CGExpr.cpp revision 9b2dc287177394a8f73833e2ad4f7ca8cd6f22bb
1//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "clang/AST/AST.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Function.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/Support/MathExtras.h"
22using namespace clang;
23using namespace CodeGen;
24
25//===--------------------------------------------------------------------===//
26//                        Miscellaneous Helper Methods
27//===--------------------------------------------------------------------===//
28
29/// CreateTempAlloca - This creates a alloca and inserts it into the entry
30/// block.
31llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(const llvm::Type *Ty,
32                                                    const char *Name) {
33  return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
34}
35
36/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
37/// expression and compare the result against zero, returning an Int1Ty value.
38llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
39  QualType BoolTy = getContext().BoolTy;
40  if (!E->getType()->isAnyComplexType())
41    return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
42
43  return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
44}
45
46/// EmitAnyExpr - Emit code to compute the specified expression which can have
47/// any type.  The result is returned as an RValue struct.  If this is an
48/// aggregate expression, the aggloc/agglocvolatile arguments indicate where
49/// the result should be returned.
50RValue CodeGenFunction::EmitAnyExpr(const Expr *E, llvm::Value *AggLoc,
51                                    bool isAggLocVolatile) {
52  if (!hasAggregateLLVMType(E->getType()))
53    return RValue::get(EmitScalarExpr(E));
54  else if (E->getType()->isAnyComplexType())
55    return RValue::getComplex(EmitComplexExpr(E));
56
57  EmitAggExpr(E, AggLoc, isAggLocVolatile);
58  return RValue::getAggregate(AggLoc);
59}
60
61
62//===----------------------------------------------------------------------===//
63//                         LValue Expression Emission
64//===----------------------------------------------------------------------===//
65
66/// EmitLValue - Emit code to compute a designator that specifies the location
67/// of the expression.
68///
69/// This can return one of two things: a simple address or a bitfield
70/// reference.  In either case, the LLVM Value* in the LValue structure is
71/// guaranteed to be an LLVM pointer type.
72///
73/// If this returns a bitfield reference, nothing about the pointee type of
74/// the LLVM value is known: For example, it may not be a pointer to an
75/// integer.
76///
77/// If this returns a normal address, and if the lvalue's C type is fixed
78/// size, this method guarantees that the returned pointer type will point to
79/// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
80/// variable length type, this is not possible.
81///
82LValue CodeGenFunction::EmitLValue(const Expr *E) {
83  switch (E->getStmtClass()) {
84  default: {
85    printf("Statement class: %d\n", E->getStmtClass());
86    WarnUnsupported(E, "l-value expression");
87    llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
88    return LValue::MakeAddr(llvm::UndefValue::get(Ty));
89  }
90
91  case Expr::CallExprClass: return EmitCallExprLValue(cast<CallExpr>(E));
92  case Expr::DeclRefExprClass: return EmitDeclRefLValue(cast<DeclRefExpr>(E));
93  case Expr::ParenExprClass:return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
94  case Expr::PreDefinedExprClass:
95    return EmitPreDefinedLValue(cast<PreDefinedExpr>(E));
96  case Expr::StringLiteralClass:
97    return EmitStringLiteralLValue(cast<StringLiteral>(E));
98
99  case Expr::ObjCIvarRefExprClass:
100    return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
101
102  case Expr::UnaryOperatorClass:
103    return EmitUnaryOpLValue(cast<UnaryOperator>(E));
104  case Expr::ArraySubscriptExprClass:
105    return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
106  case Expr::OCUVectorElementExprClass:
107    return EmitOCUVectorElementExpr(cast<OCUVectorElementExpr>(E));
108  case Expr::MemberExprClass: return EmitMemberExpr(cast<MemberExpr>(E));
109  }
110}
111
112/// EmitLoadOfLValue - Given an expression that represents a value lvalue,
113/// this method emits the address of the lvalue, then loads the result as an
114/// rvalue, returning the rvalue.
115RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, QualType ExprType) {
116  if (LV.isSimple()) {
117    llvm::Value *Ptr = LV.getAddress();
118    const llvm::Type *EltTy =
119      cast<llvm::PointerType>(Ptr->getType())->getElementType();
120
121    // Simple scalar l-value.
122    if (EltTy->isFirstClassType()) {
123      llvm::Value *V = Builder.CreateLoad(Ptr, "tmp");
124
125      // Bool can have different representation in memory than in registers.
126      if (ExprType->isBooleanType()) {
127        if (V->getType() != llvm::Type::Int1Ty)
128          V = Builder.CreateTrunc(V, llvm::Type::Int1Ty, "tobool");
129      }
130
131      return RValue::get(V);
132    }
133
134    assert(ExprType->isFunctionType() && "Unknown scalar value");
135    return RValue::get(Ptr);
136  }
137
138  if (LV.isVectorElt()) {
139    llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(), "tmp");
140    return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(),
141                                                    "vecext"));
142  }
143
144  // If this is a reference to a subset of the elements of a vector, either
145  // shuffle the input or extract/insert them as appropriate.
146  if (LV.isOCUVectorElt())
147    return EmitLoadOfOCUElementLValue(LV, ExprType);
148
149  if (LV.isBitfield())
150    return EmitLoadOfBitfieldLValue(LV, ExprType);
151
152  assert(0 && "Unknown LValue type!");
153  //an invalid RValue, but the assert will
154  //ensure that this point is never reached
155  return RValue();
156}
157
158RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
159                                                 QualType ExprType) {
160  llvm::Value *Ptr = LV.getBitfieldAddr();
161  const llvm::Type *EltTy =
162    cast<llvm::PointerType>(Ptr->getType())->getElementType();
163  unsigned EltTySize = EltTy->getPrimitiveSizeInBits();
164  unsigned short BitfieldSize = LV.getBitfieldSize();
165  unsigned short EndBit = LV.getBitfieldStartBit() + BitfieldSize;
166
167  llvm::Value *V = Builder.CreateLoad(Ptr, "tmp");
168
169  llvm::Value *ShAmt = llvm::ConstantInt::get(EltTy, EltTySize - EndBit);
170  V = Builder.CreateShl(V, ShAmt, "tmp");
171
172  ShAmt = llvm::ConstantInt::get(EltTy, EltTySize - BitfieldSize);
173  V = LV.isBitfieldSigned() ?
174    Builder.CreateAShr(V, ShAmt, "tmp") :
175    Builder.CreateLShr(V, ShAmt, "tmp");
176  return RValue::get(V);
177}
178
179// If this is a reference to a subset of the elements of a vector, either
180// shuffle the input or extract/insert them as appropriate.
181RValue CodeGenFunction::EmitLoadOfOCUElementLValue(LValue LV,
182                                                   QualType ExprType) {
183  llvm::Value *Vec = Builder.CreateLoad(LV.getOCUVectorAddr(), "tmp");
184
185  unsigned EncFields = LV.getOCUVectorElts();
186
187  // If the result of the expression is a non-vector type, we must be
188  // extracting a single element.  Just codegen as an extractelement.
189  const VectorType *ExprVT = ExprType->getAsVectorType();
190  if (!ExprVT) {
191    unsigned InIdx = OCUVectorElementExpr::getAccessedFieldNo(0, EncFields);
192    llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx);
193    return RValue::get(Builder.CreateExtractElement(Vec, Elt, "tmp"));
194  }
195
196  // If the source and destination have the same number of elements, use a
197  // vector shuffle instead of insert/extracts.
198  unsigned NumResultElts = ExprVT->getNumElements();
199  unsigned NumSourceElts =
200    cast<llvm::VectorType>(Vec->getType())->getNumElements();
201
202  if (NumResultElts == NumSourceElts) {
203    llvm::SmallVector<llvm::Constant*, 4> Mask;
204    for (unsigned i = 0; i != NumResultElts; ++i) {
205      unsigned InIdx = OCUVectorElementExpr::getAccessedFieldNo(i, EncFields);
206      Mask.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx));
207    }
208
209    llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size());
210    Vec = Builder.CreateShuffleVector(Vec,
211                                      llvm::UndefValue::get(Vec->getType()),
212                                      MaskV, "tmp");
213    return RValue::get(Vec);
214  }
215
216  // Start out with an undef of the result type.
217  llvm::Value *Result = llvm::UndefValue::get(ConvertType(ExprType));
218
219  // Extract/Insert each element of the result.
220  for (unsigned i = 0; i != NumResultElts; ++i) {
221    unsigned InIdx = OCUVectorElementExpr::getAccessedFieldNo(i, EncFields);
222    llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx);
223    Elt = Builder.CreateExtractElement(Vec, Elt, "tmp");
224
225    llvm::Value *OutIdx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
226    Result = Builder.CreateInsertElement(Result, Elt, OutIdx, "tmp");
227  }
228
229  return RValue::get(Result);
230}
231
232
233
234/// EmitStoreThroughLValue - Store the specified rvalue into the specified
235/// lvalue, where both are guaranteed to the have the same type, and that type
236/// is 'Ty'.
237void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
238                                             QualType Ty) {
239  if (!Dst.isSimple()) {
240    if (Dst.isVectorElt()) {
241      // Read/modify/write the vector, inserting the new element.
242      // FIXME: Volatility.
243      llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(), "tmp");
244      Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
245                                        Dst.getVectorIdx(), "vecins");
246      Builder.CreateStore(Vec, Dst.getVectorAddr());
247      return;
248    }
249
250    // If this is an update of elements of a vector, insert them as appropriate.
251    if (Dst.isOCUVectorElt())
252      return EmitStoreThroughOCUComponentLValue(Src, Dst, Ty);
253
254    if (Dst.isBitfield())
255      return EmitStoreThroughBitfieldLValue(Src, Dst, Ty);
256
257    assert(0 && "Unknown LValue type");
258  }
259
260  llvm::Value *DstAddr = Dst.getAddress();
261  assert(Src.isScalar() && "Can't emit an agg store with this method");
262  // FIXME: Handle volatility etc.
263  const llvm::Type *SrcTy = Src.getScalarVal()->getType();
264  const llvm::PointerType *DstPtr = cast<llvm::PointerType>(DstAddr->getType());
265  const llvm::Type *AddrTy = DstPtr->getElementType();
266  unsigned AS = DstPtr->getAddressSpace();
267
268  if (AddrTy != SrcTy)
269    DstAddr = Builder.CreateBitCast(DstAddr,
270                                    llvm::PointerType::get(SrcTy, AS),
271                                    "storetmp");
272  Builder.CreateStore(Src.getScalarVal(), DstAddr);
273}
274
275void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
276                                                     QualType Ty) {
277  unsigned short StartBit = Dst.getBitfieldStartBit();
278  unsigned short BitfieldSize = Dst.getBitfieldSize();
279  llvm::Value *Ptr = Dst.getBitfieldAddr();
280  const llvm::Type *EltTy =
281    cast<llvm::PointerType>(Ptr->getType())->getElementType();
282  unsigned EltTySize = EltTy->getPrimitiveSizeInBits();
283
284  llvm::Value *NewVal = Src.getScalarVal();
285  llvm::Value *OldVal = Builder.CreateLoad(Ptr, "tmp");
286
287  llvm::Value *ShAmt = llvm::ConstantInt::get(EltTy, StartBit);
288  NewVal = Builder.CreateShl(NewVal, ShAmt, "tmp");
289
290  llvm::Constant *Mask = llvm::ConstantInt::get(
291           llvm::APInt::getBitsSet(EltTySize, StartBit,
292                                   StartBit + BitfieldSize));
293
294  // Mask out any bits that shouldn't be set in the result.
295  NewVal = Builder.CreateAnd(NewVal, Mask, "tmp");
296
297  // Next, mask out the bits this bit-field should include from the old value.
298  Mask = llvm::ConstantExpr::getNot(Mask);
299  OldVal = Builder.CreateAnd(OldVal, Mask, "tmp");
300
301  // Finally, merge the two together and store it.
302  NewVal = Builder.CreateOr(OldVal, NewVal, "tmp");
303
304  Builder.CreateStore(NewVal, Ptr);
305}
306
307void CodeGenFunction::EmitStoreThroughOCUComponentLValue(RValue Src, LValue Dst,
308                                                         QualType Ty) {
309  // This access turns into a read/modify/write of the vector.  Load the input
310  // value now.
311  llvm::Value *Vec = Builder.CreateLoad(Dst.getOCUVectorAddr(), "tmp");
312  // FIXME: Volatility.
313  unsigned EncFields = Dst.getOCUVectorElts();
314
315  llvm::Value *SrcVal = Src.getScalarVal();
316
317  if (const VectorType *VTy = Ty->getAsVectorType()) {
318    unsigned NumSrcElts = VTy->getNumElements();
319
320    // Extract/Insert each element.
321    for (unsigned i = 0; i != NumSrcElts; ++i) {
322      llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
323      Elt = Builder.CreateExtractElement(SrcVal, Elt, "tmp");
324
325      unsigned Idx = OCUVectorElementExpr::getAccessedFieldNo(i, EncFields);
326      llvm::Value *OutIdx = llvm::ConstantInt::get(llvm::Type::Int32Ty, Idx);
327      Vec = Builder.CreateInsertElement(Vec, Elt, OutIdx, "tmp");
328    }
329  } else {
330    // If the Src is a scalar (not a vector) it must be updating one element.
331    unsigned InIdx = OCUVectorElementExpr::getAccessedFieldNo(0, EncFields);
332    llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx);
333    Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt, "tmp");
334  }
335
336  Builder.CreateStore(Vec, Dst.getOCUVectorAddr());
337}
338
339
340LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
341  const ValueDecl *D = E->getDecl();
342  if (isa<BlockVarDecl>(D) || isa<ParmVarDecl>(D)) {
343    const VarDecl *VD = cast<VarDecl>(D);
344    if (VD->getStorageClass() == VarDecl::Extern)
345      return LValue::MakeAddr(CGM.GetAddrOfGlobalVar(VD, false));
346    else {
347      llvm::Value *V = LocalDeclMap[D];
348      assert(V && "BlockVarDecl not entered in LocalDeclMap?");
349      return LValue::MakeAddr(V);
350    }
351  } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
352    return LValue::MakeAddr(CGM.GetAddrOfFunctionDecl(FD, false));
353  } else if (const FileVarDecl *FVD = dyn_cast<FileVarDecl>(D)) {
354    return LValue::MakeAddr(CGM.GetAddrOfGlobalVar(FVD, false));
355  }
356  assert(0 && "Unimp declref");
357  //an invalid LValue, but the assert will
358  //ensure that this point is never reached.
359  return LValue();
360}
361
362LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
363  // __extension__ doesn't affect lvalue-ness.
364  if (E->getOpcode() == UnaryOperator::Extension)
365    return EmitLValue(E->getSubExpr());
366
367  switch (E->getOpcode()) {
368  default: assert(0 && "Unknown unary operator lvalue!");
369  case UnaryOperator::Deref:
370    return LValue::MakeAddr(EmitScalarExpr(E->getSubExpr()));
371  case UnaryOperator::Real:
372  case UnaryOperator::Imag:
373    LValue LV = EmitLValue(E->getSubExpr());
374    unsigned Idx = E->getOpcode() == UnaryOperator::Imag;
375    return LValue::MakeAddr(Builder.CreateStructGEP(LV.getAddress(),
376                                                    Idx, "idx"));
377  }
378}
379
380LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
381  assert(!E->isWide() && "FIXME: Wide strings not supported yet!");
382  const char *StrData = E->getStrData();
383  unsigned Len = E->getByteLength();
384  std::string StringLiteral(StrData, StrData+Len);
385  return LValue::MakeAddr(CGM.GetAddrOfConstantString(StringLiteral));
386}
387
388LValue CodeGenFunction::EmitPreDefinedLValue(const PreDefinedExpr *E) {
389  std::string FunctionName;
390  if(const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurFuncDecl)) {
391    FunctionName = FD->getName();
392  }
393  else {
394    assert(0 && "Attempting to load predefined constant for invalid decl type");
395  }
396  std::string GlobalVarName;
397
398  switch (E->getIdentType()) {
399    default:
400      assert(0 && "unknown pre-defined ident type");
401    case PreDefinedExpr::Func:
402      GlobalVarName = "__func__.";
403      break;
404    case PreDefinedExpr::Function:
405      GlobalVarName = "__FUNCTION__.";
406      break;
407    case PreDefinedExpr::PrettyFunction:
408      // FIXME:: Demangle C++ method names
409      GlobalVarName = "__PRETTY_FUNCTION__.";
410      break;
411  }
412
413  GlobalVarName += FunctionName;
414
415  // FIXME: Can cache/reuse these within the module.
416  llvm::Constant *C=llvm::ConstantArray::get(FunctionName);
417
418  // Create a global variable for this.
419  C = new llvm::GlobalVariable(C->getType(), true,
420                               llvm::GlobalValue::InternalLinkage,
421                               C, GlobalVarName, CurFn->getParent());
422  return LValue::MakeAddr(C);
423}
424
425LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
426  // The index must always be an integer, which is not an aggregate.  Emit it.
427  llvm::Value *Idx = EmitScalarExpr(E->getIdx());
428
429  // If the base is a vector type, then we are forming a vector element lvalue
430  // with this subscript.
431  if (E->getLHS()->getType()->isVectorType()) {
432    // Emit the vector as an lvalue to get its address.
433    LValue LHS = EmitLValue(E->getLHS());
434    assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
435    // FIXME: This should properly sign/zero/extend or truncate Idx to i32.
436    return LValue::MakeVectorElt(LHS.getAddress(), Idx);
437  }
438
439  // The base must be a pointer, which is not an aggregate.  Emit it.
440  llvm::Value *Base = EmitScalarExpr(E->getBase());
441
442  // Extend or truncate the index type to 32 or 64-bits.
443  QualType IdxTy  = E->getIdx()->getType();
444  bool IdxSigned = IdxTy->isSignedIntegerType();
445  unsigned IdxBitwidth = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
446  if (IdxBitwidth != LLVMPointerWidth)
447    Idx = Builder.CreateIntCast(Idx, llvm::IntegerType::get(LLVMPointerWidth),
448                                IdxSigned, "idxprom");
449
450  // We know that the pointer points to a type of the correct size, unless the
451  // size is a VLA.
452  if (!E->getType()->isConstantSizeType())
453    assert(0 && "VLA idx not implemented");
454  return LValue::MakeAddr(Builder.CreateGEP(Base, Idx, "arrayidx"));
455}
456
457LValue CodeGenFunction::
458EmitOCUVectorElementExpr(const OCUVectorElementExpr *E) {
459  // Emit the base vector as an l-value.
460  LValue Base = EmitLValue(E->getBase());
461  assert(Base.isSimple() && "Can only subscript lvalue vectors here!");
462
463  return LValue::MakeOCUVectorElt(Base.getAddress(),
464                                  E->getEncodedElementAccess());
465}
466
467LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
468  bool isUnion = false;
469  Expr *BaseExpr = E->getBase();
470  llvm::Value *BaseValue = NULL;
471
472  // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
473  if (E->isArrow()) {
474    BaseValue = EmitScalarExpr(BaseExpr);
475    const PointerType *PTy =
476      cast<PointerType>(BaseExpr->getType().getCanonicalType());
477    if (PTy->getPointeeType()->isUnionType())
478      isUnion = true;
479  }
480  else {
481    LValue BaseLV = EmitLValue(BaseExpr);
482    // FIXME: this isn't right for bitfields.
483    BaseValue = BaseLV.getAddress();
484    if (BaseExpr->getType()->isUnionType())
485      isUnion = true;
486  }
487
488  FieldDecl *Field = E->getMemberDecl();
489  return EmitLValueForField(BaseValue, Field, isUnion);
490}
491
492LValue CodeGenFunction::EmitLValueForField(llvm::Value* BaseValue,
493                                           FieldDecl* Field,
494                                           bool isUnion)
495{
496  llvm::Value *V;
497  unsigned idx = CGM.getTypes().getLLVMFieldNo(Field);
498
499  if (!Field->isBitField()) {
500    V = Builder.CreateStructGEP(BaseValue, idx, "tmp");
501  } else {
502    const llvm::Type *FieldTy = ConvertType(Field->getType());
503    const llvm::PointerType *BaseTy =
504      cast<llvm::PointerType>(BaseValue->getType());
505    unsigned AS = BaseTy->getAddressSpace();
506    BaseValue = Builder.CreateBitCast(BaseValue,
507                                      llvm::PointerType::get(FieldTy, AS),
508                                      "tmp");
509    V = Builder.CreateGEP(BaseValue,
510                          llvm::ConstantInt::get(llvm::Type::Int32Ty, idx),
511                          "tmp");
512  }
513
514  // Match union field type.
515  if (isUnion) {
516    const llvm::Type * FieldTy = ConvertType(Field->getType());
517    const llvm::PointerType * BaseTy =
518      cast<llvm::PointerType>(BaseValue->getType());
519    if (FieldTy != BaseTy->getElementType()) {
520      unsigned AS = BaseTy->getAddressSpace();
521      V = Builder.CreateBitCast(V,
522                                llvm::PointerType::get(FieldTy, AS),
523                                "tmp");
524    }
525  }
526
527  if (!Field->isBitField())
528    return LValue::MakeAddr(V);
529
530  CodeGenTypes::BitFieldInfo bitFieldInfo =
531    CGM.getTypes().getBitFieldInfo(Field);
532  return LValue::MakeBitfield(V, bitFieldInfo.Begin, bitFieldInfo.Size,
533                              Field->getType()->isSignedIntegerType());
534}
535
536//===--------------------------------------------------------------------===//
537//                             Expression Emission
538//===--------------------------------------------------------------------===//
539
540
541RValue CodeGenFunction::EmitCallExpr(const CallExpr *E) {
542  if (const ImplicitCastExpr *IcExpr =
543      dyn_cast<const ImplicitCastExpr>(E->getCallee()))
544    if (const DeclRefExpr *DRExpr =
545        dyn_cast<const DeclRefExpr>(IcExpr->getSubExpr()))
546      if (const FunctionDecl *FDecl =
547          dyn_cast<const FunctionDecl>(DRExpr->getDecl()))
548        if (unsigned builtinID = FDecl->getIdentifier()->getBuiltinID())
549          return EmitBuiltinExpr(builtinID, E);
550
551  llvm::Value *Callee = EmitScalarExpr(E->getCallee());
552  return EmitCallExpr(Callee, E->getCallee()->getType(),
553                      E->arg_begin(), E->getNumArgs());
554}
555
556RValue CodeGenFunction::EmitCallExpr(Expr *FnExpr, Expr *const *Args,
557                                     unsigned NumArgs) {
558  llvm::Value *Callee = EmitScalarExpr(FnExpr);
559  return EmitCallExpr(Callee, FnExpr->getType(), Args, NumArgs);
560}
561
562LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
563  // Can only get l-value for call expression returning aggregate type
564  RValue RV = EmitCallExpr(E);
565  return LValue::MakeAddr(RV.getAggregateAddr());
566}
567
568LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
569  // Objective-C objects are traditionally C structures with their layout
570  // defined at compile-time.  In some implementations, their layout is not
571  // defined until run time in order to allow instance variables to be added to
572  // a class without recompiling all of the subclasses.  If this is the case
573  // then the CGObjCRuntime subclass must return true to LateBoundIvars and
574  // implement the lookup itself.
575  if (CGM.getObjCRuntime()->LateBoundIVars()) {
576    assert(0 && "FIXME: Implement support for late-bound instance variables");
577    return LValue(); // Not reached.
578  }
579
580  // Get a structure type for the object
581  QualType ExprTy = E->getBase()->getType();
582  const llvm::Type *ObjectType = ConvertType(ExprTy);
583  // TODO:  Add a special case for isa (index 0)
584  // Work out which index the ivar is
585  const ObjCIvarDecl *Decl = E->getDecl();
586  unsigned Index = CGM.getTypes().getLLVMFieldNo(Decl);
587
588  // Get object pointer and coerce object pointer to correct type.
589  llvm::Value *Object = EmitLValue(E->getBase()).getAddress();
590  Object = Builder.CreateLoad(Object, E->getDecl()->getName());
591  if (Object->getType() != ObjectType)
592    Object = Builder.CreateBitCast(Object, ObjectType);
593
594
595  // Return a pointer to the right element.
596  return LValue::MakeAddr(Builder.CreateStructGEP(Object, Index,
597                                                  Decl->getName()));
598}
599
600RValue CodeGenFunction::EmitCallExpr(llvm::Value *Callee, QualType FnType,
601                                     Expr *const *ArgExprs, unsigned NumArgs) {
602  // The callee type will always be a pointer to function type, get the function
603  // type.
604  FnType = cast<PointerType>(FnType.getCanonicalType())->getPointeeType();
605  QualType ResultType = cast<FunctionType>(FnType)->getResultType();
606
607  llvm::SmallVector<llvm::Value*, 16> Args;
608
609  // Handle struct-return functions by passing a pointer to the location that
610  // we would like to return into.
611  if (hasAggregateLLVMType(ResultType)) {
612    // Create a temporary alloca to hold the result of the call. :(
613    Args.push_back(CreateTempAlloca(ConvertType(ResultType)));
614    // FIXME: set the stret attribute on the argument.
615  }
616
617  for (unsigned i = 0, e = NumArgs; i != e; ++i) {
618    QualType ArgTy = ArgExprs[i]->getType();
619
620    if (!hasAggregateLLVMType(ArgTy)) {
621      // Scalar argument is passed by-value.
622      Args.push_back(EmitScalarExpr(ArgExprs[i]));
623    } else if (ArgTy->isAnyComplexType()) {
624      // Make a temporary alloca to pass the argument.
625      llvm::Value *DestMem = CreateTempAlloca(ConvertType(ArgTy));
626      EmitComplexExprIntoAddr(ArgExprs[i], DestMem, false);
627      Args.push_back(DestMem);
628    } else {
629      llvm::Value *DestMem = CreateTempAlloca(ConvertType(ArgTy));
630      EmitAggExpr(ArgExprs[i], DestMem, false);
631      Args.push_back(DestMem);
632    }
633  }
634
635  llvm::CallInst *CI = Builder.CreateCall(Callee,&Args[0],&Args[0]+Args.size());
636  if (const llvm::Function *F = dyn_cast<llvm::Function>(Callee))
637    CI->setCallingConv(F->getCallingConv());
638  if (CI->getType() != llvm::Type::VoidTy)
639    CI->setName("call");
640  else if (ResultType->isAnyComplexType())
641    return RValue::getComplex(LoadComplexFromAddr(Args[0], false));
642  else if (hasAggregateLLVMType(ResultType))
643    // Struct return.
644    return RValue::getAggregate(Args[0]);
645  else {
646    // void return.
647    assert(ResultType->isVoidType() && "Should only have a void expr here");
648    CI = 0;
649  }
650
651  return RValue::get(CI);
652}
653