CGExpr.cpp revision 975d83c291821de340eef3c3498104172b375f79
1//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGCXXABI.h"
16#include "CGCall.h"
17#include "CGDebugInfo.h"
18#include "CGObjCRuntime.h"
19#include "CGRecordLayout.h"
20#include "CodeGenModule.h"
21#include "TargetInfo.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/Frontend/CodeGenOptions.h"
25#include "llvm/ADT/Hashing.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/Intrinsics.h"
28#include "llvm/IR/LLVMContext.h"
29#include "llvm/IR/MDBuilder.h"
30#include "llvm/Support/ConvertUTF.h"
31
32using namespace clang;
33using namespace CodeGen;
34
35//===--------------------------------------------------------------------===//
36//                        Miscellaneous Helper Methods
37//===--------------------------------------------------------------------===//
38
39llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
40  unsigned addressSpace =
41    cast<llvm::PointerType>(value->getType())->getAddressSpace();
42
43  llvm::PointerType *destType = Int8PtrTy;
44  if (addressSpace)
45    destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
46
47  if (value->getType() == destType) return value;
48  return Builder.CreateBitCast(value, destType);
49}
50
51/// CreateTempAlloca - This creates a alloca and inserts it into the entry
52/// block.
53llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
54                                                    const Twine &Name) {
55  if (!Builder.isNamePreserving())
56    return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
57  return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
58}
59
60void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
61                                     llvm::Value *Init) {
62  llvm::StoreInst *Store = new llvm::StoreInst(Init, Var);
63  llvm::BasicBlock *Block = AllocaInsertPt->getParent();
64  Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
65}
66
67llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
68                                                const Twine &Name) {
69  llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
70  // FIXME: Should we prefer the preferred type alignment here?
71  CharUnits Align = getContext().getTypeAlignInChars(Ty);
72  Alloc->setAlignment(Align.getQuantity());
73  return Alloc;
74}
75
76llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
77                                                 const Twine &Name) {
78  llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
79  // FIXME: Should we prefer the preferred type alignment here?
80  CharUnits Align = getContext().getTypeAlignInChars(Ty);
81  Alloc->setAlignment(Align.getQuantity());
82  return Alloc;
83}
84
85/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
86/// expression and compare the result against zero, returning an Int1Ty value.
87llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
88  if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
89    llvm::Value *MemPtr = EmitScalarExpr(E);
90    return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
91  }
92
93  QualType BoolTy = getContext().BoolTy;
94  if (!E->getType()->isAnyComplexType())
95    return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
96
97  return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
98}
99
100/// EmitIgnoredExpr - Emit code to compute the specified expression,
101/// ignoring the result.
102void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
103  if (E->isRValue())
104    return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
105
106  // Just emit it as an l-value and drop the result.
107  EmitLValue(E);
108}
109
110/// EmitAnyExpr - Emit code to compute the specified expression which
111/// can have any type.  The result is returned as an RValue struct.
112/// If this is an aggregate expression, AggSlot indicates where the
113/// result should be returned.
114RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
115                                    AggValueSlot aggSlot,
116                                    bool ignoreResult) {
117  switch (getEvaluationKind(E->getType())) {
118  case TEK_Scalar:
119    return RValue::get(EmitScalarExpr(E, ignoreResult));
120  case TEK_Complex:
121    return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
122  case TEK_Aggregate:
123    if (!ignoreResult && aggSlot.isIgnored())
124      aggSlot = CreateAggTemp(E->getType(), "agg-temp");
125    EmitAggExpr(E, aggSlot);
126    return aggSlot.asRValue();
127  }
128  llvm_unreachable("bad evaluation kind");
129}
130
131/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
132/// always be accessible even if no aggregate location is provided.
133RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
134  AggValueSlot AggSlot = AggValueSlot::ignored();
135
136  if (hasAggregateEvaluationKind(E->getType()))
137    AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
138  return EmitAnyExpr(E, AggSlot);
139}
140
141/// EmitAnyExprToMem - Evaluate an expression into a given memory
142/// location.
143void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
144                                       llvm::Value *Location,
145                                       Qualifiers Quals,
146                                       bool IsInit) {
147  // FIXME: This function should take an LValue as an argument.
148  switch (getEvaluationKind(E->getType())) {
149  case TEK_Complex:
150    EmitComplexExprIntoLValue(E,
151                         MakeNaturalAlignAddrLValue(Location, E->getType()),
152                              /*isInit*/ false);
153    return;
154
155  case TEK_Aggregate: {
156    CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
157    EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
158                                         AggValueSlot::IsDestructed_t(IsInit),
159                                         AggValueSlot::DoesNotNeedGCBarriers,
160                                         AggValueSlot::IsAliased_t(!IsInit)));
161    return;
162  }
163
164  case TEK_Scalar: {
165    RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
166    LValue LV = MakeAddrLValue(Location, E->getType());
167    EmitStoreThroughLValue(RV, LV);
168    return;
169  }
170  }
171  llvm_unreachable("bad evaluation kind");
172}
173
174static llvm::Value *
175CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type,
176                         const NamedDecl *InitializedDecl) {
177  if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
178    if (VD->hasGlobalStorage()) {
179      SmallString<256> Name;
180      llvm::raw_svector_ostream Out(Name);
181      CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
182      Out.flush();
183
184      llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type);
185
186      // Create the reference temporary.
187      llvm::GlobalVariable *RefTemp =
188        new llvm::GlobalVariable(CGF.CGM.getModule(),
189                                 RefTempTy, /*isConstant=*/false,
190                                 llvm::GlobalValue::InternalLinkage,
191                                 llvm::Constant::getNullValue(RefTempTy),
192                                 Name.str());
193      // If we're binding to a thread_local variable, the temporary is also
194      // thread local.
195      if (VD->getTLSKind())
196        CGF.CGM.setTLSMode(RefTemp, *VD);
197      return RefTemp;
198    }
199  }
200
201  return CGF.CreateMemTemp(Type, "ref.tmp");
202}
203
204static llvm::Value *
205EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E,
206                            llvm::Value *&ReferenceTemporary,
207                            const CXXDestructorDecl *&ReferenceTemporaryDtor,
208                            const InitListExpr *&ReferenceInitializerList,
209                            QualType &ObjCARCReferenceLifetimeType,
210                            const NamedDecl *InitializedDecl) {
211  const MaterializeTemporaryExpr *M = NULL;
212  E = E->findMaterializedTemporary(M);
213  // Objective-C++ ARC:
214  //   If we are binding a reference to a temporary that has ownership, we
215  //   need to perform retain/release operations on the temporary.
216  if (M && CGF.getLangOpts().ObjCAutoRefCount &&
217      M->getType()->isObjCLifetimeType() &&
218      (M->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
219       M->getType().getObjCLifetime() == Qualifiers::OCL_Weak ||
220       M->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing))
221    ObjCARCReferenceLifetimeType = M->getType();
222
223  if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E)) {
224    CGF.enterFullExpression(EWC);
225    CodeGenFunction::RunCleanupsScope Scope(CGF);
226
227    return EmitExprForReferenceBinding(CGF, EWC->getSubExpr(),
228                                       ReferenceTemporary,
229                                       ReferenceTemporaryDtor,
230                                       ReferenceInitializerList,
231                                       ObjCARCReferenceLifetimeType,
232                                       InitializedDecl);
233  }
234
235  if (E->isGLValue()) {
236    // Emit the expression as an lvalue.
237    LValue LV = CGF.EmitLValue(E);
238    assert(LV.isSimple());
239    return LV.getAddress();
240  }
241
242  if (!ObjCARCReferenceLifetimeType.isNull()) {
243    ReferenceTemporary = CreateReferenceTemporary(CGF,
244                                                ObjCARCReferenceLifetimeType,
245                                                  InitializedDecl);
246
247
248    LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary,
249                                           ObjCARCReferenceLifetimeType);
250
251    CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl),
252                       RefTempDst, false);
253
254    bool ExtendsLifeOfTemporary = false;
255    if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
256      if (Var->extendsLifetimeOfTemporary())
257        ExtendsLifeOfTemporary = true;
258    } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) {
259      ExtendsLifeOfTemporary = true;
260    }
261
262    if (!ExtendsLifeOfTemporary) {
263      // Since the lifetime of this temporary isn't going to be extended,
264      // we need to clean it up ourselves at the end of the full expression.
265      switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
266      case Qualifiers::OCL_None:
267      case Qualifiers::OCL_ExplicitNone:
268      case Qualifiers::OCL_Autoreleasing:
269        break;
270
271      case Qualifiers::OCL_Strong: {
272        assert(!ObjCARCReferenceLifetimeType->isArrayType());
273        CleanupKind cleanupKind = CGF.getARCCleanupKind();
274        CGF.pushDestroy(cleanupKind,
275                        ReferenceTemporary,
276                        ObjCARCReferenceLifetimeType,
277                        CodeGenFunction::destroyARCStrongImprecise,
278                        cleanupKind & EHCleanup);
279        break;
280      }
281
282      case Qualifiers::OCL_Weak:
283        assert(!ObjCARCReferenceLifetimeType->isArrayType());
284        CGF.pushDestroy(NormalAndEHCleanup,
285                        ReferenceTemporary,
286                        ObjCARCReferenceLifetimeType,
287                        CodeGenFunction::destroyARCWeak,
288                        /*useEHCleanupForArray*/ true);
289        break;
290      }
291
292      ObjCARCReferenceLifetimeType = QualType();
293    }
294
295    return ReferenceTemporary;
296  }
297
298  SmallVector<SubobjectAdjustment, 2> Adjustments;
299  E = E->skipRValueSubobjectAdjustments(Adjustments);
300  if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E))
301    if (opaque->getType()->isRecordType())
302      return CGF.EmitOpaqueValueLValue(opaque).getAddress();
303
304  // Create a reference temporary if necessary.
305  AggValueSlot AggSlot = AggValueSlot::ignored();
306  if (CGF.hasAggregateEvaluationKind(E->getType())) {
307    ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
308                                                  InitializedDecl);
309    CharUnits Alignment = CGF.getContext().getTypeAlignInChars(E->getType());
310    AggValueSlot::IsDestructed_t isDestructed
311      = AggValueSlot::IsDestructed_t(InitializedDecl != 0);
312    AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Alignment,
313                                    Qualifiers(), isDestructed,
314                                    AggValueSlot::DoesNotNeedGCBarriers,
315                                    AggValueSlot::IsNotAliased);
316  }
317
318  if (InitializedDecl) {
319    if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E)) {
320      if (ILE->initializesStdInitializerList()) {
321        ReferenceInitializerList = ILE;
322      }
323    }
324    else if (const RecordType *RT =
325               E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()){
326      // Get the destructor for the reference temporary.
327      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
328      if (!ClassDecl->hasTrivialDestructor())
329        ReferenceTemporaryDtor = ClassDecl->getDestructor();
330    }
331  }
332
333  RValue RV = CGF.EmitAnyExpr(E, AggSlot);
334
335  // Check if need to perform derived-to-base casts and/or field accesses, to
336  // get from the temporary object we created (and, potentially, for which we
337  // extended the lifetime) to the subobject we're binding the reference to.
338  if (!Adjustments.empty()) {
339    llvm::Value *Object = RV.getAggregateAddr();
340    for (unsigned I = Adjustments.size(); I != 0; --I) {
341      SubobjectAdjustment &Adjustment = Adjustments[I-1];
342      switch (Adjustment.Kind) {
343      case SubobjectAdjustment::DerivedToBaseAdjustment:
344        Object =
345            CGF.GetAddressOfBaseClass(Object,
346                                      Adjustment.DerivedToBase.DerivedClass,
347                            Adjustment.DerivedToBase.BasePath->path_begin(),
348                            Adjustment.DerivedToBase.BasePath->path_end(),
349                                      /*NullCheckValue=*/false);
350        break;
351
352      case SubobjectAdjustment::FieldAdjustment: {
353        LValue LV = CGF.MakeAddrLValue(Object, E->getType());
354        LV = CGF.EmitLValueForField(LV, Adjustment.Field);
355        if (LV.isSimple()) {
356          Object = LV.getAddress();
357          break;
358        }
359
360        // For non-simple lvalues, we actually have to create a copy of
361        // the object we're binding to.
362        QualType T = Adjustment.Field->getType().getNonReferenceType()
363                                                .getUnqualifiedType();
364        Object = CreateReferenceTemporary(CGF, T, InitializedDecl);
365        LValue TempLV = CGF.MakeAddrLValue(Object,
366                                           Adjustment.Field->getType());
367        CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV);
368        break;
369      }
370
371      case SubobjectAdjustment::MemberPointerAdjustment: {
372        llvm::Value *Ptr = CGF.EmitScalarExpr(Adjustment.Ptr.RHS);
373        Object = CGF.CGM.getCXXABI().EmitMemberDataPointerAddress(
374                      CGF, Object, Ptr, Adjustment.Ptr.MPT);
375        break;
376      }
377      }
378    }
379
380    return Object;
381  }
382
383  if (RV.isAggregate())
384    return RV.getAggregateAddr();
385
386  // Create a temporary variable that we can bind the reference to.
387  ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
388                                                InitializedDecl);
389
390
391  LValue tempLV = CGF.MakeNaturalAlignAddrLValue(ReferenceTemporary,
392                                                 E->getType());
393  if (RV.isScalar())
394    CGF.EmitStoreOfScalar(RV.getScalarVal(), tempLV, /*init*/ true);
395  else
396    CGF.EmitStoreOfComplex(RV.getComplexVal(), tempLV, /*init*/ true);
397  return ReferenceTemporary;
398}
399
400RValue
401CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E,
402                                            const NamedDecl *InitializedDecl) {
403  llvm::Value *ReferenceTemporary = 0;
404  const CXXDestructorDecl *ReferenceTemporaryDtor = 0;
405  const InitListExpr *ReferenceInitializerList = 0;
406  QualType ObjCARCReferenceLifetimeType;
407  llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary,
408                                                   ReferenceTemporaryDtor,
409                                                   ReferenceInitializerList,
410                                                   ObjCARCReferenceLifetimeType,
411                                                   InitializedDecl);
412  if (SanitizePerformTypeCheck && !E->getType()->isFunctionType()) {
413    // C++11 [dcl.ref]p5 (as amended by core issue 453):
414    //   If a glvalue to which a reference is directly bound designates neither
415    //   an existing object or function of an appropriate type nor a region of
416    //   storage of suitable size and alignment to contain an object of the
417    //   reference's type, the behavior is undefined.
418    QualType Ty = E->getType();
419    EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
420  }
421  if (!ReferenceTemporaryDtor && !ReferenceInitializerList &&
422      ObjCARCReferenceLifetimeType.isNull())
423    return RValue::get(Value);
424
425  // Make sure to call the destructor for the reference temporary.
426  const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl);
427  if (VD && VD->hasGlobalStorage()) {
428    if (ReferenceTemporaryDtor) {
429      llvm::Constant *CleanupFn;
430      llvm::Constant *CleanupArg;
431      if (E->getType()->isArrayType()) {
432        CleanupFn = CodeGenFunction(CGM).generateDestroyHelper(
433            cast<llvm::Constant>(ReferenceTemporary), E->getType(),
434            destroyCXXObject, getLangOpts().Exceptions);
435        CleanupArg = llvm::Constant::getNullValue(Int8PtrTy);
436      } else {
437        CleanupFn =
438          CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
439        CleanupArg = cast<llvm::Constant>(ReferenceTemporary);
440      }
441      CGM.getCXXABI().registerGlobalDtor(*this, *VD, CleanupFn, CleanupArg);
442    } else if (ReferenceInitializerList) {
443      // FIXME: This is wrong. We need to register a global destructor to clean
444      // up the initializer_list object, rather than adding it as a local
445      // cleanup.
446      EmitStdInitializerListCleanup(ReferenceTemporary,
447                                    ReferenceInitializerList);
448    } else {
449      assert(!ObjCARCReferenceLifetimeType.isNull() && !VD->getTLSKind());
450      // Note: We intentionally do not register a global "destructor" to
451      // release the object.
452    }
453
454    return RValue::get(Value);
455  }
456
457  if (ReferenceTemporaryDtor) {
458    if (E->getType()->isArrayType())
459      pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
460                  destroyCXXObject, getLangOpts().Exceptions);
461    else
462      PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary);
463  } else if (ReferenceInitializerList) {
464    EmitStdInitializerListCleanup(ReferenceTemporary,
465                                  ReferenceInitializerList);
466  } else {
467    switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
468    case Qualifiers::OCL_None:
469      llvm_unreachable(
470                      "Not a reference temporary that needs to be deallocated");
471    case Qualifiers::OCL_ExplicitNone:
472    case Qualifiers::OCL_Autoreleasing:
473      // Nothing to do.
474      break;
475
476    case Qualifiers::OCL_Strong: {
477      bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>();
478      CleanupKind cleanupKind = getARCCleanupKind();
479      pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType,
480                  precise ? destroyARCStrongPrecise : destroyARCStrongImprecise,
481                  cleanupKind & EHCleanup);
482      break;
483    }
484
485    case Qualifiers::OCL_Weak: {
486      // __weak objects always get EH cleanups; otherwise, exceptions
487      // could cause really nasty crashes instead of mere leaks.
488      pushDestroy(NormalAndEHCleanup, ReferenceTemporary,
489                  ObjCARCReferenceLifetimeType, destroyARCWeak, true);
490      break;
491    }
492    }
493  }
494
495  return RValue::get(Value);
496}
497
498
499/// getAccessedFieldNo - Given an encoded value and a result number, return the
500/// input field number being accessed.
501unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
502                                             const llvm::Constant *Elts) {
503  return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
504      ->getZExtValue();
505}
506
507/// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
508static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
509                                    llvm::Value *High) {
510  llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
511  llvm::Value *K47 = Builder.getInt64(47);
512  llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
513  llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
514  llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
515  llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
516  return Builder.CreateMul(B1, KMul);
517}
518
519void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
520                                    llvm::Value *Address,
521                                    QualType Ty, CharUnits Alignment) {
522  if (!SanitizePerformTypeCheck)
523    return;
524
525  // Don't check pointers outside the default address space. The null check
526  // isn't correct, the object-size check isn't supported by LLVM, and we can't
527  // communicate the addresses to the runtime handler for the vptr check.
528  if (Address->getType()->getPointerAddressSpace())
529    return;
530
531  llvm::Value *Cond = 0;
532  llvm::BasicBlock *Done = 0;
533
534  if (SanOpts->Null) {
535    // The glvalue must not be an empty glvalue.
536    Cond = Builder.CreateICmpNE(
537        Address, llvm::Constant::getNullValue(Address->getType()));
538
539    if (TCK == TCK_DowncastPointer) {
540      // When performing a pointer downcast, it's OK if the value is null.
541      // Skip the remaining checks in that case.
542      Done = createBasicBlock("null");
543      llvm::BasicBlock *Rest = createBasicBlock("not.null");
544      Builder.CreateCondBr(Cond, Rest, Done);
545      EmitBlock(Rest);
546      Cond = 0;
547    }
548  }
549
550  if (SanOpts->ObjectSize && !Ty->isIncompleteType()) {
551    uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
552
553    // The glvalue must refer to a large enough storage region.
554    // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
555    //        to check this.
556    llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy);
557    llvm::Value *Min = Builder.getFalse();
558    llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy);
559    llvm::Value *LargeEnough =
560        Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min),
561                              llvm::ConstantInt::get(IntPtrTy, Size));
562    Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough;
563  }
564
565  uint64_t AlignVal = 0;
566
567  if (SanOpts->Alignment) {
568    AlignVal = Alignment.getQuantity();
569    if (!Ty->isIncompleteType() && !AlignVal)
570      AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
571
572    // The glvalue must be suitably aligned.
573    if (AlignVal) {
574      llvm::Value *Align =
575          Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy),
576                            llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
577      llvm::Value *Aligned =
578        Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
579      Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned;
580    }
581  }
582
583  if (Cond) {
584    llvm::Constant *StaticData[] = {
585      EmitCheckSourceLocation(Loc),
586      EmitCheckTypeDescriptor(Ty),
587      llvm::ConstantInt::get(SizeTy, AlignVal),
588      llvm::ConstantInt::get(Int8Ty, TCK)
589    };
590    EmitCheck(Cond, "type_mismatch", StaticData, Address, CRK_Recoverable);
591  }
592
593  // If possible, check that the vptr indicates that there is a subobject of
594  // type Ty at offset zero within this object.
595  //
596  // C++11 [basic.life]p5,6:
597  //   [For storage which does not refer to an object within its lifetime]
598  //   The program has undefined behavior if:
599  //    -- the [pointer or glvalue] is used to access a non-static data member
600  //       or call a non-static member function
601  CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
602  if (SanOpts->Vptr &&
603      (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
604       TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference) &&
605      RD && RD->hasDefinition() && RD->isDynamicClass()) {
606    // Compute a hash of the mangled name of the type.
607    //
608    // FIXME: This is not guaranteed to be deterministic! Move to a
609    //        fingerprinting mechanism once LLVM provides one. For the time
610    //        being the implementation happens to be deterministic.
611    SmallString<64> MangledName;
612    llvm::raw_svector_ostream Out(MangledName);
613    CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
614                                                     Out);
615    llvm::hash_code TypeHash = hash_value(Out.str());
616
617    // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
618    llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
619    llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
620    llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy);
621    llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
622    llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
623
624    llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
625    Hash = Builder.CreateTrunc(Hash, IntPtrTy);
626
627    // Look the hash up in our cache.
628    const int CacheSize = 128;
629    llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
630    llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
631                                                   "__ubsan_vptr_type_cache");
632    llvm::Value *Slot = Builder.CreateAnd(Hash,
633                                          llvm::ConstantInt::get(IntPtrTy,
634                                                                 CacheSize-1));
635    llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
636    llvm::Value *CacheVal =
637      Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices));
638
639    // If the hash isn't in the cache, call a runtime handler to perform the
640    // hard work of checking whether the vptr is for an object of the right
641    // type. This will either fill in the cache and return, or produce a
642    // diagnostic.
643    llvm::Constant *StaticData[] = {
644      EmitCheckSourceLocation(Loc),
645      EmitCheckTypeDescriptor(Ty),
646      CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
647      llvm::ConstantInt::get(Int8Ty, TCK)
648    };
649    llvm::Value *DynamicData[] = { Address, Hash };
650    EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash),
651              "dynamic_type_cache_miss", StaticData, DynamicData,
652              CRK_AlwaysRecoverable);
653  }
654
655  if (Done) {
656    Builder.CreateBr(Done);
657    EmitBlock(Done);
658  }
659}
660
661/// Determine whether this expression refers to a flexible array member in a
662/// struct. We disable array bounds checks for such members.
663static bool isFlexibleArrayMemberExpr(const Expr *E) {
664  // For compatibility with existing code, we treat arrays of length 0 or
665  // 1 as flexible array members.
666  const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
667  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
668    if (CAT->getSize().ugt(1))
669      return false;
670  } else if (!isa<IncompleteArrayType>(AT))
671    return false;
672
673  E = E->IgnoreParens();
674
675  // A flexible array member must be the last member in the class.
676  if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
677    // FIXME: If the base type of the member expr is not FD->getParent(),
678    // this should not be treated as a flexible array member access.
679    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
680      RecordDecl::field_iterator FI(
681          DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
682      return ++FI == FD->getParent()->field_end();
683    }
684  }
685
686  return false;
687}
688
689/// If Base is known to point to the start of an array, return the length of
690/// that array. Return 0 if the length cannot be determined.
691static llvm::Value *getArrayIndexingBound(
692    CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
693  // For the vector indexing extension, the bound is the number of elements.
694  if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
695    IndexedType = Base->getType();
696    return CGF.Builder.getInt32(VT->getNumElements());
697  }
698
699  Base = Base->IgnoreParens();
700
701  if (const CastExpr *CE = dyn_cast<CastExpr>(Base)) {
702    if (CE->getCastKind() == CK_ArrayToPointerDecay &&
703        !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
704      IndexedType = CE->getSubExpr()->getType();
705      const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
706      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
707        return CGF.Builder.getInt(CAT->getSize());
708      else if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT))
709        return CGF.getVLASize(VAT).first;
710    }
711  }
712
713  return 0;
714}
715
716void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
717                                      llvm::Value *Index, QualType IndexType,
718                                      bool Accessed) {
719  assert(SanOpts->Bounds && "should not be called unless adding bounds checks");
720
721  QualType IndexedType;
722  llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
723  if (!Bound)
724    return;
725
726  bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
727  llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
728  llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
729
730  llvm::Constant *StaticData[] = {
731    EmitCheckSourceLocation(E->getExprLoc()),
732    EmitCheckTypeDescriptor(IndexedType),
733    EmitCheckTypeDescriptor(IndexType)
734  };
735  llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
736                                : Builder.CreateICmpULE(IndexVal, BoundVal);
737  EmitCheck(Check, "out_of_bounds", StaticData, Index, CRK_Recoverable);
738}
739
740
741CodeGenFunction::ComplexPairTy CodeGenFunction::
742EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
743                         bool isInc, bool isPre) {
744  ComplexPairTy InVal = EmitLoadOfComplex(LV);
745
746  llvm::Value *NextVal;
747  if (isa<llvm::IntegerType>(InVal.first->getType())) {
748    uint64_t AmountVal = isInc ? 1 : -1;
749    NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
750
751    // Add the inc/dec to the real part.
752    NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
753  } else {
754    QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
755    llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
756    if (!isInc)
757      FVal.changeSign();
758    NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
759
760    // Add the inc/dec to the real part.
761    NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
762  }
763
764  ComplexPairTy IncVal(NextVal, InVal.second);
765
766  // Store the updated result through the lvalue.
767  EmitStoreOfComplex(IncVal, LV, /*init*/ false);
768
769  // If this is a postinc, return the value read from memory, otherwise use the
770  // updated value.
771  return isPre ? IncVal : InVal;
772}
773
774
775//===----------------------------------------------------------------------===//
776//                         LValue Expression Emission
777//===----------------------------------------------------------------------===//
778
779RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
780  if (Ty->isVoidType())
781    return RValue::get(0);
782
783  switch (getEvaluationKind(Ty)) {
784  case TEK_Complex: {
785    llvm::Type *EltTy =
786      ConvertType(Ty->castAs<ComplexType>()->getElementType());
787    llvm::Value *U = llvm::UndefValue::get(EltTy);
788    return RValue::getComplex(std::make_pair(U, U));
789  }
790
791  // If this is a use of an undefined aggregate type, the aggregate must have an
792  // identifiable address.  Just because the contents of the value are undefined
793  // doesn't mean that the address can't be taken and compared.
794  case TEK_Aggregate: {
795    llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
796    return RValue::getAggregate(DestPtr);
797  }
798
799  case TEK_Scalar:
800    return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
801  }
802  llvm_unreachable("bad evaluation kind");
803}
804
805RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
806                                              const char *Name) {
807  ErrorUnsupported(E, Name);
808  return GetUndefRValue(E->getType());
809}
810
811LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
812                                              const char *Name) {
813  ErrorUnsupported(E, Name);
814  llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
815  return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
816}
817
818LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
819  LValue LV;
820  if (SanOpts->Bounds && isa<ArraySubscriptExpr>(E))
821    LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
822  else
823    LV = EmitLValue(E);
824  if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
825    EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(),
826                  E->getType(), LV.getAlignment());
827  return LV;
828}
829
830/// EmitLValue - Emit code to compute a designator that specifies the location
831/// of the expression.
832///
833/// This can return one of two things: a simple address or a bitfield reference.
834/// In either case, the LLVM Value* in the LValue structure is guaranteed to be
835/// an LLVM pointer type.
836///
837/// If this returns a bitfield reference, nothing about the pointee type of the
838/// LLVM value is known: For example, it may not be a pointer to an integer.
839///
840/// If this returns a normal address, and if the lvalue's C type is fixed size,
841/// this method guarantees that the returned pointer type will point to an LLVM
842/// type of the same size of the lvalue's type.  If the lvalue has a variable
843/// length type, this is not possible.
844///
845LValue CodeGenFunction::EmitLValue(const Expr *E) {
846  switch (E->getStmtClass()) {
847  default: return EmitUnsupportedLValue(E, "l-value expression");
848
849  case Expr::ObjCPropertyRefExprClass:
850    llvm_unreachable("cannot emit a property reference directly");
851
852  case Expr::ObjCSelectorExprClass:
853    return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
854  case Expr::ObjCIsaExprClass:
855    return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
856  case Expr::BinaryOperatorClass:
857    return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
858  case Expr::CompoundAssignOperatorClass:
859    if (!E->getType()->isAnyComplexType())
860      return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
861    return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
862  case Expr::CallExprClass:
863  case Expr::CXXMemberCallExprClass:
864  case Expr::CXXOperatorCallExprClass:
865  case Expr::UserDefinedLiteralClass:
866    return EmitCallExprLValue(cast<CallExpr>(E));
867  case Expr::VAArgExprClass:
868    return EmitVAArgExprLValue(cast<VAArgExpr>(E));
869  case Expr::DeclRefExprClass:
870    return EmitDeclRefLValue(cast<DeclRefExpr>(E));
871  case Expr::ParenExprClass:
872    return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
873  case Expr::GenericSelectionExprClass:
874    return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
875  case Expr::PredefinedExprClass:
876    return EmitPredefinedLValue(cast<PredefinedExpr>(E));
877  case Expr::StringLiteralClass:
878    return EmitStringLiteralLValue(cast<StringLiteral>(E));
879  case Expr::ObjCEncodeExprClass:
880    return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
881  case Expr::PseudoObjectExprClass:
882    return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
883  case Expr::InitListExprClass:
884    return EmitInitListLValue(cast<InitListExpr>(E));
885  case Expr::CXXTemporaryObjectExprClass:
886  case Expr::CXXConstructExprClass:
887    return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
888  case Expr::CXXBindTemporaryExprClass:
889    return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
890  case Expr::CXXUuidofExprClass:
891    return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
892  case Expr::LambdaExprClass:
893    return EmitLambdaLValue(cast<LambdaExpr>(E));
894
895  case Expr::ExprWithCleanupsClass: {
896    const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E);
897    enterFullExpression(cleanups);
898    RunCleanupsScope Scope(*this);
899    return EmitLValue(cleanups->getSubExpr());
900  }
901
902  case Expr::CXXScalarValueInitExprClass:
903    return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E));
904  case Expr::CXXDefaultArgExprClass:
905    return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
906  case Expr::CXXDefaultInitExprClass: {
907    CXXDefaultInitExprScope Scope(*this);
908    return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
909  }
910  case Expr::CXXTypeidExprClass:
911    return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
912
913  case Expr::ObjCMessageExprClass:
914    return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
915  case Expr::ObjCIvarRefExprClass:
916    return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
917  case Expr::StmtExprClass:
918    return EmitStmtExprLValue(cast<StmtExpr>(E));
919  case Expr::UnaryOperatorClass:
920    return EmitUnaryOpLValue(cast<UnaryOperator>(E));
921  case Expr::ArraySubscriptExprClass:
922    return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
923  case Expr::ExtVectorElementExprClass:
924    return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
925  case Expr::MemberExprClass:
926    return EmitMemberExpr(cast<MemberExpr>(E));
927  case Expr::CompoundLiteralExprClass:
928    return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
929  case Expr::ConditionalOperatorClass:
930    return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
931  case Expr::BinaryConditionalOperatorClass:
932    return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
933  case Expr::ChooseExprClass:
934    return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext()));
935  case Expr::OpaqueValueExprClass:
936    return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
937  case Expr::SubstNonTypeTemplateParmExprClass:
938    return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
939  case Expr::ImplicitCastExprClass:
940  case Expr::CStyleCastExprClass:
941  case Expr::CXXFunctionalCastExprClass:
942  case Expr::CXXStaticCastExprClass:
943  case Expr::CXXDynamicCastExprClass:
944  case Expr::CXXReinterpretCastExprClass:
945  case Expr::CXXConstCastExprClass:
946  case Expr::ObjCBridgedCastExprClass:
947    return EmitCastLValue(cast<CastExpr>(E));
948
949  case Expr::MaterializeTemporaryExprClass:
950    return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
951  }
952}
953
954/// Given an object of the given canonical type, can we safely copy a
955/// value out of it based on its initializer?
956static bool isConstantEmittableObjectType(QualType type) {
957  assert(type.isCanonical());
958  assert(!type->isReferenceType());
959
960  // Must be const-qualified but non-volatile.
961  Qualifiers qs = type.getLocalQualifiers();
962  if (!qs.hasConst() || qs.hasVolatile()) return false;
963
964  // Otherwise, all object types satisfy this except C++ classes with
965  // mutable subobjects or non-trivial copy/destroy behavior.
966  if (const RecordType *RT = dyn_cast<RecordType>(type))
967    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
968      if (RD->hasMutableFields() || !RD->isTrivial())
969        return false;
970
971  return true;
972}
973
974/// Can we constant-emit a load of a reference to a variable of the
975/// given type?  This is different from predicates like
976/// Decl::isUsableInConstantExpressions because we do want it to apply
977/// in situations that don't necessarily satisfy the language's rules
978/// for this (e.g. C++'s ODR-use rules).  For example, we want to able
979/// to do this with const float variables even if those variables
980/// aren't marked 'constexpr'.
981enum ConstantEmissionKind {
982  CEK_None,
983  CEK_AsReferenceOnly,
984  CEK_AsValueOrReference,
985  CEK_AsValueOnly
986};
987static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
988  type = type.getCanonicalType();
989  if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) {
990    if (isConstantEmittableObjectType(ref->getPointeeType()))
991      return CEK_AsValueOrReference;
992    return CEK_AsReferenceOnly;
993  }
994  if (isConstantEmittableObjectType(type))
995    return CEK_AsValueOnly;
996  return CEK_None;
997}
998
999/// Try to emit a reference to the given value without producing it as
1000/// an l-value.  This is actually more than an optimization: we can't
1001/// produce an l-value for variables that we never actually captured
1002/// in a block or lambda, which means const int variables or constexpr
1003/// literals or similar.
1004CodeGenFunction::ConstantEmission
1005CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1006  ValueDecl *value = refExpr->getDecl();
1007
1008  // The value needs to be an enum constant or a constant variable.
1009  ConstantEmissionKind CEK;
1010  if (isa<ParmVarDecl>(value)) {
1011    CEK = CEK_None;
1012  } else if (VarDecl *var = dyn_cast<VarDecl>(value)) {
1013    CEK = checkVarTypeForConstantEmission(var->getType());
1014  } else if (isa<EnumConstantDecl>(value)) {
1015    CEK = CEK_AsValueOnly;
1016  } else {
1017    CEK = CEK_None;
1018  }
1019  if (CEK == CEK_None) return ConstantEmission();
1020
1021  Expr::EvalResult result;
1022  bool resultIsReference;
1023  QualType resultType;
1024
1025  // It's best to evaluate all the way as an r-value if that's permitted.
1026  if (CEK != CEK_AsReferenceOnly &&
1027      refExpr->EvaluateAsRValue(result, getContext())) {
1028    resultIsReference = false;
1029    resultType = refExpr->getType();
1030
1031  // Otherwise, try to evaluate as an l-value.
1032  } else if (CEK != CEK_AsValueOnly &&
1033             refExpr->EvaluateAsLValue(result, getContext())) {
1034    resultIsReference = true;
1035    resultType = value->getType();
1036
1037  // Failure.
1038  } else {
1039    return ConstantEmission();
1040  }
1041
1042  // In any case, if the initializer has side-effects, abandon ship.
1043  if (result.HasSideEffects)
1044    return ConstantEmission();
1045
1046  // Emit as a constant.
1047  llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
1048
1049  // Make sure we emit a debug reference to the global variable.
1050  // This should probably fire even for
1051  if (isa<VarDecl>(value)) {
1052    if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1053      EmitDeclRefExprDbgValue(refExpr, C);
1054  } else {
1055    assert(isa<EnumConstantDecl>(value));
1056    EmitDeclRefExprDbgValue(refExpr, C);
1057  }
1058
1059  // If we emitted a reference constant, we need to dereference that.
1060  if (resultIsReference)
1061    return ConstantEmission::forReference(C);
1062
1063  return ConstantEmission::forValue(C);
1064}
1065
1066llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) {
1067  return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1068                          lvalue.getAlignment().getQuantity(),
1069                          lvalue.getType(), lvalue.getTBAAInfo(),
1070                          lvalue.getTBAABaseType(), lvalue.getTBAAOffset());
1071}
1072
1073static bool hasBooleanRepresentation(QualType Ty) {
1074  if (Ty->isBooleanType())
1075    return true;
1076
1077  if (const EnumType *ET = Ty->getAs<EnumType>())
1078    return ET->getDecl()->getIntegerType()->isBooleanType();
1079
1080  if (const AtomicType *AT = Ty->getAs<AtomicType>())
1081    return hasBooleanRepresentation(AT->getValueType());
1082
1083  return false;
1084}
1085
1086static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1087                            llvm::APInt &Min, llvm::APInt &End,
1088                            bool StrictEnums) {
1089  const EnumType *ET = Ty->getAs<EnumType>();
1090  bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1091                                ET && !ET->getDecl()->isFixed();
1092  bool IsBool = hasBooleanRepresentation(Ty);
1093  if (!IsBool && !IsRegularCPlusPlusEnum)
1094    return false;
1095
1096  if (IsBool) {
1097    Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1098    End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1099  } else {
1100    const EnumDecl *ED = ET->getDecl();
1101    llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1102    unsigned Bitwidth = LTy->getScalarSizeInBits();
1103    unsigned NumNegativeBits = ED->getNumNegativeBits();
1104    unsigned NumPositiveBits = ED->getNumPositiveBits();
1105
1106    if (NumNegativeBits) {
1107      unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1108      assert(NumBits <= Bitwidth);
1109      End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1110      Min = -End;
1111    } else {
1112      assert(NumPositiveBits <= Bitwidth);
1113      End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1114      Min = llvm::APInt(Bitwidth, 0);
1115    }
1116  }
1117  return true;
1118}
1119
1120llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1121  llvm::APInt Min, End;
1122  if (!getRangeForType(*this, Ty, Min, End,
1123                       CGM.getCodeGenOpts().StrictEnums))
1124    return 0;
1125
1126  llvm::MDBuilder MDHelper(getLLVMContext());
1127  return MDHelper.createRange(Min, End);
1128}
1129
1130llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1131                                              unsigned Alignment, QualType Ty,
1132                                              llvm::MDNode *TBAAInfo,
1133                                              QualType TBAABaseType,
1134                                              uint64_t TBAAOffset) {
1135  // For better performance, handle vector loads differently.
1136  if (Ty->isVectorType()) {
1137    llvm::Value *V;
1138    const llvm::Type *EltTy =
1139    cast<llvm::PointerType>(Addr->getType())->getElementType();
1140
1141    const llvm::VectorType *VTy = cast<llvm::VectorType>(EltTy);
1142
1143    // Handle vectors of size 3, like size 4 for better performance.
1144    if (VTy->getNumElements() == 3) {
1145
1146      // Bitcast to vec4 type.
1147      llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
1148                                                         4);
1149      llvm::PointerType *ptVec4Ty =
1150      llvm::PointerType::get(vec4Ty,
1151                             (cast<llvm::PointerType>(
1152                                      Addr->getType()))->getAddressSpace());
1153      llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty,
1154                                                "castToVec4");
1155      // Now load value.
1156      llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1157
1158      // Shuffle vector to get vec3.
1159      llvm::Constant *Mask[] = {
1160        llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0),
1161        llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1),
1162        llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2)
1163      };
1164
1165      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1166      V = Builder.CreateShuffleVector(LoadVal,
1167                                      llvm::UndefValue::get(vec4Ty),
1168                                      MaskV, "extractVec");
1169      return EmitFromMemory(V, Ty);
1170    }
1171  }
1172
1173  // Atomic operations have to be done on integral types.
1174  if (Ty->isAtomicType()) {
1175    LValue lvalue = LValue::MakeAddr(Addr, Ty,
1176                                     CharUnits::fromQuantity(Alignment),
1177                                     getContext(), TBAAInfo);
1178    return EmitAtomicLoad(lvalue).getScalarVal();
1179  }
1180
1181  llvm::LoadInst *Load = Builder.CreateLoad(Addr);
1182  if (Volatile)
1183    Load->setVolatile(true);
1184  if (Alignment)
1185    Load->setAlignment(Alignment);
1186  if (TBAAInfo) {
1187    llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1188                                                      TBAAOffset);
1189    CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/);
1190  }
1191
1192  if ((SanOpts->Bool && hasBooleanRepresentation(Ty)) ||
1193      (SanOpts->Enum && Ty->getAs<EnumType>())) {
1194    llvm::APInt Min, End;
1195    if (getRangeForType(*this, Ty, Min, End, true)) {
1196      --End;
1197      llvm::Value *Check;
1198      if (!Min)
1199        Check = Builder.CreateICmpULE(
1200          Load, llvm::ConstantInt::get(getLLVMContext(), End));
1201      else {
1202        llvm::Value *Upper = Builder.CreateICmpSLE(
1203          Load, llvm::ConstantInt::get(getLLVMContext(), End));
1204        llvm::Value *Lower = Builder.CreateICmpSGE(
1205          Load, llvm::ConstantInt::get(getLLVMContext(), Min));
1206        Check = Builder.CreateAnd(Upper, Lower);
1207      }
1208      // FIXME: Provide a SourceLocation.
1209      EmitCheck(Check, "load_invalid_value", EmitCheckTypeDescriptor(Ty),
1210                EmitCheckValue(Load), CRK_Recoverable);
1211    }
1212  } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1213    if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1214      Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1215
1216  return EmitFromMemory(Load, Ty);
1217}
1218
1219llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1220  // Bool has a different representation in memory than in registers.
1221  if (hasBooleanRepresentation(Ty)) {
1222    // This should really always be an i1, but sometimes it's already
1223    // an i8, and it's awkward to track those cases down.
1224    if (Value->getType()->isIntegerTy(1))
1225      return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1226    assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1227           "wrong value rep of bool");
1228  }
1229
1230  return Value;
1231}
1232
1233llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1234  // Bool has a different representation in memory than in registers.
1235  if (hasBooleanRepresentation(Ty)) {
1236    assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1237           "wrong value rep of bool");
1238    return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1239  }
1240
1241  return Value;
1242}
1243
1244void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1245                                        bool Volatile, unsigned Alignment,
1246                                        QualType Ty,
1247                                        llvm::MDNode *TBAAInfo,
1248                                        bool isInit, QualType TBAABaseType,
1249                                        uint64_t TBAAOffset) {
1250
1251  // Handle vectors differently to get better performance.
1252  if (Ty->isVectorType()) {
1253    llvm::Type *SrcTy = Value->getType();
1254    llvm::VectorType *VecTy = cast<llvm::VectorType>(SrcTy);
1255    // Handle vec3 special.
1256    if (VecTy->getNumElements() == 3) {
1257      llvm::LLVMContext &VMContext = getLLVMContext();
1258
1259      // Our source is a vec3, do a shuffle vector to make it a vec4.
1260      SmallVector<llvm::Constant*, 4> Mask;
1261      Mask.push_back(llvm::ConstantInt::get(
1262                                            llvm::Type::getInt32Ty(VMContext),
1263                                            0));
1264      Mask.push_back(llvm::ConstantInt::get(
1265                                            llvm::Type::getInt32Ty(VMContext),
1266                                            1));
1267      Mask.push_back(llvm::ConstantInt::get(
1268                                            llvm::Type::getInt32Ty(VMContext),
1269                                            2));
1270      Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext)));
1271
1272      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1273      Value = Builder.CreateShuffleVector(Value,
1274                                          llvm::UndefValue::get(VecTy),
1275                                          MaskV, "extractVec");
1276      SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1277    }
1278    llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType());
1279    if (DstPtr->getElementType() != SrcTy) {
1280      llvm::Type *MemTy =
1281      llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
1282      Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
1283    }
1284  }
1285
1286  Value = EmitToMemory(Value, Ty);
1287
1288  if (Ty->isAtomicType()) {
1289    EmitAtomicStore(RValue::get(Value),
1290                    LValue::MakeAddr(Addr, Ty,
1291                                     CharUnits::fromQuantity(Alignment),
1292                                     getContext(), TBAAInfo),
1293                    isInit);
1294    return;
1295  }
1296
1297  llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1298  if (Alignment)
1299    Store->setAlignment(Alignment);
1300  if (TBAAInfo) {
1301    llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1302                                                      TBAAOffset);
1303    CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/);
1304  }
1305}
1306
1307void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1308                                        bool isInit) {
1309  EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1310                    lvalue.getAlignment().getQuantity(), lvalue.getType(),
1311                    lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
1312                    lvalue.getTBAAOffset());
1313}
1314
1315/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1316/// method emits the address of the lvalue, then loads the result as an rvalue,
1317/// returning the rvalue.
1318RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) {
1319  if (LV.isObjCWeak()) {
1320    // load of a __weak object.
1321    llvm::Value *AddrWeakObj = LV.getAddress();
1322    return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1323                                                             AddrWeakObj));
1324  }
1325  if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1326    llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1327    Object = EmitObjCConsumeObject(LV.getType(), Object);
1328    return RValue::get(Object);
1329  }
1330
1331  if (LV.isSimple()) {
1332    assert(!LV.getType()->isFunctionType());
1333
1334    // Everything needs a load.
1335    return RValue::get(EmitLoadOfScalar(LV));
1336  }
1337
1338  if (LV.isVectorElt()) {
1339    llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
1340                                              LV.isVolatileQualified());
1341    Load->setAlignment(LV.getAlignment().getQuantity());
1342    return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1343                                                    "vecext"));
1344  }
1345
1346  // If this is a reference to a subset of the elements of a vector, either
1347  // shuffle the input or extract/insert them as appropriate.
1348  if (LV.isExtVectorElt())
1349    return EmitLoadOfExtVectorElementLValue(LV);
1350
1351  assert(LV.isBitField() && "Unknown LValue type!");
1352  return EmitLoadOfBitfieldLValue(LV);
1353}
1354
1355RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1356  const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1357
1358  // Get the output type.
1359  llvm::Type *ResLTy = ConvertType(LV.getType());
1360
1361  llvm::Value *Ptr = LV.getBitFieldAddr();
1362  llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(),
1363                                        "bf.load");
1364  cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1365
1366  if (Info.IsSigned) {
1367    assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1368    unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1369    if (HighBits)
1370      Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1371    if (Info.Offset + HighBits)
1372      Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1373  } else {
1374    if (Info.Offset)
1375      Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1376    if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1377      Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1378                                                              Info.Size),
1379                              "bf.clear");
1380  }
1381  Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1382
1383  return RValue::get(Val);
1384}
1385
1386// If this is a reference to a subset of the elements of a vector, create an
1387// appropriate shufflevector.
1388RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1389  llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
1390                                            LV.isVolatileQualified());
1391  Load->setAlignment(LV.getAlignment().getQuantity());
1392  llvm::Value *Vec = Load;
1393
1394  const llvm::Constant *Elts = LV.getExtVectorElts();
1395
1396  // If the result of the expression is a non-vector type, we must be extracting
1397  // a single element.  Just codegen as an extractelement.
1398  const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1399  if (!ExprVT) {
1400    unsigned InIdx = getAccessedFieldNo(0, Elts);
1401    llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1402    return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1403  }
1404
1405  // Always use shuffle vector to try to retain the original program structure
1406  unsigned NumResultElts = ExprVT->getNumElements();
1407
1408  SmallVector<llvm::Constant*, 4> Mask;
1409  for (unsigned i = 0; i != NumResultElts; ++i)
1410    Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1411
1412  llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1413  Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1414                                    MaskV);
1415  return RValue::get(Vec);
1416}
1417
1418
1419
1420/// EmitStoreThroughLValue - Store the specified rvalue into the specified
1421/// lvalue, where both are guaranteed to the have the same type, and that type
1422/// is 'Ty'.
1423void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) {
1424  if (!Dst.isSimple()) {
1425    if (Dst.isVectorElt()) {
1426      // Read/modify/write the vector, inserting the new element.
1427      llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
1428                                                Dst.isVolatileQualified());
1429      Load->setAlignment(Dst.getAlignment().getQuantity());
1430      llvm::Value *Vec = Load;
1431      Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1432                                        Dst.getVectorIdx(), "vecins");
1433      llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
1434                                                   Dst.isVolatileQualified());
1435      Store->setAlignment(Dst.getAlignment().getQuantity());
1436      return;
1437    }
1438
1439    // If this is an update of extended vector elements, insert them as
1440    // appropriate.
1441    if (Dst.isExtVectorElt())
1442      return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1443
1444    assert(Dst.isBitField() && "Unknown LValue type");
1445    return EmitStoreThroughBitfieldLValue(Src, Dst);
1446  }
1447
1448  // There's special magic for assigning into an ARC-qualified l-value.
1449  if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1450    switch (Lifetime) {
1451    case Qualifiers::OCL_None:
1452      llvm_unreachable("present but none");
1453
1454    case Qualifiers::OCL_ExplicitNone:
1455      // nothing special
1456      break;
1457
1458    case Qualifiers::OCL_Strong:
1459      EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1460      return;
1461
1462    case Qualifiers::OCL_Weak:
1463      EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1464      return;
1465
1466    case Qualifiers::OCL_Autoreleasing:
1467      Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1468                                                     Src.getScalarVal()));
1469      // fall into the normal path
1470      break;
1471    }
1472  }
1473
1474  if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1475    // load of a __weak object.
1476    llvm::Value *LvalueDst = Dst.getAddress();
1477    llvm::Value *src = Src.getScalarVal();
1478     CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1479    return;
1480  }
1481
1482  if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1483    // load of a __strong object.
1484    llvm::Value *LvalueDst = Dst.getAddress();
1485    llvm::Value *src = Src.getScalarVal();
1486    if (Dst.isObjCIvar()) {
1487      assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1488      llvm::Type *ResultType = ConvertType(getContext().LongTy);
1489      llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1490      llvm::Value *dst = RHS;
1491      RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1492      llvm::Value *LHS =
1493        Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1494      llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1495      CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1496                                              BytesBetween);
1497    } else if (Dst.isGlobalObjCRef()) {
1498      CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1499                                                Dst.isThreadLocalRef());
1500    }
1501    else
1502      CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1503    return;
1504  }
1505
1506  assert(Src.isScalar() && "Can't emit an agg store with this method");
1507  EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1508}
1509
1510void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1511                                                     llvm::Value **Result) {
1512  const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1513  llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1514  llvm::Value *Ptr = Dst.getBitFieldAddr();
1515
1516  // Get the source value, truncated to the width of the bit-field.
1517  llvm::Value *SrcVal = Src.getScalarVal();
1518
1519  // Cast the source to the storage type and shift it into place.
1520  SrcVal = Builder.CreateIntCast(SrcVal,
1521                                 Ptr->getType()->getPointerElementType(),
1522                                 /*IsSigned=*/false);
1523  llvm::Value *MaskedVal = SrcVal;
1524
1525  // See if there are other bits in the bitfield's storage we'll need to load
1526  // and mask together with source before storing.
1527  if (Info.StorageSize != Info.Size) {
1528    assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1529    llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
1530                                          "bf.load");
1531    cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1532
1533    // Mask the source value as needed.
1534    if (!hasBooleanRepresentation(Dst.getType()))
1535      SrcVal = Builder.CreateAnd(SrcVal,
1536                                 llvm::APInt::getLowBitsSet(Info.StorageSize,
1537                                                            Info.Size),
1538                                 "bf.value");
1539    MaskedVal = SrcVal;
1540    if (Info.Offset)
1541      SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1542
1543    // Mask out the original value.
1544    Val = Builder.CreateAnd(Val,
1545                            ~llvm::APInt::getBitsSet(Info.StorageSize,
1546                                                     Info.Offset,
1547                                                     Info.Offset + Info.Size),
1548                            "bf.clear");
1549
1550    // Or together the unchanged values and the source value.
1551    SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1552  } else {
1553    assert(Info.Offset == 0);
1554  }
1555
1556  // Write the new value back out.
1557  llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr,
1558                                               Dst.isVolatileQualified());
1559  Store->setAlignment(Info.StorageAlignment);
1560
1561  // Return the new value of the bit-field, if requested.
1562  if (Result) {
1563    llvm::Value *ResultVal = MaskedVal;
1564
1565    // Sign extend the value if needed.
1566    if (Info.IsSigned) {
1567      assert(Info.Size <= Info.StorageSize);
1568      unsigned HighBits = Info.StorageSize - Info.Size;
1569      if (HighBits) {
1570        ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1571        ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1572      }
1573    }
1574
1575    ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1576                                      "bf.result.cast");
1577    *Result = EmitFromMemory(ResultVal, Dst.getType());
1578  }
1579}
1580
1581void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1582                                                               LValue Dst) {
1583  // This access turns into a read/modify/write of the vector.  Load the input
1584  // value now.
1585  llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
1586                                            Dst.isVolatileQualified());
1587  Load->setAlignment(Dst.getAlignment().getQuantity());
1588  llvm::Value *Vec = Load;
1589  const llvm::Constant *Elts = Dst.getExtVectorElts();
1590
1591  llvm::Value *SrcVal = Src.getScalarVal();
1592
1593  if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1594    unsigned NumSrcElts = VTy->getNumElements();
1595    unsigned NumDstElts =
1596       cast<llvm::VectorType>(Vec->getType())->getNumElements();
1597    if (NumDstElts == NumSrcElts) {
1598      // Use shuffle vector is the src and destination are the same number of
1599      // elements and restore the vector mask since it is on the side it will be
1600      // stored.
1601      SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1602      for (unsigned i = 0; i != NumSrcElts; ++i)
1603        Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1604
1605      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1606      Vec = Builder.CreateShuffleVector(SrcVal,
1607                                        llvm::UndefValue::get(Vec->getType()),
1608                                        MaskV);
1609    } else if (NumDstElts > NumSrcElts) {
1610      // Extended the source vector to the same length and then shuffle it
1611      // into the destination.
1612      // FIXME: since we're shuffling with undef, can we just use the indices
1613      //        into that?  This could be simpler.
1614      SmallVector<llvm::Constant*, 4> ExtMask;
1615      for (unsigned i = 0; i != NumSrcElts; ++i)
1616        ExtMask.push_back(Builder.getInt32(i));
1617      ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1618      llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1619      llvm::Value *ExtSrcVal =
1620        Builder.CreateShuffleVector(SrcVal,
1621                                    llvm::UndefValue::get(SrcVal->getType()),
1622                                    ExtMaskV);
1623      // build identity
1624      SmallVector<llvm::Constant*, 4> Mask;
1625      for (unsigned i = 0; i != NumDstElts; ++i)
1626        Mask.push_back(Builder.getInt32(i));
1627
1628      // modify when what gets shuffled in
1629      for (unsigned i = 0; i != NumSrcElts; ++i)
1630        Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1631      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1632      Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1633    } else {
1634      // We should never shorten the vector
1635      llvm_unreachable("unexpected shorten vector length");
1636    }
1637  } else {
1638    // If the Src is a scalar (not a vector) it must be updating one element.
1639    unsigned InIdx = getAccessedFieldNo(0, Elts);
1640    llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1641    Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1642  }
1643
1644  llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
1645                                               Dst.isVolatileQualified());
1646  Store->setAlignment(Dst.getAlignment().getQuantity());
1647}
1648
1649// setObjCGCLValueClass - sets class of he lvalue for the purpose of
1650// generating write-barries API. It is currently a global, ivar,
1651// or neither.
1652static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1653                                 LValue &LV,
1654                                 bool IsMemberAccess=false) {
1655  if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1656    return;
1657
1658  if (isa<ObjCIvarRefExpr>(E)) {
1659    QualType ExpTy = E->getType();
1660    if (IsMemberAccess && ExpTy->isPointerType()) {
1661      // If ivar is a structure pointer, assigning to field of
1662      // this struct follows gcc's behavior and makes it a non-ivar
1663      // writer-barrier conservatively.
1664      ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1665      if (ExpTy->isRecordType()) {
1666        LV.setObjCIvar(false);
1667        return;
1668      }
1669    }
1670    LV.setObjCIvar(true);
1671    ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
1672    LV.setBaseIvarExp(Exp->getBase());
1673    LV.setObjCArray(E->getType()->isArrayType());
1674    return;
1675  }
1676
1677  if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
1678    if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1679      if (VD->hasGlobalStorage()) {
1680        LV.setGlobalObjCRef(true);
1681        LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
1682      }
1683    }
1684    LV.setObjCArray(E->getType()->isArrayType());
1685    return;
1686  }
1687
1688  if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
1689    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1690    return;
1691  }
1692
1693  if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
1694    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1695    if (LV.isObjCIvar()) {
1696      // If cast is to a structure pointer, follow gcc's behavior and make it
1697      // a non-ivar write-barrier.
1698      QualType ExpTy = E->getType();
1699      if (ExpTy->isPointerType())
1700        ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1701      if (ExpTy->isRecordType())
1702        LV.setObjCIvar(false);
1703    }
1704    return;
1705  }
1706
1707  if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1708    setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1709    return;
1710  }
1711
1712  if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1713    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1714    return;
1715  }
1716
1717  if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
1718    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1719    return;
1720  }
1721
1722  if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1723    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1724    return;
1725  }
1726
1727  if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1728    setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1729    if (LV.isObjCIvar() && !LV.isObjCArray())
1730      // Using array syntax to assigning to what an ivar points to is not
1731      // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1732      LV.setObjCIvar(false);
1733    else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1734      // Using array syntax to assigning to what global points to is not
1735      // same as assigning to the global itself. {id *G;} G[i] = 0;
1736      LV.setGlobalObjCRef(false);
1737    return;
1738  }
1739
1740  if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
1741    setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1742    // We don't know if member is an 'ivar', but this flag is looked at
1743    // only in the context of LV.isObjCIvar().
1744    LV.setObjCArray(E->getType()->isArrayType());
1745    return;
1746  }
1747}
1748
1749static llvm::Value *
1750EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1751                                llvm::Value *V, llvm::Type *IRType,
1752                                StringRef Name = StringRef()) {
1753  unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1754  return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1755}
1756
1757static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1758                                      const Expr *E, const VarDecl *VD) {
1759  llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1760  llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1761  V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1762  CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1763  QualType T = E->getType();
1764  LValue LV;
1765  if (VD->getType()->isReferenceType()) {
1766    llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1767    LI->setAlignment(Alignment.getQuantity());
1768    V = LI;
1769    LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1770  } else {
1771    LV = CGF.MakeAddrLValue(V, E->getType(), Alignment);
1772  }
1773  setObjCGCLValueClass(CGF.getContext(), E, LV);
1774  return LV;
1775}
1776
1777static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1778                                     const Expr *E, const FunctionDecl *FD) {
1779  llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1780  if (!FD->hasPrototype()) {
1781    if (const FunctionProtoType *Proto =
1782            FD->getType()->getAs<FunctionProtoType>()) {
1783      // Ugly case: for a K&R-style definition, the type of the definition
1784      // isn't the same as the type of a use.  Correct for this with a
1785      // bitcast.
1786      QualType NoProtoType =
1787          CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
1788      NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1789      V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1790    }
1791  }
1792  CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1793  return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1794}
1795
1796LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1797  const NamedDecl *ND = E->getDecl();
1798  CharUnits Alignment = getContext().getDeclAlign(ND);
1799  QualType T = E->getType();
1800
1801  // A DeclRefExpr for a reference initialized by a constant expression can
1802  // appear without being odr-used. Directly emit the constant initializer.
1803  if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1804    const Expr *Init = VD->getAnyInitializer(VD);
1805    if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
1806        VD->isUsableInConstantExpressions(getContext()) &&
1807        VD->checkInitIsICE()) {
1808      llvm::Constant *Val =
1809        CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
1810      assert(Val && "failed to emit reference constant expression");
1811      // FIXME: Eventually we will want to emit vector element references.
1812      return MakeAddrLValue(Val, T, Alignment);
1813    }
1814  }
1815
1816  // FIXME: We should be able to assert this for FunctionDecls as well!
1817  // FIXME: We should be able to assert this for all DeclRefExprs, not just
1818  // those with a valid source location.
1819  assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
1820          !E->getLocation().isValid()) &&
1821         "Should not use decl without marking it used!");
1822
1823  if (ND->hasAttr<WeakRefAttr>()) {
1824    const ValueDecl *VD = cast<ValueDecl>(ND);
1825    llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1826    return MakeAddrLValue(Aliasee, T, Alignment);
1827  }
1828
1829  if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1830    // Check if this is a global variable.
1831    if (VD->hasLinkage() || VD->isStaticDataMember()) {
1832      // If it's thread_local, emit a call to its wrapper function instead.
1833      if (VD->getTLSKind() == VarDecl::TLS_Dynamic)
1834        return CGM.getCXXABI().EmitThreadLocalDeclRefExpr(*this, E);
1835      return EmitGlobalVarDeclLValue(*this, E, VD);
1836    }
1837
1838    bool isBlockVariable = VD->hasAttr<BlocksAttr>();
1839
1840    llvm::Value *V = LocalDeclMap.lookup(VD);
1841    if (!V && VD->isStaticLocal())
1842      V = CGM.getStaticLocalDeclAddress(VD);
1843
1844    // Use special handling for lambdas.
1845    if (!V) {
1846      if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) {
1847        QualType LambdaTagType = getContext().getTagDeclType(FD->getParent());
1848        LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue,
1849                                                     LambdaTagType);
1850        return EmitLValueForField(LambdaLV, FD);
1851      }
1852
1853      assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal());
1854      return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable),
1855                            T, Alignment);
1856    }
1857
1858    assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1859
1860    if (isBlockVariable)
1861      V = BuildBlockByrefAddress(V, VD);
1862
1863    LValue LV;
1864    if (VD->getType()->isReferenceType()) {
1865      llvm::LoadInst *LI = Builder.CreateLoad(V);
1866      LI->setAlignment(Alignment.getQuantity());
1867      V = LI;
1868      LV = MakeNaturalAlignAddrLValue(V, T);
1869    } else {
1870      LV = MakeAddrLValue(V, T, Alignment);
1871    }
1872
1873    bool isLocalStorage = VD->hasLocalStorage();
1874
1875    bool NonGCable = isLocalStorage &&
1876                     !VD->getType()->isReferenceType() &&
1877                     !isBlockVariable;
1878    if (NonGCable) {
1879      LV.getQuals().removeObjCGCAttr();
1880      LV.setNonGC(true);
1881    }
1882
1883    bool isImpreciseLifetime =
1884      (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
1885    if (isImpreciseLifetime)
1886      LV.setARCPreciseLifetime(ARCImpreciseLifetime);
1887    setObjCGCLValueClass(getContext(), E, LV);
1888    return LV;
1889  }
1890
1891  if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND))
1892    return EmitFunctionDeclLValue(*this, E, fn);
1893
1894  llvm_unreachable("Unhandled DeclRefExpr");
1895}
1896
1897LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1898  // __extension__ doesn't affect lvalue-ness.
1899  if (E->getOpcode() == UO_Extension)
1900    return EmitLValue(E->getSubExpr());
1901
1902  QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1903  switch (E->getOpcode()) {
1904  default: llvm_unreachable("Unknown unary operator lvalue!");
1905  case UO_Deref: {
1906    QualType T = E->getSubExpr()->getType()->getPointeeType();
1907    assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1908
1909    LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1910    LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1911
1912    // We should not generate __weak write barrier on indirect reference
1913    // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1914    // But, we continue to generate __strong write barrier on indirect write
1915    // into a pointer to object.
1916    if (getLangOpts().ObjC1 &&
1917        getLangOpts().getGC() != LangOptions::NonGC &&
1918        LV.isObjCWeak())
1919      LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1920    return LV;
1921  }
1922  case UO_Real:
1923  case UO_Imag: {
1924    LValue LV = EmitLValue(E->getSubExpr());
1925    assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1926    llvm::Value *Addr = LV.getAddress();
1927
1928    // __real is valid on scalars.  This is a faster way of testing that.
1929    // __imag can only produce an rvalue on scalars.
1930    if (E->getOpcode() == UO_Real &&
1931        !cast<llvm::PointerType>(Addr->getType())
1932           ->getElementType()->isStructTy()) {
1933      assert(E->getSubExpr()->getType()->isArithmeticType());
1934      return LV;
1935    }
1936
1937    assert(E->getSubExpr()->getType()->isAnyComplexType());
1938
1939    unsigned Idx = E->getOpcode() == UO_Imag;
1940    return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1941                                                  Idx, "idx"),
1942                          ExprTy);
1943  }
1944  case UO_PreInc:
1945  case UO_PreDec: {
1946    LValue LV = EmitLValue(E->getSubExpr());
1947    bool isInc = E->getOpcode() == UO_PreInc;
1948
1949    if (E->getType()->isAnyComplexType())
1950      EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1951    else
1952      EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1953    return LV;
1954  }
1955  }
1956}
1957
1958LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1959  return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1960                        E->getType());
1961}
1962
1963LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1964  return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1965                        E->getType());
1966}
1967
1968static llvm::Constant*
1969GetAddrOfConstantWideString(StringRef Str,
1970                            const char *GlobalName,
1971                            ASTContext &Context,
1972                            QualType Ty, SourceLocation Loc,
1973                            CodeGenModule &CGM) {
1974
1975  StringLiteral *SL = StringLiteral::Create(Context,
1976                                            Str,
1977                                            StringLiteral::Wide,
1978                                            /*Pascal = */false,
1979                                            Ty, Loc);
1980  llvm::Constant *C = CGM.GetConstantArrayFromStringLiteral(SL);
1981  llvm::GlobalVariable *GV =
1982    new llvm::GlobalVariable(CGM.getModule(), C->getType(),
1983                             !CGM.getLangOpts().WritableStrings,
1984                             llvm::GlobalValue::PrivateLinkage,
1985                             C, GlobalName);
1986  const unsigned WideAlignment =
1987    Context.getTypeAlignInChars(Ty).getQuantity();
1988  GV->setAlignment(WideAlignment);
1989  return GV;
1990}
1991
1992static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
1993                                    SmallString<32>& Target) {
1994  Target.resize(CharByteWidth * (Source.size() + 1));
1995  char *ResultPtr = &Target[0];
1996  const UTF8 *ErrorPtr;
1997  bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
1998  (void)success;
1999  assert(success);
2000  Target.resize(ResultPtr - &Target[0]);
2001}
2002
2003LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2004  switch (E->getIdentType()) {
2005  default:
2006    return EmitUnsupportedLValue(E, "predefined expression");
2007
2008  case PredefinedExpr::Func:
2009  case PredefinedExpr::Function:
2010  case PredefinedExpr::LFunction:
2011  case PredefinedExpr::PrettyFunction: {
2012    unsigned IdentType = E->getIdentType();
2013    std::string GlobalVarName;
2014
2015    switch (IdentType) {
2016    default: llvm_unreachable("Invalid type");
2017    case PredefinedExpr::Func:
2018      GlobalVarName = "__func__.";
2019      break;
2020    case PredefinedExpr::Function:
2021      GlobalVarName = "__FUNCTION__.";
2022      break;
2023    case PredefinedExpr::LFunction:
2024      GlobalVarName = "L__FUNCTION__.";
2025      break;
2026    case PredefinedExpr::PrettyFunction:
2027      GlobalVarName = "__PRETTY_FUNCTION__.";
2028      break;
2029    }
2030
2031    StringRef FnName = CurFn->getName();
2032    if (FnName.startswith("\01"))
2033      FnName = FnName.substr(1);
2034    GlobalVarName += FnName;
2035
2036    const Decl *CurDecl = CurCodeDecl;
2037    if (CurDecl == 0)
2038      CurDecl = getContext().getTranslationUnitDecl();
2039
2040    std::string FunctionName =
2041        (isa<BlockDecl>(CurDecl)
2042         ? FnName.str()
2043         : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)IdentType,
2044                                       CurDecl));
2045
2046    const Type* ElemType = E->getType()->getArrayElementTypeNoTypeQual();
2047    llvm::Constant *C;
2048    if (ElemType->isWideCharType()) {
2049      SmallString<32> RawChars;
2050      ConvertUTF8ToWideString(
2051          getContext().getTypeSizeInChars(ElemType).getQuantity(),
2052          FunctionName, RawChars);
2053      C = GetAddrOfConstantWideString(RawChars,
2054                                      GlobalVarName.c_str(),
2055                                      getContext(),
2056                                      E->getType(),
2057                                      E->getLocation(),
2058                                      CGM);
2059    } else {
2060      C = CGM.GetAddrOfConstantCString(FunctionName,
2061                                       GlobalVarName.c_str(),
2062                                       1);
2063    }
2064    return MakeAddrLValue(C, E->getType());
2065  }
2066  }
2067}
2068
2069/// Emit a type description suitable for use by a runtime sanitizer library. The
2070/// format of a type descriptor is
2071///
2072/// \code
2073///   { i16 TypeKind, i16 TypeInfo }
2074/// \endcode
2075///
2076/// followed by an array of i8 containing the type name. TypeKind is 0 for an
2077/// integer, 1 for a floating point value, and -1 for anything else.
2078llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2079  // FIXME: Only emit each type's descriptor once.
2080  uint16_t TypeKind = -1;
2081  uint16_t TypeInfo = 0;
2082
2083  if (T->isIntegerType()) {
2084    TypeKind = 0;
2085    TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2086               (T->isSignedIntegerType() ? 1 : 0);
2087  } else if (T->isFloatingType()) {
2088    TypeKind = 1;
2089    TypeInfo = getContext().getTypeSize(T);
2090  }
2091
2092  // Format the type name as if for a diagnostic, including quotes and
2093  // optionally an 'aka'.
2094  SmallString<32> Buffer;
2095  CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2096                                    (intptr_t)T.getAsOpaquePtr(),
2097                                    0, 0, 0, 0, 0, 0, Buffer,
2098                                    ArrayRef<intptr_t>());
2099
2100  llvm::Constant *Components[] = {
2101    Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2102    llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2103  };
2104  llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2105
2106  llvm::GlobalVariable *GV =
2107    new llvm::GlobalVariable(CGM.getModule(), Descriptor->getType(),
2108                             /*isConstant=*/true,
2109                             llvm::GlobalVariable::PrivateLinkage,
2110                             Descriptor);
2111  GV->setUnnamedAddr(true);
2112  return GV;
2113}
2114
2115llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2116  llvm::Type *TargetTy = IntPtrTy;
2117
2118  // Floating-point types which fit into intptr_t are bitcast to integers
2119  // and then passed directly (after zero-extension, if necessary).
2120  if (V->getType()->isFloatingPointTy()) {
2121    unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2122    if (Bits <= TargetTy->getIntegerBitWidth())
2123      V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2124                                                         Bits));
2125  }
2126
2127  // Integers which fit in intptr_t are zero-extended and passed directly.
2128  if (V->getType()->isIntegerTy() &&
2129      V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2130    return Builder.CreateZExt(V, TargetTy);
2131
2132  // Pointers are passed directly, everything else is passed by address.
2133  if (!V->getType()->isPointerTy()) {
2134    llvm::Value *Ptr = CreateTempAlloca(V->getType());
2135    Builder.CreateStore(V, Ptr);
2136    V = Ptr;
2137  }
2138  return Builder.CreatePtrToInt(V, TargetTy);
2139}
2140
2141/// \brief Emit a representation of a SourceLocation for passing to a handler
2142/// in a sanitizer runtime library. The format for this data is:
2143/// \code
2144///   struct SourceLocation {
2145///     const char *Filename;
2146///     int32_t Line, Column;
2147///   };
2148/// \endcode
2149/// For an invalid SourceLocation, the Filename pointer is null.
2150llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2151  PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2152
2153  llvm::Constant *Data[] = {
2154    // FIXME: Only emit each file name once.
2155    PLoc.isValid() ? cast<llvm::Constant>(
2156                       Builder.CreateGlobalStringPtr(PLoc.getFilename()))
2157                   : llvm::Constant::getNullValue(Int8PtrTy),
2158    Builder.getInt32(PLoc.getLine()),
2159    Builder.getInt32(PLoc.getColumn())
2160  };
2161
2162  return llvm::ConstantStruct::getAnon(Data);
2163}
2164
2165void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName,
2166                                ArrayRef<llvm::Constant *> StaticArgs,
2167                                ArrayRef<llvm::Value *> DynamicArgs,
2168                                CheckRecoverableKind RecoverKind) {
2169  assert(SanOpts != &SanitizerOptions::Disabled);
2170
2171  if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) {
2172    assert (RecoverKind != CRK_AlwaysRecoverable &&
2173            "Runtime call required for AlwaysRecoverable kind!");
2174    return EmitTrapCheck(Checked);
2175  }
2176
2177  llvm::BasicBlock *Cont = createBasicBlock("cont");
2178
2179  llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName);
2180
2181  llvm::Instruction *Branch = Builder.CreateCondBr(Checked, Cont, Handler);
2182
2183  // Give hint that we very much don't expect to execute the handler
2184  // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2185  llvm::MDBuilder MDHelper(getLLVMContext());
2186  llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2187  Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2188
2189  EmitBlock(Handler);
2190
2191  llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2192  llvm::GlobalValue *InfoPtr =
2193      new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2194                               llvm::GlobalVariable::PrivateLinkage, Info);
2195  InfoPtr->setUnnamedAddr(true);
2196
2197  SmallVector<llvm::Value *, 4> Args;
2198  SmallVector<llvm::Type *, 4> ArgTypes;
2199  Args.reserve(DynamicArgs.size() + 1);
2200  ArgTypes.reserve(DynamicArgs.size() + 1);
2201
2202  // Handler functions take an i8* pointing to the (handler-specific) static
2203  // information block, followed by a sequence of intptr_t arguments
2204  // representing operand values.
2205  Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2206  ArgTypes.push_back(Int8PtrTy);
2207  for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2208    Args.push_back(EmitCheckValue(DynamicArgs[i]));
2209    ArgTypes.push_back(IntPtrTy);
2210  }
2211
2212  bool Recover = (RecoverKind == CRK_AlwaysRecoverable) ||
2213                 ((RecoverKind == CRK_Recoverable) &&
2214                   CGM.getCodeGenOpts().SanitizeRecover);
2215
2216  llvm::FunctionType *FnType =
2217    llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2218  llvm::AttrBuilder B;
2219  if (!Recover) {
2220    B.addAttribute(llvm::Attribute::NoReturn)
2221     .addAttribute(llvm::Attribute::NoUnwind);
2222  }
2223  B.addAttribute(llvm::Attribute::UWTable);
2224
2225  // Checks that have two variants use a suffix to differentiate them
2226  bool NeedsAbortSuffix = (RecoverKind != CRK_Unrecoverable) &&
2227                           !CGM.getCodeGenOpts().SanitizeRecover;
2228  std::string FunctionName = ("__ubsan_handle_" + CheckName +
2229                              (NeedsAbortSuffix? "_abort" : "")).str();
2230  llvm::Value *Fn =
2231    CGM.CreateRuntimeFunction(FnType, FunctionName,
2232                              llvm::AttributeSet::get(getLLVMContext(),
2233                                              llvm::AttributeSet::FunctionIndex,
2234                                                      B));
2235  llvm::CallInst *HandlerCall = EmitNounwindRuntimeCall(Fn, Args);
2236  if (Recover) {
2237    Builder.CreateBr(Cont);
2238  } else {
2239    HandlerCall->setDoesNotReturn();
2240    Builder.CreateUnreachable();
2241  }
2242
2243  EmitBlock(Cont);
2244}
2245
2246void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
2247  llvm::BasicBlock *Cont = createBasicBlock("cont");
2248
2249  // If we're optimizing, collapse all calls to trap down to just one per
2250  // function to save on code size.
2251  if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
2252    TrapBB = createBasicBlock("trap");
2253    Builder.CreateCondBr(Checked, Cont, TrapBB);
2254    EmitBlock(TrapBB);
2255    llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
2256    llvm::CallInst *TrapCall = Builder.CreateCall(F);
2257    TrapCall->setDoesNotReturn();
2258    TrapCall->setDoesNotThrow();
2259    Builder.CreateUnreachable();
2260  } else {
2261    Builder.CreateCondBr(Checked, Cont, TrapBB);
2262  }
2263
2264  EmitBlock(Cont);
2265}
2266
2267/// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
2268/// array to pointer, return the array subexpression.
2269static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
2270  // If this isn't just an array->pointer decay, bail out.
2271  const CastExpr *CE = dyn_cast<CastExpr>(E);
2272  if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
2273    return 0;
2274
2275  // If this is a decay from variable width array, bail out.
2276  const Expr *SubExpr = CE->getSubExpr();
2277  if (SubExpr->getType()->isVariableArrayType())
2278    return 0;
2279
2280  return SubExpr;
2281}
2282
2283LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2284                                               bool Accessed) {
2285  // The index must always be an integer, which is not an aggregate.  Emit it.
2286  llvm::Value *Idx = EmitScalarExpr(E->getIdx());
2287  QualType IdxTy  = E->getIdx()->getType();
2288  bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
2289
2290  if (SanOpts->Bounds)
2291    EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
2292
2293  // If the base is a vector type, then we are forming a vector element lvalue
2294  // with this subscript.
2295  if (E->getBase()->getType()->isVectorType()) {
2296    // Emit the vector as an lvalue to get its address.
2297    LValue LHS = EmitLValue(E->getBase());
2298    assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
2299    Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
2300    return LValue::MakeVectorElt(LHS.getAddress(), Idx,
2301                                 E->getBase()->getType(), LHS.getAlignment());
2302  }
2303
2304  // Extend or truncate the index type to 32 or 64-bits.
2305  if (Idx->getType() != IntPtrTy)
2306    Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
2307
2308  // We know that the pointer points to a type of the correct size, unless the
2309  // size is a VLA or Objective-C interface.
2310  llvm::Value *Address = 0;
2311  CharUnits ArrayAlignment;
2312  if (const VariableArrayType *vla =
2313        getContext().getAsVariableArrayType(E->getType())) {
2314    // The base must be a pointer, which is not an aggregate.  Emit
2315    // it.  It needs to be emitted first in case it's what captures
2316    // the VLA bounds.
2317    Address = EmitScalarExpr(E->getBase());
2318
2319    // The element count here is the total number of non-VLA elements.
2320    llvm::Value *numElements = getVLASize(vla).first;
2321
2322    // Effectively, the multiply by the VLA size is part of the GEP.
2323    // GEP indexes are signed, and scaling an index isn't permitted to
2324    // signed-overflow, so we use the same semantics for our explicit
2325    // multiply.  We suppress this if overflow is not undefined behavior.
2326    if (getLangOpts().isSignedOverflowDefined()) {
2327      Idx = Builder.CreateMul(Idx, numElements);
2328      Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2329    } else {
2330      Idx = Builder.CreateNSWMul(Idx, numElements);
2331      Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
2332    }
2333  } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
2334    // Indexing over an interface, as in "NSString *P; P[4];"
2335    llvm::Value *InterfaceSize =
2336      llvm::ConstantInt::get(Idx->getType(),
2337          getContext().getTypeSizeInChars(OIT).getQuantity());
2338
2339    Idx = Builder.CreateMul(Idx, InterfaceSize);
2340
2341    // The base must be a pointer, which is not an aggregate.  Emit it.
2342    llvm::Value *Base = EmitScalarExpr(E->getBase());
2343    Address = EmitCastToVoidPtr(Base);
2344    Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2345    Address = Builder.CreateBitCast(Address, Base->getType());
2346  } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
2347    // If this is A[i] where A is an array, the frontend will have decayed the
2348    // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
2349    // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
2350    // "gep x, i" here.  Emit one "gep A, 0, i".
2351    assert(Array->getType()->isArrayType() &&
2352           "Array to pointer decay must have array source type!");
2353    LValue ArrayLV;
2354    // For simple multidimensional array indexing, set the 'accessed' flag for
2355    // better bounds-checking of the base expression.
2356    if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(Array))
2357      ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
2358    else
2359      ArrayLV = EmitLValue(Array);
2360    llvm::Value *ArrayPtr = ArrayLV.getAddress();
2361    llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
2362    llvm::Value *Args[] = { Zero, Idx };
2363
2364    // Propagate the alignment from the array itself to the result.
2365    ArrayAlignment = ArrayLV.getAlignment();
2366
2367    if (getLangOpts().isSignedOverflowDefined())
2368      Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
2369    else
2370      Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
2371  } else {
2372    // The base must be a pointer, which is not an aggregate.  Emit it.
2373    llvm::Value *Base = EmitScalarExpr(E->getBase());
2374    if (getLangOpts().isSignedOverflowDefined())
2375      Address = Builder.CreateGEP(Base, Idx, "arrayidx");
2376    else
2377      Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
2378  }
2379
2380  QualType T = E->getBase()->getType()->getPointeeType();
2381  assert(!T.isNull() &&
2382         "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
2383
2384
2385  // Limit the alignment to that of the result type.
2386  LValue LV;
2387  if (!ArrayAlignment.isZero()) {
2388    CharUnits Align = getContext().getTypeAlignInChars(T);
2389    ArrayAlignment = std::min(Align, ArrayAlignment);
2390    LV = MakeAddrLValue(Address, T, ArrayAlignment);
2391  } else {
2392    LV = MakeNaturalAlignAddrLValue(Address, T);
2393  }
2394
2395  LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
2396
2397  if (getLangOpts().ObjC1 &&
2398      getLangOpts().getGC() != LangOptions::NonGC) {
2399    LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2400    setObjCGCLValueClass(getContext(), E, LV);
2401  }
2402  return LV;
2403}
2404
2405static
2406llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
2407                                       SmallVector<unsigned, 4> &Elts) {
2408  SmallVector<llvm::Constant*, 4> CElts;
2409  for (unsigned i = 0, e = Elts.size(); i != e; ++i)
2410    CElts.push_back(Builder.getInt32(Elts[i]));
2411
2412  return llvm::ConstantVector::get(CElts);
2413}
2414
2415LValue CodeGenFunction::
2416EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
2417  // Emit the base vector as an l-value.
2418  LValue Base;
2419
2420  // ExtVectorElementExpr's base can either be a vector or pointer to vector.
2421  if (E->isArrow()) {
2422    // If it is a pointer to a vector, emit the address and form an lvalue with
2423    // it.
2424    llvm::Value *Ptr = EmitScalarExpr(E->getBase());
2425    const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
2426    Base = MakeAddrLValue(Ptr, PT->getPointeeType());
2427    Base.getQuals().removeObjCGCAttr();
2428  } else if (E->getBase()->isGLValue()) {
2429    // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
2430    // emit the base as an lvalue.
2431    assert(E->getBase()->getType()->isVectorType());
2432    Base = EmitLValue(E->getBase());
2433  } else {
2434    // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
2435    assert(E->getBase()->getType()->isVectorType() &&
2436           "Result must be a vector");
2437    llvm::Value *Vec = EmitScalarExpr(E->getBase());
2438
2439    // Store the vector to memory (because LValue wants an address).
2440    llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
2441    Builder.CreateStore(Vec, VecMem);
2442    Base = MakeAddrLValue(VecMem, E->getBase()->getType());
2443  }
2444
2445  QualType type =
2446    E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
2447
2448  // Encode the element access list into a vector of unsigned indices.
2449  SmallVector<unsigned, 4> Indices;
2450  E->getEncodedElementAccess(Indices);
2451
2452  if (Base.isSimple()) {
2453    llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
2454    return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
2455                                    Base.getAlignment());
2456  }
2457  assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
2458
2459  llvm::Constant *BaseElts = Base.getExtVectorElts();
2460  SmallVector<llvm::Constant *, 4> CElts;
2461
2462  for (unsigned i = 0, e = Indices.size(); i != e; ++i)
2463    CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
2464  llvm::Constant *CV = llvm::ConstantVector::get(CElts);
2465  return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
2466                                  Base.getAlignment());
2467}
2468
2469LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
2470  Expr *BaseExpr = E->getBase();
2471
2472  // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
2473  LValue BaseLV;
2474  if (E->isArrow()) {
2475    llvm::Value *Ptr = EmitScalarExpr(BaseExpr);
2476    QualType PtrTy = BaseExpr->getType()->getPointeeType();
2477    EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy);
2478    BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy);
2479  } else
2480    BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
2481
2482  NamedDecl *ND = E->getMemberDecl();
2483  if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
2484    LValue LV = EmitLValueForField(BaseLV, Field);
2485    setObjCGCLValueClass(getContext(), E, LV);
2486    return LV;
2487  }
2488
2489  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
2490    return EmitGlobalVarDeclLValue(*this, E, VD);
2491
2492  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
2493    return EmitFunctionDeclLValue(*this, E, FD);
2494
2495  llvm_unreachable("Unhandled member declaration!");
2496}
2497
2498LValue CodeGenFunction::EmitLValueForField(LValue base,
2499                                           const FieldDecl *field) {
2500  if (field->isBitField()) {
2501    const CGRecordLayout &RL =
2502      CGM.getTypes().getCGRecordLayout(field->getParent());
2503    const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
2504    llvm::Value *Addr = base.getAddress();
2505    unsigned Idx = RL.getLLVMFieldNo(field);
2506    if (Idx != 0)
2507      // For structs, we GEP to the field that the record layout suggests.
2508      Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
2509    // Get the access type.
2510    llvm::Type *PtrTy = llvm::Type::getIntNPtrTy(
2511      getLLVMContext(), Info.StorageSize,
2512      CGM.getContext().getTargetAddressSpace(base.getType()));
2513    if (Addr->getType() != PtrTy)
2514      Addr = Builder.CreateBitCast(Addr, PtrTy);
2515
2516    QualType fieldType =
2517      field->getType().withCVRQualifiers(base.getVRQualifiers());
2518    return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment());
2519  }
2520
2521  const RecordDecl *rec = field->getParent();
2522  QualType type = field->getType();
2523  CharUnits alignment = getContext().getDeclAlign(field);
2524
2525  // FIXME: It should be impossible to have an LValue without alignment for a
2526  // complete type.
2527  if (!base.getAlignment().isZero())
2528    alignment = std::min(alignment, base.getAlignment());
2529
2530  bool mayAlias = rec->hasAttr<MayAliasAttr>();
2531
2532  llvm::Value *addr = base.getAddress();
2533  unsigned cvr = base.getVRQualifiers();
2534  bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
2535  if (rec->isUnion()) {
2536    // For unions, there is no pointer adjustment.
2537    assert(!type->isReferenceType() && "union has reference member");
2538    // TODO: handle path-aware TBAA for union.
2539    TBAAPath = false;
2540  } else {
2541    // For structs, we GEP to the field that the record layout suggests.
2542    unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
2543    addr = Builder.CreateStructGEP(addr, idx, field->getName());
2544
2545    // If this is a reference field, load the reference right now.
2546    if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
2547      llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
2548      if (cvr & Qualifiers::Volatile) load->setVolatile(true);
2549      load->setAlignment(alignment.getQuantity());
2550
2551      // Loading the reference will disable path-aware TBAA.
2552      TBAAPath = false;
2553      if (CGM.shouldUseTBAA()) {
2554        llvm::MDNode *tbaa;
2555        if (mayAlias)
2556          tbaa = CGM.getTBAAInfo(getContext().CharTy);
2557        else
2558          tbaa = CGM.getTBAAInfo(type);
2559        CGM.DecorateInstruction(load, tbaa);
2560      }
2561
2562      addr = load;
2563      mayAlias = false;
2564      type = refType->getPointeeType();
2565      if (type->isIncompleteType())
2566        alignment = CharUnits();
2567      else
2568        alignment = getContext().getTypeAlignInChars(type);
2569      cvr = 0; // qualifiers don't recursively apply to referencee
2570    }
2571  }
2572
2573  // Make sure that the address is pointing to the right type.  This is critical
2574  // for both unions and structs.  A union needs a bitcast, a struct element
2575  // will need a bitcast if the LLVM type laid out doesn't match the desired
2576  // type.
2577  addr = EmitBitCastOfLValueToProperType(*this, addr,
2578                                         CGM.getTypes().ConvertTypeForMem(type),
2579                                         field->getName());
2580
2581  if (field->hasAttr<AnnotateAttr>())
2582    addr = EmitFieldAnnotations(field, addr);
2583
2584  LValue LV = MakeAddrLValue(addr, type, alignment);
2585  LV.getQuals().addCVRQualifiers(cvr);
2586  if (TBAAPath) {
2587    const ASTRecordLayout &Layout =
2588        getContext().getASTRecordLayout(field->getParent());
2589    // Set the base type to be the base type of the base LValue and
2590    // update offset to be relative to the base type.
2591    LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
2592    LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
2593                     Layout.getFieldOffset(field->getFieldIndex()) /
2594                                           getContext().getCharWidth());
2595  }
2596
2597  // __weak attribute on a field is ignored.
2598  if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
2599    LV.getQuals().removeObjCGCAttr();
2600
2601  // Fields of may_alias structs act like 'char' for TBAA purposes.
2602  // FIXME: this should get propagated down through anonymous structs
2603  // and unions.
2604  if (mayAlias && LV.getTBAAInfo())
2605    LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
2606
2607  return LV;
2608}
2609
2610LValue
2611CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
2612                                                  const FieldDecl *Field) {
2613  QualType FieldType = Field->getType();
2614
2615  if (!FieldType->isReferenceType())
2616    return EmitLValueForField(Base, Field);
2617
2618  const CGRecordLayout &RL =
2619    CGM.getTypes().getCGRecordLayout(Field->getParent());
2620  unsigned idx = RL.getLLVMFieldNo(Field);
2621  llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx);
2622  assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
2623
2624  // Make sure that the address is pointing to the right type.  This is critical
2625  // for both unions and structs.  A union needs a bitcast, a struct element
2626  // will need a bitcast if the LLVM type laid out doesn't match the desired
2627  // type.
2628  llvm::Type *llvmType = ConvertTypeForMem(FieldType);
2629  V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
2630
2631  CharUnits Alignment = getContext().getDeclAlign(Field);
2632
2633  // FIXME: It should be impossible to have an LValue without alignment for a
2634  // complete type.
2635  if (!Base.getAlignment().isZero())
2636    Alignment = std::min(Alignment, Base.getAlignment());
2637
2638  return MakeAddrLValue(V, FieldType, Alignment);
2639}
2640
2641LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
2642  if (E->isFileScope()) {
2643    llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
2644    return MakeAddrLValue(GlobalPtr, E->getType());
2645  }
2646  if (E->getType()->isVariablyModifiedType())
2647    // make sure to emit the VLA size.
2648    EmitVariablyModifiedType(E->getType());
2649
2650  llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
2651  const Expr *InitExpr = E->getInitializer();
2652  LValue Result = MakeAddrLValue(DeclPtr, E->getType());
2653
2654  EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
2655                   /*Init*/ true);
2656
2657  return Result;
2658}
2659
2660LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
2661  if (!E->isGLValue())
2662    // Initializing an aggregate temporary in C++11: T{...}.
2663    return EmitAggExprToLValue(E);
2664
2665  // An lvalue initializer list must be initializing a reference.
2666  assert(E->getNumInits() == 1 && "reference init with multiple values");
2667  return EmitLValue(E->getInit(0));
2668}
2669
2670LValue CodeGenFunction::
2671EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
2672  if (!expr->isGLValue()) {
2673    // ?: here should be an aggregate.
2674    assert(hasAggregateEvaluationKind(expr->getType()) &&
2675           "Unexpected conditional operator!");
2676    return EmitAggExprToLValue(expr);
2677  }
2678
2679  OpaqueValueMapping binding(*this, expr);
2680
2681  const Expr *condExpr = expr->getCond();
2682  bool CondExprBool;
2683  if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2684    const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
2685    if (!CondExprBool) std::swap(live, dead);
2686
2687    if (!ContainsLabel(dead))
2688      return EmitLValue(live);
2689  }
2690
2691  llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2692  llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2693  llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2694
2695  ConditionalEvaluation eval(*this);
2696  EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock);
2697
2698  // Any temporaries created here are conditional.
2699  EmitBlock(lhsBlock);
2700  eval.begin(*this);
2701  LValue lhs = EmitLValue(expr->getTrueExpr());
2702  eval.end(*this);
2703
2704  if (!lhs.isSimple())
2705    return EmitUnsupportedLValue(expr, "conditional operator");
2706
2707  lhsBlock = Builder.GetInsertBlock();
2708  Builder.CreateBr(contBlock);
2709
2710  // Any temporaries created here are conditional.
2711  EmitBlock(rhsBlock);
2712  eval.begin(*this);
2713  LValue rhs = EmitLValue(expr->getFalseExpr());
2714  eval.end(*this);
2715  if (!rhs.isSimple())
2716    return EmitUnsupportedLValue(expr, "conditional operator");
2717  rhsBlock = Builder.GetInsertBlock();
2718
2719  EmitBlock(contBlock);
2720
2721  llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2,
2722                                         "cond-lvalue");
2723  phi->addIncoming(lhs.getAddress(), lhsBlock);
2724  phi->addIncoming(rhs.getAddress(), rhsBlock);
2725  return MakeAddrLValue(phi, expr->getType());
2726}
2727
2728/// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
2729/// type. If the cast is to a reference, we can have the usual lvalue result,
2730/// otherwise if a cast is needed by the code generator in an lvalue context,
2731/// then it must mean that we need the address of an aggregate in order to
2732/// access one of its members.  This can happen for all the reasons that casts
2733/// are permitted with aggregate result, including noop aggregate casts, and
2734/// cast from scalar to union.
2735LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2736  switch (E->getCastKind()) {
2737  case CK_ToVoid:
2738    return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2739
2740  case CK_Dependent:
2741    llvm_unreachable("dependent cast kind in IR gen!");
2742
2743  case CK_BuiltinFnToFnPtr:
2744    llvm_unreachable("builtin functions are handled elsewhere");
2745
2746  // These two casts are currently treated as no-ops, although they could
2747  // potentially be real operations depending on the target's ABI.
2748  case CK_NonAtomicToAtomic:
2749  case CK_AtomicToNonAtomic:
2750
2751  case CK_NoOp:
2752  case CK_LValueToRValue:
2753    if (!E->getSubExpr()->Classify(getContext()).isPRValue()
2754        || E->getType()->isRecordType())
2755      return EmitLValue(E->getSubExpr());
2756    // Fall through to synthesize a temporary.
2757
2758  case CK_BitCast:
2759  case CK_ArrayToPointerDecay:
2760  case CK_FunctionToPointerDecay:
2761  case CK_NullToMemberPointer:
2762  case CK_NullToPointer:
2763  case CK_IntegralToPointer:
2764  case CK_PointerToIntegral:
2765  case CK_PointerToBoolean:
2766  case CK_VectorSplat:
2767  case CK_IntegralCast:
2768  case CK_IntegralToBoolean:
2769  case CK_IntegralToFloating:
2770  case CK_FloatingToIntegral:
2771  case CK_FloatingToBoolean:
2772  case CK_FloatingCast:
2773  case CK_FloatingRealToComplex:
2774  case CK_FloatingComplexToReal:
2775  case CK_FloatingComplexToBoolean:
2776  case CK_FloatingComplexCast:
2777  case CK_FloatingComplexToIntegralComplex:
2778  case CK_IntegralRealToComplex:
2779  case CK_IntegralComplexToReal:
2780  case CK_IntegralComplexToBoolean:
2781  case CK_IntegralComplexCast:
2782  case CK_IntegralComplexToFloatingComplex:
2783  case CK_DerivedToBaseMemberPointer:
2784  case CK_BaseToDerivedMemberPointer:
2785  case CK_MemberPointerToBoolean:
2786  case CK_ReinterpretMemberPointer:
2787  case CK_AnyPointerToBlockPointerCast:
2788  case CK_ARCProduceObject:
2789  case CK_ARCConsumeObject:
2790  case CK_ARCReclaimReturnedObject:
2791  case CK_ARCExtendBlockObject:
2792  case CK_CopyAndAutoreleaseBlockObject: {
2793    // These casts only produce lvalues when we're binding a reference to a
2794    // temporary realized from a (converted) pure rvalue. Emit the expression
2795    // as a value, copy it into a temporary, and return an lvalue referring to
2796    // that temporary.
2797    llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp");
2798    EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false);
2799    return MakeAddrLValue(V, E->getType());
2800  }
2801
2802  case CK_Dynamic: {
2803    LValue LV = EmitLValue(E->getSubExpr());
2804    llvm::Value *V = LV.getAddress();
2805    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
2806    return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2807  }
2808
2809  case CK_ConstructorConversion:
2810  case CK_UserDefinedConversion:
2811  case CK_CPointerToObjCPointerCast:
2812  case CK_BlockPointerToObjCPointerCast:
2813    return EmitLValue(E->getSubExpr());
2814
2815  case CK_UncheckedDerivedToBase:
2816  case CK_DerivedToBase: {
2817    const RecordType *DerivedClassTy =
2818      E->getSubExpr()->getType()->getAs<RecordType>();
2819    CXXRecordDecl *DerivedClassDecl =
2820      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2821
2822    LValue LV = EmitLValue(E->getSubExpr());
2823    llvm::Value *This = LV.getAddress();
2824
2825    // Perform the derived-to-base conversion
2826    llvm::Value *Base =
2827      GetAddressOfBaseClass(This, DerivedClassDecl,
2828                            E->path_begin(), E->path_end(),
2829                            /*NullCheckValue=*/false);
2830
2831    return MakeAddrLValue(Base, E->getType());
2832  }
2833  case CK_ToUnion:
2834    return EmitAggExprToLValue(E);
2835  case CK_BaseToDerived: {
2836    const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2837    CXXRecordDecl *DerivedClassDecl =
2838      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2839
2840    LValue LV = EmitLValue(E->getSubExpr());
2841
2842    // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
2843    // performed and the object is not of the derived type.
2844    if (SanitizePerformTypeCheck)
2845      EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
2846                    LV.getAddress(), E->getType());
2847
2848    // Perform the base-to-derived conversion
2849    llvm::Value *Derived =
2850      GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
2851                               E->path_begin(), E->path_end(),
2852                               /*NullCheckValue=*/false);
2853
2854    return MakeAddrLValue(Derived, E->getType());
2855  }
2856  case CK_LValueBitCast: {
2857    // This must be a reinterpret_cast (or c-style equivalent).
2858    const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
2859
2860    LValue LV = EmitLValue(E->getSubExpr());
2861    llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2862                                           ConvertType(CE->getTypeAsWritten()));
2863    return MakeAddrLValue(V, E->getType());
2864  }
2865  case CK_ObjCObjectLValueCast: {
2866    LValue LV = EmitLValue(E->getSubExpr());
2867    QualType ToType = getContext().getLValueReferenceType(E->getType());
2868    llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2869                                           ConvertType(ToType));
2870    return MakeAddrLValue(V, E->getType());
2871  }
2872  case CK_ZeroToOCLEvent:
2873    llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
2874  }
2875
2876  llvm_unreachable("Unhandled lvalue cast kind?");
2877}
2878
2879LValue CodeGenFunction::EmitNullInitializationLValue(
2880                                              const CXXScalarValueInitExpr *E) {
2881  QualType Ty = E->getType();
2882  LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty);
2883  EmitNullInitialization(LV.getAddress(), Ty);
2884  return LV;
2885}
2886
2887LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
2888  assert(OpaqueValueMappingData::shouldBindAsLValue(e));
2889  return getOpaqueLValueMapping(e);
2890}
2891
2892LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
2893                                           const MaterializeTemporaryExpr *E) {
2894  RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
2895  return MakeAddrLValue(RV.getScalarVal(), E->getType());
2896}
2897
2898RValue CodeGenFunction::EmitRValueForField(LValue LV,
2899                                           const FieldDecl *FD) {
2900  QualType FT = FD->getType();
2901  LValue FieldLV = EmitLValueForField(LV, FD);
2902  switch (getEvaluationKind(FT)) {
2903  case TEK_Complex:
2904    return RValue::getComplex(EmitLoadOfComplex(FieldLV));
2905  case TEK_Aggregate:
2906    return FieldLV.asAggregateRValue();
2907  case TEK_Scalar:
2908    return EmitLoadOfLValue(FieldLV);
2909  }
2910  llvm_unreachable("bad evaluation kind");
2911}
2912
2913//===--------------------------------------------------------------------===//
2914//                             Expression Emission
2915//===--------------------------------------------------------------------===//
2916
2917RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
2918                                     ReturnValueSlot ReturnValue) {
2919  if (CGDebugInfo *DI = getDebugInfo()) {
2920    SourceLocation Loc = E->getLocStart();
2921    // Force column info to be generated so we can differentiate
2922    // multiple call sites on the same line in the debug info.
2923    const FunctionDecl* Callee = E->getDirectCallee();
2924    bool ForceColumnInfo = Callee && Callee->isInlineSpecified();
2925    DI->EmitLocation(Builder, Loc, ForceColumnInfo);
2926  }
2927
2928  // Builtins never have block type.
2929  if (E->getCallee()->getType()->isBlockPointerType())
2930    return EmitBlockCallExpr(E, ReturnValue);
2931
2932  if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
2933    return EmitCXXMemberCallExpr(CE, ReturnValue);
2934
2935  if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E))
2936    return EmitCUDAKernelCallExpr(CE, ReturnValue);
2937
2938  const Decl *TargetDecl = E->getCalleeDecl();
2939  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2940    if (unsigned builtinID = FD->getBuiltinID())
2941      return EmitBuiltinExpr(FD, builtinID, E);
2942  }
2943
2944  if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
2945    if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
2946      return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
2947
2948  if (const CXXPseudoDestructorExpr *PseudoDtor
2949          = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
2950    QualType DestroyedType = PseudoDtor->getDestroyedType();
2951    if (getLangOpts().ObjCAutoRefCount &&
2952        DestroyedType->isObjCLifetimeType() &&
2953        (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
2954         DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
2955      // Automatic Reference Counting:
2956      //   If the pseudo-expression names a retainable object with weak or
2957      //   strong lifetime, the object shall be released.
2958      Expr *BaseExpr = PseudoDtor->getBase();
2959      llvm::Value *BaseValue = NULL;
2960      Qualifiers BaseQuals;
2961
2962      // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2963      if (PseudoDtor->isArrow()) {
2964        BaseValue = EmitScalarExpr(BaseExpr);
2965        const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
2966        BaseQuals = PTy->getPointeeType().getQualifiers();
2967      } else {
2968        LValue BaseLV = EmitLValue(BaseExpr);
2969        BaseValue = BaseLV.getAddress();
2970        QualType BaseTy = BaseExpr->getType();
2971        BaseQuals = BaseTy.getQualifiers();
2972      }
2973
2974      switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
2975      case Qualifiers::OCL_None:
2976      case Qualifiers::OCL_ExplicitNone:
2977      case Qualifiers::OCL_Autoreleasing:
2978        break;
2979
2980      case Qualifiers::OCL_Strong:
2981        EmitARCRelease(Builder.CreateLoad(BaseValue,
2982                          PseudoDtor->getDestroyedType().isVolatileQualified()),
2983                       ARCPreciseLifetime);
2984        break;
2985
2986      case Qualifiers::OCL_Weak:
2987        EmitARCDestroyWeak(BaseValue);
2988        break;
2989      }
2990    } else {
2991      // C++ [expr.pseudo]p1:
2992      //   The result shall only be used as the operand for the function call
2993      //   operator (), and the result of such a call has type void. The only
2994      //   effect is the evaluation of the postfix-expression before the dot or
2995      //   arrow.
2996      EmitScalarExpr(E->getCallee());
2997    }
2998
2999    return RValue::get(0);
3000  }
3001
3002  llvm::Value *Callee = EmitScalarExpr(E->getCallee());
3003  return EmitCall(E->getCallee()->getType(), Callee, ReturnValue,
3004                  E->arg_begin(), E->arg_end(), TargetDecl);
3005}
3006
3007LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
3008  // Comma expressions just emit their LHS then their RHS as an l-value.
3009  if (E->getOpcode() == BO_Comma) {
3010    EmitIgnoredExpr(E->getLHS());
3011    EnsureInsertPoint();
3012    return EmitLValue(E->getRHS());
3013  }
3014
3015  if (E->getOpcode() == BO_PtrMemD ||
3016      E->getOpcode() == BO_PtrMemI)
3017    return EmitPointerToDataMemberBinaryExpr(E);
3018
3019  assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
3020
3021  // Note that in all of these cases, __block variables need the RHS
3022  // evaluated first just in case the variable gets moved by the RHS.
3023
3024  switch (getEvaluationKind(E->getType())) {
3025  case TEK_Scalar: {
3026    switch (E->getLHS()->getType().getObjCLifetime()) {
3027    case Qualifiers::OCL_Strong:
3028      return EmitARCStoreStrong(E, /*ignored*/ false).first;
3029
3030    case Qualifiers::OCL_Autoreleasing:
3031      return EmitARCStoreAutoreleasing(E).first;
3032
3033    // No reason to do any of these differently.
3034    case Qualifiers::OCL_None:
3035    case Qualifiers::OCL_ExplicitNone:
3036    case Qualifiers::OCL_Weak:
3037      break;
3038    }
3039
3040    RValue RV = EmitAnyExpr(E->getRHS());
3041    LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
3042    EmitStoreThroughLValue(RV, LV);
3043    return LV;
3044  }
3045
3046  case TEK_Complex:
3047    return EmitComplexAssignmentLValue(E);
3048
3049  case TEK_Aggregate:
3050    return EmitAggExprToLValue(E);
3051  }
3052  llvm_unreachable("bad evaluation kind");
3053}
3054
3055LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
3056  RValue RV = EmitCallExpr(E);
3057
3058  if (!RV.isScalar())
3059    return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3060
3061  assert(E->getCallReturnType()->isReferenceType() &&
3062         "Can't have a scalar return unless the return type is a "
3063         "reference type!");
3064
3065  return MakeAddrLValue(RV.getScalarVal(), E->getType());
3066}
3067
3068LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
3069  // FIXME: This shouldn't require another copy.
3070  return EmitAggExprToLValue(E);
3071}
3072
3073LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
3074  assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
3075         && "binding l-value to type which needs a temporary");
3076  AggValueSlot Slot = CreateAggTemp(E->getType());
3077  EmitCXXConstructExpr(E, Slot);
3078  return MakeAddrLValue(Slot.getAddr(), E->getType());
3079}
3080
3081LValue
3082CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
3083  return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
3084}
3085
3086llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
3087  return CGM.GetAddrOfUuidDescriptor(E);
3088}
3089
3090LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
3091  return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType());
3092}
3093
3094LValue
3095CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
3096  AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3097  Slot.setExternallyDestructed();
3098  EmitAggExpr(E->getSubExpr(), Slot);
3099  EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
3100  return MakeAddrLValue(Slot.getAddr(), E->getType());
3101}
3102
3103LValue
3104CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
3105  AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3106  EmitLambdaExpr(E, Slot);
3107  return MakeAddrLValue(Slot.getAddr(), E->getType());
3108}
3109
3110LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
3111  RValue RV = EmitObjCMessageExpr(E);
3112
3113  if (!RV.isScalar())
3114    return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3115
3116  assert(E->getMethodDecl()->getResultType()->isReferenceType() &&
3117         "Can't have a scalar return unless the return type is a "
3118         "reference type!");
3119
3120  return MakeAddrLValue(RV.getScalarVal(), E->getType());
3121}
3122
3123LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
3124  llvm::Value *V =
3125    CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true);
3126  return MakeAddrLValue(V, E->getType());
3127}
3128
3129llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3130                                             const ObjCIvarDecl *Ivar) {
3131  return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
3132}
3133
3134LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
3135                                          llvm::Value *BaseValue,
3136                                          const ObjCIvarDecl *Ivar,
3137                                          unsigned CVRQualifiers) {
3138  return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
3139                                                   Ivar, CVRQualifiers);
3140}
3141
3142LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
3143  // FIXME: A lot of the code below could be shared with EmitMemberExpr.
3144  llvm::Value *BaseValue = 0;
3145  const Expr *BaseExpr = E->getBase();
3146  Qualifiers BaseQuals;
3147  QualType ObjectTy;
3148  if (E->isArrow()) {
3149    BaseValue = EmitScalarExpr(BaseExpr);
3150    ObjectTy = BaseExpr->getType()->getPointeeType();
3151    BaseQuals = ObjectTy.getQualifiers();
3152  } else {
3153    LValue BaseLV = EmitLValue(BaseExpr);
3154    // FIXME: this isn't right for bitfields.
3155    BaseValue = BaseLV.getAddress();
3156    ObjectTy = BaseExpr->getType();
3157    BaseQuals = ObjectTy.getQualifiers();
3158  }
3159
3160  LValue LV =
3161    EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
3162                      BaseQuals.getCVRQualifiers());
3163  setObjCGCLValueClass(getContext(), E, LV);
3164  return LV;
3165}
3166
3167LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
3168  // Can only get l-value for message expression returning aggregate type
3169  RValue RV = EmitAnyExprToTemp(E);
3170  return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3171}
3172
3173RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
3174                                 ReturnValueSlot ReturnValue,
3175                                 CallExpr::const_arg_iterator ArgBeg,
3176                                 CallExpr::const_arg_iterator ArgEnd,
3177                                 const Decl *TargetDecl) {
3178  // Get the actual function type. The callee type will always be a pointer to
3179  // function type or a block pointer type.
3180  assert(CalleeType->isFunctionPointerType() &&
3181         "Call must have function pointer type!");
3182
3183  CalleeType = getContext().getCanonicalType(CalleeType);
3184
3185  const FunctionType *FnType
3186    = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
3187
3188  CallArgList Args;
3189  EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd);
3190
3191  const CGFunctionInfo &FnInfo =
3192    CGM.getTypes().arrangeFreeFunctionCall(Args, FnType);
3193
3194  // C99 6.5.2.2p6:
3195  //   If the expression that denotes the called function has a type
3196  //   that does not include a prototype, [the default argument
3197  //   promotions are performed]. If the number of arguments does not
3198  //   equal the number of parameters, the behavior is undefined. If
3199  //   the function is defined with a type that includes a prototype,
3200  //   and either the prototype ends with an ellipsis (, ...) or the
3201  //   types of the arguments after promotion are not compatible with
3202  //   the types of the parameters, the behavior is undefined. If the
3203  //   function is defined with a type that does not include a
3204  //   prototype, and the types of the arguments after promotion are
3205  //   not compatible with those of the parameters after promotion,
3206  //   the behavior is undefined [except in some trivial cases].
3207  // That is, in the general case, we should assume that a call
3208  // through an unprototyped function type works like a *non-variadic*
3209  // call.  The way we make this work is to cast to the exact type
3210  // of the promoted arguments.
3211  if (isa<FunctionNoProtoType>(FnType)) {
3212    llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
3213    CalleeTy = CalleeTy->getPointerTo();
3214    Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
3215  }
3216
3217  return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
3218}
3219
3220LValue CodeGenFunction::
3221EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
3222  llvm::Value *BaseV;
3223  if (E->getOpcode() == BO_PtrMemI)
3224    BaseV = EmitScalarExpr(E->getLHS());
3225  else
3226    BaseV = EmitLValue(E->getLHS()).getAddress();
3227
3228  llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
3229
3230  const MemberPointerType *MPT
3231    = E->getRHS()->getType()->getAs<MemberPointerType>();
3232
3233  llvm::Value *AddV =
3234    CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT);
3235
3236  return MakeAddrLValue(AddV, MPT->getPointeeType());
3237}
3238
3239/// Given the address of a temporary variable, produce an r-value of
3240/// its type.
3241RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr,
3242                                            QualType type) {
3243  LValue lvalue = MakeNaturalAlignAddrLValue(addr, type);
3244  switch (getEvaluationKind(type)) {
3245  case TEK_Complex:
3246    return RValue::getComplex(EmitLoadOfComplex(lvalue));
3247  case TEK_Aggregate:
3248    return lvalue.asAggregateRValue();
3249  case TEK_Scalar:
3250    return RValue::get(EmitLoadOfScalar(lvalue));
3251  }
3252  llvm_unreachable("bad evaluation kind");
3253}
3254
3255void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
3256  assert(Val->getType()->isFPOrFPVectorTy());
3257  if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
3258    return;
3259
3260  llvm::MDBuilder MDHelper(getLLVMContext());
3261  llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
3262
3263  cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
3264}
3265
3266namespace {
3267  struct LValueOrRValue {
3268    LValue LV;
3269    RValue RV;
3270  };
3271}
3272
3273static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
3274                                           const PseudoObjectExpr *E,
3275                                           bool forLValue,
3276                                           AggValueSlot slot) {
3277  SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3278
3279  // Find the result expression, if any.
3280  const Expr *resultExpr = E->getResultExpr();
3281  LValueOrRValue result;
3282
3283  for (PseudoObjectExpr::const_semantics_iterator
3284         i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3285    const Expr *semantic = *i;
3286
3287    // If this semantic expression is an opaque value, bind it
3288    // to the result of its source expression.
3289    if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3290
3291      // If this is the result expression, we may need to evaluate
3292      // directly into the slot.
3293      typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3294      OVMA opaqueData;
3295      if (ov == resultExpr && ov->isRValue() && !forLValue &&
3296          CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
3297        CGF.EmitAggExpr(ov->getSourceExpr(), slot);
3298
3299        LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
3300        opaqueData = OVMA::bind(CGF, ov, LV);
3301        result.RV = slot.asRValue();
3302
3303      // Otherwise, emit as normal.
3304      } else {
3305        opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3306
3307        // If this is the result, also evaluate the result now.
3308        if (ov == resultExpr) {
3309          if (forLValue)
3310            result.LV = CGF.EmitLValue(ov);
3311          else
3312            result.RV = CGF.EmitAnyExpr(ov, slot);
3313        }
3314      }
3315
3316      opaques.push_back(opaqueData);
3317
3318    // Otherwise, if the expression is the result, evaluate it
3319    // and remember the result.
3320    } else if (semantic == resultExpr) {
3321      if (forLValue)
3322        result.LV = CGF.EmitLValue(semantic);
3323      else
3324        result.RV = CGF.EmitAnyExpr(semantic, slot);
3325
3326    // Otherwise, evaluate the expression in an ignored context.
3327    } else {
3328      CGF.EmitIgnoredExpr(semantic);
3329    }
3330  }
3331
3332  // Unbind all the opaques now.
3333  for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3334    opaques[i].unbind(CGF);
3335
3336  return result;
3337}
3338
3339RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
3340                                               AggValueSlot slot) {
3341  return emitPseudoObjectExpr(*this, E, false, slot).RV;
3342}
3343
3344LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
3345  return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
3346}
3347