CGExpr.cpp revision 402a6d5613b3df364ba252416d5a022dee95f0ba
1//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "CGCall.h"
17#include "CGCXXABI.h"
18#include "CGDebugInfo.h"
19#include "CGRecordLayout.h"
20#include "CGObjCRuntime.h"
21#include "TargetInfo.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/Basic/ConvertUTF.h"
25#include "clang/Frontend/CodeGenOptions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/Support/MDBuilder.h"
29#include "llvm/Target/TargetData.h"
30using namespace clang;
31using namespace CodeGen;
32
33//===--------------------------------------------------------------------===//
34//                        Miscellaneous Helper Methods
35//===--------------------------------------------------------------------===//
36
37llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
38  unsigned addressSpace =
39    cast<llvm::PointerType>(value->getType())->getAddressSpace();
40
41  llvm::PointerType *destType = Int8PtrTy;
42  if (addressSpace)
43    destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
44
45  if (value->getType() == destType) return value;
46  return Builder.CreateBitCast(value, destType);
47}
48
49/// CreateTempAlloca - This creates a alloca and inserts it into the entry
50/// block.
51llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
52                                                    const Twine &Name) {
53  if (!Builder.isNamePreserving())
54    return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
55  return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
56}
57
58void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
59                                     llvm::Value *Init) {
60  llvm::StoreInst *Store = new llvm::StoreInst(Init, Var);
61  llvm::BasicBlock *Block = AllocaInsertPt->getParent();
62  Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
63}
64
65llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
66                                                const Twine &Name) {
67  llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
68  // FIXME: Should we prefer the preferred type alignment here?
69  CharUnits Align = getContext().getTypeAlignInChars(Ty);
70  Alloc->setAlignment(Align.getQuantity());
71  return Alloc;
72}
73
74llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
75                                                 const Twine &Name) {
76  llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
77  // FIXME: Should we prefer the preferred type alignment here?
78  CharUnits Align = getContext().getTypeAlignInChars(Ty);
79  Alloc->setAlignment(Align.getQuantity());
80  return Alloc;
81}
82
83/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
84/// expression and compare the result against zero, returning an Int1Ty value.
85llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
86  if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
87    llvm::Value *MemPtr = EmitScalarExpr(E);
88    return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
89  }
90
91  QualType BoolTy = getContext().BoolTy;
92  if (!E->getType()->isAnyComplexType())
93    return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
94
95  return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
96}
97
98/// EmitIgnoredExpr - Emit code to compute the specified expression,
99/// ignoring the result.
100void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
101  if (E->isRValue())
102    return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
103
104  // Just emit it as an l-value and drop the result.
105  EmitLValue(E);
106}
107
108/// EmitAnyExpr - Emit code to compute the specified expression which
109/// can have any type.  The result is returned as an RValue struct.
110/// If this is an aggregate expression, AggSlot indicates where the
111/// result should be returned.
112RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
113                                    AggValueSlot aggSlot,
114                                    bool ignoreResult) {
115  if (!hasAggregateLLVMType(E->getType()))
116    return RValue::get(EmitScalarExpr(E, ignoreResult));
117  else if (E->getType()->isAnyComplexType())
118    return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
119
120  if (!ignoreResult && aggSlot.isIgnored())
121    aggSlot = CreateAggTemp(E->getType(), "agg-temp");
122  EmitAggExpr(E, aggSlot);
123  return aggSlot.asRValue();
124}
125
126/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
127/// always be accessible even if no aggregate location is provided.
128RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
129  AggValueSlot AggSlot = AggValueSlot::ignored();
130
131  if (hasAggregateLLVMType(E->getType()) &&
132      !E->getType()->isAnyComplexType())
133    AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
134  return EmitAnyExpr(E, AggSlot);
135}
136
137/// EmitAnyExprToMem - Evaluate an expression into a given memory
138/// location.
139void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
140                                       llvm::Value *Location,
141                                       Qualifiers Quals,
142                                       bool IsInit) {
143  // FIXME: This function should take an LValue as an argument.
144  if (E->getType()->isAnyComplexType()) {
145    EmitComplexExprIntoAddr(E, Location, Quals.hasVolatile());
146  } else if (hasAggregateLLVMType(E->getType())) {
147    CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
148    EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
149                                         AggValueSlot::IsDestructed_t(IsInit),
150                                         AggValueSlot::DoesNotNeedGCBarriers,
151                                         AggValueSlot::IsAliased_t(!IsInit)));
152  } else {
153    RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
154    LValue LV = MakeAddrLValue(Location, E->getType());
155    EmitStoreThroughLValue(RV, LV);
156  }
157}
158
159namespace {
160/// \brief An adjustment to be made to the temporary created when emitting a
161/// reference binding, which accesses a particular subobject of that temporary.
162  struct SubobjectAdjustment {
163    enum {
164      DerivedToBaseAdjustment,
165      FieldAdjustment,
166      MemberPointerAdjustment
167    } Kind;
168
169    union {
170      struct {
171        const CastExpr *BasePath;
172        const CXXRecordDecl *DerivedClass;
173      } DerivedToBase;
174
175      FieldDecl *Field;
176
177      struct {
178        const MemberPointerType *MPT;
179        llvm::Value *Ptr;
180      } Ptr;
181    };
182
183    SubobjectAdjustment(const CastExpr *BasePath,
184                        const CXXRecordDecl *DerivedClass)
185      : Kind(DerivedToBaseAdjustment) {
186      DerivedToBase.BasePath = BasePath;
187      DerivedToBase.DerivedClass = DerivedClass;
188    }
189
190    SubobjectAdjustment(FieldDecl *Field)
191      : Kind(FieldAdjustment) {
192      this->Field = Field;
193    }
194
195    SubobjectAdjustment(const MemberPointerType *MPT, llvm::Value *Ptr)
196      : Kind(MemberPointerAdjustment) {
197      this->Ptr.MPT = MPT;
198      this->Ptr.Ptr = Ptr;
199    }
200  };
201}
202
203static llvm::Value *
204CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type,
205                         const NamedDecl *InitializedDecl) {
206  if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
207    if (VD->hasGlobalStorage()) {
208      SmallString<256> Name;
209      llvm::raw_svector_ostream Out(Name);
210      CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
211      Out.flush();
212
213      llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type);
214
215      // Create the reference temporary.
216      llvm::GlobalValue *RefTemp =
217        new llvm::GlobalVariable(CGF.CGM.getModule(),
218                                 RefTempTy, /*isConstant=*/false,
219                                 llvm::GlobalValue::InternalLinkage,
220                                 llvm::Constant::getNullValue(RefTempTy),
221                                 Name.str());
222      return RefTemp;
223    }
224  }
225
226  return CGF.CreateMemTemp(Type, "ref.tmp");
227}
228
229static llvm::Value *
230EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E,
231                            llvm::Value *&ReferenceTemporary,
232                            const CXXDestructorDecl *&ReferenceTemporaryDtor,
233                            QualType &ObjCARCReferenceLifetimeType,
234                            const NamedDecl *InitializedDecl) {
235  // Look through single-element init lists that claim to be lvalues. They're
236  // just syntactic wrappers in this case.
237  if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E)) {
238    if (ILE->getNumInits() == 1 && ILE->isGLValue())
239      E = ILE->getInit(0);
240  }
241
242  // Look through expressions for materialized temporaries (for now).
243  if (const MaterializeTemporaryExpr *M
244                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
245    // Objective-C++ ARC:
246    //   If we are binding a reference to a temporary that has ownership, we
247    //   need to perform retain/release operations on the temporary.
248    if (CGF.getContext().getLangOpts().ObjCAutoRefCount &&
249        E->getType()->isObjCLifetimeType() &&
250        (E->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
251         E->getType().getObjCLifetime() == Qualifiers::OCL_Weak ||
252         E->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing))
253      ObjCARCReferenceLifetimeType = E->getType();
254
255    E = M->GetTemporaryExpr();
256  }
257
258  if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E))
259    E = DAE->getExpr();
260
261  if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E)) {
262    CGF.enterFullExpression(EWC);
263    CodeGenFunction::RunCleanupsScope Scope(CGF);
264
265    return EmitExprForReferenceBinding(CGF, EWC->getSubExpr(),
266                                       ReferenceTemporary,
267                                       ReferenceTemporaryDtor,
268                                       ObjCARCReferenceLifetimeType,
269                                       InitializedDecl);
270  }
271
272  RValue RV;
273  if (E->isGLValue()) {
274    // Emit the expression as an lvalue.
275    LValue LV = CGF.EmitLValue(E);
276
277    if (LV.isSimple())
278      return LV.getAddress();
279
280    // We have to load the lvalue.
281    RV = CGF.EmitLoadOfLValue(LV);
282  } else {
283    if (!ObjCARCReferenceLifetimeType.isNull()) {
284      ReferenceTemporary = CreateReferenceTemporary(CGF,
285                                                  ObjCARCReferenceLifetimeType,
286                                                    InitializedDecl);
287
288
289      LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary,
290                                             ObjCARCReferenceLifetimeType);
291
292      CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl),
293                         RefTempDst, false);
294
295      bool ExtendsLifeOfTemporary = false;
296      if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
297        if (Var->extendsLifetimeOfTemporary())
298          ExtendsLifeOfTemporary = true;
299      } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) {
300        ExtendsLifeOfTemporary = true;
301      }
302
303      if (!ExtendsLifeOfTemporary) {
304        // Since the lifetime of this temporary isn't going to be extended,
305        // we need to clean it up ourselves at the end of the full expression.
306        switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
307        case Qualifiers::OCL_None:
308        case Qualifiers::OCL_ExplicitNone:
309        case Qualifiers::OCL_Autoreleasing:
310          break;
311
312        case Qualifiers::OCL_Strong: {
313          assert(!ObjCARCReferenceLifetimeType->isArrayType());
314          CleanupKind cleanupKind = CGF.getARCCleanupKind();
315          CGF.pushDestroy(cleanupKind,
316                          ReferenceTemporary,
317                          ObjCARCReferenceLifetimeType,
318                          CodeGenFunction::destroyARCStrongImprecise,
319                          cleanupKind & EHCleanup);
320          break;
321        }
322
323        case Qualifiers::OCL_Weak:
324          assert(!ObjCARCReferenceLifetimeType->isArrayType());
325          CGF.pushDestroy(NormalAndEHCleanup,
326                          ReferenceTemporary,
327                          ObjCARCReferenceLifetimeType,
328                          CodeGenFunction::destroyARCWeak,
329                          /*useEHCleanupForArray*/ true);
330          break;
331        }
332
333        ObjCARCReferenceLifetimeType = QualType();
334      }
335
336      return ReferenceTemporary;
337    }
338
339    SmallVector<SubobjectAdjustment, 2> Adjustments;
340    while (true) {
341      E = E->IgnoreParens();
342
343      if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
344        if ((CE->getCastKind() == CK_DerivedToBase ||
345             CE->getCastKind() == CK_UncheckedDerivedToBase) &&
346            E->getType()->isRecordType()) {
347          E = CE->getSubExpr();
348          CXXRecordDecl *Derived
349            = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
350          Adjustments.push_back(SubobjectAdjustment(CE, Derived));
351          continue;
352        }
353
354        if (CE->getCastKind() == CK_NoOp) {
355          E = CE->getSubExpr();
356          continue;
357        }
358      } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
359        if (!ME->isArrow() && ME->getBase()->isRValue()) {
360          assert(ME->getBase()->getType()->isRecordType());
361          if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
362            E = ME->getBase();
363            Adjustments.push_back(SubobjectAdjustment(Field));
364            continue;
365          }
366        }
367      } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
368        if (BO->isPtrMemOp()) {
369          assert(BO->getLHS()->isRValue());
370          E = BO->getLHS();
371          const MemberPointerType *MPT =
372              BO->getRHS()->getType()->getAs<MemberPointerType>();
373          llvm::Value *Ptr = CGF.EmitScalarExpr(BO->getRHS());
374          Adjustments.push_back(SubobjectAdjustment(MPT, Ptr));
375        }
376      }
377
378      if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E))
379        if (opaque->getType()->isRecordType())
380          return CGF.EmitOpaqueValueLValue(opaque).getAddress();
381
382      // Nothing changed.
383      break;
384    }
385
386    // Create a reference temporary if necessary.
387    AggValueSlot AggSlot = AggValueSlot::ignored();
388    if (CGF.hasAggregateLLVMType(E->getType()) &&
389        !E->getType()->isAnyComplexType()) {
390      ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
391                                                    InitializedDecl);
392      CharUnits Alignment = CGF.getContext().getTypeAlignInChars(E->getType());
393      AggValueSlot::IsDestructed_t isDestructed
394        = AggValueSlot::IsDestructed_t(InitializedDecl != 0);
395      AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Alignment,
396                                      Qualifiers(), isDestructed,
397                                      AggValueSlot::DoesNotNeedGCBarriers,
398                                      AggValueSlot::IsNotAliased);
399    }
400
401    if (InitializedDecl) {
402      // Get the destructor for the reference temporary.
403      if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
404        CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
405        if (!ClassDecl->hasTrivialDestructor())
406          ReferenceTemporaryDtor = ClassDecl->getDestructor();
407      }
408    }
409
410    RV = CGF.EmitAnyExpr(E, AggSlot);
411
412    // Check if need to perform derived-to-base casts and/or field accesses, to
413    // get from the temporary object we created (and, potentially, for which we
414    // extended the lifetime) to the subobject we're binding the reference to.
415    if (!Adjustments.empty()) {
416      llvm::Value *Object = RV.getAggregateAddr();
417      for (unsigned I = Adjustments.size(); I != 0; --I) {
418        SubobjectAdjustment &Adjustment = Adjustments[I-1];
419        switch (Adjustment.Kind) {
420        case SubobjectAdjustment::DerivedToBaseAdjustment:
421          Object =
422              CGF.GetAddressOfBaseClass(Object,
423                                        Adjustment.DerivedToBase.DerivedClass,
424                              Adjustment.DerivedToBase.BasePath->path_begin(),
425                              Adjustment.DerivedToBase.BasePath->path_end(),
426                                        /*NullCheckValue=*/false);
427          break;
428
429        case SubobjectAdjustment::FieldAdjustment: {
430          LValue LV = CGF.MakeAddrLValue(Object, E->getType());
431          LV = CGF.EmitLValueForField(LV, Adjustment.Field);
432          if (LV.isSimple()) {
433            Object = LV.getAddress();
434            break;
435          }
436
437          // For non-simple lvalues, we actually have to create a copy of
438          // the object we're binding to.
439          QualType T = Adjustment.Field->getType().getNonReferenceType()
440                                                  .getUnqualifiedType();
441          Object = CreateReferenceTemporary(CGF, T, InitializedDecl);
442          LValue TempLV = CGF.MakeAddrLValue(Object,
443                                             Adjustment.Field->getType());
444          CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV);
445          break;
446        }
447
448        case SubobjectAdjustment::MemberPointerAdjustment: {
449          Object = CGF.CGM.getCXXABI().EmitMemberDataPointerAddress(
450                        CGF, Object, Adjustment.Ptr.Ptr, Adjustment.Ptr.MPT);
451          break;
452        }
453        }
454      }
455
456      return Object;
457    }
458  }
459
460  if (RV.isAggregate())
461    return RV.getAggregateAddr();
462
463  // Create a temporary variable that we can bind the reference to.
464  ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
465                                                InitializedDecl);
466
467
468  unsigned Alignment =
469    CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity();
470  if (RV.isScalar())
471    CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary,
472                          /*Volatile=*/false, Alignment, E->getType());
473  else
474    CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary,
475                           /*Volatile=*/false);
476  return ReferenceTemporary;
477}
478
479RValue
480CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E,
481                                            const NamedDecl *InitializedDecl) {
482  llvm::Value *ReferenceTemporary = 0;
483  const CXXDestructorDecl *ReferenceTemporaryDtor = 0;
484  QualType ObjCARCReferenceLifetimeType;
485  llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary,
486                                                   ReferenceTemporaryDtor,
487                                                   ObjCARCReferenceLifetimeType,
488                                                   InitializedDecl);
489  if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull())
490    return RValue::get(Value);
491
492  // Make sure to call the destructor for the reference temporary.
493  const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl);
494  if (VD && VD->hasGlobalStorage()) {
495    if (ReferenceTemporaryDtor) {
496      llvm::Constant *DtorFn =
497        CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
498      CGM.getCXXABI().registerGlobalDtor(*this, DtorFn,
499                                    cast<llvm::Constant>(ReferenceTemporary));
500    } else {
501      assert(!ObjCARCReferenceLifetimeType.isNull());
502      // Note: We intentionally do not register a global "destructor" to
503      // release the object.
504    }
505
506    return RValue::get(Value);
507  }
508
509  if (ReferenceTemporaryDtor)
510    PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary);
511  else {
512    switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
513    case Qualifiers::OCL_None:
514      llvm_unreachable(
515                      "Not a reference temporary that needs to be deallocated");
516    case Qualifiers::OCL_ExplicitNone:
517    case Qualifiers::OCL_Autoreleasing:
518      // Nothing to do.
519      break;
520
521    case Qualifiers::OCL_Strong: {
522      bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>();
523      CleanupKind cleanupKind = getARCCleanupKind();
524      pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType,
525                  precise ? destroyARCStrongPrecise : destroyARCStrongImprecise,
526                  cleanupKind & EHCleanup);
527      break;
528    }
529
530    case Qualifiers::OCL_Weak: {
531      // __weak objects always get EH cleanups; otherwise, exceptions
532      // could cause really nasty crashes instead of mere leaks.
533      pushDestroy(NormalAndEHCleanup, ReferenceTemporary,
534                  ObjCARCReferenceLifetimeType, destroyARCWeak, true);
535      break;
536    }
537    }
538  }
539
540  return RValue::get(Value);
541}
542
543
544/// getAccessedFieldNo - Given an encoded value and a result number, return the
545/// input field number being accessed.
546unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
547                                             const llvm::Constant *Elts) {
548  return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
549      ->getZExtValue();
550}
551
552void CodeGenFunction::EmitCheck(llvm::Value *Address, unsigned Size) {
553  if (!CatchUndefined)
554    return;
555
556  // This needs to be to the standard address space.
557  Address = Builder.CreateBitCast(Address, Int8PtrTy);
558
559  llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy);
560
561  llvm::Value *Min = Builder.getFalse();
562  llvm::Value *C = Builder.CreateCall2(F, Address, Min);
563  llvm::BasicBlock *Cont = createBasicBlock();
564  Builder.CreateCondBr(Builder.CreateICmpUGE(C,
565                                        llvm::ConstantInt::get(IntPtrTy, Size)),
566                       Cont, getTrapBB());
567  EmitBlock(Cont);
568}
569
570
571CodeGenFunction::ComplexPairTy CodeGenFunction::
572EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
573                         bool isInc, bool isPre) {
574  ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(),
575                                            LV.isVolatileQualified());
576
577  llvm::Value *NextVal;
578  if (isa<llvm::IntegerType>(InVal.first->getType())) {
579    uint64_t AmountVal = isInc ? 1 : -1;
580    NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
581
582    // Add the inc/dec to the real part.
583    NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
584  } else {
585    QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
586    llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
587    if (!isInc)
588      FVal.changeSign();
589    NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
590
591    // Add the inc/dec to the real part.
592    NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
593  }
594
595  ComplexPairTy IncVal(NextVal, InVal.second);
596
597  // Store the updated result through the lvalue.
598  StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified());
599
600  // If this is a postinc, return the value read from memory, otherwise use the
601  // updated value.
602  return isPre ? IncVal : InVal;
603}
604
605
606//===----------------------------------------------------------------------===//
607//                         LValue Expression Emission
608//===----------------------------------------------------------------------===//
609
610RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
611  if (Ty->isVoidType())
612    return RValue::get(0);
613
614  if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
615    llvm::Type *EltTy = ConvertType(CTy->getElementType());
616    llvm::Value *U = llvm::UndefValue::get(EltTy);
617    return RValue::getComplex(std::make_pair(U, U));
618  }
619
620  // If this is a use of an undefined aggregate type, the aggregate must have an
621  // identifiable address.  Just because the contents of the value are undefined
622  // doesn't mean that the address can't be taken and compared.
623  if (hasAggregateLLVMType(Ty)) {
624    llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
625    return RValue::getAggregate(DestPtr);
626  }
627
628  return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
629}
630
631RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
632                                              const char *Name) {
633  ErrorUnsupported(E, Name);
634  return GetUndefRValue(E->getType());
635}
636
637LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
638                                              const char *Name) {
639  ErrorUnsupported(E, Name);
640  llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
641  return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
642}
643
644LValue CodeGenFunction::EmitCheckedLValue(const Expr *E) {
645  LValue LV = EmitLValue(E);
646  if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
647    EmitCheck(LV.getAddress(),
648              getContext().getTypeSizeInChars(E->getType()).getQuantity());
649  return LV;
650}
651
652/// EmitLValue - Emit code to compute a designator that specifies the location
653/// of the expression.
654///
655/// This can return one of two things: a simple address or a bitfield reference.
656/// In either case, the LLVM Value* in the LValue structure is guaranteed to be
657/// an LLVM pointer type.
658///
659/// If this returns a bitfield reference, nothing about the pointee type of the
660/// LLVM value is known: For example, it may not be a pointer to an integer.
661///
662/// If this returns a normal address, and if the lvalue's C type is fixed size,
663/// this method guarantees that the returned pointer type will point to an LLVM
664/// type of the same size of the lvalue's type.  If the lvalue has a variable
665/// length type, this is not possible.
666///
667LValue CodeGenFunction::EmitLValue(const Expr *E) {
668  switch (E->getStmtClass()) {
669  default: return EmitUnsupportedLValue(E, "l-value expression");
670
671  case Expr::ObjCPropertyRefExprClass:
672    llvm_unreachable("cannot emit a property reference directly");
673
674  case Expr::ObjCSelectorExprClass:
675  return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
676  case Expr::ObjCIsaExprClass:
677    return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
678  case Expr::BinaryOperatorClass:
679    return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
680  case Expr::CompoundAssignOperatorClass:
681    if (!E->getType()->isAnyComplexType())
682      return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
683    return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
684  case Expr::CallExprClass:
685  case Expr::CXXMemberCallExprClass:
686  case Expr::CXXOperatorCallExprClass:
687  case Expr::UserDefinedLiteralClass:
688    return EmitCallExprLValue(cast<CallExpr>(E));
689  case Expr::VAArgExprClass:
690    return EmitVAArgExprLValue(cast<VAArgExpr>(E));
691  case Expr::DeclRefExprClass:
692    return EmitDeclRefLValue(cast<DeclRefExpr>(E));
693  case Expr::ParenExprClass:
694    return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
695  case Expr::GenericSelectionExprClass:
696    return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
697  case Expr::PredefinedExprClass:
698    return EmitPredefinedLValue(cast<PredefinedExpr>(E));
699  case Expr::StringLiteralClass:
700    return EmitStringLiteralLValue(cast<StringLiteral>(E));
701  case Expr::ObjCEncodeExprClass:
702    return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
703  case Expr::PseudoObjectExprClass:
704    return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
705  case Expr::InitListExprClass:
706    return EmitInitListLValue(cast<InitListExpr>(E));
707  case Expr::CXXTemporaryObjectExprClass:
708  case Expr::CXXConstructExprClass:
709    return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
710  case Expr::CXXBindTemporaryExprClass:
711    return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
712  case Expr::LambdaExprClass:
713    return EmitLambdaLValue(cast<LambdaExpr>(E));
714
715  case Expr::ExprWithCleanupsClass: {
716    const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E);
717    enterFullExpression(cleanups);
718    RunCleanupsScope Scope(*this);
719    return EmitLValue(cleanups->getSubExpr());
720  }
721
722  case Expr::CXXScalarValueInitExprClass:
723    return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E));
724  case Expr::CXXDefaultArgExprClass:
725    return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
726  case Expr::CXXTypeidExprClass:
727    return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
728
729  case Expr::ObjCMessageExprClass:
730    return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
731  case Expr::ObjCIvarRefExprClass:
732    return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
733  case Expr::StmtExprClass:
734    return EmitStmtExprLValue(cast<StmtExpr>(E));
735  case Expr::UnaryOperatorClass:
736    return EmitUnaryOpLValue(cast<UnaryOperator>(E));
737  case Expr::ArraySubscriptExprClass:
738    return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
739  case Expr::ExtVectorElementExprClass:
740    return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
741  case Expr::MemberExprClass:
742    return EmitMemberExpr(cast<MemberExpr>(E));
743  case Expr::CompoundLiteralExprClass:
744    return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
745  case Expr::ConditionalOperatorClass:
746    return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
747  case Expr::BinaryConditionalOperatorClass:
748    return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
749  case Expr::ChooseExprClass:
750    return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext()));
751  case Expr::OpaqueValueExprClass:
752    return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
753  case Expr::SubstNonTypeTemplateParmExprClass:
754    return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
755  case Expr::ImplicitCastExprClass:
756  case Expr::CStyleCastExprClass:
757  case Expr::CXXFunctionalCastExprClass:
758  case Expr::CXXStaticCastExprClass:
759  case Expr::CXXDynamicCastExprClass:
760  case Expr::CXXReinterpretCastExprClass:
761  case Expr::CXXConstCastExprClass:
762  case Expr::ObjCBridgedCastExprClass:
763    return EmitCastLValue(cast<CastExpr>(E));
764
765  case Expr::MaterializeTemporaryExprClass:
766    return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
767  }
768}
769
770/// Given an object of the given canonical type, can we safely copy a
771/// value out of it based on its initializer?
772static bool isConstantEmittableObjectType(QualType type) {
773  assert(type.isCanonical());
774  assert(!type->isReferenceType());
775
776  // Must be const-qualified but non-volatile.
777  Qualifiers qs = type.getLocalQualifiers();
778  if (!qs.hasConst() || qs.hasVolatile()) return false;
779
780  // Otherwise, all object types satisfy this except C++ classes with
781  // mutable subobjects or non-trivial copy/destroy behavior.
782  if (const RecordType *RT = dyn_cast<RecordType>(type))
783    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
784      if (RD->hasMutableFields() || !RD->isTrivial())
785        return false;
786
787  return true;
788}
789
790/// Can we constant-emit a load of a reference to a variable of the
791/// given type?  This is different from predicates like
792/// Decl::isUsableInConstantExpressions because we do want it to apply
793/// in situations that don't necessarily satisfy the language's rules
794/// for this (e.g. C++'s ODR-use rules).  For example, we want to able
795/// to do this with const float variables even if those variables
796/// aren't marked 'constexpr'.
797enum ConstantEmissionKind {
798  CEK_None,
799  CEK_AsReferenceOnly,
800  CEK_AsValueOrReference,
801  CEK_AsValueOnly
802};
803static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
804  type = type.getCanonicalType();
805  if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) {
806    if (isConstantEmittableObjectType(ref->getPointeeType()))
807      return CEK_AsValueOrReference;
808    return CEK_AsReferenceOnly;
809  }
810  if (isConstantEmittableObjectType(type))
811    return CEK_AsValueOnly;
812  return CEK_None;
813}
814
815/// Try to emit a reference to the given value without producing it as
816/// an l-value.  This is actually more than an optimization: we can't
817/// produce an l-value for variables that we never actually captured
818/// in a block or lambda, which means const int variables or constexpr
819/// literals or similar.
820CodeGenFunction::ConstantEmission
821CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
822  ValueDecl *value = refExpr->getDecl();
823
824  // The value needs to be an enum constant or a constant variable.
825  ConstantEmissionKind CEK;
826  if (isa<ParmVarDecl>(value)) {
827    CEK = CEK_None;
828  } else if (VarDecl *var = dyn_cast<VarDecl>(value)) {
829    CEK = checkVarTypeForConstantEmission(var->getType());
830  } else if (isa<EnumConstantDecl>(value)) {
831    CEK = CEK_AsValueOnly;
832  } else {
833    CEK = CEK_None;
834  }
835  if (CEK == CEK_None) return ConstantEmission();
836
837  Expr::EvalResult result;
838  bool resultIsReference;
839  QualType resultType;
840
841  // It's best to evaluate all the way as an r-value if that's permitted.
842  if (CEK != CEK_AsReferenceOnly &&
843      refExpr->EvaluateAsRValue(result, getContext())) {
844    resultIsReference = false;
845    resultType = refExpr->getType();
846
847  // Otherwise, try to evaluate as an l-value.
848  } else if (CEK != CEK_AsValueOnly &&
849             refExpr->EvaluateAsLValue(result, getContext())) {
850    resultIsReference = true;
851    resultType = value->getType();
852
853  // Failure.
854  } else {
855    return ConstantEmission();
856  }
857
858  // In any case, if the initializer has side-effects, abandon ship.
859  if (result.HasSideEffects)
860    return ConstantEmission();
861
862  // Emit as a constant.
863  llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
864
865  // Make sure we emit a debug reference to the global variable.
866  // This should probably fire even for
867  if (isa<VarDecl>(value)) {
868    if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
869      EmitDeclRefExprDbgValue(refExpr, C);
870  } else {
871    assert(isa<EnumConstantDecl>(value));
872    EmitDeclRefExprDbgValue(refExpr, C);
873  }
874
875  // If we emitted a reference constant, we need to dereference that.
876  if (resultIsReference)
877    return ConstantEmission::forReference(C);
878
879  return ConstantEmission::forValue(C);
880}
881
882llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) {
883  return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
884                          lvalue.getAlignment().getQuantity(),
885                          lvalue.getType(), lvalue.getTBAAInfo());
886}
887
888static bool hasBooleanRepresentation(QualType Ty) {
889  if (Ty->isBooleanType())
890    return true;
891
892  if (const EnumType *ET = Ty->getAs<EnumType>())
893    return ET->getDecl()->getIntegerType()->isBooleanType();
894
895  if (const AtomicType *AT = Ty->getAs<AtomicType>())
896    return hasBooleanRepresentation(AT->getValueType());
897
898  return false;
899}
900
901llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
902  const EnumType *ET = Ty->getAs<EnumType>();
903  bool IsRegularCPlusPlusEnum = (getLangOpts().CPlusPlus && ET &&
904                                 CGM.getCodeGenOpts().StrictEnums &&
905                                 !ET->getDecl()->isFixed());
906  bool IsBool = hasBooleanRepresentation(Ty);
907  if (!IsBool && !IsRegularCPlusPlusEnum)
908    return NULL;
909
910  llvm::APInt Min;
911  llvm::APInt End;
912  if (IsBool) {
913    Min = llvm::APInt(8, 0);
914    End = llvm::APInt(8, 2);
915  } else {
916    const EnumDecl *ED = ET->getDecl();
917    llvm::Type *LTy = ConvertTypeForMem(ED->getIntegerType());
918    unsigned Bitwidth = LTy->getScalarSizeInBits();
919    unsigned NumNegativeBits = ED->getNumNegativeBits();
920    unsigned NumPositiveBits = ED->getNumPositiveBits();
921
922    if (NumNegativeBits) {
923      unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
924      assert(NumBits <= Bitwidth);
925      End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
926      Min = -End;
927    } else {
928      assert(NumPositiveBits <= Bitwidth);
929      End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
930      Min = llvm::APInt(Bitwidth, 0);
931    }
932  }
933
934  llvm::MDBuilder MDHelper(getLLVMContext());
935  return MDHelper.createRange(Min, End);
936}
937
938llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
939                                              unsigned Alignment, QualType Ty,
940                                              llvm::MDNode *TBAAInfo) {
941  llvm::LoadInst *Load = Builder.CreateLoad(Addr);
942  if (Volatile)
943    Load->setVolatile(true);
944  if (Alignment)
945    Load->setAlignment(Alignment);
946  if (TBAAInfo)
947    CGM.DecorateInstruction(Load, TBAAInfo);
948  // If this is an atomic type, all normal reads must be atomic
949  if (Ty->isAtomicType())
950    Load->setAtomic(llvm::SequentiallyConsistent);
951
952  if (CGM.getCodeGenOpts().OptimizationLevel > 0)
953    if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
954      Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
955
956  return EmitFromMemory(Load, Ty);
957}
958
959llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
960  // Bool has a different representation in memory than in registers.
961  if (hasBooleanRepresentation(Ty)) {
962    // This should really always be an i1, but sometimes it's already
963    // an i8, and it's awkward to track those cases down.
964    if (Value->getType()->isIntegerTy(1))
965      return Builder.CreateZExt(Value, Builder.getInt8Ty(), "frombool");
966    assert(Value->getType()->isIntegerTy(8) && "value rep of bool not i1/i8");
967  }
968
969  return Value;
970}
971
972llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
973  // Bool has a different representation in memory than in registers.
974  if (hasBooleanRepresentation(Ty)) {
975    assert(Value->getType()->isIntegerTy(8) && "memory rep of bool not i8");
976    return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
977  }
978
979  return Value;
980}
981
982void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
983                                        bool Volatile, unsigned Alignment,
984                                        QualType Ty,
985                                        llvm::MDNode *TBAAInfo,
986                                        bool isInit) {
987  Value = EmitToMemory(Value, Ty);
988
989  llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
990  if (Alignment)
991    Store->setAlignment(Alignment);
992  if (TBAAInfo)
993    CGM.DecorateInstruction(Store, TBAAInfo);
994  if (!isInit && Ty->isAtomicType())
995    Store->setAtomic(llvm::SequentiallyConsistent);
996}
997
998void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
999    bool isInit) {
1000  EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1001                    lvalue.getAlignment().getQuantity(), lvalue.getType(),
1002                    lvalue.getTBAAInfo(), isInit);
1003}
1004
1005/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1006/// method emits the address of the lvalue, then loads the result as an rvalue,
1007/// returning the rvalue.
1008RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) {
1009  if (LV.isObjCWeak()) {
1010    // load of a __weak object.
1011    llvm::Value *AddrWeakObj = LV.getAddress();
1012    return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1013                                                             AddrWeakObj));
1014  }
1015  if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak)
1016    return RValue::get(EmitARCLoadWeak(LV.getAddress()));
1017
1018  if (LV.isSimple()) {
1019    assert(!LV.getType()->isFunctionType());
1020
1021    // Everything needs a load.
1022    return RValue::get(EmitLoadOfScalar(LV));
1023  }
1024
1025  if (LV.isVectorElt()) {
1026    llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
1027                                              LV.isVolatileQualified());
1028    Load->setAlignment(LV.getAlignment().getQuantity());
1029    return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1030                                                    "vecext"));
1031  }
1032
1033  // If this is a reference to a subset of the elements of a vector, either
1034  // shuffle the input or extract/insert them as appropriate.
1035  if (LV.isExtVectorElt())
1036    return EmitLoadOfExtVectorElementLValue(LV);
1037
1038  assert(LV.isBitField() && "Unknown LValue type!");
1039  return EmitLoadOfBitfieldLValue(LV);
1040}
1041
1042RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1043  const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1044
1045  // Get the output type.
1046  llvm::Type *ResLTy = ConvertType(LV.getType());
1047  unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy);
1048
1049  // Compute the result as an OR of all of the individual component accesses.
1050  llvm::Value *Res = 0;
1051  for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
1052    const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
1053    CharUnits AccessAlignment = AI.AccessAlignment;
1054    if (!LV.getAlignment().isZero())
1055      AccessAlignment = std::min(AccessAlignment, LV.getAlignment());
1056
1057    // Get the field pointer.
1058    llvm::Value *Ptr = LV.getBitFieldBaseAddr();
1059
1060    // Only offset by the field index if used, so that incoming values are not
1061    // required to be structures.
1062    if (AI.FieldIndex)
1063      Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
1064
1065    // Offset by the byte offset, if used.
1066    if (!AI.FieldByteOffset.isZero()) {
1067      Ptr = EmitCastToVoidPtr(Ptr);
1068      Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(),
1069                                       "bf.field.offs");
1070    }
1071
1072    // Cast to the access type.
1073    llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), AI.AccessWidth,
1074                       CGM.getContext().getTargetAddressSpace(LV.getType()));
1075    Ptr = Builder.CreateBitCast(Ptr, PTy);
1076
1077    // Perform the load.
1078    llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified());
1079    Load->setAlignment(AccessAlignment.getQuantity());
1080
1081    // Shift out unused low bits and mask out unused high bits.
1082    llvm::Value *Val = Load;
1083    if (AI.FieldBitStart)
1084      Val = Builder.CreateLShr(Load, AI.FieldBitStart);
1085    Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth,
1086                                                            AI.TargetBitWidth),
1087                            "bf.clear");
1088
1089    // Extend or truncate to the target size.
1090    if (AI.AccessWidth < ResSizeInBits)
1091      Val = Builder.CreateZExt(Val, ResLTy);
1092    else if (AI.AccessWidth > ResSizeInBits)
1093      Val = Builder.CreateTrunc(Val, ResLTy);
1094
1095    // Shift into place, and OR into the result.
1096    if (AI.TargetBitOffset)
1097      Val = Builder.CreateShl(Val, AI.TargetBitOffset);
1098    Res = Res ? Builder.CreateOr(Res, Val) : Val;
1099  }
1100
1101  // If the bit-field is signed, perform the sign-extension.
1102  //
1103  // FIXME: This can easily be folded into the load of the high bits, which
1104  // could also eliminate the mask of high bits in some situations.
1105  if (Info.isSigned()) {
1106    unsigned ExtraBits = ResSizeInBits - Info.getSize();
1107    if (ExtraBits)
1108      Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits),
1109                               ExtraBits, "bf.val.sext");
1110  }
1111
1112  return RValue::get(Res);
1113}
1114
1115// If this is a reference to a subset of the elements of a vector, create an
1116// appropriate shufflevector.
1117RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1118  llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
1119                                            LV.isVolatileQualified());
1120  Load->setAlignment(LV.getAlignment().getQuantity());
1121  llvm::Value *Vec = Load;
1122
1123  const llvm::Constant *Elts = LV.getExtVectorElts();
1124
1125  // If the result of the expression is a non-vector type, we must be extracting
1126  // a single element.  Just codegen as an extractelement.
1127  const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1128  if (!ExprVT) {
1129    unsigned InIdx = getAccessedFieldNo(0, Elts);
1130    llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1131    return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1132  }
1133
1134  // Always use shuffle vector to try to retain the original program structure
1135  unsigned NumResultElts = ExprVT->getNumElements();
1136
1137  SmallVector<llvm::Constant*, 4> Mask;
1138  for (unsigned i = 0; i != NumResultElts; ++i)
1139    Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1140
1141  llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1142  Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1143                                    MaskV);
1144  return RValue::get(Vec);
1145}
1146
1147
1148
1149/// EmitStoreThroughLValue - Store the specified rvalue into the specified
1150/// lvalue, where both are guaranteed to the have the same type, and that type
1151/// is 'Ty'.
1152void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) {
1153  if (!Dst.isSimple()) {
1154    if (Dst.isVectorElt()) {
1155      // Read/modify/write the vector, inserting the new element.
1156      llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
1157                                                Dst.isVolatileQualified());
1158      Load->setAlignment(Dst.getAlignment().getQuantity());
1159      llvm::Value *Vec = Load;
1160      Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1161                                        Dst.getVectorIdx(), "vecins");
1162      llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
1163                                                   Dst.isVolatileQualified());
1164      Store->setAlignment(Dst.getAlignment().getQuantity());
1165      return;
1166    }
1167
1168    // If this is an update of extended vector elements, insert them as
1169    // appropriate.
1170    if (Dst.isExtVectorElt())
1171      return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1172
1173    assert(Dst.isBitField() && "Unknown LValue type");
1174    return EmitStoreThroughBitfieldLValue(Src, Dst);
1175  }
1176
1177  // There's special magic for assigning into an ARC-qualified l-value.
1178  if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1179    switch (Lifetime) {
1180    case Qualifiers::OCL_None:
1181      llvm_unreachable("present but none");
1182
1183    case Qualifiers::OCL_ExplicitNone:
1184      // nothing special
1185      break;
1186
1187    case Qualifiers::OCL_Strong:
1188      EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1189      return;
1190
1191    case Qualifiers::OCL_Weak:
1192      EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1193      return;
1194
1195    case Qualifiers::OCL_Autoreleasing:
1196      Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1197                                                     Src.getScalarVal()));
1198      // fall into the normal path
1199      break;
1200    }
1201  }
1202
1203  if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1204    // load of a __weak object.
1205    llvm::Value *LvalueDst = Dst.getAddress();
1206    llvm::Value *src = Src.getScalarVal();
1207     CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1208    return;
1209  }
1210
1211  if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1212    // load of a __strong object.
1213    llvm::Value *LvalueDst = Dst.getAddress();
1214    llvm::Value *src = Src.getScalarVal();
1215    if (Dst.isObjCIvar()) {
1216      assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1217      llvm::Type *ResultType = ConvertType(getContext().LongTy);
1218      llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1219      llvm::Value *dst = RHS;
1220      RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1221      llvm::Value *LHS =
1222        Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1223      llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1224      CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1225                                              BytesBetween);
1226    } else if (Dst.isGlobalObjCRef()) {
1227      CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1228                                                Dst.isThreadLocalRef());
1229    }
1230    else
1231      CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1232    return;
1233  }
1234
1235  assert(Src.isScalar() && "Can't emit an agg store with this method");
1236  EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1237}
1238
1239void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1240                                                     llvm::Value **Result) {
1241  const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1242
1243  // Get the output type.
1244  llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1245  unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy);
1246
1247  // Get the source value, truncated to the width of the bit-field.
1248  llvm::Value *SrcVal = Src.getScalarVal();
1249
1250  if (hasBooleanRepresentation(Dst.getType()))
1251    SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false);
1252
1253  SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits,
1254                                                                Info.getSize()),
1255                             "bf.value");
1256
1257  // Return the new value of the bit-field, if requested.
1258  if (Result) {
1259    // Cast back to the proper type for result.
1260    llvm::Type *SrcTy = Src.getScalarVal()->getType();
1261    llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false,
1262                                                   "bf.reload.val");
1263
1264    // Sign extend if necessary.
1265    if (Info.isSigned()) {
1266      unsigned ExtraBits = ResSizeInBits - Info.getSize();
1267      if (ExtraBits)
1268        ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits),
1269                                       ExtraBits, "bf.reload.sext");
1270    }
1271
1272    *Result = ReloadVal;
1273  }
1274
1275  // Iterate over the components, writing each piece to memory.
1276  for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
1277    const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
1278    CharUnits AccessAlignment = AI.AccessAlignment;
1279    if (!Dst.getAlignment().isZero())
1280      AccessAlignment = std::min(AccessAlignment, Dst.getAlignment());
1281
1282    // Get the field pointer.
1283    llvm::Value *Ptr = Dst.getBitFieldBaseAddr();
1284    unsigned addressSpace =
1285      cast<llvm::PointerType>(Ptr->getType())->getAddressSpace();
1286
1287    // Only offset by the field index if used, so that incoming values are not
1288    // required to be structures.
1289    if (AI.FieldIndex)
1290      Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
1291
1292    // Offset by the byte offset, if used.
1293    if (!AI.FieldByteOffset.isZero()) {
1294      Ptr = EmitCastToVoidPtr(Ptr);
1295      Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(),
1296                                       "bf.field.offs");
1297    }
1298
1299    // Cast to the access type.
1300    llvm::Type *AccessLTy =
1301      llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth);
1302
1303    llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace);
1304    Ptr = Builder.CreateBitCast(Ptr, PTy);
1305
1306    // Extract the piece of the bit-field value to write in this access, limited
1307    // to the values that are part of this access.
1308    llvm::Value *Val = SrcVal;
1309    if (AI.TargetBitOffset)
1310      Val = Builder.CreateLShr(Val, AI.TargetBitOffset);
1311    Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits,
1312                                                            AI.TargetBitWidth));
1313
1314    // Extend or truncate to the access size.
1315    if (ResSizeInBits < AI.AccessWidth)
1316      Val = Builder.CreateZExt(Val, AccessLTy);
1317    else if (ResSizeInBits > AI.AccessWidth)
1318      Val = Builder.CreateTrunc(Val, AccessLTy);
1319
1320    // Shift into the position in memory.
1321    if (AI.FieldBitStart)
1322      Val = Builder.CreateShl(Val, AI.FieldBitStart);
1323
1324    // If necessary, load and OR in bits that are outside of the bit-field.
1325    if (AI.TargetBitWidth != AI.AccessWidth) {
1326      llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified());
1327      Load->setAlignment(AccessAlignment.getQuantity());
1328
1329      // Compute the mask for zeroing the bits that are part of the bit-field.
1330      llvm::APInt InvMask =
1331        ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart,
1332                                 AI.FieldBitStart + AI.TargetBitWidth);
1333
1334      // Apply the mask and OR in to the value to write.
1335      Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val);
1336    }
1337
1338    // Write the value.
1339    llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr,
1340                                                 Dst.isVolatileQualified());
1341    Store->setAlignment(AccessAlignment.getQuantity());
1342  }
1343}
1344
1345void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1346                                                               LValue Dst) {
1347  // This access turns into a read/modify/write of the vector.  Load the input
1348  // value now.
1349  llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
1350                                            Dst.isVolatileQualified());
1351  Load->setAlignment(Dst.getAlignment().getQuantity());
1352  llvm::Value *Vec = Load;
1353  const llvm::Constant *Elts = Dst.getExtVectorElts();
1354
1355  llvm::Value *SrcVal = Src.getScalarVal();
1356
1357  if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1358    unsigned NumSrcElts = VTy->getNumElements();
1359    unsigned NumDstElts =
1360       cast<llvm::VectorType>(Vec->getType())->getNumElements();
1361    if (NumDstElts == NumSrcElts) {
1362      // Use shuffle vector is the src and destination are the same number of
1363      // elements and restore the vector mask since it is on the side it will be
1364      // stored.
1365      SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1366      for (unsigned i = 0; i != NumSrcElts; ++i)
1367        Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1368
1369      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1370      Vec = Builder.CreateShuffleVector(SrcVal,
1371                                        llvm::UndefValue::get(Vec->getType()),
1372                                        MaskV);
1373    } else if (NumDstElts > NumSrcElts) {
1374      // Extended the source vector to the same length and then shuffle it
1375      // into the destination.
1376      // FIXME: since we're shuffling with undef, can we just use the indices
1377      //        into that?  This could be simpler.
1378      SmallVector<llvm::Constant*, 4> ExtMask;
1379      for (unsigned i = 0; i != NumSrcElts; ++i)
1380        ExtMask.push_back(Builder.getInt32(i));
1381      ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1382      llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1383      llvm::Value *ExtSrcVal =
1384        Builder.CreateShuffleVector(SrcVal,
1385                                    llvm::UndefValue::get(SrcVal->getType()),
1386                                    ExtMaskV);
1387      // build identity
1388      SmallVector<llvm::Constant*, 4> Mask;
1389      for (unsigned i = 0; i != NumDstElts; ++i)
1390        Mask.push_back(Builder.getInt32(i));
1391
1392      // modify when what gets shuffled in
1393      for (unsigned i = 0; i != NumSrcElts; ++i)
1394        Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1395      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1396      Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1397    } else {
1398      // We should never shorten the vector
1399      llvm_unreachable("unexpected shorten vector length");
1400    }
1401  } else {
1402    // If the Src is a scalar (not a vector) it must be updating one element.
1403    unsigned InIdx = getAccessedFieldNo(0, Elts);
1404    llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1405    Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1406  }
1407
1408  llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
1409                                               Dst.isVolatileQualified());
1410  Store->setAlignment(Dst.getAlignment().getQuantity());
1411}
1412
1413// setObjCGCLValueClass - sets class of he lvalue for the purpose of
1414// generating write-barries API. It is currently a global, ivar,
1415// or neither.
1416static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1417                                 LValue &LV,
1418                                 bool IsMemberAccess=false) {
1419  if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1420    return;
1421
1422  if (isa<ObjCIvarRefExpr>(E)) {
1423    QualType ExpTy = E->getType();
1424    if (IsMemberAccess && ExpTy->isPointerType()) {
1425      // If ivar is a structure pointer, assigning to field of
1426      // this struct follows gcc's behavior and makes it a non-ivar
1427      // writer-barrier conservatively.
1428      ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1429      if (ExpTy->isRecordType()) {
1430        LV.setObjCIvar(false);
1431        return;
1432      }
1433    }
1434    LV.setObjCIvar(true);
1435    ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
1436    LV.setBaseIvarExp(Exp->getBase());
1437    LV.setObjCArray(E->getType()->isArrayType());
1438    return;
1439  }
1440
1441  if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
1442    if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1443      if (VD->hasGlobalStorage()) {
1444        LV.setGlobalObjCRef(true);
1445        LV.setThreadLocalRef(VD->isThreadSpecified());
1446      }
1447    }
1448    LV.setObjCArray(E->getType()->isArrayType());
1449    return;
1450  }
1451
1452  if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
1453    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1454    return;
1455  }
1456
1457  if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
1458    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1459    if (LV.isObjCIvar()) {
1460      // If cast is to a structure pointer, follow gcc's behavior and make it
1461      // a non-ivar write-barrier.
1462      QualType ExpTy = E->getType();
1463      if (ExpTy->isPointerType())
1464        ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1465      if (ExpTy->isRecordType())
1466        LV.setObjCIvar(false);
1467    }
1468    return;
1469  }
1470
1471  if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1472    setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1473    return;
1474  }
1475
1476  if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1477    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1478    return;
1479  }
1480
1481  if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
1482    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1483    return;
1484  }
1485
1486  if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1487    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1488    return;
1489  }
1490
1491  if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1492    setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1493    if (LV.isObjCIvar() && !LV.isObjCArray())
1494      // Using array syntax to assigning to what an ivar points to is not
1495      // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1496      LV.setObjCIvar(false);
1497    else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1498      // Using array syntax to assigning to what global points to is not
1499      // same as assigning to the global itself. {id *G;} G[i] = 0;
1500      LV.setGlobalObjCRef(false);
1501    return;
1502  }
1503
1504  if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
1505    setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1506    // We don't know if member is an 'ivar', but this flag is looked at
1507    // only in the context of LV.isObjCIvar().
1508    LV.setObjCArray(E->getType()->isArrayType());
1509    return;
1510  }
1511}
1512
1513static llvm::Value *
1514EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1515                                llvm::Value *V, llvm::Type *IRType,
1516                                StringRef Name = StringRef()) {
1517  unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1518  return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1519}
1520
1521static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1522                                      const Expr *E, const VarDecl *VD) {
1523  assert((VD->hasExternalStorage() || VD->isFileVarDecl()) &&
1524         "Var decl must have external storage or be a file var decl!");
1525
1526  llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1527  llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1528  V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1529  CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1530  QualType T = E->getType();
1531  LValue LV;
1532  if (VD->getType()->isReferenceType()) {
1533    llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1534    LI->setAlignment(Alignment.getQuantity());
1535    V = LI;
1536    LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1537  } else {
1538    LV = CGF.MakeAddrLValue(V, E->getType(), Alignment);
1539  }
1540  setObjCGCLValueClass(CGF.getContext(), E, LV);
1541  return LV;
1542}
1543
1544static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1545                                     const Expr *E, const FunctionDecl *FD) {
1546  llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1547  if (!FD->hasPrototype()) {
1548    if (const FunctionProtoType *Proto =
1549            FD->getType()->getAs<FunctionProtoType>()) {
1550      // Ugly case: for a K&R-style definition, the type of the definition
1551      // isn't the same as the type of a use.  Correct for this with a
1552      // bitcast.
1553      QualType NoProtoType =
1554          CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
1555      NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1556      V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1557    }
1558  }
1559  CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1560  return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1561}
1562
1563LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1564  const NamedDecl *ND = E->getDecl();
1565  CharUnits Alignment = getContext().getDeclAlign(ND);
1566  QualType T = E->getType();
1567
1568  // FIXME: We should be able to assert this for FunctionDecls as well!
1569  // FIXME: We should be able to assert this for all DeclRefExprs, not just
1570  // those with a valid source location.
1571  assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
1572          !E->getLocation().isValid()) &&
1573         "Should not use decl without marking it used!");
1574
1575  if (ND->hasAttr<WeakRefAttr>()) {
1576    const ValueDecl *VD = cast<ValueDecl>(ND);
1577    llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1578    return MakeAddrLValue(Aliasee, E->getType(), Alignment);
1579  }
1580
1581  if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1582    // Check if this is a global variable.
1583    if (VD->hasExternalStorage() || VD->isFileVarDecl())
1584      return EmitGlobalVarDeclLValue(*this, E, VD);
1585
1586    bool isBlockVariable = VD->hasAttr<BlocksAttr>();
1587
1588    bool NonGCable = VD->hasLocalStorage() &&
1589                     !VD->getType()->isReferenceType() &&
1590                     !isBlockVariable;
1591
1592    llvm::Value *V = LocalDeclMap[VD];
1593    if (!V && VD->isStaticLocal())
1594      V = CGM.getStaticLocalDeclAddress(VD);
1595
1596    // Use special handling for lambdas.
1597    if (!V) {
1598      if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) {
1599        QualType LambdaTagType = getContext().getTagDeclType(FD->getParent());
1600        LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue,
1601                                                     LambdaTagType);
1602        return EmitLValueForField(LambdaLV, FD);
1603      }
1604
1605      assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal());
1606      CharUnits alignment = getContext().getDeclAlign(VD);
1607      return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable),
1608                            E->getType(), alignment);
1609    }
1610
1611    assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1612
1613    if (isBlockVariable)
1614      V = BuildBlockByrefAddress(V, VD);
1615
1616    LValue LV;
1617    if (VD->getType()->isReferenceType()) {
1618      llvm::LoadInst *LI = Builder.CreateLoad(V);
1619      LI->setAlignment(Alignment.getQuantity());
1620      V = LI;
1621      LV = MakeNaturalAlignAddrLValue(V, T);
1622    } else {
1623      LV = MakeAddrLValue(V, T, Alignment);
1624    }
1625
1626    if (NonGCable) {
1627      LV.getQuals().removeObjCGCAttr();
1628      LV.setNonGC(true);
1629    }
1630    setObjCGCLValueClass(getContext(), E, LV);
1631    return LV;
1632  }
1633
1634  if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND))
1635    return EmitFunctionDeclLValue(*this, E, fn);
1636
1637  llvm_unreachable("Unhandled DeclRefExpr");
1638}
1639
1640LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1641  // __extension__ doesn't affect lvalue-ness.
1642  if (E->getOpcode() == UO_Extension)
1643    return EmitLValue(E->getSubExpr());
1644
1645  QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1646  switch (E->getOpcode()) {
1647  default: llvm_unreachable("Unknown unary operator lvalue!");
1648  case UO_Deref: {
1649    QualType T = E->getSubExpr()->getType()->getPointeeType();
1650    assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1651
1652    LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1653    LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1654
1655    // We should not generate __weak write barrier on indirect reference
1656    // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1657    // But, we continue to generate __strong write barrier on indirect write
1658    // into a pointer to object.
1659    if (getContext().getLangOpts().ObjC1 &&
1660        getContext().getLangOpts().getGC() != LangOptions::NonGC &&
1661        LV.isObjCWeak())
1662      LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1663    return LV;
1664  }
1665  case UO_Real:
1666  case UO_Imag: {
1667    LValue LV = EmitLValue(E->getSubExpr());
1668    assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1669    llvm::Value *Addr = LV.getAddress();
1670
1671    // __real is valid on scalars.  This is a faster way of testing that.
1672    // __imag can only produce an rvalue on scalars.
1673    if (E->getOpcode() == UO_Real &&
1674        !cast<llvm::PointerType>(Addr->getType())
1675           ->getElementType()->isStructTy()) {
1676      assert(E->getSubExpr()->getType()->isArithmeticType());
1677      return LV;
1678    }
1679
1680    assert(E->getSubExpr()->getType()->isAnyComplexType());
1681
1682    unsigned Idx = E->getOpcode() == UO_Imag;
1683    return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1684                                                  Idx, "idx"),
1685                          ExprTy);
1686  }
1687  case UO_PreInc:
1688  case UO_PreDec: {
1689    LValue LV = EmitLValue(E->getSubExpr());
1690    bool isInc = E->getOpcode() == UO_PreInc;
1691
1692    if (E->getType()->isAnyComplexType())
1693      EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1694    else
1695      EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1696    return LV;
1697  }
1698  }
1699}
1700
1701LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1702  return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1703                        E->getType());
1704}
1705
1706LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1707  return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1708                        E->getType());
1709}
1710
1711static llvm::Constant*
1712GetAddrOfConstantWideString(StringRef Str,
1713                            const char *GlobalName,
1714                            ASTContext &Context,
1715                            QualType Ty, SourceLocation Loc,
1716                            CodeGenModule &CGM) {
1717
1718  StringLiteral *SL = StringLiteral::Create(Context,
1719                                            Str,
1720                                            StringLiteral::Wide,
1721                                            /*Pascal = */false,
1722                                            Ty, Loc);
1723  llvm::Constant *C = CGM.GetConstantArrayFromStringLiteral(SL);
1724  llvm::GlobalVariable *GV =
1725    new llvm::GlobalVariable(CGM.getModule(), C->getType(),
1726                             !CGM.getLangOpts().WritableStrings,
1727                             llvm::GlobalValue::PrivateLinkage,
1728                             C, GlobalName);
1729  const unsigned WideAlignment =
1730    Context.getTypeAlignInChars(Ty).getQuantity();
1731  GV->setAlignment(WideAlignment);
1732  return GV;
1733}
1734
1735static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
1736                                    SmallString<32>& Target) {
1737  Target.resize(CharByteWidth * (Source.size() + 1));
1738  char* ResultPtr = &Target[0];
1739  bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr);
1740  (void)success;
1741  assert(success);
1742  Target.resize(ResultPtr - &Target[0]);
1743}
1744
1745LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
1746  switch (E->getIdentType()) {
1747  default:
1748    return EmitUnsupportedLValue(E, "predefined expression");
1749
1750  case PredefinedExpr::Func:
1751  case PredefinedExpr::Function:
1752  case PredefinedExpr::LFunction:
1753  case PredefinedExpr::PrettyFunction: {
1754    unsigned IdentType = E->getIdentType();
1755    std::string GlobalVarName;
1756
1757    switch (IdentType) {
1758    default: llvm_unreachable("Invalid type");
1759    case PredefinedExpr::Func:
1760      GlobalVarName = "__func__.";
1761      break;
1762    case PredefinedExpr::Function:
1763      GlobalVarName = "__FUNCTION__.";
1764      break;
1765    case PredefinedExpr::LFunction:
1766      GlobalVarName = "L__FUNCTION__.";
1767      break;
1768    case PredefinedExpr::PrettyFunction:
1769      GlobalVarName = "__PRETTY_FUNCTION__.";
1770      break;
1771    }
1772
1773    StringRef FnName = CurFn->getName();
1774    if (FnName.startswith("\01"))
1775      FnName = FnName.substr(1);
1776    GlobalVarName += FnName;
1777
1778    const Decl *CurDecl = CurCodeDecl;
1779    if (CurDecl == 0)
1780      CurDecl = getContext().getTranslationUnitDecl();
1781
1782    std::string FunctionName =
1783        (isa<BlockDecl>(CurDecl)
1784         ? FnName.str()
1785         : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)IdentType,
1786                                       CurDecl));
1787
1788    const Type* ElemType = E->getType()->getArrayElementTypeNoTypeQual();
1789    llvm::Constant *C;
1790    if (ElemType->isWideCharType()) {
1791      SmallString<32> RawChars;
1792      ConvertUTF8ToWideString(
1793          getContext().getTypeSizeInChars(ElemType).getQuantity(),
1794          FunctionName, RawChars);
1795      C = GetAddrOfConstantWideString(RawChars,
1796                                      GlobalVarName.c_str(),
1797                                      getContext(),
1798                                      E->getType(),
1799                                      E->getLocation(),
1800                                      CGM);
1801    } else {
1802      C = CGM.GetAddrOfConstantCString(FunctionName,
1803                                       GlobalVarName.c_str(),
1804                                       1);
1805    }
1806    return MakeAddrLValue(C, E->getType());
1807  }
1808  }
1809}
1810
1811llvm::BasicBlock *CodeGenFunction::getTrapBB() {
1812  const CodeGenOptions &GCO = CGM.getCodeGenOpts();
1813
1814  // If we are not optimzing, don't collapse all calls to trap in the function
1815  // to the same call, that way, in the debugger they can see which operation
1816  // did in fact fail.  If we are optimizing, we collapse all calls to trap down
1817  // to just one per function to save on codesize.
1818  if (GCO.OptimizationLevel && TrapBB)
1819    return TrapBB;
1820
1821  llvm::BasicBlock *Cont = 0;
1822  if (HaveInsertPoint()) {
1823    Cont = createBasicBlock("cont");
1824    EmitBranch(Cont);
1825  }
1826  TrapBB = createBasicBlock("trap");
1827  EmitBlock(TrapBB);
1828
1829  llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
1830  llvm::CallInst *TrapCall = Builder.CreateCall(F);
1831  TrapCall->setDoesNotReturn();
1832  TrapCall->setDoesNotThrow();
1833  Builder.CreateUnreachable();
1834
1835  if (Cont)
1836    EmitBlock(Cont);
1837  return TrapBB;
1838}
1839
1840/// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
1841/// array to pointer, return the array subexpression.
1842static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
1843  // If this isn't just an array->pointer decay, bail out.
1844  const CastExpr *CE = dyn_cast<CastExpr>(E);
1845  if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
1846    return 0;
1847
1848  // If this is a decay from variable width array, bail out.
1849  const Expr *SubExpr = CE->getSubExpr();
1850  if (SubExpr->getType()->isVariableArrayType())
1851    return 0;
1852
1853  return SubExpr;
1854}
1855
1856LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
1857  // The index must always be an integer, which is not an aggregate.  Emit it.
1858  llvm::Value *Idx = EmitScalarExpr(E->getIdx());
1859  QualType IdxTy  = E->getIdx()->getType();
1860  bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
1861
1862  // If the base is a vector type, then we are forming a vector element lvalue
1863  // with this subscript.
1864  if (E->getBase()->getType()->isVectorType()) {
1865    // Emit the vector as an lvalue to get its address.
1866    LValue LHS = EmitLValue(E->getBase());
1867    assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
1868    Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
1869    return LValue::MakeVectorElt(LHS.getAddress(), Idx,
1870                                 E->getBase()->getType(), LHS.getAlignment());
1871  }
1872
1873  // Extend or truncate the index type to 32 or 64-bits.
1874  if (Idx->getType() != IntPtrTy)
1875    Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
1876
1877  // We know that the pointer points to a type of the correct size, unless the
1878  // size is a VLA or Objective-C interface.
1879  llvm::Value *Address = 0;
1880  CharUnits ArrayAlignment;
1881  if (const VariableArrayType *vla =
1882        getContext().getAsVariableArrayType(E->getType())) {
1883    // The base must be a pointer, which is not an aggregate.  Emit
1884    // it.  It needs to be emitted first in case it's what captures
1885    // the VLA bounds.
1886    Address = EmitScalarExpr(E->getBase());
1887
1888    // The element count here is the total number of non-VLA elements.
1889    llvm::Value *numElements = getVLASize(vla).first;
1890
1891    // Effectively, the multiply by the VLA size is part of the GEP.
1892    // GEP indexes are signed, and scaling an index isn't permitted to
1893    // signed-overflow, so we use the same semantics for our explicit
1894    // multiply.  We suppress this if overflow is not undefined behavior.
1895    if (getLangOpts().isSignedOverflowDefined()) {
1896      Idx = Builder.CreateMul(Idx, numElements);
1897      Address = Builder.CreateGEP(Address, Idx, "arrayidx");
1898    } else {
1899      Idx = Builder.CreateNSWMul(Idx, numElements);
1900      Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
1901    }
1902  } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
1903    // Indexing over an interface, as in "NSString *P; P[4];"
1904    llvm::Value *InterfaceSize =
1905      llvm::ConstantInt::get(Idx->getType(),
1906          getContext().getTypeSizeInChars(OIT).getQuantity());
1907
1908    Idx = Builder.CreateMul(Idx, InterfaceSize);
1909
1910    // The base must be a pointer, which is not an aggregate.  Emit it.
1911    llvm::Value *Base = EmitScalarExpr(E->getBase());
1912    Address = EmitCastToVoidPtr(Base);
1913    Address = Builder.CreateGEP(Address, Idx, "arrayidx");
1914    Address = Builder.CreateBitCast(Address, Base->getType());
1915  } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
1916    // If this is A[i] where A is an array, the frontend will have decayed the
1917    // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
1918    // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
1919    // "gep x, i" here.  Emit one "gep A, 0, i".
1920    assert(Array->getType()->isArrayType() &&
1921           "Array to pointer decay must have array source type!");
1922    LValue ArrayLV = EmitLValue(Array);
1923    llvm::Value *ArrayPtr = ArrayLV.getAddress();
1924    llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
1925    llvm::Value *Args[] = { Zero, Idx };
1926
1927    // Propagate the alignment from the array itself to the result.
1928    ArrayAlignment = ArrayLV.getAlignment();
1929
1930    if (getContext().getLangOpts().isSignedOverflowDefined())
1931      Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
1932    else
1933      Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
1934  } else {
1935    // The base must be a pointer, which is not an aggregate.  Emit it.
1936    llvm::Value *Base = EmitScalarExpr(E->getBase());
1937    if (getContext().getLangOpts().isSignedOverflowDefined())
1938      Address = Builder.CreateGEP(Base, Idx, "arrayidx");
1939    else
1940      Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
1941  }
1942
1943  QualType T = E->getBase()->getType()->getPointeeType();
1944  assert(!T.isNull() &&
1945         "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
1946
1947
1948  // Limit the alignment to that of the result type.
1949  LValue LV;
1950  if (!ArrayAlignment.isZero()) {
1951    CharUnits Align = getContext().getTypeAlignInChars(T);
1952    ArrayAlignment = std::min(Align, ArrayAlignment);
1953    LV = MakeAddrLValue(Address, T, ArrayAlignment);
1954  } else {
1955    LV = MakeNaturalAlignAddrLValue(Address, T);
1956  }
1957
1958  LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
1959
1960  if (getContext().getLangOpts().ObjC1 &&
1961      getContext().getLangOpts().getGC() != LangOptions::NonGC) {
1962    LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1963    setObjCGCLValueClass(getContext(), E, LV);
1964  }
1965  return LV;
1966}
1967
1968static
1969llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
1970                                       SmallVector<unsigned, 4> &Elts) {
1971  SmallVector<llvm::Constant*, 4> CElts;
1972  for (unsigned i = 0, e = Elts.size(); i != e; ++i)
1973    CElts.push_back(Builder.getInt32(Elts[i]));
1974
1975  return llvm::ConstantVector::get(CElts);
1976}
1977
1978LValue CodeGenFunction::
1979EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
1980  // Emit the base vector as an l-value.
1981  LValue Base;
1982
1983  // ExtVectorElementExpr's base can either be a vector or pointer to vector.
1984  if (E->isArrow()) {
1985    // If it is a pointer to a vector, emit the address and form an lvalue with
1986    // it.
1987    llvm::Value *Ptr = EmitScalarExpr(E->getBase());
1988    const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
1989    Base = MakeAddrLValue(Ptr, PT->getPointeeType());
1990    Base.getQuals().removeObjCGCAttr();
1991  } else if (E->getBase()->isGLValue()) {
1992    // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
1993    // emit the base as an lvalue.
1994    assert(E->getBase()->getType()->isVectorType());
1995    Base = EmitLValue(E->getBase());
1996  } else {
1997    // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
1998    assert(E->getBase()->getType()->isVectorType() &&
1999           "Result must be a vector");
2000    llvm::Value *Vec = EmitScalarExpr(E->getBase());
2001
2002    // Store the vector to memory (because LValue wants an address).
2003    llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
2004    Builder.CreateStore(Vec, VecMem);
2005    Base = MakeAddrLValue(VecMem, E->getBase()->getType());
2006  }
2007
2008  QualType type =
2009    E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
2010
2011  // Encode the element access list into a vector of unsigned indices.
2012  SmallVector<unsigned, 4> Indices;
2013  E->getEncodedElementAccess(Indices);
2014
2015  if (Base.isSimple()) {
2016    llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
2017    return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
2018                                    Base.getAlignment());
2019  }
2020  assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
2021
2022  llvm::Constant *BaseElts = Base.getExtVectorElts();
2023  SmallVector<llvm::Constant *, 4> CElts;
2024
2025  for (unsigned i = 0, e = Indices.size(); i != e; ++i)
2026    CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
2027  llvm::Constant *CV = llvm::ConstantVector::get(CElts);
2028  return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
2029                                  Base.getAlignment());
2030}
2031
2032LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
2033  Expr *BaseExpr = E->getBase();
2034
2035  // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
2036  LValue BaseLV;
2037  if (E->isArrow())
2038    BaseLV = MakeNaturalAlignAddrLValue(EmitScalarExpr(BaseExpr),
2039                                        BaseExpr->getType()->getPointeeType());
2040  else
2041    BaseLV = EmitLValue(BaseExpr);
2042
2043  NamedDecl *ND = E->getMemberDecl();
2044  if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
2045    LValue LV = EmitLValueForField(BaseLV, Field);
2046    setObjCGCLValueClass(getContext(), E, LV);
2047    return LV;
2048  }
2049
2050  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
2051    return EmitGlobalVarDeclLValue(*this, E, VD);
2052
2053  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
2054    return EmitFunctionDeclLValue(*this, E, FD);
2055
2056  llvm_unreachable("Unhandled member declaration!");
2057}
2058
2059/// EmitLValueForAnonRecordField - Given that the field is a member of
2060/// an anonymous struct or union buried inside a record, and given
2061/// that the base value is a pointer to the enclosing record, derive
2062/// an lvalue for the ultimate field.
2063LValue CodeGenFunction::EmitLValueForAnonRecordField(llvm::Value *BaseValue,
2064                                             const IndirectFieldDecl *Field,
2065                                                     unsigned CVRQualifiers) {
2066  IndirectFieldDecl::chain_iterator I = Field->chain_begin(),
2067    IEnd = Field->chain_end();
2068  while (true) {
2069    QualType RecordTy =
2070        getContext().getTypeDeclType(cast<FieldDecl>(*I)->getParent());
2071    LValue LV = EmitLValueForField(MakeAddrLValue(BaseValue, RecordTy),
2072                                   cast<FieldDecl>(*I));
2073    if (++I == IEnd) return LV;
2074
2075    assert(LV.isSimple());
2076    BaseValue = LV.getAddress();
2077    CVRQualifiers |= LV.getVRQualifiers();
2078  }
2079}
2080
2081LValue CodeGenFunction::EmitLValueForField(LValue base,
2082                                           const FieldDecl *field) {
2083  if (field->isBitField()) {
2084    const CGRecordLayout &RL =
2085      CGM.getTypes().getCGRecordLayout(field->getParent());
2086    const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
2087    QualType fieldType =
2088      field->getType().withCVRQualifiers(base.getVRQualifiers());
2089    return LValue::MakeBitfield(base.getAddress(), Info, fieldType,
2090                                base.getAlignment());
2091  }
2092
2093  const RecordDecl *rec = field->getParent();
2094  QualType type = field->getType();
2095  CharUnits alignment = getContext().getDeclAlign(field);
2096
2097  // FIXME: It should be impossible to have an LValue without alignment for a
2098  // complete type.
2099  if (!base.getAlignment().isZero())
2100    alignment = std::min(alignment, base.getAlignment());
2101
2102  bool mayAlias = rec->hasAttr<MayAliasAttr>();
2103
2104  llvm::Value *addr = base.getAddress();
2105  unsigned cvr = base.getVRQualifiers();
2106  if (rec->isUnion()) {
2107    // For unions, there is no pointer adjustment.
2108    assert(!type->isReferenceType() && "union has reference member");
2109  } else {
2110    // For structs, we GEP to the field that the record layout suggests.
2111    unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
2112    addr = Builder.CreateStructGEP(addr, idx, field->getName());
2113
2114    // If this is a reference field, load the reference right now.
2115    if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
2116      llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
2117      if (cvr & Qualifiers::Volatile) load->setVolatile(true);
2118      load->setAlignment(alignment.getQuantity());
2119
2120      if (CGM.shouldUseTBAA()) {
2121        llvm::MDNode *tbaa;
2122        if (mayAlias)
2123          tbaa = CGM.getTBAAInfo(getContext().CharTy);
2124        else
2125          tbaa = CGM.getTBAAInfo(type);
2126        CGM.DecorateInstruction(load, tbaa);
2127      }
2128
2129      addr = load;
2130      mayAlias = false;
2131      type = refType->getPointeeType();
2132      if (type->isIncompleteType())
2133        alignment = CharUnits();
2134      else
2135        alignment = getContext().getTypeAlignInChars(type);
2136      cvr = 0; // qualifiers don't recursively apply to referencee
2137    }
2138  }
2139
2140  // Make sure that the address is pointing to the right type.  This is critical
2141  // for both unions and structs.  A union needs a bitcast, a struct element
2142  // will need a bitcast if the LLVM type laid out doesn't match the desired
2143  // type.
2144  addr = EmitBitCastOfLValueToProperType(*this, addr,
2145                                         CGM.getTypes().ConvertTypeForMem(type),
2146                                         field->getName());
2147
2148  if (field->hasAttr<AnnotateAttr>())
2149    addr = EmitFieldAnnotations(field, addr);
2150
2151  LValue LV = MakeAddrLValue(addr, type, alignment);
2152  LV.getQuals().addCVRQualifiers(cvr);
2153
2154  // __weak attribute on a field is ignored.
2155  if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
2156    LV.getQuals().removeObjCGCAttr();
2157
2158  // Fields of may_alias structs act like 'char' for TBAA purposes.
2159  // FIXME: this should get propagated down through anonymous structs
2160  // and unions.
2161  if (mayAlias && LV.getTBAAInfo())
2162    LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
2163
2164  return LV;
2165}
2166
2167LValue
2168CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
2169                                                  const FieldDecl *Field) {
2170  QualType FieldType = Field->getType();
2171
2172  if (!FieldType->isReferenceType())
2173    return EmitLValueForField(Base, Field);
2174
2175  const CGRecordLayout &RL =
2176    CGM.getTypes().getCGRecordLayout(Field->getParent());
2177  unsigned idx = RL.getLLVMFieldNo(Field);
2178  llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx);
2179  assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
2180
2181  // Make sure that the address is pointing to the right type.  This is critical
2182  // for both unions and structs.  A union needs a bitcast, a struct element
2183  // will need a bitcast if the LLVM type laid out doesn't match the desired
2184  // type.
2185  llvm::Type *llvmType = ConvertTypeForMem(FieldType);
2186  V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
2187
2188  CharUnits Alignment = getContext().getDeclAlign(Field);
2189
2190  // FIXME: It should be impossible to have an LValue without alignment for a
2191  // complete type.
2192  if (!Base.getAlignment().isZero())
2193    Alignment = std::min(Alignment, Base.getAlignment());
2194
2195  return MakeAddrLValue(V, FieldType, Alignment);
2196}
2197
2198LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
2199  if (E->isFileScope()) {
2200    llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
2201    return MakeAddrLValue(GlobalPtr, E->getType());
2202  }
2203  if (E->getType()->isVariablyModifiedType())
2204    // make sure to emit the VLA size.
2205    EmitVariablyModifiedType(E->getType());
2206
2207  llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
2208  const Expr *InitExpr = E->getInitializer();
2209  LValue Result = MakeAddrLValue(DeclPtr, E->getType());
2210
2211  EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
2212                   /*Init*/ true);
2213
2214  return Result;
2215}
2216
2217LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
2218  if (!E->isGLValue())
2219    // Initializing an aggregate temporary in C++11: T{...}.
2220    return EmitAggExprToLValue(E);
2221
2222  // An lvalue initializer list must be initializing a reference.
2223  assert(E->getNumInits() == 1 && "reference init with multiple values");
2224  return EmitLValue(E->getInit(0));
2225}
2226
2227LValue CodeGenFunction::
2228EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
2229  if (!expr->isGLValue()) {
2230    // ?: here should be an aggregate.
2231    assert((hasAggregateLLVMType(expr->getType()) &&
2232            !expr->getType()->isAnyComplexType()) &&
2233           "Unexpected conditional operator!");
2234    return EmitAggExprToLValue(expr);
2235  }
2236
2237  OpaqueValueMapping binding(*this, expr);
2238
2239  const Expr *condExpr = expr->getCond();
2240  bool CondExprBool;
2241  if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2242    const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
2243    if (!CondExprBool) std::swap(live, dead);
2244
2245    if (!ContainsLabel(dead))
2246      return EmitLValue(live);
2247  }
2248
2249  llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2250  llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2251  llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2252
2253  ConditionalEvaluation eval(*this);
2254  EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock);
2255
2256  // Any temporaries created here are conditional.
2257  EmitBlock(lhsBlock);
2258  eval.begin(*this);
2259  LValue lhs = EmitLValue(expr->getTrueExpr());
2260  eval.end(*this);
2261
2262  if (!lhs.isSimple())
2263    return EmitUnsupportedLValue(expr, "conditional operator");
2264
2265  lhsBlock = Builder.GetInsertBlock();
2266  Builder.CreateBr(contBlock);
2267
2268  // Any temporaries created here are conditional.
2269  EmitBlock(rhsBlock);
2270  eval.begin(*this);
2271  LValue rhs = EmitLValue(expr->getFalseExpr());
2272  eval.end(*this);
2273  if (!rhs.isSimple())
2274    return EmitUnsupportedLValue(expr, "conditional operator");
2275  rhsBlock = Builder.GetInsertBlock();
2276
2277  EmitBlock(contBlock);
2278
2279  llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2,
2280                                         "cond-lvalue");
2281  phi->addIncoming(lhs.getAddress(), lhsBlock);
2282  phi->addIncoming(rhs.getAddress(), rhsBlock);
2283  return MakeAddrLValue(phi, expr->getType());
2284}
2285
2286/// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
2287/// type. If the cast is to a reference, we can have the usual lvalue result,
2288/// otherwise if a cast is needed by the code generator in an lvalue context,
2289/// then it must mean that we need the address of an aggregate in order to
2290/// access one of its members.  This can happen for all the reasons that casts
2291/// are permitted with aggregate result, including noop aggregate casts, and
2292/// cast from scalar to union.
2293LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2294  switch (E->getCastKind()) {
2295  case CK_ToVoid:
2296    return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2297
2298  case CK_Dependent:
2299    llvm_unreachable("dependent cast kind in IR gen!");
2300
2301  // These two casts are currently treated as no-ops, although they could
2302  // potentially be real operations depending on the target's ABI.
2303  case CK_NonAtomicToAtomic:
2304  case CK_AtomicToNonAtomic:
2305
2306  case CK_NoOp:
2307  case CK_LValueToRValue:
2308    if (!E->getSubExpr()->Classify(getContext()).isPRValue()
2309        || E->getType()->isRecordType())
2310      return EmitLValue(E->getSubExpr());
2311    // Fall through to synthesize a temporary.
2312
2313  case CK_BitCast:
2314  case CK_ArrayToPointerDecay:
2315  case CK_FunctionToPointerDecay:
2316  case CK_NullToMemberPointer:
2317  case CK_NullToPointer:
2318  case CK_IntegralToPointer:
2319  case CK_PointerToIntegral:
2320  case CK_PointerToBoolean:
2321  case CK_VectorSplat:
2322  case CK_IntegralCast:
2323  case CK_IntegralToBoolean:
2324  case CK_IntegralToFloating:
2325  case CK_FloatingToIntegral:
2326  case CK_FloatingToBoolean:
2327  case CK_FloatingCast:
2328  case CK_FloatingRealToComplex:
2329  case CK_FloatingComplexToReal:
2330  case CK_FloatingComplexToBoolean:
2331  case CK_FloatingComplexCast:
2332  case CK_FloatingComplexToIntegralComplex:
2333  case CK_IntegralRealToComplex:
2334  case CK_IntegralComplexToReal:
2335  case CK_IntegralComplexToBoolean:
2336  case CK_IntegralComplexCast:
2337  case CK_IntegralComplexToFloatingComplex:
2338  case CK_DerivedToBaseMemberPointer:
2339  case CK_BaseToDerivedMemberPointer:
2340  case CK_MemberPointerToBoolean:
2341  case CK_ReinterpretMemberPointer:
2342  case CK_AnyPointerToBlockPointerCast:
2343  case CK_ARCProduceObject:
2344  case CK_ARCConsumeObject:
2345  case CK_ARCReclaimReturnedObject:
2346  case CK_ARCExtendBlockObject:
2347  case CK_CopyAndAutoreleaseBlockObject: {
2348    // These casts only produce lvalues when we're binding a reference to a
2349    // temporary realized from a (converted) pure rvalue. Emit the expression
2350    // as a value, copy it into a temporary, and return an lvalue referring to
2351    // that temporary.
2352    llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp");
2353    EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false);
2354    return MakeAddrLValue(V, E->getType());
2355  }
2356
2357  case CK_Dynamic: {
2358    LValue LV = EmitLValue(E->getSubExpr());
2359    llvm::Value *V = LV.getAddress();
2360    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
2361    return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2362  }
2363
2364  case CK_ConstructorConversion:
2365  case CK_UserDefinedConversion:
2366  case CK_CPointerToObjCPointerCast:
2367  case CK_BlockPointerToObjCPointerCast:
2368    return EmitLValue(E->getSubExpr());
2369
2370  case CK_UncheckedDerivedToBase:
2371  case CK_DerivedToBase: {
2372    const RecordType *DerivedClassTy =
2373      E->getSubExpr()->getType()->getAs<RecordType>();
2374    CXXRecordDecl *DerivedClassDecl =
2375      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2376
2377    LValue LV = EmitLValue(E->getSubExpr());
2378    llvm::Value *This = LV.getAddress();
2379
2380    // Perform the derived-to-base conversion
2381    llvm::Value *Base =
2382      GetAddressOfBaseClass(This, DerivedClassDecl,
2383                            E->path_begin(), E->path_end(),
2384                            /*NullCheckValue=*/false);
2385
2386    return MakeAddrLValue(Base, E->getType());
2387  }
2388  case CK_ToUnion:
2389    return EmitAggExprToLValue(E);
2390  case CK_BaseToDerived: {
2391    const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2392    CXXRecordDecl *DerivedClassDecl =
2393      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2394
2395    LValue LV = EmitLValue(E->getSubExpr());
2396
2397    // Perform the base-to-derived conversion
2398    llvm::Value *Derived =
2399      GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
2400                               E->path_begin(), E->path_end(),
2401                               /*NullCheckValue=*/false);
2402
2403    return MakeAddrLValue(Derived, E->getType());
2404  }
2405  case CK_LValueBitCast: {
2406    // This must be a reinterpret_cast (or c-style equivalent).
2407    const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
2408
2409    LValue LV = EmitLValue(E->getSubExpr());
2410    llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2411                                           ConvertType(CE->getTypeAsWritten()));
2412    return MakeAddrLValue(V, E->getType());
2413  }
2414  case CK_ObjCObjectLValueCast: {
2415    LValue LV = EmitLValue(E->getSubExpr());
2416    QualType ToType = getContext().getLValueReferenceType(E->getType());
2417    llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2418                                           ConvertType(ToType));
2419    return MakeAddrLValue(V, E->getType());
2420  }
2421  }
2422
2423  llvm_unreachable("Unhandled lvalue cast kind?");
2424}
2425
2426LValue CodeGenFunction::EmitNullInitializationLValue(
2427                                              const CXXScalarValueInitExpr *E) {
2428  QualType Ty = E->getType();
2429  LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty);
2430  EmitNullInitialization(LV.getAddress(), Ty);
2431  return LV;
2432}
2433
2434LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
2435  assert(OpaqueValueMappingData::shouldBindAsLValue(e));
2436  return getOpaqueLValueMapping(e);
2437}
2438
2439LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
2440                                           const MaterializeTemporaryExpr *E) {
2441  RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
2442  return MakeAddrLValue(RV.getScalarVal(), E->getType());
2443}
2444
2445RValue CodeGenFunction::EmitRValueForField(LValue LV,
2446                                           const FieldDecl *FD) {
2447  QualType FT = FD->getType();
2448  LValue FieldLV = EmitLValueForField(LV, FD);
2449  if (FT->isAnyComplexType())
2450    return RValue::getComplex(
2451        LoadComplexFromAddr(FieldLV.getAddress(),
2452                            FieldLV.isVolatileQualified()));
2453  else if (CodeGenFunction::hasAggregateLLVMType(FT))
2454    return FieldLV.asAggregateRValue();
2455
2456  return EmitLoadOfLValue(FieldLV);
2457}
2458
2459//===--------------------------------------------------------------------===//
2460//                             Expression Emission
2461//===--------------------------------------------------------------------===//
2462
2463RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
2464                                     ReturnValueSlot ReturnValue) {
2465  if (CGDebugInfo *DI = getDebugInfo())
2466    DI->EmitLocation(Builder, E->getLocStart());
2467
2468  // Builtins never have block type.
2469  if (E->getCallee()->getType()->isBlockPointerType())
2470    return EmitBlockCallExpr(E, ReturnValue);
2471
2472  if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
2473    return EmitCXXMemberCallExpr(CE, ReturnValue);
2474
2475  if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E))
2476    return EmitCUDAKernelCallExpr(CE, ReturnValue);
2477
2478  const Decl *TargetDecl = E->getCalleeDecl();
2479  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2480    if (unsigned builtinID = FD->getBuiltinID())
2481      return EmitBuiltinExpr(FD, builtinID, E);
2482  }
2483
2484  if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
2485    if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
2486      return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
2487
2488  if (const CXXPseudoDestructorExpr *PseudoDtor
2489          = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
2490    QualType DestroyedType = PseudoDtor->getDestroyedType();
2491    if (getContext().getLangOpts().ObjCAutoRefCount &&
2492        DestroyedType->isObjCLifetimeType() &&
2493        (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
2494         DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
2495      // Automatic Reference Counting:
2496      //   If the pseudo-expression names a retainable object with weak or
2497      //   strong lifetime, the object shall be released.
2498      Expr *BaseExpr = PseudoDtor->getBase();
2499      llvm::Value *BaseValue = NULL;
2500      Qualifiers BaseQuals;
2501
2502      // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2503      if (PseudoDtor->isArrow()) {
2504        BaseValue = EmitScalarExpr(BaseExpr);
2505        const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
2506        BaseQuals = PTy->getPointeeType().getQualifiers();
2507      } else {
2508        LValue BaseLV = EmitLValue(BaseExpr);
2509        BaseValue = BaseLV.getAddress();
2510        QualType BaseTy = BaseExpr->getType();
2511        BaseQuals = BaseTy.getQualifiers();
2512      }
2513
2514      switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
2515      case Qualifiers::OCL_None:
2516      case Qualifiers::OCL_ExplicitNone:
2517      case Qualifiers::OCL_Autoreleasing:
2518        break;
2519
2520      case Qualifiers::OCL_Strong:
2521        EmitARCRelease(Builder.CreateLoad(BaseValue,
2522                          PseudoDtor->getDestroyedType().isVolatileQualified()),
2523                       /*precise*/ true);
2524        break;
2525
2526      case Qualifiers::OCL_Weak:
2527        EmitARCDestroyWeak(BaseValue);
2528        break;
2529      }
2530    } else {
2531      // C++ [expr.pseudo]p1:
2532      //   The result shall only be used as the operand for the function call
2533      //   operator (), and the result of such a call has type void. The only
2534      //   effect is the evaluation of the postfix-expression before the dot or
2535      //   arrow.
2536      EmitScalarExpr(E->getCallee());
2537    }
2538
2539    return RValue::get(0);
2540  }
2541
2542  llvm::Value *Callee = EmitScalarExpr(E->getCallee());
2543  return EmitCall(E->getCallee()->getType(), Callee, ReturnValue,
2544                  E->arg_begin(), E->arg_end(), TargetDecl);
2545}
2546
2547LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
2548  // Comma expressions just emit their LHS then their RHS as an l-value.
2549  if (E->getOpcode() == BO_Comma) {
2550    EmitIgnoredExpr(E->getLHS());
2551    EnsureInsertPoint();
2552    return EmitLValue(E->getRHS());
2553  }
2554
2555  if (E->getOpcode() == BO_PtrMemD ||
2556      E->getOpcode() == BO_PtrMemI)
2557    return EmitPointerToDataMemberBinaryExpr(E);
2558
2559  assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
2560
2561  // Note that in all of these cases, __block variables need the RHS
2562  // evaluated first just in case the variable gets moved by the RHS.
2563
2564  if (!hasAggregateLLVMType(E->getType())) {
2565    switch (E->getLHS()->getType().getObjCLifetime()) {
2566    case Qualifiers::OCL_Strong:
2567      return EmitARCStoreStrong(E, /*ignored*/ false).first;
2568
2569    case Qualifiers::OCL_Autoreleasing:
2570      return EmitARCStoreAutoreleasing(E).first;
2571
2572    // No reason to do any of these differently.
2573    case Qualifiers::OCL_None:
2574    case Qualifiers::OCL_ExplicitNone:
2575    case Qualifiers::OCL_Weak:
2576      break;
2577    }
2578
2579    RValue RV = EmitAnyExpr(E->getRHS());
2580    LValue LV = EmitLValue(E->getLHS());
2581    EmitStoreThroughLValue(RV, LV);
2582    return LV;
2583  }
2584
2585  if (E->getType()->isAnyComplexType())
2586    return EmitComplexAssignmentLValue(E);
2587
2588  return EmitAggExprToLValue(E);
2589}
2590
2591LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
2592  RValue RV = EmitCallExpr(E);
2593
2594  if (!RV.isScalar())
2595    return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2596
2597  assert(E->getCallReturnType()->isReferenceType() &&
2598         "Can't have a scalar return unless the return type is a "
2599         "reference type!");
2600
2601  return MakeAddrLValue(RV.getScalarVal(), E->getType());
2602}
2603
2604LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
2605  // FIXME: This shouldn't require another copy.
2606  return EmitAggExprToLValue(E);
2607}
2608
2609LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
2610  assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
2611         && "binding l-value to type which needs a temporary");
2612  AggValueSlot Slot = CreateAggTemp(E->getType());
2613  EmitCXXConstructExpr(E, Slot);
2614  return MakeAddrLValue(Slot.getAddr(), E->getType());
2615}
2616
2617LValue
2618CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
2619  return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
2620}
2621
2622LValue
2623CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
2624  AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
2625  Slot.setExternallyDestructed();
2626  EmitAggExpr(E->getSubExpr(), Slot);
2627  EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
2628  return MakeAddrLValue(Slot.getAddr(), E->getType());
2629}
2630
2631LValue
2632CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
2633  AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
2634  EmitLambdaExpr(E, Slot);
2635  return MakeAddrLValue(Slot.getAddr(), E->getType());
2636}
2637
2638LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
2639  RValue RV = EmitObjCMessageExpr(E);
2640
2641  if (!RV.isScalar())
2642    return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2643
2644  assert(E->getMethodDecl()->getResultType()->isReferenceType() &&
2645         "Can't have a scalar return unless the return type is a "
2646         "reference type!");
2647
2648  return MakeAddrLValue(RV.getScalarVal(), E->getType());
2649}
2650
2651LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
2652  llvm::Value *V =
2653    CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true);
2654  return MakeAddrLValue(V, E->getType());
2655}
2656
2657llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2658                                             const ObjCIvarDecl *Ivar) {
2659  return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
2660}
2661
2662LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
2663                                          llvm::Value *BaseValue,
2664                                          const ObjCIvarDecl *Ivar,
2665                                          unsigned CVRQualifiers) {
2666  return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
2667                                                   Ivar, CVRQualifiers);
2668}
2669
2670LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
2671  // FIXME: A lot of the code below could be shared with EmitMemberExpr.
2672  llvm::Value *BaseValue = 0;
2673  const Expr *BaseExpr = E->getBase();
2674  Qualifiers BaseQuals;
2675  QualType ObjectTy;
2676  if (E->isArrow()) {
2677    BaseValue = EmitScalarExpr(BaseExpr);
2678    ObjectTy = BaseExpr->getType()->getPointeeType();
2679    BaseQuals = ObjectTy.getQualifiers();
2680  } else {
2681    LValue BaseLV = EmitLValue(BaseExpr);
2682    // FIXME: this isn't right for bitfields.
2683    BaseValue = BaseLV.getAddress();
2684    ObjectTy = BaseExpr->getType();
2685    BaseQuals = ObjectTy.getQualifiers();
2686  }
2687
2688  LValue LV =
2689    EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
2690                      BaseQuals.getCVRQualifiers());
2691  setObjCGCLValueClass(getContext(), E, LV);
2692  return LV;
2693}
2694
2695LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
2696  // Can only get l-value for message expression returning aggregate type
2697  RValue RV = EmitAnyExprToTemp(E);
2698  return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2699}
2700
2701RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
2702                                 ReturnValueSlot ReturnValue,
2703                                 CallExpr::const_arg_iterator ArgBeg,
2704                                 CallExpr::const_arg_iterator ArgEnd,
2705                                 const Decl *TargetDecl) {
2706  // Get the actual function type. The callee type will always be a pointer to
2707  // function type or a block pointer type.
2708  assert(CalleeType->isFunctionPointerType() &&
2709         "Call must have function pointer type!");
2710
2711  CalleeType = getContext().getCanonicalType(CalleeType);
2712
2713  const FunctionType *FnType
2714    = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
2715
2716  CallArgList Args;
2717  EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd);
2718
2719  const CGFunctionInfo &FnInfo =
2720    CGM.getTypes().arrangeFunctionCall(Args, FnType);
2721
2722  // C99 6.5.2.2p6:
2723  //   If the expression that denotes the called function has a type
2724  //   that does not include a prototype, [the default argument
2725  //   promotions are performed]. If the number of arguments does not
2726  //   equal the number of parameters, the behavior is undefined. If
2727  //   the function is defined with a type that includes a prototype,
2728  //   and either the prototype ends with an ellipsis (, ...) or the
2729  //   types of the arguments after promotion are not compatible with
2730  //   the types of the parameters, the behavior is undefined. If the
2731  //   function is defined with a type that does not include a
2732  //   prototype, and the types of the arguments after promotion are
2733  //   not compatible with those of the parameters after promotion,
2734  //   the behavior is undefined [except in some trivial cases].
2735  // That is, in the general case, we should assume that a call
2736  // through an unprototyped function type works like a *non-variadic*
2737  // call.  The way we make this work is to cast to the exact type
2738  // of the promoted arguments.
2739  if (isa<FunctionNoProtoType>(FnType) && !FnInfo.isVariadic()) {
2740    llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
2741    CalleeTy = CalleeTy->getPointerTo();
2742    Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
2743  }
2744
2745  return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
2746}
2747
2748LValue CodeGenFunction::
2749EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
2750  llvm::Value *BaseV;
2751  if (E->getOpcode() == BO_PtrMemI)
2752    BaseV = EmitScalarExpr(E->getLHS());
2753  else
2754    BaseV = EmitLValue(E->getLHS()).getAddress();
2755
2756  llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
2757
2758  const MemberPointerType *MPT
2759    = E->getRHS()->getType()->getAs<MemberPointerType>();
2760
2761  llvm::Value *AddV =
2762    CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT);
2763
2764  return MakeAddrLValue(AddV, MPT->getPointeeType());
2765}
2766
2767static void
2768EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest,
2769             llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2,
2770             uint64_t Size, unsigned Align, llvm::AtomicOrdering Order) {
2771  llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add;
2772  llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0;
2773
2774  switch (E->getOp()) {
2775  case AtomicExpr::AO__c11_atomic_init:
2776    llvm_unreachable("Already handled!");
2777
2778  case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
2779  case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
2780  case AtomicExpr::AO__atomic_compare_exchange:
2781  case AtomicExpr::AO__atomic_compare_exchange_n: {
2782    // Note that cmpxchg only supports specifying one ordering and
2783    // doesn't support weak cmpxchg, at least at the moment.
2784    llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2785    LoadVal1->setAlignment(Align);
2786    llvm::LoadInst *LoadVal2 = CGF.Builder.CreateLoad(Val2);
2787    LoadVal2->setAlignment(Align);
2788    llvm::AtomicCmpXchgInst *CXI =
2789        CGF.Builder.CreateAtomicCmpXchg(Ptr, LoadVal1, LoadVal2, Order);
2790    CXI->setVolatile(E->isVolatile());
2791    llvm::StoreInst *StoreVal1 = CGF.Builder.CreateStore(CXI, Val1);
2792    StoreVal1->setAlignment(Align);
2793    llvm::Value *Cmp = CGF.Builder.CreateICmpEQ(CXI, LoadVal1);
2794    CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType()));
2795    return;
2796  }
2797
2798  case AtomicExpr::AO__c11_atomic_load:
2799  case AtomicExpr::AO__atomic_load_n:
2800  case AtomicExpr::AO__atomic_load: {
2801    llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr);
2802    Load->setAtomic(Order);
2803    Load->setAlignment(Size);
2804    Load->setVolatile(E->isVolatile());
2805    llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest);
2806    StoreDest->setAlignment(Align);
2807    return;
2808  }
2809
2810  case AtomicExpr::AO__c11_atomic_store:
2811  case AtomicExpr::AO__atomic_store:
2812  case AtomicExpr::AO__atomic_store_n: {
2813    assert(!Dest && "Store does not return a value");
2814    llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2815    LoadVal1->setAlignment(Align);
2816    llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr);
2817    Store->setAtomic(Order);
2818    Store->setAlignment(Size);
2819    Store->setVolatile(E->isVolatile());
2820    return;
2821  }
2822
2823  case AtomicExpr::AO__c11_atomic_exchange:
2824  case AtomicExpr::AO__atomic_exchange_n:
2825  case AtomicExpr::AO__atomic_exchange:
2826    Op = llvm::AtomicRMWInst::Xchg;
2827    break;
2828
2829  case AtomicExpr::AO__atomic_add_fetch:
2830    PostOp = llvm::Instruction::Add;
2831    // Fall through.
2832  case AtomicExpr::AO__c11_atomic_fetch_add:
2833  case AtomicExpr::AO__atomic_fetch_add:
2834    Op = llvm::AtomicRMWInst::Add;
2835    break;
2836
2837  case AtomicExpr::AO__atomic_sub_fetch:
2838    PostOp = llvm::Instruction::Sub;
2839    // Fall through.
2840  case AtomicExpr::AO__c11_atomic_fetch_sub:
2841  case AtomicExpr::AO__atomic_fetch_sub:
2842    Op = llvm::AtomicRMWInst::Sub;
2843    break;
2844
2845  case AtomicExpr::AO__atomic_and_fetch:
2846    PostOp = llvm::Instruction::And;
2847    // Fall through.
2848  case AtomicExpr::AO__c11_atomic_fetch_and:
2849  case AtomicExpr::AO__atomic_fetch_and:
2850    Op = llvm::AtomicRMWInst::And;
2851    break;
2852
2853  case AtomicExpr::AO__atomic_or_fetch:
2854    PostOp = llvm::Instruction::Or;
2855    // Fall through.
2856  case AtomicExpr::AO__c11_atomic_fetch_or:
2857  case AtomicExpr::AO__atomic_fetch_or:
2858    Op = llvm::AtomicRMWInst::Or;
2859    break;
2860
2861  case AtomicExpr::AO__atomic_xor_fetch:
2862    PostOp = llvm::Instruction::Xor;
2863    // Fall through.
2864  case AtomicExpr::AO__c11_atomic_fetch_xor:
2865  case AtomicExpr::AO__atomic_fetch_xor:
2866    Op = llvm::AtomicRMWInst::Xor;
2867    break;
2868
2869  case AtomicExpr::AO__atomic_nand_fetch:
2870    PostOp = llvm::Instruction::And;
2871    // Fall through.
2872  case AtomicExpr::AO__atomic_fetch_nand:
2873    Op = llvm::AtomicRMWInst::Nand;
2874    break;
2875  }
2876
2877  llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2878  LoadVal1->setAlignment(Align);
2879  llvm::AtomicRMWInst *RMWI =
2880      CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order);
2881  RMWI->setVolatile(E->isVolatile());
2882
2883  // For __atomic_*_fetch operations, perform the operation again to
2884  // determine the value which was written.
2885  llvm::Value *Result = RMWI;
2886  if (PostOp)
2887    Result = CGF.Builder.CreateBinOp(PostOp, RMWI, LoadVal1);
2888  if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch)
2889    Result = CGF.Builder.CreateNot(Result);
2890  llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Result, Dest);
2891  StoreDest->setAlignment(Align);
2892}
2893
2894// This function emits any expression (scalar, complex, or aggregate)
2895// into a temporary alloca.
2896static llvm::Value *
2897EmitValToTemp(CodeGenFunction &CGF, Expr *E) {
2898  llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp");
2899  CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(),
2900                       /*Init*/ true);
2901  return DeclPtr;
2902}
2903
2904static RValue ConvertTempToRValue(CodeGenFunction &CGF, QualType Ty,
2905                                  llvm::Value *Dest) {
2906  if (Ty->isAnyComplexType())
2907    return RValue::getComplex(CGF.LoadComplexFromAddr(Dest, false));
2908  if (CGF.hasAggregateLLVMType(Ty))
2909    return RValue::getAggregate(Dest);
2910  return RValue::get(CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(Dest, Ty)));
2911}
2912
2913RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) {
2914  QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
2915  QualType MemTy = AtomicTy;
2916  if (const AtomicType *AT = AtomicTy->getAs<AtomicType>())
2917    MemTy = AT->getValueType();
2918  CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy);
2919  uint64_t Size = sizeChars.getQuantity();
2920  CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy);
2921  unsigned Align = alignChars.getQuantity();
2922  unsigned MaxInlineWidth =
2923      getContext().getTargetInfo().getMaxAtomicInlineWidth();
2924  bool UseLibcall = (Size != Align || Size > MaxInlineWidth);
2925
2926
2927
2928  llvm::Value *Ptr, *Order, *OrderFail = 0, *Val1 = 0, *Val2 = 0;
2929  Ptr = EmitScalarExpr(E->getPtr());
2930
2931  if (E->getOp() == AtomicExpr::AO__c11_atomic_init) {
2932    assert(!Dest && "Init does not return a value");
2933    if (!hasAggregateLLVMType(E->getVal1()->getType())) {
2934      QualType PointeeType
2935        = E->getPtr()->getType()->getAs<PointerType>()->getPointeeType();
2936      EmitScalarInit(EmitScalarExpr(E->getVal1()),
2937                     LValue::MakeAddr(Ptr, PointeeType, alignChars,
2938                                      getContext()));
2939    } else if (E->getType()->isAnyComplexType()) {
2940      EmitComplexExprIntoAddr(E->getVal1(), Ptr, E->isVolatile());
2941    } else {
2942      AggValueSlot Slot = AggValueSlot::forAddr(Ptr, alignChars,
2943                                        AtomicTy.getQualifiers(),
2944                                        AggValueSlot::IsNotDestructed,
2945                                        AggValueSlot::DoesNotNeedGCBarriers,
2946                                        AggValueSlot::IsNotAliased);
2947      EmitAggExpr(E->getVal1(), Slot);
2948    }
2949    return RValue::get(0);
2950  }
2951
2952  Order = EmitScalarExpr(E->getOrder());
2953
2954  switch (E->getOp()) {
2955  case AtomicExpr::AO__c11_atomic_init:
2956    llvm_unreachable("Already handled!");
2957
2958  case AtomicExpr::AO__c11_atomic_load:
2959  case AtomicExpr::AO__atomic_load_n:
2960    break;
2961
2962  case AtomicExpr::AO__atomic_load:
2963    Dest = EmitScalarExpr(E->getVal1());
2964    break;
2965
2966  case AtomicExpr::AO__atomic_store:
2967    Val1 = EmitScalarExpr(E->getVal1());
2968    break;
2969
2970  case AtomicExpr::AO__atomic_exchange:
2971    Val1 = EmitScalarExpr(E->getVal1());
2972    Dest = EmitScalarExpr(E->getVal2());
2973    break;
2974
2975  case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
2976  case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
2977  case AtomicExpr::AO__atomic_compare_exchange_n:
2978  case AtomicExpr::AO__atomic_compare_exchange:
2979    Val1 = EmitScalarExpr(E->getVal1());
2980    if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange)
2981      Val2 = EmitScalarExpr(E->getVal2());
2982    else
2983      Val2 = EmitValToTemp(*this, E->getVal2());
2984    OrderFail = EmitScalarExpr(E->getOrderFail());
2985    // Evaluate and discard the 'weak' argument.
2986    if (E->getNumSubExprs() == 6)
2987      EmitScalarExpr(E->getWeak());
2988    break;
2989
2990  case AtomicExpr::AO__c11_atomic_fetch_add:
2991  case AtomicExpr::AO__c11_atomic_fetch_sub:
2992    if (MemTy->isPointerType()) {
2993      // For pointer arithmetic, we're required to do a bit of math:
2994      // adding 1 to an int* is not the same as adding 1 to a uintptr_t.
2995      // ... but only for the C11 builtins. The GNU builtins expect the
2996      // user to multiply by sizeof(T).
2997      QualType Val1Ty = E->getVal1()->getType();
2998      llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1());
2999      CharUnits PointeeIncAmt =
3000          getContext().getTypeSizeInChars(MemTy->getPointeeType());
3001      Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt));
3002      Val1 = CreateMemTemp(Val1Ty, ".atomictmp");
3003      EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty));
3004      break;
3005    }
3006    // Fall through.
3007  case AtomicExpr::AO__atomic_fetch_add:
3008  case AtomicExpr::AO__atomic_fetch_sub:
3009  case AtomicExpr::AO__atomic_add_fetch:
3010  case AtomicExpr::AO__atomic_sub_fetch:
3011  case AtomicExpr::AO__c11_atomic_store:
3012  case AtomicExpr::AO__c11_atomic_exchange:
3013  case AtomicExpr::AO__atomic_store_n:
3014  case AtomicExpr::AO__atomic_exchange_n:
3015  case AtomicExpr::AO__c11_atomic_fetch_and:
3016  case AtomicExpr::AO__c11_atomic_fetch_or:
3017  case AtomicExpr::AO__c11_atomic_fetch_xor:
3018  case AtomicExpr::AO__atomic_fetch_and:
3019  case AtomicExpr::AO__atomic_fetch_or:
3020  case AtomicExpr::AO__atomic_fetch_xor:
3021  case AtomicExpr::AO__atomic_fetch_nand:
3022  case AtomicExpr::AO__atomic_and_fetch:
3023  case AtomicExpr::AO__atomic_or_fetch:
3024  case AtomicExpr::AO__atomic_xor_fetch:
3025  case AtomicExpr::AO__atomic_nand_fetch:
3026    Val1 = EmitValToTemp(*this, E->getVal1());
3027    break;
3028  }
3029
3030  if (!E->getType()->isVoidType() && !Dest)
3031    Dest = CreateMemTemp(E->getType(), ".atomicdst");
3032
3033  // Use a library call.  See: http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary .
3034  if (UseLibcall) {
3035
3036    llvm::SmallVector<QualType, 5> Params;
3037    CallArgList Args;
3038    // Size is always the first parameter
3039    Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)),
3040             getContext().getSizeType());
3041    // Atomic address is always the second parameter
3042    Args.add(RValue::get(EmitCastToVoidPtr(Ptr)),
3043             getContext().VoidPtrTy);
3044
3045    const char* LibCallName;
3046    QualType RetTy = getContext().VoidTy;
3047    switch (E->getOp()) {
3048    // There is only one libcall for compare an exchange, because there is no
3049    // optimisation benefit possible from a libcall version of a weak compare
3050    // and exchange.
3051    // bool __atomic_compare_exchange(size_t size, void *obj, void *expected,
3052    //                                void *desired, int success, int failure)
3053    case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
3054    case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
3055    case AtomicExpr::AO__atomic_compare_exchange:
3056    case AtomicExpr::AO__atomic_compare_exchange_n:
3057      LibCallName = "__atomic_compare_exchange";
3058      RetTy = getContext().BoolTy;
3059      Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
3060               getContext().VoidPtrTy);
3061      Args.add(RValue::get(EmitCastToVoidPtr(Val2)),
3062               getContext().VoidPtrTy);
3063      Args.add(RValue::get(Order),
3064               getContext().IntTy);
3065      Order = OrderFail;
3066      break;
3067    // void __atomic_exchange(size_t size, void *mem, void *val, void *return,
3068    //                        int order)
3069    case AtomicExpr::AO__c11_atomic_exchange:
3070    case AtomicExpr::AO__atomic_exchange_n:
3071    case AtomicExpr::AO__atomic_exchange:
3072      LibCallName = "__atomic_exchange";
3073      Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
3074               getContext().VoidPtrTy);
3075      Args.add(RValue::get(EmitCastToVoidPtr(Dest)),
3076               getContext().VoidPtrTy);
3077      break;
3078    // void __atomic_store(size_t size, void *mem, void *val, int order)
3079    case AtomicExpr::AO__c11_atomic_store:
3080    case AtomicExpr::AO__atomic_store:
3081    case AtomicExpr::AO__atomic_store_n:
3082      LibCallName = "__atomic_store";
3083      Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
3084               getContext().VoidPtrTy);
3085      break;
3086    // void __atomic_load(size_t size, void *mem, void *return, int order)
3087    case AtomicExpr::AO__c11_atomic_load:
3088    case AtomicExpr::AO__atomic_load:
3089    case AtomicExpr::AO__atomic_load_n:
3090      LibCallName = "__atomic_load";
3091      Args.add(RValue::get(EmitCastToVoidPtr(Dest)),
3092               getContext().VoidPtrTy);
3093      break;
3094#if 0
3095    // These are only defined for 1-16 byte integers.  It is not clear what
3096    // their semantics would be on anything else...
3097    case AtomicExpr::Add:   LibCallName = "__atomic_fetch_add_generic"; break;
3098    case AtomicExpr::Sub:   LibCallName = "__atomic_fetch_sub_generic"; break;
3099    case AtomicExpr::And:   LibCallName = "__atomic_fetch_and_generic"; break;
3100    case AtomicExpr::Or:    LibCallName = "__atomic_fetch_or_generic"; break;
3101    case AtomicExpr::Xor:   LibCallName = "__atomic_fetch_xor_generic"; break;
3102#endif
3103    default: return EmitUnsupportedRValue(E, "atomic library call");
3104    }
3105    // order is always the last parameter
3106    Args.add(RValue::get(Order),
3107             getContext().IntTy);
3108
3109    const CGFunctionInfo &FuncInfo =
3110        CGM.getTypes().arrangeFunctionCall(RetTy, Args,
3111            FunctionType::ExtInfo(), RequiredArgs::All);
3112    llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
3113    llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
3114    RValue Res = EmitCall(FuncInfo, Func, ReturnValueSlot(), Args);
3115    if (E->isCmpXChg())
3116      return Res;
3117    if (E->getType()->isVoidType())
3118      return RValue::get(0);
3119    return ConvertTempToRValue(*this, E->getType(), Dest);
3120  }
3121
3122  llvm::Type *IPtrTy =
3123      llvm::IntegerType::get(getLLVMContext(), Size * 8)->getPointerTo();
3124  llvm::Value *OrigDest = Dest;
3125  Ptr = Builder.CreateBitCast(Ptr, IPtrTy);
3126  if (Val1) Val1 = Builder.CreateBitCast(Val1, IPtrTy);
3127  if (Val2) Val2 = Builder.CreateBitCast(Val2, IPtrTy);
3128  if (Dest && !E->isCmpXChg()) Dest = Builder.CreateBitCast(Dest, IPtrTy);
3129
3130  if (isa<llvm::ConstantInt>(Order)) {
3131    int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3132    switch (ord) {
3133    case 0:  // memory_order_relaxed
3134      EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3135                   llvm::Monotonic);
3136      break;
3137    case 1:  // memory_order_consume
3138    case 2:  // memory_order_acquire
3139      EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3140                   llvm::Acquire);
3141      break;
3142    case 3:  // memory_order_release
3143      EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3144                   llvm::Release);
3145      break;
3146    case 4:  // memory_order_acq_rel
3147      EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3148                   llvm::AcquireRelease);
3149      break;
3150    case 5:  // memory_order_seq_cst
3151      EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3152                   llvm::SequentiallyConsistent);
3153      break;
3154    default: // invalid order
3155      // We should not ever get here normally, but it's hard to
3156      // enforce that in general.
3157      break;
3158    }
3159    if (E->getType()->isVoidType())
3160      return RValue::get(0);
3161    return ConvertTempToRValue(*this, E->getType(), OrigDest);
3162  }
3163
3164  // Long case, when Order isn't obviously constant.
3165
3166  bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store ||
3167                 E->getOp() == AtomicExpr::AO__atomic_store ||
3168                 E->getOp() == AtomicExpr::AO__atomic_store_n;
3169  bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load ||
3170                E->getOp() == AtomicExpr::AO__atomic_load ||
3171                E->getOp() == AtomicExpr::AO__atomic_load_n;
3172
3173  // Create all the relevant BB's
3174  llvm::BasicBlock *MonotonicBB = 0, *AcquireBB = 0, *ReleaseBB = 0,
3175                   *AcqRelBB = 0, *SeqCstBB = 0;
3176  MonotonicBB = createBasicBlock("monotonic", CurFn);
3177  if (!IsStore)
3178    AcquireBB = createBasicBlock("acquire", CurFn);
3179  if (!IsLoad)
3180    ReleaseBB = createBasicBlock("release", CurFn);
3181  if (!IsLoad && !IsStore)
3182    AcqRelBB = createBasicBlock("acqrel", CurFn);
3183  SeqCstBB = createBasicBlock("seqcst", CurFn);
3184  llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3185
3186  // Create the switch for the split
3187  // MonotonicBB is arbitrarily chosen as the default case; in practice, this
3188  // doesn't matter unless someone is crazy enough to use something that
3189  // doesn't fold to a constant for the ordering.
3190  Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3191  llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB);
3192
3193  // Emit all the different atomics
3194  Builder.SetInsertPoint(MonotonicBB);
3195  EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3196               llvm::Monotonic);
3197  Builder.CreateBr(ContBB);
3198  if (!IsStore) {
3199    Builder.SetInsertPoint(AcquireBB);
3200    EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3201                 llvm::Acquire);
3202    Builder.CreateBr(ContBB);
3203    SI->addCase(Builder.getInt32(1), AcquireBB);
3204    SI->addCase(Builder.getInt32(2), AcquireBB);
3205  }
3206  if (!IsLoad) {
3207    Builder.SetInsertPoint(ReleaseBB);
3208    EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3209                 llvm::Release);
3210    Builder.CreateBr(ContBB);
3211    SI->addCase(Builder.getInt32(3), ReleaseBB);
3212  }
3213  if (!IsLoad && !IsStore) {
3214    Builder.SetInsertPoint(AcqRelBB);
3215    EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3216                 llvm::AcquireRelease);
3217    Builder.CreateBr(ContBB);
3218    SI->addCase(Builder.getInt32(4), AcqRelBB);
3219  }
3220  Builder.SetInsertPoint(SeqCstBB);
3221  EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3222               llvm::SequentiallyConsistent);
3223  Builder.CreateBr(ContBB);
3224  SI->addCase(Builder.getInt32(5), SeqCstBB);
3225
3226  // Cleanup and return
3227  Builder.SetInsertPoint(ContBB);
3228  if (E->getType()->isVoidType())
3229    return RValue::get(0);
3230  return ConvertTempToRValue(*this, E->getType(), OrigDest);
3231}
3232
3233void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
3234  assert(Val->getType()->isFPOrFPVectorTy());
3235  if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
3236    return;
3237
3238  llvm::MDBuilder MDHelper(getLLVMContext());
3239  llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
3240
3241  cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
3242}
3243
3244namespace {
3245  struct LValueOrRValue {
3246    LValue LV;
3247    RValue RV;
3248  };
3249}
3250
3251static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
3252                                           const PseudoObjectExpr *E,
3253                                           bool forLValue,
3254                                           AggValueSlot slot) {
3255  llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3256
3257  // Find the result expression, if any.
3258  const Expr *resultExpr = E->getResultExpr();
3259  LValueOrRValue result;
3260
3261  for (PseudoObjectExpr::const_semantics_iterator
3262         i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3263    const Expr *semantic = *i;
3264
3265    // If this semantic expression is an opaque value, bind it
3266    // to the result of its source expression.
3267    if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3268
3269      // If this is the result expression, we may need to evaluate
3270      // directly into the slot.
3271      typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3272      OVMA opaqueData;
3273      if (ov == resultExpr && ov->isRValue() && !forLValue &&
3274          CodeGenFunction::hasAggregateLLVMType(ov->getType()) &&
3275          !ov->getType()->isAnyComplexType()) {
3276        CGF.EmitAggExpr(ov->getSourceExpr(), slot);
3277
3278        LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
3279        opaqueData = OVMA::bind(CGF, ov, LV);
3280        result.RV = slot.asRValue();
3281
3282      // Otherwise, emit as normal.
3283      } else {
3284        opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3285
3286        // If this is the result, also evaluate the result now.
3287        if (ov == resultExpr) {
3288          if (forLValue)
3289            result.LV = CGF.EmitLValue(ov);
3290          else
3291            result.RV = CGF.EmitAnyExpr(ov, slot);
3292        }
3293      }
3294
3295      opaques.push_back(opaqueData);
3296
3297    // Otherwise, if the expression is the result, evaluate it
3298    // and remember the result.
3299    } else if (semantic == resultExpr) {
3300      if (forLValue)
3301        result.LV = CGF.EmitLValue(semantic);
3302      else
3303        result.RV = CGF.EmitAnyExpr(semantic, slot);
3304
3305    // Otherwise, evaluate the expression in an ignored context.
3306    } else {
3307      CGF.EmitIgnoredExpr(semantic);
3308    }
3309  }
3310
3311  // Unbind all the opaques now.
3312  for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3313    opaques[i].unbind(CGF);
3314
3315  return result;
3316}
3317
3318RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
3319                                               AggValueSlot slot) {
3320  return emitPseudoObjectExpr(*this, E, false, slot).RV;
3321}
3322
3323LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
3324  return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
3325}
3326