CGExpr.cpp revision 7c2349be2d11143a2e59a167fd43362a3bf4585e
1//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "CGCall.h"
17#include "CGCXXABI.h"
18#include "CGDebugInfo.h"
19#include "CGRecordLayout.h"
20#include "CGObjCRuntime.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/Frontend/CodeGenOptions.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/Target/TargetData.h"
26using namespace clang;
27using namespace CodeGen;
28
29//===--------------------------------------------------------------------===//
30//                        Miscellaneous Helper Methods
31//===--------------------------------------------------------------------===//
32
33llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
34  unsigned addressSpace =
35    cast<llvm::PointerType>(value->getType())->getAddressSpace();
36
37  llvm::PointerType *destType = Int8PtrTy;
38  if (addressSpace)
39    destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
40
41  if (value->getType() == destType) return value;
42  return Builder.CreateBitCast(value, destType);
43}
44
45/// CreateTempAlloca - This creates a alloca and inserts it into the entry
46/// block.
47llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
48                                                    const Twine &Name) {
49  if (!Builder.isNamePreserving())
50    return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
51  return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
52}
53
54void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
55                                     llvm::Value *Init) {
56  llvm::StoreInst *Store = new llvm::StoreInst(Init, Var);
57  llvm::BasicBlock *Block = AllocaInsertPt->getParent();
58  Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
59}
60
61llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
62                                                const Twine &Name) {
63  llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
64  // FIXME: Should we prefer the preferred type alignment here?
65  CharUnits Align = getContext().getTypeAlignInChars(Ty);
66  Alloc->setAlignment(Align.getQuantity());
67  return Alloc;
68}
69
70llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
71                                                 const Twine &Name) {
72  llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
73  // FIXME: Should we prefer the preferred type alignment here?
74  CharUnits Align = getContext().getTypeAlignInChars(Ty);
75  Alloc->setAlignment(Align.getQuantity());
76  return Alloc;
77}
78
79/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
80/// expression and compare the result against zero, returning an Int1Ty value.
81llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
82  if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
83    llvm::Value *MemPtr = EmitScalarExpr(E);
84    return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
85  }
86
87  QualType BoolTy = getContext().BoolTy;
88  if (!E->getType()->isAnyComplexType())
89    return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
90
91  return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
92}
93
94/// EmitIgnoredExpr - Emit code to compute the specified expression,
95/// ignoring the result.
96void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
97  if (E->isRValue())
98    return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
99
100  // Just emit it as an l-value and drop the result.
101  EmitLValue(E);
102}
103
104/// EmitAnyExpr - Emit code to compute the specified expression which
105/// can have any type.  The result is returned as an RValue struct.
106/// If this is an aggregate expression, AggSlot indicates where the
107/// result should be returned.
108RValue CodeGenFunction::EmitAnyExpr(const Expr *E, AggValueSlot AggSlot,
109                                    bool IgnoreResult) {
110  if (!hasAggregateLLVMType(E->getType()))
111    return RValue::get(EmitScalarExpr(E, IgnoreResult));
112  else if (E->getType()->isAnyComplexType())
113    return RValue::getComplex(EmitComplexExpr(E, IgnoreResult, IgnoreResult));
114
115  EmitAggExpr(E, AggSlot, IgnoreResult);
116  return AggSlot.asRValue();
117}
118
119/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
120/// always be accessible even if no aggregate location is provided.
121RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
122  AggValueSlot AggSlot = AggValueSlot::ignored();
123
124  if (hasAggregateLLVMType(E->getType()) &&
125      !E->getType()->isAnyComplexType())
126    AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
127  return EmitAnyExpr(E, AggSlot);
128}
129
130/// EmitAnyExprToMem - Evaluate an expression into a given memory
131/// location.
132void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
133                                       llvm::Value *Location,
134                                       Qualifiers Quals,
135                                       bool IsInit) {
136  if (E->getType()->isAnyComplexType())
137    EmitComplexExprIntoAddr(E, Location, Quals.hasVolatile());
138  else if (hasAggregateLLVMType(E->getType()))
139    EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
140                                         AggValueSlot::IsDestructed_t(IsInit),
141                                         AggValueSlot::DoesNotNeedGCBarriers));
142  else {
143    RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
144    LValue LV = MakeAddrLValue(Location, E->getType());
145    EmitStoreThroughLValue(RV, LV);
146  }
147}
148
149namespace {
150/// \brief An adjustment to be made to the temporary created when emitting a
151/// reference binding, which accesses a particular subobject of that temporary.
152  struct SubobjectAdjustment {
153    enum { DerivedToBaseAdjustment, FieldAdjustment } Kind;
154
155    union {
156      struct {
157        const CastExpr *BasePath;
158        const CXXRecordDecl *DerivedClass;
159      } DerivedToBase;
160
161      FieldDecl *Field;
162    };
163
164    SubobjectAdjustment(const CastExpr *BasePath,
165                        const CXXRecordDecl *DerivedClass)
166      : Kind(DerivedToBaseAdjustment) {
167      DerivedToBase.BasePath = BasePath;
168      DerivedToBase.DerivedClass = DerivedClass;
169    }
170
171    SubobjectAdjustment(FieldDecl *Field)
172      : Kind(FieldAdjustment) {
173      this->Field = Field;
174    }
175  };
176}
177
178static llvm::Value *
179CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type,
180                         const NamedDecl *InitializedDecl) {
181  if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
182    if (VD->hasGlobalStorage()) {
183      llvm::SmallString<256> Name;
184      llvm::raw_svector_ostream Out(Name);
185      CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
186      Out.flush();
187
188      llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type);
189
190      // Create the reference temporary.
191      llvm::GlobalValue *RefTemp =
192        new llvm::GlobalVariable(CGF.CGM.getModule(),
193                                 RefTempTy, /*isConstant=*/false,
194                                 llvm::GlobalValue::InternalLinkage,
195                                 llvm::Constant::getNullValue(RefTempTy),
196                                 Name.str());
197      return RefTemp;
198    }
199  }
200
201  return CGF.CreateMemTemp(Type, "ref.tmp");
202}
203
204static llvm::Value *
205EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E,
206                            llvm::Value *&ReferenceTemporary,
207                            const CXXDestructorDecl *&ReferenceTemporaryDtor,
208                            QualType &ObjCARCReferenceLifetimeType,
209                            const NamedDecl *InitializedDecl) {
210  // Look through expressions for materialized temporaries (for now).
211  if (const MaterializeTemporaryExpr *M
212                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
213    // Objective-C++ ARC:
214    //   If we are binding a reference to a temporary that has ownership, we
215    //   need to perform retain/release operations on the temporary.
216    if (CGF.getContext().getLangOptions().ObjCAutoRefCount &&
217        E->getType()->isObjCLifetimeType() &&
218        (E->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
219         E->getType().getObjCLifetime() == Qualifiers::OCL_Weak ||
220         E->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing))
221      ObjCARCReferenceLifetimeType = E->getType();
222
223    E = M->GetTemporaryExpr();
224  }
225
226  if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E))
227    E = DAE->getExpr();
228
229  if (const ExprWithCleanups *TE = dyn_cast<ExprWithCleanups>(E)) {
230    CodeGenFunction::RunCleanupsScope Scope(CGF);
231
232    return EmitExprForReferenceBinding(CGF, TE->getSubExpr(),
233                                       ReferenceTemporary,
234                                       ReferenceTemporaryDtor,
235                                       ObjCARCReferenceLifetimeType,
236                                       InitializedDecl);
237  }
238
239  if (const ObjCPropertyRefExpr *PRE =
240      dyn_cast<ObjCPropertyRefExpr>(E->IgnoreParenImpCasts()))
241    if (PRE->getGetterResultType()->isReferenceType())
242      E = PRE;
243
244  RValue RV;
245  if (E->isGLValue()) {
246    // Emit the expression as an lvalue.
247    LValue LV = CGF.EmitLValue(E);
248    if (LV.isPropertyRef()) {
249      RV = CGF.EmitLoadOfPropertyRefLValue(LV);
250      return RV.getScalarVal();
251    }
252
253    if (LV.isSimple())
254      return LV.getAddress();
255
256    // We have to load the lvalue.
257    RV = CGF.EmitLoadOfLValue(LV);
258  } else {
259    if (!ObjCARCReferenceLifetimeType.isNull()) {
260      ReferenceTemporary = CreateReferenceTemporary(CGF,
261                                                  ObjCARCReferenceLifetimeType,
262                                                    InitializedDecl);
263
264
265      LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary,
266                                             ObjCARCReferenceLifetimeType);
267
268      CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl),
269                         RefTempDst, false);
270
271      bool ExtendsLifeOfTemporary = false;
272      if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
273        if (Var->extendsLifetimeOfTemporary())
274          ExtendsLifeOfTemporary = true;
275      } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) {
276        ExtendsLifeOfTemporary = true;
277      }
278
279      if (!ExtendsLifeOfTemporary) {
280        // Since the lifetime of this temporary isn't going to be extended,
281        // we need to clean it up ourselves at the end of the full expression.
282        switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
283        case Qualifiers::OCL_None:
284        case Qualifiers::OCL_ExplicitNone:
285        case Qualifiers::OCL_Autoreleasing:
286          break;
287
288        case Qualifiers::OCL_Strong: {
289          assert(!ObjCARCReferenceLifetimeType->isArrayType());
290          CleanupKind cleanupKind = CGF.getARCCleanupKind();
291          CGF.pushDestroy(cleanupKind,
292                          ReferenceTemporary,
293                          ObjCARCReferenceLifetimeType,
294                          CodeGenFunction::destroyARCStrongImprecise,
295                          cleanupKind & EHCleanup);
296          break;
297        }
298
299        case Qualifiers::OCL_Weak:
300          assert(!ObjCARCReferenceLifetimeType->isArrayType());
301          CGF.pushDestroy(NormalAndEHCleanup,
302                          ReferenceTemporary,
303                          ObjCARCReferenceLifetimeType,
304                          CodeGenFunction::destroyARCWeak,
305                          /*useEHCleanupForArray*/ true);
306          break;
307        }
308
309        ObjCARCReferenceLifetimeType = QualType();
310      }
311
312      return ReferenceTemporary;
313    }
314
315    SmallVector<SubobjectAdjustment, 2> Adjustments;
316    while (true) {
317      E = E->IgnoreParens();
318
319      if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
320        if ((CE->getCastKind() == CK_DerivedToBase ||
321             CE->getCastKind() == CK_UncheckedDerivedToBase) &&
322            E->getType()->isRecordType()) {
323          E = CE->getSubExpr();
324          CXXRecordDecl *Derived
325            = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
326          Adjustments.push_back(SubobjectAdjustment(CE, Derived));
327          continue;
328        }
329
330        if (CE->getCastKind() == CK_NoOp) {
331          E = CE->getSubExpr();
332          continue;
333        }
334      } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
335        if (!ME->isArrow() && ME->getBase()->isRValue()) {
336          assert(ME->getBase()->getType()->isRecordType());
337          if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
338            E = ME->getBase();
339            Adjustments.push_back(SubobjectAdjustment(Field));
340            continue;
341          }
342        }
343      }
344
345      if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E))
346        if (opaque->getType()->isRecordType())
347          return CGF.EmitOpaqueValueLValue(opaque).getAddress();
348
349      // Nothing changed.
350      break;
351    }
352
353    // Create a reference temporary if necessary.
354    AggValueSlot AggSlot = AggValueSlot::ignored();
355    if (CGF.hasAggregateLLVMType(E->getType()) &&
356        !E->getType()->isAnyComplexType()) {
357      ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
358                                                    InitializedDecl);
359      AggValueSlot::IsDestructed_t isDestructed
360        = AggValueSlot::IsDestructed_t(InitializedDecl != 0);
361      AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Qualifiers(),
362                                      isDestructed,
363                                      AggValueSlot::DoesNotNeedGCBarriers);
364    }
365
366    if (InitializedDecl) {
367      // Get the destructor for the reference temporary.
368      if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
369        CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
370        if (!ClassDecl->hasTrivialDestructor())
371          ReferenceTemporaryDtor = ClassDecl->getDestructor();
372      }
373    }
374
375    RV = CGF.EmitAnyExpr(E, AggSlot);
376
377    // Check if need to perform derived-to-base casts and/or field accesses, to
378    // get from the temporary object we created (and, potentially, for which we
379    // extended the lifetime) to the subobject we're binding the reference to.
380    if (!Adjustments.empty()) {
381      llvm::Value *Object = RV.getAggregateAddr();
382      for (unsigned I = Adjustments.size(); I != 0; --I) {
383        SubobjectAdjustment &Adjustment = Adjustments[I-1];
384        switch (Adjustment.Kind) {
385        case SubobjectAdjustment::DerivedToBaseAdjustment:
386          Object =
387              CGF.GetAddressOfBaseClass(Object,
388                                        Adjustment.DerivedToBase.DerivedClass,
389                              Adjustment.DerivedToBase.BasePath->path_begin(),
390                              Adjustment.DerivedToBase.BasePath->path_end(),
391                                        /*NullCheckValue=*/false);
392          break;
393
394        case SubobjectAdjustment::FieldAdjustment: {
395          LValue LV =
396            CGF.EmitLValueForField(Object, Adjustment.Field, 0);
397          if (LV.isSimple()) {
398            Object = LV.getAddress();
399            break;
400          }
401
402          // For non-simple lvalues, we actually have to create a copy of
403          // the object we're binding to.
404          QualType T = Adjustment.Field->getType().getNonReferenceType()
405                                                  .getUnqualifiedType();
406          Object = CreateReferenceTemporary(CGF, T, InitializedDecl);
407          LValue TempLV = CGF.MakeAddrLValue(Object,
408                                             Adjustment.Field->getType());
409          CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV);
410          break;
411        }
412
413        }
414      }
415
416      return Object;
417    }
418  }
419
420  if (RV.isAggregate())
421    return RV.getAggregateAddr();
422
423  // Create a temporary variable that we can bind the reference to.
424  ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
425                                                InitializedDecl);
426
427
428  unsigned Alignment =
429    CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity();
430  if (RV.isScalar())
431    CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary,
432                          /*Volatile=*/false, Alignment, E->getType());
433  else
434    CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary,
435                           /*Volatile=*/false);
436  return ReferenceTemporary;
437}
438
439RValue
440CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E,
441                                            const NamedDecl *InitializedDecl) {
442  llvm::Value *ReferenceTemporary = 0;
443  const CXXDestructorDecl *ReferenceTemporaryDtor = 0;
444  QualType ObjCARCReferenceLifetimeType;
445  llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary,
446                                                   ReferenceTemporaryDtor,
447                                                   ObjCARCReferenceLifetimeType,
448                                                   InitializedDecl);
449  if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull())
450    return RValue::get(Value);
451
452  // Make sure to call the destructor for the reference temporary.
453  const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl);
454  if (VD && VD->hasGlobalStorage()) {
455    if (ReferenceTemporaryDtor) {
456      llvm::Constant *DtorFn =
457        CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
458      EmitCXXGlobalDtorRegistration(DtorFn,
459                                    cast<llvm::Constant>(ReferenceTemporary));
460    } else {
461      assert(!ObjCARCReferenceLifetimeType.isNull());
462      // Note: We intentionally do not register a global "destructor" to
463      // release the object.
464    }
465
466    return RValue::get(Value);
467  }
468
469  if (ReferenceTemporaryDtor)
470    PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary);
471  else {
472    switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
473    case Qualifiers::OCL_None:
474      assert(0 && "Not a reference temporary that needs to be deallocated");
475    case Qualifiers::OCL_ExplicitNone:
476    case Qualifiers::OCL_Autoreleasing:
477      // Nothing to do.
478      break;
479
480    case Qualifiers::OCL_Strong: {
481      bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>();
482      CleanupKind cleanupKind = getARCCleanupKind();
483      // This local is a GCC and MSVC compiler workaround.
484      Destroyer *destroyer = precise ? &destroyARCStrongPrecise :
485                                       &destroyARCStrongImprecise;
486      pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType,
487                  *destroyer, cleanupKind & EHCleanup);
488      break;
489    }
490
491    case Qualifiers::OCL_Weak: {
492      // This local is a GCC and MSVC compiler workaround.
493      Destroyer *destroyer = &destroyARCWeak;
494      // __weak objects always get EH cleanups; otherwise, exceptions
495      // could cause really nasty crashes instead of mere leaks.
496      pushDestroy(NormalAndEHCleanup, ReferenceTemporary,
497                  ObjCARCReferenceLifetimeType, *destroyer, true);
498      break;
499    }
500    }
501  }
502
503  return RValue::get(Value);
504}
505
506
507/// getAccessedFieldNo - Given an encoded value and a result number, return the
508/// input field number being accessed.
509unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
510                                             const llvm::Constant *Elts) {
511  if (isa<llvm::ConstantAggregateZero>(Elts))
512    return 0;
513
514  return cast<llvm::ConstantInt>(Elts->getOperand(Idx))->getZExtValue();
515}
516
517void CodeGenFunction::EmitCheck(llvm::Value *Address, unsigned Size) {
518  if (!CatchUndefined)
519    return;
520
521  // This needs to be to the standard address space.
522  Address = Builder.CreateBitCast(Address, Int8PtrTy);
523
524  llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy);
525
526  // In time, people may want to control this and use a 1 here.
527  llvm::Value *Arg = Builder.getFalse();
528  llvm::Value *C = Builder.CreateCall2(F, Address, Arg);
529  llvm::BasicBlock *Cont = createBasicBlock();
530  llvm::BasicBlock *Check = createBasicBlock();
531  llvm::Value *NegativeOne = llvm::ConstantInt::get(IntPtrTy, -1ULL);
532  Builder.CreateCondBr(Builder.CreateICmpEQ(C, NegativeOne), Cont, Check);
533
534  EmitBlock(Check);
535  Builder.CreateCondBr(Builder.CreateICmpUGE(C,
536                                        llvm::ConstantInt::get(IntPtrTy, Size)),
537                       Cont, getTrapBB());
538  EmitBlock(Cont);
539}
540
541
542CodeGenFunction::ComplexPairTy CodeGenFunction::
543EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
544                         bool isInc, bool isPre) {
545  ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(),
546                                            LV.isVolatileQualified());
547
548  llvm::Value *NextVal;
549  if (isa<llvm::IntegerType>(InVal.first->getType())) {
550    uint64_t AmountVal = isInc ? 1 : -1;
551    NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
552
553    // Add the inc/dec to the real part.
554    NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
555  } else {
556    QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
557    llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
558    if (!isInc)
559      FVal.changeSign();
560    NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
561
562    // Add the inc/dec to the real part.
563    NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
564  }
565
566  ComplexPairTy IncVal(NextVal, InVal.second);
567
568  // Store the updated result through the lvalue.
569  StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified());
570
571  // If this is a postinc, return the value read from memory, otherwise use the
572  // updated value.
573  return isPre ? IncVal : InVal;
574}
575
576
577//===----------------------------------------------------------------------===//
578//                         LValue Expression Emission
579//===----------------------------------------------------------------------===//
580
581RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
582  if (Ty->isVoidType())
583    return RValue::get(0);
584
585  if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
586    llvm::Type *EltTy = ConvertType(CTy->getElementType());
587    llvm::Value *U = llvm::UndefValue::get(EltTy);
588    return RValue::getComplex(std::make_pair(U, U));
589  }
590
591  // If this is a use of an undefined aggregate type, the aggregate must have an
592  // identifiable address.  Just because the contents of the value are undefined
593  // doesn't mean that the address can't be taken and compared.
594  if (hasAggregateLLVMType(Ty)) {
595    llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
596    return RValue::getAggregate(DestPtr);
597  }
598
599  return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
600}
601
602RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
603                                              const char *Name) {
604  ErrorUnsupported(E, Name);
605  return GetUndefRValue(E->getType());
606}
607
608LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
609                                              const char *Name) {
610  ErrorUnsupported(E, Name);
611  llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
612  return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
613}
614
615LValue CodeGenFunction::EmitCheckedLValue(const Expr *E) {
616  LValue LV = EmitLValue(E);
617  if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
618    EmitCheck(LV.getAddress(),
619              getContext().getTypeSizeInChars(E->getType()).getQuantity());
620  return LV;
621}
622
623/// EmitLValue - Emit code to compute a designator that specifies the location
624/// of the expression.
625///
626/// This can return one of two things: a simple address or a bitfield reference.
627/// In either case, the LLVM Value* in the LValue structure is guaranteed to be
628/// an LLVM pointer type.
629///
630/// If this returns a bitfield reference, nothing about the pointee type of the
631/// LLVM value is known: For example, it may not be a pointer to an integer.
632///
633/// If this returns a normal address, and if the lvalue's C type is fixed size,
634/// this method guarantees that the returned pointer type will point to an LLVM
635/// type of the same size of the lvalue's type.  If the lvalue has a variable
636/// length type, this is not possible.
637///
638LValue CodeGenFunction::EmitLValue(const Expr *E) {
639  switch (E->getStmtClass()) {
640  default: return EmitUnsupportedLValue(E, "l-value expression");
641
642  case Expr::ObjCSelectorExprClass:
643  return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
644  case Expr::ObjCIsaExprClass:
645    return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
646  case Expr::BinaryOperatorClass:
647    return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
648  case Expr::CompoundAssignOperatorClass:
649    if (!E->getType()->isAnyComplexType())
650      return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
651    return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
652  case Expr::CallExprClass:
653  case Expr::CXXMemberCallExprClass:
654  case Expr::CXXOperatorCallExprClass:
655    return EmitCallExprLValue(cast<CallExpr>(E));
656  case Expr::VAArgExprClass:
657    return EmitVAArgExprLValue(cast<VAArgExpr>(E));
658  case Expr::DeclRefExprClass:
659    return EmitDeclRefLValue(cast<DeclRefExpr>(E));
660  case Expr::ParenExprClass:return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
661  case Expr::GenericSelectionExprClass:
662    return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
663  case Expr::PredefinedExprClass:
664    return EmitPredefinedLValue(cast<PredefinedExpr>(E));
665  case Expr::StringLiteralClass:
666    return EmitStringLiteralLValue(cast<StringLiteral>(E));
667  case Expr::ObjCEncodeExprClass:
668    return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
669
670  case Expr::BlockDeclRefExprClass:
671    return EmitBlockDeclRefLValue(cast<BlockDeclRefExpr>(E));
672
673  case Expr::CXXTemporaryObjectExprClass:
674  case Expr::CXXConstructExprClass:
675    return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
676  case Expr::CXXBindTemporaryExprClass:
677    return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
678  case Expr::ExprWithCleanupsClass:
679    return EmitExprWithCleanupsLValue(cast<ExprWithCleanups>(E));
680  case Expr::CXXScalarValueInitExprClass:
681    return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E));
682  case Expr::CXXDefaultArgExprClass:
683    return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
684  case Expr::CXXTypeidExprClass:
685    return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
686
687  case Expr::ObjCMessageExprClass:
688    return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
689  case Expr::ObjCIvarRefExprClass:
690    return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
691  case Expr::ObjCPropertyRefExprClass:
692    return EmitObjCPropertyRefLValue(cast<ObjCPropertyRefExpr>(E));
693  case Expr::StmtExprClass:
694    return EmitStmtExprLValue(cast<StmtExpr>(E));
695  case Expr::UnaryOperatorClass:
696    return EmitUnaryOpLValue(cast<UnaryOperator>(E));
697  case Expr::ArraySubscriptExprClass:
698    return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
699  case Expr::ExtVectorElementExprClass:
700    return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
701  case Expr::MemberExprClass:
702    return EmitMemberExpr(cast<MemberExpr>(E));
703  case Expr::CompoundLiteralExprClass:
704    return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
705  case Expr::ConditionalOperatorClass:
706    return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
707  case Expr::BinaryConditionalOperatorClass:
708    return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
709  case Expr::ChooseExprClass:
710    return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext()));
711  case Expr::OpaqueValueExprClass:
712    return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
713  case Expr::SubstNonTypeTemplateParmExprClass:
714    return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
715  case Expr::ImplicitCastExprClass:
716  case Expr::CStyleCastExprClass:
717  case Expr::CXXFunctionalCastExprClass:
718  case Expr::CXXStaticCastExprClass:
719  case Expr::CXXDynamicCastExprClass:
720  case Expr::CXXReinterpretCastExprClass:
721  case Expr::CXXConstCastExprClass:
722  case Expr::ObjCBridgedCastExprClass:
723    return EmitCastLValue(cast<CastExpr>(E));
724
725  case Expr::MaterializeTemporaryExprClass:
726    return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
727  }
728}
729
730llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) {
731  return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
732                          lvalue.getAlignment(), lvalue.getType(),
733                          lvalue.getTBAAInfo());
734}
735
736llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
737                                              unsigned Alignment, QualType Ty,
738                                              llvm::MDNode *TBAAInfo) {
739  llvm::LoadInst *Load = Builder.CreateLoad(Addr, "tmp");
740  if (Volatile)
741    Load->setVolatile(true);
742  if (Alignment)
743    Load->setAlignment(Alignment);
744  if (TBAAInfo)
745    CGM.DecorateInstruction(Load, TBAAInfo);
746
747  return EmitFromMemory(Load, Ty);
748}
749
750static bool isBooleanUnderlyingType(QualType Ty) {
751  if (const EnumType *ET = dyn_cast<EnumType>(Ty))
752    return ET->getDecl()->getIntegerType()->isBooleanType();
753  return false;
754}
755
756llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
757  // Bool has a different representation in memory than in registers.
758  if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) {
759    // This should really always be an i1, but sometimes it's already
760    // an i8, and it's awkward to track those cases down.
761    if (Value->getType()->isIntegerTy(1))
762      return Builder.CreateZExt(Value, Builder.getInt8Ty(), "frombool");
763    assert(Value->getType()->isIntegerTy(8) && "value rep of bool not i1/i8");
764  }
765
766  return Value;
767}
768
769llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
770  // Bool has a different representation in memory than in registers.
771  if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) {
772    assert(Value->getType()->isIntegerTy(8) && "memory rep of bool not i8");
773    return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
774  }
775
776  return Value;
777}
778
779void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
780                                        bool Volatile, unsigned Alignment,
781                                        QualType Ty,
782                                        llvm::MDNode *TBAAInfo) {
783  Value = EmitToMemory(Value, Ty);
784
785  llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
786  if (Alignment)
787    Store->setAlignment(Alignment);
788  if (TBAAInfo)
789    CGM.DecorateInstruction(Store, TBAAInfo);
790}
791
792void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue) {
793  EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
794                    lvalue.getAlignment(), lvalue.getType(),
795                    lvalue.getTBAAInfo());
796}
797
798/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
799/// method emits the address of the lvalue, then loads the result as an rvalue,
800/// returning the rvalue.
801RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) {
802  if (LV.isObjCWeak()) {
803    // load of a __weak object.
804    llvm::Value *AddrWeakObj = LV.getAddress();
805    return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
806                                                             AddrWeakObj));
807  }
808  if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak)
809    return RValue::get(EmitARCLoadWeak(LV.getAddress()));
810
811  if (LV.isSimple()) {
812    assert(!LV.getType()->isFunctionType());
813
814    // Everything needs a load.
815    return RValue::get(EmitLoadOfScalar(LV));
816  }
817
818  if (LV.isVectorElt()) {
819    llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(),
820                                          LV.isVolatileQualified(), "tmp");
821    return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(),
822                                                    "vecext"));
823  }
824
825  // If this is a reference to a subset of the elements of a vector, either
826  // shuffle the input or extract/insert them as appropriate.
827  if (LV.isExtVectorElt())
828    return EmitLoadOfExtVectorElementLValue(LV);
829
830  if (LV.isBitField())
831    return EmitLoadOfBitfieldLValue(LV);
832
833  assert(LV.isPropertyRef() && "Unknown LValue type!");
834  return EmitLoadOfPropertyRefLValue(LV);
835}
836
837RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
838  const CGBitFieldInfo &Info = LV.getBitFieldInfo();
839
840  // Get the output type.
841  llvm::Type *ResLTy = ConvertType(LV.getType());
842  unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy);
843
844  // Compute the result as an OR of all of the individual component accesses.
845  llvm::Value *Res = 0;
846  for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
847    const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
848
849    // Get the field pointer.
850    llvm::Value *Ptr = LV.getBitFieldBaseAddr();
851
852    // Only offset by the field index if used, so that incoming values are not
853    // required to be structures.
854    if (AI.FieldIndex)
855      Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
856
857    // Offset by the byte offset, if used.
858    if (!AI.FieldByteOffset.isZero()) {
859      Ptr = EmitCastToVoidPtr(Ptr);
860      Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(),
861                                       "bf.field.offs");
862    }
863
864    // Cast to the access type.
865    llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(),
866                                                     AI.AccessWidth,
867                       CGM.getContext().getTargetAddressSpace(LV.getType()));
868    Ptr = Builder.CreateBitCast(Ptr, PTy);
869
870    // Perform the load.
871    llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified());
872    if (!AI.AccessAlignment.isZero())
873      Load->setAlignment(AI.AccessAlignment.getQuantity());
874
875    // Shift out unused low bits and mask out unused high bits.
876    llvm::Value *Val = Load;
877    if (AI.FieldBitStart)
878      Val = Builder.CreateLShr(Load, AI.FieldBitStart);
879    Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth,
880                                                            AI.TargetBitWidth),
881                            "bf.clear");
882
883    // Extend or truncate to the target size.
884    if (AI.AccessWidth < ResSizeInBits)
885      Val = Builder.CreateZExt(Val, ResLTy);
886    else if (AI.AccessWidth > ResSizeInBits)
887      Val = Builder.CreateTrunc(Val, ResLTy);
888
889    // Shift into place, and OR into the result.
890    if (AI.TargetBitOffset)
891      Val = Builder.CreateShl(Val, AI.TargetBitOffset);
892    Res = Res ? Builder.CreateOr(Res, Val) : Val;
893  }
894
895  // If the bit-field is signed, perform the sign-extension.
896  //
897  // FIXME: This can easily be folded into the load of the high bits, which
898  // could also eliminate the mask of high bits in some situations.
899  if (Info.isSigned()) {
900    unsigned ExtraBits = ResSizeInBits - Info.getSize();
901    if (ExtraBits)
902      Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits),
903                               ExtraBits, "bf.val.sext");
904  }
905
906  return RValue::get(Res);
907}
908
909// If this is a reference to a subset of the elements of a vector, create an
910// appropriate shufflevector.
911RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
912  llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddr(),
913                                        LV.isVolatileQualified(), "tmp");
914
915  const llvm::Constant *Elts = LV.getExtVectorElts();
916
917  // If the result of the expression is a non-vector type, we must be extracting
918  // a single element.  Just codegen as an extractelement.
919  const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
920  if (!ExprVT) {
921    unsigned InIdx = getAccessedFieldNo(0, Elts);
922    llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
923    return RValue::get(Builder.CreateExtractElement(Vec, Elt, "tmp"));
924  }
925
926  // Always use shuffle vector to try to retain the original program structure
927  unsigned NumResultElts = ExprVT->getNumElements();
928
929  SmallVector<llvm::Constant*, 4> Mask;
930  for (unsigned i = 0; i != NumResultElts; ++i) {
931    unsigned InIdx = getAccessedFieldNo(i, Elts);
932    Mask.push_back(llvm::ConstantInt::get(Int32Ty, InIdx));
933  }
934
935  llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
936  Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
937                                    MaskV, "tmp");
938  return RValue::get(Vec);
939}
940
941
942
943/// EmitStoreThroughLValue - Store the specified rvalue into the specified
944/// lvalue, where both are guaranteed to the have the same type, and that type
945/// is 'Ty'.
946void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst) {
947  if (!Dst.isSimple()) {
948    if (Dst.isVectorElt()) {
949      // Read/modify/write the vector, inserting the new element.
950      llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(),
951                                            Dst.isVolatileQualified(), "tmp");
952      Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
953                                        Dst.getVectorIdx(), "vecins");
954      Builder.CreateStore(Vec, Dst.getVectorAddr(),Dst.isVolatileQualified());
955      return;
956    }
957
958    // If this is an update of extended vector elements, insert them as
959    // appropriate.
960    if (Dst.isExtVectorElt())
961      return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
962
963    if (Dst.isBitField())
964      return EmitStoreThroughBitfieldLValue(Src, Dst);
965
966    assert(Dst.isPropertyRef() && "Unknown LValue type");
967    return EmitStoreThroughPropertyRefLValue(Src, Dst);
968  }
969
970  // There's special magic for assigning into an ARC-qualified l-value.
971  if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
972    switch (Lifetime) {
973    case Qualifiers::OCL_None:
974      llvm_unreachable("present but none");
975
976    case Qualifiers::OCL_ExplicitNone:
977      // nothing special
978      break;
979
980    case Qualifiers::OCL_Strong:
981      EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
982      return;
983
984    case Qualifiers::OCL_Weak:
985      EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
986      return;
987
988    case Qualifiers::OCL_Autoreleasing:
989      Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
990                                                     Src.getScalarVal()));
991      // fall into the normal path
992      break;
993    }
994  }
995
996  if (Dst.isObjCWeak() && !Dst.isNonGC()) {
997    // load of a __weak object.
998    llvm::Value *LvalueDst = Dst.getAddress();
999    llvm::Value *src = Src.getScalarVal();
1000     CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1001    return;
1002  }
1003
1004  if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1005    // load of a __strong object.
1006    llvm::Value *LvalueDst = Dst.getAddress();
1007    llvm::Value *src = Src.getScalarVal();
1008    if (Dst.isObjCIvar()) {
1009      assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1010      llvm::Type *ResultType = ConvertType(getContext().LongTy);
1011      llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1012      llvm::Value *dst = RHS;
1013      RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1014      llvm::Value *LHS =
1015        Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1016      llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1017      CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1018                                              BytesBetween);
1019    } else if (Dst.isGlobalObjCRef()) {
1020      CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1021                                                Dst.isThreadLocalRef());
1022    }
1023    else
1024      CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1025    return;
1026  }
1027
1028  assert(Src.isScalar() && "Can't emit an agg store with this method");
1029  EmitStoreOfScalar(Src.getScalarVal(), Dst);
1030}
1031
1032void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1033                                                     llvm::Value **Result) {
1034  const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1035
1036  // Get the output type.
1037  llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1038  unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy);
1039
1040  // Get the source value, truncated to the width of the bit-field.
1041  llvm::Value *SrcVal = Src.getScalarVal();
1042
1043  if (Dst.getType()->isBooleanType())
1044    SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false);
1045
1046  SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits,
1047                                                                Info.getSize()),
1048                             "bf.value");
1049
1050  // Return the new value of the bit-field, if requested.
1051  if (Result) {
1052    // Cast back to the proper type for result.
1053    llvm::Type *SrcTy = Src.getScalarVal()->getType();
1054    llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false,
1055                                                   "bf.reload.val");
1056
1057    // Sign extend if necessary.
1058    if (Info.isSigned()) {
1059      unsigned ExtraBits = ResSizeInBits - Info.getSize();
1060      if (ExtraBits)
1061        ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits),
1062                                       ExtraBits, "bf.reload.sext");
1063    }
1064
1065    *Result = ReloadVal;
1066  }
1067
1068  // Iterate over the components, writing each piece to memory.
1069  for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
1070    const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
1071
1072    // Get the field pointer.
1073    llvm::Value *Ptr = Dst.getBitFieldBaseAddr();
1074    unsigned addressSpace =
1075      cast<llvm::PointerType>(Ptr->getType())->getAddressSpace();
1076
1077    // Only offset by the field index if used, so that incoming values are not
1078    // required to be structures.
1079    if (AI.FieldIndex)
1080      Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
1081
1082    // Offset by the byte offset, if used.
1083    if (!AI.FieldByteOffset.isZero()) {
1084      Ptr = EmitCastToVoidPtr(Ptr);
1085      Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(),
1086                                       "bf.field.offs");
1087    }
1088
1089    // Cast to the access type.
1090    llvm::Type *AccessLTy =
1091      llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth);
1092
1093    llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace);
1094    Ptr = Builder.CreateBitCast(Ptr, PTy);
1095
1096    // Extract the piece of the bit-field value to write in this access, limited
1097    // to the values that are part of this access.
1098    llvm::Value *Val = SrcVal;
1099    if (AI.TargetBitOffset)
1100      Val = Builder.CreateLShr(Val, AI.TargetBitOffset);
1101    Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits,
1102                                                            AI.TargetBitWidth));
1103
1104    // Extend or truncate to the access size.
1105    if (ResSizeInBits < AI.AccessWidth)
1106      Val = Builder.CreateZExt(Val, AccessLTy);
1107    else if (ResSizeInBits > AI.AccessWidth)
1108      Val = Builder.CreateTrunc(Val, AccessLTy);
1109
1110    // Shift into the position in memory.
1111    if (AI.FieldBitStart)
1112      Val = Builder.CreateShl(Val, AI.FieldBitStart);
1113
1114    // If necessary, load and OR in bits that are outside of the bit-field.
1115    if (AI.TargetBitWidth != AI.AccessWidth) {
1116      llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified());
1117      if (!AI.AccessAlignment.isZero())
1118        Load->setAlignment(AI.AccessAlignment.getQuantity());
1119
1120      // Compute the mask for zeroing the bits that are part of the bit-field.
1121      llvm::APInt InvMask =
1122        ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart,
1123                                 AI.FieldBitStart + AI.TargetBitWidth);
1124
1125      // Apply the mask and OR in to the value to write.
1126      Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val);
1127    }
1128
1129    // Write the value.
1130    llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr,
1131                                                 Dst.isVolatileQualified());
1132    if (!AI.AccessAlignment.isZero())
1133      Store->setAlignment(AI.AccessAlignment.getQuantity());
1134  }
1135}
1136
1137void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1138                                                               LValue Dst) {
1139  // This access turns into a read/modify/write of the vector.  Load the input
1140  // value now.
1141  llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddr(),
1142                                        Dst.isVolatileQualified(), "tmp");
1143  const llvm::Constant *Elts = Dst.getExtVectorElts();
1144
1145  llvm::Value *SrcVal = Src.getScalarVal();
1146
1147  if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1148    unsigned NumSrcElts = VTy->getNumElements();
1149    unsigned NumDstElts =
1150       cast<llvm::VectorType>(Vec->getType())->getNumElements();
1151    if (NumDstElts == NumSrcElts) {
1152      // Use shuffle vector is the src and destination are the same number of
1153      // elements and restore the vector mask since it is on the side it will be
1154      // stored.
1155      SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1156      for (unsigned i = 0; i != NumSrcElts; ++i) {
1157        unsigned InIdx = getAccessedFieldNo(i, Elts);
1158        Mask[InIdx] = llvm::ConstantInt::get(Int32Ty, i);
1159      }
1160
1161      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1162      Vec = Builder.CreateShuffleVector(SrcVal,
1163                                        llvm::UndefValue::get(Vec->getType()),
1164                                        MaskV, "tmp");
1165    } else if (NumDstElts > NumSrcElts) {
1166      // Extended the source vector to the same length and then shuffle it
1167      // into the destination.
1168      // FIXME: since we're shuffling with undef, can we just use the indices
1169      //        into that?  This could be simpler.
1170      SmallVector<llvm::Constant*, 4> ExtMask;
1171      unsigned i;
1172      for (i = 0; i != NumSrcElts; ++i)
1173        ExtMask.push_back(llvm::ConstantInt::get(Int32Ty, i));
1174      for (; i != NumDstElts; ++i)
1175        ExtMask.push_back(llvm::UndefValue::get(Int32Ty));
1176      llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1177      llvm::Value *ExtSrcVal =
1178        Builder.CreateShuffleVector(SrcVal,
1179                                    llvm::UndefValue::get(SrcVal->getType()),
1180                                    ExtMaskV, "tmp");
1181      // build identity
1182      SmallVector<llvm::Constant*, 4> Mask;
1183      for (unsigned i = 0; i != NumDstElts; ++i)
1184        Mask.push_back(llvm::ConstantInt::get(Int32Ty, i));
1185
1186      // modify when what gets shuffled in
1187      for (unsigned i = 0; i != NumSrcElts; ++i) {
1188        unsigned Idx = getAccessedFieldNo(i, Elts);
1189        Mask[Idx] = llvm::ConstantInt::get(Int32Ty, i+NumDstElts);
1190      }
1191      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1192      Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV, "tmp");
1193    } else {
1194      // We should never shorten the vector
1195      assert(0 && "unexpected shorten vector length");
1196    }
1197  } else {
1198    // If the Src is a scalar (not a vector) it must be updating one element.
1199    unsigned InIdx = getAccessedFieldNo(0, Elts);
1200    llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1201    Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt, "tmp");
1202  }
1203
1204  Builder.CreateStore(Vec, Dst.getExtVectorAddr(), Dst.isVolatileQualified());
1205}
1206
1207// setObjCGCLValueClass - sets class of he lvalue for the purpose of
1208// generating write-barries API. It is currently a global, ivar,
1209// or neither.
1210static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1211                                 LValue &LV) {
1212  if (Ctx.getLangOptions().getGCMode() == LangOptions::NonGC)
1213    return;
1214
1215  if (isa<ObjCIvarRefExpr>(E)) {
1216    LV.setObjCIvar(true);
1217    ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
1218    LV.setBaseIvarExp(Exp->getBase());
1219    LV.setObjCArray(E->getType()->isArrayType());
1220    return;
1221  }
1222
1223  if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
1224    if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1225      if (VD->hasGlobalStorage()) {
1226        LV.setGlobalObjCRef(true);
1227        LV.setThreadLocalRef(VD->isThreadSpecified());
1228      }
1229    }
1230    LV.setObjCArray(E->getType()->isArrayType());
1231    return;
1232  }
1233
1234  if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
1235    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
1236    return;
1237  }
1238
1239  if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
1240    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
1241    if (LV.isObjCIvar()) {
1242      // If cast is to a structure pointer, follow gcc's behavior and make it
1243      // a non-ivar write-barrier.
1244      QualType ExpTy = E->getType();
1245      if (ExpTy->isPointerType())
1246        ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1247      if (ExpTy->isRecordType())
1248        LV.setObjCIvar(false);
1249    }
1250    return;
1251  }
1252
1253  if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1254    setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1255    return;
1256  }
1257
1258  if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1259    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
1260    return;
1261  }
1262
1263  if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
1264    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
1265    return;
1266  }
1267
1268  if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1269    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
1270    return;
1271  }
1272
1273  if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1274    setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1275    if (LV.isObjCIvar() && !LV.isObjCArray())
1276      // Using array syntax to assigning to what an ivar points to is not
1277      // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1278      LV.setObjCIvar(false);
1279    else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1280      // Using array syntax to assigning to what global points to is not
1281      // same as assigning to the global itself. {id *G;} G[i] = 0;
1282      LV.setGlobalObjCRef(false);
1283    return;
1284  }
1285
1286  if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
1287    setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1288    // We don't know if member is an 'ivar', but this flag is looked at
1289    // only in the context of LV.isObjCIvar().
1290    LV.setObjCArray(E->getType()->isArrayType());
1291    return;
1292  }
1293}
1294
1295static llvm::Value *
1296EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1297                                llvm::Value *V, llvm::Type *IRType,
1298                                StringRef Name = StringRef()) {
1299  unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1300  return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1301}
1302
1303static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1304                                      const Expr *E, const VarDecl *VD) {
1305  assert((VD->hasExternalStorage() || VD->isFileVarDecl()) &&
1306         "Var decl must have external storage or be a file var decl!");
1307
1308  llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1309  if (VD->getType()->isReferenceType())
1310    V = CGF.Builder.CreateLoad(V, "tmp");
1311
1312  V = EmitBitCastOfLValueToProperType(CGF, V,
1313                                CGF.getTypes().ConvertTypeForMem(E->getType()));
1314
1315  unsigned Alignment = CGF.getContext().getDeclAlign(VD).getQuantity();
1316  LValue LV = CGF.MakeAddrLValue(V, E->getType(), Alignment);
1317  setObjCGCLValueClass(CGF.getContext(), E, LV);
1318  return LV;
1319}
1320
1321static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1322                                     const Expr *E, const FunctionDecl *FD) {
1323  llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1324  if (!FD->hasPrototype()) {
1325    if (const FunctionProtoType *Proto =
1326            FD->getType()->getAs<FunctionProtoType>()) {
1327      // Ugly case: for a K&R-style definition, the type of the definition
1328      // isn't the same as the type of a use.  Correct for this with a
1329      // bitcast.
1330      QualType NoProtoType =
1331          CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
1332      NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1333      V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType), "tmp");
1334    }
1335  }
1336  unsigned Alignment = CGF.getContext().getDeclAlign(FD).getQuantity();
1337  return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1338}
1339
1340LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1341  const NamedDecl *ND = E->getDecl();
1342  unsigned Alignment = getContext().getDeclAlign(ND).getQuantity();
1343
1344  if (ND->hasAttr<WeakRefAttr>()) {
1345    const ValueDecl *VD = cast<ValueDecl>(ND);
1346    llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1347    return MakeAddrLValue(Aliasee, E->getType(), Alignment);
1348  }
1349
1350  if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1351
1352    // Check if this is a global variable.
1353    if (VD->hasExternalStorage() || VD->isFileVarDecl())
1354      return EmitGlobalVarDeclLValue(*this, E, VD);
1355
1356    bool NonGCable = VD->hasLocalStorage() &&
1357                     !VD->getType()->isReferenceType() &&
1358                     !VD->hasAttr<BlocksAttr>();
1359
1360    llvm::Value *V = LocalDeclMap[VD];
1361    if (!V && VD->isStaticLocal())
1362      V = CGM.getStaticLocalDeclAddress(VD);
1363    assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1364
1365    if (VD->hasAttr<BlocksAttr>())
1366      V = BuildBlockByrefAddress(V, VD);
1367
1368    if (VD->getType()->isReferenceType())
1369      V = Builder.CreateLoad(V, "tmp");
1370
1371    V = EmitBitCastOfLValueToProperType(*this, V,
1372                                    getTypes().ConvertTypeForMem(E->getType()));
1373
1374    LValue LV = MakeAddrLValue(V, E->getType(), Alignment);
1375    if (NonGCable) {
1376      LV.getQuals().removeObjCGCAttr();
1377      LV.setNonGC(true);
1378    }
1379    setObjCGCLValueClass(getContext(), E, LV);
1380    return LV;
1381  }
1382
1383  if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND))
1384    return EmitFunctionDeclLValue(*this, E, fn);
1385
1386  assert(false && "Unhandled DeclRefExpr");
1387
1388  // an invalid LValue, but the assert will
1389  // ensure that this point is never reached.
1390  return LValue();
1391}
1392
1393LValue CodeGenFunction::EmitBlockDeclRefLValue(const BlockDeclRefExpr *E) {
1394  unsigned Alignment =
1395    getContext().getDeclAlign(E->getDecl()).getQuantity();
1396  return MakeAddrLValue(GetAddrOfBlockDecl(E), E->getType(), Alignment);
1397}
1398
1399LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1400  // __extension__ doesn't affect lvalue-ness.
1401  if (E->getOpcode() == UO_Extension)
1402    return EmitLValue(E->getSubExpr());
1403
1404  QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1405  switch (E->getOpcode()) {
1406  default: assert(0 && "Unknown unary operator lvalue!");
1407  case UO_Deref: {
1408    QualType T = E->getSubExpr()->getType()->getPointeeType();
1409    assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1410
1411    LValue LV = MakeAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1412    LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1413
1414    // We should not generate __weak write barrier on indirect reference
1415    // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1416    // But, we continue to generate __strong write barrier on indirect write
1417    // into a pointer to object.
1418    if (getContext().getLangOptions().ObjC1 &&
1419        getContext().getLangOptions().getGCMode() != LangOptions::NonGC &&
1420        LV.isObjCWeak())
1421      LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1422    return LV;
1423  }
1424  case UO_Real:
1425  case UO_Imag: {
1426    LValue LV = EmitLValue(E->getSubExpr());
1427    assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1428    llvm::Value *Addr = LV.getAddress();
1429
1430    // real and imag are valid on scalars.  This is a faster way of
1431    // testing that.
1432    if (!cast<llvm::PointerType>(Addr->getType())
1433           ->getElementType()->isStructTy()) {
1434      assert(E->getSubExpr()->getType()->isArithmeticType());
1435      return LV;
1436    }
1437
1438    assert(E->getSubExpr()->getType()->isAnyComplexType());
1439
1440    unsigned Idx = E->getOpcode() == UO_Imag;
1441    return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1442                                                  Idx, "idx"),
1443                          ExprTy);
1444  }
1445  case UO_PreInc:
1446  case UO_PreDec: {
1447    LValue LV = EmitLValue(E->getSubExpr());
1448    bool isInc = E->getOpcode() == UO_PreInc;
1449
1450    if (E->getType()->isAnyComplexType())
1451      EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1452    else
1453      EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1454    return LV;
1455  }
1456  }
1457}
1458
1459LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1460  return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1461                        E->getType());
1462}
1463
1464LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1465  return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1466                        E->getType());
1467}
1468
1469
1470LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
1471  switch (E->getIdentType()) {
1472  default:
1473    return EmitUnsupportedLValue(E, "predefined expression");
1474
1475  case PredefinedExpr::Func:
1476  case PredefinedExpr::Function:
1477  case PredefinedExpr::PrettyFunction: {
1478    unsigned Type = E->getIdentType();
1479    std::string GlobalVarName;
1480
1481    switch (Type) {
1482    default: assert(0 && "Invalid type");
1483    case PredefinedExpr::Func:
1484      GlobalVarName = "__func__.";
1485      break;
1486    case PredefinedExpr::Function:
1487      GlobalVarName = "__FUNCTION__.";
1488      break;
1489    case PredefinedExpr::PrettyFunction:
1490      GlobalVarName = "__PRETTY_FUNCTION__.";
1491      break;
1492    }
1493
1494    StringRef FnName = CurFn->getName();
1495    if (FnName.startswith("\01"))
1496      FnName = FnName.substr(1);
1497    GlobalVarName += FnName;
1498
1499    const Decl *CurDecl = CurCodeDecl;
1500    if (CurDecl == 0)
1501      CurDecl = getContext().getTranslationUnitDecl();
1502
1503    std::string FunctionName =
1504        (isa<BlockDecl>(CurDecl)
1505         ? FnName.str()
1506         : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)Type, CurDecl));
1507
1508    llvm::Constant *C =
1509      CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str());
1510    return MakeAddrLValue(C, E->getType());
1511  }
1512  }
1513}
1514
1515llvm::BasicBlock *CodeGenFunction::getTrapBB() {
1516  const CodeGenOptions &GCO = CGM.getCodeGenOpts();
1517
1518  // If we are not optimzing, don't collapse all calls to trap in the function
1519  // to the same call, that way, in the debugger they can see which operation
1520  // did in fact fail.  If we are optimizing, we collapse all calls to trap down
1521  // to just one per function to save on codesize.
1522  if (GCO.OptimizationLevel && TrapBB)
1523    return TrapBB;
1524
1525  llvm::BasicBlock *Cont = 0;
1526  if (HaveInsertPoint()) {
1527    Cont = createBasicBlock("cont");
1528    EmitBranch(Cont);
1529  }
1530  TrapBB = createBasicBlock("trap");
1531  EmitBlock(TrapBB);
1532
1533  llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
1534  llvm::CallInst *TrapCall = Builder.CreateCall(F);
1535  TrapCall->setDoesNotReturn();
1536  TrapCall->setDoesNotThrow();
1537  Builder.CreateUnreachable();
1538
1539  if (Cont)
1540    EmitBlock(Cont);
1541  return TrapBB;
1542}
1543
1544/// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
1545/// array to pointer, return the array subexpression.
1546static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
1547  // If this isn't just an array->pointer decay, bail out.
1548  const CastExpr *CE = dyn_cast<CastExpr>(E);
1549  if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
1550    return 0;
1551
1552  // If this is a decay from variable width array, bail out.
1553  const Expr *SubExpr = CE->getSubExpr();
1554  if (SubExpr->getType()->isVariableArrayType())
1555    return 0;
1556
1557  return SubExpr;
1558}
1559
1560LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
1561  // The index must always be an integer, which is not an aggregate.  Emit it.
1562  llvm::Value *Idx = EmitScalarExpr(E->getIdx());
1563  QualType IdxTy  = E->getIdx()->getType();
1564  bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
1565
1566  // If the base is a vector type, then we are forming a vector element lvalue
1567  // with this subscript.
1568  if (E->getBase()->getType()->isVectorType()) {
1569    // Emit the vector as an lvalue to get its address.
1570    LValue LHS = EmitLValue(E->getBase());
1571    assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
1572    Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
1573    return LValue::MakeVectorElt(LHS.getAddress(), Idx,
1574                                 E->getBase()->getType());
1575  }
1576
1577  // Extend or truncate the index type to 32 or 64-bits.
1578  if (Idx->getType() != IntPtrTy)
1579    Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
1580
1581  // FIXME: As llvm implements the object size checking, this can come out.
1582  if (CatchUndefined) {
1583    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E->getBase())){
1584      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1585        if (ICE->getCastKind() == CK_ArrayToPointerDecay) {
1586          if (const ConstantArrayType *CAT
1587              = getContext().getAsConstantArrayType(DRE->getType())) {
1588            llvm::APInt Size = CAT->getSize();
1589            llvm::BasicBlock *Cont = createBasicBlock("cont");
1590            Builder.CreateCondBr(Builder.CreateICmpULE(Idx,
1591                                  llvm::ConstantInt::get(Idx->getType(), Size)),
1592                                 Cont, getTrapBB());
1593            EmitBlock(Cont);
1594          }
1595        }
1596      }
1597    }
1598  }
1599
1600  // We know that the pointer points to a type of the correct size, unless the
1601  // size is a VLA or Objective-C interface.
1602  llvm::Value *Address = 0;
1603  unsigned ArrayAlignment = 0;
1604  if (const VariableArrayType *vla =
1605        getContext().getAsVariableArrayType(E->getType())) {
1606    // The base must be a pointer, which is not an aggregate.  Emit
1607    // it.  It needs to be emitted first in case it's what captures
1608    // the VLA bounds.
1609    Address = EmitScalarExpr(E->getBase());
1610
1611    // The element count here is the total number of non-VLA elements.
1612    llvm::Value *numElements = getVLASize(vla).first;
1613
1614    // Effectively, the multiply by the VLA size is part of the GEP.
1615    // GEP indexes are signed, and scaling an index isn't permitted to
1616    // signed-overflow, so we use the same semantics for our explicit
1617    // multiply.  We suppress this if overflow is not undefined behavior.
1618    if (getLangOptions().isSignedOverflowDefined()) {
1619      Idx = Builder.CreateMul(Idx, numElements);
1620      Address = Builder.CreateGEP(Address, Idx, "arrayidx");
1621    } else {
1622      Idx = Builder.CreateNSWMul(Idx, numElements);
1623      Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
1624    }
1625  } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
1626    // Indexing over an interface, as in "NSString *P; P[4];"
1627    llvm::Value *InterfaceSize =
1628      llvm::ConstantInt::get(Idx->getType(),
1629          getContext().getTypeSizeInChars(OIT).getQuantity());
1630
1631    Idx = Builder.CreateMul(Idx, InterfaceSize);
1632
1633    // The base must be a pointer, which is not an aggregate.  Emit it.
1634    llvm::Value *Base = EmitScalarExpr(E->getBase());
1635    Address = EmitCastToVoidPtr(Base);
1636    Address = Builder.CreateGEP(Address, Idx, "arrayidx");
1637    Address = Builder.CreateBitCast(Address, Base->getType());
1638  } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
1639    // If this is A[i] where A is an array, the frontend will have decayed the
1640    // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
1641    // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
1642    // "gep x, i" here.  Emit one "gep A, 0, i".
1643    assert(Array->getType()->isArrayType() &&
1644           "Array to pointer decay must have array source type!");
1645    LValue ArrayLV = EmitLValue(Array);
1646    llvm::Value *ArrayPtr = ArrayLV.getAddress();
1647    llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
1648    llvm::Value *Args[] = { Zero, Idx };
1649
1650    // Propagate the alignment from the array itself to the result.
1651    ArrayAlignment = ArrayLV.getAlignment();
1652
1653    if (getContext().getLangOptions().isSignedOverflowDefined())
1654      Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
1655    else
1656      Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
1657  } else {
1658    // The base must be a pointer, which is not an aggregate.  Emit it.
1659    llvm::Value *Base = EmitScalarExpr(E->getBase());
1660    if (getContext().getLangOptions().isSignedOverflowDefined())
1661      Address = Builder.CreateGEP(Base, Idx, "arrayidx");
1662    else
1663      Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
1664  }
1665
1666  QualType T = E->getBase()->getType()->getPointeeType();
1667  assert(!T.isNull() &&
1668         "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
1669
1670  // Limit the alignment to that of the result type.
1671  if (ArrayAlignment) {
1672    unsigned Align = getContext().getTypeAlignInChars(T).getQuantity();
1673    ArrayAlignment = std::min(Align, ArrayAlignment);
1674  }
1675
1676  LValue LV = MakeAddrLValue(Address, T, ArrayAlignment);
1677  LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
1678
1679  if (getContext().getLangOptions().ObjC1 &&
1680      getContext().getLangOptions().getGCMode() != LangOptions::NonGC) {
1681    LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1682    setObjCGCLValueClass(getContext(), E, LV);
1683  }
1684  return LV;
1685}
1686
1687static
1688llvm::Constant *GenerateConstantVector(llvm::LLVMContext &VMContext,
1689                                       SmallVector<unsigned, 4> &Elts) {
1690  SmallVector<llvm::Constant*, 4> CElts;
1691
1692  llvm::Type *Int32Ty = llvm::Type::getInt32Ty(VMContext);
1693  for (unsigned i = 0, e = Elts.size(); i != e; ++i)
1694    CElts.push_back(llvm::ConstantInt::get(Int32Ty, Elts[i]));
1695
1696  return llvm::ConstantVector::get(CElts);
1697}
1698
1699LValue CodeGenFunction::
1700EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
1701  // Emit the base vector as an l-value.
1702  LValue Base;
1703
1704  // ExtVectorElementExpr's base can either be a vector or pointer to vector.
1705  if (E->isArrow()) {
1706    // If it is a pointer to a vector, emit the address and form an lvalue with
1707    // it.
1708    llvm::Value *Ptr = EmitScalarExpr(E->getBase());
1709    const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
1710    Base = MakeAddrLValue(Ptr, PT->getPointeeType());
1711    Base.getQuals().removeObjCGCAttr();
1712  } else if (E->getBase()->isGLValue()) {
1713    // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
1714    // emit the base as an lvalue.
1715    assert(E->getBase()->getType()->isVectorType());
1716    Base = EmitLValue(E->getBase());
1717  } else {
1718    // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
1719    assert(E->getBase()->getType()->isVectorType() &&
1720           "Result must be a vector");
1721    llvm::Value *Vec = EmitScalarExpr(E->getBase());
1722
1723    // Store the vector to memory (because LValue wants an address).
1724    llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
1725    Builder.CreateStore(Vec, VecMem);
1726    Base = MakeAddrLValue(VecMem, E->getBase()->getType());
1727  }
1728
1729  QualType type =
1730    E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
1731
1732  // Encode the element access list into a vector of unsigned indices.
1733  SmallVector<unsigned, 4> Indices;
1734  E->getEncodedElementAccess(Indices);
1735
1736  if (Base.isSimple()) {
1737    llvm::Constant *CV = GenerateConstantVector(getLLVMContext(), Indices);
1738    return LValue::MakeExtVectorElt(Base.getAddress(), CV, type);
1739  }
1740  assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
1741
1742  llvm::Constant *BaseElts = Base.getExtVectorElts();
1743  SmallVector<llvm::Constant *, 4> CElts;
1744
1745  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1746    if (isa<llvm::ConstantAggregateZero>(BaseElts))
1747      CElts.push_back(llvm::ConstantInt::get(Int32Ty, 0));
1748    else
1749      CElts.push_back(cast<llvm::Constant>(BaseElts->getOperand(Indices[i])));
1750  }
1751  llvm::Constant *CV = llvm::ConstantVector::get(CElts);
1752  return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type);
1753}
1754
1755LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
1756  bool isNonGC = false;
1757  Expr *BaseExpr = E->getBase();
1758  llvm::Value *BaseValue = NULL;
1759  Qualifiers BaseQuals;
1760
1761  // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
1762  if (E->isArrow()) {
1763    BaseValue = EmitScalarExpr(BaseExpr);
1764    const PointerType *PTy =
1765      BaseExpr->getType()->getAs<PointerType>();
1766    BaseQuals = PTy->getPointeeType().getQualifiers();
1767  } else {
1768    LValue BaseLV = EmitLValue(BaseExpr);
1769    if (BaseLV.isNonGC())
1770      isNonGC = true;
1771    // FIXME: this isn't right for bitfields.
1772    BaseValue = BaseLV.getAddress();
1773    QualType BaseTy = BaseExpr->getType();
1774    BaseQuals = BaseTy.getQualifiers();
1775  }
1776
1777  NamedDecl *ND = E->getMemberDecl();
1778  if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
1779    LValue LV = EmitLValueForField(BaseValue, Field,
1780                                   BaseQuals.getCVRQualifiers());
1781    LV.setNonGC(isNonGC);
1782    setObjCGCLValueClass(getContext(), E, LV);
1783    return LV;
1784  }
1785
1786  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
1787    return EmitGlobalVarDeclLValue(*this, E, VD);
1788
1789  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
1790    return EmitFunctionDeclLValue(*this, E, FD);
1791
1792  assert(false && "Unhandled member declaration!");
1793  return LValue();
1794}
1795
1796LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value *BaseValue,
1797                                              const FieldDecl *Field,
1798                                              unsigned CVRQualifiers) {
1799  const CGRecordLayout &RL =
1800    CGM.getTypes().getCGRecordLayout(Field->getParent());
1801  const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field);
1802  return LValue::MakeBitfield(BaseValue, Info,
1803                          Field->getType().withCVRQualifiers(CVRQualifiers));
1804}
1805
1806/// EmitLValueForAnonRecordField - Given that the field is a member of
1807/// an anonymous struct or union buried inside a record, and given
1808/// that the base value is a pointer to the enclosing record, derive
1809/// an lvalue for the ultimate field.
1810LValue CodeGenFunction::EmitLValueForAnonRecordField(llvm::Value *BaseValue,
1811                                             const IndirectFieldDecl *Field,
1812                                                     unsigned CVRQualifiers) {
1813  IndirectFieldDecl::chain_iterator I = Field->chain_begin(),
1814    IEnd = Field->chain_end();
1815  while (true) {
1816    LValue LV = EmitLValueForField(BaseValue, cast<FieldDecl>(*I),
1817                                   CVRQualifiers);
1818    if (++I == IEnd) return LV;
1819
1820    assert(LV.isSimple());
1821    BaseValue = LV.getAddress();
1822    CVRQualifiers |= LV.getVRQualifiers();
1823  }
1824}
1825
1826LValue CodeGenFunction::EmitLValueForField(llvm::Value *baseAddr,
1827                                           const FieldDecl *field,
1828                                           unsigned cvr) {
1829  if (field->isBitField())
1830    return EmitLValueForBitfield(baseAddr, field, cvr);
1831
1832  const RecordDecl *rec = field->getParent();
1833  QualType type = field->getType();
1834
1835  bool mayAlias = rec->hasAttr<MayAliasAttr>();
1836
1837  llvm::Value *addr = baseAddr;
1838  if (rec->isUnion()) {
1839    // For unions, there is no pointer adjustment.
1840    assert(!type->isReferenceType() && "union has reference member");
1841  } else {
1842    // For structs, we GEP to the field that the record layout suggests.
1843    unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
1844    addr = Builder.CreateStructGEP(addr, idx, field->getName());
1845
1846    // If this is a reference field, load the reference right now.
1847    if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
1848      llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
1849      if (cvr & Qualifiers::Volatile) load->setVolatile(true);
1850
1851      if (CGM.shouldUseTBAA()) {
1852        llvm::MDNode *tbaa;
1853        if (mayAlias)
1854          tbaa = CGM.getTBAAInfo(getContext().CharTy);
1855        else
1856          tbaa = CGM.getTBAAInfo(type);
1857        CGM.DecorateInstruction(load, tbaa);
1858      }
1859
1860      addr = load;
1861      mayAlias = false;
1862      type = refType->getPointeeType();
1863      cvr = 0; // qualifiers don't recursively apply to referencee
1864    }
1865  }
1866
1867  // Make sure that the address is pointing to the right type.  This is critical
1868  // for both unions and structs.  A union needs a bitcast, a struct element
1869  // will need a bitcast if the LLVM type laid out doesn't match the desired
1870  // type.
1871  addr = EmitBitCastOfLValueToProperType(*this, addr,
1872                                         CGM.getTypes().ConvertTypeForMem(type),
1873                                         field->getName());
1874
1875  unsigned alignment = getContext().getDeclAlign(field).getQuantity();
1876  LValue LV = MakeAddrLValue(addr, type, alignment);
1877  LV.getQuals().addCVRQualifiers(cvr);
1878
1879  // __weak attribute on a field is ignored.
1880  if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
1881    LV.getQuals().removeObjCGCAttr();
1882
1883  // Fields of may_alias structs act like 'char' for TBAA purposes.
1884  // FIXME: this should get propagated down through anonymous structs
1885  // and unions.
1886  if (mayAlias && LV.getTBAAInfo())
1887    LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
1888
1889  return LV;
1890}
1891
1892LValue
1893CodeGenFunction::EmitLValueForFieldInitialization(llvm::Value *BaseValue,
1894                                                  const FieldDecl *Field,
1895                                                  unsigned CVRQualifiers) {
1896  QualType FieldType = Field->getType();
1897
1898  if (!FieldType->isReferenceType())
1899    return EmitLValueForField(BaseValue, Field, CVRQualifiers);
1900
1901  const CGRecordLayout &RL =
1902    CGM.getTypes().getCGRecordLayout(Field->getParent());
1903  unsigned idx = RL.getLLVMFieldNo(Field);
1904  llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx, "tmp");
1905  assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
1906
1907
1908  // Make sure that the address is pointing to the right type.  This is critical
1909  // for both unions and structs.  A union needs a bitcast, a struct element
1910  // will need a bitcast if the LLVM type laid out doesn't match the desired
1911  // type.
1912  llvm::Type *llvmType = ConvertTypeForMem(FieldType);
1913  unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1914  V = Builder.CreateBitCast(V, llvmType->getPointerTo(AS));
1915
1916  unsigned Alignment = getContext().getDeclAlign(Field).getQuantity();
1917  return MakeAddrLValue(V, FieldType, Alignment);
1918}
1919
1920LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
1921  llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
1922  const Expr *InitExpr = E->getInitializer();
1923  LValue Result = MakeAddrLValue(DeclPtr, E->getType());
1924
1925  EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
1926                   /*Init*/ true);
1927
1928  return Result;
1929}
1930
1931LValue CodeGenFunction::
1932EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
1933  if (!expr->isGLValue()) {
1934    // ?: here should be an aggregate.
1935    assert((hasAggregateLLVMType(expr->getType()) &&
1936            !expr->getType()->isAnyComplexType()) &&
1937           "Unexpected conditional operator!");
1938    return EmitAggExprToLValue(expr);
1939  }
1940
1941  const Expr *condExpr = expr->getCond();
1942  bool CondExprBool;
1943  if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
1944    const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
1945    if (!CondExprBool) std::swap(live, dead);
1946
1947    if (!ContainsLabel(dead))
1948      return EmitLValue(live);
1949  }
1950
1951  OpaqueValueMapping binding(*this, expr);
1952
1953  llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
1954  llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
1955  llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
1956
1957  ConditionalEvaluation eval(*this);
1958  EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock);
1959
1960  // Any temporaries created here are conditional.
1961  EmitBlock(lhsBlock);
1962  eval.begin(*this);
1963  LValue lhs = EmitLValue(expr->getTrueExpr());
1964  eval.end(*this);
1965
1966  if (!lhs.isSimple())
1967    return EmitUnsupportedLValue(expr, "conditional operator");
1968
1969  lhsBlock = Builder.GetInsertBlock();
1970  Builder.CreateBr(contBlock);
1971
1972  // Any temporaries created here are conditional.
1973  EmitBlock(rhsBlock);
1974  eval.begin(*this);
1975  LValue rhs = EmitLValue(expr->getFalseExpr());
1976  eval.end(*this);
1977  if (!rhs.isSimple())
1978    return EmitUnsupportedLValue(expr, "conditional operator");
1979  rhsBlock = Builder.GetInsertBlock();
1980
1981  EmitBlock(contBlock);
1982
1983  llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2,
1984                                         "cond-lvalue");
1985  phi->addIncoming(lhs.getAddress(), lhsBlock);
1986  phi->addIncoming(rhs.getAddress(), rhsBlock);
1987  return MakeAddrLValue(phi, expr->getType());
1988}
1989
1990/// EmitCastLValue - Casts are never lvalues unless that cast is a dynamic_cast.
1991/// If the cast is a dynamic_cast, we can have the usual lvalue result,
1992/// otherwise if a cast is needed by the code generator in an lvalue context,
1993/// then it must mean that we need the address of an aggregate in order to
1994/// access one of its fields.  This can happen for all the reasons that casts
1995/// are permitted with aggregate result, including noop aggregate casts, and
1996/// cast from scalar to union.
1997LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
1998  switch (E->getCastKind()) {
1999  case CK_ToVoid:
2000    return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2001
2002  case CK_Dependent:
2003    llvm_unreachable("dependent cast kind in IR gen!");
2004
2005  case CK_GetObjCProperty: {
2006    LValue LV = EmitLValue(E->getSubExpr());
2007    assert(LV.isPropertyRef());
2008    RValue RV = EmitLoadOfPropertyRefLValue(LV);
2009
2010    // Property is an aggregate r-value.
2011    if (RV.isAggregate()) {
2012      return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2013    }
2014
2015    // Implicit property returns an l-value.
2016    assert(RV.isScalar());
2017    return MakeAddrLValue(RV.getScalarVal(), E->getSubExpr()->getType());
2018  }
2019
2020  case CK_NoOp:
2021  case CK_LValueToRValue:
2022    if (!E->getSubExpr()->Classify(getContext()).isPRValue()
2023        || E->getType()->isRecordType())
2024      return EmitLValue(E->getSubExpr());
2025    // Fall through to synthesize a temporary.
2026
2027  case CK_BitCast:
2028  case CK_ArrayToPointerDecay:
2029  case CK_FunctionToPointerDecay:
2030  case CK_NullToMemberPointer:
2031  case CK_NullToPointer:
2032  case CK_IntegralToPointer:
2033  case CK_PointerToIntegral:
2034  case CK_PointerToBoolean:
2035  case CK_VectorSplat:
2036  case CK_IntegralCast:
2037  case CK_IntegralToBoolean:
2038  case CK_IntegralToFloating:
2039  case CK_FloatingToIntegral:
2040  case CK_FloatingToBoolean:
2041  case CK_FloatingCast:
2042  case CK_FloatingRealToComplex:
2043  case CK_FloatingComplexToReal:
2044  case CK_FloatingComplexToBoolean:
2045  case CK_FloatingComplexCast:
2046  case CK_FloatingComplexToIntegralComplex:
2047  case CK_IntegralRealToComplex:
2048  case CK_IntegralComplexToReal:
2049  case CK_IntegralComplexToBoolean:
2050  case CK_IntegralComplexCast:
2051  case CK_IntegralComplexToFloatingComplex:
2052  case CK_DerivedToBaseMemberPointer:
2053  case CK_BaseToDerivedMemberPointer:
2054  case CK_MemberPointerToBoolean:
2055  case CK_AnyPointerToBlockPointerCast:
2056  case CK_ObjCProduceObject:
2057  case CK_ObjCConsumeObject:
2058  case CK_ObjCReclaimReturnedObject: {
2059    // These casts only produce lvalues when we're binding a reference to a
2060    // temporary realized from a (converted) pure rvalue. Emit the expression
2061    // as a value, copy it into a temporary, and return an lvalue referring to
2062    // that temporary.
2063    llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp");
2064    EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false);
2065    return MakeAddrLValue(V, E->getType());
2066  }
2067
2068  case CK_Dynamic: {
2069    LValue LV = EmitLValue(E->getSubExpr());
2070    llvm::Value *V = LV.getAddress();
2071    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
2072    return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2073  }
2074
2075  case CK_ConstructorConversion:
2076  case CK_UserDefinedConversion:
2077  case CK_AnyPointerToObjCPointerCast:
2078    return EmitLValue(E->getSubExpr());
2079
2080  case CK_UncheckedDerivedToBase:
2081  case CK_DerivedToBase: {
2082    const RecordType *DerivedClassTy =
2083      E->getSubExpr()->getType()->getAs<RecordType>();
2084    CXXRecordDecl *DerivedClassDecl =
2085      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2086
2087    LValue LV = EmitLValue(E->getSubExpr());
2088    llvm::Value *This = LV.getAddress();
2089
2090    // Perform the derived-to-base conversion
2091    llvm::Value *Base =
2092      GetAddressOfBaseClass(This, DerivedClassDecl,
2093                            E->path_begin(), E->path_end(),
2094                            /*NullCheckValue=*/false);
2095
2096    return MakeAddrLValue(Base, E->getType());
2097  }
2098  case CK_ToUnion:
2099    return EmitAggExprToLValue(E);
2100  case CK_BaseToDerived: {
2101    const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2102    CXXRecordDecl *DerivedClassDecl =
2103      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2104
2105    LValue LV = EmitLValue(E->getSubExpr());
2106
2107    // Perform the base-to-derived conversion
2108    llvm::Value *Derived =
2109      GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
2110                               E->path_begin(), E->path_end(),
2111                               /*NullCheckValue=*/false);
2112
2113    return MakeAddrLValue(Derived, E->getType());
2114  }
2115  case CK_LValueBitCast: {
2116    // This must be a reinterpret_cast (or c-style equivalent).
2117    const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
2118
2119    LValue LV = EmitLValue(E->getSubExpr());
2120    llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2121                                           ConvertType(CE->getTypeAsWritten()));
2122    return MakeAddrLValue(V, E->getType());
2123  }
2124  case CK_ObjCObjectLValueCast: {
2125    LValue LV = EmitLValue(E->getSubExpr());
2126    QualType ToType = getContext().getLValueReferenceType(E->getType());
2127    llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2128                                           ConvertType(ToType));
2129    return MakeAddrLValue(V, E->getType());
2130  }
2131  }
2132
2133  llvm_unreachable("Unhandled lvalue cast kind?");
2134}
2135
2136LValue CodeGenFunction::EmitNullInitializationLValue(
2137                                              const CXXScalarValueInitExpr *E) {
2138  QualType Ty = E->getType();
2139  LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty);
2140  EmitNullInitialization(LV.getAddress(), Ty);
2141  return LV;
2142}
2143
2144LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
2145  assert(e->isGLValue() || e->getType()->isRecordType());
2146  return getOpaqueLValueMapping(e);
2147}
2148
2149LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
2150                                           const MaterializeTemporaryExpr *E) {
2151  RValue RV = EmitReferenceBindingToExpr(E->GetTemporaryExpr(),
2152                                         /*InitializedDecl=*/0);
2153  return MakeAddrLValue(RV.getScalarVal(), E->getType());
2154}
2155
2156
2157//===--------------------------------------------------------------------===//
2158//                             Expression Emission
2159//===--------------------------------------------------------------------===//
2160
2161RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
2162                                     ReturnValueSlot ReturnValue) {
2163  if (CGDebugInfo *DI = getDebugInfo()) {
2164    DI->setLocation(E->getLocStart());
2165    DI->UpdateLineDirectiveRegion(Builder);
2166    DI->EmitStopPoint(Builder);
2167  }
2168
2169  // Builtins never have block type.
2170  if (E->getCallee()->getType()->isBlockPointerType())
2171    return EmitBlockCallExpr(E, ReturnValue);
2172
2173  if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
2174    return EmitCXXMemberCallExpr(CE, ReturnValue);
2175
2176  const Decl *TargetDecl = 0;
2177  if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E->getCallee())) {
2178    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) {
2179      TargetDecl = DRE->getDecl();
2180      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(TargetDecl))
2181        if (unsigned builtinID = FD->getBuiltinID())
2182          return EmitBuiltinExpr(FD, builtinID, E);
2183    }
2184  }
2185
2186  if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
2187    if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
2188      return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
2189
2190  if (const CXXPseudoDestructorExpr *PseudoDtor
2191          = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
2192    QualType DestroyedType = PseudoDtor->getDestroyedType();
2193    if (getContext().getLangOptions().ObjCAutoRefCount &&
2194        DestroyedType->isObjCLifetimeType() &&
2195        (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
2196         DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
2197      // Automatic Reference Counting:
2198      //   If the pseudo-expression names a retainable object with weak or
2199      //   strong lifetime, the object shall be released.
2200      Expr *BaseExpr = PseudoDtor->getBase();
2201      llvm::Value *BaseValue = NULL;
2202      Qualifiers BaseQuals;
2203
2204      // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2205      if (PseudoDtor->isArrow()) {
2206        BaseValue = EmitScalarExpr(BaseExpr);
2207        const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
2208        BaseQuals = PTy->getPointeeType().getQualifiers();
2209      } else {
2210        LValue BaseLV = EmitLValue(BaseExpr);
2211        BaseValue = BaseLV.getAddress();
2212        QualType BaseTy = BaseExpr->getType();
2213        BaseQuals = BaseTy.getQualifiers();
2214      }
2215
2216      switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
2217      case Qualifiers::OCL_None:
2218      case Qualifiers::OCL_ExplicitNone:
2219      case Qualifiers::OCL_Autoreleasing:
2220        break;
2221
2222      case Qualifiers::OCL_Strong:
2223        EmitARCRelease(Builder.CreateLoad(BaseValue,
2224                          PseudoDtor->getDestroyedType().isVolatileQualified()),
2225                       /*precise*/ true);
2226        break;
2227
2228      case Qualifiers::OCL_Weak:
2229        EmitARCDestroyWeak(BaseValue);
2230        break;
2231      }
2232    } else {
2233      // C++ [expr.pseudo]p1:
2234      //   The result shall only be used as the operand for the function call
2235      //   operator (), and the result of such a call has type void. The only
2236      //   effect is the evaluation of the postfix-expression before the dot or
2237      //   arrow.
2238      EmitScalarExpr(E->getCallee());
2239    }
2240
2241    return RValue::get(0);
2242  }
2243
2244  llvm::Value *Callee = EmitScalarExpr(E->getCallee());
2245  return EmitCall(E->getCallee()->getType(), Callee, ReturnValue,
2246                  E->arg_begin(), E->arg_end(), TargetDecl);
2247}
2248
2249LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
2250  // Comma expressions just emit their LHS then their RHS as an l-value.
2251  if (E->getOpcode() == BO_Comma) {
2252    EmitIgnoredExpr(E->getLHS());
2253    EnsureInsertPoint();
2254    return EmitLValue(E->getRHS());
2255  }
2256
2257  if (E->getOpcode() == BO_PtrMemD ||
2258      E->getOpcode() == BO_PtrMemI)
2259    return EmitPointerToDataMemberBinaryExpr(E);
2260
2261  assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
2262
2263  // Note that in all of these cases, __block variables need the RHS
2264  // evaluated first just in case the variable gets moved by the RHS.
2265
2266  if (!hasAggregateLLVMType(E->getType())) {
2267    switch (E->getLHS()->getType().getObjCLifetime()) {
2268    case Qualifiers::OCL_Strong:
2269      return EmitARCStoreStrong(E, /*ignored*/ false).first;
2270
2271    case Qualifiers::OCL_Autoreleasing:
2272      return EmitARCStoreAutoreleasing(E).first;
2273
2274    // No reason to do any of these differently.
2275    case Qualifiers::OCL_None:
2276    case Qualifiers::OCL_ExplicitNone:
2277    case Qualifiers::OCL_Weak:
2278      break;
2279    }
2280
2281    RValue RV = EmitAnyExpr(E->getRHS());
2282    LValue LV = EmitLValue(E->getLHS());
2283    EmitStoreThroughLValue(RV, LV);
2284    return LV;
2285  }
2286
2287  if (E->getType()->isAnyComplexType())
2288    return EmitComplexAssignmentLValue(E);
2289
2290  return EmitAggExprToLValue(E);
2291}
2292
2293LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
2294  RValue RV = EmitCallExpr(E);
2295
2296  if (!RV.isScalar())
2297    return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2298
2299  assert(E->getCallReturnType()->isReferenceType() &&
2300         "Can't have a scalar return unless the return type is a "
2301         "reference type!");
2302
2303  return MakeAddrLValue(RV.getScalarVal(), E->getType());
2304}
2305
2306LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
2307  // FIXME: This shouldn't require another copy.
2308  return EmitAggExprToLValue(E);
2309}
2310
2311LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
2312  assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
2313         && "binding l-value to type which needs a temporary");
2314  AggValueSlot Slot = CreateAggTemp(E->getType(), "tmp");
2315  EmitCXXConstructExpr(E, Slot);
2316  return MakeAddrLValue(Slot.getAddr(), E->getType());
2317}
2318
2319LValue
2320CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
2321  return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
2322}
2323
2324LValue
2325CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
2326  AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
2327  Slot.setLifetimeExternallyManaged();
2328  EmitAggExpr(E->getSubExpr(), Slot);
2329  EmitCXXTemporary(E->getTemporary(), Slot.getAddr());
2330  return MakeAddrLValue(Slot.getAddr(), E->getType());
2331}
2332
2333LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
2334  RValue RV = EmitObjCMessageExpr(E);
2335
2336  if (!RV.isScalar())
2337    return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2338
2339  assert(E->getMethodDecl()->getResultType()->isReferenceType() &&
2340         "Can't have a scalar return unless the return type is a "
2341         "reference type!");
2342
2343  return MakeAddrLValue(RV.getScalarVal(), E->getType());
2344}
2345
2346LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
2347  llvm::Value *V =
2348    CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true);
2349  return MakeAddrLValue(V, E->getType());
2350}
2351
2352llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2353                                             const ObjCIvarDecl *Ivar) {
2354  return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
2355}
2356
2357LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
2358                                          llvm::Value *BaseValue,
2359                                          const ObjCIvarDecl *Ivar,
2360                                          unsigned CVRQualifiers) {
2361  return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
2362                                                   Ivar, CVRQualifiers);
2363}
2364
2365LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
2366  // FIXME: A lot of the code below could be shared with EmitMemberExpr.
2367  llvm::Value *BaseValue = 0;
2368  const Expr *BaseExpr = E->getBase();
2369  Qualifiers BaseQuals;
2370  QualType ObjectTy;
2371  if (E->isArrow()) {
2372    BaseValue = EmitScalarExpr(BaseExpr);
2373    ObjectTy = BaseExpr->getType()->getPointeeType();
2374    BaseQuals = ObjectTy.getQualifiers();
2375  } else {
2376    LValue BaseLV = EmitLValue(BaseExpr);
2377    // FIXME: this isn't right for bitfields.
2378    BaseValue = BaseLV.getAddress();
2379    ObjectTy = BaseExpr->getType();
2380    BaseQuals = ObjectTy.getQualifiers();
2381  }
2382
2383  LValue LV =
2384    EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
2385                      BaseQuals.getCVRQualifiers());
2386  setObjCGCLValueClass(getContext(), E, LV);
2387  return LV;
2388}
2389
2390LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
2391  // Can only get l-value for message expression returning aggregate type
2392  RValue RV = EmitAnyExprToTemp(E);
2393  return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2394}
2395
2396RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
2397                                 ReturnValueSlot ReturnValue,
2398                                 CallExpr::const_arg_iterator ArgBeg,
2399                                 CallExpr::const_arg_iterator ArgEnd,
2400                                 const Decl *TargetDecl) {
2401  // Get the actual function type. The callee type will always be a pointer to
2402  // function type or a block pointer type.
2403  assert(CalleeType->isFunctionPointerType() &&
2404         "Call must have function pointer type!");
2405
2406  CalleeType = getContext().getCanonicalType(CalleeType);
2407
2408  const FunctionType *FnType
2409    = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
2410
2411  CallArgList Args;
2412  EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd);
2413
2414  return EmitCall(CGM.getTypes().getFunctionInfo(Args, FnType),
2415                  Callee, ReturnValue, Args, TargetDecl);
2416}
2417
2418LValue CodeGenFunction::
2419EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
2420  llvm::Value *BaseV;
2421  if (E->getOpcode() == BO_PtrMemI)
2422    BaseV = EmitScalarExpr(E->getLHS());
2423  else
2424    BaseV = EmitLValue(E->getLHS()).getAddress();
2425
2426  llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
2427
2428  const MemberPointerType *MPT
2429    = E->getRHS()->getType()->getAs<MemberPointerType>();
2430
2431  llvm::Value *AddV =
2432    CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT);
2433
2434  return MakeAddrLValue(AddV, MPT->getPointeeType());
2435}
2436