CGExpr.cpp revision 208ff5e8a073de2a5d15cbe03cab8a4c0d935e28
1//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "llvm/Target/TargetData.h"
19using namespace clang;
20using namespace CodeGen;
21
22//===--------------------------------------------------------------------===//
23//                        Miscellaneous Helper Methods
24//===--------------------------------------------------------------------===//
25
26/// CreateTempAlloca - This creates a alloca and inserts it into the entry
27/// block.
28llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(const llvm::Type *Ty,
29                                                    const char *Name) {
30  return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
31}
32
33/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
34/// expression and compare the result against zero, returning an Int1Ty value.
35llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
36  QualType BoolTy = getContext().BoolTy;
37  if (!E->getType()->isAnyComplexType())
38    return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
39
40  return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
41}
42
43/// EmitAnyExpr - Emit code to compute the specified expression which can have
44/// any type.  The result is returned as an RValue struct.  If this is an
45/// aggregate expression, the aggloc/agglocvolatile arguments indicate where
46/// the result should be returned.
47RValue CodeGenFunction::EmitAnyExpr(const Expr *E, llvm::Value *AggLoc,
48                                    bool isAggLocVolatile) {
49  if (!hasAggregateLLVMType(E->getType()))
50    return RValue::get(EmitScalarExpr(E));
51  else if (E->getType()->isAnyComplexType())
52    return RValue::getComplex(EmitComplexExpr(E));
53
54  EmitAggExpr(E, AggLoc, isAggLocVolatile);
55  return RValue::getAggregate(AggLoc);
56}
57
58/// getAccessedFieldNo - Given an encoded value and a result number, return
59/// the input field number being accessed.
60unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
61                                             const llvm::Constant *Elts) {
62  if (isa<llvm::ConstantAggregateZero>(Elts))
63    return 0;
64
65  return cast<llvm::ConstantInt>(Elts->getOperand(Idx))->getZExtValue();
66}
67
68
69//===----------------------------------------------------------------------===//
70//                         LValue Expression Emission
71//===----------------------------------------------------------------------===//
72
73/// EmitLValue - Emit code to compute a designator that specifies the location
74/// of the expression.
75///
76/// This can return one of two things: a simple address or a bitfield
77/// reference.  In either case, the LLVM Value* in the LValue structure is
78/// guaranteed to be an LLVM pointer type.
79///
80/// If this returns a bitfield reference, nothing about the pointee type of
81/// the LLVM value is known: For example, it may not be a pointer to an
82/// integer.
83///
84/// If this returns a normal address, and if the lvalue's C type is fixed
85/// size, this method guarantees that the returned pointer type will point to
86/// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
87/// variable length type, this is not possible.
88///
89LValue CodeGenFunction::EmitLValue(const Expr *E) {
90  switch (E->getStmtClass()) {
91  default: {
92    printf("Statement class: %d\n", E->getStmtClass());
93    WarnUnsupported(E, "l-value expression");
94    llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
95    return LValue::MakeAddr(llvm::UndefValue::get(Ty),
96                            E->getType().getCVRQualifiers());
97  }
98
99  case Expr::CallExprClass: return EmitCallExprLValue(cast<CallExpr>(E));
100  case Expr::DeclRefExprClass: return EmitDeclRefLValue(cast<DeclRefExpr>(E));
101  case Expr::ParenExprClass:return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
102  case Expr::PredefinedExprClass:
103    return EmitPredefinedLValue(cast<PredefinedExpr>(E));
104  case Expr::StringLiteralClass:
105    return EmitStringLiteralLValue(cast<StringLiteral>(E));
106
107  case Expr::ObjCIvarRefExprClass:
108    return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
109
110  case Expr::UnaryOperatorClass:
111    return EmitUnaryOpLValue(cast<UnaryOperator>(E));
112  case Expr::ArraySubscriptExprClass:
113    return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
114  case Expr::ExtVectorElementExprClass:
115    return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
116  case Expr::MemberExprClass: return EmitMemberExpr(cast<MemberExpr>(E));
117  case Expr::CompoundLiteralExprClass:
118    return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
119  }
120}
121
122/// EmitLoadOfLValue - Given an expression that represents a value lvalue,
123/// this method emits the address of the lvalue, then loads the result as an
124/// rvalue, returning the rvalue.
125RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, QualType ExprType) {
126  if (LV.isSimple()) {
127    llvm::Value *Ptr = LV.getAddress();
128    const llvm::Type *EltTy =
129      cast<llvm::PointerType>(Ptr->getType())->getElementType();
130
131    // Simple scalar l-value.
132    if (EltTy->isSingleValueType()) {
133      llvm::Value *V = Builder.CreateLoad(Ptr, LV.isVolatileQualified(),"tmp");
134
135      // Bool can have different representation in memory than in registers.
136      if (ExprType->isBooleanType()) {
137        if (V->getType() != llvm::Type::Int1Ty)
138          V = Builder.CreateTrunc(V, llvm::Type::Int1Ty, "tobool");
139      }
140
141      return RValue::get(V);
142    }
143
144    assert(ExprType->isFunctionType() && "Unknown scalar value");
145    return RValue::get(Ptr);
146  }
147
148  if (LV.isVectorElt()) {
149    llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(),
150                                          LV.isVolatileQualified(), "tmp");
151    return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(),
152                                                    "vecext"));
153  }
154
155  // If this is a reference to a subset of the elements of a vector, either
156  // shuffle the input or extract/insert them as appropriate.
157  if (LV.isExtVectorElt())
158    return EmitLoadOfExtVectorElementLValue(LV, ExprType);
159
160  if (LV.isBitfield())
161    return EmitLoadOfBitfieldLValue(LV, ExprType);
162
163  assert(0 && "Unknown LValue type!");
164  //an invalid RValue, but the assert will
165  //ensure that this point is never reached
166  return RValue();
167}
168
169RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
170                                                 QualType ExprType) {
171  unsigned StartBit = LV.getBitfieldStartBit();
172  unsigned BitfieldSize = LV.getBitfieldSize();
173  llvm::Value *Ptr = LV.getBitfieldAddr();
174
175  const llvm::Type *EltTy =
176    cast<llvm::PointerType>(Ptr->getType())->getElementType();
177  unsigned EltTySize = CGM.getTargetData().getTypeSizeInBits(EltTy);
178
179  // In some cases the bitfield may straddle two memory locations.
180  // Currently we load the entire bitfield, then do the magic to
181  // sign-extend it if necessary. This results in somewhat more code
182  // than necessary for the common case (one load), since two shifts
183  // accomplish both the masking and sign extension.
184  unsigned LowBits = std::min(BitfieldSize, EltTySize - StartBit);
185  llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "tmp");
186
187  // Shift to proper location.
188  Val = Builder.CreateLShr(Val, llvm::ConstantInt::get(EltTy, StartBit),
189                           "bf.lo");
190
191  // Mask off unused bits.
192  llvm::Constant *LowMask =
193    llvm::ConstantInt::get(llvm::APInt::getLowBitsSet(EltTySize, LowBits));
194  Val = Builder.CreateAnd(Val, LowMask, "bf.lo.cleared");
195
196  // Fetch the high bits if necessary.
197  if (LowBits < BitfieldSize) {
198    unsigned HighBits = BitfieldSize - LowBits;
199    llvm::Value *HighPtr =
200      Builder.CreateGEP(Ptr, llvm::ConstantInt::get(llvm::Type::Int32Ty, 1),
201                        "bf.ptr.hi");
202    llvm::Value *HighVal = Builder.CreateLoad(HighPtr,
203                                              LV.isVolatileQualified(),
204                                              "tmp");
205
206    // Mask off unused bits.
207    llvm::Constant *HighMask =
208      llvm::ConstantInt::get(llvm::APInt::getLowBitsSet(EltTySize, HighBits));
209    HighVal = Builder.CreateAnd(HighVal, HighMask, "bf.lo.cleared");
210
211    // Shift to proper location and or in to bitfield value.
212    HighVal = Builder.CreateShl(HighVal,
213                                llvm::ConstantInt::get(EltTy, LowBits));
214    Val = Builder.CreateOr(Val, HighVal, "bf.val");
215  }
216
217  // Sign extend if necessary.
218  if (LV.isBitfieldSigned()) {
219    llvm::Value *ExtraBits = llvm::ConstantInt::get(EltTy,
220                                                    EltTySize - BitfieldSize);
221    Val = Builder.CreateAShr(Builder.CreateShl(Val, ExtraBits),
222                             ExtraBits, "bf.val.sext");
223  }
224
225  // The bitfield type and the normal type differ when the storage sizes
226  // differ (currently just _Bool).
227  Val = Builder.CreateIntCast(Val, ConvertType(ExprType), false, "tmp");
228
229  return RValue::get(Val);
230}
231
232// If this is a reference to a subset of the elements of a vector, either
233// shuffle the input or extract/insert them as appropriate.
234RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV,
235                                                         QualType ExprType) {
236  llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddr(),
237                                        LV.isVolatileQualified(), "tmp");
238
239  const llvm::Constant *Elts = LV.getExtVectorElts();
240
241  // If the result of the expression is a non-vector type, we must be
242  // extracting a single element.  Just codegen as an extractelement.
243  const VectorType *ExprVT = ExprType->getAsVectorType();
244  if (!ExprVT) {
245    unsigned InIdx = getAccessedFieldNo(0, Elts);
246    llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx);
247    return RValue::get(Builder.CreateExtractElement(Vec, Elt, "tmp"));
248  }
249
250  // If the source and destination have the same number of elements, use a
251  // vector shuffle instead of insert/extracts.
252  unsigned NumResultElts = ExprVT->getNumElements();
253  unsigned NumSourceElts =
254    cast<llvm::VectorType>(Vec->getType())->getNumElements();
255
256  if (NumResultElts == NumSourceElts) {
257    llvm::SmallVector<llvm::Constant*, 4> Mask;
258    for (unsigned i = 0; i != NumResultElts; ++i) {
259      unsigned InIdx = getAccessedFieldNo(i, Elts);
260      Mask.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx));
261    }
262
263    llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size());
264    Vec = Builder.CreateShuffleVector(Vec,
265                                      llvm::UndefValue::get(Vec->getType()),
266                                      MaskV, "tmp");
267    return RValue::get(Vec);
268  }
269
270  // Start out with an undef of the result type.
271  llvm::Value *Result = llvm::UndefValue::get(ConvertType(ExprType));
272
273  // Extract/Insert each element of the result.
274  for (unsigned i = 0; i != NumResultElts; ++i) {
275    unsigned InIdx = getAccessedFieldNo(i, Elts);
276    llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx);
277    Elt = Builder.CreateExtractElement(Vec, Elt, "tmp");
278
279    llvm::Value *OutIdx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
280    Result = Builder.CreateInsertElement(Result, Elt, OutIdx, "tmp");
281  }
282
283  return RValue::get(Result);
284}
285
286
287
288/// EmitStoreThroughLValue - Store the specified rvalue into the specified
289/// lvalue, where both are guaranteed to the have the same type, and that type
290/// is 'Ty'.
291void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
292                                             QualType Ty) {
293  if (!Dst.isSimple()) {
294    if (Dst.isVectorElt()) {
295      // Read/modify/write the vector, inserting the new element.
296      llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(),
297                                            Dst.isVolatileQualified(), "tmp");
298      Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
299                                        Dst.getVectorIdx(), "vecins");
300      Builder.CreateStore(Vec, Dst.getVectorAddr(),Dst.isVolatileQualified());
301      return;
302    }
303
304    // If this is an update of extended vector elements, insert them as
305    // appropriate.
306    if (Dst.isExtVectorElt())
307      return EmitStoreThroughExtVectorComponentLValue(Src, Dst, Ty);
308
309    if (Dst.isBitfield())
310      return EmitStoreThroughBitfieldLValue(Src, Dst, Ty);
311
312    assert(0 && "Unknown LValue type");
313  }
314
315  llvm::Value *DstAddr = Dst.getAddress();
316  assert(Src.isScalar() && "Can't emit an agg store with this method");
317  // FIXME: Handle volatility etc.
318  const llvm::Type *SrcTy = Src.getScalarVal()->getType();
319  const llvm::PointerType *DstPtr = cast<llvm::PointerType>(DstAddr->getType());
320  const llvm::Type *AddrTy = DstPtr->getElementType();
321  unsigned AS = DstPtr->getAddressSpace();
322
323  if (AddrTy != SrcTy)
324    DstAddr = Builder.CreateBitCast(DstAddr,
325                                    llvm::PointerType::get(SrcTy, AS),
326                                    "storetmp");
327  Builder.CreateStore(Src.getScalarVal(), DstAddr, Dst.isVolatileQualified());
328}
329
330void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
331                                                     QualType Ty) {
332  unsigned StartBit = Dst.getBitfieldStartBit();
333  unsigned BitfieldSize = Dst.getBitfieldSize();
334  llvm::Value *Ptr = Dst.getBitfieldAddr();
335
336  const llvm::Type *EltTy =
337    cast<llvm::PointerType>(Ptr->getType())->getElementType();
338  unsigned EltTySize = CGM.getTargetData().getTypeSizeInBits(EltTy);
339
340  // Get the new value, cast to the appropriate type and masked to
341  // exactly the size of the bit-field.
342  llvm::Value *NewVal = Src.getScalarVal();
343  NewVal = Builder.CreateIntCast(NewVal, EltTy, false, "tmp");
344  llvm::Constant *Mask =
345    llvm::ConstantInt::get(llvm::APInt::getLowBitsSet(EltTySize, BitfieldSize));
346  NewVal = Builder.CreateAnd(NewVal, Mask, "bf.value");
347
348  // In some cases the bitfield may straddle two memory locations.
349  // Emit the low part first and check to see if the high needs to be
350  // done.
351  unsigned LowBits = std::min(BitfieldSize, EltTySize - StartBit);
352  llvm::Value *LowVal = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
353                                           "bf.prev.low");
354
355  // Compute the mask for zero-ing the low part of this bitfield.
356  llvm::Constant *InvMask =
357    llvm::ConstantInt::get(~llvm::APInt::getBitsSet(EltTySize, StartBit,
358                                                    StartBit + LowBits));
359
360  // Compute the new low part as
361  //   LowVal = (LowVal & InvMask) | (NewVal << StartBit),
362  // with the shift of NewVal implicitly stripping the high bits.
363  llvm::Value *NewLowVal =
364    Builder.CreateShl(NewVal, llvm::ConstantInt::get(EltTy, StartBit),
365                      "bf.value.lo");
366  LowVal = Builder.CreateAnd(LowVal, InvMask, "bf.prev.lo.cleared");
367  LowVal = Builder.CreateOr(LowVal, NewLowVal, "bf.new.lo");
368
369  // Write back.
370  Builder.CreateStore(LowVal, Ptr, Dst.isVolatileQualified());
371
372  // If the low part doesn't cover the bitfield emit a high part.
373  if (LowBits < BitfieldSize) {
374    unsigned HighBits = BitfieldSize - LowBits;
375    llvm::Value *HighPtr =
376      Builder.CreateGEP(Ptr, llvm::ConstantInt::get(llvm::Type::Int32Ty, 1),
377                        "bf.ptr.hi");
378    llvm::Value *HighVal = Builder.CreateLoad(HighPtr,
379                                              Dst.isVolatileQualified(),
380                                              "bf.prev.hi");
381
382    // Compute the mask for zero-ing the high part of this bitfield.
383    llvm::Constant *InvMask =
384      llvm::ConstantInt::get(~llvm::APInt::getLowBitsSet(EltTySize, HighBits));
385
386    // Compute the new high part as
387    //   HighVal = (HighVal & InvMask) | (NewVal lshr LowBits),
388    // where the high bits of NewVal have already been cleared and the
389    // shift stripping the low bits.
390    llvm::Value *NewHighVal =
391      Builder.CreateLShr(NewVal, llvm::ConstantInt::get(EltTy, LowBits),
392                        "bf.value.high");
393    HighVal = Builder.CreateAnd(HighVal, InvMask, "bf.prev.hi.cleared");
394    HighVal = Builder.CreateOr(HighVal, NewHighVal, "bf.new.hi");
395
396    // Write back.
397    Builder.CreateStore(HighVal, HighPtr, Dst.isVolatileQualified());
398  }
399}
400
401void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
402                                                               LValue Dst,
403                                                               QualType Ty) {
404  // This access turns into a read/modify/write of the vector.  Load the input
405  // value now.
406  llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddr(),
407                                        Dst.isVolatileQualified(), "tmp");
408  const llvm::Constant *Elts = Dst.getExtVectorElts();
409
410  llvm::Value *SrcVal = Src.getScalarVal();
411
412  if (const VectorType *VTy = Ty->getAsVectorType()) {
413    unsigned NumSrcElts = VTy->getNumElements();
414
415    // Extract/Insert each element.
416    for (unsigned i = 0; i != NumSrcElts; ++i) {
417      llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
418      Elt = Builder.CreateExtractElement(SrcVal, Elt, "tmp");
419
420      unsigned Idx = getAccessedFieldNo(i, Elts);
421      llvm::Value *OutIdx = llvm::ConstantInt::get(llvm::Type::Int32Ty, Idx);
422      Vec = Builder.CreateInsertElement(Vec, Elt, OutIdx, "tmp");
423    }
424  } else {
425    // If the Src is a scalar (not a vector) it must be updating one element.
426    unsigned InIdx = getAccessedFieldNo(0, Elts);
427    llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx);
428    Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt, "tmp");
429  }
430
431  Builder.CreateStore(Vec, Dst.getExtVectorAddr(), Dst.isVolatileQualified());
432}
433
434
435LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
436  const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
437
438  if (VD && (VD->isBlockVarDecl() || isa<ParmVarDecl>(VD) ||
439        isa<ImplicitParamDecl>(VD))) {
440    if (VD->getStorageClass() == VarDecl::Extern)
441      return LValue::MakeAddr(CGM.GetAddrOfGlobalVar(VD),
442                              E->getType().getCVRQualifiers());
443    else {
444      llvm::Value *V = LocalDeclMap[VD];
445      assert(V && "BlockVarDecl not entered in LocalDeclMap?");
446      return LValue::MakeAddr(V, E->getType().getCVRQualifiers());
447    }
448  } else if (VD && VD->isFileVarDecl()) {
449    return LValue::MakeAddr(CGM.GetAddrOfGlobalVar(VD),
450                            E->getType().getCVRQualifiers());
451  } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl())) {
452    return LValue::MakeAddr(CGM.GetAddrOfFunction(FD),
453                            E->getType().getCVRQualifiers());
454  }
455  else if (const ImplicitParamDecl *IPD =
456      dyn_cast<ImplicitParamDecl>(E->getDecl())) {
457    llvm::Value *V = LocalDeclMap[IPD];
458    assert(V && "BlockVarDecl not entered in LocalDeclMap?");
459    return LValue::MakeAddr(V, E->getType().getCVRQualifiers());
460  }
461  assert(0 && "Unimp declref");
462  //an invalid LValue, but the assert will
463  //ensure that this point is never reached.
464  return LValue();
465}
466
467LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
468  // __extension__ doesn't affect lvalue-ness.
469  if (E->getOpcode() == UnaryOperator::Extension)
470    return EmitLValue(E->getSubExpr());
471
472  QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
473  switch (E->getOpcode()) {
474  default: assert(0 && "Unknown unary operator lvalue!");
475  case UnaryOperator::Deref:
476    return LValue::MakeAddr(EmitScalarExpr(E->getSubExpr()),
477                            ExprTy->getAsPointerType()->getPointeeType()
478                                    .getCVRQualifiers());
479  case UnaryOperator::Real:
480  case UnaryOperator::Imag:
481    LValue LV = EmitLValue(E->getSubExpr());
482    unsigned Idx = E->getOpcode() == UnaryOperator::Imag;
483    return LValue::MakeAddr(Builder.CreateStructGEP(LV.getAddress(),
484                                                    Idx, "idx"),
485                            ExprTy.getCVRQualifiers());
486  }
487}
488
489LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
490  llvm::Constant *C =
491    CGM.GetAddrOfConstantString(CGM.getStringForStringLiteral(E));
492
493  return LValue::MakeAddr(C,0);
494}
495
496LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
497  std::string FunctionName;
498  if(const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurFuncDecl)) {
499    FunctionName = FD->getName();
500  }
501  else {
502    assert(0 && "Attempting to load predefined constant for invalid decl type");
503  }
504  std::string GlobalVarName;
505
506  switch (E->getIdentType()) {
507    default:
508      assert(0 && "unknown pre-defined ident type");
509    case PredefinedExpr::Func:
510      GlobalVarName = "__func__.";
511      break;
512    case PredefinedExpr::Function:
513      GlobalVarName = "__FUNCTION__.";
514      break;
515    case PredefinedExpr::PrettyFunction:
516      // FIXME:: Demangle C++ method names
517      GlobalVarName = "__PRETTY_FUNCTION__.";
518      break;
519  }
520
521  GlobalVarName += FunctionName;
522
523  // FIXME: Can cache/reuse these within the module.
524  llvm::Constant *C=llvm::ConstantArray::get(FunctionName);
525
526  // Create a global variable for this.
527  C = new llvm::GlobalVariable(C->getType(), true,
528                               llvm::GlobalValue::InternalLinkage,
529                               C, GlobalVarName, CurFn->getParent());
530  return LValue::MakeAddr(C,0);
531}
532
533LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
534  // The index must always be an integer, which is not an aggregate.  Emit it.
535  llvm::Value *Idx = EmitScalarExpr(E->getIdx());
536
537  // If the base is a vector type, then we are forming a vector element lvalue
538  // with this subscript.
539  if (E->getBase()->getType()->isVectorType()) {
540    // Emit the vector as an lvalue to get its address.
541    LValue LHS = EmitLValue(E->getBase());
542    assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
543    // FIXME: This should properly sign/zero/extend or truncate Idx to i32.
544    return LValue::MakeVectorElt(LHS.getAddress(), Idx,
545      E->getBase()->getType().getCVRQualifiers());
546  }
547
548  // The base must be a pointer, which is not an aggregate.  Emit it.
549  llvm::Value *Base = EmitScalarExpr(E->getBase());
550
551  // Extend or truncate the index type to 32 or 64-bits.
552  QualType IdxTy  = E->getIdx()->getType();
553  bool IdxSigned = IdxTy->isSignedIntegerType();
554  unsigned IdxBitwidth = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
555  if (IdxBitwidth != LLVMPointerWidth)
556    Idx = Builder.CreateIntCast(Idx, llvm::IntegerType::get(LLVMPointerWidth),
557                                IdxSigned, "idxprom");
558
559  // We know that the pointer points to a type of the correct size, unless the
560  // size is a VLA.
561  if (!E->getType()->isConstantSizeType())
562    assert(0 && "VLA idx not implemented");
563  QualType ExprTy = getContext().getCanonicalType(E->getBase()->getType());
564
565  return LValue::MakeAddr(Builder.CreateGEP(Base, Idx, "arrayidx"),
566                          ExprTy->getAsPointerType()->getPointeeType()
567                               .getCVRQualifiers());
568}
569
570static
571llvm::Constant *GenerateConstantVector(llvm::SmallVector<unsigned, 4> &Elts) {
572  llvm::SmallVector<llvm::Constant *, 4> CElts;
573
574  for (unsigned i = 0, e = Elts.size(); i != e; ++i)
575    CElts.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, Elts[i]));
576
577  return llvm::ConstantVector::get(&CElts[0], CElts.size());
578}
579
580LValue CodeGenFunction::
581EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
582  // Emit the base vector as an l-value.
583  LValue Base = EmitLValue(E->getBase());
584
585  // Encode the element access list into a vector of unsigned indices.
586  llvm::SmallVector<unsigned, 4> Indices;
587  E->getEncodedElementAccess(Indices);
588
589  if (Base.isSimple()) {
590    llvm::Constant *CV = GenerateConstantVector(Indices);
591    return LValue::MakeExtVectorElt(Base.getAddress(), CV,
592                                   E->getBase()->getType().getCVRQualifiers());
593  }
594  assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
595
596  llvm::Constant *BaseElts = Base.getExtVectorElts();
597  llvm::SmallVector<llvm::Constant *, 4> CElts;
598
599  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
600    if (isa<llvm::ConstantAggregateZero>(BaseElts))
601      CElts.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, 0));
602    else
603      CElts.push_back(BaseElts->getOperand(Indices[i]));
604  }
605  llvm::Constant *CV = llvm::ConstantVector::get(&CElts[0], CElts.size());
606  return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV,
607                                  E->getBase()->getType().getCVRQualifiers());
608}
609
610LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
611  bool isUnion = false;
612  Expr *BaseExpr = E->getBase();
613  llvm::Value *BaseValue = NULL;
614  unsigned CVRQualifiers=0;
615
616  // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
617  if (E->isArrow()) {
618    BaseValue = EmitScalarExpr(BaseExpr);
619    const PointerType *PTy =
620      cast<PointerType>(getContext().getCanonicalType(BaseExpr->getType()));
621    if (PTy->getPointeeType()->isUnionType())
622      isUnion = true;
623    CVRQualifiers = PTy->getPointeeType().getCVRQualifiers();
624  }
625  else {
626    LValue BaseLV = EmitLValue(BaseExpr);
627    // FIXME: this isn't right for bitfields.
628    BaseValue = BaseLV.getAddress();
629    if (BaseExpr->getType()->isUnionType())
630      isUnion = true;
631    CVRQualifiers = BaseExpr->getType().getCVRQualifiers();
632  }
633
634  FieldDecl *Field = E->getMemberDecl();
635  return EmitLValueForField(BaseValue, Field, isUnion, CVRQualifiers);
636}
637
638LValue CodeGenFunction::EmitLValueForField(llvm::Value* BaseValue,
639                                           FieldDecl* Field,
640                                           bool isUnion,
641                                           unsigned CVRQualifiers)
642{
643  llvm::Value *V;
644  unsigned idx = CGM.getTypes().getLLVMFieldNo(Field);
645
646  if (Field->isBitField()) {
647    // FIXME: CodeGenTypes should expose a method to get the appropriate
648    // type for FieldTy (the appropriate type is ABI-dependent).
649    const llvm::Type *FieldTy = CGM.getTypes().ConvertTypeForMem(Field->getType());
650    const llvm::PointerType *BaseTy =
651      cast<llvm::PointerType>(BaseValue->getType());
652    unsigned AS = BaseTy->getAddressSpace();
653    BaseValue = Builder.CreateBitCast(BaseValue,
654                                      llvm::PointerType::get(FieldTy, AS),
655                                      "tmp");
656    V = Builder.CreateGEP(BaseValue,
657                          llvm::ConstantInt::get(llvm::Type::Int32Ty, idx),
658                          "tmp");
659
660    CodeGenTypes::BitFieldInfo bitFieldInfo =
661      CGM.getTypes().getBitFieldInfo(Field);
662    return LValue::MakeBitfield(V, bitFieldInfo.Begin, bitFieldInfo.Size,
663                                Field->getType()->isSignedIntegerType(),
664                            Field->getType().getCVRQualifiers()|CVRQualifiers);
665  }
666
667  V = Builder.CreateStructGEP(BaseValue, idx, "tmp");
668
669  // Match union field type.
670  if (isUnion) {
671    const llvm::Type *FieldTy =
672      CGM.getTypes().ConvertTypeForMem(Field->getType());
673    const llvm::PointerType * BaseTy =
674      cast<llvm::PointerType>(BaseValue->getType());
675    unsigned AS = BaseTy->getAddressSpace();
676    V = Builder.CreateBitCast(V,
677                              llvm::PointerType::get(FieldTy, AS),
678                              "tmp");
679  }
680
681  return LValue::MakeAddr(V,
682                          Field->getType().getCVRQualifiers()|CVRQualifiers);
683}
684
685LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr* E)
686{
687  const llvm::Type *LTy = ConvertType(E->getType());
688  llvm::Value *DeclPtr = CreateTempAlloca(LTy, ".compoundliteral");
689
690  const Expr* InitExpr = E->getInitializer();
691  LValue Result = LValue::MakeAddr(DeclPtr, E->getType().getCVRQualifiers());
692
693  if (E->getType()->isComplexType()) {
694    EmitComplexExprIntoAddr(InitExpr, DeclPtr, false);
695  } else if (hasAggregateLLVMType(E->getType())) {
696    EmitAnyExpr(InitExpr, DeclPtr, false);
697  } else {
698    EmitStoreThroughLValue(EmitAnyExpr(InitExpr), Result, E->getType());
699  }
700
701  return Result;
702}
703
704//===--------------------------------------------------------------------===//
705//                             Expression Emission
706//===--------------------------------------------------------------------===//
707
708
709RValue CodeGenFunction::EmitCallExpr(const CallExpr *E) {
710  if (const ImplicitCastExpr *IcExpr =
711      dyn_cast<const ImplicitCastExpr>(E->getCallee()))
712    if (const DeclRefExpr *DRExpr =
713        dyn_cast<const DeclRefExpr>(IcExpr->getSubExpr()))
714      if (const FunctionDecl *FDecl =
715          dyn_cast<const FunctionDecl>(DRExpr->getDecl()))
716        if (unsigned builtinID = FDecl->getIdentifier()->getBuiltinID())
717          return EmitBuiltinExpr(builtinID, E);
718
719  llvm::Value *Callee = EmitScalarExpr(E->getCallee());
720  return EmitCallExpr(Callee, E->getCallee()->getType(),
721                      E->arg_begin(), E->arg_end());
722}
723
724RValue CodeGenFunction::EmitCallExpr(Expr *FnExpr,
725                                     CallExpr::const_arg_iterator ArgBeg,
726                                     CallExpr::const_arg_iterator ArgEnd) {
727
728  llvm::Value *Callee = EmitScalarExpr(FnExpr);
729  return EmitCallExpr(Callee, FnExpr->getType(), ArgBeg, ArgEnd);
730}
731
732LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
733  // Can only get l-value for call expression returning aggregate type
734  RValue RV = EmitCallExpr(E);
735  // FIXME: can this be volatile?
736  return LValue::MakeAddr(RV.getAggregateAddr(),
737                          E->getType().getCVRQualifiers());
738}
739
740LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
741  // Objective-C objects are traditionally C structures with their layout
742  // defined at compile-time.  In some implementations, their layout is not
743  // defined until run time in order to allow instance variables to be added to
744  // a class without recompiling all of the subclasses.  If this is the case
745  // then the CGObjCRuntime subclass must return true to LateBoundIvars and
746  // implement the lookup itself.
747  if (CGM.getObjCRuntime().LateBoundIVars()) {
748    assert(0 && "FIXME: Implement support for late-bound instance variables");
749    return LValue(); // Not reached.
750  }
751
752  // Get a structure type for the object
753  QualType ExprTy = E->getBase()->getType();
754  const llvm::Type *ObjectType = ConvertType(ExprTy);
755  // TODO:  Add a special case for isa (index 0)
756  // Work out which index the ivar is
757  const ObjCIvarDecl *Decl = E->getDecl();
758  unsigned Index = CGM.getTypes().getLLVMFieldNo(Decl);
759
760  // Get object pointer and coerce object pointer to correct type.
761  llvm::Value *Object = EmitLValue(E->getBase()).getAddress();
762  // FIXME: Volatility
763  Object = Builder.CreateLoad(Object, E->getDecl()->getName());
764  if (Object->getType() != ObjectType)
765    Object = Builder.CreateBitCast(Object, ObjectType);
766
767
768  // Return a pointer to the right element.
769  // FIXME: volatile
770  return LValue::MakeAddr(Builder.CreateStructGEP(Object, Index,
771                                                  Decl->getName()),0);
772}
773
774RValue CodeGenFunction::EmitCallExpr(llvm::Value *Callee, QualType FnType,
775                                     CallExpr::const_arg_iterator ArgBeg,
776                                     CallExpr::const_arg_iterator ArgEnd) {
777
778  // The callee type will always be a pointer to function type, get the function
779  // type.
780  FnType = FnType->getAsPointerType()->getPointeeType();
781  QualType ResultType = FnType->getAsFunctionType()->getResultType();
782
783  llvm::SmallVector<llvm::Value*, 16> Args;
784
785  // Handle struct-return functions by passing a pointer to the location that
786  // we would like to return into.
787  if (hasAggregateLLVMType(ResultType)) {
788    // Create a temporary alloca to hold the result of the call. :(
789    Args.push_back(CreateTempAlloca(ConvertType(ResultType)));
790    // FIXME: set the stret attribute on the argument.
791  }
792
793  for (CallExpr::const_arg_iterator I = ArgBeg; I != ArgEnd; ++I) {
794    QualType ArgTy = I->getType();
795
796    if (!hasAggregateLLVMType(ArgTy)) {
797      // Scalar argument is passed by-value.
798      Args.push_back(EmitScalarExpr(*I));
799    } else if (ArgTy->isAnyComplexType()) {
800      // Make a temporary alloca to pass the argument.
801      llvm::Value *DestMem = CreateTempAlloca(ConvertType(ArgTy));
802      EmitComplexExprIntoAddr(*I, DestMem, false);
803      Args.push_back(DestMem);
804    } else {
805      llvm::Value *DestMem = CreateTempAlloca(ConvertType(ArgTy));
806      EmitAggExpr(*I, DestMem, false);
807      Args.push_back(DestMem);
808    }
809  }
810
811  llvm::CallInst *CI = Builder.CreateCall(Callee,&Args[0],&Args[0]+Args.size());
812
813  // Note that there is parallel code in SetFunctionAttributes in CodeGenModule
814  llvm::SmallVector<llvm::ParamAttrsWithIndex, 8> ParamAttrList;
815  if (hasAggregateLLVMType(ResultType))
816    ParamAttrList.push_back(
817        llvm::ParamAttrsWithIndex::get(1, llvm::ParamAttr::StructRet));
818  unsigned increment = hasAggregateLLVMType(ResultType) ? 2 : 1;
819
820  unsigned i = 0;
821  for (CallExpr::const_arg_iterator I = ArgBeg; I != ArgEnd; ++I, ++i) {
822    QualType ParamType = I->getType();
823    unsigned ParamAttrs = 0;
824    if (ParamType->isRecordType())
825      ParamAttrs |= llvm::ParamAttr::ByVal;
826    if (ParamType->isSignedIntegerType() && ParamType->isPromotableIntegerType())
827      ParamAttrs |= llvm::ParamAttr::SExt;
828    if (ParamType->isUnsignedIntegerType() && ParamType->isPromotableIntegerType())
829      ParamAttrs |= llvm::ParamAttr::ZExt;
830    if (ParamAttrs)
831      ParamAttrList.push_back(llvm::ParamAttrsWithIndex::get(i + increment,
832                                                             ParamAttrs));
833  }
834  CI->setParamAttrs(llvm::PAListPtr::get(ParamAttrList.begin(),
835                                         ParamAttrList.size()));
836
837  if (const llvm::Function *F = dyn_cast<llvm::Function>(Callee))
838    CI->setCallingConv(F->getCallingConv());
839  if (CI->getType() != llvm::Type::VoidTy)
840    CI->setName("call");
841  else if (ResultType->isAnyComplexType())
842    return RValue::getComplex(LoadComplexFromAddr(Args[0], false));
843  else if (hasAggregateLLVMType(ResultType))
844    // Struct return.
845    return RValue::getAggregate(Args[0]);
846  else {
847    // void return.
848    assert(ResultType->isVoidType() && "Should only have a void expr here");
849    CI = 0;
850  }
851
852  return RValue::get(CI);
853}
854