CGExpr.cpp revision 7c3e615f01e8f9f587315800fdaf2305ed824568
1//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGCXXABI.h"
16#include "CGCall.h"
17#include "CGDebugInfo.h"
18#include "CGObjCRuntime.h"
19#include "CGRecordLayout.h"
20#include "CodeGenModule.h"
21#include "TargetInfo.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/Frontend/CodeGenOptions.h"
25#include "llvm/ADT/Hashing.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/Intrinsics.h"
28#include "llvm/IR/LLVMContext.h"
29#include "llvm/IR/MDBuilder.h"
30#include "llvm/Support/ConvertUTF.h"
31
32using namespace clang;
33using namespace CodeGen;
34
35//===--------------------------------------------------------------------===//
36//                        Miscellaneous Helper Methods
37//===--------------------------------------------------------------------===//
38
39llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
40  unsigned addressSpace =
41    cast<llvm::PointerType>(value->getType())->getAddressSpace();
42
43  llvm::PointerType *destType = Int8PtrTy;
44  if (addressSpace)
45    destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
46
47  if (value->getType() == destType) return value;
48  return Builder.CreateBitCast(value, destType);
49}
50
51/// CreateTempAlloca - This creates a alloca and inserts it into the entry
52/// block.
53llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
54                                                    const Twine &Name) {
55  if (!Builder.isNamePreserving())
56    return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
57  return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
58}
59
60void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
61                                     llvm::Value *Init) {
62  llvm::StoreInst *Store = new llvm::StoreInst(Init, Var);
63  llvm::BasicBlock *Block = AllocaInsertPt->getParent();
64  Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
65}
66
67llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
68                                                const Twine &Name) {
69  llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
70  // FIXME: Should we prefer the preferred type alignment here?
71  CharUnits Align = getContext().getTypeAlignInChars(Ty);
72  Alloc->setAlignment(Align.getQuantity());
73  return Alloc;
74}
75
76llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
77                                                 const Twine &Name) {
78  llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
79  // FIXME: Should we prefer the preferred type alignment here?
80  CharUnits Align = getContext().getTypeAlignInChars(Ty);
81  Alloc->setAlignment(Align.getQuantity());
82  return Alloc;
83}
84
85/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
86/// expression and compare the result against zero, returning an Int1Ty value.
87llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
88  if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
89    llvm::Value *MemPtr = EmitScalarExpr(E);
90    return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
91  }
92
93  QualType BoolTy = getContext().BoolTy;
94  if (!E->getType()->isAnyComplexType())
95    return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
96
97  return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
98}
99
100/// EmitIgnoredExpr - Emit code to compute the specified expression,
101/// ignoring the result.
102void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
103  if (E->isRValue())
104    return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
105
106  // Just emit it as an l-value and drop the result.
107  EmitLValue(E);
108}
109
110/// EmitAnyExpr - Emit code to compute the specified expression which
111/// can have any type.  The result is returned as an RValue struct.
112/// If this is an aggregate expression, AggSlot indicates where the
113/// result should be returned.
114RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
115                                    AggValueSlot aggSlot,
116                                    bool ignoreResult) {
117  switch (getEvaluationKind(E->getType())) {
118  case TEK_Scalar:
119    return RValue::get(EmitScalarExpr(E, ignoreResult));
120  case TEK_Complex:
121    return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
122  case TEK_Aggregate:
123    if (!ignoreResult && aggSlot.isIgnored())
124      aggSlot = CreateAggTemp(E->getType(), "agg-temp");
125    EmitAggExpr(E, aggSlot);
126    return aggSlot.asRValue();
127  }
128  llvm_unreachable("bad evaluation kind");
129}
130
131/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
132/// always be accessible even if no aggregate location is provided.
133RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
134  AggValueSlot AggSlot = AggValueSlot::ignored();
135
136  if (hasAggregateEvaluationKind(E->getType()))
137    AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
138  return EmitAnyExpr(E, AggSlot);
139}
140
141/// EmitAnyExprToMem - Evaluate an expression into a given memory
142/// location.
143void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
144                                       llvm::Value *Location,
145                                       Qualifiers Quals,
146                                       bool IsInit) {
147  // FIXME: This function should take an LValue as an argument.
148  switch (getEvaluationKind(E->getType())) {
149  case TEK_Complex:
150    EmitComplexExprIntoLValue(E,
151                         MakeNaturalAlignAddrLValue(Location, E->getType()),
152                              /*isInit*/ false);
153    return;
154
155  case TEK_Aggregate: {
156    CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
157    EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
158                                         AggValueSlot::IsDestructed_t(IsInit),
159                                         AggValueSlot::DoesNotNeedGCBarriers,
160                                         AggValueSlot::IsAliased_t(!IsInit)));
161    return;
162  }
163
164  case TEK_Scalar: {
165    RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
166    LValue LV = MakeAddrLValue(Location, E->getType());
167    EmitStoreThroughLValue(RV, LV);
168    return;
169  }
170  }
171  llvm_unreachable("bad evaluation kind");
172}
173
174static void
175pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
176                     const Expr *E, llvm::Value *ReferenceTemporary) {
177  // Objective-C++ ARC:
178  //   If we are binding a reference to a temporary that has ownership, we
179  //   need to perform retain/release operations on the temporary.
180  //
181  // FIXME: This should be looking at E, not M.
182  if (CGF.getLangOpts().ObjCAutoRefCount &&
183      M->getType()->isObjCLifetimeType()) {
184    QualType ObjCARCReferenceLifetimeType = M->getType();
185    switch (Qualifiers::ObjCLifetime Lifetime =
186                ObjCARCReferenceLifetimeType.getObjCLifetime()) {
187    case Qualifiers::OCL_None:
188    case Qualifiers::OCL_ExplicitNone:
189      // Carry on to normal cleanup handling.
190      break;
191
192    case Qualifiers::OCL_Autoreleasing:
193      // Nothing to do; cleaned up by an autorelease pool.
194      return;
195
196    case Qualifiers::OCL_Strong:
197    case Qualifiers::OCL_Weak:
198      switch (StorageDuration Duration = M->getStorageDuration()) {
199      case SD_Static:
200        // Note: we intentionally do not register a cleanup to release
201        // the object on program termination.
202        return;
203
204      case SD_Thread:
205        // FIXME: We should probably register a cleanup in this case.
206        return;
207
208      case SD_Automatic:
209      case SD_FullExpression:
210        assert(!ObjCARCReferenceLifetimeType->isArrayType());
211        CodeGenFunction::Destroyer *Destroy;
212        CleanupKind CleanupKind;
213        if (Lifetime == Qualifiers::OCL_Strong) {
214          const ValueDecl *VD = M->getExtendingDecl();
215          bool Precise =
216              VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
217          CleanupKind = CGF.getARCCleanupKind();
218          Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
219                            : &CodeGenFunction::destroyARCStrongImprecise;
220        } else {
221          // __weak objects always get EH cleanups; otherwise, exceptions
222          // could cause really nasty crashes instead of mere leaks.
223          CleanupKind = NormalAndEHCleanup;
224          Destroy = &CodeGenFunction::destroyARCWeak;
225        }
226        if (Duration == SD_FullExpression)
227          CGF.pushDestroy(CleanupKind, ReferenceTemporary,
228                          ObjCARCReferenceLifetimeType, *Destroy,
229                          CleanupKind & EHCleanup);
230        else
231          CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
232                                          ObjCARCReferenceLifetimeType,
233                                          *Destroy, CleanupKind & EHCleanup);
234        return;
235
236      case SD_Dynamic:
237        llvm_unreachable("temporary cannot have dynamic storage duration");
238      }
239      llvm_unreachable("unknown storage duration");
240    }
241  }
242
243  CXXDestructorDecl *ReferenceTemporaryDtor = 0;
244  if (const RecordType *RT =
245          E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
246    // Get the destructor for the reference temporary.
247    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
248    if (!ClassDecl->hasTrivialDestructor())
249      ReferenceTemporaryDtor = ClassDecl->getDestructor();
250  }
251
252  if (!ReferenceTemporaryDtor)
253    return;
254
255  // Call the destructor for the temporary.
256  switch (M->getStorageDuration()) {
257  case SD_Static:
258  case SD_Thread: {
259    llvm::Constant *CleanupFn;
260    llvm::Constant *CleanupArg;
261    if (E->getType()->isArrayType()) {
262      CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
263          cast<llvm::Constant>(ReferenceTemporary), E->getType(),
264          CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions);
265      CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
266    } else {
267      CleanupFn =
268        CGF.CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
269      CleanupArg = cast<llvm::Constant>(ReferenceTemporary);
270    }
271    CGF.CGM.getCXXABI().registerGlobalDtor(
272        CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
273    break;
274  }
275
276  case SD_FullExpression:
277    CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
278                    CodeGenFunction::destroyCXXObject,
279                    CGF.getLangOpts().Exceptions);
280    break;
281
282  case SD_Automatic:
283    CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
284                                    ReferenceTemporary, E->getType(),
285                                    CodeGenFunction::destroyCXXObject,
286                                    CGF.getLangOpts().Exceptions);
287    break;
288
289  case SD_Dynamic:
290    llvm_unreachable("temporary cannot have dynamic storage duration");
291  }
292}
293
294static llvm::Value *
295createReferenceTemporary(CodeGenFunction &CGF,
296                         const MaterializeTemporaryExpr *M, const Expr *Inner) {
297  switch (M->getStorageDuration()) {
298  case SD_FullExpression:
299  case SD_Automatic:
300    return CGF.CreateMemTemp(Inner->getType(), "ref.tmp");
301
302  case SD_Thread:
303  case SD_Static:
304    return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
305
306  case SD_Dynamic:
307    llvm_unreachable("temporary can't have dynamic storage duration");
308  }
309  llvm_unreachable("unknown storage duration");
310}
311
312static llvm::Value *
313emitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E,
314                            const NamedDecl *InitializedDecl) {
315  if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E)) {
316    CGF.enterFullExpression(EWC);
317    CodeGenFunction::RunCleanupsScope Scope(CGF);
318    return emitExprForReferenceBinding(CGF, EWC->getSubExpr(), InitializedDecl);
319  }
320
321  const MaterializeTemporaryExpr *M = 0;
322  E = E->findMaterializedTemporary(M);
323
324  if (E->isGLValue()) {
325    // Emit the expression as an lvalue.
326    LValue LV = CGF.EmitLValue(E);
327    assert(LV.isSimple());
328    return LV.getAddress();
329  }
330
331  assert(M && "prvalue reference initializer but not a materialized temporary");
332
333  if (CGF.getLangOpts().ObjCAutoRefCount &&
334      M->getType()->isObjCLifetimeType() &&
335      M->getType().getObjCLifetime() != Qualifiers::OCL_None &&
336      M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
337    // FIXME: Fold this into the general case below.
338    llvm::Value *Object = createReferenceTemporary(CGF, M, E);
339    LValue RefTempDst = CGF.MakeAddrLValue(Object, M->getType());
340
341    CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl),
342                       RefTempDst, false);
343
344    pushTemporaryCleanup(CGF, M, E, Object);
345    return Object;
346  }
347
348  SmallVector<const Expr *, 2> CommaLHSs;
349  SmallVector<SubobjectAdjustment, 2> Adjustments;
350  E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
351
352  for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
353    CGF.EmitIgnoredExpr(CommaLHSs[I]);
354
355  if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E)) {
356    if (opaque->getType()->isRecordType()) {
357      assert(Adjustments.empty());
358      return CGF.EmitOpaqueValueLValue(opaque).getAddress();
359    }
360  }
361
362  // Create and initialize the reference temporary.
363  llvm::Value *Object = createReferenceTemporary(CGF, M, E);
364  CGF.EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
365  pushTemporaryCleanup(CGF, M, E, Object);
366
367  // Perform derived-to-base casts and/or field accesses, to get from the
368  // temporary object we created (and, potentially, for which we extended
369  // the lifetime) to the subobject we're binding the reference to.
370  for (unsigned I = Adjustments.size(); I != 0; --I) {
371    SubobjectAdjustment &Adjustment = Adjustments[I-1];
372    switch (Adjustment.Kind) {
373    case SubobjectAdjustment::DerivedToBaseAdjustment:
374      Object =
375          CGF.GetAddressOfBaseClass(Object,
376                                    Adjustment.DerivedToBase.DerivedClass,
377                          Adjustment.DerivedToBase.BasePath->path_begin(),
378                          Adjustment.DerivedToBase.BasePath->path_end(),
379                                    /*NullCheckValue=*/false);
380      break;
381
382    case SubobjectAdjustment::FieldAdjustment: {
383      LValue LV = CGF.MakeAddrLValue(Object, E->getType());
384      LV = CGF.EmitLValueForField(LV, Adjustment.Field);
385      assert(LV.isSimple() &&
386             "materialized temporary field is not a simple lvalue");
387      Object = LV.getAddress();
388      break;
389    }
390
391    case SubobjectAdjustment::MemberPointerAdjustment: {
392      llvm::Value *Ptr = CGF.EmitScalarExpr(Adjustment.Ptr.RHS);
393      Object = CGF.CGM.getCXXABI().EmitMemberDataPointerAddress(
394                    CGF, Object, Ptr, Adjustment.Ptr.MPT);
395      break;
396    }
397    }
398  }
399
400  return Object;
401}
402
403RValue
404CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E,
405                                            const NamedDecl *InitializedDecl) {
406  llvm::Value *Value = emitExprForReferenceBinding(*this, E, InitializedDecl);
407
408  if (SanitizePerformTypeCheck && !E->getType()->isFunctionType()) {
409    // C++11 [dcl.ref]p5 (as amended by core issue 453):
410    //   If a glvalue to which a reference is directly bound designates neither
411    //   an existing object or function of an appropriate type nor a region of
412    //   storage of suitable size and alignment to contain an object of the
413    //   reference's type, the behavior is undefined.
414    QualType Ty = E->getType();
415    EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
416  }
417
418  return RValue::get(Value);
419}
420
421
422/// getAccessedFieldNo - Given an encoded value and a result number, return the
423/// input field number being accessed.
424unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
425                                             const llvm::Constant *Elts) {
426  return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
427      ->getZExtValue();
428}
429
430/// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
431static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
432                                    llvm::Value *High) {
433  llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
434  llvm::Value *K47 = Builder.getInt64(47);
435  llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
436  llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
437  llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
438  llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
439  return Builder.CreateMul(B1, KMul);
440}
441
442void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
443                                    llvm::Value *Address,
444                                    QualType Ty, CharUnits Alignment) {
445  if (!SanitizePerformTypeCheck)
446    return;
447
448  // Don't check pointers outside the default address space. The null check
449  // isn't correct, the object-size check isn't supported by LLVM, and we can't
450  // communicate the addresses to the runtime handler for the vptr check.
451  if (Address->getType()->getPointerAddressSpace())
452    return;
453
454  llvm::Value *Cond = 0;
455  llvm::BasicBlock *Done = 0;
456
457  if (SanOpts->Null) {
458    // The glvalue must not be an empty glvalue.
459    Cond = Builder.CreateICmpNE(
460        Address, llvm::Constant::getNullValue(Address->getType()));
461
462    if (TCK == TCK_DowncastPointer) {
463      // When performing a pointer downcast, it's OK if the value is null.
464      // Skip the remaining checks in that case.
465      Done = createBasicBlock("null");
466      llvm::BasicBlock *Rest = createBasicBlock("not.null");
467      Builder.CreateCondBr(Cond, Rest, Done);
468      EmitBlock(Rest);
469      Cond = 0;
470    }
471  }
472
473  if (SanOpts->ObjectSize && !Ty->isIncompleteType()) {
474    uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
475
476    // The glvalue must refer to a large enough storage region.
477    // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
478    //        to check this.
479    llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy);
480    llvm::Value *Min = Builder.getFalse();
481    llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy);
482    llvm::Value *LargeEnough =
483        Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min),
484                              llvm::ConstantInt::get(IntPtrTy, Size));
485    Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough;
486  }
487
488  uint64_t AlignVal = 0;
489
490  if (SanOpts->Alignment) {
491    AlignVal = Alignment.getQuantity();
492    if (!Ty->isIncompleteType() && !AlignVal)
493      AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
494
495    // The glvalue must be suitably aligned.
496    if (AlignVal) {
497      llvm::Value *Align =
498          Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy),
499                            llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
500      llvm::Value *Aligned =
501        Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
502      Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned;
503    }
504  }
505
506  if (Cond) {
507    llvm::Constant *StaticData[] = {
508      EmitCheckSourceLocation(Loc),
509      EmitCheckTypeDescriptor(Ty),
510      llvm::ConstantInt::get(SizeTy, AlignVal),
511      llvm::ConstantInt::get(Int8Ty, TCK)
512    };
513    EmitCheck(Cond, "type_mismatch", StaticData, Address, CRK_Recoverable);
514  }
515
516  // If possible, check that the vptr indicates that there is a subobject of
517  // type Ty at offset zero within this object.
518  //
519  // C++11 [basic.life]p5,6:
520  //   [For storage which does not refer to an object within its lifetime]
521  //   The program has undefined behavior if:
522  //    -- the [pointer or glvalue] is used to access a non-static data member
523  //       or call a non-static member function
524  CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
525  if (SanOpts->Vptr &&
526      (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
527       TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference) &&
528      RD && RD->hasDefinition() && RD->isDynamicClass()) {
529    // Compute a hash of the mangled name of the type.
530    //
531    // FIXME: This is not guaranteed to be deterministic! Move to a
532    //        fingerprinting mechanism once LLVM provides one. For the time
533    //        being the implementation happens to be deterministic.
534    SmallString<64> MangledName;
535    llvm::raw_svector_ostream Out(MangledName);
536    CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
537                                                     Out);
538    llvm::hash_code TypeHash = hash_value(Out.str());
539
540    // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
541    llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
542    llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
543    llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy);
544    llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
545    llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
546
547    llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
548    Hash = Builder.CreateTrunc(Hash, IntPtrTy);
549
550    // Look the hash up in our cache.
551    const int CacheSize = 128;
552    llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
553    llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
554                                                   "__ubsan_vptr_type_cache");
555    llvm::Value *Slot = Builder.CreateAnd(Hash,
556                                          llvm::ConstantInt::get(IntPtrTy,
557                                                                 CacheSize-1));
558    llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
559    llvm::Value *CacheVal =
560      Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices));
561
562    // If the hash isn't in the cache, call a runtime handler to perform the
563    // hard work of checking whether the vptr is for an object of the right
564    // type. This will either fill in the cache and return, or produce a
565    // diagnostic.
566    llvm::Constant *StaticData[] = {
567      EmitCheckSourceLocation(Loc),
568      EmitCheckTypeDescriptor(Ty),
569      CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
570      llvm::ConstantInt::get(Int8Ty, TCK)
571    };
572    llvm::Value *DynamicData[] = { Address, Hash };
573    EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash),
574              "dynamic_type_cache_miss", StaticData, DynamicData,
575              CRK_AlwaysRecoverable);
576  }
577
578  if (Done) {
579    Builder.CreateBr(Done);
580    EmitBlock(Done);
581  }
582}
583
584/// Determine whether this expression refers to a flexible array member in a
585/// struct. We disable array bounds checks for such members.
586static bool isFlexibleArrayMemberExpr(const Expr *E) {
587  // For compatibility with existing code, we treat arrays of length 0 or
588  // 1 as flexible array members.
589  const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
590  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
591    if (CAT->getSize().ugt(1))
592      return false;
593  } else if (!isa<IncompleteArrayType>(AT))
594    return false;
595
596  E = E->IgnoreParens();
597
598  // A flexible array member must be the last member in the class.
599  if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
600    // FIXME: If the base type of the member expr is not FD->getParent(),
601    // this should not be treated as a flexible array member access.
602    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
603      RecordDecl::field_iterator FI(
604          DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
605      return ++FI == FD->getParent()->field_end();
606    }
607  }
608
609  return false;
610}
611
612/// If Base is known to point to the start of an array, return the length of
613/// that array. Return 0 if the length cannot be determined.
614static llvm::Value *getArrayIndexingBound(
615    CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
616  // For the vector indexing extension, the bound is the number of elements.
617  if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
618    IndexedType = Base->getType();
619    return CGF.Builder.getInt32(VT->getNumElements());
620  }
621
622  Base = Base->IgnoreParens();
623
624  if (const CastExpr *CE = dyn_cast<CastExpr>(Base)) {
625    if (CE->getCastKind() == CK_ArrayToPointerDecay &&
626        !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
627      IndexedType = CE->getSubExpr()->getType();
628      const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
629      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
630        return CGF.Builder.getInt(CAT->getSize());
631      else if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT))
632        return CGF.getVLASize(VAT).first;
633    }
634  }
635
636  return 0;
637}
638
639void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
640                                      llvm::Value *Index, QualType IndexType,
641                                      bool Accessed) {
642  assert(SanOpts->Bounds && "should not be called unless adding bounds checks");
643
644  QualType IndexedType;
645  llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
646  if (!Bound)
647    return;
648
649  bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
650  llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
651  llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
652
653  llvm::Constant *StaticData[] = {
654    EmitCheckSourceLocation(E->getExprLoc()),
655    EmitCheckTypeDescriptor(IndexedType),
656    EmitCheckTypeDescriptor(IndexType)
657  };
658  llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
659                                : Builder.CreateICmpULE(IndexVal, BoundVal);
660  EmitCheck(Check, "out_of_bounds", StaticData, Index, CRK_Recoverable);
661}
662
663
664CodeGenFunction::ComplexPairTy CodeGenFunction::
665EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
666                         bool isInc, bool isPre) {
667  ComplexPairTy InVal = EmitLoadOfComplex(LV);
668
669  llvm::Value *NextVal;
670  if (isa<llvm::IntegerType>(InVal.first->getType())) {
671    uint64_t AmountVal = isInc ? 1 : -1;
672    NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
673
674    // Add the inc/dec to the real part.
675    NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
676  } else {
677    QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
678    llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
679    if (!isInc)
680      FVal.changeSign();
681    NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
682
683    // Add the inc/dec to the real part.
684    NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
685  }
686
687  ComplexPairTy IncVal(NextVal, InVal.second);
688
689  // Store the updated result through the lvalue.
690  EmitStoreOfComplex(IncVal, LV, /*init*/ false);
691
692  // If this is a postinc, return the value read from memory, otherwise use the
693  // updated value.
694  return isPre ? IncVal : InVal;
695}
696
697
698//===----------------------------------------------------------------------===//
699//                         LValue Expression Emission
700//===----------------------------------------------------------------------===//
701
702RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
703  if (Ty->isVoidType())
704    return RValue::get(0);
705
706  switch (getEvaluationKind(Ty)) {
707  case TEK_Complex: {
708    llvm::Type *EltTy =
709      ConvertType(Ty->castAs<ComplexType>()->getElementType());
710    llvm::Value *U = llvm::UndefValue::get(EltTy);
711    return RValue::getComplex(std::make_pair(U, U));
712  }
713
714  // If this is a use of an undefined aggregate type, the aggregate must have an
715  // identifiable address.  Just because the contents of the value are undefined
716  // doesn't mean that the address can't be taken and compared.
717  case TEK_Aggregate: {
718    llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
719    return RValue::getAggregate(DestPtr);
720  }
721
722  case TEK_Scalar:
723    return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
724  }
725  llvm_unreachable("bad evaluation kind");
726}
727
728RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
729                                              const char *Name) {
730  ErrorUnsupported(E, Name);
731  return GetUndefRValue(E->getType());
732}
733
734LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
735                                              const char *Name) {
736  ErrorUnsupported(E, Name);
737  llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
738  return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
739}
740
741LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
742  LValue LV;
743  if (SanOpts->Bounds && isa<ArraySubscriptExpr>(E))
744    LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
745  else
746    LV = EmitLValue(E);
747  if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
748    EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(),
749                  E->getType(), LV.getAlignment());
750  return LV;
751}
752
753/// EmitLValue - Emit code to compute a designator that specifies the location
754/// of the expression.
755///
756/// This can return one of two things: a simple address or a bitfield reference.
757/// In either case, the LLVM Value* in the LValue structure is guaranteed to be
758/// an LLVM pointer type.
759///
760/// If this returns a bitfield reference, nothing about the pointee type of the
761/// LLVM value is known: For example, it may not be a pointer to an integer.
762///
763/// If this returns a normal address, and if the lvalue's C type is fixed size,
764/// this method guarantees that the returned pointer type will point to an LLVM
765/// type of the same size of the lvalue's type.  If the lvalue has a variable
766/// length type, this is not possible.
767///
768LValue CodeGenFunction::EmitLValue(const Expr *E) {
769  switch (E->getStmtClass()) {
770  default: return EmitUnsupportedLValue(E, "l-value expression");
771
772  case Expr::ObjCPropertyRefExprClass:
773    llvm_unreachable("cannot emit a property reference directly");
774
775  case Expr::ObjCSelectorExprClass:
776    return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
777  case Expr::ObjCIsaExprClass:
778    return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
779  case Expr::BinaryOperatorClass:
780    return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
781  case Expr::CompoundAssignOperatorClass:
782    if (!E->getType()->isAnyComplexType())
783      return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
784    return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
785  case Expr::CallExprClass:
786  case Expr::CXXMemberCallExprClass:
787  case Expr::CXXOperatorCallExprClass:
788  case Expr::UserDefinedLiteralClass:
789    return EmitCallExprLValue(cast<CallExpr>(E));
790  case Expr::VAArgExprClass:
791    return EmitVAArgExprLValue(cast<VAArgExpr>(E));
792  case Expr::DeclRefExprClass:
793    return EmitDeclRefLValue(cast<DeclRefExpr>(E));
794  case Expr::ParenExprClass:
795    return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
796  case Expr::GenericSelectionExprClass:
797    return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
798  case Expr::PredefinedExprClass:
799    return EmitPredefinedLValue(cast<PredefinedExpr>(E));
800  case Expr::StringLiteralClass:
801    return EmitStringLiteralLValue(cast<StringLiteral>(E));
802  case Expr::ObjCEncodeExprClass:
803    return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
804  case Expr::PseudoObjectExprClass:
805    return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
806  case Expr::InitListExprClass:
807    return EmitInitListLValue(cast<InitListExpr>(E));
808  case Expr::CXXTemporaryObjectExprClass:
809  case Expr::CXXConstructExprClass:
810    return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
811  case Expr::CXXBindTemporaryExprClass:
812    return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
813  case Expr::CXXUuidofExprClass:
814    return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
815  case Expr::LambdaExprClass:
816    return EmitLambdaLValue(cast<LambdaExpr>(E));
817
818  case Expr::ExprWithCleanupsClass: {
819    const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E);
820    enterFullExpression(cleanups);
821    RunCleanupsScope Scope(*this);
822    return EmitLValue(cleanups->getSubExpr());
823  }
824
825  case Expr::CXXScalarValueInitExprClass:
826    return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E));
827  case Expr::CXXDefaultArgExprClass:
828    return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
829  case Expr::CXXDefaultInitExprClass: {
830    CXXDefaultInitExprScope Scope(*this);
831    return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
832  }
833  case Expr::CXXTypeidExprClass:
834    return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
835
836  case Expr::ObjCMessageExprClass:
837    return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
838  case Expr::ObjCIvarRefExprClass:
839    return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
840  case Expr::StmtExprClass:
841    return EmitStmtExprLValue(cast<StmtExpr>(E));
842  case Expr::UnaryOperatorClass:
843    return EmitUnaryOpLValue(cast<UnaryOperator>(E));
844  case Expr::ArraySubscriptExprClass:
845    return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
846  case Expr::ExtVectorElementExprClass:
847    return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
848  case Expr::MemberExprClass:
849    return EmitMemberExpr(cast<MemberExpr>(E));
850  case Expr::CompoundLiteralExprClass:
851    return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
852  case Expr::ConditionalOperatorClass:
853    return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
854  case Expr::BinaryConditionalOperatorClass:
855    return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
856  case Expr::ChooseExprClass:
857    return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext()));
858  case Expr::OpaqueValueExprClass:
859    return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
860  case Expr::SubstNonTypeTemplateParmExprClass:
861    return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
862  case Expr::ImplicitCastExprClass:
863  case Expr::CStyleCastExprClass:
864  case Expr::CXXFunctionalCastExprClass:
865  case Expr::CXXStaticCastExprClass:
866  case Expr::CXXDynamicCastExprClass:
867  case Expr::CXXReinterpretCastExprClass:
868  case Expr::CXXConstCastExprClass:
869  case Expr::ObjCBridgedCastExprClass:
870    return EmitCastLValue(cast<CastExpr>(E));
871
872  case Expr::MaterializeTemporaryExprClass:
873    return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
874  }
875}
876
877/// Given an object of the given canonical type, can we safely copy a
878/// value out of it based on its initializer?
879static bool isConstantEmittableObjectType(QualType type) {
880  assert(type.isCanonical());
881  assert(!type->isReferenceType());
882
883  // Must be const-qualified but non-volatile.
884  Qualifiers qs = type.getLocalQualifiers();
885  if (!qs.hasConst() || qs.hasVolatile()) return false;
886
887  // Otherwise, all object types satisfy this except C++ classes with
888  // mutable subobjects or non-trivial copy/destroy behavior.
889  if (const RecordType *RT = dyn_cast<RecordType>(type))
890    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
891      if (RD->hasMutableFields() || !RD->isTrivial())
892        return false;
893
894  return true;
895}
896
897/// Can we constant-emit a load of a reference to a variable of the
898/// given type?  This is different from predicates like
899/// Decl::isUsableInConstantExpressions because we do want it to apply
900/// in situations that don't necessarily satisfy the language's rules
901/// for this (e.g. C++'s ODR-use rules).  For example, we want to able
902/// to do this with const float variables even if those variables
903/// aren't marked 'constexpr'.
904enum ConstantEmissionKind {
905  CEK_None,
906  CEK_AsReferenceOnly,
907  CEK_AsValueOrReference,
908  CEK_AsValueOnly
909};
910static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
911  type = type.getCanonicalType();
912  if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) {
913    if (isConstantEmittableObjectType(ref->getPointeeType()))
914      return CEK_AsValueOrReference;
915    return CEK_AsReferenceOnly;
916  }
917  if (isConstantEmittableObjectType(type))
918    return CEK_AsValueOnly;
919  return CEK_None;
920}
921
922/// Try to emit a reference to the given value without producing it as
923/// an l-value.  This is actually more than an optimization: we can't
924/// produce an l-value for variables that we never actually captured
925/// in a block or lambda, which means const int variables or constexpr
926/// literals or similar.
927CodeGenFunction::ConstantEmission
928CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
929  ValueDecl *value = refExpr->getDecl();
930
931  // The value needs to be an enum constant or a constant variable.
932  ConstantEmissionKind CEK;
933  if (isa<ParmVarDecl>(value)) {
934    CEK = CEK_None;
935  } else if (VarDecl *var = dyn_cast<VarDecl>(value)) {
936    CEK = checkVarTypeForConstantEmission(var->getType());
937  } else if (isa<EnumConstantDecl>(value)) {
938    CEK = CEK_AsValueOnly;
939  } else {
940    CEK = CEK_None;
941  }
942  if (CEK == CEK_None) return ConstantEmission();
943
944  Expr::EvalResult result;
945  bool resultIsReference;
946  QualType resultType;
947
948  // It's best to evaluate all the way as an r-value if that's permitted.
949  if (CEK != CEK_AsReferenceOnly &&
950      refExpr->EvaluateAsRValue(result, getContext())) {
951    resultIsReference = false;
952    resultType = refExpr->getType();
953
954  // Otherwise, try to evaluate as an l-value.
955  } else if (CEK != CEK_AsValueOnly &&
956             refExpr->EvaluateAsLValue(result, getContext())) {
957    resultIsReference = true;
958    resultType = value->getType();
959
960  // Failure.
961  } else {
962    return ConstantEmission();
963  }
964
965  // In any case, if the initializer has side-effects, abandon ship.
966  if (result.HasSideEffects)
967    return ConstantEmission();
968
969  // Emit as a constant.
970  llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
971
972  // Make sure we emit a debug reference to the global variable.
973  // This should probably fire even for
974  if (isa<VarDecl>(value)) {
975    if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
976      EmitDeclRefExprDbgValue(refExpr, C);
977  } else {
978    assert(isa<EnumConstantDecl>(value));
979    EmitDeclRefExprDbgValue(refExpr, C);
980  }
981
982  // If we emitted a reference constant, we need to dereference that.
983  if (resultIsReference)
984    return ConstantEmission::forReference(C);
985
986  return ConstantEmission::forValue(C);
987}
988
989llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) {
990  return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
991                          lvalue.getAlignment().getQuantity(),
992                          lvalue.getType(), lvalue.getTBAAInfo(),
993                          lvalue.getTBAABaseType(), lvalue.getTBAAOffset());
994}
995
996static bool hasBooleanRepresentation(QualType Ty) {
997  if (Ty->isBooleanType())
998    return true;
999
1000  if (const EnumType *ET = Ty->getAs<EnumType>())
1001    return ET->getDecl()->getIntegerType()->isBooleanType();
1002
1003  if (const AtomicType *AT = Ty->getAs<AtomicType>())
1004    return hasBooleanRepresentation(AT->getValueType());
1005
1006  return false;
1007}
1008
1009static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1010                            llvm::APInt &Min, llvm::APInt &End,
1011                            bool StrictEnums) {
1012  const EnumType *ET = Ty->getAs<EnumType>();
1013  bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1014                                ET && !ET->getDecl()->isFixed();
1015  bool IsBool = hasBooleanRepresentation(Ty);
1016  if (!IsBool && !IsRegularCPlusPlusEnum)
1017    return false;
1018
1019  if (IsBool) {
1020    Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1021    End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1022  } else {
1023    const EnumDecl *ED = ET->getDecl();
1024    llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1025    unsigned Bitwidth = LTy->getScalarSizeInBits();
1026    unsigned NumNegativeBits = ED->getNumNegativeBits();
1027    unsigned NumPositiveBits = ED->getNumPositiveBits();
1028
1029    if (NumNegativeBits) {
1030      unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1031      assert(NumBits <= Bitwidth);
1032      End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1033      Min = -End;
1034    } else {
1035      assert(NumPositiveBits <= Bitwidth);
1036      End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1037      Min = llvm::APInt(Bitwidth, 0);
1038    }
1039  }
1040  return true;
1041}
1042
1043llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1044  llvm::APInt Min, End;
1045  if (!getRangeForType(*this, Ty, Min, End,
1046                       CGM.getCodeGenOpts().StrictEnums))
1047    return 0;
1048
1049  llvm::MDBuilder MDHelper(getLLVMContext());
1050  return MDHelper.createRange(Min, End);
1051}
1052
1053llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1054                                              unsigned Alignment, QualType Ty,
1055                                              llvm::MDNode *TBAAInfo,
1056                                              QualType TBAABaseType,
1057                                              uint64_t TBAAOffset) {
1058  // For better performance, handle vector loads differently.
1059  if (Ty->isVectorType()) {
1060    llvm::Value *V;
1061    const llvm::Type *EltTy =
1062    cast<llvm::PointerType>(Addr->getType())->getElementType();
1063
1064    const llvm::VectorType *VTy = cast<llvm::VectorType>(EltTy);
1065
1066    // Handle vectors of size 3, like size 4 for better performance.
1067    if (VTy->getNumElements() == 3) {
1068
1069      // Bitcast to vec4 type.
1070      llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
1071                                                         4);
1072      llvm::PointerType *ptVec4Ty =
1073      llvm::PointerType::get(vec4Ty,
1074                             (cast<llvm::PointerType>(
1075                                      Addr->getType()))->getAddressSpace());
1076      llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty,
1077                                                "castToVec4");
1078      // Now load value.
1079      llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1080
1081      // Shuffle vector to get vec3.
1082      llvm::Constant *Mask[] = {
1083        llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0),
1084        llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1),
1085        llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2)
1086      };
1087
1088      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1089      V = Builder.CreateShuffleVector(LoadVal,
1090                                      llvm::UndefValue::get(vec4Ty),
1091                                      MaskV, "extractVec");
1092      return EmitFromMemory(V, Ty);
1093    }
1094  }
1095
1096  // Atomic operations have to be done on integral types.
1097  if (Ty->isAtomicType()) {
1098    LValue lvalue = LValue::MakeAddr(Addr, Ty,
1099                                     CharUnits::fromQuantity(Alignment),
1100                                     getContext(), TBAAInfo);
1101    return EmitAtomicLoad(lvalue).getScalarVal();
1102  }
1103
1104  llvm::LoadInst *Load = Builder.CreateLoad(Addr);
1105  if (Volatile)
1106    Load->setVolatile(true);
1107  if (Alignment)
1108    Load->setAlignment(Alignment);
1109  if (TBAAInfo) {
1110    llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1111                                                      TBAAOffset);
1112    CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/);
1113  }
1114
1115  if ((SanOpts->Bool && hasBooleanRepresentation(Ty)) ||
1116      (SanOpts->Enum && Ty->getAs<EnumType>())) {
1117    llvm::APInt Min, End;
1118    if (getRangeForType(*this, Ty, Min, End, true)) {
1119      --End;
1120      llvm::Value *Check;
1121      if (!Min)
1122        Check = Builder.CreateICmpULE(
1123          Load, llvm::ConstantInt::get(getLLVMContext(), End));
1124      else {
1125        llvm::Value *Upper = Builder.CreateICmpSLE(
1126          Load, llvm::ConstantInt::get(getLLVMContext(), End));
1127        llvm::Value *Lower = Builder.CreateICmpSGE(
1128          Load, llvm::ConstantInt::get(getLLVMContext(), Min));
1129        Check = Builder.CreateAnd(Upper, Lower);
1130      }
1131      // FIXME: Provide a SourceLocation.
1132      EmitCheck(Check, "load_invalid_value", EmitCheckTypeDescriptor(Ty),
1133                EmitCheckValue(Load), CRK_Recoverable);
1134    }
1135  } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1136    if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1137      Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1138
1139  return EmitFromMemory(Load, Ty);
1140}
1141
1142llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1143  // Bool has a different representation in memory than in registers.
1144  if (hasBooleanRepresentation(Ty)) {
1145    // This should really always be an i1, but sometimes it's already
1146    // an i8, and it's awkward to track those cases down.
1147    if (Value->getType()->isIntegerTy(1))
1148      return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1149    assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1150           "wrong value rep of bool");
1151  }
1152
1153  return Value;
1154}
1155
1156llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1157  // Bool has a different representation in memory than in registers.
1158  if (hasBooleanRepresentation(Ty)) {
1159    assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1160           "wrong value rep of bool");
1161    return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1162  }
1163
1164  return Value;
1165}
1166
1167void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1168                                        bool Volatile, unsigned Alignment,
1169                                        QualType Ty,
1170                                        llvm::MDNode *TBAAInfo,
1171                                        bool isInit, QualType TBAABaseType,
1172                                        uint64_t TBAAOffset) {
1173
1174  // Handle vectors differently to get better performance.
1175  if (Ty->isVectorType()) {
1176    llvm::Type *SrcTy = Value->getType();
1177    llvm::VectorType *VecTy = cast<llvm::VectorType>(SrcTy);
1178    // Handle vec3 special.
1179    if (VecTy->getNumElements() == 3) {
1180      llvm::LLVMContext &VMContext = getLLVMContext();
1181
1182      // Our source is a vec3, do a shuffle vector to make it a vec4.
1183      SmallVector<llvm::Constant*, 4> Mask;
1184      Mask.push_back(llvm::ConstantInt::get(
1185                                            llvm::Type::getInt32Ty(VMContext),
1186                                            0));
1187      Mask.push_back(llvm::ConstantInt::get(
1188                                            llvm::Type::getInt32Ty(VMContext),
1189                                            1));
1190      Mask.push_back(llvm::ConstantInt::get(
1191                                            llvm::Type::getInt32Ty(VMContext),
1192                                            2));
1193      Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext)));
1194
1195      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1196      Value = Builder.CreateShuffleVector(Value,
1197                                          llvm::UndefValue::get(VecTy),
1198                                          MaskV, "extractVec");
1199      SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1200    }
1201    llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType());
1202    if (DstPtr->getElementType() != SrcTy) {
1203      llvm::Type *MemTy =
1204      llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
1205      Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
1206    }
1207  }
1208
1209  Value = EmitToMemory(Value, Ty);
1210
1211  if (Ty->isAtomicType()) {
1212    EmitAtomicStore(RValue::get(Value),
1213                    LValue::MakeAddr(Addr, Ty,
1214                                     CharUnits::fromQuantity(Alignment),
1215                                     getContext(), TBAAInfo),
1216                    isInit);
1217    return;
1218  }
1219
1220  llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1221  if (Alignment)
1222    Store->setAlignment(Alignment);
1223  if (TBAAInfo) {
1224    llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1225                                                      TBAAOffset);
1226    CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/);
1227  }
1228}
1229
1230void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1231                                        bool isInit) {
1232  EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1233                    lvalue.getAlignment().getQuantity(), lvalue.getType(),
1234                    lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
1235                    lvalue.getTBAAOffset());
1236}
1237
1238/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1239/// method emits the address of the lvalue, then loads the result as an rvalue,
1240/// returning the rvalue.
1241RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) {
1242  if (LV.isObjCWeak()) {
1243    // load of a __weak object.
1244    llvm::Value *AddrWeakObj = LV.getAddress();
1245    return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1246                                                             AddrWeakObj));
1247  }
1248  if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1249    llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1250    Object = EmitObjCConsumeObject(LV.getType(), Object);
1251    return RValue::get(Object);
1252  }
1253
1254  if (LV.isSimple()) {
1255    assert(!LV.getType()->isFunctionType());
1256
1257    // Everything needs a load.
1258    return RValue::get(EmitLoadOfScalar(LV));
1259  }
1260
1261  if (LV.isVectorElt()) {
1262    llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
1263                                              LV.isVolatileQualified());
1264    Load->setAlignment(LV.getAlignment().getQuantity());
1265    return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1266                                                    "vecext"));
1267  }
1268
1269  // If this is a reference to a subset of the elements of a vector, either
1270  // shuffle the input or extract/insert them as appropriate.
1271  if (LV.isExtVectorElt())
1272    return EmitLoadOfExtVectorElementLValue(LV);
1273
1274  assert(LV.isBitField() && "Unknown LValue type!");
1275  return EmitLoadOfBitfieldLValue(LV);
1276}
1277
1278RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1279  const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1280
1281  // Get the output type.
1282  llvm::Type *ResLTy = ConvertType(LV.getType());
1283
1284  llvm::Value *Ptr = LV.getBitFieldAddr();
1285  llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(),
1286                                        "bf.load");
1287  cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1288
1289  if (Info.IsSigned) {
1290    assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1291    unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1292    if (HighBits)
1293      Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1294    if (Info.Offset + HighBits)
1295      Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1296  } else {
1297    if (Info.Offset)
1298      Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1299    if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1300      Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1301                                                              Info.Size),
1302                              "bf.clear");
1303  }
1304  Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1305
1306  return RValue::get(Val);
1307}
1308
1309// If this is a reference to a subset of the elements of a vector, create an
1310// appropriate shufflevector.
1311RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1312  llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
1313                                            LV.isVolatileQualified());
1314  Load->setAlignment(LV.getAlignment().getQuantity());
1315  llvm::Value *Vec = Load;
1316
1317  const llvm::Constant *Elts = LV.getExtVectorElts();
1318
1319  // If the result of the expression is a non-vector type, we must be extracting
1320  // a single element.  Just codegen as an extractelement.
1321  const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1322  if (!ExprVT) {
1323    unsigned InIdx = getAccessedFieldNo(0, Elts);
1324    llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1325    return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1326  }
1327
1328  // Always use shuffle vector to try to retain the original program structure
1329  unsigned NumResultElts = ExprVT->getNumElements();
1330
1331  SmallVector<llvm::Constant*, 4> Mask;
1332  for (unsigned i = 0; i != NumResultElts; ++i)
1333    Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1334
1335  llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1336  Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1337                                    MaskV);
1338  return RValue::get(Vec);
1339}
1340
1341
1342
1343/// EmitStoreThroughLValue - Store the specified rvalue into the specified
1344/// lvalue, where both are guaranteed to the have the same type, and that type
1345/// is 'Ty'.
1346void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) {
1347  if (!Dst.isSimple()) {
1348    if (Dst.isVectorElt()) {
1349      // Read/modify/write the vector, inserting the new element.
1350      llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
1351                                                Dst.isVolatileQualified());
1352      Load->setAlignment(Dst.getAlignment().getQuantity());
1353      llvm::Value *Vec = Load;
1354      Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1355                                        Dst.getVectorIdx(), "vecins");
1356      llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
1357                                                   Dst.isVolatileQualified());
1358      Store->setAlignment(Dst.getAlignment().getQuantity());
1359      return;
1360    }
1361
1362    // If this is an update of extended vector elements, insert them as
1363    // appropriate.
1364    if (Dst.isExtVectorElt())
1365      return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1366
1367    assert(Dst.isBitField() && "Unknown LValue type");
1368    return EmitStoreThroughBitfieldLValue(Src, Dst);
1369  }
1370
1371  // There's special magic for assigning into an ARC-qualified l-value.
1372  if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1373    switch (Lifetime) {
1374    case Qualifiers::OCL_None:
1375      llvm_unreachable("present but none");
1376
1377    case Qualifiers::OCL_ExplicitNone:
1378      // nothing special
1379      break;
1380
1381    case Qualifiers::OCL_Strong:
1382      EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1383      return;
1384
1385    case Qualifiers::OCL_Weak:
1386      EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1387      return;
1388
1389    case Qualifiers::OCL_Autoreleasing:
1390      Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1391                                                     Src.getScalarVal()));
1392      // fall into the normal path
1393      break;
1394    }
1395  }
1396
1397  if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1398    // load of a __weak object.
1399    llvm::Value *LvalueDst = Dst.getAddress();
1400    llvm::Value *src = Src.getScalarVal();
1401     CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1402    return;
1403  }
1404
1405  if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1406    // load of a __strong object.
1407    llvm::Value *LvalueDst = Dst.getAddress();
1408    llvm::Value *src = Src.getScalarVal();
1409    if (Dst.isObjCIvar()) {
1410      assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1411      llvm::Type *ResultType = ConvertType(getContext().LongTy);
1412      llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1413      llvm::Value *dst = RHS;
1414      RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1415      llvm::Value *LHS =
1416        Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1417      llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1418      CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1419                                              BytesBetween);
1420    } else if (Dst.isGlobalObjCRef()) {
1421      CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1422                                                Dst.isThreadLocalRef());
1423    }
1424    else
1425      CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1426    return;
1427  }
1428
1429  assert(Src.isScalar() && "Can't emit an agg store with this method");
1430  EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1431}
1432
1433void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1434                                                     llvm::Value **Result) {
1435  const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1436  llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1437  llvm::Value *Ptr = Dst.getBitFieldAddr();
1438
1439  // Get the source value, truncated to the width of the bit-field.
1440  llvm::Value *SrcVal = Src.getScalarVal();
1441
1442  // Cast the source to the storage type and shift it into place.
1443  SrcVal = Builder.CreateIntCast(SrcVal,
1444                                 Ptr->getType()->getPointerElementType(),
1445                                 /*IsSigned=*/false);
1446  llvm::Value *MaskedVal = SrcVal;
1447
1448  // See if there are other bits in the bitfield's storage we'll need to load
1449  // and mask together with source before storing.
1450  if (Info.StorageSize != Info.Size) {
1451    assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1452    llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
1453                                          "bf.load");
1454    cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1455
1456    // Mask the source value as needed.
1457    if (!hasBooleanRepresentation(Dst.getType()))
1458      SrcVal = Builder.CreateAnd(SrcVal,
1459                                 llvm::APInt::getLowBitsSet(Info.StorageSize,
1460                                                            Info.Size),
1461                                 "bf.value");
1462    MaskedVal = SrcVal;
1463    if (Info.Offset)
1464      SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1465
1466    // Mask out the original value.
1467    Val = Builder.CreateAnd(Val,
1468                            ~llvm::APInt::getBitsSet(Info.StorageSize,
1469                                                     Info.Offset,
1470                                                     Info.Offset + Info.Size),
1471                            "bf.clear");
1472
1473    // Or together the unchanged values and the source value.
1474    SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1475  } else {
1476    assert(Info.Offset == 0);
1477  }
1478
1479  // Write the new value back out.
1480  llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr,
1481                                               Dst.isVolatileQualified());
1482  Store->setAlignment(Info.StorageAlignment);
1483
1484  // Return the new value of the bit-field, if requested.
1485  if (Result) {
1486    llvm::Value *ResultVal = MaskedVal;
1487
1488    // Sign extend the value if needed.
1489    if (Info.IsSigned) {
1490      assert(Info.Size <= Info.StorageSize);
1491      unsigned HighBits = Info.StorageSize - Info.Size;
1492      if (HighBits) {
1493        ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1494        ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1495      }
1496    }
1497
1498    ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1499                                      "bf.result.cast");
1500    *Result = EmitFromMemory(ResultVal, Dst.getType());
1501  }
1502}
1503
1504void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1505                                                               LValue Dst) {
1506  // This access turns into a read/modify/write of the vector.  Load the input
1507  // value now.
1508  llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
1509                                            Dst.isVolatileQualified());
1510  Load->setAlignment(Dst.getAlignment().getQuantity());
1511  llvm::Value *Vec = Load;
1512  const llvm::Constant *Elts = Dst.getExtVectorElts();
1513
1514  llvm::Value *SrcVal = Src.getScalarVal();
1515
1516  if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1517    unsigned NumSrcElts = VTy->getNumElements();
1518    unsigned NumDstElts =
1519       cast<llvm::VectorType>(Vec->getType())->getNumElements();
1520    if (NumDstElts == NumSrcElts) {
1521      // Use shuffle vector is the src and destination are the same number of
1522      // elements and restore the vector mask since it is on the side it will be
1523      // stored.
1524      SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1525      for (unsigned i = 0; i != NumSrcElts; ++i)
1526        Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1527
1528      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1529      Vec = Builder.CreateShuffleVector(SrcVal,
1530                                        llvm::UndefValue::get(Vec->getType()),
1531                                        MaskV);
1532    } else if (NumDstElts > NumSrcElts) {
1533      // Extended the source vector to the same length and then shuffle it
1534      // into the destination.
1535      // FIXME: since we're shuffling with undef, can we just use the indices
1536      //        into that?  This could be simpler.
1537      SmallVector<llvm::Constant*, 4> ExtMask;
1538      for (unsigned i = 0; i != NumSrcElts; ++i)
1539        ExtMask.push_back(Builder.getInt32(i));
1540      ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1541      llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1542      llvm::Value *ExtSrcVal =
1543        Builder.CreateShuffleVector(SrcVal,
1544                                    llvm::UndefValue::get(SrcVal->getType()),
1545                                    ExtMaskV);
1546      // build identity
1547      SmallVector<llvm::Constant*, 4> Mask;
1548      for (unsigned i = 0; i != NumDstElts; ++i)
1549        Mask.push_back(Builder.getInt32(i));
1550
1551      // modify when what gets shuffled in
1552      for (unsigned i = 0; i != NumSrcElts; ++i)
1553        Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1554      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1555      Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1556    } else {
1557      // We should never shorten the vector
1558      llvm_unreachable("unexpected shorten vector length");
1559    }
1560  } else {
1561    // If the Src is a scalar (not a vector) it must be updating one element.
1562    unsigned InIdx = getAccessedFieldNo(0, Elts);
1563    llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1564    Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1565  }
1566
1567  llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
1568                                               Dst.isVolatileQualified());
1569  Store->setAlignment(Dst.getAlignment().getQuantity());
1570}
1571
1572// setObjCGCLValueClass - sets class of he lvalue for the purpose of
1573// generating write-barries API. It is currently a global, ivar,
1574// or neither.
1575static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1576                                 LValue &LV,
1577                                 bool IsMemberAccess=false) {
1578  if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1579    return;
1580
1581  if (isa<ObjCIvarRefExpr>(E)) {
1582    QualType ExpTy = E->getType();
1583    if (IsMemberAccess && ExpTy->isPointerType()) {
1584      // If ivar is a structure pointer, assigning to field of
1585      // this struct follows gcc's behavior and makes it a non-ivar
1586      // writer-barrier conservatively.
1587      ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1588      if (ExpTy->isRecordType()) {
1589        LV.setObjCIvar(false);
1590        return;
1591      }
1592    }
1593    LV.setObjCIvar(true);
1594    ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
1595    LV.setBaseIvarExp(Exp->getBase());
1596    LV.setObjCArray(E->getType()->isArrayType());
1597    return;
1598  }
1599
1600  if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
1601    if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1602      if (VD->hasGlobalStorage()) {
1603        LV.setGlobalObjCRef(true);
1604        LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
1605      }
1606    }
1607    LV.setObjCArray(E->getType()->isArrayType());
1608    return;
1609  }
1610
1611  if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
1612    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1613    return;
1614  }
1615
1616  if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
1617    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1618    if (LV.isObjCIvar()) {
1619      // If cast is to a structure pointer, follow gcc's behavior and make it
1620      // a non-ivar write-barrier.
1621      QualType ExpTy = E->getType();
1622      if (ExpTy->isPointerType())
1623        ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1624      if (ExpTy->isRecordType())
1625        LV.setObjCIvar(false);
1626    }
1627    return;
1628  }
1629
1630  if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1631    setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1632    return;
1633  }
1634
1635  if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1636    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1637    return;
1638  }
1639
1640  if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
1641    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1642    return;
1643  }
1644
1645  if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1646    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1647    return;
1648  }
1649
1650  if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1651    setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1652    if (LV.isObjCIvar() && !LV.isObjCArray())
1653      // Using array syntax to assigning to what an ivar points to is not
1654      // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1655      LV.setObjCIvar(false);
1656    else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1657      // Using array syntax to assigning to what global points to is not
1658      // same as assigning to the global itself. {id *G;} G[i] = 0;
1659      LV.setGlobalObjCRef(false);
1660    return;
1661  }
1662
1663  if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
1664    setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1665    // We don't know if member is an 'ivar', but this flag is looked at
1666    // only in the context of LV.isObjCIvar().
1667    LV.setObjCArray(E->getType()->isArrayType());
1668    return;
1669  }
1670}
1671
1672static llvm::Value *
1673EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1674                                llvm::Value *V, llvm::Type *IRType,
1675                                StringRef Name = StringRef()) {
1676  unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1677  return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1678}
1679
1680static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1681                                      const Expr *E, const VarDecl *VD) {
1682  llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1683  llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1684  V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1685  CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1686  QualType T = E->getType();
1687  LValue LV;
1688  if (VD->getType()->isReferenceType()) {
1689    llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1690    LI->setAlignment(Alignment.getQuantity());
1691    V = LI;
1692    LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1693  } else {
1694    LV = CGF.MakeAddrLValue(V, E->getType(), Alignment);
1695  }
1696  setObjCGCLValueClass(CGF.getContext(), E, LV);
1697  return LV;
1698}
1699
1700static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1701                                     const Expr *E, const FunctionDecl *FD) {
1702  llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1703  if (!FD->hasPrototype()) {
1704    if (const FunctionProtoType *Proto =
1705            FD->getType()->getAs<FunctionProtoType>()) {
1706      // Ugly case: for a K&R-style definition, the type of the definition
1707      // isn't the same as the type of a use.  Correct for this with a
1708      // bitcast.
1709      QualType NoProtoType =
1710          CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
1711      NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1712      V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1713    }
1714  }
1715  CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1716  return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1717}
1718
1719static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
1720                                      llvm::Value *ThisValue) {
1721  QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
1722  LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
1723  return CGF.EmitLValueForField(LV, FD);
1724}
1725
1726LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1727  const NamedDecl *ND = E->getDecl();
1728  CharUnits Alignment = getContext().getDeclAlign(ND);
1729  QualType T = E->getType();
1730
1731  // A DeclRefExpr for a reference initialized by a constant expression can
1732  // appear without being odr-used. Directly emit the constant initializer.
1733  if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1734    const Expr *Init = VD->getAnyInitializer(VD);
1735    if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
1736        VD->isUsableInConstantExpressions(getContext()) &&
1737        VD->checkInitIsICE()) {
1738      llvm::Constant *Val =
1739        CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
1740      assert(Val && "failed to emit reference constant expression");
1741      // FIXME: Eventually we will want to emit vector element references.
1742      return MakeAddrLValue(Val, T, Alignment);
1743    }
1744  }
1745
1746  // FIXME: We should be able to assert this for FunctionDecls as well!
1747  // FIXME: We should be able to assert this for all DeclRefExprs, not just
1748  // those with a valid source location.
1749  assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
1750          !E->getLocation().isValid()) &&
1751         "Should not use decl without marking it used!");
1752
1753  if (ND->hasAttr<WeakRefAttr>()) {
1754    const ValueDecl *VD = cast<ValueDecl>(ND);
1755    llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1756    return MakeAddrLValue(Aliasee, T, Alignment);
1757  }
1758
1759  if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1760    // Check if this is a global variable.
1761    if (VD->hasLinkage() || VD->isStaticDataMember()) {
1762      // If it's thread_local, emit a call to its wrapper function instead.
1763      if (VD->getTLSKind() == VarDecl::TLS_Dynamic)
1764        return CGM.getCXXABI().EmitThreadLocalDeclRefExpr(*this, E);
1765      return EmitGlobalVarDeclLValue(*this, E, VD);
1766    }
1767
1768    bool isBlockVariable = VD->hasAttr<BlocksAttr>();
1769
1770    llvm::Value *V = LocalDeclMap.lookup(VD);
1771    if (!V && VD->isStaticLocal())
1772      V = CGM.getStaticLocalDeclAddress(VD);
1773
1774    // Use special handling for lambdas.
1775    if (!V) {
1776      if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) {
1777        return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
1778      } else if (CapturedStmtInfo) {
1779        if (const FieldDecl *FD = CapturedStmtInfo->lookup(VD))
1780          return EmitCapturedFieldLValue(*this, FD,
1781                                         CapturedStmtInfo->getContextValue());
1782      }
1783
1784      assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal());
1785      return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable),
1786                            T, Alignment);
1787    }
1788
1789    assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1790
1791    if (isBlockVariable)
1792      V = BuildBlockByrefAddress(V, VD);
1793
1794    LValue LV;
1795    if (VD->getType()->isReferenceType()) {
1796      llvm::LoadInst *LI = Builder.CreateLoad(V);
1797      LI->setAlignment(Alignment.getQuantity());
1798      V = LI;
1799      LV = MakeNaturalAlignAddrLValue(V, T);
1800    } else {
1801      LV = MakeAddrLValue(V, T, Alignment);
1802    }
1803
1804    bool isLocalStorage = VD->hasLocalStorage();
1805
1806    bool NonGCable = isLocalStorage &&
1807                     !VD->getType()->isReferenceType() &&
1808                     !isBlockVariable;
1809    if (NonGCable) {
1810      LV.getQuals().removeObjCGCAttr();
1811      LV.setNonGC(true);
1812    }
1813
1814    bool isImpreciseLifetime =
1815      (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
1816    if (isImpreciseLifetime)
1817      LV.setARCPreciseLifetime(ARCImpreciseLifetime);
1818    setObjCGCLValueClass(getContext(), E, LV);
1819    return LV;
1820  }
1821
1822  if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND))
1823    return EmitFunctionDeclLValue(*this, E, fn);
1824
1825  llvm_unreachable("Unhandled DeclRefExpr");
1826}
1827
1828LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1829  // __extension__ doesn't affect lvalue-ness.
1830  if (E->getOpcode() == UO_Extension)
1831    return EmitLValue(E->getSubExpr());
1832
1833  QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1834  switch (E->getOpcode()) {
1835  default: llvm_unreachable("Unknown unary operator lvalue!");
1836  case UO_Deref: {
1837    QualType T = E->getSubExpr()->getType()->getPointeeType();
1838    assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1839
1840    LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1841    LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1842
1843    // We should not generate __weak write barrier on indirect reference
1844    // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1845    // But, we continue to generate __strong write barrier on indirect write
1846    // into a pointer to object.
1847    if (getLangOpts().ObjC1 &&
1848        getLangOpts().getGC() != LangOptions::NonGC &&
1849        LV.isObjCWeak())
1850      LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1851    return LV;
1852  }
1853  case UO_Real:
1854  case UO_Imag: {
1855    LValue LV = EmitLValue(E->getSubExpr());
1856    assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1857    llvm::Value *Addr = LV.getAddress();
1858
1859    // __real is valid on scalars.  This is a faster way of testing that.
1860    // __imag can only produce an rvalue on scalars.
1861    if (E->getOpcode() == UO_Real &&
1862        !cast<llvm::PointerType>(Addr->getType())
1863           ->getElementType()->isStructTy()) {
1864      assert(E->getSubExpr()->getType()->isArithmeticType());
1865      return LV;
1866    }
1867
1868    assert(E->getSubExpr()->getType()->isAnyComplexType());
1869
1870    unsigned Idx = E->getOpcode() == UO_Imag;
1871    return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1872                                                  Idx, "idx"),
1873                          ExprTy);
1874  }
1875  case UO_PreInc:
1876  case UO_PreDec: {
1877    LValue LV = EmitLValue(E->getSubExpr());
1878    bool isInc = E->getOpcode() == UO_PreInc;
1879
1880    if (E->getType()->isAnyComplexType())
1881      EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1882    else
1883      EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1884    return LV;
1885  }
1886  }
1887}
1888
1889LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1890  return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1891                        E->getType());
1892}
1893
1894LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1895  return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1896                        E->getType());
1897}
1898
1899static llvm::Constant*
1900GetAddrOfConstantWideString(StringRef Str,
1901                            const char *GlobalName,
1902                            ASTContext &Context,
1903                            QualType Ty, SourceLocation Loc,
1904                            CodeGenModule &CGM) {
1905
1906  StringLiteral *SL = StringLiteral::Create(Context,
1907                                            Str,
1908                                            StringLiteral::Wide,
1909                                            /*Pascal = */false,
1910                                            Ty, Loc);
1911  llvm::Constant *C = CGM.GetConstantArrayFromStringLiteral(SL);
1912  llvm::GlobalVariable *GV =
1913    new llvm::GlobalVariable(CGM.getModule(), C->getType(),
1914                             !CGM.getLangOpts().WritableStrings,
1915                             llvm::GlobalValue::PrivateLinkage,
1916                             C, GlobalName);
1917  const unsigned WideAlignment =
1918    Context.getTypeAlignInChars(Ty).getQuantity();
1919  GV->setAlignment(WideAlignment);
1920  return GV;
1921}
1922
1923static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
1924                                    SmallString<32>& Target) {
1925  Target.resize(CharByteWidth * (Source.size() + 1));
1926  char *ResultPtr = &Target[0];
1927  const UTF8 *ErrorPtr;
1928  bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
1929  (void)success;
1930  assert(success);
1931  Target.resize(ResultPtr - &Target[0]);
1932}
1933
1934LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
1935  switch (E->getIdentType()) {
1936  default:
1937    return EmitUnsupportedLValue(E, "predefined expression");
1938
1939  case PredefinedExpr::Func:
1940  case PredefinedExpr::Function:
1941  case PredefinedExpr::LFunction:
1942  case PredefinedExpr::PrettyFunction: {
1943    unsigned IdentType = E->getIdentType();
1944    std::string GlobalVarName;
1945
1946    switch (IdentType) {
1947    default: llvm_unreachable("Invalid type");
1948    case PredefinedExpr::Func:
1949      GlobalVarName = "__func__.";
1950      break;
1951    case PredefinedExpr::Function:
1952      GlobalVarName = "__FUNCTION__.";
1953      break;
1954    case PredefinedExpr::LFunction:
1955      GlobalVarName = "L__FUNCTION__.";
1956      break;
1957    case PredefinedExpr::PrettyFunction:
1958      GlobalVarName = "__PRETTY_FUNCTION__.";
1959      break;
1960    }
1961
1962    StringRef FnName = CurFn->getName();
1963    if (FnName.startswith("\01"))
1964      FnName = FnName.substr(1);
1965    GlobalVarName += FnName;
1966
1967    const Decl *CurDecl = CurCodeDecl;
1968    if (CurDecl == 0)
1969      CurDecl = getContext().getTranslationUnitDecl();
1970
1971    std::string FunctionName =
1972        (isa<BlockDecl>(CurDecl)
1973         ? FnName.str()
1974         : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)IdentType,
1975                                       CurDecl));
1976
1977    const Type* ElemType = E->getType()->getArrayElementTypeNoTypeQual();
1978    llvm::Constant *C;
1979    if (ElemType->isWideCharType()) {
1980      SmallString<32> RawChars;
1981      ConvertUTF8ToWideString(
1982          getContext().getTypeSizeInChars(ElemType).getQuantity(),
1983          FunctionName, RawChars);
1984      C = GetAddrOfConstantWideString(RawChars,
1985                                      GlobalVarName.c_str(),
1986                                      getContext(),
1987                                      E->getType(),
1988                                      E->getLocation(),
1989                                      CGM);
1990    } else {
1991      C = CGM.GetAddrOfConstantCString(FunctionName,
1992                                       GlobalVarName.c_str(),
1993                                       1);
1994    }
1995    return MakeAddrLValue(C, E->getType());
1996  }
1997  }
1998}
1999
2000/// Emit a type description suitable for use by a runtime sanitizer library. The
2001/// format of a type descriptor is
2002///
2003/// \code
2004///   { i16 TypeKind, i16 TypeInfo }
2005/// \endcode
2006///
2007/// followed by an array of i8 containing the type name. TypeKind is 0 for an
2008/// integer, 1 for a floating point value, and -1 for anything else.
2009llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2010  // FIXME: Only emit each type's descriptor once.
2011  uint16_t TypeKind = -1;
2012  uint16_t TypeInfo = 0;
2013
2014  if (T->isIntegerType()) {
2015    TypeKind = 0;
2016    TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2017               (T->isSignedIntegerType() ? 1 : 0);
2018  } else if (T->isFloatingType()) {
2019    TypeKind = 1;
2020    TypeInfo = getContext().getTypeSize(T);
2021  }
2022
2023  // Format the type name as if for a diagnostic, including quotes and
2024  // optionally an 'aka'.
2025  SmallString<32> Buffer;
2026  CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2027                                    (intptr_t)T.getAsOpaquePtr(),
2028                                    0, 0, 0, 0, 0, 0, Buffer,
2029                                    ArrayRef<intptr_t>());
2030
2031  llvm::Constant *Components[] = {
2032    Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2033    llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2034  };
2035  llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2036
2037  llvm::GlobalVariable *GV =
2038    new llvm::GlobalVariable(CGM.getModule(), Descriptor->getType(),
2039                             /*isConstant=*/true,
2040                             llvm::GlobalVariable::PrivateLinkage,
2041                             Descriptor);
2042  GV->setUnnamedAddr(true);
2043  return GV;
2044}
2045
2046llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2047  llvm::Type *TargetTy = IntPtrTy;
2048
2049  // Floating-point types which fit into intptr_t are bitcast to integers
2050  // and then passed directly (after zero-extension, if necessary).
2051  if (V->getType()->isFloatingPointTy()) {
2052    unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2053    if (Bits <= TargetTy->getIntegerBitWidth())
2054      V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2055                                                         Bits));
2056  }
2057
2058  // Integers which fit in intptr_t are zero-extended and passed directly.
2059  if (V->getType()->isIntegerTy() &&
2060      V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2061    return Builder.CreateZExt(V, TargetTy);
2062
2063  // Pointers are passed directly, everything else is passed by address.
2064  if (!V->getType()->isPointerTy()) {
2065    llvm::Value *Ptr = CreateTempAlloca(V->getType());
2066    Builder.CreateStore(V, Ptr);
2067    V = Ptr;
2068  }
2069  return Builder.CreatePtrToInt(V, TargetTy);
2070}
2071
2072/// \brief Emit a representation of a SourceLocation for passing to a handler
2073/// in a sanitizer runtime library. The format for this data is:
2074/// \code
2075///   struct SourceLocation {
2076///     const char *Filename;
2077///     int32_t Line, Column;
2078///   };
2079/// \endcode
2080/// For an invalid SourceLocation, the Filename pointer is null.
2081llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2082  PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2083
2084  llvm::Constant *Data[] = {
2085    // FIXME: Only emit each file name once.
2086    PLoc.isValid() ? cast<llvm::Constant>(
2087                       Builder.CreateGlobalStringPtr(PLoc.getFilename()))
2088                   : llvm::Constant::getNullValue(Int8PtrTy),
2089    Builder.getInt32(PLoc.getLine()),
2090    Builder.getInt32(PLoc.getColumn())
2091  };
2092
2093  return llvm::ConstantStruct::getAnon(Data);
2094}
2095
2096void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName,
2097                                ArrayRef<llvm::Constant *> StaticArgs,
2098                                ArrayRef<llvm::Value *> DynamicArgs,
2099                                CheckRecoverableKind RecoverKind) {
2100  assert(SanOpts != &SanitizerOptions::Disabled);
2101
2102  if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) {
2103    assert (RecoverKind != CRK_AlwaysRecoverable &&
2104            "Runtime call required for AlwaysRecoverable kind!");
2105    return EmitTrapCheck(Checked);
2106  }
2107
2108  llvm::BasicBlock *Cont = createBasicBlock("cont");
2109
2110  llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName);
2111
2112  llvm::Instruction *Branch = Builder.CreateCondBr(Checked, Cont, Handler);
2113
2114  // Give hint that we very much don't expect to execute the handler
2115  // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2116  llvm::MDBuilder MDHelper(getLLVMContext());
2117  llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2118  Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2119
2120  EmitBlock(Handler);
2121
2122  llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2123  llvm::GlobalValue *InfoPtr =
2124      new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2125                               llvm::GlobalVariable::PrivateLinkage, Info);
2126  InfoPtr->setUnnamedAddr(true);
2127
2128  SmallVector<llvm::Value *, 4> Args;
2129  SmallVector<llvm::Type *, 4> ArgTypes;
2130  Args.reserve(DynamicArgs.size() + 1);
2131  ArgTypes.reserve(DynamicArgs.size() + 1);
2132
2133  // Handler functions take an i8* pointing to the (handler-specific) static
2134  // information block, followed by a sequence of intptr_t arguments
2135  // representing operand values.
2136  Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2137  ArgTypes.push_back(Int8PtrTy);
2138  for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2139    Args.push_back(EmitCheckValue(DynamicArgs[i]));
2140    ArgTypes.push_back(IntPtrTy);
2141  }
2142
2143  bool Recover = (RecoverKind == CRK_AlwaysRecoverable) ||
2144                 ((RecoverKind == CRK_Recoverable) &&
2145                   CGM.getCodeGenOpts().SanitizeRecover);
2146
2147  llvm::FunctionType *FnType =
2148    llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2149  llvm::AttrBuilder B;
2150  if (!Recover) {
2151    B.addAttribute(llvm::Attribute::NoReturn)
2152     .addAttribute(llvm::Attribute::NoUnwind);
2153  }
2154  B.addAttribute(llvm::Attribute::UWTable);
2155
2156  // Checks that have two variants use a suffix to differentiate them
2157  bool NeedsAbortSuffix = (RecoverKind != CRK_Unrecoverable) &&
2158                           !CGM.getCodeGenOpts().SanitizeRecover;
2159  std::string FunctionName = ("__ubsan_handle_" + CheckName +
2160                              (NeedsAbortSuffix? "_abort" : "")).str();
2161  llvm::Value *Fn =
2162    CGM.CreateRuntimeFunction(FnType, FunctionName,
2163                              llvm::AttributeSet::get(getLLVMContext(),
2164                                              llvm::AttributeSet::FunctionIndex,
2165                                                      B));
2166  llvm::CallInst *HandlerCall = EmitNounwindRuntimeCall(Fn, Args);
2167  if (Recover) {
2168    Builder.CreateBr(Cont);
2169  } else {
2170    HandlerCall->setDoesNotReturn();
2171    Builder.CreateUnreachable();
2172  }
2173
2174  EmitBlock(Cont);
2175}
2176
2177void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
2178  llvm::BasicBlock *Cont = createBasicBlock("cont");
2179
2180  // If we're optimizing, collapse all calls to trap down to just one per
2181  // function to save on code size.
2182  if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
2183    TrapBB = createBasicBlock("trap");
2184    Builder.CreateCondBr(Checked, Cont, TrapBB);
2185    EmitBlock(TrapBB);
2186    llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
2187    llvm::CallInst *TrapCall = Builder.CreateCall(F);
2188    TrapCall->setDoesNotReturn();
2189    TrapCall->setDoesNotThrow();
2190    Builder.CreateUnreachable();
2191  } else {
2192    Builder.CreateCondBr(Checked, Cont, TrapBB);
2193  }
2194
2195  EmitBlock(Cont);
2196}
2197
2198/// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
2199/// array to pointer, return the array subexpression.
2200static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
2201  // If this isn't just an array->pointer decay, bail out.
2202  const CastExpr *CE = dyn_cast<CastExpr>(E);
2203  if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
2204    return 0;
2205
2206  // If this is a decay from variable width array, bail out.
2207  const Expr *SubExpr = CE->getSubExpr();
2208  if (SubExpr->getType()->isVariableArrayType())
2209    return 0;
2210
2211  return SubExpr;
2212}
2213
2214LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2215                                               bool Accessed) {
2216  // The index must always be an integer, which is not an aggregate.  Emit it.
2217  llvm::Value *Idx = EmitScalarExpr(E->getIdx());
2218  QualType IdxTy  = E->getIdx()->getType();
2219  bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
2220
2221  if (SanOpts->Bounds)
2222    EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
2223
2224  // If the base is a vector type, then we are forming a vector element lvalue
2225  // with this subscript.
2226  if (E->getBase()->getType()->isVectorType()) {
2227    // Emit the vector as an lvalue to get its address.
2228    LValue LHS = EmitLValue(E->getBase());
2229    assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
2230    Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
2231    return LValue::MakeVectorElt(LHS.getAddress(), Idx,
2232                                 E->getBase()->getType(), LHS.getAlignment());
2233  }
2234
2235  // Extend or truncate the index type to 32 or 64-bits.
2236  if (Idx->getType() != IntPtrTy)
2237    Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
2238
2239  // We know that the pointer points to a type of the correct size, unless the
2240  // size is a VLA or Objective-C interface.
2241  llvm::Value *Address = 0;
2242  CharUnits ArrayAlignment;
2243  if (const VariableArrayType *vla =
2244        getContext().getAsVariableArrayType(E->getType())) {
2245    // The base must be a pointer, which is not an aggregate.  Emit
2246    // it.  It needs to be emitted first in case it's what captures
2247    // the VLA bounds.
2248    Address = EmitScalarExpr(E->getBase());
2249
2250    // The element count here is the total number of non-VLA elements.
2251    llvm::Value *numElements = getVLASize(vla).first;
2252
2253    // Effectively, the multiply by the VLA size is part of the GEP.
2254    // GEP indexes are signed, and scaling an index isn't permitted to
2255    // signed-overflow, so we use the same semantics for our explicit
2256    // multiply.  We suppress this if overflow is not undefined behavior.
2257    if (getLangOpts().isSignedOverflowDefined()) {
2258      Idx = Builder.CreateMul(Idx, numElements);
2259      Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2260    } else {
2261      Idx = Builder.CreateNSWMul(Idx, numElements);
2262      Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
2263    }
2264  } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
2265    // Indexing over an interface, as in "NSString *P; P[4];"
2266    llvm::Value *InterfaceSize =
2267      llvm::ConstantInt::get(Idx->getType(),
2268          getContext().getTypeSizeInChars(OIT).getQuantity());
2269
2270    Idx = Builder.CreateMul(Idx, InterfaceSize);
2271
2272    // The base must be a pointer, which is not an aggregate.  Emit it.
2273    llvm::Value *Base = EmitScalarExpr(E->getBase());
2274    Address = EmitCastToVoidPtr(Base);
2275    Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2276    Address = Builder.CreateBitCast(Address, Base->getType());
2277  } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
2278    // If this is A[i] where A is an array, the frontend will have decayed the
2279    // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
2280    // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
2281    // "gep x, i" here.  Emit one "gep A, 0, i".
2282    assert(Array->getType()->isArrayType() &&
2283           "Array to pointer decay must have array source type!");
2284    LValue ArrayLV;
2285    // For simple multidimensional array indexing, set the 'accessed' flag for
2286    // better bounds-checking of the base expression.
2287    if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(Array))
2288      ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
2289    else
2290      ArrayLV = EmitLValue(Array);
2291    llvm::Value *ArrayPtr = ArrayLV.getAddress();
2292    llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
2293    llvm::Value *Args[] = { Zero, Idx };
2294
2295    // Propagate the alignment from the array itself to the result.
2296    ArrayAlignment = ArrayLV.getAlignment();
2297
2298    if (getLangOpts().isSignedOverflowDefined())
2299      Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
2300    else
2301      Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
2302  } else {
2303    // The base must be a pointer, which is not an aggregate.  Emit it.
2304    llvm::Value *Base = EmitScalarExpr(E->getBase());
2305    if (getLangOpts().isSignedOverflowDefined())
2306      Address = Builder.CreateGEP(Base, Idx, "arrayidx");
2307    else
2308      Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
2309  }
2310
2311  QualType T = E->getBase()->getType()->getPointeeType();
2312  assert(!T.isNull() &&
2313         "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
2314
2315
2316  // Limit the alignment to that of the result type.
2317  LValue LV;
2318  if (!ArrayAlignment.isZero()) {
2319    CharUnits Align = getContext().getTypeAlignInChars(T);
2320    ArrayAlignment = std::min(Align, ArrayAlignment);
2321    LV = MakeAddrLValue(Address, T, ArrayAlignment);
2322  } else {
2323    LV = MakeNaturalAlignAddrLValue(Address, T);
2324  }
2325
2326  LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
2327
2328  if (getLangOpts().ObjC1 &&
2329      getLangOpts().getGC() != LangOptions::NonGC) {
2330    LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2331    setObjCGCLValueClass(getContext(), E, LV);
2332  }
2333  return LV;
2334}
2335
2336static
2337llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
2338                                       SmallVector<unsigned, 4> &Elts) {
2339  SmallVector<llvm::Constant*, 4> CElts;
2340  for (unsigned i = 0, e = Elts.size(); i != e; ++i)
2341    CElts.push_back(Builder.getInt32(Elts[i]));
2342
2343  return llvm::ConstantVector::get(CElts);
2344}
2345
2346LValue CodeGenFunction::
2347EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
2348  // Emit the base vector as an l-value.
2349  LValue Base;
2350
2351  // ExtVectorElementExpr's base can either be a vector or pointer to vector.
2352  if (E->isArrow()) {
2353    // If it is a pointer to a vector, emit the address and form an lvalue with
2354    // it.
2355    llvm::Value *Ptr = EmitScalarExpr(E->getBase());
2356    const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
2357    Base = MakeAddrLValue(Ptr, PT->getPointeeType());
2358    Base.getQuals().removeObjCGCAttr();
2359  } else if (E->getBase()->isGLValue()) {
2360    // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
2361    // emit the base as an lvalue.
2362    assert(E->getBase()->getType()->isVectorType());
2363    Base = EmitLValue(E->getBase());
2364  } else {
2365    // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
2366    assert(E->getBase()->getType()->isVectorType() &&
2367           "Result must be a vector");
2368    llvm::Value *Vec = EmitScalarExpr(E->getBase());
2369
2370    // Store the vector to memory (because LValue wants an address).
2371    llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
2372    Builder.CreateStore(Vec, VecMem);
2373    Base = MakeAddrLValue(VecMem, E->getBase()->getType());
2374  }
2375
2376  QualType type =
2377    E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
2378
2379  // Encode the element access list into a vector of unsigned indices.
2380  SmallVector<unsigned, 4> Indices;
2381  E->getEncodedElementAccess(Indices);
2382
2383  if (Base.isSimple()) {
2384    llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
2385    return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
2386                                    Base.getAlignment());
2387  }
2388  assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
2389
2390  llvm::Constant *BaseElts = Base.getExtVectorElts();
2391  SmallVector<llvm::Constant *, 4> CElts;
2392
2393  for (unsigned i = 0, e = Indices.size(); i != e; ++i)
2394    CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
2395  llvm::Constant *CV = llvm::ConstantVector::get(CElts);
2396  return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
2397                                  Base.getAlignment());
2398}
2399
2400LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
2401  Expr *BaseExpr = E->getBase();
2402
2403  // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
2404  LValue BaseLV;
2405  if (E->isArrow()) {
2406    llvm::Value *Ptr = EmitScalarExpr(BaseExpr);
2407    QualType PtrTy = BaseExpr->getType()->getPointeeType();
2408    EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy);
2409    BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy);
2410  } else
2411    BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
2412
2413  NamedDecl *ND = E->getMemberDecl();
2414  if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
2415    LValue LV = EmitLValueForField(BaseLV, Field);
2416    setObjCGCLValueClass(getContext(), E, LV);
2417    return LV;
2418  }
2419
2420  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
2421    return EmitGlobalVarDeclLValue(*this, E, VD);
2422
2423  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
2424    return EmitFunctionDeclLValue(*this, E, FD);
2425
2426  llvm_unreachable("Unhandled member declaration!");
2427}
2428
2429/// Given that we are currently emitting a lambda, emit an l-value for
2430/// one of its members.
2431LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
2432  assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
2433  assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
2434  QualType LambdaTagType =
2435    getContext().getTagDeclType(Field->getParent());
2436  LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
2437  return EmitLValueForField(LambdaLV, Field);
2438}
2439
2440LValue CodeGenFunction::EmitLValueForField(LValue base,
2441                                           const FieldDecl *field) {
2442  if (field->isBitField()) {
2443    const CGRecordLayout &RL =
2444      CGM.getTypes().getCGRecordLayout(field->getParent());
2445    const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
2446    llvm::Value *Addr = base.getAddress();
2447    unsigned Idx = RL.getLLVMFieldNo(field);
2448    if (Idx != 0)
2449      // For structs, we GEP to the field that the record layout suggests.
2450      Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
2451    // Get the access type.
2452    llvm::Type *PtrTy = llvm::Type::getIntNPtrTy(
2453      getLLVMContext(), Info.StorageSize,
2454      CGM.getContext().getTargetAddressSpace(base.getType()));
2455    if (Addr->getType() != PtrTy)
2456      Addr = Builder.CreateBitCast(Addr, PtrTy);
2457
2458    QualType fieldType =
2459      field->getType().withCVRQualifiers(base.getVRQualifiers());
2460    return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment());
2461  }
2462
2463  const RecordDecl *rec = field->getParent();
2464  QualType type = field->getType();
2465  CharUnits alignment = getContext().getDeclAlign(field);
2466
2467  // FIXME: It should be impossible to have an LValue without alignment for a
2468  // complete type.
2469  if (!base.getAlignment().isZero())
2470    alignment = std::min(alignment, base.getAlignment());
2471
2472  bool mayAlias = rec->hasAttr<MayAliasAttr>();
2473
2474  llvm::Value *addr = base.getAddress();
2475  unsigned cvr = base.getVRQualifiers();
2476  bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
2477  if (rec->isUnion()) {
2478    // For unions, there is no pointer adjustment.
2479    assert(!type->isReferenceType() && "union has reference member");
2480    // TODO: handle path-aware TBAA for union.
2481    TBAAPath = false;
2482  } else {
2483    // For structs, we GEP to the field that the record layout suggests.
2484    unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
2485    addr = Builder.CreateStructGEP(addr, idx, field->getName());
2486
2487    // If this is a reference field, load the reference right now.
2488    if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
2489      llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
2490      if (cvr & Qualifiers::Volatile) load->setVolatile(true);
2491      load->setAlignment(alignment.getQuantity());
2492
2493      // Loading the reference will disable path-aware TBAA.
2494      TBAAPath = false;
2495      if (CGM.shouldUseTBAA()) {
2496        llvm::MDNode *tbaa;
2497        if (mayAlias)
2498          tbaa = CGM.getTBAAInfo(getContext().CharTy);
2499        else
2500          tbaa = CGM.getTBAAInfo(type);
2501        CGM.DecorateInstruction(load, tbaa);
2502      }
2503
2504      addr = load;
2505      mayAlias = false;
2506      type = refType->getPointeeType();
2507      if (type->isIncompleteType())
2508        alignment = CharUnits();
2509      else
2510        alignment = getContext().getTypeAlignInChars(type);
2511      cvr = 0; // qualifiers don't recursively apply to referencee
2512    }
2513  }
2514
2515  // Make sure that the address is pointing to the right type.  This is critical
2516  // for both unions and structs.  A union needs a bitcast, a struct element
2517  // will need a bitcast if the LLVM type laid out doesn't match the desired
2518  // type.
2519  addr = EmitBitCastOfLValueToProperType(*this, addr,
2520                                         CGM.getTypes().ConvertTypeForMem(type),
2521                                         field->getName());
2522
2523  if (field->hasAttr<AnnotateAttr>())
2524    addr = EmitFieldAnnotations(field, addr);
2525
2526  LValue LV = MakeAddrLValue(addr, type, alignment);
2527  LV.getQuals().addCVRQualifiers(cvr);
2528  if (TBAAPath) {
2529    const ASTRecordLayout &Layout =
2530        getContext().getASTRecordLayout(field->getParent());
2531    // Set the base type to be the base type of the base LValue and
2532    // update offset to be relative to the base type.
2533    LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
2534    LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
2535                     Layout.getFieldOffset(field->getFieldIndex()) /
2536                                           getContext().getCharWidth());
2537  }
2538
2539  // __weak attribute on a field is ignored.
2540  if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
2541    LV.getQuals().removeObjCGCAttr();
2542
2543  // Fields of may_alias structs act like 'char' for TBAA purposes.
2544  // FIXME: this should get propagated down through anonymous structs
2545  // and unions.
2546  if (mayAlias && LV.getTBAAInfo())
2547    LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
2548
2549  return LV;
2550}
2551
2552LValue
2553CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
2554                                                  const FieldDecl *Field) {
2555  QualType FieldType = Field->getType();
2556
2557  if (!FieldType->isReferenceType())
2558    return EmitLValueForField(Base, Field);
2559
2560  const CGRecordLayout &RL =
2561    CGM.getTypes().getCGRecordLayout(Field->getParent());
2562  unsigned idx = RL.getLLVMFieldNo(Field);
2563  llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx);
2564  assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
2565
2566  // Make sure that the address is pointing to the right type.  This is critical
2567  // for both unions and structs.  A union needs a bitcast, a struct element
2568  // will need a bitcast if the LLVM type laid out doesn't match the desired
2569  // type.
2570  llvm::Type *llvmType = ConvertTypeForMem(FieldType);
2571  V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
2572
2573  CharUnits Alignment = getContext().getDeclAlign(Field);
2574
2575  // FIXME: It should be impossible to have an LValue without alignment for a
2576  // complete type.
2577  if (!Base.getAlignment().isZero())
2578    Alignment = std::min(Alignment, Base.getAlignment());
2579
2580  return MakeAddrLValue(V, FieldType, Alignment);
2581}
2582
2583LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
2584  if (E->isFileScope()) {
2585    llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
2586    return MakeAddrLValue(GlobalPtr, E->getType());
2587  }
2588  if (E->getType()->isVariablyModifiedType())
2589    // make sure to emit the VLA size.
2590    EmitVariablyModifiedType(E->getType());
2591
2592  llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
2593  const Expr *InitExpr = E->getInitializer();
2594  LValue Result = MakeAddrLValue(DeclPtr, E->getType());
2595
2596  EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
2597                   /*Init*/ true);
2598
2599  return Result;
2600}
2601
2602LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
2603  if (!E->isGLValue())
2604    // Initializing an aggregate temporary in C++11: T{...}.
2605    return EmitAggExprToLValue(E);
2606
2607  // An lvalue initializer list must be initializing a reference.
2608  assert(E->getNumInits() == 1 && "reference init with multiple values");
2609  return EmitLValue(E->getInit(0));
2610}
2611
2612LValue CodeGenFunction::
2613EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
2614  if (!expr->isGLValue()) {
2615    // ?: here should be an aggregate.
2616    assert(hasAggregateEvaluationKind(expr->getType()) &&
2617           "Unexpected conditional operator!");
2618    return EmitAggExprToLValue(expr);
2619  }
2620
2621  OpaqueValueMapping binding(*this, expr);
2622
2623  const Expr *condExpr = expr->getCond();
2624  bool CondExprBool;
2625  if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2626    const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
2627    if (!CondExprBool) std::swap(live, dead);
2628
2629    if (!ContainsLabel(dead))
2630      return EmitLValue(live);
2631  }
2632
2633  llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2634  llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2635  llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2636
2637  ConditionalEvaluation eval(*this);
2638  EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock);
2639
2640  // Any temporaries created here are conditional.
2641  EmitBlock(lhsBlock);
2642  eval.begin(*this);
2643  LValue lhs = EmitLValue(expr->getTrueExpr());
2644  eval.end(*this);
2645
2646  if (!lhs.isSimple())
2647    return EmitUnsupportedLValue(expr, "conditional operator");
2648
2649  lhsBlock = Builder.GetInsertBlock();
2650  Builder.CreateBr(contBlock);
2651
2652  // Any temporaries created here are conditional.
2653  EmitBlock(rhsBlock);
2654  eval.begin(*this);
2655  LValue rhs = EmitLValue(expr->getFalseExpr());
2656  eval.end(*this);
2657  if (!rhs.isSimple())
2658    return EmitUnsupportedLValue(expr, "conditional operator");
2659  rhsBlock = Builder.GetInsertBlock();
2660
2661  EmitBlock(contBlock);
2662
2663  llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2,
2664                                         "cond-lvalue");
2665  phi->addIncoming(lhs.getAddress(), lhsBlock);
2666  phi->addIncoming(rhs.getAddress(), rhsBlock);
2667  return MakeAddrLValue(phi, expr->getType());
2668}
2669
2670/// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
2671/// type. If the cast is to a reference, we can have the usual lvalue result,
2672/// otherwise if a cast is needed by the code generator in an lvalue context,
2673/// then it must mean that we need the address of an aggregate in order to
2674/// access one of its members.  This can happen for all the reasons that casts
2675/// are permitted with aggregate result, including noop aggregate casts, and
2676/// cast from scalar to union.
2677LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2678  switch (E->getCastKind()) {
2679  case CK_ToVoid:
2680    return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2681
2682  case CK_Dependent:
2683    llvm_unreachable("dependent cast kind in IR gen!");
2684
2685  case CK_BuiltinFnToFnPtr:
2686    llvm_unreachable("builtin functions are handled elsewhere");
2687
2688  // These two casts are currently treated as no-ops, although they could
2689  // potentially be real operations depending on the target's ABI.
2690  case CK_NonAtomicToAtomic:
2691  case CK_AtomicToNonAtomic:
2692
2693  case CK_NoOp:
2694  case CK_LValueToRValue:
2695    if (!E->getSubExpr()->Classify(getContext()).isPRValue()
2696        || E->getType()->isRecordType())
2697      return EmitLValue(E->getSubExpr());
2698    // Fall through to synthesize a temporary.
2699
2700  case CK_BitCast:
2701  case CK_ArrayToPointerDecay:
2702  case CK_FunctionToPointerDecay:
2703  case CK_NullToMemberPointer:
2704  case CK_NullToPointer:
2705  case CK_IntegralToPointer:
2706  case CK_PointerToIntegral:
2707  case CK_PointerToBoolean:
2708  case CK_VectorSplat:
2709  case CK_IntegralCast:
2710  case CK_IntegralToBoolean:
2711  case CK_IntegralToFloating:
2712  case CK_FloatingToIntegral:
2713  case CK_FloatingToBoolean:
2714  case CK_FloatingCast:
2715  case CK_FloatingRealToComplex:
2716  case CK_FloatingComplexToReal:
2717  case CK_FloatingComplexToBoolean:
2718  case CK_FloatingComplexCast:
2719  case CK_FloatingComplexToIntegralComplex:
2720  case CK_IntegralRealToComplex:
2721  case CK_IntegralComplexToReal:
2722  case CK_IntegralComplexToBoolean:
2723  case CK_IntegralComplexCast:
2724  case CK_IntegralComplexToFloatingComplex:
2725  case CK_DerivedToBaseMemberPointer:
2726  case CK_BaseToDerivedMemberPointer:
2727  case CK_MemberPointerToBoolean:
2728  case CK_ReinterpretMemberPointer:
2729  case CK_AnyPointerToBlockPointerCast:
2730  case CK_ARCProduceObject:
2731  case CK_ARCConsumeObject:
2732  case CK_ARCReclaimReturnedObject:
2733  case CK_ARCExtendBlockObject:
2734  case CK_CopyAndAutoreleaseBlockObject: {
2735    // These casts only produce lvalues when we're binding a reference to a
2736    // temporary realized from a (converted) pure rvalue. Emit the expression
2737    // as a value, copy it into a temporary, and return an lvalue referring to
2738    // that temporary.
2739    llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp");
2740    EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false);
2741    return MakeAddrLValue(V, E->getType());
2742  }
2743
2744  case CK_Dynamic: {
2745    LValue LV = EmitLValue(E->getSubExpr());
2746    llvm::Value *V = LV.getAddress();
2747    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
2748    return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2749  }
2750
2751  case CK_ConstructorConversion:
2752  case CK_UserDefinedConversion:
2753  case CK_CPointerToObjCPointerCast:
2754  case CK_BlockPointerToObjCPointerCast:
2755    return EmitLValue(E->getSubExpr());
2756
2757  case CK_UncheckedDerivedToBase:
2758  case CK_DerivedToBase: {
2759    const RecordType *DerivedClassTy =
2760      E->getSubExpr()->getType()->getAs<RecordType>();
2761    CXXRecordDecl *DerivedClassDecl =
2762      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2763
2764    LValue LV = EmitLValue(E->getSubExpr());
2765    llvm::Value *This = LV.getAddress();
2766
2767    // Perform the derived-to-base conversion
2768    llvm::Value *Base =
2769      GetAddressOfBaseClass(This, DerivedClassDecl,
2770                            E->path_begin(), E->path_end(),
2771                            /*NullCheckValue=*/false);
2772
2773    return MakeAddrLValue(Base, E->getType());
2774  }
2775  case CK_ToUnion:
2776    return EmitAggExprToLValue(E);
2777  case CK_BaseToDerived: {
2778    const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2779    CXXRecordDecl *DerivedClassDecl =
2780      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2781
2782    LValue LV = EmitLValue(E->getSubExpr());
2783
2784    // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
2785    // performed and the object is not of the derived type.
2786    if (SanitizePerformTypeCheck)
2787      EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
2788                    LV.getAddress(), E->getType());
2789
2790    // Perform the base-to-derived conversion
2791    llvm::Value *Derived =
2792      GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
2793                               E->path_begin(), E->path_end(),
2794                               /*NullCheckValue=*/false);
2795
2796    return MakeAddrLValue(Derived, E->getType());
2797  }
2798  case CK_LValueBitCast: {
2799    // This must be a reinterpret_cast (or c-style equivalent).
2800    const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
2801
2802    LValue LV = EmitLValue(E->getSubExpr());
2803    llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2804                                           ConvertType(CE->getTypeAsWritten()));
2805    return MakeAddrLValue(V, E->getType());
2806  }
2807  case CK_ObjCObjectLValueCast: {
2808    LValue LV = EmitLValue(E->getSubExpr());
2809    QualType ToType = getContext().getLValueReferenceType(E->getType());
2810    llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2811                                           ConvertType(ToType));
2812    return MakeAddrLValue(V, E->getType());
2813  }
2814  case CK_ZeroToOCLEvent:
2815    llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
2816  }
2817
2818  llvm_unreachable("Unhandled lvalue cast kind?");
2819}
2820
2821LValue CodeGenFunction::EmitNullInitializationLValue(
2822                                              const CXXScalarValueInitExpr *E) {
2823  QualType Ty = E->getType();
2824  LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty);
2825  EmitNullInitialization(LV.getAddress(), Ty);
2826  return LV;
2827}
2828
2829LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
2830  assert(OpaqueValueMappingData::shouldBindAsLValue(e));
2831  return getOpaqueLValueMapping(e);
2832}
2833
2834LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
2835                                           const MaterializeTemporaryExpr *E) {
2836  RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
2837  return MakeAddrLValue(RV.getScalarVal(), E->getType());
2838}
2839
2840RValue CodeGenFunction::EmitRValueForField(LValue LV,
2841                                           const FieldDecl *FD) {
2842  QualType FT = FD->getType();
2843  LValue FieldLV = EmitLValueForField(LV, FD);
2844  switch (getEvaluationKind(FT)) {
2845  case TEK_Complex:
2846    return RValue::getComplex(EmitLoadOfComplex(FieldLV));
2847  case TEK_Aggregate:
2848    return FieldLV.asAggregateRValue();
2849  case TEK_Scalar:
2850    return EmitLoadOfLValue(FieldLV);
2851  }
2852  llvm_unreachable("bad evaluation kind");
2853}
2854
2855//===--------------------------------------------------------------------===//
2856//                             Expression Emission
2857//===--------------------------------------------------------------------===//
2858
2859RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
2860                                     ReturnValueSlot ReturnValue) {
2861  if (CGDebugInfo *DI = getDebugInfo()) {
2862    SourceLocation Loc = E->getLocStart();
2863    // Force column info to be generated so we can differentiate
2864    // multiple call sites on the same line in the debug info.
2865    const FunctionDecl* Callee = E->getDirectCallee();
2866    bool ForceColumnInfo = Callee && Callee->isInlineSpecified();
2867    DI->EmitLocation(Builder, Loc, ForceColumnInfo);
2868  }
2869
2870  // Builtins never have block type.
2871  if (E->getCallee()->getType()->isBlockPointerType())
2872    return EmitBlockCallExpr(E, ReturnValue);
2873
2874  if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
2875    return EmitCXXMemberCallExpr(CE, ReturnValue);
2876
2877  if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E))
2878    return EmitCUDAKernelCallExpr(CE, ReturnValue);
2879
2880  const Decl *TargetDecl = E->getCalleeDecl();
2881  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2882    if (unsigned builtinID = FD->getBuiltinID())
2883      return EmitBuiltinExpr(FD, builtinID, E);
2884  }
2885
2886  if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
2887    if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
2888      return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
2889
2890  if (const CXXPseudoDestructorExpr *PseudoDtor
2891          = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
2892    QualType DestroyedType = PseudoDtor->getDestroyedType();
2893    if (getLangOpts().ObjCAutoRefCount &&
2894        DestroyedType->isObjCLifetimeType() &&
2895        (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
2896         DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
2897      // Automatic Reference Counting:
2898      //   If the pseudo-expression names a retainable object with weak or
2899      //   strong lifetime, the object shall be released.
2900      Expr *BaseExpr = PseudoDtor->getBase();
2901      llvm::Value *BaseValue = NULL;
2902      Qualifiers BaseQuals;
2903
2904      // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2905      if (PseudoDtor->isArrow()) {
2906        BaseValue = EmitScalarExpr(BaseExpr);
2907        const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
2908        BaseQuals = PTy->getPointeeType().getQualifiers();
2909      } else {
2910        LValue BaseLV = EmitLValue(BaseExpr);
2911        BaseValue = BaseLV.getAddress();
2912        QualType BaseTy = BaseExpr->getType();
2913        BaseQuals = BaseTy.getQualifiers();
2914      }
2915
2916      switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
2917      case Qualifiers::OCL_None:
2918      case Qualifiers::OCL_ExplicitNone:
2919      case Qualifiers::OCL_Autoreleasing:
2920        break;
2921
2922      case Qualifiers::OCL_Strong:
2923        EmitARCRelease(Builder.CreateLoad(BaseValue,
2924                          PseudoDtor->getDestroyedType().isVolatileQualified()),
2925                       ARCPreciseLifetime);
2926        break;
2927
2928      case Qualifiers::OCL_Weak:
2929        EmitARCDestroyWeak(BaseValue);
2930        break;
2931      }
2932    } else {
2933      // C++ [expr.pseudo]p1:
2934      //   The result shall only be used as the operand for the function call
2935      //   operator (), and the result of such a call has type void. The only
2936      //   effect is the evaluation of the postfix-expression before the dot or
2937      //   arrow.
2938      EmitScalarExpr(E->getCallee());
2939    }
2940
2941    return RValue::get(0);
2942  }
2943
2944  llvm::Value *Callee = EmitScalarExpr(E->getCallee());
2945  return EmitCall(E->getCallee()->getType(), Callee, ReturnValue,
2946                  E->arg_begin(), E->arg_end(), TargetDecl);
2947}
2948
2949LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
2950  // Comma expressions just emit their LHS then their RHS as an l-value.
2951  if (E->getOpcode() == BO_Comma) {
2952    EmitIgnoredExpr(E->getLHS());
2953    EnsureInsertPoint();
2954    return EmitLValue(E->getRHS());
2955  }
2956
2957  if (E->getOpcode() == BO_PtrMemD ||
2958      E->getOpcode() == BO_PtrMemI)
2959    return EmitPointerToDataMemberBinaryExpr(E);
2960
2961  assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
2962
2963  // Note that in all of these cases, __block variables need the RHS
2964  // evaluated first just in case the variable gets moved by the RHS.
2965
2966  switch (getEvaluationKind(E->getType())) {
2967  case TEK_Scalar: {
2968    switch (E->getLHS()->getType().getObjCLifetime()) {
2969    case Qualifiers::OCL_Strong:
2970      return EmitARCStoreStrong(E, /*ignored*/ false).first;
2971
2972    case Qualifiers::OCL_Autoreleasing:
2973      return EmitARCStoreAutoreleasing(E).first;
2974
2975    // No reason to do any of these differently.
2976    case Qualifiers::OCL_None:
2977    case Qualifiers::OCL_ExplicitNone:
2978    case Qualifiers::OCL_Weak:
2979      break;
2980    }
2981
2982    RValue RV = EmitAnyExpr(E->getRHS());
2983    LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
2984    EmitStoreThroughLValue(RV, LV);
2985    return LV;
2986  }
2987
2988  case TEK_Complex:
2989    return EmitComplexAssignmentLValue(E);
2990
2991  case TEK_Aggregate:
2992    return EmitAggExprToLValue(E);
2993  }
2994  llvm_unreachable("bad evaluation kind");
2995}
2996
2997LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
2998  RValue RV = EmitCallExpr(E);
2999
3000  if (!RV.isScalar())
3001    return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3002
3003  assert(E->getCallReturnType()->isReferenceType() &&
3004         "Can't have a scalar return unless the return type is a "
3005         "reference type!");
3006
3007  return MakeAddrLValue(RV.getScalarVal(), E->getType());
3008}
3009
3010LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
3011  // FIXME: This shouldn't require another copy.
3012  return EmitAggExprToLValue(E);
3013}
3014
3015LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
3016  assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
3017         && "binding l-value to type which needs a temporary");
3018  AggValueSlot Slot = CreateAggTemp(E->getType());
3019  EmitCXXConstructExpr(E, Slot);
3020  return MakeAddrLValue(Slot.getAddr(), E->getType());
3021}
3022
3023LValue
3024CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
3025  return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
3026}
3027
3028llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
3029  return CGM.GetAddrOfUuidDescriptor(E);
3030}
3031
3032LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
3033  return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType());
3034}
3035
3036LValue
3037CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
3038  AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3039  Slot.setExternallyDestructed();
3040  EmitAggExpr(E->getSubExpr(), Slot);
3041  EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
3042  return MakeAddrLValue(Slot.getAddr(), E->getType());
3043}
3044
3045LValue
3046CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
3047  AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3048  EmitLambdaExpr(E, Slot);
3049  return MakeAddrLValue(Slot.getAddr(), E->getType());
3050}
3051
3052LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
3053  RValue RV = EmitObjCMessageExpr(E);
3054
3055  if (!RV.isScalar())
3056    return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3057
3058  assert(E->getMethodDecl()->getResultType()->isReferenceType() &&
3059         "Can't have a scalar return unless the return type is a "
3060         "reference type!");
3061
3062  return MakeAddrLValue(RV.getScalarVal(), E->getType());
3063}
3064
3065LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
3066  llvm::Value *V =
3067    CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true);
3068  return MakeAddrLValue(V, E->getType());
3069}
3070
3071llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3072                                             const ObjCIvarDecl *Ivar) {
3073  return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
3074}
3075
3076LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
3077                                          llvm::Value *BaseValue,
3078                                          const ObjCIvarDecl *Ivar,
3079                                          unsigned CVRQualifiers) {
3080  return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
3081                                                   Ivar, CVRQualifiers);
3082}
3083
3084LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
3085  // FIXME: A lot of the code below could be shared with EmitMemberExpr.
3086  llvm::Value *BaseValue = 0;
3087  const Expr *BaseExpr = E->getBase();
3088  Qualifiers BaseQuals;
3089  QualType ObjectTy;
3090  if (E->isArrow()) {
3091    BaseValue = EmitScalarExpr(BaseExpr);
3092    ObjectTy = BaseExpr->getType()->getPointeeType();
3093    BaseQuals = ObjectTy.getQualifiers();
3094  } else {
3095    LValue BaseLV = EmitLValue(BaseExpr);
3096    // FIXME: this isn't right for bitfields.
3097    BaseValue = BaseLV.getAddress();
3098    ObjectTy = BaseExpr->getType();
3099    BaseQuals = ObjectTy.getQualifiers();
3100  }
3101
3102  LValue LV =
3103    EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
3104                      BaseQuals.getCVRQualifiers());
3105  setObjCGCLValueClass(getContext(), E, LV);
3106  return LV;
3107}
3108
3109LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
3110  // Can only get l-value for message expression returning aggregate type
3111  RValue RV = EmitAnyExprToTemp(E);
3112  return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3113}
3114
3115RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
3116                                 ReturnValueSlot ReturnValue,
3117                                 CallExpr::const_arg_iterator ArgBeg,
3118                                 CallExpr::const_arg_iterator ArgEnd,
3119                                 const Decl *TargetDecl) {
3120  // Get the actual function type. The callee type will always be a pointer to
3121  // function type or a block pointer type.
3122  assert(CalleeType->isFunctionPointerType() &&
3123         "Call must have function pointer type!");
3124
3125  CalleeType = getContext().getCanonicalType(CalleeType);
3126
3127  const FunctionType *FnType
3128    = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
3129
3130  CallArgList Args;
3131  EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd);
3132
3133  const CGFunctionInfo &FnInfo =
3134    CGM.getTypes().arrangeFreeFunctionCall(Args, FnType);
3135
3136  // C99 6.5.2.2p6:
3137  //   If the expression that denotes the called function has a type
3138  //   that does not include a prototype, [the default argument
3139  //   promotions are performed]. If the number of arguments does not
3140  //   equal the number of parameters, the behavior is undefined. If
3141  //   the function is defined with a type that includes a prototype,
3142  //   and either the prototype ends with an ellipsis (, ...) or the
3143  //   types of the arguments after promotion are not compatible with
3144  //   the types of the parameters, the behavior is undefined. If the
3145  //   function is defined with a type that does not include a
3146  //   prototype, and the types of the arguments after promotion are
3147  //   not compatible with those of the parameters after promotion,
3148  //   the behavior is undefined [except in some trivial cases].
3149  // That is, in the general case, we should assume that a call
3150  // through an unprototyped function type works like a *non-variadic*
3151  // call.  The way we make this work is to cast to the exact type
3152  // of the promoted arguments.
3153  if (isa<FunctionNoProtoType>(FnType)) {
3154    llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
3155    CalleeTy = CalleeTy->getPointerTo();
3156    Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
3157  }
3158
3159  return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
3160}
3161
3162LValue CodeGenFunction::
3163EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
3164  llvm::Value *BaseV;
3165  if (E->getOpcode() == BO_PtrMemI)
3166    BaseV = EmitScalarExpr(E->getLHS());
3167  else
3168    BaseV = EmitLValue(E->getLHS()).getAddress();
3169
3170  llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
3171
3172  const MemberPointerType *MPT
3173    = E->getRHS()->getType()->getAs<MemberPointerType>();
3174
3175  llvm::Value *AddV =
3176    CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT);
3177
3178  return MakeAddrLValue(AddV, MPT->getPointeeType());
3179}
3180
3181/// Given the address of a temporary variable, produce an r-value of
3182/// its type.
3183RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr,
3184                                            QualType type) {
3185  LValue lvalue = MakeNaturalAlignAddrLValue(addr, type);
3186  switch (getEvaluationKind(type)) {
3187  case TEK_Complex:
3188    return RValue::getComplex(EmitLoadOfComplex(lvalue));
3189  case TEK_Aggregate:
3190    return lvalue.asAggregateRValue();
3191  case TEK_Scalar:
3192    return RValue::get(EmitLoadOfScalar(lvalue));
3193  }
3194  llvm_unreachable("bad evaluation kind");
3195}
3196
3197void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
3198  assert(Val->getType()->isFPOrFPVectorTy());
3199  if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
3200    return;
3201
3202  llvm::MDBuilder MDHelper(getLLVMContext());
3203  llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
3204
3205  cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
3206}
3207
3208namespace {
3209  struct LValueOrRValue {
3210    LValue LV;
3211    RValue RV;
3212  };
3213}
3214
3215static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
3216                                           const PseudoObjectExpr *E,
3217                                           bool forLValue,
3218                                           AggValueSlot slot) {
3219  SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3220
3221  // Find the result expression, if any.
3222  const Expr *resultExpr = E->getResultExpr();
3223  LValueOrRValue result;
3224
3225  for (PseudoObjectExpr::const_semantics_iterator
3226         i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3227    const Expr *semantic = *i;
3228
3229    // If this semantic expression is an opaque value, bind it
3230    // to the result of its source expression.
3231    if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3232
3233      // If this is the result expression, we may need to evaluate
3234      // directly into the slot.
3235      typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3236      OVMA opaqueData;
3237      if (ov == resultExpr && ov->isRValue() && !forLValue &&
3238          CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
3239        CGF.EmitAggExpr(ov->getSourceExpr(), slot);
3240
3241        LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
3242        opaqueData = OVMA::bind(CGF, ov, LV);
3243        result.RV = slot.asRValue();
3244
3245      // Otherwise, emit as normal.
3246      } else {
3247        opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3248
3249        // If this is the result, also evaluate the result now.
3250        if (ov == resultExpr) {
3251          if (forLValue)
3252            result.LV = CGF.EmitLValue(ov);
3253          else
3254            result.RV = CGF.EmitAnyExpr(ov, slot);
3255        }
3256      }
3257
3258      opaques.push_back(opaqueData);
3259
3260    // Otherwise, if the expression is the result, evaluate it
3261    // and remember the result.
3262    } else if (semantic == resultExpr) {
3263      if (forLValue)
3264        result.LV = CGF.EmitLValue(semantic);
3265      else
3266        result.RV = CGF.EmitAnyExpr(semantic, slot);
3267
3268    // Otherwise, evaluate the expression in an ignored context.
3269    } else {
3270      CGF.EmitIgnoredExpr(semantic);
3271    }
3272  }
3273
3274  // Unbind all the opaques now.
3275  for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3276    opaques[i].unbind(CGF);
3277
3278  return result;
3279}
3280
3281RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
3282                                               AggValueSlot slot) {
3283  return emitPseudoObjectExpr(*this, E, false, slot).RV;
3284}
3285
3286LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
3287  return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
3288}
3289