CGExpr.cpp revision 04e517650569598e847c2ab609672e6df93effe5
1//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGCXXABI.h"
16#include "CGCall.h"
17#include "CGDebugInfo.h"
18#include "CGObjCRuntime.h"
19#include "CGRecordLayout.h"
20#include "CodeGenModule.h"
21#include "TargetInfo.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/Frontend/CodeGenOptions.h"
25#include "llvm/ADT/Hashing.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/Intrinsics.h"
28#include "llvm/IR/LLVMContext.h"
29#include "llvm/IR/MDBuilder.h"
30#include "llvm/Support/ConvertUTF.h"
31
32using namespace clang;
33using namespace CodeGen;
34
35//===--------------------------------------------------------------------===//
36//                        Miscellaneous Helper Methods
37//===--------------------------------------------------------------------===//
38
39llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
40  unsigned addressSpace =
41    cast<llvm::PointerType>(value->getType())->getAddressSpace();
42
43  llvm::PointerType *destType = Int8PtrTy;
44  if (addressSpace)
45    destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
46
47  if (value->getType() == destType) return value;
48  return Builder.CreateBitCast(value, destType);
49}
50
51/// CreateTempAlloca - This creates a alloca and inserts it into the entry
52/// block.
53llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
54                                                    const Twine &Name) {
55  if (!Builder.isNamePreserving())
56    return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
57  return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
58}
59
60void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
61                                     llvm::Value *Init) {
62  llvm::StoreInst *Store = new llvm::StoreInst(Init, Var);
63  llvm::BasicBlock *Block = AllocaInsertPt->getParent();
64  Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
65}
66
67llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
68                                                const Twine &Name) {
69  llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
70  // FIXME: Should we prefer the preferred type alignment here?
71  CharUnits Align = getContext().getTypeAlignInChars(Ty);
72  Alloc->setAlignment(Align.getQuantity());
73  return Alloc;
74}
75
76llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
77                                                 const Twine &Name) {
78  llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
79  // FIXME: Should we prefer the preferred type alignment here?
80  CharUnits Align = getContext().getTypeAlignInChars(Ty);
81  Alloc->setAlignment(Align.getQuantity());
82  return Alloc;
83}
84
85/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
86/// expression and compare the result against zero, returning an Int1Ty value.
87llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
88  if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
89    llvm::Value *MemPtr = EmitScalarExpr(E);
90    return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
91  }
92
93  QualType BoolTy = getContext().BoolTy;
94  if (!E->getType()->isAnyComplexType())
95    return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
96
97  return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
98}
99
100/// EmitIgnoredExpr - Emit code to compute the specified expression,
101/// ignoring the result.
102void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
103  if (E->isRValue())
104    return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
105
106  // Just emit it as an l-value and drop the result.
107  EmitLValue(E);
108}
109
110/// EmitAnyExpr - Emit code to compute the specified expression which
111/// can have any type.  The result is returned as an RValue struct.
112/// If this is an aggregate expression, AggSlot indicates where the
113/// result should be returned.
114RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
115                                    AggValueSlot aggSlot,
116                                    bool ignoreResult) {
117  switch (getEvaluationKind(E->getType())) {
118  case TEK_Scalar:
119    return RValue::get(EmitScalarExpr(E, ignoreResult));
120  case TEK_Complex:
121    return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
122  case TEK_Aggregate:
123    if (!ignoreResult && aggSlot.isIgnored())
124      aggSlot = CreateAggTemp(E->getType(), "agg-temp");
125    EmitAggExpr(E, aggSlot);
126    return aggSlot.asRValue();
127  }
128  llvm_unreachable("bad evaluation kind");
129}
130
131/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
132/// always be accessible even if no aggregate location is provided.
133RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
134  AggValueSlot AggSlot = AggValueSlot::ignored();
135
136  if (hasAggregateEvaluationKind(E->getType()))
137    AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
138  return EmitAnyExpr(E, AggSlot);
139}
140
141/// EmitAnyExprToMem - Evaluate an expression into a given memory
142/// location.
143void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
144                                       llvm::Value *Location,
145                                       Qualifiers Quals,
146                                       bool IsInit) {
147  // FIXME: This function should take an LValue as an argument.
148  switch (getEvaluationKind(E->getType())) {
149  case TEK_Complex:
150    EmitComplexExprIntoLValue(E,
151                         MakeNaturalAlignAddrLValue(Location, E->getType()),
152                              /*isInit*/ false);
153    return;
154
155  case TEK_Aggregate: {
156    CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
157    EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
158                                         AggValueSlot::IsDestructed_t(IsInit),
159                                         AggValueSlot::DoesNotNeedGCBarriers,
160                                         AggValueSlot::IsAliased_t(!IsInit)));
161    return;
162  }
163
164  case TEK_Scalar: {
165    RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
166    LValue LV = MakeAddrLValue(Location, E->getType());
167    EmitStoreThroughLValue(RV, LV);
168    return;
169  }
170  }
171  llvm_unreachable("bad evaluation kind");
172}
173
174static llvm::Value *
175CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type,
176                         const NamedDecl *InitializedDecl) {
177  if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
178    if (VD->hasGlobalStorage()) {
179      SmallString<256> Name;
180      llvm::raw_svector_ostream Out(Name);
181      CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
182      Out.flush();
183
184      llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type);
185
186      // Create the reference temporary.
187      llvm::GlobalVariable *RefTemp =
188        new llvm::GlobalVariable(CGF.CGM.getModule(),
189                                 RefTempTy, /*isConstant=*/false,
190                                 llvm::GlobalValue::InternalLinkage,
191                                 llvm::Constant::getNullValue(RefTempTy),
192                                 Name.str());
193      // If we're binding to a thread_local variable, the temporary is also
194      // thread local.
195      if (VD->getTLSKind())
196        CGF.CGM.setTLSMode(RefTemp, *VD);
197      return RefTemp;
198    }
199  }
200
201  return CGF.CreateMemTemp(Type, "ref.tmp");
202}
203
204static llvm::Value *
205EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E,
206                            llvm::Value *&ReferenceTemporary,
207                            const CXXDestructorDecl *&ReferenceTemporaryDtor,
208                            const InitListExpr *&ReferenceInitializerList,
209                            QualType &ObjCARCReferenceLifetimeType,
210                            const NamedDecl *InitializedDecl) {
211  const MaterializeTemporaryExpr *M = NULL;
212  E = E->findMaterializedTemporary(M);
213  // Objective-C++ ARC:
214  //   If we are binding a reference to a temporary that has ownership, we
215  //   need to perform retain/release operations on the temporary.
216  if (M && CGF.getLangOpts().ObjCAutoRefCount &&
217      M->getType()->isObjCLifetimeType() &&
218      (M->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
219       M->getType().getObjCLifetime() == Qualifiers::OCL_Weak ||
220       M->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing))
221    ObjCARCReferenceLifetimeType = M->getType();
222
223  if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E)) {
224    CGF.enterFullExpression(EWC);
225    CodeGenFunction::RunCleanupsScope Scope(CGF);
226
227    return EmitExprForReferenceBinding(CGF, EWC->getSubExpr(),
228                                       ReferenceTemporary,
229                                       ReferenceTemporaryDtor,
230                                       ReferenceInitializerList,
231                                       ObjCARCReferenceLifetimeType,
232                                       InitializedDecl);
233  }
234
235  if (E->isGLValue()) {
236    // Emit the expression as an lvalue.
237    LValue LV = CGF.EmitLValue(E);
238    assert(LV.isSimple());
239    return LV.getAddress();
240  }
241
242  if (!ObjCARCReferenceLifetimeType.isNull()) {
243    ReferenceTemporary = CreateReferenceTemporary(CGF,
244                                                ObjCARCReferenceLifetimeType,
245                                                  InitializedDecl);
246
247
248    LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary,
249                                           ObjCARCReferenceLifetimeType);
250
251    CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl),
252                       RefTempDst, false);
253
254    bool ExtendsLifeOfTemporary = false;
255    if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
256      if (Var->extendsLifetimeOfTemporary())
257        ExtendsLifeOfTemporary = true;
258    } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) {
259      ExtendsLifeOfTemporary = true;
260    }
261
262    if (!ExtendsLifeOfTemporary) {
263      // Since the lifetime of this temporary isn't going to be extended,
264      // we need to clean it up ourselves at the end of the full expression.
265      switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
266      case Qualifiers::OCL_None:
267      case Qualifiers::OCL_ExplicitNone:
268      case Qualifiers::OCL_Autoreleasing:
269        break;
270
271      case Qualifiers::OCL_Strong: {
272        assert(!ObjCARCReferenceLifetimeType->isArrayType());
273        CleanupKind cleanupKind = CGF.getARCCleanupKind();
274        CGF.pushDestroy(cleanupKind,
275                        ReferenceTemporary,
276                        ObjCARCReferenceLifetimeType,
277                        CodeGenFunction::destroyARCStrongImprecise,
278                        cleanupKind & EHCleanup);
279        break;
280      }
281
282      case Qualifiers::OCL_Weak:
283        assert(!ObjCARCReferenceLifetimeType->isArrayType());
284        CGF.pushDestroy(NormalAndEHCleanup,
285                        ReferenceTemporary,
286                        ObjCARCReferenceLifetimeType,
287                        CodeGenFunction::destroyARCWeak,
288                        /*useEHCleanupForArray*/ true);
289        break;
290      }
291
292      ObjCARCReferenceLifetimeType = QualType();
293    }
294
295    return ReferenceTemporary;
296  }
297
298  SmallVector<SubobjectAdjustment, 2> Adjustments;
299  E = E->skipRValueSubobjectAdjustments(Adjustments);
300  if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E))
301    if (opaque->getType()->isRecordType())
302      return CGF.EmitOpaqueValueLValue(opaque).getAddress();
303
304  // Create a reference temporary if necessary.
305  AggValueSlot AggSlot = AggValueSlot::ignored();
306  if (CGF.hasAggregateEvaluationKind(E->getType())) {
307    ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
308                                                  InitializedDecl);
309    CharUnits Alignment = CGF.getContext().getTypeAlignInChars(E->getType());
310    AggValueSlot::IsDestructed_t isDestructed
311      = AggValueSlot::IsDestructed_t(InitializedDecl != 0);
312    AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Alignment,
313                                    Qualifiers(), isDestructed,
314                                    AggValueSlot::DoesNotNeedGCBarriers,
315                                    AggValueSlot::IsNotAliased);
316  }
317
318  if (InitializedDecl) {
319    if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E)) {
320      if (ILE->initializesStdInitializerList()) {
321        ReferenceInitializerList = ILE;
322      }
323    }
324    else if (const RecordType *RT =
325               E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()){
326      // Get the destructor for the reference temporary.
327      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
328      if (!ClassDecl->hasTrivialDestructor())
329        ReferenceTemporaryDtor = ClassDecl->getDestructor();
330    }
331  }
332
333  RValue RV = CGF.EmitAnyExpr(E, AggSlot);
334
335  // Check if need to perform derived-to-base casts and/or field accesses, to
336  // get from the temporary object we created (and, potentially, for which we
337  // extended the lifetime) to the subobject we're binding the reference to.
338  if (!Adjustments.empty()) {
339    llvm::Value *Object = RV.getAggregateAddr();
340    for (unsigned I = Adjustments.size(); I != 0; --I) {
341      SubobjectAdjustment &Adjustment = Adjustments[I-1];
342      switch (Adjustment.Kind) {
343      case SubobjectAdjustment::DerivedToBaseAdjustment:
344        Object =
345            CGF.GetAddressOfBaseClass(Object,
346                                      Adjustment.DerivedToBase.DerivedClass,
347                            Adjustment.DerivedToBase.BasePath->path_begin(),
348                            Adjustment.DerivedToBase.BasePath->path_end(),
349                                      /*NullCheckValue=*/false);
350        break;
351
352      case SubobjectAdjustment::FieldAdjustment: {
353        LValue LV = CGF.MakeAddrLValue(Object, E->getType());
354        LV = CGF.EmitLValueForField(LV, Adjustment.Field);
355        if (LV.isSimple()) {
356          Object = LV.getAddress();
357          break;
358        }
359
360        // For non-simple lvalues, we actually have to create a copy of
361        // the object we're binding to.
362        QualType T = Adjustment.Field->getType().getNonReferenceType()
363                                                .getUnqualifiedType();
364        Object = CreateReferenceTemporary(CGF, T, InitializedDecl);
365        LValue TempLV = CGF.MakeAddrLValue(Object,
366                                           Adjustment.Field->getType());
367        CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV);
368        break;
369      }
370
371      case SubobjectAdjustment::MemberPointerAdjustment: {
372        llvm::Value *Ptr = CGF.EmitScalarExpr(Adjustment.Ptr.RHS);
373        Object = CGF.CGM.getCXXABI().EmitMemberDataPointerAddress(
374                      CGF, Object, Ptr, Adjustment.Ptr.MPT);
375        break;
376      }
377      }
378    }
379
380    return Object;
381  }
382
383  if (RV.isAggregate())
384    return RV.getAggregateAddr();
385
386  // Create a temporary variable that we can bind the reference to.
387  ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
388                                                InitializedDecl);
389
390
391  LValue tempLV = CGF.MakeNaturalAlignAddrLValue(ReferenceTemporary,
392                                                 E->getType());
393  if (RV.isScalar())
394    CGF.EmitStoreOfScalar(RV.getScalarVal(), tempLV, /*init*/ true);
395  else
396    CGF.EmitStoreOfComplex(RV.getComplexVal(), tempLV, /*init*/ true);
397  return ReferenceTemporary;
398}
399
400RValue
401CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E,
402                                            const NamedDecl *InitializedDecl) {
403  llvm::Value *ReferenceTemporary = 0;
404  const CXXDestructorDecl *ReferenceTemporaryDtor = 0;
405  const InitListExpr *ReferenceInitializerList = 0;
406  QualType ObjCARCReferenceLifetimeType;
407  llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary,
408                                                   ReferenceTemporaryDtor,
409                                                   ReferenceInitializerList,
410                                                   ObjCARCReferenceLifetimeType,
411                                                   InitializedDecl);
412  if (SanitizePerformTypeCheck && !E->getType()->isFunctionType()) {
413    // C++11 [dcl.ref]p5 (as amended by core issue 453):
414    //   If a glvalue to which a reference is directly bound designates neither
415    //   an existing object or function of an appropriate type nor a region of
416    //   storage of suitable size and alignment to contain an object of the
417    //   reference's type, the behavior is undefined.
418    QualType Ty = E->getType();
419    EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
420  }
421  if (!ReferenceTemporaryDtor && !ReferenceInitializerList &&
422      ObjCARCReferenceLifetimeType.isNull())
423    return RValue::get(Value);
424
425  // Make sure to call the destructor for the reference temporary.
426  const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl);
427  if (VD && VD->hasGlobalStorage()) {
428    if (ReferenceTemporaryDtor) {
429      llvm::Constant *CleanupFn;
430      llvm::Constant *CleanupArg;
431      if (E->getType()->isArrayType()) {
432        CleanupFn = CodeGenFunction(CGM).generateDestroyHelper(
433            cast<llvm::Constant>(ReferenceTemporary), E->getType(),
434            destroyCXXObject, getLangOpts().Exceptions);
435        CleanupArg = llvm::Constant::getNullValue(Int8PtrTy);
436      } else {
437        CleanupFn =
438          CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
439        CleanupArg = cast<llvm::Constant>(ReferenceTemporary);
440      }
441      CGM.getCXXABI().registerGlobalDtor(*this, *VD, CleanupFn, CleanupArg);
442    } else if (ReferenceInitializerList) {
443      // FIXME: This is wrong. We need to register a global destructor to clean
444      // up the initializer_list object, rather than adding it as a local
445      // cleanup.
446      EmitStdInitializerListCleanup(ReferenceTemporary,
447                                    ReferenceInitializerList);
448    } else {
449      assert(!ObjCARCReferenceLifetimeType.isNull() && !VD->getTLSKind());
450      // Note: We intentionally do not register a global "destructor" to
451      // release the object.
452    }
453
454    return RValue::get(Value);
455  }
456
457  if (ReferenceTemporaryDtor) {
458    if (E->getType()->isArrayType())
459      pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
460                  destroyCXXObject, getLangOpts().Exceptions);
461    else
462      PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary);
463  } else if (ReferenceInitializerList) {
464    EmitStdInitializerListCleanup(ReferenceTemporary,
465                                  ReferenceInitializerList);
466  } else {
467    switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
468    case Qualifiers::OCL_None:
469      llvm_unreachable(
470                      "Not a reference temporary that needs to be deallocated");
471    case Qualifiers::OCL_ExplicitNone:
472    case Qualifiers::OCL_Autoreleasing:
473      // Nothing to do.
474      break;
475
476    case Qualifiers::OCL_Strong: {
477      bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>();
478      CleanupKind cleanupKind = getARCCleanupKind();
479      pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType,
480                  precise ? destroyARCStrongPrecise : destroyARCStrongImprecise,
481                  cleanupKind & EHCleanup);
482      break;
483    }
484
485    case Qualifiers::OCL_Weak: {
486      // __weak objects always get EH cleanups; otherwise, exceptions
487      // could cause really nasty crashes instead of mere leaks.
488      pushDestroy(NormalAndEHCleanup, ReferenceTemporary,
489                  ObjCARCReferenceLifetimeType, destroyARCWeak, true);
490      break;
491    }
492    }
493  }
494
495  return RValue::get(Value);
496}
497
498
499/// getAccessedFieldNo - Given an encoded value and a result number, return the
500/// input field number being accessed.
501unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
502                                             const llvm::Constant *Elts) {
503  return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
504      ->getZExtValue();
505}
506
507/// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
508static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
509                                    llvm::Value *High) {
510  llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
511  llvm::Value *K47 = Builder.getInt64(47);
512  llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
513  llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
514  llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
515  llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
516  return Builder.CreateMul(B1, KMul);
517}
518
519void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
520                                    llvm::Value *Address,
521                                    QualType Ty, CharUnits Alignment) {
522  if (!SanitizePerformTypeCheck)
523    return;
524
525  // Don't check pointers outside the default address space. The null check
526  // isn't correct, the object-size check isn't supported by LLVM, and we can't
527  // communicate the addresses to the runtime handler for the vptr check.
528  if (Address->getType()->getPointerAddressSpace())
529    return;
530
531  llvm::Value *Cond = 0;
532  llvm::BasicBlock *Done = 0;
533
534  if (SanOpts->Null) {
535    // The glvalue must not be an empty glvalue.
536    Cond = Builder.CreateICmpNE(
537        Address, llvm::Constant::getNullValue(Address->getType()));
538
539    if (TCK == TCK_DowncastPointer) {
540      // When performing a pointer downcast, it's OK if the value is null.
541      // Skip the remaining checks in that case.
542      Done = createBasicBlock("null");
543      llvm::BasicBlock *Rest = createBasicBlock("not.null");
544      Builder.CreateCondBr(Cond, Rest, Done);
545      EmitBlock(Rest);
546      Cond = 0;
547    }
548  }
549
550  if (SanOpts->ObjectSize && !Ty->isIncompleteType()) {
551    uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
552
553    // The glvalue must refer to a large enough storage region.
554    // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
555    //        to check this.
556    llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy);
557    llvm::Value *Min = Builder.getFalse();
558    llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy);
559    llvm::Value *LargeEnough =
560        Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min),
561                              llvm::ConstantInt::get(IntPtrTy, Size));
562    Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough;
563  }
564
565  uint64_t AlignVal = 0;
566
567  if (SanOpts->Alignment) {
568    AlignVal = Alignment.getQuantity();
569    if (!Ty->isIncompleteType() && !AlignVal)
570      AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
571
572    // The glvalue must be suitably aligned.
573    if (AlignVal) {
574      llvm::Value *Align =
575          Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy),
576                            llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
577      llvm::Value *Aligned =
578        Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
579      Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned;
580    }
581  }
582
583  if (Cond) {
584    llvm::Constant *StaticData[] = {
585      EmitCheckSourceLocation(Loc),
586      EmitCheckTypeDescriptor(Ty),
587      llvm::ConstantInt::get(SizeTy, AlignVal),
588      llvm::ConstantInt::get(Int8Ty, TCK)
589    };
590    EmitCheck(Cond, "type_mismatch", StaticData, Address, CRK_Recoverable);
591  }
592
593  // If possible, check that the vptr indicates that there is a subobject of
594  // type Ty at offset zero within this object.
595  //
596  // C++11 [basic.life]p5,6:
597  //   [For storage which does not refer to an object within its lifetime]
598  //   The program has undefined behavior if:
599  //    -- the [pointer or glvalue] is used to access a non-static data member
600  //       or call a non-static member function
601  CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
602  if (SanOpts->Vptr &&
603      (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
604       TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference) &&
605      RD && RD->hasDefinition() && RD->isDynamicClass()) {
606    // Compute a hash of the mangled name of the type.
607    //
608    // FIXME: This is not guaranteed to be deterministic! Move to a
609    //        fingerprinting mechanism once LLVM provides one. For the time
610    //        being the implementation happens to be deterministic.
611    SmallString<64> MangledName;
612    llvm::raw_svector_ostream Out(MangledName);
613    CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
614                                                     Out);
615    llvm::hash_code TypeHash = hash_value(Out.str());
616
617    // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
618    llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
619    llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
620    llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy);
621    llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
622    llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
623
624    llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
625    Hash = Builder.CreateTrunc(Hash, IntPtrTy);
626
627    // Look the hash up in our cache.
628    const int CacheSize = 128;
629    llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
630    llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
631                                                   "__ubsan_vptr_type_cache");
632    llvm::Value *Slot = Builder.CreateAnd(Hash,
633                                          llvm::ConstantInt::get(IntPtrTy,
634                                                                 CacheSize-1));
635    llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
636    llvm::Value *CacheVal =
637      Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices));
638
639    // If the hash isn't in the cache, call a runtime handler to perform the
640    // hard work of checking whether the vptr is for an object of the right
641    // type. This will either fill in the cache and return, or produce a
642    // diagnostic.
643    llvm::Constant *StaticData[] = {
644      EmitCheckSourceLocation(Loc),
645      EmitCheckTypeDescriptor(Ty),
646      CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
647      llvm::ConstantInt::get(Int8Ty, TCK)
648    };
649    llvm::Value *DynamicData[] = { Address, Hash };
650    EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash),
651              "dynamic_type_cache_miss", StaticData, DynamicData,
652              CRK_AlwaysRecoverable);
653  }
654
655  if (Done) {
656    Builder.CreateBr(Done);
657    EmitBlock(Done);
658  }
659}
660
661/// Determine whether this expression refers to a flexible array member in a
662/// struct. We disable array bounds checks for such members.
663static bool isFlexibleArrayMemberExpr(const Expr *E) {
664  // For compatibility with existing code, we treat arrays of length 0 or
665  // 1 as flexible array members.
666  const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
667  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
668    if (CAT->getSize().ugt(1))
669      return false;
670  } else if (!isa<IncompleteArrayType>(AT))
671    return false;
672
673  E = E->IgnoreParens();
674
675  // A flexible array member must be the last member in the class.
676  if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
677    // FIXME: If the base type of the member expr is not FD->getParent(),
678    // this should not be treated as a flexible array member access.
679    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
680      RecordDecl::field_iterator FI(
681          DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
682      return ++FI == FD->getParent()->field_end();
683    }
684  }
685
686  return false;
687}
688
689/// If Base is known to point to the start of an array, return the length of
690/// that array. Return 0 if the length cannot be determined.
691static llvm::Value *getArrayIndexingBound(
692    CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
693  // For the vector indexing extension, the bound is the number of elements.
694  if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
695    IndexedType = Base->getType();
696    return CGF.Builder.getInt32(VT->getNumElements());
697  }
698
699  Base = Base->IgnoreParens();
700
701  if (const CastExpr *CE = dyn_cast<CastExpr>(Base)) {
702    if (CE->getCastKind() == CK_ArrayToPointerDecay &&
703        !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
704      IndexedType = CE->getSubExpr()->getType();
705      const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
706      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
707        return CGF.Builder.getInt(CAT->getSize());
708      else if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT))
709        return CGF.getVLASize(VAT).first;
710    }
711  }
712
713  return 0;
714}
715
716void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
717                                      llvm::Value *Index, QualType IndexType,
718                                      bool Accessed) {
719  assert(SanOpts->Bounds && "should not be called unless adding bounds checks");
720
721  QualType IndexedType;
722  llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
723  if (!Bound)
724    return;
725
726  bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
727  llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
728  llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
729
730  llvm::Constant *StaticData[] = {
731    EmitCheckSourceLocation(E->getExprLoc()),
732    EmitCheckTypeDescriptor(IndexedType),
733    EmitCheckTypeDescriptor(IndexType)
734  };
735  llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
736                                : Builder.CreateICmpULE(IndexVal, BoundVal);
737  EmitCheck(Check, "out_of_bounds", StaticData, Index, CRK_Recoverable);
738}
739
740
741CodeGenFunction::ComplexPairTy CodeGenFunction::
742EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
743                         bool isInc, bool isPre) {
744  ComplexPairTy InVal = EmitLoadOfComplex(LV);
745
746  llvm::Value *NextVal;
747  if (isa<llvm::IntegerType>(InVal.first->getType())) {
748    uint64_t AmountVal = isInc ? 1 : -1;
749    NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
750
751    // Add the inc/dec to the real part.
752    NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
753  } else {
754    QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
755    llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
756    if (!isInc)
757      FVal.changeSign();
758    NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
759
760    // Add the inc/dec to the real part.
761    NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
762  }
763
764  ComplexPairTy IncVal(NextVal, InVal.second);
765
766  // Store the updated result through the lvalue.
767  EmitStoreOfComplex(IncVal, LV, /*init*/ false);
768
769  // If this is a postinc, return the value read from memory, otherwise use the
770  // updated value.
771  return isPre ? IncVal : InVal;
772}
773
774
775//===----------------------------------------------------------------------===//
776//                         LValue Expression Emission
777//===----------------------------------------------------------------------===//
778
779RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
780  if (Ty->isVoidType())
781    return RValue::get(0);
782
783  switch (getEvaluationKind(Ty)) {
784  case TEK_Complex: {
785    llvm::Type *EltTy =
786      ConvertType(Ty->castAs<ComplexType>()->getElementType());
787    llvm::Value *U = llvm::UndefValue::get(EltTy);
788    return RValue::getComplex(std::make_pair(U, U));
789  }
790
791  // If this is a use of an undefined aggregate type, the aggregate must have an
792  // identifiable address.  Just because the contents of the value are undefined
793  // doesn't mean that the address can't be taken and compared.
794  case TEK_Aggregate: {
795    llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
796    return RValue::getAggregate(DestPtr);
797  }
798
799  case TEK_Scalar:
800    return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
801  }
802  llvm_unreachable("bad evaluation kind");
803}
804
805RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
806                                              const char *Name) {
807  ErrorUnsupported(E, Name);
808  return GetUndefRValue(E->getType());
809}
810
811LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
812                                              const char *Name) {
813  ErrorUnsupported(E, Name);
814  llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
815  return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
816}
817
818LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
819  LValue LV;
820  if (SanOpts->Bounds && isa<ArraySubscriptExpr>(E))
821    LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
822  else
823    LV = EmitLValue(E);
824  if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
825    EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(),
826                  E->getType(), LV.getAlignment());
827  return LV;
828}
829
830/// EmitLValue - Emit code to compute a designator that specifies the location
831/// of the expression.
832///
833/// This can return one of two things: a simple address or a bitfield reference.
834/// In either case, the LLVM Value* in the LValue structure is guaranteed to be
835/// an LLVM pointer type.
836///
837/// If this returns a bitfield reference, nothing about the pointee type of the
838/// LLVM value is known: For example, it may not be a pointer to an integer.
839///
840/// If this returns a normal address, and if the lvalue's C type is fixed size,
841/// this method guarantees that the returned pointer type will point to an LLVM
842/// type of the same size of the lvalue's type.  If the lvalue has a variable
843/// length type, this is not possible.
844///
845LValue CodeGenFunction::EmitLValue(const Expr *E) {
846  switch (E->getStmtClass()) {
847  default: return EmitUnsupportedLValue(E, "l-value expression");
848
849  case Expr::ObjCPropertyRefExprClass:
850    llvm_unreachable("cannot emit a property reference directly");
851
852  case Expr::ObjCSelectorExprClass:
853    return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
854  case Expr::ObjCIsaExprClass:
855    return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
856  case Expr::BinaryOperatorClass:
857    return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
858  case Expr::CompoundAssignOperatorClass:
859    if (!E->getType()->isAnyComplexType())
860      return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
861    return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
862  case Expr::CallExprClass:
863  case Expr::CXXMemberCallExprClass:
864  case Expr::CXXOperatorCallExprClass:
865  case Expr::UserDefinedLiteralClass:
866    return EmitCallExprLValue(cast<CallExpr>(E));
867  case Expr::VAArgExprClass:
868    return EmitVAArgExprLValue(cast<VAArgExpr>(E));
869  case Expr::DeclRefExprClass:
870    return EmitDeclRefLValue(cast<DeclRefExpr>(E));
871  case Expr::ParenExprClass:
872    return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
873  case Expr::GenericSelectionExprClass:
874    return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
875  case Expr::PredefinedExprClass:
876    return EmitPredefinedLValue(cast<PredefinedExpr>(E));
877  case Expr::StringLiteralClass:
878    return EmitStringLiteralLValue(cast<StringLiteral>(E));
879  case Expr::ObjCEncodeExprClass:
880    return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
881  case Expr::PseudoObjectExprClass:
882    return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
883  case Expr::InitListExprClass:
884    return EmitInitListLValue(cast<InitListExpr>(E));
885  case Expr::CXXTemporaryObjectExprClass:
886  case Expr::CXXConstructExprClass:
887    return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
888  case Expr::CXXBindTemporaryExprClass:
889    return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
890  case Expr::CXXUuidofExprClass:
891    return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
892  case Expr::LambdaExprClass:
893    return EmitLambdaLValue(cast<LambdaExpr>(E));
894
895  case Expr::ExprWithCleanupsClass: {
896    const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E);
897    enterFullExpression(cleanups);
898    RunCleanupsScope Scope(*this);
899    return EmitLValue(cleanups->getSubExpr());
900  }
901
902  case Expr::CXXScalarValueInitExprClass:
903    return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E));
904  case Expr::CXXDefaultArgExprClass:
905    return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
906  case Expr::CXXTypeidExprClass:
907    return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
908
909  case Expr::ObjCMessageExprClass:
910    return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
911  case Expr::ObjCIvarRefExprClass:
912    return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
913  case Expr::StmtExprClass:
914    return EmitStmtExprLValue(cast<StmtExpr>(E));
915  case Expr::UnaryOperatorClass:
916    return EmitUnaryOpLValue(cast<UnaryOperator>(E));
917  case Expr::ArraySubscriptExprClass:
918    return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
919  case Expr::ExtVectorElementExprClass:
920    return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
921  case Expr::MemberExprClass:
922    return EmitMemberExpr(cast<MemberExpr>(E));
923  case Expr::CompoundLiteralExprClass:
924    return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
925  case Expr::ConditionalOperatorClass:
926    return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
927  case Expr::BinaryConditionalOperatorClass:
928    return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
929  case Expr::ChooseExprClass:
930    return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext()));
931  case Expr::OpaqueValueExprClass:
932    return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
933  case Expr::SubstNonTypeTemplateParmExprClass:
934    return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
935  case Expr::ImplicitCastExprClass:
936  case Expr::CStyleCastExprClass:
937  case Expr::CXXFunctionalCastExprClass:
938  case Expr::CXXStaticCastExprClass:
939  case Expr::CXXDynamicCastExprClass:
940  case Expr::CXXReinterpretCastExprClass:
941  case Expr::CXXConstCastExprClass:
942  case Expr::ObjCBridgedCastExprClass:
943    return EmitCastLValue(cast<CastExpr>(E));
944
945  case Expr::MaterializeTemporaryExprClass:
946    return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
947  }
948}
949
950/// Given an object of the given canonical type, can we safely copy a
951/// value out of it based on its initializer?
952static bool isConstantEmittableObjectType(QualType type) {
953  assert(type.isCanonical());
954  assert(!type->isReferenceType());
955
956  // Must be const-qualified but non-volatile.
957  Qualifiers qs = type.getLocalQualifiers();
958  if (!qs.hasConst() || qs.hasVolatile()) return false;
959
960  // Otherwise, all object types satisfy this except C++ classes with
961  // mutable subobjects or non-trivial copy/destroy behavior.
962  if (const RecordType *RT = dyn_cast<RecordType>(type))
963    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
964      if (RD->hasMutableFields() || !RD->isTrivial())
965        return false;
966
967  return true;
968}
969
970/// Can we constant-emit a load of a reference to a variable of the
971/// given type?  This is different from predicates like
972/// Decl::isUsableInConstantExpressions because we do want it to apply
973/// in situations that don't necessarily satisfy the language's rules
974/// for this (e.g. C++'s ODR-use rules).  For example, we want to able
975/// to do this with const float variables even if those variables
976/// aren't marked 'constexpr'.
977enum ConstantEmissionKind {
978  CEK_None,
979  CEK_AsReferenceOnly,
980  CEK_AsValueOrReference,
981  CEK_AsValueOnly
982};
983static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
984  type = type.getCanonicalType();
985  if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) {
986    if (isConstantEmittableObjectType(ref->getPointeeType()))
987      return CEK_AsValueOrReference;
988    return CEK_AsReferenceOnly;
989  }
990  if (isConstantEmittableObjectType(type))
991    return CEK_AsValueOnly;
992  return CEK_None;
993}
994
995/// Try to emit a reference to the given value without producing it as
996/// an l-value.  This is actually more than an optimization: we can't
997/// produce an l-value for variables that we never actually captured
998/// in a block or lambda, which means const int variables or constexpr
999/// literals or similar.
1000CodeGenFunction::ConstantEmission
1001CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1002  ValueDecl *value = refExpr->getDecl();
1003
1004  // The value needs to be an enum constant or a constant variable.
1005  ConstantEmissionKind CEK;
1006  if (isa<ParmVarDecl>(value)) {
1007    CEK = CEK_None;
1008  } else if (VarDecl *var = dyn_cast<VarDecl>(value)) {
1009    CEK = checkVarTypeForConstantEmission(var->getType());
1010  } else if (isa<EnumConstantDecl>(value)) {
1011    CEK = CEK_AsValueOnly;
1012  } else {
1013    CEK = CEK_None;
1014  }
1015  if (CEK == CEK_None) return ConstantEmission();
1016
1017  Expr::EvalResult result;
1018  bool resultIsReference;
1019  QualType resultType;
1020
1021  // It's best to evaluate all the way as an r-value if that's permitted.
1022  if (CEK != CEK_AsReferenceOnly &&
1023      refExpr->EvaluateAsRValue(result, getContext())) {
1024    resultIsReference = false;
1025    resultType = refExpr->getType();
1026
1027  // Otherwise, try to evaluate as an l-value.
1028  } else if (CEK != CEK_AsValueOnly &&
1029             refExpr->EvaluateAsLValue(result, getContext())) {
1030    resultIsReference = true;
1031    resultType = value->getType();
1032
1033  // Failure.
1034  } else {
1035    return ConstantEmission();
1036  }
1037
1038  // In any case, if the initializer has side-effects, abandon ship.
1039  if (result.HasSideEffects)
1040    return ConstantEmission();
1041
1042  // Emit as a constant.
1043  llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
1044
1045  // Make sure we emit a debug reference to the global variable.
1046  // This should probably fire even for
1047  if (isa<VarDecl>(value)) {
1048    if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1049      EmitDeclRefExprDbgValue(refExpr, C);
1050  } else {
1051    assert(isa<EnumConstantDecl>(value));
1052    EmitDeclRefExprDbgValue(refExpr, C);
1053  }
1054
1055  // If we emitted a reference constant, we need to dereference that.
1056  if (resultIsReference)
1057    return ConstantEmission::forReference(C);
1058
1059  return ConstantEmission::forValue(C);
1060}
1061
1062llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) {
1063  return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1064                          lvalue.getAlignment().getQuantity(),
1065                          lvalue.getType(), lvalue.getTBAAInfo(),
1066                          lvalue.getTBAABaseType(), lvalue.getTBAAOffset());
1067}
1068
1069static bool hasBooleanRepresentation(QualType Ty) {
1070  if (Ty->isBooleanType())
1071    return true;
1072
1073  if (const EnumType *ET = Ty->getAs<EnumType>())
1074    return ET->getDecl()->getIntegerType()->isBooleanType();
1075
1076  if (const AtomicType *AT = Ty->getAs<AtomicType>())
1077    return hasBooleanRepresentation(AT->getValueType());
1078
1079  return false;
1080}
1081
1082static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1083                            llvm::APInt &Min, llvm::APInt &End,
1084                            bool StrictEnums) {
1085  const EnumType *ET = Ty->getAs<EnumType>();
1086  bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1087                                ET && !ET->getDecl()->isFixed();
1088  bool IsBool = hasBooleanRepresentation(Ty);
1089  if (!IsBool && !IsRegularCPlusPlusEnum)
1090    return false;
1091
1092  if (IsBool) {
1093    Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1094    End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1095  } else {
1096    const EnumDecl *ED = ET->getDecl();
1097    llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1098    unsigned Bitwidth = LTy->getScalarSizeInBits();
1099    unsigned NumNegativeBits = ED->getNumNegativeBits();
1100    unsigned NumPositiveBits = ED->getNumPositiveBits();
1101
1102    if (NumNegativeBits) {
1103      unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1104      assert(NumBits <= Bitwidth);
1105      End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1106      Min = -End;
1107    } else {
1108      assert(NumPositiveBits <= Bitwidth);
1109      End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1110      Min = llvm::APInt(Bitwidth, 0);
1111    }
1112  }
1113  return true;
1114}
1115
1116llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1117  llvm::APInt Min, End;
1118  if (!getRangeForType(*this, Ty, Min, End,
1119                       CGM.getCodeGenOpts().StrictEnums))
1120    return 0;
1121
1122  llvm::MDBuilder MDHelper(getLLVMContext());
1123  return MDHelper.createRange(Min, End);
1124}
1125
1126llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1127                                              unsigned Alignment, QualType Ty,
1128                                              llvm::MDNode *TBAAInfo,
1129                                              QualType TBAABaseType,
1130                                              uint64_t TBAAOffset) {
1131  // For better performance, handle vector loads differently.
1132  if (Ty->isVectorType()) {
1133    llvm::Value *V;
1134    const llvm::Type *EltTy =
1135    cast<llvm::PointerType>(Addr->getType())->getElementType();
1136
1137    const llvm::VectorType *VTy = cast<llvm::VectorType>(EltTy);
1138
1139    // Handle vectors of size 3, like size 4 for better performance.
1140    if (VTy->getNumElements() == 3) {
1141
1142      // Bitcast to vec4 type.
1143      llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
1144                                                         4);
1145      llvm::PointerType *ptVec4Ty =
1146      llvm::PointerType::get(vec4Ty,
1147                             (cast<llvm::PointerType>(
1148                                      Addr->getType()))->getAddressSpace());
1149      llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty,
1150                                                "castToVec4");
1151      // Now load value.
1152      llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1153
1154      // Shuffle vector to get vec3.
1155      llvm::Constant *Mask[] = {
1156        llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0),
1157        llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1),
1158        llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2)
1159      };
1160
1161      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1162      V = Builder.CreateShuffleVector(LoadVal,
1163                                      llvm::UndefValue::get(vec4Ty),
1164                                      MaskV, "extractVec");
1165      return EmitFromMemory(V, Ty);
1166    }
1167  }
1168
1169  // Atomic operations have to be done on integral types.
1170  if (Ty->isAtomicType()) {
1171    LValue lvalue = LValue::MakeAddr(Addr, Ty,
1172                                     CharUnits::fromQuantity(Alignment),
1173                                     getContext(), TBAAInfo);
1174    return EmitAtomicLoad(lvalue).getScalarVal();
1175  }
1176
1177  llvm::LoadInst *Load = Builder.CreateLoad(Addr);
1178  if (Volatile)
1179    Load->setVolatile(true);
1180  if (Alignment)
1181    Load->setAlignment(Alignment);
1182  if (TBAAInfo) {
1183    llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1184                                                      TBAAOffset);
1185    CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/);
1186  }
1187
1188  if ((SanOpts->Bool && hasBooleanRepresentation(Ty)) ||
1189      (SanOpts->Enum && Ty->getAs<EnumType>())) {
1190    llvm::APInt Min, End;
1191    if (getRangeForType(*this, Ty, Min, End, true)) {
1192      --End;
1193      llvm::Value *Check;
1194      if (!Min)
1195        Check = Builder.CreateICmpULE(
1196          Load, llvm::ConstantInt::get(getLLVMContext(), End));
1197      else {
1198        llvm::Value *Upper = Builder.CreateICmpSLE(
1199          Load, llvm::ConstantInt::get(getLLVMContext(), End));
1200        llvm::Value *Lower = Builder.CreateICmpSGE(
1201          Load, llvm::ConstantInt::get(getLLVMContext(), Min));
1202        Check = Builder.CreateAnd(Upper, Lower);
1203      }
1204      // FIXME: Provide a SourceLocation.
1205      EmitCheck(Check, "load_invalid_value", EmitCheckTypeDescriptor(Ty),
1206                EmitCheckValue(Load), CRK_Recoverable);
1207    }
1208  } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1209    if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1210      Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1211
1212  return EmitFromMemory(Load, Ty);
1213}
1214
1215llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1216  // Bool has a different representation in memory than in registers.
1217  if (hasBooleanRepresentation(Ty)) {
1218    // This should really always be an i1, but sometimes it's already
1219    // an i8, and it's awkward to track those cases down.
1220    if (Value->getType()->isIntegerTy(1))
1221      return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1222    assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1223           "wrong value rep of bool");
1224  }
1225
1226  return Value;
1227}
1228
1229llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1230  // Bool has a different representation in memory than in registers.
1231  if (hasBooleanRepresentation(Ty)) {
1232    assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1233           "wrong value rep of bool");
1234    return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1235  }
1236
1237  return Value;
1238}
1239
1240void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1241                                        bool Volatile, unsigned Alignment,
1242                                        QualType Ty,
1243                                        llvm::MDNode *TBAAInfo,
1244                                        bool isInit, QualType TBAABaseType,
1245                                        uint64_t TBAAOffset) {
1246
1247  // Handle vectors differently to get better performance.
1248  if (Ty->isVectorType()) {
1249    llvm::Type *SrcTy = Value->getType();
1250    llvm::VectorType *VecTy = cast<llvm::VectorType>(SrcTy);
1251    // Handle vec3 special.
1252    if (VecTy->getNumElements() == 3) {
1253      llvm::LLVMContext &VMContext = getLLVMContext();
1254
1255      // Our source is a vec3, do a shuffle vector to make it a vec4.
1256      SmallVector<llvm::Constant*, 4> Mask;
1257      Mask.push_back(llvm::ConstantInt::get(
1258                                            llvm::Type::getInt32Ty(VMContext),
1259                                            0));
1260      Mask.push_back(llvm::ConstantInt::get(
1261                                            llvm::Type::getInt32Ty(VMContext),
1262                                            1));
1263      Mask.push_back(llvm::ConstantInt::get(
1264                                            llvm::Type::getInt32Ty(VMContext),
1265                                            2));
1266      Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext)));
1267
1268      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1269      Value = Builder.CreateShuffleVector(Value,
1270                                          llvm::UndefValue::get(VecTy),
1271                                          MaskV, "extractVec");
1272      SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1273    }
1274    llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType());
1275    if (DstPtr->getElementType() != SrcTy) {
1276      llvm::Type *MemTy =
1277      llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
1278      Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
1279    }
1280  }
1281
1282  Value = EmitToMemory(Value, Ty);
1283
1284  if (Ty->isAtomicType()) {
1285    EmitAtomicStore(RValue::get(Value),
1286                    LValue::MakeAddr(Addr, Ty,
1287                                     CharUnits::fromQuantity(Alignment),
1288                                     getContext(), TBAAInfo),
1289                    isInit);
1290    return;
1291  }
1292
1293  llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1294  if (Alignment)
1295    Store->setAlignment(Alignment);
1296  if (TBAAInfo) {
1297    llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1298                                                      TBAAOffset);
1299    CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/);
1300  }
1301}
1302
1303void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1304                                        bool isInit) {
1305  EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1306                    lvalue.getAlignment().getQuantity(), lvalue.getType(),
1307                    lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
1308                    lvalue.getTBAAOffset());
1309}
1310
1311/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1312/// method emits the address of the lvalue, then loads the result as an rvalue,
1313/// returning the rvalue.
1314RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) {
1315  if (LV.isObjCWeak()) {
1316    // load of a __weak object.
1317    llvm::Value *AddrWeakObj = LV.getAddress();
1318    return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1319                                                             AddrWeakObj));
1320  }
1321  if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1322    llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1323    Object = EmitObjCConsumeObject(LV.getType(), Object);
1324    return RValue::get(Object);
1325  }
1326
1327  if (LV.isSimple()) {
1328    assert(!LV.getType()->isFunctionType());
1329
1330    // Everything needs a load.
1331    return RValue::get(EmitLoadOfScalar(LV));
1332  }
1333
1334  if (LV.isVectorElt()) {
1335    llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
1336                                              LV.isVolatileQualified());
1337    Load->setAlignment(LV.getAlignment().getQuantity());
1338    return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1339                                                    "vecext"));
1340  }
1341
1342  // If this is a reference to a subset of the elements of a vector, either
1343  // shuffle the input or extract/insert them as appropriate.
1344  if (LV.isExtVectorElt())
1345    return EmitLoadOfExtVectorElementLValue(LV);
1346
1347  assert(LV.isBitField() && "Unknown LValue type!");
1348  return EmitLoadOfBitfieldLValue(LV);
1349}
1350
1351RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1352  const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1353
1354  // Get the output type.
1355  llvm::Type *ResLTy = ConvertType(LV.getType());
1356
1357  llvm::Value *Ptr = LV.getBitFieldAddr();
1358  llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(),
1359                                        "bf.load");
1360  cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1361
1362  if (Info.IsSigned) {
1363    assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1364    unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1365    if (HighBits)
1366      Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1367    if (Info.Offset + HighBits)
1368      Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1369  } else {
1370    if (Info.Offset)
1371      Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1372    if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1373      Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1374                                                              Info.Size),
1375                              "bf.clear");
1376  }
1377  Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1378
1379  return RValue::get(Val);
1380}
1381
1382// If this is a reference to a subset of the elements of a vector, create an
1383// appropriate shufflevector.
1384RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1385  llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
1386                                            LV.isVolatileQualified());
1387  Load->setAlignment(LV.getAlignment().getQuantity());
1388  llvm::Value *Vec = Load;
1389
1390  const llvm::Constant *Elts = LV.getExtVectorElts();
1391
1392  // If the result of the expression is a non-vector type, we must be extracting
1393  // a single element.  Just codegen as an extractelement.
1394  const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1395  if (!ExprVT) {
1396    unsigned InIdx = getAccessedFieldNo(0, Elts);
1397    llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1398    return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1399  }
1400
1401  // Always use shuffle vector to try to retain the original program structure
1402  unsigned NumResultElts = ExprVT->getNumElements();
1403
1404  SmallVector<llvm::Constant*, 4> Mask;
1405  for (unsigned i = 0; i != NumResultElts; ++i)
1406    Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1407
1408  llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1409  Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1410                                    MaskV);
1411  return RValue::get(Vec);
1412}
1413
1414
1415
1416/// EmitStoreThroughLValue - Store the specified rvalue into the specified
1417/// lvalue, where both are guaranteed to the have the same type, and that type
1418/// is 'Ty'.
1419void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) {
1420  if (!Dst.isSimple()) {
1421    if (Dst.isVectorElt()) {
1422      // Read/modify/write the vector, inserting the new element.
1423      llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
1424                                                Dst.isVolatileQualified());
1425      Load->setAlignment(Dst.getAlignment().getQuantity());
1426      llvm::Value *Vec = Load;
1427      Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1428                                        Dst.getVectorIdx(), "vecins");
1429      llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
1430                                                   Dst.isVolatileQualified());
1431      Store->setAlignment(Dst.getAlignment().getQuantity());
1432      return;
1433    }
1434
1435    // If this is an update of extended vector elements, insert them as
1436    // appropriate.
1437    if (Dst.isExtVectorElt())
1438      return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1439
1440    assert(Dst.isBitField() && "Unknown LValue type");
1441    return EmitStoreThroughBitfieldLValue(Src, Dst);
1442  }
1443
1444  // There's special magic for assigning into an ARC-qualified l-value.
1445  if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1446    switch (Lifetime) {
1447    case Qualifiers::OCL_None:
1448      llvm_unreachable("present but none");
1449
1450    case Qualifiers::OCL_ExplicitNone:
1451      // nothing special
1452      break;
1453
1454    case Qualifiers::OCL_Strong:
1455      EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1456      return;
1457
1458    case Qualifiers::OCL_Weak:
1459      EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1460      return;
1461
1462    case Qualifiers::OCL_Autoreleasing:
1463      Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1464                                                     Src.getScalarVal()));
1465      // fall into the normal path
1466      break;
1467    }
1468  }
1469
1470  if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1471    // load of a __weak object.
1472    llvm::Value *LvalueDst = Dst.getAddress();
1473    llvm::Value *src = Src.getScalarVal();
1474     CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1475    return;
1476  }
1477
1478  if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1479    // load of a __strong object.
1480    llvm::Value *LvalueDst = Dst.getAddress();
1481    llvm::Value *src = Src.getScalarVal();
1482    if (Dst.isObjCIvar()) {
1483      assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1484      llvm::Type *ResultType = ConvertType(getContext().LongTy);
1485      llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1486      llvm::Value *dst = RHS;
1487      RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1488      llvm::Value *LHS =
1489        Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1490      llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1491      CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1492                                              BytesBetween);
1493    } else if (Dst.isGlobalObjCRef()) {
1494      CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1495                                                Dst.isThreadLocalRef());
1496    }
1497    else
1498      CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1499    return;
1500  }
1501
1502  assert(Src.isScalar() && "Can't emit an agg store with this method");
1503  EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1504}
1505
1506void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1507                                                     llvm::Value **Result) {
1508  const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1509  llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1510  llvm::Value *Ptr = Dst.getBitFieldAddr();
1511
1512  // Get the source value, truncated to the width of the bit-field.
1513  llvm::Value *SrcVal = Src.getScalarVal();
1514
1515  // Cast the source to the storage type and shift it into place.
1516  SrcVal = Builder.CreateIntCast(SrcVal,
1517                                 Ptr->getType()->getPointerElementType(),
1518                                 /*IsSigned=*/false);
1519  llvm::Value *MaskedVal = SrcVal;
1520
1521  // See if there are other bits in the bitfield's storage we'll need to load
1522  // and mask together with source before storing.
1523  if (Info.StorageSize != Info.Size) {
1524    assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1525    llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
1526                                          "bf.load");
1527    cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1528
1529    // Mask the source value as needed.
1530    if (!hasBooleanRepresentation(Dst.getType()))
1531      SrcVal = Builder.CreateAnd(SrcVal,
1532                                 llvm::APInt::getLowBitsSet(Info.StorageSize,
1533                                                            Info.Size),
1534                                 "bf.value");
1535    MaskedVal = SrcVal;
1536    if (Info.Offset)
1537      SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1538
1539    // Mask out the original value.
1540    Val = Builder.CreateAnd(Val,
1541                            ~llvm::APInt::getBitsSet(Info.StorageSize,
1542                                                     Info.Offset,
1543                                                     Info.Offset + Info.Size),
1544                            "bf.clear");
1545
1546    // Or together the unchanged values and the source value.
1547    SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1548  } else {
1549    assert(Info.Offset == 0);
1550  }
1551
1552  // Write the new value back out.
1553  llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr,
1554                                               Dst.isVolatileQualified());
1555  Store->setAlignment(Info.StorageAlignment);
1556
1557  // Return the new value of the bit-field, if requested.
1558  if (Result) {
1559    llvm::Value *ResultVal = MaskedVal;
1560
1561    // Sign extend the value if needed.
1562    if (Info.IsSigned) {
1563      assert(Info.Size <= Info.StorageSize);
1564      unsigned HighBits = Info.StorageSize - Info.Size;
1565      if (HighBits) {
1566        ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1567        ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1568      }
1569    }
1570
1571    ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1572                                      "bf.result.cast");
1573    *Result = EmitFromMemory(ResultVal, Dst.getType());
1574  }
1575}
1576
1577void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1578                                                               LValue Dst) {
1579  // This access turns into a read/modify/write of the vector.  Load the input
1580  // value now.
1581  llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
1582                                            Dst.isVolatileQualified());
1583  Load->setAlignment(Dst.getAlignment().getQuantity());
1584  llvm::Value *Vec = Load;
1585  const llvm::Constant *Elts = Dst.getExtVectorElts();
1586
1587  llvm::Value *SrcVal = Src.getScalarVal();
1588
1589  if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1590    unsigned NumSrcElts = VTy->getNumElements();
1591    unsigned NumDstElts =
1592       cast<llvm::VectorType>(Vec->getType())->getNumElements();
1593    if (NumDstElts == NumSrcElts) {
1594      // Use shuffle vector is the src and destination are the same number of
1595      // elements and restore the vector mask since it is on the side it will be
1596      // stored.
1597      SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1598      for (unsigned i = 0; i != NumSrcElts; ++i)
1599        Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1600
1601      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1602      Vec = Builder.CreateShuffleVector(SrcVal,
1603                                        llvm::UndefValue::get(Vec->getType()),
1604                                        MaskV);
1605    } else if (NumDstElts > NumSrcElts) {
1606      // Extended the source vector to the same length and then shuffle it
1607      // into the destination.
1608      // FIXME: since we're shuffling with undef, can we just use the indices
1609      //        into that?  This could be simpler.
1610      SmallVector<llvm::Constant*, 4> ExtMask;
1611      for (unsigned i = 0; i != NumSrcElts; ++i)
1612        ExtMask.push_back(Builder.getInt32(i));
1613      ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1614      llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1615      llvm::Value *ExtSrcVal =
1616        Builder.CreateShuffleVector(SrcVal,
1617                                    llvm::UndefValue::get(SrcVal->getType()),
1618                                    ExtMaskV);
1619      // build identity
1620      SmallVector<llvm::Constant*, 4> Mask;
1621      for (unsigned i = 0; i != NumDstElts; ++i)
1622        Mask.push_back(Builder.getInt32(i));
1623
1624      // modify when what gets shuffled in
1625      for (unsigned i = 0; i != NumSrcElts; ++i)
1626        Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1627      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1628      Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1629    } else {
1630      // We should never shorten the vector
1631      llvm_unreachable("unexpected shorten vector length");
1632    }
1633  } else {
1634    // If the Src is a scalar (not a vector) it must be updating one element.
1635    unsigned InIdx = getAccessedFieldNo(0, Elts);
1636    llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1637    Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1638  }
1639
1640  llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
1641                                               Dst.isVolatileQualified());
1642  Store->setAlignment(Dst.getAlignment().getQuantity());
1643}
1644
1645// setObjCGCLValueClass - sets class of he lvalue for the purpose of
1646// generating write-barries API. It is currently a global, ivar,
1647// or neither.
1648static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1649                                 LValue &LV,
1650                                 bool IsMemberAccess=false) {
1651  if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1652    return;
1653
1654  if (isa<ObjCIvarRefExpr>(E)) {
1655    QualType ExpTy = E->getType();
1656    if (IsMemberAccess && ExpTy->isPointerType()) {
1657      // If ivar is a structure pointer, assigning to field of
1658      // this struct follows gcc's behavior and makes it a non-ivar
1659      // writer-barrier conservatively.
1660      ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1661      if (ExpTy->isRecordType()) {
1662        LV.setObjCIvar(false);
1663        return;
1664      }
1665    }
1666    LV.setObjCIvar(true);
1667    ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
1668    LV.setBaseIvarExp(Exp->getBase());
1669    LV.setObjCArray(E->getType()->isArrayType());
1670    return;
1671  }
1672
1673  if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
1674    if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1675      if (VD->hasGlobalStorage()) {
1676        LV.setGlobalObjCRef(true);
1677        LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
1678      }
1679    }
1680    LV.setObjCArray(E->getType()->isArrayType());
1681    return;
1682  }
1683
1684  if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
1685    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1686    return;
1687  }
1688
1689  if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
1690    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1691    if (LV.isObjCIvar()) {
1692      // If cast is to a structure pointer, follow gcc's behavior and make it
1693      // a non-ivar write-barrier.
1694      QualType ExpTy = E->getType();
1695      if (ExpTy->isPointerType())
1696        ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1697      if (ExpTy->isRecordType())
1698        LV.setObjCIvar(false);
1699    }
1700    return;
1701  }
1702
1703  if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1704    setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1705    return;
1706  }
1707
1708  if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1709    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1710    return;
1711  }
1712
1713  if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
1714    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1715    return;
1716  }
1717
1718  if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1719    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1720    return;
1721  }
1722
1723  if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1724    setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1725    if (LV.isObjCIvar() && !LV.isObjCArray())
1726      // Using array syntax to assigning to what an ivar points to is not
1727      // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1728      LV.setObjCIvar(false);
1729    else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1730      // Using array syntax to assigning to what global points to is not
1731      // same as assigning to the global itself. {id *G;} G[i] = 0;
1732      LV.setGlobalObjCRef(false);
1733    return;
1734  }
1735
1736  if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
1737    setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1738    // We don't know if member is an 'ivar', but this flag is looked at
1739    // only in the context of LV.isObjCIvar().
1740    LV.setObjCArray(E->getType()->isArrayType());
1741    return;
1742  }
1743}
1744
1745static llvm::Value *
1746EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1747                                llvm::Value *V, llvm::Type *IRType,
1748                                StringRef Name = StringRef()) {
1749  unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1750  return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1751}
1752
1753static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1754                                      const Expr *E, const VarDecl *VD) {
1755  llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1756  llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1757  V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1758  CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1759  QualType T = E->getType();
1760  LValue LV;
1761  if (VD->getType()->isReferenceType()) {
1762    llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1763    LI->setAlignment(Alignment.getQuantity());
1764    V = LI;
1765    LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1766  } else {
1767    LV = CGF.MakeAddrLValue(V, E->getType(), Alignment);
1768  }
1769  setObjCGCLValueClass(CGF.getContext(), E, LV);
1770  return LV;
1771}
1772
1773static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1774                                     const Expr *E, const FunctionDecl *FD) {
1775  llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1776  if (!FD->hasPrototype()) {
1777    if (const FunctionProtoType *Proto =
1778            FD->getType()->getAs<FunctionProtoType>()) {
1779      // Ugly case: for a K&R-style definition, the type of the definition
1780      // isn't the same as the type of a use.  Correct for this with a
1781      // bitcast.
1782      QualType NoProtoType =
1783          CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
1784      NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1785      V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1786    }
1787  }
1788  CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1789  return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1790}
1791
1792LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1793  const NamedDecl *ND = E->getDecl();
1794  CharUnits Alignment = getContext().getDeclAlign(ND);
1795  QualType T = E->getType();
1796
1797  // A DeclRefExpr for a reference initialized by a constant expression can
1798  // appear without being odr-used. Directly emit the constant initializer.
1799  if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1800    const Expr *Init = VD->getAnyInitializer(VD);
1801    if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
1802        VD->isUsableInConstantExpressions(getContext()) &&
1803        VD->checkInitIsICE()) {
1804      llvm::Constant *Val =
1805        CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
1806      assert(Val && "failed to emit reference constant expression");
1807      // FIXME: Eventually we will want to emit vector element references.
1808      return MakeAddrLValue(Val, T, Alignment);
1809    }
1810  }
1811
1812  // FIXME: We should be able to assert this for FunctionDecls as well!
1813  // FIXME: We should be able to assert this for all DeclRefExprs, not just
1814  // those with a valid source location.
1815  assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
1816          !E->getLocation().isValid()) &&
1817         "Should not use decl without marking it used!");
1818
1819  if (ND->hasAttr<WeakRefAttr>()) {
1820    const ValueDecl *VD = cast<ValueDecl>(ND);
1821    llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1822    return MakeAddrLValue(Aliasee, T, Alignment);
1823  }
1824
1825  if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1826    // Check if this is a global variable.
1827    if (VD->hasLinkage() || VD->isStaticDataMember())
1828      return EmitGlobalVarDeclLValue(*this, E, VD);
1829
1830    bool isBlockVariable = VD->hasAttr<BlocksAttr>();
1831
1832    llvm::Value *V = LocalDeclMap.lookup(VD);
1833    if (!V && VD->isStaticLocal())
1834      V = CGM.getStaticLocalDeclAddress(VD);
1835
1836    // Use special handling for lambdas.
1837    if (!V) {
1838      if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) {
1839        QualType LambdaTagType = getContext().getTagDeclType(FD->getParent());
1840        LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue,
1841                                                     LambdaTagType);
1842        return EmitLValueForField(LambdaLV, FD);
1843      }
1844
1845      assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal());
1846      return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable),
1847                            T, Alignment);
1848    }
1849
1850    assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1851
1852    if (isBlockVariable)
1853      V = BuildBlockByrefAddress(V, VD);
1854
1855    LValue LV;
1856    if (VD->getType()->isReferenceType()) {
1857      llvm::LoadInst *LI = Builder.CreateLoad(V);
1858      LI->setAlignment(Alignment.getQuantity());
1859      V = LI;
1860      LV = MakeNaturalAlignAddrLValue(V, T);
1861    } else {
1862      LV = MakeAddrLValue(V, T, Alignment);
1863    }
1864
1865    bool isLocalStorage = VD->hasLocalStorage();
1866
1867    bool NonGCable = isLocalStorage &&
1868                     !VD->getType()->isReferenceType() &&
1869                     !isBlockVariable;
1870    if (NonGCable) {
1871      LV.getQuals().removeObjCGCAttr();
1872      LV.setNonGC(true);
1873    }
1874
1875    bool isImpreciseLifetime =
1876      (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
1877    if (isImpreciseLifetime)
1878      LV.setARCPreciseLifetime(ARCImpreciseLifetime);
1879    setObjCGCLValueClass(getContext(), E, LV);
1880    return LV;
1881  }
1882
1883  if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND))
1884    return EmitFunctionDeclLValue(*this, E, fn);
1885
1886  llvm_unreachable("Unhandled DeclRefExpr");
1887}
1888
1889LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1890  // __extension__ doesn't affect lvalue-ness.
1891  if (E->getOpcode() == UO_Extension)
1892    return EmitLValue(E->getSubExpr());
1893
1894  QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1895  switch (E->getOpcode()) {
1896  default: llvm_unreachable("Unknown unary operator lvalue!");
1897  case UO_Deref: {
1898    QualType T = E->getSubExpr()->getType()->getPointeeType();
1899    assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1900
1901    LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1902    LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1903
1904    // We should not generate __weak write barrier on indirect reference
1905    // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1906    // But, we continue to generate __strong write barrier on indirect write
1907    // into a pointer to object.
1908    if (getLangOpts().ObjC1 &&
1909        getLangOpts().getGC() != LangOptions::NonGC &&
1910        LV.isObjCWeak())
1911      LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1912    return LV;
1913  }
1914  case UO_Real:
1915  case UO_Imag: {
1916    LValue LV = EmitLValue(E->getSubExpr());
1917    assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1918    llvm::Value *Addr = LV.getAddress();
1919
1920    // __real is valid on scalars.  This is a faster way of testing that.
1921    // __imag can only produce an rvalue on scalars.
1922    if (E->getOpcode() == UO_Real &&
1923        !cast<llvm::PointerType>(Addr->getType())
1924           ->getElementType()->isStructTy()) {
1925      assert(E->getSubExpr()->getType()->isArithmeticType());
1926      return LV;
1927    }
1928
1929    assert(E->getSubExpr()->getType()->isAnyComplexType());
1930
1931    unsigned Idx = E->getOpcode() == UO_Imag;
1932    return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1933                                                  Idx, "idx"),
1934                          ExprTy);
1935  }
1936  case UO_PreInc:
1937  case UO_PreDec: {
1938    LValue LV = EmitLValue(E->getSubExpr());
1939    bool isInc = E->getOpcode() == UO_PreInc;
1940
1941    if (E->getType()->isAnyComplexType())
1942      EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1943    else
1944      EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1945    return LV;
1946  }
1947  }
1948}
1949
1950LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1951  return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1952                        E->getType());
1953}
1954
1955LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1956  return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1957                        E->getType());
1958}
1959
1960static llvm::Constant*
1961GetAddrOfConstantWideString(StringRef Str,
1962                            const char *GlobalName,
1963                            ASTContext &Context,
1964                            QualType Ty, SourceLocation Loc,
1965                            CodeGenModule &CGM) {
1966
1967  StringLiteral *SL = StringLiteral::Create(Context,
1968                                            Str,
1969                                            StringLiteral::Wide,
1970                                            /*Pascal = */false,
1971                                            Ty, Loc);
1972  llvm::Constant *C = CGM.GetConstantArrayFromStringLiteral(SL);
1973  llvm::GlobalVariable *GV =
1974    new llvm::GlobalVariable(CGM.getModule(), C->getType(),
1975                             !CGM.getLangOpts().WritableStrings,
1976                             llvm::GlobalValue::PrivateLinkage,
1977                             C, GlobalName);
1978  const unsigned WideAlignment =
1979    Context.getTypeAlignInChars(Ty).getQuantity();
1980  GV->setAlignment(WideAlignment);
1981  return GV;
1982}
1983
1984static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
1985                                    SmallString<32>& Target) {
1986  Target.resize(CharByteWidth * (Source.size() + 1));
1987  char *ResultPtr = &Target[0];
1988  const UTF8 *ErrorPtr;
1989  bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
1990  (void)success;
1991  assert(success);
1992  Target.resize(ResultPtr - &Target[0]);
1993}
1994
1995LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
1996  switch (E->getIdentType()) {
1997  default:
1998    return EmitUnsupportedLValue(E, "predefined expression");
1999
2000  case PredefinedExpr::Func:
2001  case PredefinedExpr::Function:
2002  case PredefinedExpr::LFunction:
2003  case PredefinedExpr::PrettyFunction: {
2004    unsigned IdentType = E->getIdentType();
2005    std::string GlobalVarName;
2006
2007    switch (IdentType) {
2008    default: llvm_unreachable("Invalid type");
2009    case PredefinedExpr::Func:
2010      GlobalVarName = "__func__.";
2011      break;
2012    case PredefinedExpr::Function:
2013      GlobalVarName = "__FUNCTION__.";
2014      break;
2015    case PredefinedExpr::LFunction:
2016      GlobalVarName = "L__FUNCTION__.";
2017      break;
2018    case PredefinedExpr::PrettyFunction:
2019      GlobalVarName = "__PRETTY_FUNCTION__.";
2020      break;
2021    }
2022
2023    StringRef FnName = CurFn->getName();
2024    if (FnName.startswith("\01"))
2025      FnName = FnName.substr(1);
2026    GlobalVarName += FnName;
2027
2028    const Decl *CurDecl = CurCodeDecl;
2029    if (CurDecl == 0)
2030      CurDecl = getContext().getTranslationUnitDecl();
2031
2032    std::string FunctionName =
2033        (isa<BlockDecl>(CurDecl)
2034         ? FnName.str()
2035         : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)IdentType,
2036                                       CurDecl));
2037
2038    const Type* ElemType = E->getType()->getArrayElementTypeNoTypeQual();
2039    llvm::Constant *C;
2040    if (ElemType->isWideCharType()) {
2041      SmallString<32> RawChars;
2042      ConvertUTF8ToWideString(
2043          getContext().getTypeSizeInChars(ElemType).getQuantity(),
2044          FunctionName, RawChars);
2045      C = GetAddrOfConstantWideString(RawChars,
2046                                      GlobalVarName.c_str(),
2047                                      getContext(),
2048                                      E->getType(),
2049                                      E->getLocation(),
2050                                      CGM);
2051    } else {
2052      C = CGM.GetAddrOfConstantCString(FunctionName,
2053                                       GlobalVarName.c_str(),
2054                                       1);
2055    }
2056    return MakeAddrLValue(C, E->getType());
2057  }
2058  }
2059}
2060
2061/// Emit a type description suitable for use by a runtime sanitizer library. The
2062/// format of a type descriptor is
2063///
2064/// \code
2065///   { i16 TypeKind, i16 TypeInfo }
2066/// \endcode
2067///
2068/// followed by an array of i8 containing the type name. TypeKind is 0 for an
2069/// integer, 1 for a floating point value, and -1 for anything else.
2070llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2071  // FIXME: Only emit each type's descriptor once.
2072  uint16_t TypeKind = -1;
2073  uint16_t TypeInfo = 0;
2074
2075  if (T->isIntegerType()) {
2076    TypeKind = 0;
2077    TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2078               (T->isSignedIntegerType() ? 1 : 0);
2079  } else if (T->isFloatingType()) {
2080    TypeKind = 1;
2081    TypeInfo = getContext().getTypeSize(T);
2082  }
2083
2084  // Format the type name as if for a diagnostic, including quotes and
2085  // optionally an 'aka'.
2086  SmallString<32> Buffer;
2087  CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2088                                    (intptr_t)T.getAsOpaquePtr(),
2089                                    0, 0, 0, 0, 0, 0, Buffer,
2090                                    ArrayRef<intptr_t>());
2091
2092  llvm::Constant *Components[] = {
2093    Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2094    llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2095  };
2096  llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2097
2098  llvm::GlobalVariable *GV =
2099    new llvm::GlobalVariable(CGM.getModule(), Descriptor->getType(),
2100                             /*isConstant=*/true,
2101                             llvm::GlobalVariable::PrivateLinkage,
2102                             Descriptor);
2103  GV->setUnnamedAddr(true);
2104  return GV;
2105}
2106
2107llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2108  llvm::Type *TargetTy = IntPtrTy;
2109
2110  // Floating-point types which fit into intptr_t are bitcast to integers
2111  // and then passed directly (after zero-extension, if necessary).
2112  if (V->getType()->isFloatingPointTy()) {
2113    unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2114    if (Bits <= TargetTy->getIntegerBitWidth())
2115      V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2116                                                         Bits));
2117  }
2118
2119  // Integers which fit in intptr_t are zero-extended and passed directly.
2120  if (V->getType()->isIntegerTy() &&
2121      V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2122    return Builder.CreateZExt(V, TargetTy);
2123
2124  // Pointers are passed directly, everything else is passed by address.
2125  if (!V->getType()->isPointerTy()) {
2126    llvm::Value *Ptr = CreateTempAlloca(V->getType());
2127    Builder.CreateStore(V, Ptr);
2128    V = Ptr;
2129  }
2130  return Builder.CreatePtrToInt(V, TargetTy);
2131}
2132
2133/// \brief Emit a representation of a SourceLocation for passing to a handler
2134/// in a sanitizer runtime library. The format for this data is:
2135/// \code
2136///   struct SourceLocation {
2137///     const char *Filename;
2138///     int32_t Line, Column;
2139///   };
2140/// \endcode
2141/// For an invalid SourceLocation, the Filename pointer is null.
2142llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2143  PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2144
2145  llvm::Constant *Data[] = {
2146    // FIXME: Only emit each file name once.
2147    PLoc.isValid() ? cast<llvm::Constant>(
2148                       Builder.CreateGlobalStringPtr(PLoc.getFilename()))
2149                   : llvm::Constant::getNullValue(Int8PtrTy),
2150    Builder.getInt32(PLoc.getLine()),
2151    Builder.getInt32(PLoc.getColumn())
2152  };
2153
2154  return llvm::ConstantStruct::getAnon(Data);
2155}
2156
2157void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName,
2158                                ArrayRef<llvm::Constant *> StaticArgs,
2159                                ArrayRef<llvm::Value *> DynamicArgs,
2160                                CheckRecoverableKind RecoverKind) {
2161  assert(SanOpts != &SanitizerOptions::Disabled);
2162
2163  if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) {
2164    assert (RecoverKind != CRK_AlwaysRecoverable &&
2165            "Runtime call required for AlwaysRecoverable kind!");
2166    return EmitTrapCheck(Checked);
2167  }
2168
2169  llvm::BasicBlock *Cont = createBasicBlock("cont");
2170
2171  llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName);
2172
2173  llvm::Instruction *Branch = Builder.CreateCondBr(Checked, Cont, Handler);
2174
2175  // Give hint that we very much don't expect to execute the handler
2176  // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2177  llvm::MDBuilder MDHelper(getLLVMContext());
2178  llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2179  Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2180
2181  EmitBlock(Handler);
2182
2183  llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2184  llvm::GlobalValue *InfoPtr =
2185      new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2186                               llvm::GlobalVariable::PrivateLinkage, Info);
2187  InfoPtr->setUnnamedAddr(true);
2188
2189  SmallVector<llvm::Value *, 4> Args;
2190  SmallVector<llvm::Type *, 4> ArgTypes;
2191  Args.reserve(DynamicArgs.size() + 1);
2192  ArgTypes.reserve(DynamicArgs.size() + 1);
2193
2194  // Handler functions take an i8* pointing to the (handler-specific) static
2195  // information block, followed by a sequence of intptr_t arguments
2196  // representing operand values.
2197  Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2198  ArgTypes.push_back(Int8PtrTy);
2199  for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2200    Args.push_back(EmitCheckValue(DynamicArgs[i]));
2201    ArgTypes.push_back(IntPtrTy);
2202  }
2203
2204  bool Recover = (RecoverKind == CRK_AlwaysRecoverable) ||
2205                 ((RecoverKind == CRK_Recoverable) &&
2206                   CGM.getCodeGenOpts().SanitizeRecover);
2207
2208  llvm::FunctionType *FnType =
2209    llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2210  llvm::AttrBuilder B;
2211  if (!Recover) {
2212    B.addAttribute(llvm::Attribute::NoReturn)
2213     .addAttribute(llvm::Attribute::NoUnwind);
2214  }
2215  B.addAttribute(llvm::Attribute::UWTable);
2216
2217  // Checks that have two variants use a suffix to differentiate them
2218  bool NeedsAbortSuffix = (RecoverKind != CRK_Unrecoverable) &&
2219                           !CGM.getCodeGenOpts().SanitizeRecover;
2220  std::string FunctionName = ("__ubsan_handle_" + CheckName +
2221                              (NeedsAbortSuffix? "_abort" : "")).str();
2222  llvm::Value *Fn =
2223    CGM.CreateRuntimeFunction(FnType, FunctionName,
2224                              llvm::AttributeSet::get(getLLVMContext(),
2225                                              llvm::AttributeSet::FunctionIndex,
2226                                                      B));
2227  llvm::CallInst *HandlerCall = EmitNounwindRuntimeCall(Fn, Args);
2228  if (Recover) {
2229    Builder.CreateBr(Cont);
2230  } else {
2231    HandlerCall->setDoesNotReturn();
2232    Builder.CreateUnreachable();
2233  }
2234
2235  EmitBlock(Cont);
2236}
2237
2238void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
2239  llvm::BasicBlock *Cont = createBasicBlock("cont");
2240
2241  // If we're optimizing, collapse all calls to trap down to just one per
2242  // function to save on code size.
2243  if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
2244    TrapBB = createBasicBlock("trap");
2245    Builder.CreateCondBr(Checked, Cont, TrapBB);
2246    EmitBlock(TrapBB);
2247    llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
2248    llvm::CallInst *TrapCall = Builder.CreateCall(F);
2249    TrapCall->setDoesNotReturn();
2250    TrapCall->setDoesNotThrow();
2251    Builder.CreateUnreachable();
2252  } else {
2253    Builder.CreateCondBr(Checked, Cont, TrapBB);
2254  }
2255
2256  EmitBlock(Cont);
2257}
2258
2259/// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
2260/// array to pointer, return the array subexpression.
2261static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
2262  // If this isn't just an array->pointer decay, bail out.
2263  const CastExpr *CE = dyn_cast<CastExpr>(E);
2264  if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
2265    return 0;
2266
2267  // If this is a decay from variable width array, bail out.
2268  const Expr *SubExpr = CE->getSubExpr();
2269  if (SubExpr->getType()->isVariableArrayType())
2270    return 0;
2271
2272  return SubExpr;
2273}
2274
2275LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2276                                               bool Accessed) {
2277  // The index must always be an integer, which is not an aggregate.  Emit it.
2278  llvm::Value *Idx = EmitScalarExpr(E->getIdx());
2279  QualType IdxTy  = E->getIdx()->getType();
2280  bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
2281
2282  if (SanOpts->Bounds)
2283    EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
2284
2285  // If the base is a vector type, then we are forming a vector element lvalue
2286  // with this subscript.
2287  if (E->getBase()->getType()->isVectorType()) {
2288    // Emit the vector as an lvalue to get its address.
2289    LValue LHS = EmitLValue(E->getBase());
2290    assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
2291    Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
2292    return LValue::MakeVectorElt(LHS.getAddress(), Idx,
2293                                 E->getBase()->getType(), LHS.getAlignment());
2294  }
2295
2296  // Extend or truncate the index type to 32 or 64-bits.
2297  if (Idx->getType() != IntPtrTy)
2298    Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
2299
2300  // We know that the pointer points to a type of the correct size, unless the
2301  // size is a VLA or Objective-C interface.
2302  llvm::Value *Address = 0;
2303  CharUnits ArrayAlignment;
2304  if (const VariableArrayType *vla =
2305        getContext().getAsVariableArrayType(E->getType())) {
2306    // The base must be a pointer, which is not an aggregate.  Emit
2307    // it.  It needs to be emitted first in case it's what captures
2308    // the VLA bounds.
2309    Address = EmitScalarExpr(E->getBase());
2310
2311    // The element count here is the total number of non-VLA elements.
2312    llvm::Value *numElements = getVLASize(vla).first;
2313
2314    // Effectively, the multiply by the VLA size is part of the GEP.
2315    // GEP indexes are signed, and scaling an index isn't permitted to
2316    // signed-overflow, so we use the same semantics for our explicit
2317    // multiply.  We suppress this if overflow is not undefined behavior.
2318    if (getLangOpts().isSignedOverflowDefined()) {
2319      Idx = Builder.CreateMul(Idx, numElements);
2320      Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2321    } else {
2322      Idx = Builder.CreateNSWMul(Idx, numElements);
2323      Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
2324    }
2325  } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
2326    // Indexing over an interface, as in "NSString *P; P[4];"
2327    llvm::Value *InterfaceSize =
2328      llvm::ConstantInt::get(Idx->getType(),
2329          getContext().getTypeSizeInChars(OIT).getQuantity());
2330
2331    Idx = Builder.CreateMul(Idx, InterfaceSize);
2332
2333    // The base must be a pointer, which is not an aggregate.  Emit it.
2334    llvm::Value *Base = EmitScalarExpr(E->getBase());
2335    Address = EmitCastToVoidPtr(Base);
2336    Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2337    Address = Builder.CreateBitCast(Address, Base->getType());
2338  } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
2339    // If this is A[i] where A is an array, the frontend will have decayed the
2340    // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
2341    // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
2342    // "gep x, i" here.  Emit one "gep A, 0, i".
2343    assert(Array->getType()->isArrayType() &&
2344           "Array to pointer decay must have array source type!");
2345    LValue ArrayLV;
2346    // For simple multidimensional array indexing, set the 'accessed' flag for
2347    // better bounds-checking of the base expression.
2348    if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(Array))
2349      ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
2350    else
2351      ArrayLV = EmitLValue(Array);
2352    llvm::Value *ArrayPtr = ArrayLV.getAddress();
2353    llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
2354    llvm::Value *Args[] = { Zero, Idx };
2355
2356    // Propagate the alignment from the array itself to the result.
2357    ArrayAlignment = ArrayLV.getAlignment();
2358
2359    if (getLangOpts().isSignedOverflowDefined())
2360      Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
2361    else
2362      Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
2363  } else {
2364    // The base must be a pointer, which is not an aggregate.  Emit it.
2365    llvm::Value *Base = EmitScalarExpr(E->getBase());
2366    if (getLangOpts().isSignedOverflowDefined())
2367      Address = Builder.CreateGEP(Base, Idx, "arrayidx");
2368    else
2369      Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
2370  }
2371
2372  QualType T = E->getBase()->getType()->getPointeeType();
2373  assert(!T.isNull() &&
2374         "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
2375
2376
2377  // Limit the alignment to that of the result type.
2378  LValue LV;
2379  if (!ArrayAlignment.isZero()) {
2380    CharUnits Align = getContext().getTypeAlignInChars(T);
2381    ArrayAlignment = std::min(Align, ArrayAlignment);
2382    LV = MakeAddrLValue(Address, T, ArrayAlignment);
2383  } else {
2384    LV = MakeNaturalAlignAddrLValue(Address, T);
2385  }
2386
2387  LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
2388
2389  if (getLangOpts().ObjC1 &&
2390      getLangOpts().getGC() != LangOptions::NonGC) {
2391    LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2392    setObjCGCLValueClass(getContext(), E, LV);
2393  }
2394  return LV;
2395}
2396
2397static
2398llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
2399                                       SmallVector<unsigned, 4> &Elts) {
2400  SmallVector<llvm::Constant*, 4> CElts;
2401  for (unsigned i = 0, e = Elts.size(); i != e; ++i)
2402    CElts.push_back(Builder.getInt32(Elts[i]));
2403
2404  return llvm::ConstantVector::get(CElts);
2405}
2406
2407LValue CodeGenFunction::
2408EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
2409  // Emit the base vector as an l-value.
2410  LValue Base;
2411
2412  // ExtVectorElementExpr's base can either be a vector or pointer to vector.
2413  if (E->isArrow()) {
2414    // If it is a pointer to a vector, emit the address and form an lvalue with
2415    // it.
2416    llvm::Value *Ptr = EmitScalarExpr(E->getBase());
2417    const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
2418    Base = MakeAddrLValue(Ptr, PT->getPointeeType());
2419    Base.getQuals().removeObjCGCAttr();
2420  } else if (E->getBase()->isGLValue()) {
2421    // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
2422    // emit the base as an lvalue.
2423    assert(E->getBase()->getType()->isVectorType());
2424    Base = EmitLValue(E->getBase());
2425  } else {
2426    // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
2427    assert(E->getBase()->getType()->isVectorType() &&
2428           "Result must be a vector");
2429    llvm::Value *Vec = EmitScalarExpr(E->getBase());
2430
2431    // Store the vector to memory (because LValue wants an address).
2432    llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
2433    Builder.CreateStore(Vec, VecMem);
2434    Base = MakeAddrLValue(VecMem, E->getBase()->getType());
2435  }
2436
2437  QualType type =
2438    E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
2439
2440  // Encode the element access list into a vector of unsigned indices.
2441  SmallVector<unsigned, 4> Indices;
2442  E->getEncodedElementAccess(Indices);
2443
2444  if (Base.isSimple()) {
2445    llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
2446    return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
2447                                    Base.getAlignment());
2448  }
2449  assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
2450
2451  llvm::Constant *BaseElts = Base.getExtVectorElts();
2452  SmallVector<llvm::Constant *, 4> CElts;
2453
2454  for (unsigned i = 0, e = Indices.size(); i != e; ++i)
2455    CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
2456  llvm::Constant *CV = llvm::ConstantVector::get(CElts);
2457  return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
2458                                  Base.getAlignment());
2459}
2460
2461LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
2462  Expr *BaseExpr = E->getBase();
2463
2464  // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
2465  LValue BaseLV;
2466  if (E->isArrow()) {
2467    llvm::Value *Ptr = EmitScalarExpr(BaseExpr);
2468    QualType PtrTy = BaseExpr->getType()->getPointeeType();
2469    EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy);
2470    BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy);
2471  } else
2472    BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
2473
2474  NamedDecl *ND = E->getMemberDecl();
2475  if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
2476    LValue LV = EmitLValueForField(BaseLV, Field);
2477    setObjCGCLValueClass(getContext(), E, LV);
2478    return LV;
2479  }
2480
2481  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
2482    return EmitGlobalVarDeclLValue(*this, E, VD);
2483
2484  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
2485    return EmitFunctionDeclLValue(*this, E, FD);
2486
2487  llvm_unreachable("Unhandled member declaration!");
2488}
2489
2490LValue CodeGenFunction::EmitLValueForField(LValue base,
2491                                           const FieldDecl *field) {
2492  if (field->isBitField()) {
2493    const CGRecordLayout &RL =
2494      CGM.getTypes().getCGRecordLayout(field->getParent());
2495    const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
2496    llvm::Value *Addr = base.getAddress();
2497    unsigned Idx = RL.getLLVMFieldNo(field);
2498    if (Idx != 0)
2499      // For structs, we GEP to the field that the record layout suggests.
2500      Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
2501    // Get the access type.
2502    llvm::Type *PtrTy = llvm::Type::getIntNPtrTy(
2503      getLLVMContext(), Info.StorageSize,
2504      CGM.getContext().getTargetAddressSpace(base.getType()));
2505    if (Addr->getType() != PtrTy)
2506      Addr = Builder.CreateBitCast(Addr, PtrTy);
2507
2508    QualType fieldType =
2509      field->getType().withCVRQualifiers(base.getVRQualifiers());
2510    return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment());
2511  }
2512
2513  const RecordDecl *rec = field->getParent();
2514  QualType type = field->getType();
2515  CharUnits alignment = getContext().getDeclAlign(field);
2516
2517  // FIXME: It should be impossible to have an LValue without alignment for a
2518  // complete type.
2519  if (!base.getAlignment().isZero())
2520    alignment = std::min(alignment, base.getAlignment());
2521
2522  bool mayAlias = rec->hasAttr<MayAliasAttr>();
2523
2524  llvm::Value *addr = base.getAddress();
2525  unsigned cvr = base.getVRQualifiers();
2526  bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
2527  if (rec->isUnion()) {
2528    // For unions, there is no pointer adjustment.
2529    assert(!type->isReferenceType() && "union has reference member");
2530    // TODO: handle path-aware TBAA for union.
2531    TBAAPath = false;
2532  } else {
2533    // For structs, we GEP to the field that the record layout suggests.
2534    unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
2535    addr = Builder.CreateStructGEP(addr, idx, field->getName());
2536
2537    // If this is a reference field, load the reference right now.
2538    if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
2539      llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
2540      if (cvr & Qualifiers::Volatile) load->setVolatile(true);
2541      load->setAlignment(alignment.getQuantity());
2542
2543      // Loading the reference will disable path-aware TBAA.
2544      TBAAPath = false;
2545      if (CGM.shouldUseTBAA()) {
2546        llvm::MDNode *tbaa;
2547        if (mayAlias)
2548          tbaa = CGM.getTBAAInfo(getContext().CharTy);
2549        else
2550          tbaa = CGM.getTBAAInfo(type);
2551        CGM.DecorateInstruction(load, tbaa);
2552      }
2553
2554      addr = load;
2555      mayAlias = false;
2556      type = refType->getPointeeType();
2557      if (type->isIncompleteType())
2558        alignment = CharUnits();
2559      else
2560        alignment = getContext().getTypeAlignInChars(type);
2561      cvr = 0; // qualifiers don't recursively apply to referencee
2562    }
2563  }
2564
2565  // Make sure that the address is pointing to the right type.  This is critical
2566  // for both unions and structs.  A union needs a bitcast, a struct element
2567  // will need a bitcast if the LLVM type laid out doesn't match the desired
2568  // type.
2569  addr = EmitBitCastOfLValueToProperType(*this, addr,
2570                                         CGM.getTypes().ConvertTypeForMem(type),
2571                                         field->getName());
2572
2573  if (field->hasAttr<AnnotateAttr>())
2574    addr = EmitFieldAnnotations(field, addr);
2575
2576  LValue LV = MakeAddrLValue(addr, type, alignment);
2577  LV.getQuals().addCVRQualifiers(cvr);
2578  if (TBAAPath) {
2579    const ASTRecordLayout &Layout =
2580        getContext().getASTRecordLayout(field->getParent());
2581    // Set the base type to be the base type of the base LValue and
2582    // update offset to be relative to the base type.
2583    LV.setTBAABaseType(base.getTBAABaseType());
2584    LV.setTBAAOffset(base.getTBAAOffset() +
2585                     Layout.getFieldOffset(field->getFieldIndex()) /
2586                                           getContext().getCharWidth());
2587  }
2588
2589  // __weak attribute on a field is ignored.
2590  if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
2591    LV.getQuals().removeObjCGCAttr();
2592
2593  // Fields of may_alias structs act like 'char' for TBAA purposes.
2594  // FIXME: this should get propagated down through anonymous structs
2595  // and unions.
2596  if (mayAlias && LV.getTBAAInfo())
2597    LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
2598
2599  return LV;
2600}
2601
2602LValue
2603CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
2604                                                  const FieldDecl *Field) {
2605  QualType FieldType = Field->getType();
2606
2607  if (!FieldType->isReferenceType())
2608    return EmitLValueForField(Base, Field);
2609
2610  const CGRecordLayout &RL =
2611    CGM.getTypes().getCGRecordLayout(Field->getParent());
2612  unsigned idx = RL.getLLVMFieldNo(Field);
2613  llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx);
2614  assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
2615
2616  // Make sure that the address is pointing to the right type.  This is critical
2617  // for both unions and structs.  A union needs a bitcast, a struct element
2618  // will need a bitcast if the LLVM type laid out doesn't match the desired
2619  // type.
2620  llvm::Type *llvmType = ConvertTypeForMem(FieldType);
2621  V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
2622
2623  CharUnits Alignment = getContext().getDeclAlign(Field);
2624
2625  // FIXME: It should be impossible to have an LValue without alignment for a
2626  // complete type.
2627  if (!Base.getAlignment().isZero())
2628    Alignment = std::min(Alignment, Base.getAlignment());
2629
2630  return MakeAddrLValue(V, FieldType, Alignment);
2631}
2632
2633LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
2634  if (E->isFileScope()) {
2635    llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
2636    return MakeAddrLValue(GlobalPtr, E->getType());
2637  }
2638  if (E->getType()->isVariablyModifiedType())
2639    // make sure to emit the VLA size.
2640    EmitVariablyModifiedType(E->getType());
2641
2642  llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
2643  const Expr *InitExpr = E->getInitializer();
2644  LValue Result = MakeAddrLValue(DeclPtr, E->getType());
2645
2646  EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
2647                   /*Init*/ true);
2648
2649  return Result;
2650}
2651
2652LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
2653  if (!E->isGLValue())
2654    // Initializing an aggregate temporary in C++11: T{...}.
2655    return EmitAggExprToLValue(E);
2656
2657  // An lvalue initializer list must be initializing a reference.
2658  assert(E->getNumInits() == 1 && "reference init with multiple values");
2659  return EmitLValue(E->getInit(0));
2660}
2661
2662LValue CodeGenFunction::
2663EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
2664  if (!expr->isGLValue()) {
2665    // ?: here should be an aggregate.
2666    assert(hasAggregateEvaluationKind(expr->getType()) &&
2667           "Unexpected conditional operator!");
2668    return EmitAggExprToLValue(expr);
2669  }
2670
2671  OpaqueValueMapping binding(*this, expr);
2672
2673  const Expr *condExpr = expr->getCond();
2674  bool CondExprBool;
2675  if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2676    const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
2677    if (!CondExprBool) std::swap(live, dead);
2678
2679    if (!ContainsLabel(dead))
2680      return EmitLValue(live);
2681  }
2682
2683  llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2684  llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2685  llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2686
2687  ConditionalEvaluation eval(*this);
2688  EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock);
2689
2690  // Any temporaries created here are conditional.
2691  EmitBlock(lhsBlock);
2692  eval.begin(*this);
2693  LValue lhs = EmitLValue(expr->getTrueExpr());
2694  eval.end(*this);
2695
2696  if (!lhs.isSimple())
2697    return EmitUnsupportedLValue(expr, "conditional operator");
2698
2699  lhsBlock = Builder.GetInsertBlock();
2700  Builder.CreateBr(contBlock);
2701
2702  // Any temporaries created here are conditional.
2703  EmitBlock(rhsBlock);
2704  eval.begin(*this);
2705  LValue rhs = EmitLValue(expr->getFalseExpr());
2706  eval.end(*this);
2707  if (!rhs.isSimple())
2708    return EmitUnsupportedLValue(expr, "conditional operator");
2709  rhsBlock = Builder.GetInsertBlock();
2710
2711  EmitBlock(contBlock);
2712
2713  llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2,
2714                                         "cond-lvalue");
2715  phi->addIncoming(lhs.getAddress(), lhsBlock);
2716  phi->addIncoming(rhs.getAddress(), rhsBlock);
2717  return MakeAddrLValue(phi, expr->getType());
2718}
2719
2720/// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
2721/// type. If the cast is to a reference, we can have the usual lvalue result,
2722/// otherwise if a cast is needed by the code generator in an lvalue context,
2723/// then it must mean that we need the address of an aggregate in order to
2724/// access one of its members.  This can happen for all the reasons that casts
2725/// are permitted with aggregate result, including noop aggregate casts, and
2726/// cast from scalar to union.
2727LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2728  switch (E->getCastKind()) {
2729  case CK_ToVoid:
2730    return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2731
2732  case CK_Dependent:
2733    llvm_unreachable("dependent cast kind in IR gen!");
2734
2735  case CK_BuiltinFnToFnPtr:
2736    llvm_unreachable("builtin functions are handled elsewhere");
2737
2738  // These two casts are currently treated as no-ops, although they could
2739  // potentially be real operations depending on the target's ABI.
2740  case CK_NonAtomicToAtomic:
2741  case CK_AtomicToNonAtomic:
2742
2743  case CK_NoOp:
2744  case CK_LValueToRValue:
2745    if (!E->getSubExpr()->Classify(getContext()).isPRValue()
2746        || E->getType()->isRecordType())
2747      return EmitLValue(E->getSubExpr());
2748    // Fall through to synthesize a temporary.
2749
2750  case CK_BitCast:
2751  case CK_ArrayToPointerDecay:
2752  case CK_FunctionToPointerDecay:
2753  case CK_NullToMemberPointer:
2754  case CK_NullToPointer:
2755  case CK_IntegralToPointer:
2756  case CK_PointerToIntegral:
2757  case CK_PointerToBoolean:
2758  case CK_VectorSplat:
2759  case CK_IntegralCast:
2760  case CK_IntegralToBoolean:
2761  case CK_IntegralToFloating:
2762  case CK_FloatingToIntegral:
2763  case CK_FloatingToBoolean:
2764  case CK_FloatingCast:
2765  case CK_FloatingRealToComplex:
2766  case CK_FloatingComplexToReal:
2767  case CK_FloatingComplexToBoolean:
2768  case CK_FloatingComplexCast:
2769  case CK_FloatingComplexToIntegralComplex:
2770  case CK_IntegralRealToComplex:
2771  case CK_IntegralComplexToReal:
2772  case CK_IntegralComplexToBoolean:
2773  case CK_IntegralComplexCast:
2774  case CK_IntegralComplexToFloatingComplex:
2775  case CK_DerivedToBaseMemberPointer:
2776  case CK_BaseToDerivedMemberPointer:
2777  case CK_MemberPointerToBoolean:
2778  case CK_ReinterpretMemberPointer:
2779  case CK_AnyPointerToBlockPointerCast:
2780  case CK_ARCProduceObject:
2781  case CK_ARCConsumeObject:
2782  case CK_ARCReclaimReturnedObject:
2783  case CK_ARCExtendBlockObject:
2784  case CK_CopyAndAutoreleaseBlockObject: {
2785    // These casts only produce lvalues when we're binding a reference to a
2786    // temporary realized from a (converted) pure rvalue. Emit the expression
2787    // as a value, copy it into a temporary, and return an lvalue referring to
2788    // that temporary.
2789    llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp");
2790    EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false);
2791    return MakeAddrLValue(V, E->getType());
2792  }
2793
2794  case CK_Dynamic: {
2795    LValue LV = EmitLValue(E->getSubExpr());
2796    llvm::Value *V = LV.getAddress();
2797    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
2798    return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2799  }
2800
2801  case CK_ConstructorConversion:
2802  case CK_UserDefinedConversion:
2803  case CK_CPointerToObjCPointerCast:
2804  case CK_BlockPointerToObjCPointerCast:
2805    return EmitLValue(E->getSubExpr());
2806
2807  case CK_UncheckedDerivedToBase:
2808  case CK_DerivedToBase: {
2809    const RecordType *DerivedClassTy =
2810      E->getSubExpr()->getType()->getAs<RecordType>();
2811    CXXRecordDecl *DerivedClassDecl =
2812      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2813
2814    LValue LV = EmitLValue(E->getSubExpr());
2815    llvm::Value *This = LV.getAddress();
2816
2817    // Perform the derived-to-base conversion
2818    llvm::Value *Base =
2819      GetAddressOfBaseClass(This, DerivedClassDecl,
2820                            E->path_begin(), E->path_end(),
2821                            /*NullCheckValue=*/false);
2822
2823    return MakeAddrLValue(Base, E->getType());
2824  }
2825  case CK_ToUnion:
2826    return EmitAggExprToLValue(E);
2827  case CK_BaseToDerived: {
2828    const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2829    CXXRecordDecl *DerivedClassDecl =
2830      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2831
2832    LValue LV = EmitLValue(E->getSubExpr());
2833
2834    // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
2835    // performed and the object is not of the derived type.
2836    if (SanitizePerformTypeCheck)
2837      EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
2838                    LV.getAddress(), E->getType());
2839
2840    // Perform the base-to-derived conversion
2841    llvm::Value *Derived =
2842      GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
2843                               E->path_begin(), E->path_end(),
2844                               /*NullCheckValue=*/false);
2845
2846    return MakeAddrLValue(Derived, E->getType());
2847  }
2848  case CK_LValueBitCast: {
2849    // This must be a reinterpret_cast (or c-style equivalent).
2850    const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
2851
2852    LValue LV = EmitLValue(E->getSubExpr());
2853    llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2854                                           ConvertType(CE->getTypeAsWritten()));
2855    return MakeAddrLValue(V, E->getType());
2856  }
2857  case CK_ObjCObjectLValueCast: {
2858    LValue LV = EmitLValue(E->getSubExpr());
2859    QualType ToType = getContext().getLValueReferenceType(E->getType());
2860    llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2861                                           ConvertType(ToType));
2862    return MakeAddrLValue(V, E->getType());
2863  }
2864  case CK_ZeroToOCLEvent:
2865    llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
2866  }
2867
2868  llvm_unreachable("Unhandled lvalue cast kind?");
2869}
2870
2871LValue CodeGenFunction::EmitNullInitializationLValue(
2872                                              const CXXScalarValueInitExpr *E) {
2873  QualType Ty = E->getType();
2874  LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty);
2875  EmitNullInitialization(LV.getAddress(), Ty);
2876  return LV;
2877}
2878
2879LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
2880  assert(OpaqueValueMappingData::shouldBindAsLValue(e));
2881  return getOpaqueLValueMapping(e);
2882}
2883
2884LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
2885                                           const MaterializeTemporaryExpr *E) {
2886  RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
2887  return MakeAddrLValue(RV.getScalarVal(), E->getType());
2888}
2889
2890RValue CodeGenFunction::EmitRValueForField(LValue LV,
2891                                           const FieldDecl *FD) {
2892  QualType FT = FD->getType();
2893  LValue FieldLV = EmitLValueForField(LV, FD);
2894  switch (getEvaluationKind(FT)) {
2895  case TEK_Complex:
2896    return RValue::getComplex(EmitLoadOfComplex(FieldLV));
2897  case TEK_Aggregate:
2898    return FieldLV.asAggregateRValue();
2899  case TEK_Scalar:
2900    return EmitLoadOfLValue(FieldLV);
2901  }
2902  llvm_unreachable("bad evaluation kind");
2903}
2904
2905//===--------------------------------------------------------------------===//
2906//                             Expression Emission
2907//===--------------------------------------------------------------------===//
2908
2909RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
2910                                     ReturnValueSlot ReturnValue) {
2911  if (CGDebugInfo *DI = getDebugInfo()) {
2912    SourceLocation Loc = E->getLocStart();
2913    // Force column info to be generated so we can differentiate
2914    // multiple call sites on the same line in the debug info.
2915    const FunctionDecl* Callee = E->getDirectCallee();
2916    bool ForceColumnInfo = Callee && Callee->isInlineSpecified();
2917    DI->EmitLocation(Builder, Loc, ForceColumnInfo);
2918  }
2919
2920  // Builtins never have block type.
2921  if (E->getCallee()->getType()->isBlockPointerType())
2922    return EmitBlockCallExpr(E, ReturnValue);
2923
2924  if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
2925    return EmitCXXMemberCallExpr(CE, ReturnValue);
2926
2927  if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E))
2928    return EmitCUDAKernelCallExpr(CE, ReturnValue);
2929
2930  const Decl *TargetDecl = E->getCalleeDecl();
2931  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2932    if (unsigned builtinID = FD->getBuiltinID())
2933      return EmitBuiltinExpr(FD, builtinID, E);
2934  }
2935
2936  if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
2937    if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
2938      return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
2939
2940  if (const CXXPseudoDestructorExpr *PseudoDtor
2941          = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
2942    QualType DestroyedType = PseudoDtor->getDestroyedType();
2943    if (getLangOpts().ObjCAutoRefCount &&
2944        DestroyedType->isObjCLifetimeType() &&
2945        (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
2946         DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
2947      // Automatic Reference Counting:
2948      //   If the pseudo-expression names a retainable object with weak or
2949      //   strong lifetime, the object shall be released.
2950      Expr *BaseExpr = PseudoDtor->getBase();
2951      llvm::Value *BaseValue = NULL;
2952      Qualifiers BaseQuals;
2953
2954      // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2955      if (PseudoDtor->isArrow()) {
2956        BaseValue = EmitScalarExpr(BaseExpr);
2957        const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
2958        BaseQuals = PTy->getPointeeType().getQualifiers();
2959      } else {
2960        LValue BaseLV = EmitLValue(BaseExpr);
2961        BaseValue = BaseLV.getAddress();
2962        QualType BaseTy = BaseExpr->getType();
2963        BaseQuals = BaseTy.getQualifiers();
2964      }
2965
2966      switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
2967      case Qualifiers::OCL_None:
2968      case Qualifiers::OCL_ExplicitNone:
2969      case Qualifiers::OCL_Autoreleasing:
2970        break;
2971
2972      case Qualifiers::OCL_Strong:
2973        EmitARCRelease(Builder.CreateLoad(BaseValue,
2974                          PseudoDtor->getDestroyedType().isVolatileQualified()),
2975                       ARCPreciseLifetime);
2976        break;
2977
2978      case Qualifiers::OCL_Weak:
2979        EmitARCDestroyWeak(BaseValue);
2980        break;
2981      }
2982    } else {
2983      // C++ [expr.pseudo]p1:
2984      //   The result shall only be used as the operand for the function call
2985      //   operator (), and the result of such a call has type void. The only
2986      //   effect is the evaluation of the postfix-expression before the dot or
2987      //   arrow.
2988      EmitScalarExpr(E->getCallee());
2989    }
2990
2991    return RValue::get(0);
2992  }
2993
2994  llvm::Value *Callee = EmitScalarExpr(E->getCallee());
2995  return EmitCall(E->getCallee()->getType(), Callee, ReturnValue,
2996                  E->arg_begin(), E->arg_end(), TargetDecl);
2997}
2998
2999LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
3000  // Comma expressions just emit their LHS then their RHS as an l-value.
3001  if (E->getOpcode() == BO_Comma) {
3002    EmitIgnoredExpr(E->getLHS());
3003    EnsureInsertPoint();
3004    return EmitLValue(E->getRHS());
3005  }
3006
3007  if (E->getOpcode() == BO_PtrMemD ||
3008      E->getOpcode() == BO_PtrMemI)
3009    return EmitPointerToDataMemberBinaryExpr(E);
3010
3011  assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
3012
3013  // Note that in all of these cases, __block variables need the RHS
3014  // evaluated first just in case the variable gets moved by the RHS.
3015
3016  switch (getEvaluationKind(E->getType())) {
3017  case TEK_Scalar: {
3018    switch (E->getLHS()->getType().getObjCLifetime()) {
3019    case Qualifiers::OCL_Strong:
3020      return EmitARCStoreStrong(E, /*ignored*/ false).first;
3021
3022    case Qualifiers::OCL_Autoreleasing:
3023      return EmitARCStoreAutoreleasing(E).first;
3024
3025    // No reason to do any of these differently.
3026    case Qualifiers::OCL_None:
3027    case Qualifiers::OCL_ExplicitNone:
3028    case Qualifiers::OCL_Weak:
3029      break;
3030    }
3031
3032    RValue RV = EmitAnyExpr(E->getRHS());
3033    LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
3034    EmitStoreThroughLValue(RV, LV);
3035    return LV;
3036  }
3037
3038  case TEK_Complex:
3039    return EmitComplexAssignmentLValue(E);
3040
3041  case TEK_Aggregate:
3042    return EmitAggExprToLValue(E);
3043  }
3044  llvm_unreachable("bad evaluation kind");
3045}
3046
3047LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
3048  RValue RV = EmitCallExpr(E);
3049
3050  if (!RV.isScalar())
3051    return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3052
3053  assert(E->getCallReturnType()->isReferenceType() &&
3054         "Can't have a scalar return unless the return type is a "
3055         "reference type!");
3056
3057  return MakeAddrLValue(RV.getScalarVal(), E->getType());
3058}
3059
3060LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
3061  // FIXME: This shouldn't require another copy.
3062  return EmitAggExprToLValue(E);
3063}
3064
3065LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
3066  assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
3067         && "binding l-value to type which needs a temporary");
3068  AggValueSlot Slot = CreateAggTemp(E->getType());
3069  EmitCXXConstructExpr(E, Slot);
3070  return MakeAddrLValue(Slot.getAddr(), E->getType());
3071}
3072
3073LValue
3074CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
3075  return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
3076}
3077
3078llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
3079  return CGM.GetAddrOfUuidDescriptor(E);
3080}
3081
3082LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
3083  return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType());
3084}
3085
3086LValue
3087CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
3088  AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3089  Slot.setExternallyDestructed();
3090  EmitAggExpr(E->getSubExpr(), Slot);
3091  EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
3092  return MakeAddrLValue(Slot.getAddr(), E->getType());
3093}
3094
3095LValue
3096CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
3097  AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3098  EmitLambdaExpr(E, Slot);
3099  return MakeAddrLValue(Slot.getAddr(), E->getType());
3100}
3101
3102LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
3103  RValue RV = EmitObjCMessageExpr(E);
3104
3105  if (!RV.isScalar())
3106    return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3107
3108  assert(E->getMethodDecl()->getResultType()->isReferenceType() &&
3109         "Can't have a scalar return unless the return type is a "
3110         "reference type!");
3111
3112  return MakeAddrLValue(RV.getScalarVal(), E->getType());
3113}
3114
3115LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
3116  llvm::Value *V =
3117    CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true);
3118  return MakeAddrLValue(V, E->getType());
3119}
3120
3121llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3122                                             const ObjCIvarDecl *Ivar) {
3123  return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
3124}
3125
3126LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
3127                                          llvm::Value *BaseValue,
3128                                          const ObjCIvarDecl *Ivar,
3129                                          unsigned CVRQualifiers) {
3130  return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
3131                                                   Ivar, CVRQualifiers);
3132}
3133
3134LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
3135  // FIXME: A lot of the code below could be shared with EmitMemberExpr.
3136  llvm::Value *BaseValue = 0;
3137  const Expr *BaseExpr = E->getBase();
3138  Qualifiers BaseQuals;
3139  QualType ObjectTy;
3140  if (E->isArrow()) {
3141    BaseValue = EmitScalarExpr(BaseExpr);
3142    ObjectTy = BaseExpr->getType()->getPointeeType();
3143    BaseQuals = ObjectTy.getQualifiers();
3144  } else {
3145    LValue BaseLV = EmitLValue(BaseExpr);
3146    // FIXME: this isn't right for bitfields.
3147    BaseValue = BaseLV.getAddress();
3148    ObjectTy = BaseExpr->getType();
3149    BaseQuals = ObjectTy.getQualifiers();
3150  }
3151
3152  LValue LV =
3153    EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
3154                      BaseQuals.getCVRQualifiers());
3155  setObjCGCLValueClass(getContext(), E, LV);
3156  return LV;
3157}
3158
3159LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
3160  // Can only get l-value for message expression returning aggregate type
3161  RValue RV = EmitAnyExprToTemp(E);
3162  return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3163}
3164
3165RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
3166                                 ReturnValueSlot ReturnValue,
3167                                 CallExpr::const_arg_iterator ArgBeg,
3168                                 CallExpr::const_arg_iterator ArgEnd,
3169                                 const Decl *TargetDecl) {
3170  // Get the actual function type. The callee type will always be a pointer to
3171  // function type or a block pointer type.
3172  assert(CalleeType->isFunctionPointerType() &&
3173         "Call must have function pointer type!");
3174
3175  CalleeType = getContext().getCanonicalType(CalleeType);
3176
3177  const FunctionType *FnType
3178    = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
3179
3180  CallArgList Args;
3181  EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd);
3182
3183  const CGFunctionInfo &FnInfo =
3184    CGM.getTypes().arrangeFreeFunctionCall(Args, FnType);
3185
3186  // C99 6.5.2.2p6:
3187  //   If the expression that denotes the called function has a type
3188  //   that does not include a prototype, [the default argument
3189  //   promotions are performed]. If the number of arguments does not
3190  //   equal the number of parameters, the behavior is undefined. If
3191  //   the function is defined with a type that includes a prototype,
3192  //   and either the prototype ends with an ellipsis (, ...) or the
3193  //   types of the arguments after promotion are not compatible with
3194  //   the types of the parameters, the behavior is undefined. If the
3195  //   function is defined with a type that does not include a
3196  //   prototype, and the types of the arguments after promotion are
3197  //   not compatible with those of the parameters after promotion,
3198  //   the behavior is undefined [except in some trivial cases].
3199  // That is, in the general case, we should assume that a call
3200  // through an unprototyped function type works like a *non-variadic*
3201  // call.  The way we make this work is to cast to the exact type
3202  // of the promoted arguments.
3203  if (isa<FunctionNoProtoType>(FnType)) {
3204    llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
3205    CalleeTy = CalleeTy->getPointerTo();
3206    Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
3207  }
3208
3209  return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
3210}
3211
3212LValue CodeGenFunction::
3213EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
3214  llvm::Value *BaseV;
3215  if (E->getOpcode() == BO_PtrMemI)
3216    BaseV = EmitScalarExpr(E->getLHS());
3217  else
3218    BaseV = EmitLValue(E->getLHS()).getAddress();
3219
3220  llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
3221
3222  const MemberPointerType *MPT
3223    = E->getRHS()->getType()->getAs<MemberPointerType>();
3224
3225  llvm::Value *AddV =
3226    CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT);
3227
3228  return MakeAddrLValue(AddV, MPT->getPointeeType());
3229}
3230
3231/// Given the address of a temporary variable, produce an r-value of
3232/// its type.
3233RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr,
3234                                            QualType type) {
3235  LValue lvalue = MakeNaturalAlignAddrLValue(addr, type);
3236  switch (getEvaluationKind(type)) {
3237  case TEK_Complex:
3238    return RValue::getComplex(EmitLoadOfComplex(lvalue));
3239  case TEK_Aggregate:
3240    return lvalue.asAggregateRValue();
3241  case TEK_Scalar:
3242    return RValue::get(EmitLoadOfScalar(lvalue));
3243  }
3244  llvm_unreachable("bad evaluation kind");
3245}
3246
3247void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
3248  assert(Val->getType()->isFPOrFPVectorTy());
3249  if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
3250    return;
3251
3252  llvm::MDBuilder MDHelper(getLLVMContext());
3253  llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
3254
3255  cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
3256}
3257
3258namespace {
3259  struct LValueOrRValue {
3260    LValue LV;
3261    RValue RV;
3262  };
3263}
3264
3265static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
3266                                           const PseudoObjectExpr *E,
3267                                           bool forLValue,
3268                                           AggValueSlot slot) {
3269  SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3270
3271  // Find the result expression, if any.
3272  const Expr *resultExpr = E->getResultExpr();
3273  LValueOrRValue result;
3274
3275  for (PseudoObjectExpr::const_semantics_iterator
3276         i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3277    const Expr *semantic = *i;
3278
3279    // If this semantic expression is an opaque value, bind it
3280    // to the result of its source expression.
3281    if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3282
3283      // If this is the result expression, we may need to evaluate
3284      // directly into the slot.
3285      typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3286      OVMA opaqueData;
3287      if (ov == resultExpr && ov->isRValue() && !forLValue &&
3288          CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
3289        CGF.EmitAggExpr(ov->getSourceExpr(), slot);
3290
3291        LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
3292        opaqueData = OVMA::bind(CGF, ov, LV);
3293        result.RV = slot.asRValue();
3294
3295      // Otherwise, emit as normal.
3296      } else {
3297        opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3298
3299        // If this is the result, also evaluate the result now.
3300        if (ov == resultExpr) {
3301          if (forLValue)
3302            result.LV = CGF.EmitLValue(ov);
3303          else
3304            result.RV = CGF.EmitAnyExpr(ov, slot);
3305        }
3306      }
3307
3308      opaques.push_back(opaqueData);
3309
3310    // Otherwise, if the expression is the result, evaluate it
3311    // and remember the result.
3312    } else if (semantic == resultExpr) {
3313      if (forLValue)
3314        result.LV = CGF.EmitLValue(semantic);
3315      else
3316        result.RV = CGF.EmitAnyExpr(semantic, slot);
3317
3318    // Otherwise, evaluate the expression in an ignored context.
3319    } else {
3320      CGF.EmitIgnoredExpr(semantic);
3321    }
3322  }
3323
3324  // Unbind all the opaques now.
3325  for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3326    opaques[i].unbind(CGF);
3327
3328  return result;
3329}
3330
3331RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
3332                                               AggValueSlot slot) {
3333  return emitPseudoObjectExpr(*this, E, false, slot).RV;
3334}
3335
3336LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
3337  return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
3338}
3339