CGExpr.cpp revision 7864435ef2bce200224120bd1df3aed98ea5b99a
1//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "CGCall.h"
17#include "CGCXXABI.h"
18#include "CGDebugInfo.h"
19#include "CGRecordLayout.h"
20#include "CGObjCRuntime.h"
21#include "TargetInfo.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/Frontend/CodeGenOptions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/LLVMContext.h"
27#include "llvm/Target/TargetData.h"
28using namespace clang;
29using namespace CodeGen;
30
31//===--------------------------------------------------------------------===//
32//                        Miscellaneous Helper Methods
33//===--------------------------------------------------------------------===//
34
35llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
36  unsigned addressSpace =
37    cast<llvm::PointerType>(value->getType())->getAddressSpace();
38
39  llvm::PointerType *destType = Int8PtrTy;
40  if (addressSpace)
41    destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
42
43  if (value->getType() == destType) return value;
44  return Builder.CreateBitCast(value, destType);
45}
46
47/// CreateTempAlloca - This creates a alloca and inserts it into the entry
48/// block.
49llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
50                                                    const Twine &Name) {
51  if (!Builder.isNamePreserving())
52    return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
53  return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
54}
55
56void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
57                                     llvm::Value *Init) {
58  llvm::StoreInst *Store = new llvm::StoreInst(Init, Var);
59  llvm::BasicBlock *Block = AllocaInsertPt->getParent();
60  Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
61}
62
63llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
64                                                const Twine &Name) {
65  llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
66  // FIXME: Should we prefer the preferred type alignment here?
67  CharUnits Align = getContext().getTypeAlignInChars(Ty);
68  Alloc->setAlignment(Align.getQuantity());
69  return Alloc;
70}
71
72llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
73                                                 const Twine &Name) {
74  llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
75  // FIXME: Should we prefer the preferred type alignment here?
76  CharUnits Align = getContext().getTypeAlignInChars(Ty);
77  Alloc->setAlignment(Align.getQuantity());
78  return Alloc;
79}
80
81/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
82/// expression and compare the result against zero, returning an Int1Ty value.
83llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
84  if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
85    llvm::Value *MemPtr = EmitScalarExpr(E);
86    return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
87  }
88
89  QualType BoolTy = getContext().BoolTy;
90  if (!E->getType()->isAnyComplexType())
91    return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
92
93  return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
94}
95
96/// EmitIgnoredExpr - Emit code to compute the specified expression,
97/// ignoring the result.
98void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
99  if (E->isRValue())
100    return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
101
102  // Just emit it as an l-value and drop the result.
103  EmitLValue(E);
104}
105
106/// EmitAnyExpr - Emit code to compute the specified expression which
107/// can have any type.  The result is returned as an RValue struct.
108/// If this is an aggregate expression, AggSlot indicates where the
109/// result should be returned.
110RValue CodeGenFunction::EmitAnyExpr(const Expr *E, AggValueSlot AggSlot,
111                                    bool IgnoreResult) {
112  if (!hasAggregateLLVMType(E->getType()))
113    return RValue::get(EmitScalarExpr(E, IgnoreResult));
114  else if (E->getType()->isAnyComplexType())
115    return RValue::getComplex(EmitComplexExpr(E, IgnoreResult, IgnoreResult));
116
117  EmitAggExpr(E, AggSlot, IgnoreResult);
118  return AggSlot.asRValue();
119}
120
121/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
122/// always be accessible even if no aggregate location is provided.
123RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
124  AggValueSlot AggSlot = AggValueSlot::ignored();
125
126  if (hasAggregateLLVMType(E->getType()) &&
127      !E->getType()->isAnyComplexType())
128    AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
129  return EmitAnyExpr(E, AggSlot);
130}
131
132/// EmitAnyExprToMem - Evaluate an expression into a given memory
133/// location.
134void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
135                                       llvm::Value *Location,
136                                       Qualifiers Quals,
137                                       bool IsInit) {
138  if (E->getType()->isAnyComplexType())
139    EmitComplexExprIntoAddr(E, Location, Quals.hasVolatile());
140  else if (hasAggregateLLVMType(E->getType()))
141    EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
142                                         AggValueSlot::IsDestructed_t(IsInit),
143                                         AggValueSlot::DoesNotNeedGCBarriers,
144                                         AggValueSlot::IsAliased_t(!IsInit)));
145  else {
146    RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
147    LValue LV = MakeAddrLValue(Location, E->getType());
148    EmitStoreThroughLValue(RV, LV);
149  }
150}
151
152namespace {
153/// \brief An adjustment to be made to the temporary created when emitting a
154/// reference binding, which accesses a particular subobject of that temporary.
155  struct SubobjectAdjustment {
156    enum { DerivedToBaseAdjustment, FieldAdjustment } Kind;
157
158    union {
159      struct {
160        const CastExpr *BasePath;
161        const CXXRecordDecl *DerivedClass;
162      } DerivedToBase;
163
164      FieldDecl *Field;
165    };
166
167    SubobjectAdjustment(const CastExpr *BasePath,
168                        const CXXRecordDecl *DerivedClass)
169      : Kind(DerivedToBaseAdjustment) {
170      DerivedToBase.BasePath = BasePath;
171      DerivedToBase.DerivedClass = DerivedClass;
172    }
173
174    SubobjectAdjustment(FieldDecl *Field)
175      : Kind(FieldAdjustment) {
176      this->Field = Field;
177    }
178  };
179}
180
181static llvm::Value *
182CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type,
183                         const NamedDecl *InitializedDecl) {
184  if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
185    if (VD->hasGlobalStorage()) {
186      llvm::SmallString<256> Name;
187      llvm::raw_svector_ostream Out(Name);
188      CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
189      Out.flush();
190
191      llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type);
192
193      // Create the reference temporary.
194      llvm::GlobalValue *RefTemp =
195        new llvm::GlobalVariable(CGF.CGM.getModule(),
196                                 RefTempTy, /*isConstant=*/false,
197                                 llvm::GlobalValue::InternalLinkage,
198                                 llvm::Constant::getNullValue(RefTempTy),
199                                 Name.str());
200      return RefTemp;
201    }
202  }
203
204  return CGF.CreateMemTemp(Type, "ref.tmp");
205}
206
207static llvm::Value *
208EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E,
209                            llvm::Value *&ReferenceTemporary,
210                            const CXXDestructorDecl *&ReferenceTemporaryDtor,
211                            QualType &ObjCARCReferenceLifetimeType,
212                            const NamedDecl *InitializedDecl) {
213  // Look through expressions for materialized temporaries (for now).
214  if (const MaterializeTemporaryExpr *M
215                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
216    // Objective-C++ ARC:
217    //   If we are binding a reference to a temporary that has ownership, we
218    //   need to perform retain/release operations on the temporary.
219    if (CGF.getContext().getLangOptions().ObjCAutoRefCount &&
220        E->getType()->isObjCLifetimeType() &&
221        (E->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
222         E->getType().getObjCLifetime() == Qualifiers::OCL_Weak ||
223         E->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing))
224      ObjCARCReferenceLifetimeType = E->getType();
225
226    E = M->GetTemporaryExpr();
227  }
228
229  if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E))
230    E = DAE->getExpr();
231
232  if (const ExprWithCleanups *TE = dyn_cast<ExprWithCleanups>(E)) {
233    CodeGenFunction::RunCleanupsScope Scope(CGF);
234
235    return EmitExprForReferenceBinding(CGF, TE->getSubExpr(),
236                                       ReferenceTemporary,
237                                       ReferenceTemporaryDtor,
238                                       ObjCARCReferenceLifetimeType,
239                                       InitializedDecl);
240  }
241
242  RValue RV;
243  if (E->isGLValue()) {
244    // Emit the expression as an lvalue.
245    LValue LV = CGF.EmitLValue(E);
246
247    if (LV.isSimple())
248      return LV.getAddress();
249
250    // We have to load the lvalue.
251    RV = CGF.EmitLoadOfLValue(LV);
252  } else {
253    if (!ObjCARCReferenceLifetimeType.isNull()) {
254      ReferenceTemporary = CreateReferenceTemporary(CGF,
255                                                  ObjCARCReferenceLifetimeType,
256                                                    InitializedDecl);
257
258
259      LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary,
260                                             ObjCARCReferenceLifetimeType);
261
262      CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl),
263                         RefTempDst, false);
264
265      bool ExtendsLifeOfTemporary = false;
266      if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
267        if (Var->extendsLifetimeOfTemporary())
268          ExtendsLifeOfTemporary = true;
269      } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) {
270        ExtendsLifeOfTemporary = true;
271      }
272
273      if (!ExtendsLifeOfTemporary) {
274        // Since the lifetime of this temporary isn't going to be extended,
275        // we need to clean it up ourselves at the end of the full expression.
276        switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
277        case Qualifiers::OCL_None:
278        case Qualifiers::OCL_ExplicitNone:
279        case Qualifiers::OCL_Autoreleasing:
280          break;
281
282        case Qualifiers::OCL_Strong: {
283          assert(!ObjCARCReferenceLifetimeType->isArrayType());
284          CleanupKind cleanupKind = CGF.getARCCleanupKind();
285          CGF.pushDestroy(cleanupKind,
286                          ReferenceTemporary,
287                          ObjCARCReferenceLifetimeType,
288                          CodeGenFunction::destroyARCStrongImprecise,
289                          cleanupKind & EHCleanup);
290          break;
291        }
292
293        case Qualifiers::OCL_Weak:
294          assert(!ObjCARCReferenceLifetimeType->isArrayType());
295          CGF.pushDestroy(NormalAndEHCleanup,
296                          ReferenceTemporary,
297                          ObjCARCReferenceLifetimeType,
298                          CodeGenFunction::destroyARCWeak,
299                          /*useEHCleanupForArray*/ true);
300          break;
301        }
302
303        ObjCARCReferenceLifetimeType = QualType();
304      }
305
306      return ReferenceTemporary;
307    }
308
309    SmallVector<SubobjectAdjustment, 2> Adjustments;
310    while (true) {
311      E = E->IgnoreParens();
312
313      if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
314        if ((CE->getCastKind() == CK_DerivedToBase ||
315             CE->getCastKind() == CK_UncheckedDerivedToBase) &&
316            E->getType()->isRecordType()) {
317          E = CE->getSubExpr();
318          CXXRecordDecl *Derived
319            = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
320          Adjustments.push_back(SubobjectAdjustment(CE, Derived));
321          continue;
322        }
323
324        if (CE->getCastKind() == CK_NoOp) {
325          E = CE->getSubExpr();
326          continue;
327        }
328      } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
329        if (!ME->isArrow() && ME->getBase()->isRValue()) {
330          assert(ME->getBase()->getType()->isRecordType());
331          if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
332            E = ME->getBase();
333            Adjustments.push_back(SubobjectAdjustment(Field));
334            continue;
335          }
336        }
337      }
338
339      if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E))
340        if (opaque->getType()->isRecordType())
341          return CGF.EmitOpaqueValueLValue(opaque).getAddress();
342
343      // Nothing changed.
344      break;
345    }
346
347    // Create a reference temporary if necessary.
348    AggValueSlot AggSlot = AggValueSlot::ignored();
349    if (CGF.hasAggregateLLVMType(E->getType()) &&
350        !E->getType()->isAnyComplexType()) {
351      ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
352                                                    InitializedDecl);
353      AggValueSlot::IsDestructed_t isDestructed
354        = AggValueSlot::IsDestructed_t(InitializedDecl != 0);
355      AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Qualifiers(),
356                                      isDestructed,
357                                      AggValueSlot::DoesNotNeedGCBarriers,
358                                      AggValueSlot::IsNotAliased);
359    }
360
361    if (InitializedDecl) {
362      // Get the destructor for the reference temporary.
363      if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
364        CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
365        if (!ClassDecl->hasTrivialDestructor())
366          ReferenceTemporaryDtor = ClassDecl->getDestructor();
367      }
368    }
369
370    RV = CGF.EmitAnyExpr(E, AggSlot);
371
372    // Check if need to perform derived-to-base casts and/or field accesses, to
373    // get from the temporary object we created (and, potentially, for which we
374    // extended the lifetime) to the subobject we're binding the reference to.
375    if (!Adjustments.empty()) {
376      llvm::Value *Object = RV.getAggregateAddr();
377      for (unsigned I = Adjustments.size(); I != 0; --I) {
378        SubobjectAdjustment &Adjustment = Adjustments[I-1];
379        switch (Adjustment.Kind) {
380        case SubobjectAdjustment::DerivedToBaseAdjustment:
381          Object =
382              CGF.GetAddressOfBaseClass(Object,
383                                        Adjustment.DerivedToBase.DerivedClass,
384                              Adjustment.DerivedToBase.BasePath->path_begin(),
385                              Adjustment.DerivedToBase.BasePath->path_end(),
386                                        /*NullCheckValue=*/false);
387          break;
388
389        case SubobjectAdjustment::FieldAdjustment: {
390          LValue LV =
391            CGF.EmitLValueForField(Object, Adjustment.Field, 0);
392          if (LV.isSimple()) {
393            Object = LV.getAddress();
394            break;
395          }
396
397          // For non-simple lvalues, we actually have to create a copy of
398          // the object we're binding to.
399          QualType T = Adjustment.Field->getType().getNonReferenceType()
400                                                  .getUnqualifiedType();
401          Object = CreateReferenceTemporary(CGF, T, InitializedDecl);
402          LValue TempLV = CGF.MakeAddrLValue(Object,
403                                             Adjustment.Field->getType());
404          CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV);
405          break;
406        }
407
408        }
409      }
410
411      return Object;
412    }
413  }
414
415  if (RV.isAggregate())
416    return RV.getAggregateAddr();
417
418  // Create a temporary variable that we can bind the reference to.
419  ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
420                                                InitializedDecl);
421
422
423  unsigned Alignment =
424    CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity();
425  if (RV.isScalar())
426    CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary,
427                          /*Volatile=*/false, Alignment, E->getType());
428  else
429    CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary,
430                           /*Volatile=*/false);
431  return ReferenceTemporary;
432}
433
434RValue
435CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E,
436                                            const NamedDecl *InitializedDecl) {
437  llvm::Value *ReferenceTemporary = 0;
438  const CXXDestructorDecl *ReferenceTemporaryDtor = 0;
439  QualType ObjCARCReferenceLifetimeType;
440  llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary,
441                                                   ReferenceTemporaryDtor,
442                                                   ObjCARCReferenceLifetimeType,
443                                                   InitializedDecl);
444  if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull())
445    return RValue::get(Value);
446
447  // Make sure to call the destructor for the reference temporary.
448  const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl);
449  if (VD && VD->hasGlobalStorage()) {
450    if (ReferenceTemporaryDtor) {
451      llvm::Constant *DtorFn =
452        CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
453      EmitCXXGlobalDtorRegistration(DtorFn,
454                                    cast<llvm::Constant>(ReferenceTemporary));
455    } else {
456      assert(!ObjCARCReferenceLifetimeType.isNull());
457      // Note: We intentionally do not register a global "destructor" to
458      // release the object.
459    }
460
461    return RValue::get(Value);
462  }
463
464  if (ReferenceTemporaryDtor)
465    PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary);
466  else {
467    switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
468    case Qualifiers::OCL_None:
469      llvm_unreachable(
470                      "Not a reference temporary that needs to be deallocated");
471    case Qualifiers::OCL_ExplicitNone:
472    case Qualifiers::OCL_Autoreleasing:
473      // Nothing to do.
474      break;
475
476    case Qualifiers::OCL_Strong: {
477      bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>();
478      CleanupKind cleanupKind = getARCCleanupKind();
479      // This local is a GCC and MSVC compiler workaround.
480      Destroyer *destroyer = precise ? &destroyARCStrongPrecise :
481                                       &destroyARCStrongImprecise;
482      pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType,
483                  *destroyer, cleanupKind & EHCleanup);
484      break;
485    }
486
487    case Qualifiers::OCL_Weak: {
488      // This local is a GCC and MSVC compiler workaround.
489      Destroyer *destroyer = &destroyARCWeak;
490      // __weak objects always get EH cleanups; otherwise, exceptions
491      // could cause really nasty crashes instead of mere leaks.
492      pushDestroy(NormalAndEHCleanup, ReferenceTemporary,
493                  ObjCARCReferenceLifetimeType, *destroyer, true);
494      break;
495    }
496    }
497  }
498
499  return RValue::get(Value);
500}
501
502
503/// getAccessedFieldNo - Given an encoded value and a result number, return the
504/// input field number being accessed.
505unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
506                                             const llvm::Constant *Elts) {
507  if (isa<llvm::ConstantAggregateZero>(Elts))
508    return 0;
509
510  return cast<llvm::ConstantInt>(Elts->getOperand(Idx))->getZExtValue();
511}
512
513void CodeGenFunction::EmitCheck(llvm::Value *Address, unsigned Size) {
514  if (!CatchUndefined)
515    return;
516
517  // This needs to be to the standard address space.
518  Address = Builder.CreateBitCast(Address, Int8PtrTy);
519
520  llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy);
521
522  // In time, people may want to control this and use a 1 here.
523  llvm::Value *Arg = Builder.getFalse();
524  llvm::Value *C = Builder.CreateCall2(F, Address, Arg);
525  llvm::BasicBlock *Cont = createBasicBlock();
526  llvm::BasicBlock *Check = createBasicBlock();
527  llvm::Value *NegativeOne = llvm::ConstantInt::get(IntPtrTy, -1ULL);
528  Builder.CreateCondBr(Builder.CreateICmpEQ(C, NegativeOne), Cont, Check);
529
530  EmitBlock(Check);
531  Builder.CreateCondBr(Builder.CreateICmpUGE(C,
532                                        llvm::ConstantInt::get(IntPtrTy, Size)),
533                       Cont, getTrapBB());
534  EmitBlock(Cont);
535}
536
537
538CodeGenFunction::ComplexPairTy CodeGenFunction::
539EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
540                         bool isInc, bool isPre) {
541  ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(),
542                                            LV.isVolatileQualified());
543
544  llvm::Value *NextVal;
545  if (isa<llvm::IntegerType>(InVal.first->getType())) {
546    uint64_t AmountVal = isInc ? 1 : -1;
547    NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
548
549    // Add the inc/dec to the real part.
550    NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
551  } else {
552    QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
553    llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
554    if (!isInc)
555      FVal.changeSign();
556    NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
557
558    // Add the inc/dec to the real part.
559    NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
560  }
561
562  ComplexPairTy IncVal(NextVal, InVal.second);
563
564  // Store the updated result through the lvalue.
565  StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified());
566
567  // If this is a postinc, return the value read from memory, otherwise use the
568  // updated value.
569  return isPre ? IncVal : InVal;
570}
571
572
573//===----------------------------------------------------------------------===//
574//                         LValue Expression Emission
575//===----------------------------------------------------------------------===//
576
577RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
578  if (Ty->isVoidType())
579    return RValue::get(0);
580
581  if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
582    llvm::Type *EltTy = ConvertType(CTy->getElementType());
583    llvm::Value *U = llvm::UndefValue::get(EltTy);
584    return RValue::getComplex(std::make_pair(U, U));
585  }
586
587  // If this is a use of an undefined aggregate type, the aggregate must have an
588  // identifiable address.  Just because the contents of the value are undefined
589  // doesn't mean that the address can't be taken and compared.
590  if (hasAggregateLLVMType(Ty)) {
591    llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
592    return RValue::getAggregate(DestPtr);
593  }
594
595  return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
596}
597
598RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
599                                              const char *Name) {
600  ErrorUnsupported(E, Name);
601  return GetUndefRValue(E->getType());
602}
603
604LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
605                                              const char *Name) {
606  ErrorUnsupported(E, Name);
607  llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
608  return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
609}
610
611LValue CodeGenFunction::EmitCheckedLValue(const Expr *E) {
612  LValue LV = EmitLValue(E);
613  if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
614    EmitCheck(LV.getAddress(),
615              getContext().getTypeSizeInChars(E->getType()).getQuantity());
616  return LV;
617}
618
619/// EmitLValue - Emit code to compute a designator that specifies the location
620/// of the expression.
621///
622/// This can return one of two things: a simple address or a bitfield reference.
623/// In either case, the LLVM Value* in the LValue structure is guaranteed to be
624/// an LLVM pointer type.
625///
626/// If this returns a bitfield reference, nothing about the pointee type of the
627/// LLVM value is known: For example, it may not be a pointer to an integer.
628///
629/// If this returns a normal address, and if the lvalue's C type is fixed size,
630/// this method guarantees that the returned pointer type will point to an LLVM
631/// type of the same size of the lvalue's type.  If the lvalue has a variable
632/// length type, this is not possible.
633///
634LValue CodeGenFunction::EmitLValue(const Expr *E) {
635  switch (E->getStmtClass()) {
636  default: return EmitUnsupportedLValue(E, "l-value expression");
637
638  case Expr::ObjCPropertyRefExprClass:
639    llvm_unreachable("cannot emit a property reference directly");
640
641  case Expr::ObjCSelectorExprClass:
642  return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
643  case Expr::ObjCIsaExprClass:
644    return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
645  case Expr::BinaryOperatorClass:
646    return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
647  case Expr::CompoundAssignOperatorClass:
648    if (!E->getType()->isAnyComplexType())
649      return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
650    return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
651  case Expr::CallExprClass:
652  case Expr::CXXMemberCallExprClass:
653  case Expr::CXXOperatorCallExprClass:
654    return EmitCallExprLValue(cast<CallExpr>(E));
655  case Expr::VAArgExprClass:
656    return EmitVAArgExprLValue(cast<VAArgExpr>(E));
657  case Expr::DeclRefExprClass:
658    return EmitDeclRefLValue(cast<DeclRefExpr>(E));
659  case Expr::ParenExprClass:
660    return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
661  case Expr::GenericSelectionExprClass:
662    return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
663  case Expr::PredefinedExprClass:
664    return EmitPredefinedLValue(cast<PredefinedExpr>(E));
665  case Expr::StringLiteralClass:
666    return EmitStringLiteralLValue(cast<StringLiteral>(E));
667  case Expr::ObjCEncodeExprClass:
668    return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
669  case Expr::PseudoObjectExprClass:
670    return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
671
672  case Expr::BlockDeclRefExprClass:
673    return EmitBlockDeclRefLValue(cast<BlockDeclRefExpr>(E));
674
675  case Expr::CXXTemporaryObjectExprClass:
676  case Expr::CXXConstructExprClass:
677    return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
678  case Expr::CXXBindTemporaryExprClass:
679    return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
680  case Expr::ExprWithCleanupsClass:
681    return EmitExprWithCleanupsLValue(cast<ExprWithCleanups>(E));
682  case Expr::CXXScalarValueInitExprClass:
683    return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E));
684  case Expr::CXXDefaultArgExprClass:
685    return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
686  case Expr::CXXTypeidExprClass:
687    return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
688
689  case Expr::ObjCMessageExprClass:
690    return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
691  case Expr::ObjCIvarRefExprClass:
692    return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
693  case Expr::StmtExprClass:
694    return EmitStmtExprLValue(cast<StmtExpr>(E));
695  case Expr::UnaryOperatorClass:
696    return EmitUnaryOpLValue(cast<UnaryOperator>(E));
697  case Expr::ArraySubscriptExprClass:
698    return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
699  case Expr::ExtVectorElementExprClass:
700    return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
701  case Expr::MemberExprClass:
702    return EmitMemberExpr(cast<MemberExpr>(E));
703  case Expr::CompoundLiteralExprClass:
704    return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
705  case Expr::ConditionalOperatorClass:
706    return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
707  case Expr::BinaryConditionalOperatorClass:
708    return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
709  case Expr::ChooseExprClass:
710    return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext()));
711  case Expr::OpaqueValueExprClass:
712    return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
713  case Expr::SubstNonTypeTemplateParmExprClass:
714    return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
715  case Expr::ImplicitCastExprClass:
716  case Expr::CStyleCastExprClass:
717  case Expr::CXXFunctionalCastExprClass:
718  case Expr::CXXStaticCastExprClass:
719  case Expr::CXXDynamicCastExprClass:
720  case Expr::CXXReinterpretCastExprClass:
721  case Expr::CXXConstCastExprClass:
722  case Expr::ObjCBridgedCastExprClass:
723    return EmitCastLValue(cast<CastExpr>(E));
724
725  case Expr::MaterializeTemporaryExprClass:
726    return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
727  }
728}
729
730llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) {
731  return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
732                          lvalue.getAlignment(), lvalue.getType(),
733                          lvalue.getTBAAInfo());
734}
735
736llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
737                                              unsigned Alignment, QualType Ty,
738                                              llvm::MDNode *TBAAInfo) {
739  llvm::LoadInst *Load = Builder.CreateLoad(Addr);
740  if (Volatile)
741    Load->setVolatile(true);
742  if (Alignment)
743    Load->setAlignment(Alignment);
744  if (TBAAInfo)
745    CGM.DecorateInstruction(Load, TBAAInfo);
746
747  return EmitFromMemory(Load, Ty);
748}
749
750static bool isBooleanUnderlyingType(QualType Ty) {
751  if (const EnumType *ET = dyn_cast<EnumType>(Ty))
752    return ET->getDecl()->getIntegerType()->isBooleanType();
753  return false;
754}
755
756llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
757  // Bool has a different representation in memory than in registers.
758  if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) {
759    // This should really always be an i1, but sometimes it's already
760    // an i8, and it's awkward to track those cases down.
761    if (Value->getType()->isIntegerTy(1))
762      return Builder.CreateZExt(Value, Builder.getInt8Ty(), "frombool");
763    assert(Value->getType()->isIntegerTy(8) && "value rep of bool not i1/i8");
764  }
765
766  return Value;
767}
768
769llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
770  // Bool has a different representation in memory than in registers.
771  if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) {
772    assert(Value->getType()->isIntegerTy(8) && "memory rep of bool not i8");
773    return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
774  }
775
776  return Value;
777}
778
779void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
780                                        bool Volatile, unsigned Alignment,
781                                        QualType Ty,
782                                        llvm::MDNode *TBAAInfo) {
783  Value = EmitToMemory(Value, Ty);
784
785  llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
786  if (Alignment)
787    Store->setAlignment(Alignment);
788  if (TBAAInfo)
789    CGM.DecorateInstruction(Store, TBAAInfo);
790}
791
792void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue) {
793  EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
794                    lvalue.getAlignment(), lvalue.getType(),
795                    lvalue.getTBAAInfo());
796}
797
798/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
799/// method emits the address of the lvalue, then loads the result as an rvalue,
800/// returning the rvalue.
801RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) {
802  if (LV.isObjCWeak()) {
803    // load of a __weak object.
804    llvm::Value *AddrWeakObj = LV.getAddress();
805    return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
806                                                             AddrWeakObj));
807  }
808  if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak)
809    return RValue::get(EmitARCLoadWeak(LV.getAddress()));
810
811  if (LV.isSimple()) {
812    assert(!LV.getType()->isFunctionType());
813
814    // Everything needs a load.
815    return RValue::get(EmitLoadOfScalar(LV));
816  }
817
818  if (LV.isVectorElt()) {
819    llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(),
820                                          LV.isVolatileQualified());
821    return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(),
822                                                    "vecext"));
823  }
824
825  // If this is a reference to a subset of the elements of a vector, either
826  // shuffle the input or extract/insert them as appropriate.
827  if (LV.isExtVectorElt())
828    return EmitLoadOfExtVectorElementLValue(LV);
829
830  assert(LV.isBitField() && "Unknown LValue type!");
831  return EmitLoadOfBitfieldLValue(LV);
832}
833
834RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
835  const CGBitFieldInfo &Info = LV.getBitFieldInfo();
836
837  // Get the output type.
838  llvm::Type *ResLTy = ConvertType(LV.getType());
839  unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy);
840
841  // Compute the result as an OR of all of the individual component accesses.
842  llvm::Value *Res = 0;
843  for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
844    const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
845
846    // Get the field pointer.
847    llvm::Value *Ptr = LV.getBitFieldBaseAddr();
848
849    // Only offset by the field index if used, so that incoming values are not
850    // required to be structures.
851    if (AI.FieldIndex)
852      Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
853
854    // Offset by the byte offset, if used.
855    if (!AI.FieldByteOffset.isZero()) {
856      Ptr = EmitCastToVoidPtr(Ptr);
857      Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(),
858                                       "bf.field.offs");
859    }
860
861    // Cast to the access type.
862    llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(),
863                                                     AI.AccessWidth,
864                       CGM.getContext().getTargetAddressSpace(LV.getType()));
865    Ptr = Builder.CreateBitCast(Ptr, PTy);
866
867    // Perform the load.
868    llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified());
869    if (!AI.AccessAlignment.isZero())
870      Load->setAlignment(AI.AccessAlignment.getQuantity());
871
872    // Shift out unused low bits and mask out unused high bits.
873    llvm::Value *Val = Load;
874    if (AI.FieldBitStart)
875      Val = Builder.CreateLShr(Load, AI.FieldBitStart);
876    Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth,
877                                                            AI.TargetBitWidth),
878                            "bf.clear");
879
880    // Extend or truncate to the target size.
881    if (AI.AccessWidth < ResSizeInBits)
882      Val = Builder.CreateZExt(Val, ResLTy);
883    else if (AI.AccessWidth > ResSizeInBits)
884      Val = Builder.CreateTrunc(Val, ResLTy);
885
886    // Shift into place, and OR into the result.
887    if (AI.TargetBitOffset)
888      Val = Builder.CreateShl(Val, AI.TargetBitOffset);
889    Res = Res ? Builder.CreateOr(Res, Val) : Val;
890  }
891
892  // If the bit-field is signed, perform the sign-extension.
893  //
894  // FIXME: This can easily be folded into the load of the high bits, which
895  // could also eliminate the mask of high bits in some situations.
896  if (Info.isSigned()) {
897    unsigned ExtraBits = ResSizeInBits - Info.getSize();
898    if (ExtraBits)
899      Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits),
900                               ExtraBits, "bf.val.sext");
901  }
902
903  return RValue::get(Res);
904}
905
906// If this is a reference to a subset of the elements of a vector, create an
907// appropriate shufflevector.
908RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
909  llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddr(),
910                                        LV.isVolatileQualified());
911
912  const llvm::Constant *Elts = LV.getExtVectorElts();
913
914  // If the result of the expression is a non-vector type, we must be extracting
915  // a single element.  Just codegen as an extractelement.
916  const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
917  if (!ExprVT) {
918    unsigned InIdx = getAccessedFieldNo(0, Elts);
919    llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
920    return RValue::get(Builder.CreateExtractElement(Vec, Elt));
921  }
922
923  // Always use shuffle vector to try to retain the original program structure
924  unsigned NumResultElts = ExprVT->getNumElements();
925
926  SmallVector<llvm::Constant*, 4> Mask;
927  for (unsigned i = 0; i != NumResultElts; ++i) {
928    unsigned InIdx = getAccessedFieldNo(i, Elts);
929    Mask.push_back(llvm::ConstantInt::get(Int32Ty, InIdx));
930  }
931
932  llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
933  Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
934                                    MaskV);
935  return RValue::get(Vec);
936}
937
938
939
940/// EmitStoreThroughLValue - Store the specified rvalue into the specified
941/// lvalue, where both are guaranteed to the have the same type, and that type
942/// is 'Ty'.
943void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst) {
944  if (!Dst.isSimple()) {
945    if (Dst.isVectorElt()) {
946      // Read/modify/write the vector, inserting the new element.
947      llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(),
948                                            Dst.isVolatileQualified());
949      Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
950                                        Dst.getVectorIdx(), "vecins");
951      Builder.CreateStore(Vec, Dst.getVectorAddr(),Dst.isVolatileQualified());
952      return;
953    }
954
955    // If this is an update of extended vector elements, insert them as
956    // appropriate.
957    if (Dst.isExtVectorElt())
958      return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
959
960    assert(Dst.isBitField() && "Unknown LValue type");
961    return EmitStoreThroughBitfieldLValue(Src, Dst);
962  }
963
964  // There's special magic for assigning into an ARC-qualified l-value.
965  if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
966    switch (Lifetime) {
967    case Qualifiers::OCL_None:
968      llvm_unreachable("present but none");
969
970    case Qualifiers::OCL_ExplicitNone:
971      // nothing special
972      break;
973
974    case Qualifiers::OCL_Strong:
975      EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
976      return;
977
978    case Qualifiers::OCL_Weak:
979      EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
980      return;
981
982    case Qualifiers::OCL_Autoreleasing:
983      Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
984                                                     Src.getScalarVal()));
985      // fall into the normal path
986      break;
987    }
988  }
989
990  if (Dst.isObjCWeak() && !Dst.isNonGC()) {
991    // load of a __weak object.
992    llvm::Value *LvalueDst = Dst.getAddress();
993    llvm::Value *src = Src.getScalarVal();
994     CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
995    return;
996  }
997
998  if (Dst.isObjCStrong() && !Dst.isNonGC()) {
999    // load of a __strong object.
1000    llvm::Value *LvalueDst = Dst.getAddress();
1001    llvm::Value *src = Src.getScalarVal();
1002    if (Dst.isObjCIvar()) {
1003      assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1004      llvm::Type *ResultType = ConvertType(getContext().LongTy);
1005      llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1006      llvm::Value *dst = RHS;
1007      RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1008      llvm::Value *LHS =
1009        Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1010      llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1011      CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1012                                              BytesBetween);
1013    } else if (Dst.isGlobalObjCRef()) {
1014      CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1015                                                Dst.isThreadLocalRef());
1016    }
1017    else
1018      CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1019    return;
1020  }
1021
1022  assert(Src.isScalar() && "Can't emit an agg store with this method");
1023  EmitStoreOfScalar(Src.getScalarVal(), Dst);
1024}
1025
1026void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1027                                                     llvm::Value **Result) {
1028  const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1029
1030  // Get the output type.
1031  llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1032  unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy);
1033
1034  // Get the source value, truncated to the width of the bit-field.
1035  llvm::Value *SrcVal = Src.getScalarVal();
1036
1037  if (Dst.getType()->isBooleanType())
1038    SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false);
1039
1040  SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits,
1041                                                                Info.getSize()),
1042                             "bf.value");
1043
1044  // Return the new value of the bit-field, if requested.
1045  if (Result) {
1046    // Cast back to the proper type for result.
1047    llvm::Type *SrcTy = Src.getScalarVal()->getType();
1048    llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false,
1049                                                   "bf.reload.val");
1050
1051    // Sign extend if necessary.
1052    if (Info.isSigned()) {
1053      unsigned ExtraBits = ResSizeInBits - Info.getSize();
1054      if (ExtraBits)
1055        ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits),
1056                                       ExtraBits, "bf.reload.sext");
1057    }
1058
1059    *Result = ReloadVal;
1060  }
1061
1062  // Iterate over the components, writing each piece to memory.
1063  for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
1064    const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
1065
1066    // Get the field pointer.
1067    llvm::Value *Ptr = Dst.getBitFieldBaseAddr();
1068    unsigned addressSpace =
1069      cast<llvm::PointerType>(Ptr->getType())->getAddressSpace();
1070
1071    // Only offset by the field index if used, so that incoming values are not
1072    // required to be structures.
1073    if (AI.FieldIndex)
1074      Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
1075
1076    // Offset by the byte offset, if used.
1077    if (!AI.FieldByteOffset.isZero()) {
1078      Ptr = EmitCastToVoidPtr(Ptr);
1079      Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(),
1080                                       "bf.field.offs");
1081    }
1082
1083    // Cast to the access type.
1084    llvm::Type *AccessLTy =
1085      llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth);
1086
1087    llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace);
1088    Ptr = Builder.CreateBitCast(Ptr, PTy);
1089
1090    // Extract the piece of the bit-field value to write in this access, limited
1091    // to the values that are part of this access.
1092    llvm::Value *Val = SrcVal;
1093    if (AI.TargetBitOffset)
1094      Val = Builder.CreateLShr(Val, AI.TargetBitOffset);
1095    Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits,
1096                                                            AI.TargetBitWidth));
1097
1098    // Extend or truncate to the access size.
1099    if (ResSizeInBits < AI.AccessWidth)
1100      Val = Builder.CreateZExt(Val, AccessLTy);
1101    else if (ResSizeInBits > AI.AccessWidth)
1102      Val = Builder.CreateTrunc(Val, AccessLTy);
1103
1104    // Shift into the position in memory.
1105    if (AI.FieldBitStart)
1106      Val = Builder.CreateShl(Val, AI.FieldBitStart);
1107
1108    // If necessary, load and OR in bits that are outside of the bit-field.
1109    if (AI.TargetBitWidth != AI.AccessWidth) {
1110      llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified());
1111      if (!AI.AccessAlignment.isZero())
1112        Load->setAlignment(AI.AccessAlignment.getQuantity());
1113
1114      // Compute the mask for zeroing the bits that are part of the bit-field.
1115      llvm::APInt InvMask =
1116        ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart,
1117                                 AI.FieldBitStart + AI.TargetBitWidth);
1118
1119      // Apply the mask and OR in to the value to write.
1120      Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val);
1121    }
1122
1123    // Write the value.
1124    llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr,
1125                                                 Dst.isVolatileQualified());
1126    if (!AI.AccessAlignment.isZero())
1127      Store->setAlignment(AI.AccessAlignment.getQuantity());
1128  }
1129}
1130
1131void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1132                                                               LValue Dst) {
1133  // This access turns into a read/modify/write of the vector.  Load the input
1134  // value now.
1135  llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddr(),
1136                                        Dst.isVolatileQualified());
1137  const llvm::Constant *Elts = Dst.getExtVectorElts();
1138
1139  llvm::Value *SrcVal = Src.getScalarVal();
1140
1141  if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1142    unsigned NumSrcElts = VTy->getNumElements();
1143    unsigned NumDstElts =
1144       cast<llvm::VectorType>(Vec->getType())->getNumElements();
1145    if (NumDstElts == NumSrcElts) {
1146      // Use shuffle vector is the src and destination are the same number of
1147      // elements and restore the vector mask since it is on the side it will be
1148      // stored.
1149      SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1150      for (unsigned i = 0; i != NumSrcElts; ++i) {
1151        unsigned InIdx = getAccessedFieldNo(i, Elts);
1152        Mask[InIdx] = llvm::ConstantInt::get(Int32Ty, i);
1153      }
1154
1155      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1156      Vec = Builder.CreateShuffleVector(SrcVal,
1157                                        llvm::UndefValue::get(Vec->getType()),
1158                                        MaskV);
1159    } else if (NumDstElts > NumSrcElts) {
1160      // Extended the source vector to the same length and then shuffle it
1161      // into the destination.
1162      // FIXME: since we're shuffling with undef, can we just use the indices
1163      //        into that?  This could be simpler.
1164      SmallVector<llvm::Constant*, 4> ExtMask;
1165      unsigned i;
1166      for (i = 0; i != NumSrcElts; ++i)
1167        ExtMask.push_back(llvm::ConstantInt::get(Int32Ty, i));
1168      for (; i != NumDstElts; ++i)
1169        ExtMask.push_back(llvm::UndefValue::get(Int32Ty));
1170      llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1171      llvm::Value *ExtSrcVal =
1172        Builder.CreateShuffleVector(SrcVal,
1173                                    llvm::UndefValue::get(SrcVal->getType()),
1174                                    ExtMaskV);
1175      // build identity
1176      SmallVector<llvm::Constant*, 4> Mask;
1177      for (unsigned i = 0; i != NumDstElts; ++i)
1178        Mask.push_back(llvm::ConstantInt::get(Int32Ty, i));
1179
1180      // modify when what gets shuffled in
1181      for (unsigned i = 0; i != NumSrcElts; ++i) {
1182        unsigned Idx = getAccessedFieldNo(i, Elts);
1183        Mask[Idx] = llvm::ConstantInt::get(Int32Ty, i+NumDstElts);
1184      }
1185      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1186      Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1187    } else {
1188      // We should never shorten the vector
1189      llvm_unreachable("unexpected shorten vector length");
1190    }
1191  } else {
1192    // If the Src is a scalar (not a vector) it must be updating one element.
1193    unsigned InIdx = getAccessedFieldNo(0, Elts);
1194    llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1195    Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1196  }
1197
1198  Builder.CreateStore(Vec, Dst.getExtVectorAddr(), Dst.isVolatileQualified());
1199}
1200
1201// setObjCGCLValueClass - sets class of he lvalue for the purpose of
1202// generating write-barries API. It is currently a global, ivar,
1203// or neither.
1204static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1205                                 LValue &LV,
1206                                 bool IsMemberAccess=false) {
1207  if (Ctx.getLangOptions().getGC() == LangOptions::NonGC)
1208    return;
1209
1210  if (isa<ObjCIvarRefExpr>(E)) {
1211    QualType ExpTy = E->getType();
1212    if (IsMemberAccess && ExpTy->isPointerType()) {
1213      // If ivar is a structure pointer, assigning to field of
1214      // this struct follows gcc's behavior and makes it a non-ivar
1215      // writer-barrier conservatively.
1216      ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1217      if (ExpTy->isRecordType()) {
1218        LV.setObjCIvar(false);
1219        return;
1220      }
1221    }
1222    LV.setObjCIvar(true);
1223    ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
1224    LV.setBaseIvarExp(Exp->getBase());
1225    LV.setObjCArray(E->getType()->isArrayType());
1226    return;
1227  }
1228
1229  if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
1230    if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1231      if (VD->hasGlobalStorage()) {
1232        LV.setGlobalObjCRef(true);
1233        LV.setThreadLocalRef(VD->isThreadSpecified());
1234      }
1235    }
1236    LV.setObjCArray(E->getType()->isArrayType());
1237    return;
1238  }
1239
1240  if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
1241    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1242    return;
1243  }
1244
1245  if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
1246    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1247    if (LV.isObjCIvar()) {
1248      // If cast is to a structure pointer, follow gcc's behavior and make it
1249      // a non-ivar write-barrier.
1250      QualType ExpTy = E->getType();
1251      if (ExpTy->isPointerType())
1252        ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1253      if (ExpTy->isRecordType())
1254        LV.setObjCIvar(false);
1255    }
1256    return;
1257  }
1258
1259  if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1260    setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1261    return;
1262  }
1263
1264  if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1265    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1266    return;
1267  }
1268
1269  if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
1270    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1271    return;
1272  }
1273
1274  if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1275    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1276    return;
1277  }
1278
1279  if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1280    setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1281    if (LV.isObjCIvar() && !LV.isObjCArray())
1282      // Using array syntax to assigning to what an ivar points to is not
1283      // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1284      LV.setObjCIvar(false);
1285    else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1286      // Using array syntax to assigning to what global points to is not
1287      // same as assigning to the global itself. {id *G;} G[i] = 0;
1288      LV.setGlobalObjCRef(false);
1289    return;
1290  }
1291
1292  if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
1293    setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1294    // We don't know if member is an 'ivar', but this flag is looked at
1295    // only in the context of LV.isObjCIvar().
1296    LV.setObjCArray(E->getType()->isArrayType());
1297    return;
1298  }
1299}
1300
1301static llvm::Value *
1302EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1303                                llvm::Value *V, llvm::Type *IRType,
1304                                StringRef Name = StringRef()) {
1305  unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1306  return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1307}
1308
1309static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1310                                      const Expr *E, const VarDecl *VD) {
1311  assert((VD->hasExternalStorage() || VD->isFileVarDecl()) &&
1312         "Var decl must have external storage or be a file var decl!");
1313
1314  llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1315  if (VD->getType()->isReferenceType())
1316    V = CGF.Builder.CreateLoad(V);
1317
1318  V = EmitBitCastOfLValueToProperType(CGF, V,
1319                                CGF.getTypes().ConvertTypeForMem(E->getType()));
1320
1321  unsigned Alignment = CGF.getContext().getDeclAlign(VD).getQuantity();
1322  LValue LV = CGF.MakeAddrLValue(V, E->getType(), Alignment);
1323  setObjCGCLValueClass(CGF.getContext(), E, LV);
1324  return LV;
1325}
1326
1327static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1328                                     const Expr *E, const FunctionDecl *FD) {
1329  llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1330  if (!FD->hasPrototype()) {
1331    if (const FunctionProtoType *Proto =
1332            FD->getType()->getAs<FunctionProtoType>()) {
1333      // Ugly case: for a K&R-style definition, the type of the definition
1334      // isn't the same as the type of a use.  Correct for this with a
1335      // bitcast.
1336      QualType NoProtoType =
1337          CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
1338      NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1339      V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1340    }
1341  }
1342  unsigned Alignment = CGF.getContext().getDeclAlign(FD).getQuantity();
1343  return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1344}
1345
1346LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1347  const NamedDecl *ND = E->getDecl();
1348  unsigned Alignment = getContext().getDeclAlign(ND).getQuantity();
1349
1350  if (ND->hasAttr<WeakRefAttr>()) {
1351    const ValueDecl *VD = cast<ValueDecl>(ND);
1352    llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1353    return MakeAddrLValue(Aliasee, E->getType(), Alignment);
1354  }
1355
1356  if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1357
1358    // Check if this is a global variable.
1359    if (VD->hasExternalStorage() || VD->isFileVarDecl())
1360      return EmitGlobalVarDeclLValue(*this, E, VD);
1361
1362    bool NonGCable = VD->hasLocalStorage() &&
1363                     !VD->getType()->isReferenceType() &&
1364                     !VD->hasAttr<BlocksAttr>();
1365
1366    llvm::Value *V = LocalDeclMap[VD];
1367    if (!V && VD->isStaticLocal())
1368      V = CGM.getStaticLocalDeclAddress(VD);
1369    assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1370
1371    if (VD->hasAttr<BlocksAttr>())
1372      V = BuildBlockByrefAddress(V, VD);
1373
1374    if (VD->getType()->isReferenceType())
1375      V = Builder.CreateLoad(V);
1376
1377    V = EmitBitCastOfLValueToProperType(*this, V,
1378                                    getTypes().ConvertTypeForMem(E->getType()));
1379
1380    LValue LV = MakeAddrLValue(V, E->getType(), Alignment);
1381    if (NonGCable) {
1382      LV.getQuals().removeObjCGCAttr();
1383      LV.setNonGC(true);
1384    }
1385    setObjCGCLValueClass(getContext(), E, LV);
1386    return LV;
1387  }
1388
1389  if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND))
1390    return EmitFunctionDeclLValue(*this, E, fn);
1391
1392  llvm_unreachable("Unhandled DeclRefExpr");
1393
1394  // an invalid LValue, but the assert will
1395  // ensure that this point is never reached.
1396  return LValue();
1397}
1398
1399LValue CodeGenFunction::EmitBlockDeclRefLValue(const BlockDeclRefExpr *E) {
1400  unsigned Alignment =
1401    getContext().getDeclAlign(E->getDecl()).getQuantity();
1402  return MakeAddrLValue(GetAddrOfBlockDecl(E), E->getType(), Alignment);
1403}
1404
1405LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1406  // __extension__ doesn't affect lvalue-ness.
1407  if (E->getOpcode() == UO_Extension)
1408    return EmitLValue(E->getSubExpr());
1409
1410  QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1411  switch (E->getOpcode()) {
1412  default: llvm_unreachable("Unknown unary operator lvalue!");
1413  case UO_Deref: {
1414    QualType T = E->getSubExpr()->getType()->getPointeeType();
1415    assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1416
1417    LValue LV = MakeAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1418    LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1419
1420    // We should not generate __weak write barrier on indirect reference
1421    // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1422    // But, we continue to generate __strong write barrier on indirect write
1423    // into a pointer to object.
1424    if (getContext().getLangOptions().ObjC1 &&
1425        getContext().getLangOptions().getGC() != LangOptions::NonGC &&
1426        LV.isObjCWeak())
1427      LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1428    return LV;
1429  }
1430  case UO_Real:
1431  case UO_Imag: {
1432    LValue LV = EmitLValue(E->getSubExpr());
1433    assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1434    llvm::Value *Addr = LV.getAddress();
1435
1436    // real and imag are valid on scalars.  This is a faster way of
1437    // testing that.
1438    if (!cast<llvm::PointerType>(Addr->getType())
1439           ->getElementType()->isStructTy()) {
1440      assert(E->getSubExpr()->getType()->isArithmeticType());
1441      return LV;
1442    }
1443
1444    assert(E->getSubExpr()->getType()->isAnyComplexType());
1445
1446    unsigned Idx = E->getOpcode() == UO_Imag;
1447    return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1448                                                  Idx, "idx"),
1449                          ExprTy);
1450  }
1451  case UO_PreInc:
1452  case UO_PreDec: {
1453    LValue LV = EmitLValue(E->getSubExpr());
1454    bool isInc = E->getOpcode() == UO_PreInc;
1455
1456    if (E->getType()->isAnyComplexType())
1457      EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1458    else
1459      EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1460    return LV;
1461  }
1462  }
1463}
1464
1465LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1466  return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1467                        E->getType());
1468}
1469
1470LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1471  return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1472                        E->getType());
1473}
1474
1475
1476LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
1477  switch (E->getIdentType()) {
1478  default:
1479    return EmitUnsupportedLValue(E, "predefined expression");
1480
1481  case PredefinedExpr::Func:
1482  case PredefinedExpr::Function:
1483  case PredefinedExpr::PrettyFunction: {
1484    unsigned Type = E->getIdentType();
1485    std::string GlobalVarName;
1486
1487    switch (Type) {
1488    default: llvm_unreachable("Invalid type");
1489    case PredefinedExpr::Func:
1490      GlobalVarName = "__func__.";
1491      break;
1492    case PredefinedExpr::Function:
1493      GlobalVarName = "__FUNCTION__.";
1494      break;
1495    case PredefinedExpr::PrettyFunction:
1496      GlobalVarName = "__PRETTY_FUNCTION__.";
1497      break;
1498    }
1499
1500    StringRef FnName = CurFn->getName();
1501    if (FnName.startswith("\01"))
1502      FnName = FnName.substr(1);
1503    GlobalVarName += FnName;
1504
1505    const Decl *CurDecl = CurCodeDecl;
1506    if (CurDecl == 0)
1507      CurDecl = getContext().getTranslationUnitDecl();
1508
1509    std::string FunctionName =
1510        (isa<BlockDecl>(CurDecl)
1511         ? FnName.str()
1512         : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)Type, CurDecl));
1513
1514    llvm::Constant *C =
1515      CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str());
1516    return MakeAddrLValue(C, E->getType());
1517  }
1518  }
1519}
1520
1521llvm::BasicBlock *CodeGenFunction::getTrapBB() {
1522  const CodeGenOptions &GCO = CGM.getCodeGenOpts();
1523
1524  // If we are not optimzing, don't collapse all calls to trap in the function
1525  // to the same call, that way, in the debugger they can see which operation
1526  // did in fact fail.  If we are optimizing, we collapse all calls to trap down
1527  // to just one per function to save on codesize.
1528  if (GCO.OptimizationLevel && TrapBB)
1529    return TrapBB;
1530
1531  llvm::BasicBlock *Cont = 0;
1532  if (HaveInsertPoint()) {
1533    Cont = createBasicBlock("cont");
1534    EmitBranch(Cont);
1535  }
1536  TrapBB = createBasicBlock("trap");
1537  EmitBlock(TrapBB);
1538
1539  llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
1540  llvm::CallInst *TrapCall = Builder.CreateCall(F);
1541  TrapCall->setDoesNotReturn();
1542  TrapCall->setDoesNotThrow();
1543  Builder.CreateUnreachable();
1544
1545  if (Cont)
1546    EmitBlock(Cont);
1547  return TrapBB;
1548}
1549
1550/// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
1551/// array to pointer, return the array subexpression.
1552static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
1553  // If this isn't just an array->pointer decay, bail out.
1554  const CastExpr *CE = dyn_cast<CastExpr>(E);
1555  if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
1556    return 0;
1557
1558  // If this is a decay from variable width array, bail out.
1559  const Expr *SubExpr = CE->getSubExpr();
1560  if (SubExpr->getType()->isVariableArrayType())
1561    return 0;
1562
1563  return SubExpr;
1564}
1565
1566LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
1567  // The index must always be an integer, which is not an aggregate.  Emit it.
1568  llvm::Value *Idx = EmitScalarExpr(E->getIdx());
1569  QualType IdxTy  = E->getIdx()->getType();
1570  bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
1571
1572  // If the base is a vector type, then we are forming a vector element lvalue
1573  // with this subscript.
1574  if (E->getBase()->getType()->isVectorType()) {
1575    // Emit the vector as an lvalue to get its address.
1576    LValue LHS = EmitLValue(E->getBase());
1577    assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
1578    Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
1579    return LValue::MakeVectorElt(LHS.getAddress(), Idx,
1580                                 E->getBase()->getType());
1581  }
1582
1583  // Extend or truncate the index type to 32 or 64-bits.
1584  if (Idx->getType() != IntPtrTy)
1585    Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
1586
1587  // FIXME: As llvm implements the object size checking, this can come out.
1588  if (CatchUndefined) {
1589    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E->getBase())){
1590      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1591        if (ICE->getCastKind() == CK_ArrayToPointerDecay) {
1592          if (const ConstantArrayType *CAT
1593              = getContext().getAsConstantArrayType(DRE->getType())) {
1594            llvm::APInt Size = CAT->getSize();
1595            llvm::BasicBlock *Cont = createBasicBlock("cont");
1596            Builder.CreateCondBr(Builder.CreateICmpULE(Idx,
1597                                  llvm::ConstantInt::get(Idx->getType(), Size)),
1598                                 Cont, getTrapBB());
1599            EmitBlock(Cont);
1600          }
1601        }
1602      }
1603    }
1604  }
1605
1606  // We know that the pointer points to a type of the correct size, unless the
1607  // size is a VLA or Objective-C interface.
1608  llvm::Value *Address = 0;
1609  unsigned ArrayAlignment = 0;
1610  if (const VariableArrayType *vla =
1611        getContext().getAsVariableArrayType(E->getType())) {
1612    // The base must be a pointer, which is not an aggregate.  Emit
1613    // it.  It needs to be emitted first in case it's what captures
1614    // the VLA bounds.
1615    Address = EmitScalarExpr(E->getBase());
1616
1617    // The element count here is the total number of non-VLA elements.
1618    llvm::Value *numElements = getVLASize(vla).first;
1619
1620    // Effectively, the multiply by the VLA size is part of the GEP.
1621    // GEP indexes are signed, and scaling an index isn't permitted to
1622    // signed-overflow, so we use the same semantics for our explicit
1623    // multiply.  We suppress this if overflow is not undefined behavior.
1624    if (getLangOptions().isSignedOverflowDefined()) {
1625      Idx = Builder.CreateMul(Idx, numElements);
1626      Address = Builder.CreateGEP(Address, Idx, "arrayidx");
1627    } else {
1628      Idx = Builder.CreateNSWMul(Idx, numElements);
1629      Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
1630    }
1631  } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
1632    // Indexing over an interface, as in "NSString *P; P[4];"
1633    llvm::Value *InterfaceSize =
1634      llvm::ConstantInt::get(Idx->getType(),
1635          getContext().getTypeSizeInChars(OIT).getQuantity());
1636
1637    Idx = Builder.CreateMul(Idx, InterfaceSize);
1638
1639    // The base must be a pointer, which is not an aggregate.  Emit it.
1640    llvm::Value *Base = EmitScalarExpr(E->getBase());
1641    Address = EmitCastToVoidPtr(Base);
1642    Address = Builder.CreateGEP(Address, Idx, "arrayidx");
1643    Address = Builder.CreateBitCast(Address, Base->getType());
1644  } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
1645    // If this is A[i] where A is an array, the frontend will have decayed the
1646    // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
1647    // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
1648    // "gep x, i" here.  Emit one "gep A, 0, i".
1649    assert(Array->getType()->isArrayType() &&
1650           "Array to pointer decay must have array source type!");
1651    LValue ArrayLV = EmitLValue(Array);
1652    llvm::Value *ArrayPtr = ArrayLV.getAddress();
1653    llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
1654    llvm::Value *Args[] = { Zero, Idx };
1655
1656    // Propagate the alignment from the array itself to the result.
1657    ArrayAlignment = ArrayLV.getAlignment();
1658
1659    if (getContext().getLangOptions().isSignedOverflowDefined())
1660      Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
1661    else
1662      Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
1663  } else {
1664    // The base must be a pointer, which is not an aggregate.  Emit it.
1665    llvm::Value *Base = EmitScalarExpr(E->getBase());
1666    if (getContext().getLangOptions().isSignedOverflowDefined())
1667      Address = Builder.CreateGEP(Base, Idx, "arrayidx");
1668    else
1669      Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
1670  }
1671
1672  QualType T = E->getBase()->getType()->getPointeeType();
1673  assert(!T.isNull() &&
1674         "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
1675
1676  // Limit the alignment to that of the result type.
1677  if (ArrayAlignment) {
1678    unsigned Align = getContext().getTypeAlignInChars(T).getQuantity();
1679    ArrayAlignment = std::min(Align, ArrayAlignment);
1680  }
1681
1682  LValue LV = MakeAddrLValue(Address, T, ArrayAlignment);
1683  LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
1684
1685  if (getContext().getLangOptions().ObjC1 &&
1686      getContext().getLangOptions().getGC() != LangOptions::NonGC) {
1687    LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1688    setObjCGCLValueClass(getContext(), E, LV);
1689  }
1690  return LV;
1691}
1692
1693static
1694llvm::Constant *GenerateConstantVector(llvm::LLVMContext &VMContext,
1695                                       SmallVector<unsigned, 4> &Elts) {
1696  SmallVector<llvm::Constant*, 4> CElts;
1697
1698  llvm::Type *Int32Ty = llvm::Type::getInt32Ty(VMContext);
1699  for (unsigned i = 0, e = Elts.size(); i != e; ++i)
1700    CElts.push_back(llvm::ConstantInt::get(Int32Ty, Elts[i]));
1701
1702  return llvm::ConstantVector::get(CElts);
1703}
1704
1705LValue CodeGenFunction::
1706EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
1707  // Emit the base vector as an l-value.
1708  LValue Base;
1709
1710  // ExtVectorElementExpr's base can either be a vector or pointer to vector.
1711  if (E->isArrow()) {
1712    // If it is a pointer to a vector, emit the address and form an lvalue with
1713    // it.
1714    llvm::Value *Ptr = EmitScalarExpr(E->getBase());
1715    const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
1716    Base = MakeAddrLValue(Ptr, PT->getPointeeType());
1717    Base.getQuals().removeObjCGCAttr();
1718  } else if (E->getBase()->isGLValue()) {
1719    // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
1720    // emit the base as an lvalue.
1721    assert(E->getBase()->getType()->isVectorType());
1722    Base = EmitLValue(E->getBase());
1723  } else {
1724    // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
1725    assert(E->getBase()->getType()->isVectorType() &&
1726           "Result must be a vector");
1727    llvm::Value *Vec = EmitScalarExpr(E->getBase());
1728
1729    // Store the vector to memory (because LValue wants an address).
1730    llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
1731    Builder.CreateStore(Vec, VecMem);
1732    Base = MakeAddrLValue(VecMem, E->getBase()->getType());
1733  }
1734
1735  QualType type =
1736    E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
1737
1738  // Encode the element access list into a vector of unsigned indices.
1739  SmallVector<unsigned, 4> Indices;
1740  E->getEncodedElementAccess(Indices);
1741
1742  if (Base.isSimple()) {
1743    llvm::Constant *CV = GenerateConstantVector(getLLVMContext(), Indices);
1744    return LValue::MakeExtVectorElt(Base.getAddress(), CV, type);
1745  }
1746  assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
1747
1748  llvm::Constant *BaseElts = Base.getExtVectorElts();
1749  SmallVector<llvm::Constant *, 4> CElts;
1750
1751  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1752    if (isa<llvm::ConstantAggregateZero>(BaseElts))
1753      CElts.push_back(llvm::ConstantInt::get(Int32Ty, 0));
1754    else
1755      CElts.push_back(cast<llvm::Constant>(BaseElts->getOperand(Indices[i])));
1756  }
1757  llvm::Constant *CV = llvm::ConstantVector::get(CElts);
1758  return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type);
1759}
1760
1761LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
1762  bool isNonGC = false;
1763  Expr *BaseExpr = E->getBase();
1764  llvm::Value *BaseValue = NULL;
1765  Qualifiers BaseQuals;
1766
1767  // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
1768  if (E->isArrow()) {
1769    BaseValue = EmitScalarExpr(BaseExpr);
1770    const PointerType *PTy =
1771      BaseExpr->getType()->getAs<PointerType>();
1772    BaseQuals = PTy->getPointeeType().getQualifiers();
1773  } else {
1774    LValue BaseLV = EmitLValue(BaseExpr);
1775    if (BaseLV.isNonGC())
1776      isNonGC = true;
1777    // FIXME: this isn't right for bitfields.
1778    BaseValue = BaseLV.getAddress();
1779    QualType BaseTy = BaseExpr->getType();
1780    BaseQuals = BaseTy.getQualifiers();
1781  }
1782
1783  NamedDecl *ND = E->getMemberDecl();
1784  if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
1785    LValue LV = EmitLValueForField(BaseValue, Field,
1786                                   BaseQuals.getCVRQualifiers());
1787    LV.setNonGC(isNonGC);
1788    setObjCGCLValueClass(getContext(), E, LV);
1789    return LV;
1790  }
1791
1792  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
1793    return EmitGlobalVarDeclLValue(*this, E, VD);
1794
1795  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
1796    return EmitFunctionDeclLValue(*this, E, FD);
1797
1798  llvm_unreachable("Unhandled member declaration!");
1799}
1800
1801LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value *BaseValue,
1802                                              const FieldDecl *Field,
1803                                              unsigned CVRQualifiers) {
1804  const CGRecordLayout &RL =
1805    CGM.getTypes().getCGRecordLayout(Field->getParent());
1806  const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field);
1807  return LValue::MakeBitfield(BaseValue, Info,
1808                          Field->getType().withCVRQualifiers(CVRQualifiers));
1809}
1810
1811/// EmitLValueForAnonRecordField - Given that the field is a member of
1812/// an anonymous struct or union buried inside a record, and given
1813/// that the base value is a pointer to the enclosing record, derive
1814/// an lvalue for the ultimate field.
1815LValue CodeGenFunction::EmitLValueForAnonRecordField(llvm::Value *BaseValue,
1816                                             const IndirectFieldDecl *Field,
1817                                                     unsigned CVRQualifiers) {
1818  IndirectFieldDecl::chain_iterator I = Field->chain_begin(),
1819    IEnd = Field->chain_end();
1820  while (true) {
1821    LValue LV = EmitLValueForField(BaseValue, cast<FieldDecl>(*I),
1822                                   CVRQualifiers);
1823    if (++I == IEnd) return LV;
1824
1825    assert(LV.isSimple());
1826    BaseValue = LV.getAddress();
1827    CVRQualifiers |= LV.getVRQualifiers();
1828  }
1829}
1830
1831LValue CodeGenFunction::EmitLValueForField(llvm::Value *baseAddr,
1832                                           const FieldDecl *field,
1833                                           unsigned cvr) {
1834  if (field->isBitField())
1835    return EmitLValueForBitfield(baseAddr, field, cvr);
1836
1837  const RecordDecl *rec = field->getParent();
1838  QualType type = field->getType();
1839
1840  bool mayAlias = rec->hasAttr<MayAliasAttr>();
1841
1842  llvm::Value *addr = baseAddr;
1843  if (rec->isUnion()) {
1844    // For unions, there is no pointer adjustment.
1845    assert(!type->isReferenceType() && "union has reference member");
1846  } else {
1847    // For structs, we GEP to the field that the record layout suggests.
1848    unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
1849    addr = Builder.CreateStructGEP(addr, idx, field->getName());
1850
1851    // If this is a reference field, load the reference right now.
1852    if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
1853      llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
1854      if (cvr & Qualifiers::Volatile) load->setVolatile(true);
1855
1856      if (CGM.shouldUseTBAA()) {
1857        llvm::MDNode *tbaa;
1858        if (mayAlias)
1859          tbaa = CGM.getTBAAInfo(getContext().CharTy);
1860        else
1861          tbaa = CGM.getTBAAInfo(type);
1862        CGM.DecorateInstruction(load, tbaa);
1863      }
1864
1865      addr = load;
1866      mayAlias = false;
1867      type = refType->getPointeeType();
1868      cvr = 0; // qualifiers don't recursively apply to referencee
1869    }
1870  }
1871
1872  // Make sure that the address is pointing to the right type.  This is critical
1873  // for both unions and structs.  A union needs a bitcast, a struct element
1874  // will need a bitcast if the LLVM type laid out doesn't match the desired
1875  // type.
1876  addr = EmitBitCastOfLValueToProperType(*this, addr,
1877                                         CGM.getTypes().ConvertTypeForMem(type),
1878                                         field->getName());
1879
1880  if (field->hasAttr<AnnotateAttr>())
1881    addr = EmitFieldAnnotations(field, addr);
1882
1883  unsigned alignment = getContext().getDeclAlign(field).getQuantity();
1884  LValue LV = MakeAddrLValue(addr, type, alignment);
1885  LV.getQuals().addCVRQualifiers(cvr);
1886
1887  // __weak attribute on a field is ignored.
1888  if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
1889    LV.getQuals().removeObjCGCAttr();
1890
1891  // Fields of may_alias structs act like 'char' for TBAA purposes.
1892  // FIXME: this should get propagated down through anonymous structs
1893  // and unions.
1894  if (mayAlias && LV.getTBAAInfo())
1895    LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
1896
1897  return LV;
1898}
1899
1900LValue
1901CodeGenFunction::EmitLValueForFieldInitialization(llvm::Value *BaseValue,
1902                                                  const FieldDecl *Field,
1903                                                  unsigned CVRQualifiers) {
1904  QualType FieldType = Field->getType();
1905
1906  if (!FieldType->isReferenceType())
1907    return EmitLValueForField(BaseValue, Field, CVRQualifiers);
1908
1909  const CGRecordLayout &RL =
1910    CGM.getTypes().getCGRecordLayout(Field->getParent());
1911  unsigned idx = RL.getLLVMFieldNo(Field);
1912  llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx);
1913  assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
1914
1915
1916  // Make sure that the address is pointing to the right type.  This is critical
1917  // for both unions and structs.  A union needs a bitcast, a struct element
1918  // will need a bitcast if the LLVM type laid out doesn't match the desired
1919  // type.
1920  llvm::Type *llvmType = ConvertTypeForMem(FieldType);
1921  unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1922  V = Builder.CreateBitCast(V, llvmType->getPointerTo(AS));
1923
1924  unsigned Alignment = getContext().getDeclAlign(Field).getQuantity();
1925  return MakeAddrLValue(V, FieldType, Alignment);
1926}
1927
1928LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
1929  llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
1930  const Expr *InitExpr = E->getInitializer();
1931  LValue Result = MakeAddrLValue(DeclPtr, E->getType());
1932
1933  EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
1934                   /*Init*/ true);
1935
1936  return Result;
1937}
1938
1939LValue CodeGenFunction::
1940EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
1941  if (!expr->isGLValue()) {
1942    // ?: here should be an aggregate.
1943    assert((hasAggregateLLVMType(expr->getType()) &&
1944            !expr->getType()->isAnyComplexType()) &&
1945           "Unexpected conditional operator!");
1946    return EmitAggExprToLValue(expr);
1947  }
1948
1949  const Expr *condExpr = expr->getCond();
1950  bool CondExprBool;
1951  if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
1952    const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
1953    if (!CondExprBool) std::swap(live, dead);
1954
1955    if (!ContainsLabel(dead))
1956      return EmitLValue(live);
1957  }
1958
1959  OpaqueValueMapping binding(*this, expr);
1960
1961  llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
1962  llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
1963  llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
1964
1965  ConditionalEvaluation eval(*this);
1966  EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock);
1967
1968  // Any temporaries created here are conditional.
1969  EmitBlock(lhsBlock);
1970  eval.begin(*this);
1971  LValue lhs = EmitLValue(expr->getTrueExpr());
1972  eval.end(*this);
1973
1974  if (!lhs.isSimple())
1975    return EmitUnsupportedLValue(expr, "conditional operator");
1976
1977  lhsBlock = Builder.GetInsertBlock();
1978  Builder.CreateBr(contBlock);
1979
1980  // Any temporaries created here are conditional.
1981  EmitBlock(rhsBlock);
1982  eval.begin(*this);
1983  LValue rhs = EmitLValue(expr->getFalseExpr());
1984  eval.end(*this);
1985  if (!rhs.isSimple())
1986    return EmitUnsupportedLValue(expr, "conditional operator");
1987  rhsBlock = Builder.GetInsertBlock();
1988
1989  EmitBlock(contBlock);
1990
1991  llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2,
1992                                         "cond-lvalue");
1993  phi->addIncoming(lhs.getAddress(), lhsBlock);
1994  phi->addIncoming(rhs.getAddress(), rhsBlock);
1995  return MakeAddrLValue(phi, expr->getType());
1996}
1997
1998/// EmitCastLValue - Casts are never lvalues unless that cast is a dynamic_cast.
1999/// If the cast is a dynamic_cast, we can have the usual lvalue result,
2000/// otherwise if a cast is needed by the code generator in an lvalue context,
2001/// then it must mean that we need the address of an aggregate in order to
2002/// access one of its fields.  This can happen for all the reasons that casts
2003/// are permitted with aggregate result, including noop aggregate casts, and
2004/// cast from scalar to union.
2005LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2006  switch (E->getCastKind()) {
2007  case CK_ToVoid:
2008    return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2009
2010  case CK_Dependent:
2011    llvm_unreachable("dependent cast kind in IR gen!");
2012
2013  case CK_NoOp:
2014  case CK_LValueToRValue:
2015    if (!E->getSubExpr()->Classify(getContext()).isPRValue()
2016        || E->getType()->isRecordType())
2017      return EmitLValue(E->getSubExpr());
2018    // Fall through to synthesize a temporary.
2019
2020  case CK_BitCast:
2021  case CK_ArrayToPointerDecay:
2022  case CK_FunctionToPointerDecay:
2023  case CK_NullToMemberPointer:
2024  case CK_NullToPointer:
2025  case CK_IntegralToPointer:
2026  case CK_PointerToIntegral:
2027  case CK_PointerToBoolean:
2028  case CK_VectorSplat:
2029  case CK_IntegralCast:
2030  case CK_IntegralToBoolean:
2031  case CK_IntegralToFloating:
2032  case CK_FloatingToIntegral:
2033  case CK_FloatingToBoolean:
2034  case CK_FloatingCast:
2035  case CK_FloatingRealToComplex:
2036  case CK_FloatingComplexToReal:
2037  case CK_FloatingComplexToBoolean:
2038  case CK_FloatingComplexCast:
2039  case CK_FloatingComplexToIntegralComplex:
2040  case CK_IntegralRealToComplex:
2041  case CK_IntegralComplexToReal:
2042  case CK_IntegralComplexToBoolean:
2043  case CK_IntegralComplexCast:
2044  case CK_IntegralComplexToFloatingComplex:
2045  case CK_DerivedToBaseMemberPointer:
2046  case CK_BaseToDerivedMemberPointer:
2047  case CK_MemberPointerToBoolean:
2048  case CK_AnyPointerToBlockPointerCast:
2049  case CK_ARCProduceObject:
2050  case CK_ARCConsumeObject:
2051  case CK_ARCReclaimReturnedObject:
2052  case CK_ARCExtendBlockObject: {
2053    // These casts only produce lvalues when we're binding a reference to a
2054    // temporary realized from a (converted) pure rvalue. Emit the expression
2055    // as a value, copy it into a temporary, and return an lvalue referring to
2056    // that temporary.
2057    llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp");
2058    EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false);
2059    return MakeAddrLValue(V, E->getType());
2060  }
2061
2062  case CK_Dynamic: {
2063    LValue LV = EmitLValue(E->getSubExpr());
2064    llvm::Value *V = LV.getAddress();
2065    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
2066    return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2067  }
2068
2069  case CK_ConstructorConversion:
2070  case CK_UserDefinedConversion:
2071  case CK_CPointerToObjCPointerCast:
2072  case CK_BlockPointerToObjCPointerCast:
2073    return EmitLValue(E->getSubExpr());
2074
2075  case CK_UncheckedDerivedToBase:
2076  case CK_DerivedToBase: {
2077    const RecordType *DerivedClassTy =
2078      E->getSubExpr()->getType()->getAs<RecordType>();
2079    CXXRecordDecl *DerivedClassDecl =
2080      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2081
2082    LValue LV = EmitLValue(E->getSubExpr());
2083    llvm::Value *This = LV.getAddress();
2084
2085    // Perform the derived-to-base conversion
2086    llvm::Value *Base =
2087      GetAddressOfBaseClass(This, DerivedClassDecl,
2088                            E->path_begin(), E->path_end(),
2089                            /*NullCheckValue=*/false);
2090
2091    return MakeAddrLValue(Base, E->getType());
2092  }
2093  case CK_ToUnion:
2094    return EmitAggExprToLValue(E);
2095  case CK_BaseToDerived: {
2096    const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2097    CXXRecordDecl *DerivedClassDecl =
2098      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2099
2100    LValue LV = EmitLValue(E->getSubExpr());
2101
2102    // Perform the base-to-derived conversion
2103    llvm::Value *Derived =
2104      GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
2105                               E->path_begin(), E->path_end(),
2106                               /*NullCheckValue=*/false);
2107
2108    return MakeAddrLValue(Derived, E->getType());
2109  }
2110  case CK_LValueBitCast: {
2111    // This must be a reinterpret_cast (or c-style equivalent).
2112    const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
2113
2114    LValue LV = EmitLValue(E->getSubExpr());
2115    llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2116                                           ConvertType(CE->getTypeAsWritten()));
2117    return MakeAddrLValue(V, E->getType());
2118  }
2119  case CK_ObjCObjectLValueCast: {
2120    LValue LV = EmitLValue(E->getSubExpr());
2121    QualType ToType = getContext().getLValueReferenceType(E->getType());
2122    llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2123                                           ConvertType(ToType));
2124    return MakeAddrLValue(V, E->getType());
2125  }
2126  }
2127
2128  llvm_unreachable("Unhandled lvalue cast kind?");
2129}
2130
2131LValue CodeGenFunction::EmitNullInitializationLValue(
2132                                              const CXXScalarValueInitExpr *E) {
2133  QualType Ty = E->getType();
2134  LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty);
2135  EmitNullInitialization(LV.getAddress(), Ty);
2136  return LV;
2137}
2138
2139LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
2140  assert(e->isGLValue() || e->getType()->isRecordType());
2141  return getOpaqueLValueMapping(e);
2142}
2143
2144LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
2145                                           const MaterializeTemporaryExpr *E) {
2146  RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
2147  return MakeAddrLValue(RV.getScalarVal(), E->getType());
2148}
2149
2150
2151//===--------------------------------------------------------------------===//
2152//                             Expression Emission
2153//===--------------------------------------------------------------------===//
2154
2155RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
2156                                     ReturnValueSlot ReturnValue) {
2157  if (CGDebugInfo *DI = getDebugInfo())
2158    DI->EmitLocation(Builder, E->getLocStart());
2159
2160  // Builtins never have block type.
2161  if (E->getCallee()->getType()->isBlockPointerType())
2162    return EmitBlockCallExpr(E, ReturnValue);
2163
2164  if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
2165    return EmitCXXMemberCallExpr(CE, ReturnValue);
2166
2167  if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E))
2168    return EmitCUDAKernelCallExpr(CE, ReturnValue);
2169
2170  const Decl *TargetDecl = E->getCalleeDecl();
2171  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2172    if (unsigned builtinID = FD->getBuiltinID())
2173      return EmitBuiltinExpr(FD, builtinID, E);
2174  }
2175
2176  if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
2177    if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
2178      return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
2179
2180  if (const CXXPseudoDestructorExpr *PseudoDtor
2181          = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
2182    QualType DestroyedType = PseudoDtor->getDestroyedType();
2183    if (getContext().getLangOptions().ObjCAutoRefCount &&
2184        DestroyedType->isObjCLifetimeType() &&
2185        (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
2186         DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
2187      // Automatic Reference Counting:
2188      //   If the pseudo-expression names a retainable object with weak or
2189      //   strong lifetime, the object shall be released.
2190      Expr *BaseExpr = PseudoDtor->getBase();
2191      llvm::Value *BaseValue = NULL;
2192      Qualifiers BaseQuals;
2193
2194      // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2195      if (PseudoDtor->isArrow()) {
2196        BaseValue = EmitScalarExpr(BaseExpr);
2197        const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
2198        BaseQuals = PTy->getPointeeType().getQualifiers();
2199      } else {
2200        LValue BaseLV = EmitLValue(BaseExpr);
2201        BaseValue = BaseLV.getAddress();
2202        QualType BaseTy = BaseExpr->getType();
2203        BaseQuals = BaseTy.getQualifiers();
2204      }
2205
2206      switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
2207      case Qualifiers::OCL_None:
2208      case Qualifiers::OCL_ExplicitNone:
2209      case Qualifiers::OCL_Autoreleasing:
2210        break;
2211
2212      case Qualifiers::OCL_Strong:
2213        EmitARCRelease(Builder.CreateLoad(BaseValue,
2214                          PseudoDtor->getDestroyedType().isVolatileQualified()),
2215                       /*precise*/ true);
2216        break;
2217
2218      case Qualifiers::OCL_Weak:
2219        EmitARCDestroyWeak(BaseValue);
2220        break;
2221      }
2222    } else {
2223      // C++ [expr.pseudo]p1:
2224      //   The result shall only be used as the operand for the function call
2225      //   operator (), and the result of such a call has type void. The only
2226      //   effect is the evaluation of the postfix-expression before the dot or
2227      //   arrow.
2228      EmitScalarExpr(E->getCallee());
2229    }
2230
2231    return RValue::get(0);
2232  }
2233
2234  llvm::Value *Callee = EmitScalarExpr(E->getCallee());
2235  return EmitCall(E->getCallee()->getType(), Callee, ReturnValue,
2236                  E->arg_begin(), E->arg_end(), TargetDecl);
2237}
2238
2239LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
2240  // Comma expressions just emit their LHS then their RHS as an l-value.
2241  if (E->getOpcode() == BO_Comma) {
2242    EmitIgnoredExpr(E->getLHS());
2243    EnsureInsertPoint();
2244    return EmitLValue(E->getRHS());
2245  }
2246
2247  if (E->getOpcode() == BO_PtrMemD ||
2248      E->getOpcode() == BO_PtrMemI)
2249    return EmitPointerToDataMemberBinaryExpr(E);
2250
2251  assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
2252
2253  // Note that in all of these cases, __block variables need the RHS
2254  // evaluated first just in case the variable gets moved by the RHS.
2255
2256  if (!hasAggregateLLVMType(E->getType())) {
2257    switch (E->getLHS()->getType().getObjCLifetime()) {
2258    case Qualifiers::OCL_Strong:
2259      return EmitARCStoreStrong(E, /*ignored*/ false).first;
2260
2261    case Qualifiers::OCL_Autoreleasing:
2262      return EmitARCStoreAutoreleasing(E).first;
2263
2264    // No reason to do any of these differently.
2265    case Qualifiers::OCL_None:
2266    case Qualifiers::OCL_ExplicitNone:
2267    case Qualifiers::OCL_Weak:
2268      break;
2269    }
2270
2271    RValue RV = EmitAnyExpr(E->getRHS());
2272    LValue LV = EmitLValue(E->getLHS());
2273    EmitStoreThroughLValue(RV, LV);
2274    return LV;
2275  }
2276
2277  if (E->getType()->isAnyComplexType())
2278    return EmitComplexAssignmentLValue(E);
2279
2280  return EmitAggExprToLValue(E);
2281}
2282
2283LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
2284  RValue RV = EmitCallExpr(E);
2285
2286  if (!RV.isScalar())
2287    return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2288
2289  assert(E->getCallReturnType()->isReferenceType() &&
2290         "Can't have a scalar return unless the return type is a "
2291         "reference type!");
2292
2293  return MakeAddrLValue(RV.getScalarVal(), E->getType());
2294}
2295
2296LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
2297  // FIXME: This shouldn't require another copy.
2298  return EmitAggExprToLValue(E);
2299}
2300
2301LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
2302  assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
2303         && "binding l-value to type which needs a temporary");
2304  AggValueSlot Slot = CreateAggTemp(E->getType());
2305  EmitCXXConstructExpr(E, Slot);
2306  return MakeAddrLValue(Slot.getAddr(), E->getType());
2307}
2308
2309LValue
2310CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
2311  return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
2312}
2313
2314LValue
2315CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
2316  AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
2317  Slot.setExternallyDestructed();
2318  EmitAggExpr(E->getSubExpr(), Slot);
2319  EmitCXXTemporary(E->getTemporary(), Slot.getAddr());
2320  return MakeAddrLValue(Slot.getAddr(), E->getType());
2321}
2322
2323LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
2324  RValue RV = EmitObjCMessageExpr(E);
2325
2326  if (!RV.isScalar())
2327    return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2328
2329  assert(E->getMethodDecl()->getResultType()->isReferenceType() &&
2330         "Can't have a scalar return unless the return type is a "
2331         "reference type!");
2332
2333  return MakeAddrLValue(RV.getScalarVal(), E->getType());
2334}
2335
2336LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
2337  llvm::Value *V =
2338    CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true);
2339  return MakeAddrLValue(V, E->getType());
2340}
2341
2342llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2343                                             const ObjCIvarDecl *Ivar) {
2344  return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
2345}
2346
2347LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
2348                                          llvm::Value *BaseValue,
2349                                          const ObjCIvarDecl *Ivar,
2350                                          unsigned CVRQualifiers) {
2351  return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
2352                                                   Ivar, CVRQualifiers);
2353}
2354
2355LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
2356  // FIXME: A lot of the code below could be shared with EmitMemberExpr.
2357  llvm::Value *BaseValue = 0;
2358  const Expr *BaseExpr = E->getBase();
2359  Qualifiers BaseQuals;
2360  QualType ObjectTy;
2361  if (E->isArrow()) {
2362    BaseValue = EmitScalarExpr(BaseExpr);
2363    ObjectTy = BaseExpr->getType()->getPointeeType();
2364    BaseQuals = ObjectTy.getQualifiers();
2365  } else {
2366    LValue BaseLV = EmitLValue(BaseExpr);
2367    // FIXME: this isn't right for bitfields.
2368    BaseValue = BaseLV.getAddress();
2369    ObjectTy = BaseExpr->getType();
2370    BaseQuals = ObjectTy.getQualifiers();
2371  }
2372
2373  LValue LV =
2374    EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
2375                      BaseQuals.getCVRQualifiers());
2376  setObjCGCLValueClass(getContext(), E, LV);
2377  return LV;
2378}
2379
2380LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
2381  // Can only get l-value for message expression returning aggregate type
2382  RValue RV = EmitAnyExprToTemp(E);
2383  return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2384}
2385
2386RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
2387                                 ReturnValueSlot ReturnValue,
2388                                 CallExpr::const_arg_iterator ArgBeg,
2389                                 CallExpr::const_arg_iterator ArgEnd,
2390                                 const Decl *TargetDecl) {
2391  // Get the actual function type. The callee type will always be a pointer to
2392  // function type or a block pointer type.
2393  assert(CalleeType->isFunctionPointerType() &&
2394         "Call must have function pointer type!");
2395
2396  CalleeType = getContext().getCanonicalType(CalleeType);
2397
2398  const FunctionType *FnType
2399    = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
2400
2401  CallArgList Args;
2402  EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd);
2403
2404  const CGFunctionInfo &FnInfo = CGM.getTypes().getFunctionInfo(Args, FnType);
2405
2406  // C99 6.5.2.2p6:
2407  //   If the expression that denotes the called function has a type
2408  //   that does not include a prototype, [the default argument
2409  //   promotions are performed]. If the number of arguments does not
2410  //   equal the number of parameters, the behavior is undefined. If
2411  //   the function is defined with a type that includes a prototype,
2412  //   and either the prototype ends with an ellipsis (, ...) or the
2413  //   types of the arguments after promotion are not compatible with
2414  //   the types of the parameters, the behavior is undefined. If the
2415  //   function is defined with a type that does not include a
2416  //   prototype, and the types of the arguments after promotion are
2417  //   not compatible with those of the parameters after promotion,
2418  //   the behavior is undefined [except in some trivial cases].
2419  // That is, in the general case, we should assume that a call
2420  // through an unprototyped function type works like a *non-variadic*
2421  // call.  The way we make this work is to cast to the exact type
2422  // of the promoted arguments.
2423  if (isa<FunctionNoProtoType>(FnType) &&
2424      !getTargetHooks().isNoProtoCallVariadic(FnType->getCallConv())) {
2425    assert(cast<llvm::FunctionType>(Callee->getType()->getContainedType(0))
2426             ->isVarArg());
2427    llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo, false);
2428    CalleeTy = CalleeTy->getPointerTo();
2429    Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
2430  }
2431
2432  return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
2433}
2434
2435LValue CodeGenFunction::
2436EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
2437  llvm::Value *BaseV;
2438  if (E->getOpcode() == BO_PtrMemI)
2439    BaseV = EmitScalarExpr(E->getLHS());
2440  else
2441    BaseV = EmitLValue(E->getLHS()).getAddress();
2442
2443  llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
2444
2445  const MemberPointerType *MPT
2446    = E->getRHS()->getType()->getAs<MemberPointerType>();
2447
2448  llvm::Value *AddV =
2449    CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT);
2450
2451  return MakeAddrLValue(AddV, MPT->getPointeeType());
2452}
2453
2454static void
2455EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest,
2456             llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2,
2457             uint64_t Size, unsigned Align, llvm::AtomicOrdering Order) {
2458  if (E->isCmpXChg()) {
2459    // Note that cmpxchg only supports specifying one ordering and
2460    // doesn't support weak cmpxchg, at least at the moment.
2461    llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2462    LoadVal1->setAlignment(Align);
2463    llvm::LoadInst *LoadVal2 = CGF.Builder.CreateLoad(Val2);
2464    LoadVal2->setAlignment(Align);
2465    llvm::AtomicCmpXchgInst *CXI =
2466        CGF.Builder.CreateAtomicCmpXchg(Ptr, LoadVal1, LoadVal2, Order);
2467    CXI->setVolatile(E->isVolatile());
2468    llvm::StoreInst *StoreVal1 = CGF.Builder.CreateStore(CXI, Val1);
2469    StoreVal1->setAlignment(Align);
2470    llvm::Value *Cmp = CGF.Builder.CreateICmpEQ(CXI, LoadVal1);
2471    CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType()));
2472    return;
2473  }
2474
2475  if (E->getOp() == AtomicExpr::Load) {
2476    llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr);
2477    Load->setAtomic(Order);
2478    Load->setAlignment(Size);
2479    Load->setVolatile(E->isVolatile());
2480    llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest);
2481    StoreDest->setAlignment(Align);
2482    return;
2483  }
2484
2485  if (E->getOp() == AtomicExpr::Store) {
2486    assert(!Dest && "Store does not return a value");
2487    llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2488    LoadVal1->setAlignment(Align);
2489    llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr);
2490    Store->setAtomic(Order);
2491    Store->setAlignment(Size);
2492    Store->setVolatile(E->isVolatile());
2493    return;
2494  }
2495
2496  llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add;
2497  switch (E->getOp()) {
2498    case AtomicExpr::CmpXchgWeak:
2499    case AtomicExpr::CmpXchgStrong:
2500    case AtomicExpr::Store:
2501    case AtomicExpr::Load:  assert(0 && "Already handled!");
2502    case AtomicExpr::Add:   Op = llvm::AtomicRMWInst::Add;  break;
2503    case AtomicExpr::Sub:   Op = llvm::AtomicRMWInst::Sub;  break;
2504    case AtomicExpr::And:   Op = llvm::AtomicRMWInst::And;  break;
2505    case AtomicExpr::Or:    Op = llvm::AtomicRMWInst::Or;   break;
2506    case AtomicExpr::Xor:   Op = llvm::AtomicRMWInst::Xor;  break;
2507    case AtomicExpr::Xchg:  Op = llvm::AtomicRMWInst::Xchg; break;
2508  }
2509  llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2510  LoadVal1->setAlignment(Align);
2511  llvm::AtomicRMWInst *RMWI =
2512      CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order);
2513  RMWI->setVolatile(E->isVolatile());
2514  llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(RMWI, Dest);
2515  StoreDest->setAlignment(Align);
2516}
2517
2518// This function emits any expression (scalar, complex, or aggregate)
2519// into a temporary alloca.
2520static llvm::Value *
2521EmitValToTemp(CodeGenFunction &CGF, Expr *E) {
2522  llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp");
2523  CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(),
2524                       /*Init*/ true);
2525  return DeclPtr;
2526}
2527
2528static RValue ConvertTempToRValue(CodeGenFunction &CGF, QualType Ty,
2529                                  llvm::Value *Dest) {
2530  if (Ty->isAnyComplexType())
2531    return RValue::getComplex(CGF.LoadComplexFromAddr(Dest, false));
2532  if (CGF.hasAggregateLLVMType(Ty))
2533    return RValue::getAggregate(Dest);
2534  return RValue::get(CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(Dest, Ty)));
2535}
2536
2537RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) {
2538  QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
2539  QualType MemTy = AtomicTy->getAs<AtomicType>()->getValueType();
2540  CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy);
2541  uint64_t Size = sizeChars.getQuantity();
2542  CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy);
2543  unsigned Align = alignChars.getQuantity();
2544  unsigned MaxInlineWidth =
2545      getContext().getTargetInfo().getMaxAtomicInlineWidth();
2546  bool UseLibcall = (Size != Align || Size > MaxInlineWidth);
2547
2548  llvm::Value *Ptr, *Order, *OrderFail = 0, *Val1 = 0, *Val2 = 0;
2549  Ptr = EmitScalarExpr(E->getPtr());
2550  Order = EmitScalarExpr(E->getOrder());
2551  if (E->isCmpXChg()) {
2552    Val1 = EmitScalarExpr(E->getVal1());
2553    Val2 = EmitValToTemp(*this, E->getVal2());
2554    OrderFail = EmitScalarExpr(E->getOrderFail());
2555    (void)OrderFail; // OrderFail is unused at the moment
2556  } else if ((E->getOp() == AtomicExpr::Add || E->getOp() == AtomicExpr::Sub) &&
2557             MemTy->isPointerType()) {
2558    // For pointers, we're required to do a bit of math: adding 1 to an int*
2559    // is not the same as adding 1 to a uintptr_t.
2560    QualType Val1Ty = E->getVal1()->getType();
2561    llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1());
2562    CharUnits PointeeIncAmt =
2563        getContext().getTypeSizeInChars(MemTy->getPointeeType());
2564    Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt));
2565    Val1 = CreateMemTemp(Val1Ty, ".atomictmp");
2566    EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty));
2567  } else if (E->getOp() != AtomicExpr::Load) {
2568    Val1 = EmitValToTemp(*this, E->getVal1());
2569  }
2570
2571  if (E->getOp() != AtomicExpr::Store && !Dest)
2572    Dest = CreateMemTemp(E->getType(), ".atomicdst");
2573
2574  if (UseLibcall) {
2575    // FIXME: Finalize what the libcalls are actually supposed to look like.
2576    // See also http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary .
2577    return EmitUnsupportedRValue(E, "atomic library call");
2578  }
2579#if 0
2580  if (UseLibcall) {
2581    const char* LibCallName;
2582    switch (E->getOp()) {
2583    case AtomicExpr::CmpXchgWeak:
2584      LibCallName = "__atomic_compare_exchange_generic"; break;
2585    case AtomicExpr::CmpXchgStrong:
2586      LibCallName = "__atomic_compare_exchange_generic"; break;
2587    case AtomicExpr::Add:   LibCallName = "__atomic_fetch_add_generic"; break;
2588    case AtomicExpr::Sub:   LibCallName = "__atomic_fetch_sub_generic"; break;
2589    case AtomicExpr::And:   LibCallName = "__atomic_fetch_and_generic"; break;
2590    case AtomicExpr::Or:    LibCallName = "__atomic_fetch_or_generic"; break;
2591    case AtomicExpr::Xor:   LibCallName = "__atomic_fetch_xor_generic"; break;
2592    case AtomicExpr::Xchg:  LibCallName = "__atomic_exchange_generic"; break;
2593    case AtomicExpr::Store: LibCallName = "__atomic_store_generic"; break;
2594    case AtomicExpr::Load:  LibCallName = "__atomic_load_generic"; break;
2595    }
2596    llvm::SmallVector<QualType, 4> Params;
2597    CallArgList Args;
2598    QualType RetTy = getContext().VoidTy;
2599    if (E->getOp() != AtomicExpr::Store && !E->isCmpXChg())
2600      Args.add(RValue::get(EmitCastToVoidPtr(Dest)),
2601               getContext().VoidPtrTy);
2602    Args.add(RValue::get(EmitCastToVoidPtr(Ptr)),
2603             getContext().VoidPtrTy);
2604    if (E->getOp() != AtomicExpr::Load)
2605      Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
2606               getContext().VoidPtrTy);
2607    if (E->isCmpXChg()) {
2608      Args.add(RValue::get(EmitCastToVoidPtr(Val2)),
2609               getContext().VoidPtrTy);
2610      RetTy = getContext().IntTy;
2611    }
2612    Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)),
2613             getContext().getSizeType());
2614    const CGFunctionInfo &FuncInfo =
2615        CGM.getTypes().getFunctionInfo(RetTy, Args, FunctionType::ExtInfo());
2616    llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo, false);
2617    llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
2618    RValue Res = EmitCall(FuncInfo, Func, ReturnValueSlot(), Args);
2619    if (E->isCmpXChg())
2620      return Res;
2621    if (E->getOp() == AtomicExpr::Store)
2622      return RValue::get(0);
2623    return ConvertTempToRValue(*this, E->getType(), Dest);
2624  }
2625#endif
2626  llvm::Type *IPtrTy =
2627      llvm::IntegerType::get(getLLVMContext(), Size * 8)->getPointerTo();
2628  llvm::Value *OrigDest = Dest;
2629  Ptr = Builder.CreateBitCast(Ptr, IPtrTy);
2630  if (Val1) Val1 = Builder.CreateBitCast(Val1, IPtrTy);
2631  if (Val2) Val2 = Builder.CreateBitCast(Val2, IPtrTy);
2632  if (Dest && !E->isCmpXChg()) Dest = Builder.CreateBitCast(Dest, IPtrTy);
2633
2634  if (isa<llvm::ConstantInt>(Order)) {
2635    int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
2636    switch (ord) {
2637    case 0:  // memory_order_relaxed
2638      EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2639                   llvm::Monotonic);
2640      break;
2641    case 1:  // memory_order_consume
2642    case 2:  // memory_order_acquire
2643      EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2644                   llvm::Acquire);
2645      break;
2646    case 3:  // memory_order_release
2647      EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2648                   llvm::Release);
2649      break;
2650    case 4:  // memory_order_acq_rel
2651      EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2652                   llvm::AcquireRelease);
2653      break;
2654    case 5:  // memory_order_seq_cst
2655      EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2656                   llvm::SequentiallyConsistent);
2657      break;
2658    default: // invalid order
2659      // We should not ever get here normally, but it's hard to
2660      // enforce that in general.
2661      break;
2662    }
2663    if (E->getOp() == AtomicExpr::Store)
2664      return RValue::get(0);
2665    return ConvertTempToRValue(*this, E->getType(), OrigDest);
2666  }
2667
2668  // Long case, when Order isn't obviously constant.
2669
2670  // Create all the relevant BB's
2671  llvm::BasicBlock *MonotonicBB = 0, *AcquireBB = 0, *ReleaseBB = 0,
2672                   *AcqRelBB = 0, *SeqCstBB = 0;
2673  MonotonicBB = createBasicBlock("monotonic", CurFn);
2674  if (E->getOp() != AtomicExpr::Store)
2675    AcquireBB = createBasicBlock("acquire", CurFn);
2676  if (E->getOp() != AtomicExpr::Load)
2677    ReleaseBB = createBasicBlock("release", CurFn);
2678  if (E->getOp() != AtomicExpr::Load && E->getOp() != AtomicExpr::Store)
2679    AcqRelBB = createBasicBlock("acqrel", CurFn);
2680  SeqCstBB = createBasicBlock("seqcst", CurFn);
2681  llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
2682
2683  // Create the switch for the split
2684  // MonotonicBB is arbitrarily chosen as the default case; in practice, this
2685  // doesn't matter unless someone is crazy enough to use something that
2686  // doesn't fold to a constant for the ordering.
2687  Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
2688  llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB);
2689
2690  // Emit all the different atomics
2691  Builder.SetInsertPoint(MonotonicBB);
2692  EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2693               llvm::Monotonic);
2694  Builder.CreateBr(ContBB);
2695  if (E->getOp() != AtomicExpr::Store) {
2696    Builder.SetInsertPoint(AcquireBB);
2697    EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2698                 llvm::Acquire);
2699    Builder.CreateBr(ContBB);
2700    SI->addCase(Builder.getInt32(1), AcquireBB);
2701    SI->addCase(Builder.getInt32(2), AcquireBB);
2702  }
2703  if (E->getOp() != AtomicExpr::Load) {
2704    Builder.SetInsertPoint(ReleaseBB);
2705    EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2706                 llvm::Release);
2707    Builder.CreateBr(ContBB);
2708    SI->addCase(Builder.getInt32(3), ReleaseBB);
2709  }
2710  if (E->getOp() != AtomicExpr::Load && E->getOp() != AtomicExpr::Store) {
2711    Builder.SetInsertPoint(AcqRelBB);
2712    EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2713                 llvm::AcquireRelease);
2714    Builder.CreateBr(ContBB);
2715    SI->addCase(Builder.getInt32(4), AcqRelBB);
2716  }
2717  Builder.SetInsertPoint(SeqCstBB);
2718  EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2719               llvm::SequentiallyConsistent);
2720  Builder.CreateBr(ContBB);
2721  SI->addCase(Builder.getInt32(5), SeqCstBB);
2722
2723  // Cleanup and return
2724  Builder.SetInsertPoint(ContBB);
2725  if (E->getOp() == AtomicExpr::Store)
2726    return RValue::get(0);
2727  return ConvertTempToRValue(*this, E->getType(), OrigDest);
2728}
2729
2730void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, unsigned AccuracyN,
2731                                    unsigned AccuracyD) {
2732  assert(Val->getType()->isFPOrFPVectorTy());
2733  if (!AccuracyN || !isa<llvm::Instruction>(Val))
2734    return;
2735
2736  llvm::Value *Vals[2];
2737  Vals[0] = llvm::ConstantInt::get(Int32Ty, AccuracyN);
2738  Vals[1] = llvm::ConstantInt::get(Int32Ty, AccuracyD);
2739  llvm::MDNode *Node = llvm::MDNode::get(getLLVMContext(), Vals);
2740
2741  cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpaccuracy,
2742                                            Node);
2743}
2744
2745namespace {
2746  struct LValueOrRValue {
2747    LValue LV;
2748    RValue RV;
2749  };
2750}
2751
2752static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
2753                                           const PseudoObjectExpr *E,
2754                                           bool forLValue,
2755                                           AggValueSlot slot) {
2756  llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2757
2758  // Find the result expression, if any.
2759  const Expr *resultExpr = E->getResultExpr();
2760  LValueOrRValue result;
2761
2762  for (PseudoObjectExpr::const_semantics_iterator
2763         i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2764    const Expr *semantic = *i;
2765
2766    // If this semantic expression is an opaque value, bind it
2767    // to the result of its source expression.
2768    if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2769
2770      // If this is the result expression, we may need to evaluate
2771      // directly into the slot.
2772      typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2773      OVMA opaqueData;
2774      if (ov == resultExpr && ov->isRValue() && !forLValue &&
2775          CodeGenFunction::hasAggregateLLVMType(ov->getType()) &&
2776          !ov->getType()->isAnyComplexType()) {
2777        CGF.EmitAggExpr(ov->getSourceExpr(), slot);
2778
2779        LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
2780        opaqueData = OVMA::bind(CGF, ov, LV);
2781        result.RV = slot.asRValue();
2782
2783      // Otherwise, emit as normal.
2784      } else {
2785        opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2786
2787        // If this is the result, also evaluate the result now.
2788        if (ov == resultExpr) {
2789          if (forLValue)
2790            result.LV = CGF.EmitLValue(ov);
2791          else
2792            result.RV = CGF.EmitAnyExpr(ov, slot);
2793        }
2794      }
2795
2796      opaques.push_back(opaqueData);
2797
2798    // Otherwise, if the expression is the result, evaluate it
2799    // and remember the result.
2800    } else if (semantic == resultExpr) {
2801      if (forLValue)
2802        result.LV = CGF.EmitLValue(semantic);
2803      else
2804        result.RV = CGF.EmitAnyExpr(semantic, slot);
2805
2806    // Otherwise, evaluate the expression in an ignored context.
2807    } else {
2808      CGF.EmitIgnoredExpr(semantic);
2809    }
2810  }
2811
2812  // Unbind all the opaques now.
2813  for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2814    opaques[i].unbind(CGF);
2815
2816  return result;
2817}
2818
2819RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
2820                                               AggValueSlot slot) {
2821  return emitPseudoObjectExpr(*this, E, false, slot).RV;
2822}
2823
2824LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
2825  return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
2826}
2827