryOperator *B) {
1167  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1168  appendStmt(ConfluenceBlock, B);
1169
1170  if (badCFG)
1171    return 0;
1172
1173  // create the block evaluating the LHS
1174  CFGBlock *LHSBlock = createBlock(false);
1175  LHSBlock->setTerminator(B);
1176
1177  // create the block evaluating the RHS
1178  Succ = ConfluenceBlock;
1179  Block = NULL;
1180  CFGBlock *RHSBlock = addStmt(B->getRHS());
1181
1182  if (RHSBlock) {
1183    if (badCFG)
1184      return 0;
1185  } else {
1186    // Create an empty block for cases where the RHS doesn't require
1187    // any explicit statements in the CFG.
1188    RHSBlock = createBlock();
1189  }
1190
1191  // Generate the blocks for evaluating the LHS.
1192  Block = LHSBlock;
1193  CFGBlock *EntryLHSBlock = addStmt(B->getLHS());
1194
1195  // See if this is a known constant.
1196  TryResult KnownVal = tryEvaluateBool(B->getLHS());
1197  if (KnownVal.isKnown() && (B->getOpcode() == BO_LOr))
1198    KnownVal.negate();
1199
1200  // Now link the LHSBlock with RHSBlock.
1201  if (B->getOpcode() == BO_LOr) {
1202    addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
1203    addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
1204  } else {
1205    assert(B->getOpcode() == BO_LAnd);
1206    addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
1207    addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
1208  }
1209
1210  return EntryLHSBlock;
1211}
1212
1213CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
1214                                          AddStmtChoice asc) {
1215   // && or ||
1216  if (B->isLogicalOp())
1217    return VisitLogicalOperator(B);
1218
1219  if (B->getOpcode() == BO_Comma) { // ,
1220    autoCreateBlock();
1221    appendStmt(Block, B);
1222    addStmt(B->getRHS());
1223    return addStmt(B->getLHS());
1224  }
1225
1226  if (B->isAssignmentOp()) {
1227    if (asc.alwaysAdd(*this, B)) {
1228      autoCreateBlock();
1229      appendStmt(Block, B);
1230    }
1231    Visit(B->getLHS());
1232    return Visit(B->getRHS());
1233  }
1234
1235  if (asc.alwaysAdd(*this, B)) {
1236    autoCreateBlock();
1237    appendStmt(Block, B);
1238  }
1239
1240  CFGBlock *RBlock = Visit(B->getRHS());
1241  CFGBlock *LBlock = Visit(B->getLHS());
1242  // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
1243  // containing a DoStmt, and the LHS doesn't create a new block, then we should
1244  // return RBlock.  Otherwise we'll incorrectly return NULL.
1245  return (LBlock ? LBlock : RBlock);
1246}
1247
1248CFGBlock *CFGBuilder::VisitNoRecurse(Expr *E, AddStmtChoice asc) {
1249  if (asc.alwaysAdd(*this, E)) {
1250    autoCreateBlock();
1251    appendStmt(Block, E);
1252  }
1253  return Block;
1254}
1255
1256CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
1257  // "break" is a control-flow statement.  Thus we stop processing the current
1258  // block.
1259  if (badCFG)
1260    return 0;
1261
1262  // Now create a new block that ends with the break statement.
1263  Block = createBlock(false);
1264  Block->setTerminator(B);
1265
1266  // If there is no target for the break, then we are looking at an incomplete
1267  // AST.  This means that the CFG cannot be constructed.
1268  if (BreakJumpTarget.block) {
1269    addAutomaticObjDtors(ScopePos, BreakJumpTarget.scopePosition, B);
1270    addSuccessor(Block, BreakJumpTarget.block);
1271  } else
1272    badCFG = true;
1273
1274
1275  return Block;
1276}
1277
1278static bool CanThrow(Expr *E, ASTContext &Ctx) {
1279  QualType Ty = E->getType();
1280  if (Ty->isFunctionPointerType())
1281    Ty = Ty->getAs<PointerType>()->getPointeeType();
1282  else if (Ty->isBlockPointerType())
1283    Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
1284
1285  const FunctionType *FT = Ty->getAs<FunctionType>();
1286  if (FT) {
1287    if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
1288      if (Proto->getExceptionSpecType() != EST_Uninstantiated &&
1289          Proto->isNothrow(Ctx))
1290        return false;
1291  }
1292  return true;
1293}
1294
1295CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
1296  // Compute the callee type.
1297  QualType calleeType = C->getCallee()->getType();
1298  if (calleeType == Context->BoundMemberTy) {
1299    QualType boundType = Expr::findBoundMemberType(C->getCallee());
1300
1301    // We should only get a null bound type if processing a dependent
1302    // CFG.  Recover by assuming nothing.
1303    if (!boundType.isNull()) calleeType = boundType;
1304  }
1305
1306  // If this is a call to a no-return function, this stops the block here.
1307  bool NoReturn = getFunctionExtInfo(*calleeType).getNoReturn();
1308
1309  bool AddEHEdge = false;
1310
1311  // Languages without exceptions are assumed to not throw.
1312  if (Context->getLangOpts().Exceptions) {
1313    if (BuildOpts.AddEHEdges)
1314      AddEHEdge = true;
1315  }
1316
1317  if (FunctionDecl *FD = C->getDirectCallee()) {
1318    if (FD->hasAttr<NoReturnAttr>())
1319      NoReturn = true;
1320    if (FD->hasAttr<NoThrowAttr>())
1321      AddEHEdge = false;
1322  }
1323
1324  if (!CanThrow(C->getCallee(), *Context))
1325    AddEHEdge = false;
1326
1327  if (!NoReturn && !AddEHEdge)
1328    return VisitStmt(C, asc.withAlwaysAdd(true));
1329
1330  if (Block) {
1331    Succ = Block;
1332    if (badCFG)
1333      return 0;
1334  }
1335
1336  if (NoReturn)
1337    Block = createNoReturnBlock();
1338  else
1339    Block = createBlock();
1340
1341  appendStmt(Block, C);
1342
1343  if (AddEHEdge) {
1344    // Add exceptional edges.
1345    if (TryTerminatedBlock)
1346      addSuccessor(Block, TryTerminatedBlock);
1347    else
1348      addSuccessor(Block, &cfg->getExit());
1349  }
1350
1351  return VisitChildren(C);
1352}
1353
1354CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
1355                                      AddStmtChoice asc) {
1356  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1357  appendStmt(ConfluenceBlock, C);
1358  if (badCFG)
1359    return 0;
1360
1361  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1362  Succ = ConfluenceBlock;
1363  Block = NULL;
1364  CFGBlock *LHSBlock = Visit(C->getLHS(), alwaysAdd);
1365  if (badCFG)
1366    return 0;
1367
1368  Succ = ConfluenceBlock;
1369  Block = NULL;
1370  CFGBlock *RHSBlock = Visit(C->getRHS(), alwaysAdd);
1371  if (badCFG)
1372    return 0;
1373
1374  Block = createBlock(false);
1375  // See if this is a known constant.
1376  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1377  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1378  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1379  Block->setTerminator(C);
1380  return addStmt(C->getCond());
1381}
1382
1383
1384CFGBlock *CFGBuilder::VisitCompoundStmt(CompoundStmt *C) {
1385  addLocalScopeAndDtors(C);
1386  CFGBlock *LastBlock = Block;
1387
1388  for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
1389       I != E; ++I ) {
1390    // If we hit a segment of code just containing ';' (NullStmts), we can
1391    // get a null block back.  In such cases, just use the LastBlock
1392    if (CFGBlock *newBlock = addStmt(*I))
1393      LastBlock = newBlock;
1394
1395    if (badCFG)
1396      return NULL;
1397  }
1398
1399  return LastBlock;
1400}
1401
1402CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C,
1403                                               AddStmtChoice asc) {
1404  const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C);
1405  const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : NULL);
1406
1407  // Create the confluence block that will "merge" the results of the ternary
1408  // expression.
1409  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1410  appendStmt(ConfluenceBlock, C);
1411  if (badCFG)
1412    return 0;
1413
1414  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1415
1416  // Create a block for the LHS expression if there is an LHS expression.  A
1417  // GCC extension allows LHS to be NULL, causing the condition to be the
1418  // value that is returned instead.
1419  //  e.g: x ?: y is shorthand for: x ? x : y;
1420  Succ = ConfluenceBlock;
1421  Block = NULL;
1422  CFGBlock *LHSBlock = 0;
1423  const Expr *trueExpr = C->getTrueExpr();
1424  if (trueExpr != opaqueValue) {
1425    LHSBlock = Visit(C->getTrueExpr(), alwaysAdd);
1426    if (badCFG)
1427      return 0;
1428    Block = NULL;
1429  }
1430  else
1431    LHSBlock = ConfluenceBlock;
1432
1433  // Create the block for the RHS expression.
1434  Succ = ConfluenceBlock;
1435  CFGBlock *RHSBlock = Visit(C->getFalseExpr(), alwaysAdd);
1436  if (badCFG)
1437    return 0;
1438
1439  // Create the block that will contain the condition.
1440  Block = createBlock(false);
1441
1442  // See if this is a known constant.
1443  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1444  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1445  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1446  Block->setTerminator(C);
1447  Expr *condExpr = C->getCond();
1448
1449  if (opaqueValue) {
1450    // Run the condition expression if it's not trivially expressed in
1451    // terms of the opaque value (or if there is no opaque value).
1452    if (condExpr != opaqueValue)
1453      addStmt(condExpr);
1454
1455    // Before that, run the common subexpression if there was one.
1456    // At least one of this or the above will be run.
1457    return addStmt(BCO->getCommon());
1458  }
1459
1460  return addStmt(condExpr);
1461}
1462
1463CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
1464  // Check if the Decl is for an __label__.  If so, elide it from the
1465  // CFG entirely.
1466  if (isa<LabelDecl>(*DS->decl_begin()))
1467    return Block;
1468
1469  // This case also handles static_asserts.
1470  if (DS->isSingleDecl())
1471    return VisitDeclSubExpr(DS);
1472
1473  CFGBlock *B = 0;
1474
1475  // FIXME: Add a reverse iterator for DeclStmt to avoid this extra copy.
1476  typedef SmallVector<Decl*,10> BufTy;
1477  BufTy Buf(DS->decl_begin(), DS->decl_end());
1478
1479  for (BufTy::reverse_iterator I = Buf.rbegin(), E = Buf.rend(); I != E; ++I) {
1480    // Get the alignment of the new DeclStmt, padding out to >=8 bytes.
1481    unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8
1482               ? 8 : llvm::AlignOf<DeclStmt>::Alignment;
1483
1484    // Allocate the DeclStmt using the BumpPtrAllocator.  It will get
1485    // automatically freed with the CFG.
1486    DeclGroupRef DG(*I);
1487    Decl *D = *I;
1488    void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A);
1489    DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
1490
1491    // Append the fake DeclStmt to block.
1492    B = VisitDeclSubExpr(DSNew);
1493  }
1494
1495  return B;
1496}
1497
1498/// VisitDeclSubExpr - Utility method to add block-level expressions for
1499/// DeclStmts and initializers in them.
1500CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt *DS) {
1501  assert(DS->isSingleDecl() && "Can handle single declarations only.");
1502  Decl *D = DS->getSingleDecl();
1503
1504  if (isa<StaticAssertDecl>(D)) {
1505    // static_asserts aren't added to the CFG because they do not impact
1506    // runtime semantics.
1507    return Block;
1508  }
1509
1510  VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
1511
1512  if (!VD) {
1513    autoCreateBlock();
1514    appendStmt(Block, DS);
1515    return Block;
1516  }
1517
1518  bool IsReference = false;
1519  bool HasTemporaries = false;
1520
1521  // Destructors of temporaries in initialization expression should be called
1522  // after initialization finishes.
1523  Expr *Init = VD->getInit();
1524  if (Init) {
1525    IsReference = VD->getType()->isReferenceType();
1526    HasTemporaries = isa<ExprWithCleanups>(Init);
1527
1528    if (BuildOpts.AddImplicitDtors && HasTemporaries) {
1529      // Generate destructors for temporaries in initialization expression.
1530      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
1531          IsReference);
1532    }
1533  }
1534
1535  autoCreateBlock();
1536  appendStmt(Block, DS);
1537
1538  // Keep track of the last non-null block, as 'Block' can be nulled out
1539  // if the initializer expression is something like a 'while' in a
1540  // statement-expression.
1541  CFGBlock *LastBlock = Block;
1542
1543  if (Init) {
1544    if (HasTemporaries) {
1545      // For expression with temporaries go directly to subexpression to omit
1546      // generating destructors for the second time.
1547      ExprWithCleanups *EC = cast<ExprWithCleanups>(Init);
1548      if (CFGBlock *newBlock = Visit(EC->getSubExpr()))
1549        LastBlock = newBlock;
1550    }
1551    else {
1552      if (CFGBlock *newBlock = Visit(Init))
1553        LastBlock = newBlock;
1554    }
1555  }
1556
1557  // If the type of VD is a VLA, then we must process its size expressions.
1558  for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr());
1559       VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
1560    Block = addStmt(VA->getSizeExpr());
1561
1562  // Remove variable from local scope.
1563  if (ScopePos && VD == *ScopePos)
1564    ++ScopePos;
1565
1566  return Block ? Block : LastBlock;
1567}
1568
1569CFGBlock *CFGBuilder::VisitIfStmt(IfStmt *I) {
1570  // We may see an if statement in the middle of a basic block, or it may be the
1571  // first statement we are processing.  In either case, we create a new basic
1572  // block.  First, we create the blocks for the then...else statements, and
1573  // then we create the block containing the if statement.  If we were in the
1574  // middle of a block, we stop processing that block.  That block is then the
1575  // implicit successor for the "then" and "else" clauses.
1576
1577  // Save local scope position because in case of condition variable ScopePos
1578  // won't be restored when traversing AST.
1579  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1580
1581  // Create local scope for possible condition variable.
1582  // Store scope position. Add implicit destructor.
1583  if (VarDecl *VD = I->getConditionVariable()) {
1584    LocalScope::const_iterator BeginScopePos = ScopePos;
1585    addLocalScopeForVarDecl(VD);
1586    addAutomaticObjDtors(ScopePos, BeginScopePos, I);
1587  }
1588
1589  // The block we were processing is now finished.  Make it the successor
1590  // block.
1591  if (Block) {
1592    Succ = Block;
1593    if (badCFG)
1594      return 0;
1595  }
1596
1597  // Process the false branch.
1598  CFGBlock *ElseBlock = Succ;
1599
1600  if (Stmt *Else = I->getElse()) {
1601    SaveAndRestore<CFGBlock*> sv(Succ);
1602
1603    // NULL out Block so that the recursive call to Visit will
1604    // create a new basic block.
1605    Block = NULL;
1606
1607    // If branch is not a compound statement create implicit scope
1608    // and add destructors.
1609    if (!isa<CompoundStmt>(Else))
1610      addLocalScopeAndDtors(Else);
1611
1612    ElseBlock = addStmt(Else);
1613
1614    if (!ElseBlock) // Can occur when the Else body has all NullStmts.
1615      ElseBlock = sv.get();
1616    else if (Block) {
1617      if (badCFG)
1618        return 0;
1619    }
1620  }
1621
1622  // Process the true branch.
1623  CFGBlock *ThenBlock;
1624  {
1625    Stmt *Then = I->getThen();
1626    assert(Then);
1627    SaveAndRestore<CFGBlock*> sv(Succ);
1628    Block = NULL;
1629
1630    // If branch is not a compound statement create implicit scope
1631    // and add destructors.
1632    if (!isa<CompoundStmt>(Then))
1633      addLocalScopeAndDtors(Then);
1634
1635    ThenBlock = addStmt(Then);
1636
1637    if (!ThenBlock) {
1638      // We can reach here if the "then" body has all NullStmts.
1639      // Create an empty block so we can distinguish between true and false
1640      // branches in path-sensitive analyses.
1641      ThenBlock = createBlock(false);
1642      addSuccessor(ThenBlock, sv.get());
1643    } else if (Block) {
1644      if (badCFG)
1645        return 0;
1646    }
1647  }
1648
1649  // Now create a new block containing the if statement.
1650  Block = createBlock(false);
1651
1652  // Set the terminator of the new block to the If statement.
1653  Block->setTerminator(I);
1654
1655  // See if this is a known constant.
1656  const TryResult &KnownVal = tryEvaluateBool(I->getCond());
1657
1658  // Now add the successors.
1659  addSuccessor(Block, KnownVal.isFalse() ? NULL : ThenBlock);
1660  addSuccessor(Block, KnownVal.isTrue()? NULL : ElseBlock);
1661
1662  // Add the condition as the last statement in the new block.  This may create
1663  // new blocks as the condition may contain control-flow.  Any newly created
1664  // blocks will be pointed to be "Block".
1665  Block = addStmt(I->getCond());
1666
1667  // Finally, if the IfStmt contains a condition variable, add both the IfStmt
1668  // and the condition variable initialization to the CFG.
1669  if (VarDecl *VD = I->getConditionVariable()) {
1670    if (Expr *Init = VD->getInit()) {
1671      autoCreateBlock();
1672      appendStmt(Block, I->getConditionVariableDeclStmt());
1673      addStmt(Init);
1674    }
1675  }
1676
1677  return Block;
1678}
1679
1680
1681CFGBlock *CFGBuilder::VisitReturnStmt(ReturnStmt *R) {
1682  // If we were in the middle of a block we stop processing that block.
1683  //
1684  // NOTE: If a "return" appears in the middle of a block, this means that the
1685  //       code afterwards is DEAD (unreachable).  We still keep a basic block
1686  //       for that code; a simple "mark-and-sweep" from the entry block will be
1687  //       able to report such dead blocks.
1688
1689  // Create the new block.
1690  Block = createBlock(false);
1691
1692  // The Exit block is the only successor.
1693  addAutomaticObjDtors(ScopePos, LocalScope::const_iterator(), R);
1694  addSuccessor(Block, &cfg->getExit());
1695
1696  // Add the return statement to the block.  This may create new blocks if R
1697  // contains control-flow (short-circuit operations).
1698  return VisitStmt(R, AddStmtChoice::AlwaysAdd);
1699}
1700
1701CFGBlock *CFGBuilder::VisitLabelStmt(LabelStmt *L) {
1702  // Get the block of the labeled statement.  Add it to our map.
1703  addStmt(L->getSubStmt());
1704  CFGBlock *LabelBlock = Block;
1705
1706  if (!LabelBlock)              // This can happen when the body is empty, i.e.
1707    LabelBlock = createBlock(); // scopes that only contains NullStmts.
1708
1709  assert(LabelMap.find(L->getDecl()) == LabelMap.end() &&
1710         "label already in map");
1711  LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos);
1712
1713  // Labels partition blocks, so this is the end of the basic block we were
1714  // processing (L is the block's label).  Because this is label (and we have
1715  // already processed the substatement) there is no extra control-flow to worry
1716  // about.
1717  LabelBlock->setLabel(L);
1718  if (badCFG)
1719    return 0;
1720
1721  // We set Block to NULL to allow lazy creation of a new block (if necessary);
1722  Block = NULL;
1723
1724  // This block is now the implicit successor of other blocks.
1725  Succ = LabelBlock;
1726
1727  return LabelBlock;
1728}
1729
1730CFGBlock *CFGBuilder::VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc) {
1731  CFGBlock *LastBlock = VisitNoRecurse(E, asc);
1732  for (LambdaExpr::capture_init_iterator it = E->capture_init_begin(),
1733       et = E->capture_init_end(); it != et; ++it) {
1734    if (Expr *Init = *it) {
1735      CFGBlock *Tmp = Visit(Init);
1736      if (Tmp != 0)
1737        LastBlock = Tmp;
1738    }
1739  }
1740  return LastBlock;
1741}
1742
1743CFGBlock *CFGBuilder::VisitGotoStmt(GotoStmt *G) {
1744  // Goto is a control-flow statement.  Thus we stop processing the current
1745  // block and create a new one.
1746
1747  Block = createBlock(false);
1748  Block->setTerminator(G);
1749
1750  // If we already know the mapping to the label block add the successor now.
1751  LabelMapTy::iterator I = LabelMap.find(G->getLabel());
1752
1753  if (I == LabelMap.end())
1754    // We will need to backpatch this block later.
1755    BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
1756  else {
1757    JumpTarget JT = I->second;
1758    addAutomaticObjDtors(ScopePos, JT.scopePosition, G);
1759    addSuccessor(Block, JT.block);
1760  }
1761
1762  return Block;
1763}
1764
1765CFGBlock *CFGBuilder::VisitForStmt(ForStmt *F) {
1766  CFGBlock *LoopSuccessor = NULL;
1767
1768  // Save local scope position because in case of condition variable ScopePos
1769  // won't be restored when traversing AST.
1770  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1771
1772  // Create local scope for init statement and possible condition variable.
1773  // Add destructor for init statement and condition variable.
1774  // Store scope position for continue statement.
1775  if (Stmt *Init = F->getInit())
1776    addLocalScopeForStmt(Init);
1777  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
1778
1779  if (VarDecl *VD = F->getConditionVariable())
1780    addLocalScopeForVarDecl(VD);
1781  LocalScope::const_iterator ContinueScopePos = ScopePos;
1782
1783  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), F);
1784
1785  // "for" is a control-flow statement.  Thus we stop processing the current
1786  // block.
1787  if (Block) {
1788    if (badCFG)
1789      return 0;
1790    LoopSuccessor = Block;
1791  } else
1792    LoopSuccessor = Succ;
1793
1794  // Save the current value for the break targets.
1795  // All breaks should go to the code following the loop.
1796  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
1797  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1798
1799  // Because of short-circuit evaluation, the condition of the loop can span
1800  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1801  // evaluate the condition.
1802  CFGBlock *ExitConditionBlock = createBlock(false);
1803  CFGBlock *EntryConditionBlock = ExitConditionBlock;
1804
1805  // Set the terminator for the "exit" condition block.
1806  ExitConditionBlock->setTerminator(F);
1807
1808  // Now add the actual condition to the condition block.  Because the condition
1809  // itself may contain control-flow, new blocks may be created.
1810  if (Stmt *C = F->getCond()) {
1811    Block = ExitConditionBlock;
1812    EntryConditionBlock = addStmt(C);
1813    if (badCFG)
1814      return 0;
1815    assert(Block == EntryConditionBlock ||
1816           (Block == 0 && EntryConditionBlock == Succ));
1817
1818    // If this block contains a condition variable, add both the condition
1819    // variable and initializer to the CFG.
1820    if (VarDecl *VD = F->getConditionVariable()) {
1821      if (Expr *Init = VD->getInit()) {
1822        autoCreateBlock();
1823        appendStmt(Block, F->getConditionVariableDeclStmt());
1824        EntryConditionBlock = addStmt(Init);
1825        assert(Block == EntryConditionBlock);
1826      }
1827    }
1828
1829    if (Block) {
1830      if (badCFG)
1831        return 0;
1832    }
1833  }
1834
1835  // The condition block is the implicit successor for the loop body as well as
1836  // any code above the loop.
1837  Succ = EntryConditionBlock;
1838
1839  // See if this is a known constant.
1840  TryResult KnownVal(true);
1841
1842  if (F->getCond())
1843    KnownVal = tryEvaluateBool(F->getCond());
1844
1845  // Now create the loop body.
1846  {
1847    assert(F->getBody());
1848
1849   // Save the current values for Block, Succ, and continue targets.
1850   SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
1851   SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
1852
1853    // Create a new block to contain the (bottom) of the loop body.
1854    Block = NULL;
1855
1856    // Loop body should end with destructor of Condition variable (if any).
1857    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, F);
1858
1859    if (Stmt *I = F->getInc()) {
1860      // Generate increment code in its own basic block.  This is the target of
1861      // continue statements.
1862      Succ = addStmt(I);
1863    } else {
1864      // No increment code.  Create a special, empty, block that is used as the
1865      // target block for "looping back" to the start of the loop.
1866      assert(Succ == EntryConditionBlock);
1867      Succ = Block ? Block : createBlock();
1868    }
1869
1870    // Finish up the increment (or empty) block if it hasn't been already.
1871    if (Block) {
1872      assert(Block == Succ);
1873      if (badCFG)
1874        return 0;
1875      Block = 0;
1876    }
1877
1878    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
1879
1880    // The starting block for the loop increment is the block that should
1881    // represent the 'loop target' for looping back to the start of the loop.
1882    ContinueJumpTarget.block->setLoopTarget(F);
1883
1884    // If body is not a compound statement create implicit scope
1885    // and add destructors.
1886    if (!isa<CompoundStmt>(F->getBody()))
1887      addLocalScopeAndDtors(F->getBody());
1888
1889    // Now populate the body block, and in the process create new blocks as we
1890    // walk the body of the loop.
1891    CFGBlock *BodyBlock = addStmt(F->getBody());
1892
1893    if (!BodyBlock)
1894      BodyBlock = ContinueJumpTarget.block;//can happen for "for (...;...;...);"
1895    else if (badCFG)
1896      return 0;
1897
1898    // This new body block is a successor to our "exit" condition block.
1899    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
1900  }
1901
1902  // Link up the condition block with the code that follows the loop.  (the
1903  // false branch).
1904  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
1905
1906  // If the loop contains initialization, create a new block for those
1907  // statements.  This block can also contain statements that precede the loop.
1908  if (Stmt *I = F->getInit()) {
1909    Block = createBlock();
1910    return addStmt(I);
1911  }
1912
1913  // There is no loop initialization.  We are thus basically a while loop.
1914  // NULL out Block to force lazy block construction.
1915  Block = NULL;
1916  Succ = EntryConditionBlock;
1917  return EntryConditionBlock;
1918}
1919
1920CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
1921  if (asc.alwaysAdd(*this, M)) {
1922    autoCreateBlock();
1923    appendStmt(Block, M);
1924  }
1925  return Visit(M->getBase());
1926}
1927
1928CFGBlock *CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) {
1929  // Objective-C fast enumeration 'for' statements:
1930  //  http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
1931  //
1932  //  for ( Type newVariable in collection_expression ) { statements }
1933  //
1934  //  becomes:
1935  //
1936  //   prologue:
1937  //     1. collection_expression
1938  //     T. jump to loop_entry
1939  //   loop_entry:
1940  //     1. side-effects of element expression
1941  //     1. ObjCForCollectionStmt [performs binding to newVariable]
1942  //     T. ObjCForCollectionStmt  TB, FB  [jumps to TB if newVariable != nil]
1943  //   TB:
1944  //     statements
1945  //     T. jump to loop_entry
1946  //   FB:
1947  //     what comes after
1948  //
1949  //  and
1950  //
1951  //  Type existingItem;
1952  //  for ( existingItem in expression ) { statements }
1953  //
1954  //  becomes:
1955  //
1956  //   the same with newVariable replaced with existingItem; the binding works
1957  //   the same except that for one ObjCForCollectionStmt::getElement() returns
1958  //   a DeclStmt and the other returns a DeclRefExpr.
1959  //
1960
1961  CFGBlock *LoopSuccessor = 0;
1962
1963  if (Block) {
1964    if (badCFG)
1965      return 0;
1966    LoopSuccessor = Block;
1967    Block = 0;
1968  } else
1969    LoopSuccessor = Succ;
1970
1971  // Build the condition blocks.
1972  CFGBlock *ExitConditionBlock = createBlock(false);
1973
1974  // Set the terminator for the "exit" condition block.
1975  ExitConditionBlock->setTerminator(S);
1976
1977  // The last statement in the block should be the ObjCForCollectionStmt, which
1978  // performs the actual binding to 'element' and determines if there are any
1979  // more items in the collection.
1980  appendStmt(ExitConditionBlock, S);
1981  Block = ExitConditionBlock;
1982
1983  // Walk the 'element' expression to see if there are any side-effects.  We
1984  // generate new blocks as necessary.  We DON'T add the statement by default to
1985  // the CFG unless it contains control-flow.
1986  CFGBlock *EntryConditionBlock = Visit(S->getElement(),
1987                                        AddStmtChoice::NotAlwaysAdd);
1988  if (Block) {
1989    if (badCFG)
1990      return 0;
1991    Block = 0;
1992  }
1993
1994  // The condition block is the implicit successor for the loop body as well as
1995  // any code above the loop.
1996  Succ = EntryConditionBlock;
1997
1998  // Now create the true branch.
1999  {
2000    // Save the current values for Succ, continue and break targets.
2001    SaveAndRestore<CFGBlock*> save_Succ(Succ);
2002    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2003        save_break(BreakJumpTarget);
2004
2005    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2006    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
2007
2008    CFGBlock *BodyBlock = addStmt(S->getBody());
2009
2010    if (!BodyBlock)
2011      BodyBlock = EntryConditionBlock; // can happen for "for (X in Y) ;"
2012    else if (Block) {
2013      if (badCFG)
2014        return 0;
2015    }
2016
2017    // This new body block is a successor to our "exit" condition block.
2018    addSuccessor(ExitConditionBlock, BodyBlock);
2019  }
2020
2021  // Link up the condition block with the code that follows the loop.
2022  // (the false branch).
2023  addSuccessor(ExitConditionBlock, LoopSuccessor);
2024
2025  // Now create a prologue block to contain the collection expression.
2026  Block = createBlock();
2027  return addStmt(S->getCollection());
2028}
2029
2030CFGBlock *CFGBuilder::VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S) {
2031  // Inline the body.
2032  return addStmt(S->getSubStmt());
2033  // TODO: consider adding cleanups for the end of @autoreleasepool scope.
2034}
2035
2036CFGBlock *CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) {
2037  // FIXME: Add locking 'primitives' to CFG for @synchronized.
2038
2039  // Inline the body.
2040  CFGBlock *SyncBlock = addStmt(S->getSynchBody());
2041
2042  // The sync body starts its own basic block.  This makes it a little easier
2043  // for diagnostic clients.
2044  if (SyncBlock) {
2045    if (badCFG)
2046      return 0;
2047
2048    Block = 0;
2049    Succ = SyncBlock;
2050  }
2051
2052  // Add the @synchronized to the CFG.
2053  autoCreateBlock();
2054  appendStmt(Block, S);
2055
2056  // Inline the sync expression.
2057  return addStmt(S->getSynchExpr());
2058}
2059
2060CFGBlock *CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt *S) {
2061  // FIXME
2062  return NYS();
2063}
2064
2065CFGBlock *CFGBuilder::VisitPseudoObjectExpr(PseudoObjectExpr *E) {
2066  autoCreateBlock();
2067
2068  // Add the PseudoObject as the last thing.
2069  appendStmt(Block, E);
2070
2071  CFGBlock *lastBlock = Block;
2072
2073  // Before that, evaluate all of the semantics in order.  In
2074  // CFG-land, that means appending them in reverse order.
2075  for (unsigned i = E->getNumSemanticExprs(); i != 0; ) {
2076    Expr *Semantic = E->getSemanticExpr(--i);
2077
2078    // If the semantic is an opaque value, we're being asked to bind
2079    // it to its source expression.
2080    if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Semantic))
2081      Semantic = OVE->getSourceExpr();
2082
2083    if (CFGBlock *B = Visit(Semantic))
2084      lastBlock = B;
2085  }
2086
2087  return lastBlock;
2088}
2089
2090CFGBlock *CFGBuilder::VisitWhileStmt(WhileStmt *W) {
2091  CFGBlock *LoopSuccessor = NULL;
2092
2093  // Save local scope position because in case of condition variable ScopePos
2094  // won't be restored when traversing AST.
2095  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2096
2097  // Create local scope for possible condition variable.
2098  // Store scope position for continue statement.
2099  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
2100  if (VarDecl *VD = W->getConditionVariable()) {
2101    addLocalScopeForVarDecl(VD);
2102    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
2103  }
2104
2105  // "while" is a control-flow statement.  Thus we stop processing the current
2106  // block.
2107  if (Block) {
2108    if (badCFG)
2109      return 0;
2110    LoopSuccessor = Block;
2111    Block = 0;
2112  } else
2113    LoopSuccessor = Succ;
2114
2115  // Because of short-circuit evaluation, the condition of the loop can span
2116  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2117  // evaluate the condition.
2118  CFGBlock *ExitConditionBlock = createBlock(false);
2119  CFGBlock *EntryConditionBlock = ExitConditionBlock;
2120
2121  // Set the terminator for the "exit" condition block.
2122  ExitConditionBlock->setTerminator(W);
2123
2124  // Now add the actual condition to the condition block.  Because the condition
2125  // itself may contain control-flow, new blocks may be created.  Thus we update
2126  // "Succ" after adding the condition.
2127  if (Stmt *C = W->getCond()) {
2128    Block = ExitConditionBlock;
2129    EntryConditionBlock = addStmt(C);
2130    // The condition might finish the current 'Block'.
2131    Block = EntryConditionBlock;
2132
2133    // If this block contains a condition variable, add both the condition
2134    // variable and initializer to the CFG.
2135    if (VarDecl *VD = W->getConditionVariable()) {
2136      if (Expr *Init = VD->getInit()) {
2137        autoCreateBlock();
2138        appendStmt(Block, W->getConditionVariableDeclStmt());
2139        EntryConditionBlock = addStmt(Init);
2140        assert(Block == EntryConditionBlock);
2141      }
2142    }
2143
2144    if (Block) {
2145      if (badCFG)
2146        return 0;
2147    }
2148  }
2149
2150  // The condition block is the implicit successor for the loop body as well as
2151  // any code above the loop.
2152  Succ = EntryConditionBlock;
2153
2154  // See if this is a known constant.
2155  const TryResult& KnownVal = tryEvaluateBool(W->getCond());
2156
2157  // Process the loop body.
2158  {
2159    assert(W->getBody());
2160
2161    // Save the current values for Block, Succ, and continue and break targets
2162    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2163    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2164        save_break(BreakJumpTarget);
2165
2166    // Create an empty block to represent the transition block for looping back
2167    // to the head of the loop.
2168    Block = 0;
2169    assert(Succ == EntryConditionBlock);
2170    Succ = createBlock();
2171    Succ->setLoopTarget(W);
2172    ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
2173
2174    // All breaks should go to the code following the loop.
2175    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2176
2177    // NULL out Block to force lazy instantiation of blocks for the body.
2178    Block = NULL;
2179
2180    // Loop body should end with destructor of Condition variable (if any).
2181    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
2182
2183    // If body is not a compound statement create implicit scope
2184    // and add destructors.
2185    if (!isa<CompoundStmt>(W->getBody()))
2186      addLocalScopeAndDtors(W->getBody());
2187
2188    // Create the body.  The returned block is the entry to the loop body.
2189    CFGBlock *BodyBlock = addStmt(W->getBody());
2190
2191    if (!BodyBlock)
2192      BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;"
2193    else if (Block) {
2194      if (badCFG)
2195        return 0;
2196    }
2197
2198    // Add the loop body entry as a successor to the condition.
2199    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
2200  }
2201
2202  // Link up the condition block with the code that follows the loop.  (the
2203  // false branch).
2204  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2205
2206  // There can be no more statements in the condition block since we loop back
2207  // to this block.  NULL out Block to force lazy creation of another block.
2208  Block = NULL;
2209
2210  // Return the condition block, which is the dominating block for the loop.
2211  Succ = EntryConditionBlock;
2212  return EntryConditionBlock;
2213}
2214
2215
2216CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt *S) {
2217  // FIXME: For now we pretend that @catch and the code it contains does not
2218  //  exit.
2219  return Block;
2220}
2221
2222CFGBlock *CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) {
2223  // FIXME: This isn't complete.  We basically treat @throw like a return
2224  //  statement.
2225
2226  // If we were in the middle of a block we stop processing that block.
2227  if (badCFG)
2228    return 0;
2229
2230  // Create the new block.
2231  Block = createBlock(false);
2232
2233  // The Exit block is the only successor.
2234  addSuccessor(Block, &cfg->getExit());
2235
2236  // Add the statement to the block.  This may create new blocks if S contains
2237  // control-flow (short-circuit operations).
2238  return VisitStmt(S, AddStmtChoice::AlwaysAdd);
2239}
2240
2241CFGBlock *CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr *T) {
2242  // If we were in the middle of a block we stop processing that block.
2243  if (badCFG)
2244    return 0;
2245
2246  // Create the new block.
2247  Block = createBlock(false);
2248
2249  if (TryTerminatedBlock)
2250    // The current try statement is the only successor.
2251    addSuccessor(Block, TryTerminatedBlock);
2252  else
2253    // otherwise the Exit block is the only successor.
2254    addSuccessor(Block, &cfg->getExit());
2255
2256  // Add the statement to the block.  This may create new blocks if S contains
2257  // control-flow (short-circuit operations).
2258  return VisitStmt(T, AddStmtChoice::AlwaysAdd);
2259}
2260
2261CFGBlock *CFGBuilder::VisitDoStmt(DoStmt *D) {
2262  CFGBlock *LoopSuccessor = NULL;
2263
2264  // "do...while" is a control-flow statement.  Thus we stop processing the
2265  // current block.
2266  if (Block) {
2267    if (badCFG)
2268      return 0;
2269    LoopSuccessor = Block;
2270  } else
2271    LoopSuccessor = Succ;
2272
2273  // Because of short-circuit evaluation, the condition of the loop can span
2274  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2275  // evaluate the condition.
2276  CFGBlock *ExitConditionBlock = createBlock(false);
2277  CFGBlock *EntryConditionBlock = ExitConditionBlock;
2278
2279  // Set the terminator for the "exit" condition block.
2280  ExitConditionBlock->setTerminator(D);
2281
2282  // Now add the actual condition to the condition block.  Because the condition
2283  // itself may contain control-flow, new blocks may be created.
2284  if (Stmt *C = D->getCond()) {
2285    Block = ExitConditionBlock;
2286    EntryConditionBlock = addStmt(C);
2287    if (Block) {
2288      if (badCFG)
2289        return 0;
2290    }
2291  }
2292
2293  // The condition block is the implicit successor for the loop body.
2294  Succ = EntryConditionBlock;
2295
2296  // See if this is a known constant.
2297  const TryResult &KnownVal = tryEvaluateBool(D->getCond());
2298
2299  // Process the loop body.
2300  CFGBlock *BodyBlock = NULL;
2301  {
2302    assert(D->getBody());
2303
2304    // Save the current values for Block, Succ, and continue and break targets
2305    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2306    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2307        save_break(BreakJumpTarget);
2308
2309    // All continues within this loop should go to the condition block
2310    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
2311
2312    // All breaks should go to the code following the loop.
2313    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2314
2315    // NULL out Block to force lazy instantiation of blocks for the body.
2316    Block = NULL;
2317
2318    // If body is not a compound statement create implicit scope
2319    // and add destructors.
2320    if (!isa<CompoundStmt>(D->getBody()))
2321      addLocalScopeAndDtors(D->getBody());
2322
2323    // Create the body.  The returned block is the entry to the loop body.
2324    BodyBlock = addStmt(D->getBody());
2325
2326    if (!BodyBlock)
2327      BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
2328    else if (Block) {
2329      if (badCFG)
2330        return 0;
2331    }
2332
2333    if (!KnownVal.isFalse()) {
2334      // Add an intermediate block between the BodyBlock and the
2335      // ExitConditionBlock to represent the "loop back" transition.  Create an
2336      // empty block to represent the transition block for looping back to the
2337      // head of the loop.
2338      // FIXME: Can we do this more efficiently without adding another block?
2339      Block = NULL;
2340      Succ = BodyBlock;
2341      CFGBlock *LoopBackBlock = createBlock();
2342      LoopBackBlock->setLoopTarget(D);
2343
2344      // Add the loop body entry as a successor to the condition.
2345      addSuccessor(ExitConditionBlock, LoopBackBlock);
2346    }
2347    else
2348      addSuccessor(ExitConditionBlock, NULL);
2349  }
2350
2351  // Link up the condition block with the code that follows the loop.
2352  // (the false branch).
2353  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2354
2355  // There can be no more statements in the body block(s) since we loop back to
2356  // the body.  NULL out Block to force lazy creation of another block.
2357  Block = NULL;
2358
2359  // Return the loop body, which is the dominating block for the loop.
2360  Succ = BodyBlock;
2361  return BodyBlock;
2362}
2363
2364CFGBlock *CFGBuilder::VisitContinueStmt(ContinueStmt *C) {
2365  // "continue" is a control-flow statement.  Thus we stop processing the
2366  // current block.
2367  if (badCFG)
2368    return 0;
2369
2370  // Now create a new block that ends with the continue statement.
2371  Block = createBlock(false);
2372  Block->setTerminator(C);
2373
2374  // If there is no target for the continue, then we are looking at an
2375  // incomplete AST.  This means the CFG cannot be constructed.
2376  if (ContinueJumpTarget.block) {
2377    addAutomaticObjDtors(ScopePos, ContinueJumpTarget.scopePosition, C);
2378    addSuccessor(Block, ContinueJumpTarget.block);
2379  } else
2380    badCFG = true;
2381
2382  return Block;
2383}
2384
2385CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
2386                                                    AddStmtChoice asc) {
2387
2388  if (asc.alwaysAdd(*this, E)) {
2389    autoCreateBlock();
2390    appendStmt(Block, E);
2391  }
2392
2393  // VLA types have expressions that must be evaluated.
2394  CFGBlock *lastBlock = Block;
2395
2396  if (E->isArgumentType()) {
2397    for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr());
2398         VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
2399      lastBlock = addStmt(VA->getSizeExpr());
2400  }
2401  return lastBlock;
2402}
2403
2404/// VisitStmtExpr - Utility method to handle (nested) statement
2405///  expressions (a GCC extension).
2406CFGBlock *CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
2407  if (asc.alwaysAdd(*this, SE)) {
2408    autoCreateBlock();
2409    appendStmt(Block, SE);
2410  }
2411  return VisitCompoundStmt(SE->getSubStmt());
2412}
2413
2414CFGBlock *CFGBuilder::VisitSwitchStmt(SwitchStmt *Terminator) {
2415  // "switch" is a control-flow statement.  Thus we stop processing the current
2416  // block.
2417  CFGBlock *SwitchSuccessor = NULL;
2418
2419  // Save local scope position because in case of condition variable ScopePos
2420  // won't be restored when traversing AST.
2421  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2422
2423  // Create local scope for possible condition variable.
2424  // Store scope position. Add implicit destructor.
2425  if (VarDecl *VD = Terminator->getConditionVariable()) {
2426    LocalScope::const_iterator SwitchBeginScopePos = ScopePos;
2427    addLocalScopeForVarDecl(VD);
2428    addAutomaticObjDtors(ScopePos, SwitchBeginScopePos, Terminator);
2429  }
2430
2431  if (Block) {
2432    if (badCFG)
2433      return 0;
2434    SwitchSuccessor = Block;
2435  } else SwitchSuccessor = Succ;
2436
2437  // Save the current "switch" context.
2438  SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
2439                            save_default(DefaultCaseBlock);
2440  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2441
2442  // Set the "default" case to be the block after the switch statement.  If the
2443  // switch statement contains a "default:", this value will be overwritten with
2444  // the block for that code.
2445  DefaultCaseBlock = SwitchSuccessor;
2446
2447  // Create a new block that will contain the switch statement.
2448  SwitchTerminatedBlock = createBlock(false);
2449
2450  // Now process the switch body.  The code after the switch is the implicit
2451  // successor.
2452  Succ = SwitchSuccessor;
2453  BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
2454
2455  // When visiting the body, the case statements should automatically get linked
2456  // up to the switch.  We also don't keep a pointer to the body, since all
2457  // control-flow from the switch goes to case/default statements.
2458  assert(Terminator->getBody() && "switch must contain a non-NULL body");
2459  Block = NULL;
2460
2461  // For pruning unreachable case statements, save the current state
2462  // for tracking the condition value.
2463  SaveAndRestore<bool> save_switchExclusivelyCovered(switchExclusivelyCovered,
2464                                                     false);
2465
2466  // Determine if the switch condition can be explicitly evaluated.
2467  assert(Terminator->getCond() && "switch condition must be non-NULL");
2468  Expr::EvalResult result;
2469  bool b = tryEvaluate(Terminator->getCond(), result);
2470  SaveAndRestore<Expr::EvalResult*> save_switchCond(switchCond,
2471                                                    b ? &result : 0);
2472
2473  // If body is not a compound statement create implicit scope
2474  // and add destructors.
2475  if (!isa<CompoundStmt>(Terminator->getBody()))
2476    addLocalScopeAndDtors(Terminator->getBody());
2477
2478  addStmt(Terminator->getBody());
2479  if (Block) {
2480    if (badCFG)
2481      return 0;
2482  }
2483
2484  // If we have no "default:" case, the default transition is to the code
2485  // following the switch body.  Moreover, take into account if all the
2486  // cases of a switch are covered (e.g., switching on an enum value).
2487  addSuccessor(SwitchTerminatedBlock,
2488               switchExclusivelyCovered || Terminator->isAllEnumCasesCovered()
2489               ? 0 : DefaultCaseBlock);
2490
2491  // Add the terminator and condition in the switch block.
2492  SwitchTerminatedBlock->setTerminator(Terminator);
2493  Block = SwitchTerminatedBlock;
2494  Block = addStmt(Terminator->getCond());
2495
2496  // Finally, if the SwitchStmt contains a condition variable, add both the
2497  // SwitchStmt and the condition variable initialization to the CFG.
2498  if (VarDecl *VD = Terminator->getConditionVariable()) {
2499    if (Expr *Init = VD->getInit()) {
2500      autoCreateBlock();
2501      appendStmt(Block, Terminator->getConditionVariableDeclStmt());
2502      addStmt(Init);
2503    }
2504  }
2505
2506  return Block;
2507}
2508
2509static bool shouldAddCase(bool &switchExclusivelyCovered,
2510                          const Expr::EvalResult *switchCond,
2511                          const CaseStmt *CS,
2512                          ASTContext &Ctx) {
2513  if (!switchCond)
2514    return true;
2515
2516  bool addCase = false;
2517
2518  if (!switchExclusivelyCovered) {
2519    if (switchCond->Val.isInt()) {
2520      // Evaluate the LHS of the case value.
2521      const llvm::APSInt &lhsInt = CS->getLHS()->EvaluateKnownConstInt(Ctx);
2522      const llvm::APSInt &condInt = switchCond->Val.getInt();
2523
2524      if (condInt == lhsInt) {
2525        addCase = true;
2526        switchExclusivelyCovered = true;
2527      }
2528      else if (condInt < lhsInt) {
2529        if (const Expr *RHS = CS->getRHS()) {
2530          // Evaluate the RHS of the case value.
2531          const llvm::APSInt &V2 = RHS->EvaluateKnownConstInt(Ctx);
2532          if (V2 <= condInt) {
2533            addCase = true;
2534            switchExclusivelyCovered = true;
2535          }
2536        }
2537      }
2538    }
2539    else
2540      addCase = true;
2541  }
2542  return addCase;
2543}
2544
2545CFGBlock *CFGBuilder::VisitCaseStmt(CaseStmt *CS) {
2546  // CaseStmts are essentially labels, so they are the first statement in a
2547  // block.
2548  CFGBlock *TopBlock = 0, *LastBlock = 0;
2549
2550  if (Stmt *Sub = CS->getSubStmt()) {
2551    // For deeply nested chains of CaseStmts, instead of doing a recursion
2552    // (which can blow out the stack), manually unroll and create blocks
2553    // along the way.
2554    while (isa<CaseStmt>(Sub)) {
2555      CFGBlock *currentBlock = createBlock(false);
2556      currentBlock->setLabel(CS);
2557
2558      if (TopBlock)
2559        addSuccessor(LastBlock, currentBlock);
2560      else
2561        TopBlock = currentBlock;
2562
2563      addSuccessor(SwitchTerminatedBlock,
2564                   shouldAddCase(switchExclusivelyCovered, switchCond,
2565                                 CS, *Context)
2566                   ? currentBlock : 0);
2567
2568      LastBlock = currentBlock;
2569      CS = cast<CaseStmt>(Sub);
2570      Sub = CS->getSubStmt();
2571    }
2572
2573    addStmt(Sub);
2574  }
2575
2576  CFGBlock *CaseBlock = Block;
2577  if (!CaseBlock)
2578    CaseBlock = createBlock();
2579
2580  // Cases statements partition blocks, so this is the top of the basic block we
2581  // were processing (the "case XXX:" is the label).
2582  CaseBlock->setLabel(CS);
2583
2584  if (badCFG)
2585    return 0;
2586
2587  // Add this block to the list of successors for the block with the switch
2588  // statement.
2589  assert(SwitchTerminatedBlock);
2590  addSuccessor(SwitchTerminatedBlock,
2591               shouldAddCase(switchExclusivelyCovered, switchCond,
2592                             CS, *Context)
2593               ? CaseBlock : 0);
2594
2595  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2596  Block = NULL;
2597
2598  if (TopBlock) {
2599    addSuccessor(LastBlock, CaseBlock);
2600    Succ = TopBlock;
2601  } else {
2602    // This block is now the implicit successor of other blocks.
2603    Succ = CaseBlock;
2604  }
2605
2606  return Succ;
2607}
2608
2609CFGBlock *CFGBuilder::VisitDefaultStmt(DefaultStmt *Terminator) {
2610  if (Terminator->getSubStmt())
2611    addStmt(Terminator->getSubStmt());
2612
2613  DefaultCaseBlock = Block;
2614
2615  if (!DefaultCaseBlock)
2616    DefaultCaseBlock = createBlock();
2617
2618  // Default statements partition blocks, so this is the top of the basic block
2619  // we were processing (the "default:" is the label).
2620  DefaultCaseBlock->setLabel(Terminator);
2621
2622  if (badCFG)
2623    return 0;
2624
2625  // Unlike case statements, we don't add the default block to the successors
2626  // for the switch statement immediately.  This is done when we finish
2627  // processing the switch statement.  This allows for the default case
2628  // (including a fall-through to the code after the switch statement) to always
2629  // be the last successor of a switch-terminated block.
2630
2631  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2632  Block = NULL;
2633
2634  // This block is now the implicit successor of other blocks.
2635  Succ = DefaultCaseBlock;
2636
2637  return DefaultCaseBlock;
2638}
2639
2640CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
2641  // "try"/"catch" is a control-flow statement.  Thus we stop processing the
2642  // current block.
2643  CFGBlock *TrySuccessor = NULL;
2644
2645  if (Block) {
2646    if (badCFG)
2647      return 0;
2648    TrySuccessor = Block;
2649  } else TrySuccessor = Succ;
2650
2651  CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
2652
2653  // Create a new block that will contain the try statement.
2654  CFGBlock *NewTryTerminatedBlock = createBlock(false);
2655  // Add the terminator in the try block.
2656  NewTryTerminatedBlock->setTerminator(Terminator);
2657
2658  bool HasCatchAll = false;
2659  for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
2660    // The code after the try is the implicit successor.
2661    Succ = TrySuccessor;
2662    CXXCatchStmt *CS = Terminator->getHandler(h);
2663    if (CS->getExceptionDecl() == 0) {
2664      HasCatchAll = true;
2665    }
2666    Block = NULL;
2667    CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
2668    if (CatchBlock == 0)
2669      return 0;
2670    // Add this block to the list of successors for the block with the try
2671    // statement.
2672    addSuccessor(NewTryTerminatedBlock, CatchBlock);
2673  }
2674  if (!HasCatchAll) {
2675    if (PrevTryTerminatedBlock)
2676      addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
2677    else
2678      addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
2679  }
2680
2681  // The code after the try is the implicit successor.
2682  Succ = TrySuccessor;
2683
2684  // Save the current "try" context.
2685  SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock, NewTryTerminatedBlock);
2686  cfg->addTryDispatchBlock(TryTerminatedBlock);
2687
2688  assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
2689  Block = NULL;
2690  Block = addStmt(Terminator->getTryBlock());
2691  return Block;
2692}
2693
2694CFGBlock *CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt *CS) {
2695  // CXXCatchStmt are treated like labels, so they are the first statement in a
2696  // block.
2697
2698  // Save local scope position because in case of exception variable ScopePos
2699  // won't be restored when traversing AST.
2700  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2701
2702  // Create local scope for possible exception variable.
2703  // Store scope position. Add implicit destructor.
2704  if (VarDecl *VD = CS->getExceptionDecl()) {
2705    LocalScope::const_iterator BeginScopePos = ScopePos;
2706    addLocalScopeForVarDecl(VD);
2707    addAutomaticObjDtors(ScopePos, BeginScopePos, CS);
2708  }
2709
2710  if (CS->getHandlerBlock())
2711    addStmt(CS->getHandlerBlock());
2712
2713  CFGBlock *CatchBlock = Block;
2714  if (!CatchBlock)
2715    CatchBlock = createBlock();
2716
2717  // CXXCatchStmt is more than just a label.  They have semantic meaning
2718  // as well, as they implicitly "initialize" the catch variable.  Add
2719  // it to the CFG as a CFGElement so that the control-flow of these
2720  // semantics gets captured.
2721  appendStmt(CatchBlock, CS);
2722
2723  // Also add the CXXCatchStmt as a label, to mirror handling of regular
2724  // labels.
2725  CatchBlock->setLabel(CS);
2726
2727  // Bail out if the CFG is bad.
2728  if (badCFG)
2729    return 0;
2730
2731  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2732  Block = NULL;
2733
2734  return CatchBlock;
2735}
2736
2737CFGBlock *CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt *S) {
2738  // C++0x for-range statements are specified as [stmt.ranged]:
2739  //
2740  // {
2741  //   auto && __range = range-init;
2742  //   for ( auto __begin = begin-expr,
2743  //         __end = end-expr;
2744  //         __begin != __end;
2745  //         ++__begin ) {
2746  //     for-range-declaration = *__begin;
2747  //     statement
2748  //   }
2749  // }
2750
2751  // Save local scope position before the addition of the implicit variables.
2752  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2753
2754  // Create local scopes and destructors for range, begin and end variables.
2755  if (Stmt *Range = S->getRangeStmt())
2756    addLocalScopeForStmt(Range);
2757  if (Stmt *BeginEnd = S->getBeginEndStmt())
2758    addLocalScopeForStmt(BeginEnd);
2759  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), S);
2760
2761  LocalScope::const_iterator ContinueScopePos = ScopePos;
2762
2763  // "for" is a control-flow statement.  Thus we stop processing the current
2764  // block.
2765  CFGBlock *LoopSuccessor = NULL;
2766  if (Block) {
2767    if (badCFG)
2768      return 0;
2769    LoopSuccessor = Block;
2770  } else
2771    LoopSuccessor = Succ;
2772
2773  // Save the current value for the break targets.
2774  // All breaks should go to the code following the loop.
2775  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2776  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2777
2778  // The block for the __begin != __end expression.
2779  CFGBlock *ConditionBlock = createBlock(false);
2780  ConditionBlock->setTerminator(S);
2781
2782  // Now add the actual condition to the condition block.
2783  if (Expr *C = S->getCond()) {
2784    Block = ConditionBlock;
2785    CFGBlock *BeginConditionBlock = addStmt(C);
2786    if (badCFG)
2787      return 0;
2788    assert(BeginConditionBlock == ConditionBlock &&
2789           "condition block in for-range was unexpectedly complex");
2790    (void)BeginConditionBlock;
2791  }
2792
2793  // The condition block is the implicit successor for the loop body as well as
2794  // any code above the loop.
2795  Succ = ConditionBlock;
2796
2797  // See if this is a known constant.
2798  TryResult KnownVal(true);
2799
2800  if (S->getCond())
2801    KnownVal = tryEvaluateBool(S->getCond());
2802
2803  // Now create the loop body.
2804  {
2805    assert(S->getBody());
2806
2807    // Save the current values for Block, Succ, and continue targets.
2808    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2809    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
2810
2811    // Generate increment code in its own basic block.  This is the target of
2812    // continue statements.
2813    Block = 0;
2814    Succ = addStmt(S->getInc());
2815    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
2816
2817    // The starting block for the loop increment is the block that should
2818    // represent the 'loop target' for looping back to the start of the loop.
2819    ContinueJumpTarget.block->setLoopTarget(S);
2820
2821    // Finish up the increment block and prepare to start the loop body.
2822    assert(Block);
2823    if (badCFG)
2824      return 0;
2825    Block = 0;
2826
2827
2828    // Add implicit scope and dtors for loop variable.
2829    addLocalScopeAndDtors(S->getLoopVarStmt());
2830
2831    // Populate a new block to contain the loop body and loop variable.
2832    Block = addStmt(S->getBody());
2833    if (badCFG)
2834      return 0;
2835    Block = addStmt(S->getLoopVarStmt());
2836    if (badCFG)
2837      return 0;
2838
2839    // This new body block is a successor to our condition block.
2840    addSuccessor(ConditionBlock, KnownVal.isFalse() ? 0 : Block);
2841  }
2842
2843  // Link up the condition block with the code that follows the loop (the
2844  // false branch).
2845  addSuccessor(ConditionBlock, KnownVal.isTrue() ? 0 : LoopSuccessor);
2846
2847  // Add the initialization statements.
2848  Block = createBlock();
2849  addStmt(S->getBeginEndStmt());
2850  return addStmt(S->getRangeStmt());
2851}
2852
2853CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E,
2854    AddStmtChoice asc) {
2855  if (BuildOpts.AddImplicitDtors) {
2856    // If adding implicit destructors visit the full expression for adding
2857    // destructors of temporaries.
2858    VisitForTemporaryDtors(E->getSubExpr());
2859
2860    // Full expression has to be added as CFGStmt so it will be sequenced
2861    // before destructors of it's temporaries.
2862    asc = asc.withAlwaysAdd(true);
2863  }
2864  return Visit(E->getSubExpr(), asc);
2865}
2866
2867CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
2868                                                AddStmtChoice asc) {
2869  if (asc.alwaysAdd(*this, E)) {
2870    autoCreateBlock();
2871    appendStmt(Block, E);
2872
2873    // We do not want to propagate the AlwaysAdd property.
2874    asc = asc.withAlwaysAdd(false);
2875  }
2876  return Visit(E->getSubExpr(), asc);
2877}
2878
2879CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C,
2880                                            AddStmtChoice asc) {
2881  autoCreateBlock();
2882  appendStmt(Block, C);
2883
2884  return VisitChildren(C);
2885}
2886
2887CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
2888                                                 AddStmtChoice asc) {
2889  if (asc.alwaysAdd(*this, E)) {
2890    autoCreateBlock();
2891    appendStmt(Block, E);
2892    // We do not want to propagate the AlwaysAdd property.
2893    asc = asc.withAlwaysAdd(false);
2894  }
2895  return Visit(E->getSubExpr(), asc);
2896}
2897
2898CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
2899                                                  AddStmtChoice asc) {
2900  autoCreateBlock();
2901  appendStmt(Block, C);
2902  return VisitChildren(C);
2903}
2904
2905CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E,
2906                                            AddStmtChoice asc) {
2907  if (asc.alwaysAdd(*this, E)) {
2908    autoCreateBlock();
2909    appendStmt(Block, E);
2910  }
2911  return Visit(E->getSubExpr(), AddStmtChoice());
2912}
2913
2914CFGBlock *CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt *I) {
2915  // Lazily create the indirect-goto dispatch block if there isn't one already.
2916  CFGBlock *IBlock = cfg->getIndirectGotoBlock();
2917
2918  if (!IBlock) {
2919    IBlock = createBlock(false);
2920    cfg->setIndirectGotoBlock(IBlock);
2921  }
2922
2923  // IndirectGoto is a control-flow statement.  Thus we stop processing the
2924  // current block and create a new one.
2925  if (badCFG)
2926    return 0;
2927
2928  Block = createBlock(false);
2929  Block->setTerminator(I);
2930  addSuccessor(Block, IBlock);
2931  return addStmt(I->getTarget());
2932}
2933
2934CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool BindToTemporary) {
2935tryAgain:
2936  if (!E) {
2937    badCFG = true;
2938    return NULL;
2939  }
2940  switch (E->getStmtClass()) {
2941    default:
2942      return VisitChildrenForTemporaryDtors(E);
2943
2944    case Stmt::BinaryOperatorClass:
2945      return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E));
2946
2947    case Stmt::CXXBindTemporaryExprClass:
2948      return VisitCXXBindTemporaryExprForTemporaryDtors(
2949          cast<CXXBindTemporaryExpr>(E), BindToTemporary);
2950
2951    case Stmt::BinaryConditionalOperatorClass:
2952    case Stmt::ConditionalOperatorClass:
2953      return VisitConditionalOperatorForTemporaryDtors(
2954          cast<AbstractConditionalOperator>(E), BindToTemporary);
2955
2956    case Stmt::ImplicitCastExprClass:
2957      // For implicit cast we want BindToTemporary to be passed further.
2958      E = cast<CastExpr>(E)->getSubExpr();
2959      goto tryAgain;
2960
2961    case Stmt::ParenExprClass:
2962      E = cast<ParenExpr>(E)->getSubExpr();
2963      goto tryAgain;
2964
2965    case Stmt::MaterializeTemporaryExprClass:
2966      E = cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr();
2967      goto tryAgain;
2968  }
2969}
2970
2971CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E) {
2972  // When visiting children for destructors we want to visit them in reverse
2973  // order. Because there's no reverse iterator for children must to reverse
2974  // them in helper vector.
2975  typedef SmallVector<Stmt *, 4> ChildrenVect;
2976  ChildrenVect ChildrenRev;
2977  for (Stmt::child_range I = E->children(); I; ++I) {
2978    if (*I) ChildrenRev.push_back(*I);
2979  }
2980
2981  CFGBlock *B = Block;
2982  for (ChildrenVect::reverse_iterator I = ChildrenRev.rbegin(),
2983      L = ChildrenRev.rend(); I != L; ++I) {
2984    if (CFGBlock *R = VisitForTemporaryDtors(*I))
2985      B = R;
2986  }
2987  return B;
2988}
2989
2990CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E) {
2991  if (E->isLogicalOp()) {
2992    // Destructors for temporaries in LHS expression should be called after
2993    // those for RHS expression. Even if this will unnecessarily create a block,
2994    // this block will be used at least by the full expression.
2995    autoCreateBlock();
2996    CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getLHS());
2997    if (badCFG)
2998      return NULL;
2999
3000    Succ = ConfluenceBlock;
3001    Block = NULL;
3002    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
3003
3004    if (RHSBlock) {
3005      if (badCFG)
3006        return NULL;
3007
3008      // If RHS expression did produce destructors we need to connect created
3009      // blocks to CFG in same manner as for binary operator itself.
3010      CFGBlock *LHSBlock = createBlock(false);
3011      LHSBlock->setTerminator(CFGTerminator(E, true));
3012
3013      // For binary operator LHS block is before RHS in list of predecessors
3014      // of ConfluenceBlock.
3015      std::reverse(ConfluenceBlock->pred_begin(),
3016          ConfluenceBlock->pred_end());
3017
3018      // See if this is a known constant.
3019      TryResult KnownVal = tryEvaluateBool(E->getLHS());
3020      if (KnownVal.isKnown() && (E->getOpcode() == BO_LOr))
3021        KnownVal.negate();
3022
3023      // Link LHSBlock with RHSBlock exactly the same way as for binary operator
3024      // itself.
3025      if (E->getOpcode() == BO_LOr) {
3026        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
3027        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
3028      } else {
3029        assert (E->getOpcode() == BO_LAnd);
3030        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
3031        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
3032      }
3033
3034      Block = LHSBlock;
3035      return LHSBlock;
3036    }
3037
3038    Block = ConfluenceBlock;
3039    return ConfluenceBlock;
3040  }
3041
3042  if (E->isAssignmentOp()) {
3043    // For assignment operator (=) LHS expression is visited
3044    // before RHS expression. For destructors visit them in reverse order.
3045    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
3046    CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
3047    return LHSBlock ? LHSBlock : RHSBlock;
3048  }
3049
3050  // For any other binary operator RHS expression is visited before
3051  // LHS expression (order of children). For destructors visit them in reverse
3052  // order.
3053  CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
3054  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
3055  return RHSBlock ? RHSBlock : LHSBlock;
3056}
3057
3058CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
3059    CXXBindTemporaryExpr *E, bool BindToTemporary) {
3060  // First add destructors for temporaries in subexpression.
3061  CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr());
3062  if (!BindToTemporary) {
3063    // If lifetime of temporary is not prolonged (by assigning to constant
3064    // reference) add destructor for it.
3065
3066    // If the destructor is marked as a no-return destructor, we need to create
3067    // a new block for the destructor which does not have as a successor
3068    // anything built thus far. Control won't flow out of this block.
3069    const CXXDestructorDecl *Dtor = E->getTemporary()->getDestructor();
3070    if (cast<FunctionType>(Dtor->getType())->getNoReturnAttr())
3071      Block = createNoReturnBlock();
3072    else
3073      autoCreateBlock();
3074
3075    appendTemporaryDtor(Block, E);
3076    B = Block;
3077  }
3078  return B;
3079}
3080
3081CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
3082    AbstractConditionalOperator *E, bool BindToTemporary) {
3083  // First add destructors for condition expression.  Even if this will
3084  // unnecessarily create a block, this block will be used at least by the full
3085  // expression.
3086  autoCreateBlock();
3087  CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getCond());
3088  if (badCFG)
3089    return NULL;
3090  if (BinaryConditionalOperator *BCO
3091        = dyn_cast<BinaryConditionalOperator>(E)) {
3092    ConfluenceBlock = VisitForTemporaryDtors(BCO->getCommon());
3093    if (badCFG)
3094      return NULL;
3095  }
3096
3097  // Try to add block with destructors for LHS expression.
3098  CFGBlock *LHSBlock = NULL;
3099  Succ = ConfluenceBlock;
3100  Block = NULL;
3101  LHSBlock = VisitForTemporaryDtors(E->getTrueExpr(), BindToTemporary);
3102  if (badCFG)
3103    return NULL;
3104
3105  // Try to add block with destructors for RHS expression;
3106  Succ = ConfluenceBlock;
3107  Block = NULL;
3108  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getFalseExpr(),
3109                                              BindToTemporary);
3110  if (badCFG)
3111    return NULL;
3112
3113  if (!RHSBlock && !LHSBlock) {
3114    // If neither LHS nor RHS expression had temporaries to destroy don't create
3115    // more blocks.
3116    Block = ConfluenceBlock;
3117    return Block;
3118  }
3119
3120  Block = createBlock(false);
3121  Block->setTerminator(CFGTerminator(E, true));
3122
3123  // See if this is a known constant.
3124  const TryResult &KnownVal = tryEvaluateBool(E->getCond());
3125
3126  if (LHSBlock) {
3127    addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
3128  } else if (KnownVal.isFalse()) {
3129    addSuccessor(Block, NULL);
3130  } else {
3131    addSuccessor(Block, ConfluenceBlock);
3132    std::reverse(ConfluenceBlock->pred_begin(), ConfluenceBlock->pred_end());
3133  }
3134
3135  if (!RHSBlock)
3136    RHSBlock = ConfluenceBlock;
3137  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
3138
3139  return Block;
3140}
3141
3142} // end anonymous namespace
3143
3144/// createBlock - Constructs and adds a new CFGBlock to the CFG.  The block has
3145///  no successors or predecessors.  If this is the first block created in the
3146///  CFG, it is automatically set to be the Entry and Exit of the CFG.
3147CFGBlock *CFG::createBlock() {
3148  bool first_block = begin() == end();
3149
3150  // Create the block.
3151  CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
3152  new (Mem) CFGBlock(NumBlockIDs++, BlkBVC, this);
3153  Blocks.push_back(Mem, BlkBVC);
3154
3155  // If this is the first block, set it as the Entry and Exit.
3156  if (first_block)
3157    Entry = Exit = &back();
3158
3159  // Return the block.
3160  return &back();
3161}
3162
3163/// buildCFG - Constructs a CFG from an AST.  Ownership of the returned
3164///  CFG is returned to the caller.
3165CFG* CFG::buildCFG(const Decl *D, Stmt *Statement, ASTContext *C,
3166    const BuildOptions &BO) {
3167  CFGBuilder Builder(C, BO);
3168  return Builder.buildCFG(D, Statement);
3169}
3170
3171const CXXDestructorDecl *
3172CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const {
3173  switch (getKind()) {
3174    case CFGElement::Invalid:
3175    case CFGElement::Statement:
3176    case CFGElement::Initializer:
3177      llvm_unreachable("getDestructorDecl should only be used with "
3178                       "ImplicitDtors");
3179    case CFGElement::AutomaticObjectDtor: {
3180      const VarDecl *var = cast<CFGAutomaticObjDtor>(this)->getVarDecl();
3181      QualType ty = var->getType();
3182      ty = ty.getNonReferenceType();
3183      while (const ArrayType *arrayType = astContext.getAsArrayType(ty)) {
3184        ty = arrayType->getElementType();
3185      }
3186      const RecordType *recordType = ty->getAs<RecordType>();
3187      const CXXRecordDecl *classDecl =
3188      cast<CXXRecordDecl>(recordType->getDecl());
3189      return classDecl->getDestructor();
3190    }
3191    case CFGElement::TemporaryDtor: {
3192      const CXXBindTemporaryExpr *bindExpr =
3193        cast<CFGTemporaryDtor>(this)->getBindTemporaryExpr();
3194      const CXXTemporary *temp = bindExpr->getTemporary();
3195      return temp->getDestructor();
3196    }
3197    case CFGElement::BaseDtor:
3198    case CFGElement::MemberDtor:
3199
3200      // Not yet supported.
3201      return 0;
3202  }
3203  llvm_unreachable("getKind() returned bogus value");
3204}
3205
3206bool CFGImplicitDtor::isNoReturn(ASTContext &astContext) const {
3207  if (const CXXDestructorDecl *decl = getDestructorDecl(astContext)) {
3208    QualType ty = decl->getType();
3209    return cast<FunctionType>(ty)->getNoReturnAttr();
3210  }
3211  return false;
3212}
3213
3214//===----------------------------------------------------------------------===//
3215// CFG: Queries for BlkExprs.
3216//===----------------------------------------------------------------------===//
3217
3218namespace {
3219  typedef llvm::DenseMap<const Stmt*,unsigned> BlkExprMapTy;
3220}
3221
3222static void FindSubExprAssignments(const Stmt *S,
3223                                   llvm::SmallPtrSet<const Expr*,50>& Set) {
3224  if (!S)
3225    return;
3226
3227  for (Stmt::const_child_range I = S->children(); I; ++I) {
3228    const Stmt *child = *I;
3229    if (!child)
3230      continue;
3231
3232    if (const BinaryOperator* B = dyn_cast<BinaryOperator>(child))
3233      if (B->isAssignmentOp()) Set.insert(B);
3234
3235    FindSubExprAssignments(child, Set);
3236  }
3237}
3238
3239static BlkExprMapTy* PopulateBlkExprMap(CFG& cfg) {
3240  BlkExprMapTy* M = new BlkExprMapTy();
3241
3242  // Look for assignments that are used as subexpressions.  These are the only
3243  // assignments that we want to *possibly* register as a block-level
3244  // expression.  Basically, if an assignment occurs both in a subexpression and
3245  // at the block-level, it is a block-level expression.
3246  llvm::SmallPtrSet<const Expr*,50> SubExprAssignments;
3247
3248  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I)
3249    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI)
3250      if (const CFGStmt *S = BI->getAs<CFGStmt>())
3251        FindSubExprAssignments(S->getStmt(), SubExprAssignments);
3252
3253  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I) {
3254
3255    // Iterate over the statements again on identify the Expr* and Stmt* at the
3256    // block-level that are block-level expressions.
3257
3258    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI) {
3259      const CFGStmt *CS = BI->getAs<CFGStmt>();
3260      if (!CS)
3261        continue;
3262      if (const Expr *Exp = dyn_cast<Expr>(CS->getStmt())) {
3263        assert((Exp->IgnoreParens() == Exp) && "No parens on block-level exps");
3264
3265        if (const BinaryOperator* B = dyn_cast<BinaryOperator>(Exp)) {
3266          // Assignment expressions that are not nested within another
3267          // expression are really "statements" whose value is never used by
3268          // another expression.
3269          if (B->isAssignmentOp() && !SubExprAssignments.count(Exp))
3270            continue;
3271        } else if (const StmtExpr *SE = dyn_cast<StmtExpr>(Exp)) {
3272          // Special handling for statement expressions.  The last statement in
3273          // the statement expression is also a block-level expr.
3274          const CompoundStmt *C = SE->getSubStmt();
3275          if (!C->body_empty()) {
3276            const Stmt *Last = C->body_back();
3277            if (const Expr *LastEx = dyn_cast<Expr>(Last))
3278              Last = LastEx->IgnoreParens();
3279            unsigned x = M->size();
3280            (*M)[Last] = x;
3281          }
3282        }
3283
3284        unsigned x = M->size();
3285        (*M)[Exp] = x;
3286      }
3287    }
3288
3289    // Look at terminators.  The condition is a block-level expression.
3290
3291    Stmt *S = (*I)->getTerminatorCondition();
3292
3293    if (S && M->find(S) == M->end()) {
3294      unsigned x = M->size();
3295      (*M)[S] = x;
3296    }
3297  }
3298
3299  return M;
3300}
3301
3302CFG::BlkExprNumTy CFG::getBlkExprNum(const Stmt *S) {
3303  assert(S != NULL);
3304  if (!BlkExprMap) { BlkExprMap = (void*) PopulateBlkExprMap(*this); }
3305
3306  BlkExprMapTy* M = reinterpret_cast<BlkExprMapTy*>(BlkExprMap);
3307  BlkExprMapTy::iterator I = M->find(S);
3308  return (I == M->end()) ? CFG::BlkExprNumTy() : CFG::BlkExprNumTy(I->second);
3309}
3310
3311unsigned CFG::getNumBlkExprs() {
3312  if (const BlkExprMapTy* M = reinterpret_cast<const BlkExprMapTy*>(BlkExprMap))
3313    return M->size();
3314
3315  // We assume callers interested in the number of BlkExprs will want
3316  // the map constructed if it doesn't already exist.
3317  BlkExprMap = (void*) PopulateBlkExprMap(*this);
3318  return reinterpret_cast<BlkExprMapTy*>(BlkExprMap)->size();
3319}
3320
3321//===----------------------------------------------------------------------===//
3322// Filtered walking of the CFG.
3323//===----------------------------------------------------------------------===//
3324
3325bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
3326        const CFGBlock *From, const CFGBlock *To) {
3327
3328  if (To && F.IgnoreDefaultsWithCoveredEnums) {
3329    // If the 'To' has no label or is labeled but the label isn't a
3330    // CaseStmt then filter this edge.
3331    if (const SwitchStmt *S =
3332        dyn_cast_or_null<SwitchStmt>(From->getTerminator().getStmt())) {
3333      if (S->isAllEnumCasesCovered()) {
3334        const Stmt *L = To->getLabel();
3335        if (!L || !isa<CaseStmt>(L))
3336          return true;
3337      }
3338    }
3339  }
3340
3341  return false;
3342}
3343
3344//===----------------------------------------------------------------------===//
3345// Cleanup: CFG dstor.
3346//===----------------------------------------------------------------------===//
3347
3348CFG::~CFG() {
3349  delete reinterpret_cast<const BlkExprMapTy*>(BlkExprMap);
3350}
3351
3352//===----------------------------------------------------------------------===//
3353// CFG pretty printing
3354//===----------------------------------------------------------------------===//
3355
3356namespace {
3357
3358class StmtPrinterHelper : public PrinterHelper  {
3359  typedef llvm::DenseMap<const Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
3360  typedef llvm::DenseMap<const Decl*,std::pair<unsigned,unsigned> > DeclMapTy;
3361  StmtMapTy StmtMap;
3362  DeclMapTy DeclMap;
3363  signed currentBlock;
3364  unsigned currentStmt;
3365  const LangOptions &LangOpts;
3366public:
3367
3368  StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
3369    : currentBlock(0), currentStmt(0), LangOpts(LO)
3370  {
3371    for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
3372      unsigned j = 1;
3373      for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
3374           BI != BEnd; ++BI, ++j ) {
3375        if (const CFGStmt *SE = BI->getAs<CFGStmt>()) {
3376          const Stmt *stmt= SE->getStmt();
3377          std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
3378          StmtMap[stmt] = P;
3379
3380          switch (stmt->getStmtClass()) {
3381            case Stmt::DeclStmtClass:
3382                DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P;
3383                break;
3384            case Stmt::IfStmtClass: {
3385              const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable();
3386              if (var)
3387                DeclMap[var] = P;
3388              break;
3389            }
3390            case Stmt::ForStmtClass: {
3391              const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable();
3392              if (var)
3393                DeclMap[var] = P;
3394              break;
3395            }
3396            case Stmt::WhileStmtClass: {
3397              const VarDecl *var =
3398                cast<WhileStmt>(stmt)->getConditionVariable();
3399              if (var)
3400                DeclMap[var] = P;
3401              break;
3402            }
3403            case Stmt::SwitchStmtClass: {
3404              const VarDecl *var =
3405                cast<SwitchStmt>(stmt)->getConditionVariable();
3406              if (var)
3407                DeclMap[var] = P;
3408              break;
3409            }
3410            case Stmt::CXXCatchStmtClass: {
3411              const VarDecl *var =
3412                cast<CXXCatchStmt>(stmt)->getExceptionDecl();
3413              if (var)
3414                DeclMap[var] = P;
3415              break;
3416            }
3417            default:
3418              break;
3419          }
3420        }
3421      }
3422    }
3423  }
3424
3425
3426  virtual ~StmtPrinterHelper() {}
3427
3428  const LangOptions &getLangOpts() const { return LangOpts; }
3429  void setBlockID(signed i) { currentBlock = i; }
3430  void setStmtID(unsigned i) { currentStmt = i; }
3431
3432  virtual bool handledStmt(Stmt *S, raw_ostream &OS) {
3433    StmtMapTy::iterator I = StmtMap.find(S);
3434
3435    if (I == StmtMap.end())
3436      return false;
3437
3438    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3439                          && I->second.second == currentStmt) {
3440      return false;
3441    }
3442
3443    OS << "[B" << I->second.first << "." << I->second.second << "]";
3444    return true;
3445  }
3446
3447  bool handleDecl(const Decl *D, raw_ostream &OS) {
3448    DeclMapTy::iterator I = DeclMap.find(D);
3449
3450    if (I == DeclMap.end())
3451      return false;
3452
3453    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3454                          && I->second.second == currentStmt) {
3455      return false;
3456    }
3457
3458    OS << "[B" << I->second.first << "." << I->second.second << "]";
3459    return true;
3460  }
3461};
3462} // end anonymous namespace
3463
3464
3465namespace {
3466class CFGBlockTerminatorPrint
3467  : public StmtVisitor<CFGBlockTerminatorPrint,void> {
3468
3469  raw_ostream &OS;
3470  StmtPrinterHelper* Helper;
3471  PrintingPolicy Policy;
3472public:
3473  CFGBlockTerminatorPrint(raw_ostream &os, StmtPrinterHelper* helper,
3474                          const PrintingPolicy &Policy)
3475    : OS(os), Helper(helper), Policy(Policy) {}
3476
3477  void VisitIfStmt(IfStmt *I) {
3478    OS << "if ";
3479    I->getCond()->printPretty(OS,Helper,Policy);
3480  }
3481
3482  // Default case.
3483  void VisitStmt(Stmt *Terminator) {
3484    Terminator->printPretty(OS, Helper, Policy);
3485  }
3486
3487  void VisitForStmt(ForStmt *F) {
3488    OS << "for (" ;
3489    if (F->getInit())
3490      OS << "...";
3491    OS << "; ";
3492    if (Stmt *C = F->getCond())
3493      C->printPretty(OS, Helper, Policy);
3494    OS << "; ";
3495    if (F->getInc())
3496      OS << "...";
3497    OS << ")";
3498  }
3499
3500  void VisitWhileStmt(WhileStmt *W) {
3501    OS << "while " ;
3502    if (Stmt *C = W->getCond())
3503      C->printPretty(OS, Helper, Policy);
3504  }
3505
3506  void VisitDoStmt(DoStmt *D) {
3507    OS << "do ... while ";
3508    if (Stmt *C = D->getCond())
3509      C->printPretty(OS, Helper, Policy);
3510  }
3511
3512  void VisitSwitchStmt(SwitchStmt *Terminator) {
3513    OS << "switch ";
3514    Terminator->getCond()->printPretty(OS, Helper, Policy);
3515  }
3516
3517  void VisitCXXTryStmt(CXXTryStmt *CS) {
3518    OS << "try ...";
3519  }
3520
3521  void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) {
3522    C->getCond()->printPretty(OS, Helper, Policy);
3523    OS << " ? ... : ...";
3524  }
3525
3526  void VisitChooseExpr(ChooseExpr *C) {
3527    OS << "__builtin_choose_expr( ";
3528    C->getCond()->printPretty(OS, Helper, Policy);
3529    OS << " )";
3530  }
3531
3532  void VisitIndirectGotoStmt(IndirectGotoStmt *I) {
3533    OS << "goto *";
3534    I->getTarget()->printPretty(OS, Helper, Policy);
3535  }
3536
3537  void VisitBinaryOperator(BinaryOperator* B) {
3538    if (!B->isLogicalOp()) {
3539      VisitExpr(B);
3540      return;
3541    }
3542
3543    B->getLHS()->printPretty(OS, Helper, Policy);
3544
3545    switch (B->getOpcode()) {
3546      case BO_LOr:
3547        OS << " || ...";
3548        return;
3549      case BO_LAnd:
3550        OS << " && ...";
3551        return;
3552      default:
3553        llvm_unreachable("Invalid logical operator.");
3554    }
3555  }
3556
3557  void VisitExpr(Expr *E) {
3558    E->printPretty(OS, Helper, Policy);
3559  }
3560};
3561} // end anonymous namespace
3562
3563static void print_elem(raw_ostream &OS, StmtPrinterHelper* Helper,
3564                       const CFGElement &E) {
3565  if (const CFGStmt *CS = E.getAs<CFGStmt>()) {
3566    const Stmt *S = CS->getStmt();
3567
3568    if (Helper) {
3569
3570      // special printing for statement-expressions.
3571      if (const StmtExpr *SE = dyn_cast<StmtExpr>(S)) {
3572        const CompoundStmt *Sub = SE->getSubStmt();
3573
3574        if (Sub->children()) {
3575          OS << "({ ... ; ";
3576          Helper->handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
3577          OS << " })\n";
3578          return;
3579        }
3580      }
3581      // special printing for comma expressions.
3582      if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
3583        if (B->getOpcode() == BO_Comma) {
3584          OS << "... , ";
3585          Helper->handledStmt(B->getRHS(),OS);
3586          OS << '\n';
3587          return;
3588        }
3589      }
3590    }
3591    S->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3592
3593    if (isa<CXXOperatorCallExpr>(S)) {
3594      OS << " (OperatorCall)";
3595    }
3596    else if (isa<CXXBindTemporaryExpr>(S)) {
3597      OS << " (BindTemporary)";
3598    }
3599    else if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(S)) {
3600      OS << " (CXXConstructExpr, " << CCE->getType().getAsString() << ")";
3601    }
3602    else if (const CastExpr *CE = dyn_cast<CastExpr>(S)) {
3603      OS << " (" << CE->getStmtClassName() << ", "
3604         << CE->getCastKindName()
3605         << ", " << CE->getType().getAsString()
3606         << ")";
3607    }
3608
3609    // Expressions need a newline.
3610    if (isa<Expr>(S))
3611      OS << '\n';
3612
3613  } else if (const CFGInitializer *IE = E.getAs<CFGInitializer>()) {
3614    const CXXCtorInitializer *I = IE->getInitializer();
3615    if (I->isBaseInitializer())
3616      OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
3617    else OS << I->getAnyMember()->getName();
3618
3619    OS << "(";
3620    if (Expr *IE = I->getInit())
3621      IE->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3622    OS << ")";
3623
3624    if (I->isBaseInitializer())
3625      OS << " (Base initializer)\n";
3626    else OS << " (Member initializer)\n";
3627
3628  } else if (const CFGAutomaticObjDtor *DE = E.getAs<CFGAutomaticObjDtor>()){
3629    const VarDecl *VD = DE->getVarDecl();
3630    Helper->handleDecl(VD, OS);
3631
3632    const Type* T = VD->getType().getTypePtr();
3633    if (const ReferenceType* RT = T->getAs<ReferenceType>())
3634      T = RT->getPointeeType().getTypePtr();
3635    else if (const Type *ET = T->getArrayElementTypeNoTypeQual())
3636      T = ET;
3637
3638    OS << ".~" << T->getAsCXXRecordDecl()->getName().str() << "()";
3639    OS << " (Implicit destructor)\n";
3640
3641  } else if (const CFGBaseDtor *BE = E.getAs<CFGBaseDtor>()) {
3642    const CXXBaseSpecifier *BS = BE->getBaseSpecifier();
3643    OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
3644    OS << " (Base object destructor)\n";
3645
3646  } else if (const CFGMemberDtor *ME = E.getAs<CFGMemberDtor>()) {
3647    const FieldDecl *FD = ME->getFieldDecl();
3648
3649    const Type *T = FD->getType().getTypePtr();
3650    if (const Type *ET = T->getArrayElementTypeNoTypeQual())
3651      T = ET;
3652
3653    OS << "this->" << FD->getName();
3654    OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()";
3655    OS << " (Member object destructor)\n";
3656
3657  } else if (const CFGTemporaryDtor *TE = E.getAs<CFGTemporaryDtor>()) {
3658    const CXXBindTemporaryExpr *BT = TE->getBindTemporaryExpr();
3659    OS << "~" << BT->getType()->getAsCXXRecordDecl()->getName() << "()";
3660    OS << " (Temporary object destructor)\n";
3661  }
3662}
3663
3664static void print_block(raw_ostream &OS, const CFG* cfg,
3665                        const CFGBlock &B,
3666                        StmtPrinterHelper* Helper, bool print_edges,
3667                        bool ShowColors) {
3668
3669  if (Helper)
3670    Helper->setBlockID(B.getBlockID());
3671
3672  // Print the header.
3673  if (ShowColors)
3674    OS.changeColor(raw_ostream::YELLOW, true);
3675
3676  OS << "\n [B" << B.getBlockID();
3677
3678  if (&B == &cfg->getEntry())
3679    OS << " (ENTRY)]\n";
3680  else if (&B == &cfg->getExit())
3681    OS << " (EXIT)]\n";
3682  else if (&B == cfg->getIndirectGotoBlock())
3683    OS << " (INDIRECT GOTO DISPATCH)]\n";
3684  else
3685    OS << "]\n";
3686
3687  if (ShowColors)
3688    OS.resetColor();
3689
3690  // Print the label of this block.
3691  if (Stmt *Label = const_cast<Stmt*>(B.getLabel())) {
3692
3693    if (print_edges)
3694      OS << "  ";
3695
3696    if (LabelStmt *L = dyn_cast<LabelStmt>(Label))
3697      OS << L->getName();
3698    else if (CaseStmt *C = dyn_cast<CaseStmt>(Label)) {
3699      OS << "case ";
3700      C->getLHS()->printPretty(OS, Helper,
3701                               PrintingPolicy(Helper->getLangOpts()));
3702      if (C->getRHS()) {
3703        OS << " ... ";
3704        C->getRHS()->printPretty(OS, Helper,
3705                                 PrintingPolicy(Helper->getLangOpts()));
3706      }
3707    } else if (isa<DefaultStmt>(Label))
3708      OS << "default";
3709    else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
3710      OS << "catch (";
3711      if (CS->getExceptionDecl())
3712        CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper->getLangOpts()),
3713                                      0);
3714      else
3715        OS << "...";
3716      OS << ")";
3717
3718    } else
3719      llvm_unreachable("Invalid label statement in CFGBlock.");
3720
3721    OS << ":\n";
3722  }
3723
3724  // Iterate through the statements in the block and print them.
3725  unsigned j = 1;
3726
3727  for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
3728       I != E ; ++I, ++j ) {
3729
3730    // Print the statement # in the basic block and the statement itself.
3731    if (print_edges)
3732      OS << " ";
3733
3734    OS << llvm::format("%3d", j) << ": ";
3735
3736    if (Helper)
3737      Helper->setStmtID(j);
3738
3739    print_elem(OS, Helper, *I);
3740  }
3741
3742  // Print the terminator of this block.
3743  if (B.getTerminator()) {
3744    if (ShowColors)
3745      OS.changeColor(raw_ostream::GREEN);
3746
3747    OS << "   T: ";
3748
3749    if (Helper) Helper->setBlockID(-1);
3750
3751    CFGBlockTerminatorPrint TPrinter(OS, Helper,
3752                                     PrintingPolicy(Helper->getLangOpts()));
3753    TPrinter.Visit(const_cast<Stmt*>(B.getTerminator().getStmt()));
3754    OS << '\n';
3755
3756    if (ShowColors)
3757      OS.resetColor();
3758  }
3759
3760  if (print_edges) {
3761    // Print the predecessors of this block.
3762    if (!B.pred_empty()) {
3763      const raw_ostream::Colors Color = raw_ostream::BLUE;
3764      if (ShowColors)
3765        OS.changeColor(Color);
3766      OS << "   Preds " ;
3767      if (ShowColors)
3768        OS.resetColor();
3769      OS << '(' << B.pred_size() << "):";
3770      unsigned i = 0;
3771
3772      if (ShowColors)
3773        OS.changeColor(Color);
3774
3775      for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
3776           I != E; ++I, ++i) {
3777
3778        if (i == 8 || (i-8) == 0)
3779          OS << "\n     ";
3780
3781        OS << " B" << (*I)->getBlockID();
3782      }
3783
3784      if (ShowColors)
3785        OS.resetColor();
3786
3787      OS << '\n';
3788    }
3789
3790    // Print the successors of this block.
3791    if (!B.succ_empty()) {
3792      const raw_ostream::Colors Color = raw_ostream::MAGENTA;
3793      if (ShowColors)
3794        OS.changeColor(Color);
3795      OS << "   Succs ";
3796      if (ShowColors)
3797        OS.resetColor();
3798      OS << '(' << B.succ_size() << "):";
3799      unsigned i = 0;
3800
3801      if (ShowColors)
3802        OS.changeColor(Color);
3803
3804      for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
3805           I != E; ++I, ++i) {
3806
3807        if (i == 8 || (i-8) % 10 == 0)
3808          OS << "\n    ";
3809
3810        if (*I)
3811          OS << " B" << (*I)->getBlockID();
3812        else
3813          OS  << " NULL";
3814      }
3815
3816      if (ShowColors)
3817        OS.resetColor();
3818      OS << '\n';
3819    }
3820  }
3821}
3822
3823
3824/// dump - A simple pretty printer of a CFG that outputs to stderr.
3825void CFG::dump(const LangOptions &LO, bool ShowColors) const {
3826  print(llvm::errs(), LO, ShowColors);
3827}
3828
3829/// print - A simple pretty printer of a CFG that outputs to an ostream.
3830void CFG::print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const {
3831  StmtPrinterHelper Helper(this, LO);
3832
3833  // Print the entry block.
3834  print_block(OS, this, getEntry(), &Helper, true, ShowColors);
3835
3836  // Iterate through the CFGBlocks and print them one by one.
3837  for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
3838    // Skip the entry block, because we already printed it.
3839    if (&(**I) == &getEntry() || &(**I) == &getExit())
3840      continue;
3841
3842    print_block(OS, this, **I, &Helper, true, ShowColors);
3843  }
3844
3845  // Print the exit block.
3846  print_block(OS, this, getExit(), &Helper, true, ShowColors);
3847  OS << '\n';
3848  OS.flush();
3849}
3850
3851/// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
3852void CFGBlock::dump(const CFG* cfg, const LangOptions &LO,
3853                    bool ShowColors) const {
3854  print(llvm::errs(), cfg, LO, ShowColors);
3855}
3856
3857/// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
3858///   Generally this will only be called from CFG::print.
3859void CFGBlock::print(raw_ostream &OS, const CFG* cfg,
3860                     const LangOptions &LO, bool ShowColors) const {
3861  StmtPrinterHelper Helper(cfg, LO);
3862  print_block(OS, cfg, *this, &Helper, true, ShowColors);
3863  OS << '\n';
3864}
3865
3866/// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
3867void CFGBlock::printTerminator(raw_ostream &OS,
3868                               const LangOptions &LO) const {
3869  CFGBlockTerminatorPrint TPrinter(OS, NULL, PrintingPolicy(LO));
3870  TPrinter.Visit(const_cast<Stmt*>(getTerminator().getStmt()));
3871}
3872
3873Stmt *CFGBlock::getTerminatorCondition() {
3874  Stmt *Terminator = this->Terminator;
3875  if (!Terminator)
3876    return NULL;
3877
3878  Expr *E = NULL;
3879
3880  switch (Terminator->getStmtClass()) {
3881    default:
3882      break;
3883
3884    case Stmt::ForStmtClass:
3885      E = cast<ForStmt>(Terminator)->getCond();
3886      break;
3887
3888    case Stmt::WhileStmtClass:
3889      E = cast<WhileStmt>(Terminator)->getCond();
3890      break;
3891
3892    case Stmt::DoStmtClass:
3893      E = cast<DoStmt>(Terminator)->getCond();
3894      break;
3895
3896    case Stmt::IfStmtClass:
3897      E = cast<IfStmt>(Terminator)->getCond();
3898      break;
3899
3900    case Stmt::ChooseExprClass:
3901      E = cast<ChooseExpr>(Terminator)->getCond();
3902      break;
3903
3904    case Stmt::IndirectGotoStmtClass:
3905      E = cast<IndirectGotoStmt>(Terminator)->getTarget();
3906      break;
3907
3908    case Stmt::SwitchStmtClass:
3909      E = cast<SwitchStmt>(Terminator)->getCond();
3910      break;
3911
3912    case Stmt::BinaryConditionalOperatorClass:
3913      E = cast<BinaryConditionalOperator>(Terminator)->getCond();
3914      break;
3915
3916    case Stmt::ConditionalOperatorClass:
3917      E = cast<ConditionalOperator>(Terminator)->getCond();
3918      break;
3919
3920    case Stmt::BinaryOperatorClass: // '&&' and '||'
3921      E = cast<BinaryOperator>(Terminator)->getLHS();
3922      break;
3923
3924    case Stmt::ObjCForCollectionStmtClass:
3925      return Terminator;
3926  }
3927
3928  return E ? E->IgnoreParens() : NULL;
3929}
3930
3931//===----------------------------------------------------------------------===//
3932// CFG Graphviz Visualization
3933//===----------------------------------------------------------------------===//
3934
3935
3936#ifndef NDEBUG
3937static StmtPrinterHelper* GraphHelper;
3938#endif
3939
3940void CFG::viewCFG(const LangOptions &LO) const {
3941#ifndef NDEBUG
3942  StmtPrinterHelper H(this, LO);
3943  GraphHelper = &H;
3944  llvm::ViewGraph(this,"CFG");
3945  GraphHelper = NULL;
3946#endif
3947}
3948
3949namespace llvm {
3950template<>
3951struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
3952
3953  DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
3954
3955  static std::string getNodeLabel(const CFGBlock *Node, const CFG* Graph) {
3956
3957#ifndef NDEBUG
3958    std::string OutSStr;
3959    llvm::raw_string_ostream Out(OutSStr);
3960    print_block(Out,Graph, *Node, GraphHelper, false, false);
3961    std::string& OutStr = Out.str();
3962
3963    if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
3964
3965    // Process string output to make it nicer...
3966    for (unsigned i = 0; i != OutStr.length(); ++i)
3967      if (OutStr[i] == '\n') {                            // Left justify
3968        OutStr[i] = '\\';
3969        OutStr.insert(OutStr.begin()+i+1, 'l');
3970      }
3971
3972    return OutStr;
3973#else
3974    return "";
3975#endif
3976  }
3977};
3978} // end namespace llvm
3979