CGExpr.cpp revision af521dae8ee15ebf4ecceae3d25f66a475104a07
1//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "CGCall.h"
17#include "CGCXXABI.h"
18#include "CGDebugInfo.h"
19#include "CGRecordLayout.h"
20#include "CGObjCRuntime.h"
21#include "TargetInfo.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/Frontend/CodeGenOptions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/LLVMContext.h"
27#include "llvm/Target/TargetData.h"
28using namespace clang;
29using namespace CodeGen;
30
31//===--------------------------------------------------------------------===//
32//                        Miscellaneous Helper Methods
33//===--------------------------------------------------------------------===//
34
35llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
36  unsigned addressSpace =
37    cast<llvm::PointerType>(value->getType())->getAddressSpace();
38
39  llvm::PointerType *destType = Int8PtrTy;
40  if (addressSpace)
41    destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
42
43  if (value->getType() == destType) return value;
44  return Builder.CreateBitCast(value, destType);
45}
46
47/// CreateTempAlloca - This creates a alloca and inserts it into the entry
48/// block.
49llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
50                                                    const Twine &Name) {
51  if (!Builder.isNamePreserving())
52    return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
53  return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
54}
55
56void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
57                                     llvm::Value *Init) {
58  llvm::StoreInst *Store = new llvm::StoreInst(Init, Var);
59  llvm::BasicBlock *Block = AllocaInsertPt->getParent();
60  Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
61}
62
63llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
64                                                const Twine &Name) {
65  llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
66  // FIXME: Should we prefer the preferred type alignment here?
67  CharUnits Align = getContext().getTypeAlignInChars(Ty);
68  Alloc->setAlignment(Align.getQuantity());
69  return Alloc;
70}
71
72llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
73                                                 const Twine &Name) {
74  llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
75  // FIXME: Should we prefer the preferred type alignment here?
76  CharUnits Align = getContext().getTypeAlignInChars(Ty);
77  Alloc->setAlignment(Align.getQuantity());
78  return Alloc;
79}
80
81/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
82/// expression and compare the result against zero, returning an Int1Ty value.
83llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
84  if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
85    llvm::Value *MemPtr = EmitScalarExpr(E);
86    return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
87  }
88
89  QualType BoolTy = getContext().BoolTy;
90  if (!E->getType()->isAnyComplexType())
91    return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
92
93  return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
94}
95
96/// EmitIgnoredExpr - Emit code to compute the specified expression,
97/// ignoring the result.
98void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
99  if (E->isRValue())
100    return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
101
102  // Just emit it as an l-value and drop the result.
103  EmitLValue(E);
104}
105
106/// EmitAnyExpr - Emit code to compute the specified expression which
107/// can have any type.  The result is returned as an RValue struct.
108/// If this is an aggregate expression, AggSlot indicates where the
109/// result should be returned.
110RValue CodeGenFunction::EmitAnyExpr(const Expr *E, AggValueSlot AggSlot,
111                                    bool IgnoreResult) {
112  if (!hasAggregateLLVMType(E->getType()))
113    return RValue::get(EmitScalarExpr(E, IgnoreResult));
114  else if (E->getType()->isAnyComplexType())
115    return RValue::getComplex(EmitComplexExpr(E, IgnoreResult, IgnoreResult));
116
117  EmitAggExpr(E, AggSlot, IgnoreResult);
118  return AggSlot.asRValue();
119}
120
121/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
122/// always be accessible even if no aggregate location is provided.
123RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
124  AggValueSlot AggSlot = AggValueSlot::ignored();
125
126  if (hasAggregateLLVMType(E->getType()) &&
127      !E->getType()->isAnyComplexType())
128    AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
129  return EmitAnyExpr(E, AggSlot);
130}
131
132/// EmitAnyExprToMem - Evaluate an expression into a given memory
133/// location.
134void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
135                                       llvm::Value *Location,
136                                       Qualifiers Quals,
137                                       bool IsInit) {
138  // FIXME: This function should take an LValue as an argument.
139  if (E->getType()->isAnyComplexType()) {
140    EmitComplexExprIntoAddr(E, Location, Quals.hasVolatile());
141  } else if (hasAggregateLLVMType(E->getType())) {
142    CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
143    EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
144                                         AggValueSlot::IsDestructed_t(IsInit),
145                                         AggValueSlot::DoesNotNeedGCBarriers,
146                                         AggValueSlot::IsAliased_t(!IsInit)));
147  } else {
148    RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
149    LValue LV = MakeAddrLValue(Location, E->getType());
150    EmitStoreThroughLValue(RV, LV);
151  }
152}
153
154namespace {
155/// \brief An adjustment to be made to the temporary created when emitting a
156/// reference binding, which accesses a particular subobject of that temporary.
157  struct SubobjectAdjustment {
158    enum { DerivedToBaseAdjustment, FieldAdjustment } Kind;
159
160    union {
161      struct {
162        const CastExpr *BasePath;
163        const CXXRecordDecl *DerivedClass;
164      } DerivedToBase;
165
166      FieldDecl *Field;
167    };
168
169    SubobjectAdjustment(const CastExpr *BasePath,
170                        const CXXRecordDecl *DerivedClass)
171      : Kind(DerivedToBaseAdjustment) {
172      DerivedToBase.BasePath = BasePath;
173      DerivedToBase.DerivedClass = DerivedClass;
174    }
175
176    SubobjectAdjustment(FieldDecl *Field)
177      : Kind(FieldAdjustment) {
178      this->Field = Field;
179    }
180  };
181}
182
183static llvm::Value *
184CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type,
185                         const NamedDecl *InitializedDecl) {
186  if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
187    if (VD->hasGlobalStorage()) {
188      llvm::SmallString<256> Name;
189      llvm::raw_svector_ostream Out(Name);
190      CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
191      Out.flush();
192
193      llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type);
194
195      // Create the reference temporary.
196      llvm::GlobalValue *RefTemp =
197        new llvm::GlobalVariable(CGF.CGM.getModule(),
198                                 RefTempTy, /*isConstant=*/false,
199                                 llvm::GlobalValue::InternalLinkage,
200                                 llvm::Constant::getNullValue(RefTempTy),
201                                 Name.str());
202      return RefTemp;
203    }
204  }
205
206  return CGF.CreateMemTemp(Type, "ref.tmp");
207}
208
209static llvm::Value *
210EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E,
211                            llvm::Value *&ReferenceTemporary,
212                            const CXXDestructorDecl *&ReferenceTemporaryDtor,
213                            QualType &ObjCARCReferenceLifetimeType,
214                            const NamedDecl *InitializedDecl) {
215  // Look through single-element init lists that claim to be lvalues. They're
216  // just syntactic wrappers in this case.
217  if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E)) {
218    if (ILE->getNumInits() == 1 && ILE->isGLValue())
219      E = ILE->getInit(0);
220  }
221
222  // Look through expressions for materialized temporaries (for now).
223  if (const MaterializeTemporaryExpr *M
224                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
225    // Objective-C++ ARC:
226    //   If we are binding a reference to a temporary that has ownership, we
227    //   need to perform retain/release operations on the temporary.
228    if (CGF.getContext().getLangOptions().ObjCAutoRefCount &&
229        E->getType()->isObjCLifetimeType() &&
230        (E->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
231         E->getType().getObjCLifetime() == Qualifiers::OCL_Weak ||
232         E->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing))
233      ObjCARCReferenceLifetimeType = E->getType();
234
235    E = M->GetTemporaryExpr();
236  }
237
238  if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E))
239    E = DAE->getExpr();
240
241  if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E)) {
242    CGF.enterFullExpression(EWC);
243    CodeGenFunction::RunCleanupsScope Scope(CGF);
244
245    return EmitExprForReferenceBinding(CGF, EWC->getSubExpr(),
246                                       ReferenceTemporary,
247                                       ReferenceTemporaryDtor,
248                                       ObjCARCReferenceLifetimeType,
249                                       InitializedDecl);
250  }
251
252  RValue RV;
253  if (E->isGLValue()) {
254    // Emit the expression as an lvalue.
255    LValue LV = CGF.EmitLValue(E);
256
257    if (LV.isSimple())
258      return LV.getAddress();
259
260    // We have to load the lvalue.
261    RV = CGF.EmitLoadOfLValue(LV);
262  } else {
263    if (!ObjCARCReferenceLifetimeType.isNull()) {
264      ReferenceTemporary = CreateReferenceTemporary(CGF,
265                                                  ObjCARCReferenceLifetimeType,
266                                                    InitializedDecl);
267
268
269      LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary,
270                                             ObjCARCReferenceLifetimeType);
271
272      CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl),
273                         RefTempDst, false);
274
275      bool ExtendsLifeOfTemporary = false;
276      if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
277        if (Var->extendsLifetimeOfTemporary())
278          ExtendsLifeOfTemporary = true;
279      } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) {
280        ExtendsLifeOfTemporary = true;
281      }
282
283      if (!ExtendsLifeOfTemporary) {
284        // Since the lifetime of this temporary isn't going to be extended,
285        // we need to clean it up ourselves at the end of the full expression.
286        switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
287        case Qualifiers::OCL_None:
288        case Qualifiers::OCL_ExplicitNone:
289        case Qualifiers::OCL_Autoreleasing:
290          break;
291
292        case Qualifiers::OCL_Strong: {
293          assert(!ObjCARCReferenceLifetimeType->isArrayType());
294          CleanupKind cleanupKind = CGF.getARCCleanupKind();
295          CGF.pushDestroy(cleanupKind,
296                          ReferenceTemporary,
297                          ObjCARCReferenceLifetimeType,
298                          CodeGenFunction::destroyARCStrongImprecise,
299                          cleanupKind & EHCleanup);
300          break;
301        }
302
303        case Qualifiers::OCL_Weak:
304          assert(!ObjCARCReferenceLifetimeType->isArrayType());
305          CGF.pushDestroy(NormalAndEHCleanup,
306                          ReferenceTemporary,
307                          ObjCARCReferenceLifetimeType,
308                          CodeGenFunction::destroyARCWeak,
309                          /*useEHCleanupForArray*/ true);
310          break;
311        }
312
313        ObjCARCReferenceLifetimeType = QualType();
314      }
315
316      return ReferenceTemporary;
317    }
318
319    SmallVector<SubobjectAdjustment, 2> Adjustments;
320    while (true) {
321      E = E->IgnoreParens();
322
323      if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
324        if ((CE->getCastKind() == CK_DerivedToBase ||
325             CE->getCastKind() == CK_UncheckedDerivedToBase) &&
326            E->getType()->isRecordType()) {
327          E = CE->getSubExpr();
328          CXXRecordDecl *Derived
329            = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
330          Adjustments.push_back(SubobjectAdjustment(CE, Derived));
331          continue;
332        }
333
334        if (CE->getCastKind() == CK_NoOp) {
335          E = CE->getSubExpr();
336          continue;
337        }
338      } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
339        if (!ME->isArrow() && ME->getBase()->isRValue()) {
340          assert(ME->getBase()->getType()->isRecordType());
341          if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
342            E = ME->getBase();
343            Adjustments.push_back(SubobjectAdjustment(Field));
344            continue;
345          }
346        }
347      }
348
349      if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E))
350        if (opaque->getType()->isRecordType())
351          return CGF.EmitOpaqueValueLValue(opaque).getAddress();
352
353      // Nothing changed.
354      break;
355    }
356
357    // Create a reference temporary if necessary.
358    AggValueSlot AggSlot = AggValueSlot::ignored();
359    if (CGF.hasAggregateLLVMType(E->getType()) &&
360        !E->getType()->isAnyComplexType()) {
361      ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
362                                                    InitializedDecl);
363      CharUnits Alignment = CGF.getContext().getTypeAlignInChars(E->getType());
364      AggValueSlot::IsDestructed_t isDestructed
365        = AggValueSlot::IsDestructed_t(InitializedDecl != 0);
366      AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Alignment,
367                                      Qualifiers(), isDestructed,
368                                      AggValueSlot::DoesNotNeedGCBarriers,
369                                      AggValueSlot::IsNotAliased);
370    }
371
372    if (InitializedDecl) {
373      // Get the destructor for the reference temporary.
374      if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
375        CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
376        if (!ClassDecl->hasTrivialDestructor())
377          ReferenceTemporaryDtor = ClassDecl->getDestructor();
378      }
379    }
380
381    RV = CGF.EmitAnyExpr(E, AggSlot);
382
383    // Check if need to perform derived-to-base casts and/or field accesses, to
384    // get from the temporary object we created (and, potentially, for which we
385    // extended the lifetime) to the subobject we're binding the reference to.
386    if (!Adjustments.empty()) {
387      llvm::Value *Object = RV.getAggregateAddr();
388      for (unsigned I = Adjustments.size(); I != 0; --I) {
389        SubobjectAdjustment &Adjustment = Adjustments[I-1];
390        switch (Adjustment.Kind) {
391        case SubobjectAdjustment::DerivedToBaseAdjustment:
392          Object =
393              CGF.GetAddressOfBaseClass(Object,
394                                        Adjustment.DerivedToBase.DerivedClass,
395                              Adjustment.DerivedToBase.BasePath->path_begin(),
396                              Adjustment.DerivedToBase.BasePath->path_end(),
397                                        /*NullCheckValue=*/false);
398          break;
399
400        case SubobjectAdjustment::FieldAdjustment: {
401          LValue LV =
402            CGF.EmitLValueForField(Object, Adjustment.Field, 0);
403          if (LV.isSimple()) {
404            Object = LV.getAddress();
405            break;
406          }
407
408          // For non-simple lvalues, we actually have to create a copy of
409          // the object we're binding to.
410          QualType T = Adjustment.Field->getType().getNonReferenceType()
411                                                  .getUnqualifiedType();
412          Object = CreateReferenceTemporary(CGF, T, InitializedDecl);
413          LValue TempLV = CGF.MakeAddrLValue(Object,
414                                             Adjustment.Field->getType());
415          CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV);
416          break;
417        }
418
419        }
420      }
421
422      return Object;
423    }
424  }
425
426  if (RV.isAggregate())
427    return RV.getAggregateAddr();
428
429  // Create a temporary variable that we can bind the reference to.
430  ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
431                                                InitializedDecl);
432
433
434  unsigned Alignment =
435    CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity();
436  if (RV.isScalar())
437    CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary,
438                          /*Volatile=*/false, Alignment, E->getType());
439  else
440    CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary,
441                           /*Volatile=*/false);
442  return ReferenceTemporary;
443}
444
445RValue
446CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E,
447                                            const NamedDecl *InitializedDecl) {
448  llvm::Value *ReferenceTemporary = 0;
449  const CXXDestructorDecl *ReferenceTemporaryDtor = 0;
450  QualType ObjCARCReferenceLifetimeType;
451  llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary,
452                                                   ReferenceTemporaryDtor,
453                                                   ObjCARCReferenceLifetimeType,
454                                                   InitializedDecl);
455  if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull())
456    return RValue::get(Value);
457
458  // Make sure to call the destructor for the reference temporary.
459  const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl);
460  if (VD && VD->hasGlobalStorage()) {
461    if (ReferenceTemporaryDtor) {
462      llvm::Constant *DtorFn =
463        CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
464      EmitCXXGlobalDtorRegistration(DtorFn,
465                                    cast<llvm::Constant>(ReferenceTemporary));
466    } else {
467      assert(!ObjCARCReferenceLifetimeType.isNull());
468      // Note: We intentionally do not register a global "destructor" to
469      // release the object.
470    }
471
472    return RValue::get(Value);
473  }
474
475  if (ReferenceTemporaryDtor)
476    PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary);
477  else {
478    switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
479    case Qualifiers::OCL_None:
480      llvm_unreachable(
481                      "Not a reference temporary that needs to be deallocated");
482    case Qualifiers::OCL_ExplicitNone:
483    case Qualifiers::OCL_Autoreleasing:
484      // Nothing to do.
485      break;
486
487    case Qualifiers::OCL_Strong: {
488      bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>();
489      CleanupKind cleanupKind = getARCCleanupKind();
490      // This local is a GCC and MSVC compiler workaround.
491      Destroyer *destroyer = precise ? &destroyARCStrongPrecise :
492                                       &destroyARCStrongImprecise;
493      pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType,
494                  *destroyer, cleanupKind & EHCleanup);
495      break;
496    }
497
498    case Qualifiers::OCL_Weak: {
499      // This local is a GCC and MSVC compiler workaround.
500      Destroyer *destroyer = &destroyARCWeak;
501      // __weak objects always get EH cleanups; otherwise, exceptions
502      // could cause really nasty crashes instead of mere leaks.
503      pushDestroy(NormalAndEHCleanup, ReferenceTemporary,
504                  ObjCARCReferenceLifetimeType, *destroyer, true);
505      break;
506    }
507    }
508  }
509
510  return RValue::get(Value);
511}
512
513
514/// getAccessedFieldNo - Given an encoded value and a result number, return the
515/// input field number being accessed.
516unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
517                                             const llvm::Constant *Elts) {
518  if (isa<llvm::ConstantAggregateZero>(Elts))
519    return 0;
520
521  return cast<llvm::ConstantInt>(Elts->getOperand(Idx))->getZExtValue();
522}
523
524void CodeGenFunction::EmitCheck(llvm::Value *Address, unsigned Size) {
525  if (!CatchUndefined)
526    return;
527
528  // This needs to be to the standard address space.
529  Address = Builder.CreateBitCast(Address, Int8PtrTy);
530
531  llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy);
532
533  // In time, people may want to control this and use a 1 here.
534  llvm::Value *Arg = Builder.getFalse();
535  llvm::Value *C = Builder.CreateCall2(F, Address, Arg);
536  llvm::BasicBlock *Cont = createBasicBlock();
537  llvm::BasicBlock *Check = createBasicBlock();
538  llvm::Value *NegativeOne = llvm::ConstantInt::get(IntPtrTy, -1ULL);
539  Builder.CreateCondBr(Builder.CreateICmpEQ(C, NegativeOne), Cont, Check);
540
541  EmitBlock(Check);
542  Builder.CreateCondBr(Builder.CreateICmpUGE(C,
543                                        llvm::ConstantInt::get(IntPtrTy, Size)),
544                       Cont, getTrapBB());
545  EmitBlock(Cont);
546}
547
548
549CodeGenFunction::ComplexPairTy CodeGenFunction::
550EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
551                         bool isInc, bool isPre) {
552  ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(),
553                                            LV.isVolatileQualified());
554
555  llvm::Value *NextVal;
556  if (isa<llvm::IntegerType>(InVal.first->getType())) {
557    uint64_t AmountVal = isInc ? 1 : -1;
558    NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
559
560    // Add the inc/dec to the real part.
561    NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
562  } else {
563    QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
564    llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
565    if (!isInc)
566      FVal.changeSign();
567    NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
568
569    // Add the inc/dec to the real part.
570    NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
571  }
572
573  ComplexPairTy IncVal(NextVal, InVal.second);
574
575  // Store the updated result through the lvalue.
576  StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified());
577
578  // If this is a postinc, return the value read from memory, otherwise use the
579  // updated value.
580  return isPre ? IncVal : InVal;
581}
582
583
584//===----------------------------------------------------------------------===//
585//                         LValue Expression Emission
586//===----------------------------------------------------------------------===//
587
588RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
589  if (Ty->isVoidType())
590    return RValue::get(0);
591
592  if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
593    llvm::Type *EltTy = ConvertType(CTy->getElementType());
594    llvm::Value *U = llvm::UndefValue::get(EltTy);
595    return RValue::getComplex(std::make_pair(U, U));
596  }
597
598  // If this is a use of an undefined aggregate type, the aggregate must have an
599  // identifiable address.  Just because the contents of the value are undefined
600  // doesn't mean that the address can't be taken and compared.
601  if (hasAggregateLLVMType(Ty)) {
602    llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
603    return RValue::getAggregate(DestPtr);
604  }
605
606  return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
607}
608
609RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
610                                              const char *Name) {
611  ErrorUnsupported(E, Name);
612  return GetUndefRValue(E->getType());
613}
614
615LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
616                                              const char *Name) {
617  ErrorUnsupported(E, Name);
618  llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
619  return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
620}
621
622LValue CodeGenFunction::EmitCheckedLValue(const Expr *E) {
623  LValue LV = EmitLValue(E);
624  if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
625    EmitCheck(LV.getAddress(),
626              getContext().getTypeSizeInChars(E->getType()).getQuantity());
627  return LV;
628}
629
630/// EmitLValue - Emit code to compute a designator that specifies the location
631/// of the expression.
632///
633/// This can return one of two things: a simple address or a bitfield reference.
634/// In either case, the LLVM Value* in the LValue structure is guaranteed to be
635/// an LLVM pointer type.
636///
637/// If this returns a bitfield reference, nothing about the pointee type of the
638/// LLVM value is known: For example, it may not be a pointer to an integer.
639///
640/// If this returns a normal address, and if the lvalue's C type is fixed size,
641/// this method guarantees that the returned pointer type will point to an LLVM
642/// type of the same size of the lvalue's type.  If the lvalue has a variable
643/// length type, this is not possible.
644///
645LValue CodeGenFunction::EmitLValue(const Expr *E) {
646  switch (E->getStmtClass()) {
647  default: return EmitUnsupportedLValue(E, "l-value expression");
648
649  case Expr::ObjCPropertyRefExprClass:
650    llvm_unreachable("cannot emit a property reference directly");
651
652  case Expr::ObjCSelectorExprClass:
653  return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
654  case Expr::ObjCIsaExprClass:
655    return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
656  case Expr::BinaryOperatorClass:
657    return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
658  case Expr::CompoundAssignOperatorClass:
659    if (!E->getType()->isAnyComplexType())
660      return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
661    return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
662  case Expr::CallExprClass:
663  case Expr::CXXMemberCallExprClass:
664  case Expr::CXXOperatorCallExprClass:
665    return EmitCallExprLValue(cast<CallExpr>(E));
666  case Expr::VAArgExprClass:
667    return EmitVAArgExprLValue(cast<VAArgExpr>(E));
668  case Expr::DeclRefExprClass:
669    return EmitDeclRefLValue(cast<DeclRefExpr>(E));
670  case Expr::ParenExprClass:
671    return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
672  case Expr::GenericSelectionExprClass:
673    return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
674  case Expr::PredefinedExprClass:
675    return EmitPredefinedLValue(cast<PredefinedExpr>(E));
676  case Expr::StringLiteralClass:
677    return EmitStringLiteralLValue(cast<StringLiteral>(E));
678  case Expr::ObjCEncodeExprClass:
679    return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
680  case Expr::PseudoObjectExprClass:
681    return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
682  case Expr::InitListExprClass:
683    assert(cast<InitListExpr>(E)->getNumInits() == 1 &&
684           "Only single-element init list can be lvalue.");
685    return EmitLValue(cast<InitListExpr>(E)->getInit(0));
686
687  case Expr::BlockDeclRefExprClass:
688    return EmitBlockDeclRefLValue(cast<BlockDeclRefExpr>(E));
689
690  case Expr::CXXTemporaryObjectExprClass:
691  case Expr::CXXConstructExprClass:
692    return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
693  case Expr::CXXBindTemporaryExprClass:
694    return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
695
696  case Expr::ExprWithCleanupsClass: {
697    const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E);
698    enterFullExpression(cleanups);
699    RunCleanupsScope Scope(*this);
700    return EmitLValue(cleanups->getSubExpr());
701  }
702
703  case Expr::CXXScalarValueInitExprClass:
704    return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E));
705  case Expr::CXXDefaultArgExprClass:
706    return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
707  case Expr::CXXTypeidExprClass:
708    return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
709
710  case Expr::ObjCMessageExprClass:
711    return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
712  case Expr::ObjCIvarRefExprClass:
713    return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
714  case Expr::StmtExprClass:
715    return EmitStmtExprLValue(cast<StmtExpr>(E));
716  case Expr::UnaryOperatorClass:
717    return EmitUnaryOpLValue(cast<UnaryOperator>(E));
718  case Expr::ArraySubscriptExprClass:
719    return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
720  case Expr::ExtVectorElementExprClass:
721    return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
722  case Expr::MemberExprClass:
723    return EmitMemberExpr(cast<MemberExpr>(E));
724  case Expr::CompoundLiteralExprClass:
725    return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
726  case Expr::ConditionalOperatorClass:
727    return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
728  case Expr::BinaryConditionalOperatorClass:
729    return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
730  case Expr::ChooseExprClass:
731    return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext()));
732  case Expr::OpaqueValueExprClass:
733    return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
734  case Expr::SubstNonTypeTemplateParmExprClass:
735    return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
736  case Expr::ImplicitCastExprClass:
737  case Expr::CStyleCastExprClass:
738  case Expr::CXXFunctionalCastExprClass:
739  case Expr::CXXStaticCastExprClass:
740  case Expr::CXXDynamicCastExprClass:
741  case Expr::CXXReinterpretCastExprClass:
742  case Expr::CXXConstCastExprClass:
743  case Expr::ObjCBridgedCastExprClass:
744    return EmitCastLValue(cast<CastExpr>(E));
745
746  case Expr::MaterializeTemporaryExprClass:
747    return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
748  }
749}
750
751llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) {
752  return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
753                          lvalue.getAlignment().getQuantity(),
754                          lvalue.getType(), lvalue.getTBAAInfo());
755}
756
757llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
758                                              unsigned Alignment, QualType Ty,
759                                              llvm::MDNode *TBAAInfo) {
760  llvm::LoadInst *Load = Builder.CreateLoad(Addr);
761  if (Volatile)
762    Load->setVolatile(true);
763  if (Alignment)
764    Load->setAlignment(Alignment);
765  if (TBAAInfo)
766    CGM.DecorateInstruction(Load, TBAAInfo);
767  // If this is an atomic type, all normal reads must be atomic
768  if (Ty->isAtomicType())
769    Load->setAtomic(llvm::SequentiallyConsistent);
770
771  return EmitFromMemory(Load, Ty);
772}
773
774static bool isBooleanUnderlyingType(QualType Ty) {
775  if (const EnumType *ET = dyn_cast<EnumType>(Ty))
776    return ET->getDecl()->getIntegerType()->isBooleanType();
777  return false;
778}
779
780llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
781  // Bool has a different representation in memory than in registers.
782  if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) {
783    // This should really always be an i1, but sometimes it's already
784    // an i8, and it's awkward to track those cases down.
785    if (Value->getType()->isIntegerTy(1))
786      return Builder.CreateZExt(Value, Builder.getInt8Ty(), "frombool");
787    assert(Value->getType()->isIntegerTy(8) && "value rep of bool not i1/i8");
788  }
789
790  return Value;
791}
792
793llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
794  // Bool has a different representation in memory than in registers.
795  if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) {
796    assert(Value->getType()->isIntegerTy(8) && "memory rep of bool not i8");
797    return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
798  }
799
800  return Value;
801}
802
803void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
804                                        bool Volatile, unsigned Alignment,
805                                        QualType Ty,
806                                        llvm::MDNode *TBAAInfo,
807                                        bool isInit) {
808  Value = EmitToMemory(Value, Ty);
809
810  llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
811  if (Alignment)
812    Store->setAlignment(Alignment);
813  if (TBAAInfo)
814    CGM.DecorateInstruction(Store, TBAAInfo);
815  if (!isInit && Ty->isAtomicType())
816    Store->setAtomic(llvm::SequentiallyConsistent);
817}
818
819void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
820    bool isInit) {
821  EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
822                    lvalue.getAlignment().getQuantity(), lvalue.getType(),
823                    lvalue.getTBAAInfo(), isInit);
824}
825
826/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
827/// method emits the address of the lvalue, then loads the result as an rvalue,
828/// returning the rvalue.
829RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) {
830  if (LV.isObjCWeak()) {
831    // load of a __weak object.
832    llvm::Value *AddrWeakObj = LV.getAddress();
833    return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
834                                                             AddrWeakObj));
835  }
836  if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak)
837    return RValue::get(EmitARCLoadWeak(LV.getAddress()));
838
839  if (LV.isSimple()) {
840    assert(!LV.getType()->isFunctionType());
841
842    // Everything needs a load.
843    return RValue::get(EmitLoadOfScalar(LV));
844  }
845
846  if (LV.isVectorElt()) {
847    llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(),
848                                          LV.isVolatileQualified());
849    return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(),
850                                                    "vecext"));
851  }
852
853  // If this is a reference to a subset of the elements of a vector, either
854  // shuffle the input or extract/insert them as appropriate.
855  if (LV.isExtVectorElt())
856    return EmitLoadOfExtVectorElementLValue(LV);
857
858  assert(LV.isBitField() && "Unknown LValue type!");
859  return EmitLoadOfBitfieldLValue(LV);
860}
861
862RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
863  const CGBitFieldInfo &Info = LV.getBitFieldInfo();
864
865  // Get the output type.
866  llvm::Type *ResLTy = ConvertType(LV.getType());
867  unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy);
868
869  // Compute the result as an OR of all of the individual component accesses.
870  llvm::Value *Res = 0;
871  for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
872    const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
873
874    // Get the field pointer.
875    llvm::Value *Ptr = LV.getBitFieldBaseAddr();
876
877    // Only offset by the field index if used, so that incoming values are not
878    // required to be structures.
879    if (AI.FieldIndex)
880      Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
881
882    // Offset by the byte offset, if used.
883    if (!AI.FieldByteOffset.isZero()) {
884      Ptr = EmitCastToVoidPtr(Ptr);
885      Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(),
886                                       "bf.field.offs");
887    }
888
889    // Cast to the access type.
890    llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(),
891                                                     AI.AccessWidth,
892                       CGM.getContext().getTargetAddressSpace(LV.getType()));
893    Ptr = Builder.CreateBitCast(Ptr, PTy);
894
895    // Perform the load.
896    llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified());
897    if (!AI.AccessAlignment.isZero())
898      Load->setAlignment(AI.AccessAlignment.getQuantity());
899
900    // Shift out unused low bits and mask out unused high bits.
901    llvm::Value *Val = Load;
902    if (AI.FieldBitStart)
903      Val = Builder.CreateLShr(Load, AI.FieldBitStart);
904    Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth,
905                                                            AI.TargetBitWidth),
906                            "bf.clear");
907
908    // Extend or truncate to the target size.
909    if (AI.AccessWidth < ResSizeInBits)
910      Val = Builder.CreateZExt(Val, ResLTy);
911    else if (AI.AccessWidth > ResSizeInBits)
912      Val = Builder.CreateTrunc(Val, ResLTy);
913
914    // Shift into place, and OR into the result.
915    if (AI.TargetBitOffset)
916      Val = Builder.CreateShl(Val, AI.TargetBitOffset);
917    Res = Res ? Builder.CreateOr(Res, Val) : Val;
918  }
919
920  // If the bit-field is signed, perform the sign-extension.
921  //
922  // FIXME: This can easily be folded into the load of the high bits, which
923  // could also eliminate the mask of high bits in some situations.
924  if (Info.isSigned()) {
925    unsigned ExtraBits = ResSizeInBits - Info.getSize();
926    if (ExtraBits)
927      Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits),
928                               ExtraBits, "bf.val.sext");
929  }
930
931  return RValue::get(Res);
932}
933
934// If this is a reference to a subset of the elements of a vector, create an
935// appropriate shufflevector.
936RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
937  llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddr(),
938                                        LV.isVolatileQualified());
939
940  const llvm::Constant *Elts = LV.getExtVectorElts();
941
942  // If the result of the expression is a non-vector type, we must be extracting
943  // a single element.  Just codegen as an extractelement.
944  const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
945  if (!ExprVT) {
946    unsigned InIdx = getAccessedFieldNo(0, Elts);
947    llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
948    return RValue::get(Builder.CreateExtractElement(Vec, Elt));
949  }
950
951  // Always use shuffle vector to try to retain the original program structure
952  unsigned NumResultElts = ExprVT->getNumElements();
953
954  SmallVector<llvm::Constant*, 4> Mask;
955  for (unsigned i = 0; i != NumResultElts; ++i) {
956    unsigned InIdx = getAccessedFieldNo(i, Elts);
957    Mask.push_back(llvm::ConstantInt::get(Int32Ty, InIdx));
958  }
959
960  llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
961  Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
962                                    MaskV);
963  return RValue::get(Vec);
964}
965
966
967
968/// EmitStoreThroughLValue - Store the specified rvalue into the specified
969/// lvalue, where both are guaranteed to the have the same type, and that type
970/// is 'Ty'.
971void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) {
972  if (!Dst.isSimple()) {
973    if (Dst.isVectorElt()) {
974      // Read/modify/write the vector, inserting the new element.
975      llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(),
976                                            Dst.isVolatileQualified());
977      Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
978                                        Dst.getVectorIdx(), "vecins");
979      Builder.CreateStore(Vec, Dst.getVectorAddr(),Dst.isVolatileQualified());
980      return;
981    }
982
983    // If this is an update of extended vector elements, insert them as
984    // appropriate.
985    if (Dst.isExtVectorElt())
986      return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
987
988    assert(Dst.isBitField() && "Unknown LValue type");
989    return EmitStoreThroughBitfieldLValue(Src, Dst);
990  }
991
992  // There's special magic for assigning into an ARC-qualified l-value.
993  if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
994    switch (Lifetime) {
995    case Qualifiers::OCL_None:
996      llvm_unreachable("present but none");
997
998    case Qualifiers::OCL_ExplicitNone:
999      // nothing special
1000      break;
1001
1002    case Qualifiers::OCL_Strong:
1003      EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1004      return;
1005
1006    case Qualifiers::OCL_Weak:
1007      EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1008      return;
1009
1010    case Qualifiers::OCL_Autoreleasing:
1011      Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1012                                                     Src.getScalarVal()));
1013      // fall into the normal path
1014      break;
1015    }
1016  }
1017
1018  if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1019    // load of a __weak object.
1020    llvm::Value *LvalueDst = Dst.getAddress();
1021    llvm::Value *src = Src.getScalarVal();
1022     CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1023    return;
1024  }
1025
1026  if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1027    // load of a __strong object.
1028    llvm::Value *LvalueDst = Dst.getAddress();
1029    llvm::Value *src = Src.getScalarVal();
1030    if (Dst.isObjCIvar()) {
1031      assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1032      llvm::Type *ResultType = ConvertType(getContext().LongTy);
1033      llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1034      llvm::Value *dst = RHS;
1035      RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1036      llvm::Value *LHS =
1037        Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1038      llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1039      CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1040                                              BytesBetween);
1041    } else if (Dst.isGlobalObjCRef()) {
1042      CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1043                                                Dst.isThreadLocalRef());
1044    }
1045    else
1046      CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1047    return;
1048  }
1049
1050  assert(Src.isScalar() && "Can't emit an agg store with this method");
1051  EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1052}
1053
1054void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1055                                                     llvm::Value **Result) {
1056  const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1057
1058  // Get the output type.
1059  llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1060  unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy);
1061
1062  // Get the source value, truncated to the width of the bit-field.
1063  llvm::Value *SrcVal = Src.getScalarVal();
1064
1065  if (Dst.getType()->isBooleanType())
1066    SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false);
1067
1068  SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits,
1069                                                                Info.getSize()),
1070                             "bf.value");
1071
1072  // Return the new value of the bit-field, if requested.
1073  if (Result) {
1074    // Cast back to the proper type for result.
1075    llvm::Type *SrcTy = Src.getScalarVal()->getType();
1076    llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false,
1077                                                   "bf.reload.val");
1078
1079    // Sign extend if necessary.
1080    if (Info.isSigned()) {
1081      unsigned ExtraBits = ResSizeInBits - Info.getSize();
1082      if (ExtraBits)
1083        ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits),
1084                                       ExtraBits, "bf.reload.sext");
1085    }
1086
1087    *Result = ReloadVal;
1088  }
1089
1090  // Iterate over the components, writing each piece to memory.
1091  for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
1092    const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
1093
1094    // Get the field pointer.
1095    llvm::Value *Ptr = Dst.getBitFieldBaseAddr();
1096    unsigned addressSpace =
1097      cast<llvm::PointerType>(Ptr->getType())->getAddressSpace();
1098
1099    // Only offset by the field index if used, so that incoming values are not
1100    // required to be structures.
1101    if (AI.FieldIndex)
1102      Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
1103
1104    // Offset by the byte offset, if used.
1105    if (!AI.FieldByteOffset.isZero()) {
1106      Ptr = EmitCastToVoidPtr(Ptr);
1107      Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(),
1108                                       "bf.field.offs");
1109    }
1110
1111    // Cast to the access type.
1112    llvm::Type *AccessLTy =
1113      llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth);
1114
1115    llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace);
1116    Ptr = Builder.CreateBitCast(Ptr, PTy);
1117
1118    // Extract the piece of the bit-field value to write in this access, limited
1119    // to the values that are part of this access.
1120    llvm::Value *Val = SrcVal;
1121    if (AI.TargetBitOffset)
1122      Val = Builder.CreateLShr(Val, AI.TargetBitOffset);
1123    Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits,
1124                                                            AI.TargetBitWidth));
1125
1126    // Extend or truncate to the access size.
1127    if (ResSizeInBits < AI.AccessWidth)
1128      Val = Builder.CreateZExt(Val, AccessLTy);
1129    else if (ResSizeInBits > AI.AccessWidth)
1130      Val = Builder.CreateTrunc(Val, AccessLTy);
1131
1132    // Shift into the position in memory.
1133    if (AI.FieldBitStart)
1134      Val = Builder.CreateShl(Val, AI.FieldBitStart);
1135
1136    // If necessary, load and OR in bits that are outside of the bit-field.
1137    if (AI.TargetBitWidth != AI.AccessWidth) {
1138      llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified());
1139      if (!AI.AccessAlignment.isZero())
1140        Load->setAlignment(AI.AccessAlignment.getQuantity());
1141
1142      // Compute the mask for zeroing the bits that are part of the bit-field.
1143      llvm::APInt InvMask =
1144        ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart,
1145                                 AI.FieldBitStart + AI.TargetBitWidth);
1146
1147      // Apply the mask and OR in to the value to write.
1148      Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val);
1149    }
1150
1151    // Write the value.
1152    llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr,
1153                                                 Dst.isVolatileQualified());
1154    if (!AI.AccessAlignment.isZero())
1155      Store->setAlignment(AI.AccessAlignment.getQuantity());
1156  }
1157}
1158
1159void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1160                                                               LValue Dst) {
1161  // This access turns into a read/modify/write of the vector.  Load the input
1162  // value now.
1163  llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddr(),
1164                                        Dst.isVolatileQualified());
1165  const llvm::Constant *Elts = Dst.getExtVectorElts();
1166
1167  llvm::Value *SrcVal = Src.getScalarVal();
1168
1169  if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1170    unsigned NumSrcElts = VTy->getNumElements();
1171    unsigned NumDstElts =
1172       cast<llvm::VectorType>(Vec->getType())->getNumElements();
1173    if (NumDstElts == NumSrcElts) {
1174      // Use shuffle vector is the src and destination are the same number of
1175      // elements and restore the vector mask since it is on the side it will be
1176      // stored.
1177      SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1178      for (unsigned i = 0; i != NumSrcElts; ++i) {
1179        unsigned InIdx = getAccessedFieldNo(i, Elts);
1180        Mask[InIdx] = llvm::ConstantInt::get(Int32Ty, i);
1181      }
1182
1183      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1184      Vec = Builder.CreateShuffleVector(SrcVal,
1185                                        llvm::UndefValue::get(Vec->getType()),
1186                                        MaskV);
1187    } else if (NumDstElts > NumSrcElts) {
1188      // Extended the source vector to the same length and then shuffle it
1189      // into the destination.
1190      // FIXME: since we're shuffling with undef, can we just use the indices
1191      //        into that?  This could be simpler.
1192      SmallVector<llvm::Constant*, 4> ExtMask;
1193      unsigned i;
1194      for (i = 0; i != NumSrcElts; ++i)
1195        ExtMask.push_back(llvm::ConstantInt::get(Int32Ty, i));
1196      for (; i != NumDstElts; ++i)
1197        ExtMask.push_back(llvm::UndefValue::get(Int32Ty));
1198      llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1199      llvm::Value *ExtSrcVal =
1200        Builder.CreateShuffleVector(SrcVal,
1201                                    llvm::UndefValue::get(SrcVal->getType()),
1202                                    ExtMaskV);
1203      // build identity
1204      SmallVector<llvm::Constant*, 4> Mask;
1205      for (unsigned i = 0; i != NumDstElts; ++i)
1206        Mask.push_back(llvm::ConstantInt::get(Int32Ty, i));
1207
1208      // modify when what gets shuffled in
1209      for (unsigned i = 0; i != NumSrcElts; ++i) {
1210        unsigned Idx = getAccessedFieldNo(i, Elts);
1211        Mask[Idx] = llvm::ConstantInt::get(Int32Ty, i+NumDstElts);
1212      }
1213      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1214      Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1215    } else {
1216      // We should never shorten the vector
1217      llvm_unreachable("unexpected shorten vector length");
1218    }
1219  } else {
1220    // If the Src is a scalar (not a vector) it must be updating one element.
1221    unsigned InIdx = getAccessedFieldNo(0, Elts);
1222    llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1223    Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1224  }
1225
1226  Builder.CreateStore(Vec, Dst.getExtVectorAddr(), Dst.isVolatileQualified());
1227}
1228
1229// setObjCGCLValueClass - sets class of he lvalue for the purpose of
1230// generating write-barries API. It is currently a global, ivar,
1231// or neither.
1232static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1233                                 LValue &LV,
1234                                 bool IsMemberAccess=false) {
1235  if (Ctx.getLangOptions().getGC() == LangOptions::NonGC)
1236    return;
1237
1238  if (isa<ObjCIvarRefExpr>(E)) {
1239    QualType ExpTy = E->getType();
1240    if (IsMemberAccess && ExpTy->isPointerType()) {
1241      // If ivar is a structure pointer, assigning to field of
1242      // this struct follows gcc's behavior and makes it a non-ivar
1243      // writer-barrier conservatively.
1244      ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1245      if (ExpTy->isRecordType()) {
1246        LV.setObjCIvar(false);
1247        return;
1248      }
1249    }
1250    LV.setObjCIvar(true);
1251    ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
1252    LV.setBaseIvarExp(Exp->getBase());
1253    LV.setObjCArray(E->getType()->isArrayType());
1254    return;
1255  }
1256
1257  if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
1258    if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1259      if (VD->hasGlobalStorage()) {
1260        LV.setGlobalObjCRef(true);
1261        LV.setThreadLocalRef(VD->isThreadSpecified());
1262      }
1263    }
1264    LV.setObjCArray(E->getType()->isArrayType());
1265    return;
1266  }
1267
1268  if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
1269    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1270    return;
1271  }
1272
1273  if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
1274    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1275    if (LV.isObjCIvar()) {
1276      // If cast is to a structure pointer, follow gcc's behavior and make it
1277      // a non-ivar write-barrier.
1278      QualType ExpTy = E->getType();
1279      if (ExpTy->isPointerType())
1280        ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1281      if (ExpTy->isRecordType())
1282        LV.setObjCIvar(false);
1283    }
1284    return;
1285  }
1286
1287  if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1288    setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1289    return;
1290  }
1291
1292  if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1293    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1294    return;
1295  }
1296
1297  if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
1298    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1299    return;
1300  }
1301
1302  if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1303    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1304    return;
1305  }
1306
1307  if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1308    setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1309    if (LV.isObjCIvar() && !LV.isObjCArray())
1310      // Using array syntax to assigning to what an ivar points to is not
1311      // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1312      LV.setObjCIvar(false);
1313    else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1314      // Using array syntax to assigning to what global points to is not
1315      // same as assigning to the global itself. {id *G;} G[i] = 0;
1316      LV.setGlobalObjCRef(false);
1317    return;
1318  }
1319
1320  if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
1321    setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1322    // We don't know if member is an 'ivar', but this flag is looked at
1323    // only in the context of LV.isObjCIvar().
1324    LV.setObjCArray(E->getType()->isArrayType());
1325    return;
1326  }
1327}
1328
1329static llvm::Value *
1330EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1331                                llvm::Value *V, llvm::Type *IRType,
1332                                StringRef Name = StringRef()) {
1333  unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1334  return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1335}
1336
1337static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1338                                      const Expr *E, const VarDecl *VD) {
1339  assert((VD->hasExternalStorage() || VD->isFileVarDecl()) &&
1340         "Var decl must have external storage or be a file var decl!");
1341
1342  llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1343  llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1344  V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1345  CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1346  QualType T = E->getType();
1347  LValue LV;
1348  if (VD->getType()->isReferenceType()) {
1349    llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1350    LI->setAlignment(Alignment.getQuantity());
1351    V = LI;
1352    LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1353  } else {
1354    LV = CGF.MakeAddrLValue(V, E->getType(), Alignment);
1355  }
1356  setObjCGCLValueClass(CGF.getContext(), E, LV);
1357  return LV;
1358}
1359
1360static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1361                                     const Expr *E, const FunctionDecl *FD) {
1362  llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1363  if (!FD->hasPrototype()) {
1364    if (const FunctionProtoType *Proto =
1365            FD->getType()->getAs<FunctionProtoType>()) {
1366      // Ugly case: for a K&R-style definition, the type of the definition
1367      // isn't the same as the type of a use.  Correct for this with a
1368      // bitcast.
1369      QualType NoProtoType =
1370          CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
1371      NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1372      V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1373    }
1374  }
1375  CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1376  return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1377}
1378
1379LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1380  const NamedDecl *ND = E->getDecl();
1381  CharUnits Alignment = getContext().getDeclAlign(ND);
1382  QualType T = E->getType();
1383
1384  // FIXME: We should be able to assert this for FunctionDecls as well!
1385  // FIXME: We should be able to assert this for all DeclRefExprs, not just
1386  // those with a valid source location.
1387  assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
1388          !E->getLocation().isValid()) &&
1389         "Should not use decl without marking it used!");
1390
1391  if (ND->hasAttr<WeakRefAttr>()) {
1392    const ValueDecl *VD = cast<ValueDecl>(ND);
1393    llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1394    return MakeAddrLValue(Aliasee, E->getType(), Alignment);
1395  }
1396
1397  if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1398
1399    // Check if this is a global variable.
1400    if (VD->hasExternalStorage() || VD->isFileVarDecl())
1401      return EmitGlobalVarDeclLValue(*this, E, VD);
1402
1403    bool NonGCable = VD->hasLocalStorage() &&
1404                     !VD->getType()->isReferenceType() &&
1405                     !VD->hasAttr<BlocksAttr>();
1406
1407    llvm::Value *V = LocalDeclMap[VD];
1408    if (!V && VD->isStaticLocal())
1409      V = CGM.getStaticLocalDeclAddress(VD);
1410    assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1411
1412    if (VD->hasAttr<BlocksAttr>())
1413      V = BuildBlockByrefAddress(V, VD);
1414
1415    LValue LV;
1416    if (VD->getType()->isReferenceType()) {
1417      llvm::LoadInst *LI = Builder.CreateLoad(V);
1418      LI->setAlignment(Alignment.getQuantity());
1419      V = LI;
1420      LV = MakeNaturalAlignAddrLValue(V, T);
1421    } else {
1422      LV = MakeAddrLValue(V, T, Alignment);
1423    }
1424
1425    if (NonGCable) {
1426      LV.getQuals().removeObjCGCAttr();
1427      LV.setNonGC(true);
1428    }
1429    setObjCGCLValueClass(getContext(), E, LV);
1430    return LV;
1431  }
1432
1433  if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND))
1434    return EmitFunctionDeclLValue(*this, E, fn);
1435
1436  llvm_unreachable("Unhandled DeclRefExpr");
1437}
1438
1439LValue CodeGenFunction::EmitBlockDeclRefLValue(const BlockDeclRefExpr *E) {
1440  CharUnits Alignment = getContext().getDeclAlign(E->getDecl());
1441  return MakeAddrLValue(GetAddrOfBlockDecl(E), E->getType(), Alignment);
1442}
1443
1444LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1445  // __extension__ doesn't affect lvalue-ness.
1446  if (E->getOpcode() == UO_Extension)
1447    return EmitLValue(E->getSubExpr());
1448
1449  QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1450  switch (E->getOpcode()) {
1451  default: llvm_unreachable("Unknown unary operator lvalue!");
1452  case UO_Deref: {
1453    QualType T = E->getSubExpr()->getType()->getPointeeType();
1454    assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1455
1456    LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1457    LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1458
1459    // We should not generate __weak write barrier on indirect reference
1460    // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1461    // But, we continue to generate __strong write barrier on indirect write
1462    // into a pointer to object.
1463    if (getContext().getLangOptions().ObjC1 &&
1464        getContext().getLangOptions().getGC() != LangOptions::NonGC &&
1465        LV.isObjCWeak())
1466      LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1467    return LV;
1468  }
1469  case UO_Real:
1470  case UO_Imag: {
1471    LValue LV = EmitLValue(E->getSubExpr());
1472    assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1473    llvm::Value *Addr = LV.getAddress();
1474
1475    // real and imag are valid on scalars.  This is a faster way of
1476    // testing that.
1477    if (!cast<llvm::PointerType>(Addr->getType())
1478           ->getElementType()->isStructTy()) {
1479      assert(E->getSubExpr()->getType()->isArithmeticType());
1480      return LV;
1481    }
1482
1483    assert(E->getSubExpr()->getType()->isAnyComplexType());
1484
1485    unsigned Idx = E->getOpcode() == UO_Imag;
1486    return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1487                                                  Idx, "idx"),
1488                          ExprTy);
1489  }
1490  case UO_PreInc:
1491  case UO_PreDec: {
1492    LValue LV = EmitLValue(E->getSubExpr());
1493    bool isInc = E->getOpcode() == UO_PreInc;
1494
1495    if (E->getType()->isAnyComplexType())
1496      EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1497    else
1498      EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1499    return LV;
1500  }
1501  }
1502}
1503
1504LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1505  return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1506                        E->getType());
1507}
1508
1509LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1510  return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1511                        E->getType());
1512}
1513
1514
1515LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
1516  switch (E->getIdentType()) {
1517  default:
1518    return EmitUnsupportedLValue(E, "predefined expression");
1519
1520  case PredefinedExpr::Func:
1521  case PredefinedExpr::Function:
1522  case PredefinedExpr::PrettyFunction: {
1523    unsigned Type = E->getIdentType();
1524    std::string GlobalVarName;
1525
1526    switch (Type) {
1527    default: llvm_unreachable("Invalid type");
1528    case PredefinedExpr::Func:
1529      GlobalVarName = "__func__.";
1530      break;
1531    case PredefinedExpr::Function:
1532      GlobalVarName = "__FUNCTION__.";
1533      break;
1534    case PredefinedExpr::PrettyFunction:
1535      GlobalVarName = "__PRETTY_FUNCTION__.";
1536      break;
1537    }
1538
1539    StringRef FnName = CurFn->getName();
1540    if (FnName.startswith("\01"))
1541      FnName = FnName.substr(1);
1542    GlobalVarName += FnName;
1543
1544    const Decl *CurDecl = CurCodeDecl;
1545    if (CurDecl == 0)
1546      CurDecl = getContext().getTranslationUnitDecl();
1547
1548    std::string FunctionName =
1549        (isa<BlockDecl>(CurDecl)
1550         ? FnName.str()
1551         : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)Type, CurDecl));
1552
1553    llvm::Constant *C =
1554      CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str());
1555    return MakeAddrLValue(C, E->getType());
1556  }
1557  }
1558}
1559
1560llvm::BasicBlock *CodeGenFunction::getTrapBB() {
1561  const CodeGenOptions &GCO = CGM.getCodeGenOpts();
1562
1563  // If we are not optimzing, don't collapse all calls to trap in the function
1564  // to the same call, that way, in the debugger they can see which operation
1565  // did in fact fail.  If we are optimizing, we collapse all calls to trap down
1566  // to just one per function to save on codesize.
1567  if (GCO.OptimizationLevel && TrapBB)
1568    return TrapBB;
1569
1570  llvm::BasicBlock *Cont = 0;
1571  if (HaveInsertPoint()) {
1572    Cont = createBasicBlock("cont");
1573    EmitBranch(Cont);
1574  }
1575  TrapBB = createBasicBlock("trap");
1576  EmitBlock(TrapBB);
1577
1578  llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
1579  llvm::CallInst *TrapCall = Builder.CreateCall(F);
1580  TrapCall->setDoesNotReturn();
1581  TrapCall->setDoesNotThrow();
1582  Builder.CreateUnreachable();
1583
1584  if (Cont)
1585    EmitBlock(Cont);
1586  return TrapBB;
1587}
1588
1589/// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
1590/// array to pointer, return the array subexpression.
1591static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
1592  // If this isn't just an array->pointer decay, bail out.
1593  const CastExpr *CE = dyn_cast<CastExpr>(E);
1594  if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
1595    return 0;
1596
1597  // If this is a decay from variable width array, bail out.
1598  const Expr *SubExpr = CE->getSubExpr();
1599  if (SubExpr->getType()->isVariableArrayType())
1600    return 0;
1601
1602  return SubExpr;
1603}
1604
1605LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
1606  // The index must always be an integer, which is not an aggregate.  Emit it.
1607  llvm::Value *Idx = EmitScalarExpr(E->getIdx());
1608  QualType IdxTy  = E->getIdx()->getType();
1609  bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
1610
1611  // If the base is a vector type, then we are forming a vector element lvalue
1612  // with this subscript.
1613  if (E->getBase()->getType()->isVectorType()) {
1614    // Emit the vector as an lvalue to get its address.
1615    LValue LHS = EmitLValue(E->getBase());
1616    assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
1617    Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
1618    return LValue::MakeVectorElt(LHS.getAddress(), Idx,
1619                                 E->getBase()->getType());
1620  }
1621
1622  // Extend or truncate the index type to 32 or 64-bits.
1623  if (Idx->getType() != IntPtrTy)
1624    Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
1625
1626  // FIXME: As llvm implements the object size checking, this can come out.
1627  if (CatchUndefined) {
1628    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E->getBase())){
1629      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1630        if (ICE->getCastKind() == CK_ArrayToPointerDecay) {
1631          if (const ConstantArrayType *CAT
1632              = getContext().getAsConstantArrayType(DRE->getType())) {
1633            llvm::APInt Size = CAT->getSize();
1634            llvm::BasicBlock *Cont = createBasicBlock("cont");
1635            Builder.CreateCondBr(Builder.CreateICmpULE(Idx,
1636                                  llvm::ConstantInt::get(Idx->getType(), Size)),
1637                                 Cont, getTrapBB());
1638            EmitBlock(Cont);
1639          }
1640        }
1641      }
1642    }
1643  }
1644
1645  // We know that the pointer points to a type of the correct size, unless the
1646  // size is a VLA or Objective-C interface.
1647  llvm::Value *Address = 0;
1648  CharUnits ArrayAlignment;
1649  if (const VariableArrayType *vla =
1650        getContext().getAsVariableArrayType(E->getType())) {
1651    // The base must be a pointer, which is not an aggregate.  Emit
1652    // it.  It needs to be emitted first in case it's what captures
1653    // the VLA bounds.
1654    Address = EmitScalarExpr(E->getBase());
1655
1656    // The element count here is the total number of non-VLA elements.
1657    llvm::Value *numElements = getVLASize(vla).first;
1658
1659    // Effectively, the multiply by the VLA size is part of the GEP.
1660    // GEP indexes are signed, and scaling an index isn't permitted to
1661    // signed-overflow, so we use the same semantics for our explicit
1662    // multiply.  We suppress this if overflow is not undefined behavior.
1663    if (getLangOptions().isSignedOverflowDefined()) {
1664      Idx = Builder.CreateMul(Idx, numElements);
1665      Address = Builder.CreateGEP(Address, Idx, "arrayidx");
1666    } else {
1667      Idx = Builder.CreateNSWMul(Idx, numElements);
1668      Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
1669    }
1670  } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
1671    // Indexing over an interface, as in "NSString *P; P[4];"
1672    llvm::Value *InterfaceSize =
1673      llvm::ConstantInt::get(Idx->getType(),
1674          getContext().getTypeSizeInChars(OIT).getQuantity());
1675
1676    Idx = Builder.CreateMul(Idx, InterfaceSize);
1677
1678    // The base must be a pointer, which is not an aggregate.  Emit it.
1679    llvm::Value *Base = EmitScalarExpr(E->getBase());
1680    Address = EmitCastToVoidPtr(Base);
1681    Address = Builder.CreateGEP(Address, Idx, "arrayidx");
1682    Address = Builder.CreateBitCast(Address, Base->getType());
1683  } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
1684    // If this is A[i] where A is an array, the frontend will have decayed the
1685    // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
1686    // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
1687    // "gep x, i" here.  Emit one "gep A, 0, i".
1688    assert(Array->getType()->isArrayType() &&
1689           "Array to pointer decay must have array source type!");
1690    LValue ArrayLV = EmitLValue(Array);
1691    llvm::Value *ArrayPtr = ArrayLV.getAddress();
1692    llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
1693    llvm::Value *Args[] = { Zero, Idx };
1694
1695    // Propagate the alignment from the array itself to the result.
1696    ArrayAlignment = ArrayLV.getAlignment();
1697
1698    if (getContext().getLangOptions().isSignedOverflowDefined())
1699      Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
1700    else
1701      Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
1702  } else {
1703    // The base must be a pointer, which is not an aggregate.  Emit it.
1704    llvm::Value *Base = EmitScalarExpr(E->getBase());
1705    if (getContext().getLangOptions().isSignedOverflowDefined())
1706      Address = Builder.CreateGEP(Base, Idx, "arrayidx");
1707    else
1708      Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
1709  }
1710
1711  QualType T = E->getBase()->getType()->getPointeeType();
1712  assert(!T.isNull() &&
1713         "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
1714
1715
1716  // Limit the alignment to that of the result type.
1717  LValue LV;
1718  if (!ArrayAlignment.isZero()) {
1719    CharUnits Align = getContext().getTypeAlignInChars(T);
1720    ArrayAlignment = std::min(Align, ArrayAlignment);
1721    LV = MakeAddrLValue(Address, T, ArrayAlignment);
1722  } else {
1723    LV = MakeNaturalAlignAddrLValue(Address, T);
1724  }
1725
1726  LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
1727
1728  if (getContext().getLangOptions().ObjC1 &&
1729      getContext().getLangOptions().getGC() != LangOptions::NonGC) {
1730    LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1731    setObjCGCLValueClass(getContext(), E, LV);
1732  }
1733  return LV;
1734}
1735
1736static
1737llvm::Constant *GenerateConstantVector(llvm::LLVMContext &VMContext,
1738                                       SmallVector<unsigned, 4> &Elts) {
1739  SmallVector<llvm::Constant*, 4> CElts;
1740
1741  llvm::Type *Int32Ty = llvm::Type::getInt32Ty(VMContext);
1742  for (unsigned i = 0, e = Elts.size(); i != e; ++i)
1743    CElts.push_back(llvm::ConstantInt::get(Int32Ty, Elts[i]));
1744
1745  return llvm::ConstantVector::get(CElts);
1746}
1747
1748LValue CodeGenFunction::
1749EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
1750  // Emit the base vector as an l-value.
1751  LValue Base;
1752
1753  // ExtVectorElementExpr's base can either be a vector or pointer to vector.
1754  if (E->isArrow()) {
1755    // If it is a pointer to a vector, emit the address and form an lvalue with
1756    // it.
1757    llvm::Value *Ptr = EmitScalarExpr(E->getBase());
1758    const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
1759    Base = MakeAddrLValue(Ptr, PT->getPointeeType());
1760    Base.getQuals().removeObjCGCAttr();
1761  } else if (E->getBase()->isGLValue()) {
1762    // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
1763    // emit the base as an lvalue.
1764    assert(E->getBase()->getType()->isVectorType());
1765    Base = EmitLValue(E->getBase());
1766  } else {
1767    // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
1768    assert(E->getBase()->getType()->isVectorType() &&
1769           "Result must be a vector");
1770    llvm::Value *Vec = EmitScalarExpr(E->getBase());
1771
1772    // Store the vector to memory (because LValue wants an address).
1773    llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
1774    Builder.CreateStore(Vec, VecMem);
1775    Base = MakeAddrLValue(VecMem, E->getBase()->getType());
1776  }
1777
1778  QualType type =
1779    E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
1780
1781  // Encode the element access list into a vector of unsigned indices.
1782  SmallVector<unsigned, 4> Indices;
1783  E->getEncodedElementAccess(Indices);
1784
1785  if (Base.isSimple()) {
1786    llvm::Constant *CV = GenerateConstantVector(getLLVMContext(), Indices);
1787    return LValue::MakeExtVectorElt(Base.getAddress(), CV, type);
1788  }
1789  assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
1790
1791  llvm::Constant *BaseElts = Base.getExtVectorElts();
1792  SmallVector<llvm::Constant *, 4> CElts;
1793
1794  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1795    if (isa<llvm::ConstantAggregateZero>(BaseElts))
1796      CElts.push_back(llvm::ConstantInt::get(Int32Ty, 0));
1797    else
1798      CElts.push_back(cast<llvm::Constant>(BaseElts->getOperand(Indices[i])));
1799  }
1800  llvm::Constant *CV = llvm::ConstantVector::get(CElts);
1801  return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type);
1802}
1803
1804LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
1805  bool isNonGC = false;
1806  Expr *BaseExpr = E->getBase();
1807  llvm::Value *BaseValue = NULL;
1808  Qualifiers BaseQuals;
1809
1810  // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
1811  if (E->isArrow()) {
1812    BaseValue = EmitScalarExpr(BaseExpr);
1813    const PointerType *PTy =
1814      BaseExpr->getType()->getAs<PointerType>();
1815    BaseQuals = PTy->getPointeeType().getQualifiers();
1816  } else {
1817    LValue BaseLV = EmitLValue(BaseExpr);
1818    if (BaseLV.isNonGC())
1819      isNonGC = true;
1820    // FIXME: this isn't right for bitfields.
1821    BaseValue = BaseLV.getAddress();
1822    QualType BaseTy = BaseExpr->getType();
1823    BaseQuals = BaseTy.getQualifiers();
1824  }
1825
1826  NamedDecl *ND = E->getMemberDecl();
1827  if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
1828    LValue LV = EmitLValueForField(BaseValue, Field,
1829                                   BaseQuals.getCVRQualifiers());
1830    LV.setNonGC(isNonGC);
1831    setObjCGCLValueClass(getContext(), E, LV);
1832    return LV;
1833  }
1834
1835  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
1836    return EmitGlobalVarDeclLValue(*this, E, VD);
1837
1838  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
1839    return EmitFunctionDeclLValue(*this, E, FD);
1840
1841  llvm_unreachable("Unhandled member declaration!");
1842}
1843
1844LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value *BaseValue,
1845                                              const FieldDecl *Field,
1846                                              unsigned CVRQualifiers) {
1847  const CGRecordLayout &RL =
1848    CGM.getTypes().getCGRecordLayout(Field->getParent());
1849  const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field);
1850  return LValue::MakeBitfield(BaseValue, Info,
1851                          Field->getType().withCVRQualifiers(CVRQualifiers));
1852}
1853
1854/// EmitLValueForAnonRecordField - Given that the field is a member of
1855/// an anonymous struct or union buried inside a record, and given
1856/// that the base value is a pointer to the enclosing record, derive
1857/// an lvalue for the ultimate field.
1858LValue CodeGenFunction::EmitLValueForAnonRecordField(llvm::Value *BaseValue,
1859                                             const IndirectFieldDecl *Field,
1860                                                     unsigned CVRQualifiers) {
1861  IndirectFieldDecl::chain_iterator I = Field->chain_begin(),
1862    IEnd = Field->chain_end();
1863  while (true) {
1864    LValue LV = EmitLValueForField(BaseValue, cast<FieldDecl>(*I),
1865                                   CVRQualifiers);
1866    if (++I == IEnd) return LV;
1867
1868    assert(LV.isSimple());
1869    BaseValue = LV.getAddress();
1870    CVRQualifiers |= LV.getVRQualifiers();
1871  }
1872}
1873
1874LValue CodeGenFunction::EmitLValueForField(llvm::Value *baseAddr,
1875                                           const FieldDecl *field,
1876                                           unsigned cvr) {
1877  if (field->isBitField())
1878    return EmitLValueForBitfield(baseAddr, field, cvr);
1879
1880  const RecordDecl *rec = field->getParent();
1881  QualType type = field->getType();
1882  CharUnits alignment = getContext().getDeclAlign(field);
1883
1884  bool mayAlias = rec->hasAttr<MayAliasAttr>();
1885
1886  llvm::Value *addr = baseAddr;
1887  if (rec->isUnion()) {
1888    // For unions, there is no pointer adjustment.
1889    assert(!type->isReferenceType() && "union has reference member");
1890  } else {
1891    // For structs, we GEP to the field that the record layout suggests.
1892    unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
1893    addr = Builder.CreateStructGEP(addr, idx, field->getName());
1894
1895    // If this is a reference field, load the reference right now.
1896    if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
1897      llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
1898      if (cvr & Qualifiers::Volatile) load->setVolatile(true);
1899      load->setAlignment(alignment.getQuantity());
1900
1901      if (CGM.shouldUseTBAA()) {
1902        llvm::MDNode *tbaa;
1903        if (mayAlias)
1904          tbaa = CGM.getTBAAInfo(getContext().CharTy);
1905        else
1906          tbaa = CGM.getTBAAInfo(type);
1907        CGM.DecorateInstruction(load, tbaa);
1908      }
1909
1910      addr = load;
1911      mayAlias = false;
1912      type = refType->getPointeeType();
1913      if (type->isIncompleteType())
1914        alignment = CharUnits();
1915      else
1916        alignment = getContext().getTypeAlignInChars(type);
1917      cvr = 0; // qualifiers don't recursively apply to referencee
1918    }
1919  }
1920
1921  // Make sure that the address is pointing to the right type.  This is critical
1922  // for both unions and structs.  A union needs a bitcast, a struct element
1923  // will need a bitcast if the LLVM type laid out doesn't match the desired
1924  // type.
1925  addr = EmitBitCastOfLValueToProperType(*this, addr,
1926                                         CGM.getTypes().ConvertTypeForMem(type),
1927                                         field->getName());
1928
1929  if (field->hasAttr<AnnotateAttr>())
1930    addr = EmitFieldAnnotations(field, addr);
1931
1932  LValue LV = MakeAddrLValue(addr, type, alignment);
1933  LV.getQuals().addCVRQualifiers(cvr);
1934
1935  // __weak attribute on a field is ignored.
1936  if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
1937    LV.getQuals().removeObjCGCAttr();
1938
1939  // Fields of may_alias structs act like 'char' for TBAA purposes.
1940  // FIXME: this should get propagated down through anonymous structs
1941  // and unions.
1942  if (mayAlias && LV.getTBAAInfo())
1943    LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
1944
1945  return LV;
1946}
1947
1948LValue
1949CodeGenFunction::EmitLValueForFieldInitialization(llvm::Value *BaseValue,
1950                                                  const FieldDecl *Field,
1951                                                  unsigned CVRQualifiers) {
1952  QualType FieldType = Field->getType();
1953
1954  if (!FieldType->isReferenceType())
1955    return EmitLValueForField(BaseValue, Field, CVRQualifiers);
1956
1957  const CGRecordLayout &RL =
1958    CGM.getTypes().getCGRecordLayout(Field->getParent());
1959  unsigned idx = RL.getLLVMFieldNo(Field);
1960  llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx);
1961  assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
1962
1963
1964  // Make sure that the address is pointing to the right type.  This is critical
1965  // for both unions and structs.  A union needs a bitcast, a struct element
1966  // will need a bitcast if the LLVM type laid out doesn't match the desired
1967  // type.
1968  llvm::Type *llvmType = ConvertTypeForMem(FieldType);
1969  unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1970  V = Builder.CreateBitCast(V, llvmType->getPointerTo(AS));
1971
1972  CharUnits Alignment = getContext().getDeclAlign(Field);
1973  return MakeAddrLValue(V, FieldType, Alignment);
1974}
1975
1976LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
1977  if (E->isFileScope()) {
1978    llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
1979    return MakeAddrLValue(GlobalPtr, E->getType());
1980  }
1981
1982  llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
1983  const Expr *InitExpr = E->getInitializer();
1984  LValue Result = MakeAddrLValue(DeclPtr, E->getType());
1985
1986  EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
1987                   /*Init*/ true);
1988
1989  return Result;
1990}
1991
1992LValue CodeGenFunction::
1993EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
1994  if (!expr->isGLValue()) {
1995    // ?: here should be an aggregate.
1996    assert((hasAggregateLLVMType(expr->getType()) &&
1997            !expr->getType()->isAnyComplexType()) &&
1998           "Unexpected conditional operator!");
1999    return EmitAggExprToLValue(expr);
2000  }
2001
2002  const Expr *condExpr = expr->getCond();
2003  bool CondExprBool;
2004  if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2005    const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
2006    if (!CondExprBool) std::swap(live, dead);
2007
2008    if (!ContainsLabel(dead))
2009      return EmitLValue(live);
2010  }
2011
2012  OpaqueValueMapping binding(*this, expr);
2013
2014  llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2015  llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2016  llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2017
2018  ConditionalEvaluation eval(*this);
2019  EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock);
2020
2021  // Any temporaries created here are conditional.
2022  EmitBlock(lhsBlock);
2023  eval.begin(*this);
2024  LValue lhs = EmitLValue(expr->getTrueExpr());
2025  eval.end(*this);
2026
2027  if (!lhs.isSimple())
2028    return EmitUnsupportedLValue(expr, "conditional operator");
2029
2030  lhsBlock = Builder.GetInsertBlock();
2031  Builder.CreateBr(contBlock);
2032
2033  // Any temporaries created here are conditional.
2034  EmitBlock(rhsBlock);
2035  eval.begin(*this);
2036  LValue rhs = EmitLValue(expr->getFalseExpr());
2037  eval.end(*this);
2038  if (!rhs.isSimple())
2039    return EmitUnsupportedLValue(expr, "conditional operator");
2040  rhsBlock = Builder.GetInsertBlock();
2041
2042  EmitBlock(contBlock);
2043
2044  llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2,
2045                                         "cond-lvalue");
2046  phi->addIncoming(lhs.getAddress(), lhsBlock);
2047  phi->addIncoming(rhs.getAddress(), rhsBlock);
2048  return MakeAddrLValue(phi, expr->getType());
2049}
2050
2051/// EmitCastLValue - Casts are never lvalues unless that cast is a dynamic_cast.
2052/// If the cast is a dynamic_cast, we can have the usual lvalue result,
2053/// otherwise if a cast is needed by the code generator in an lvalue context,
2054/// then it must mean that we need the address of an aggregate in order to
2055/// access one of its fields.  This can happen for all the reasons that casts
2056/// are permitted with aggregate result, including noop aggregate casts, and
2057/// cast from scalar to union.
2058LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2059  switch (E->getCastKind()) {
2060  case CK_ToVoid:
2061    return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2062
2063  case CK_Dependent:
2064    llvm_unreachable("dependent cast kind in IR gen!");
2065
2066  // These two casts are currently treated as no-ops, although they could
2067  // potentially be real operations depending on the target's ABI.
2068  case CK_NonAtomicToAtomic:
2069  case CK_AtomicToNonAtomic:
2070
2071  case CK_NoOp:
2072  case CK_LValueToRValue:
2073    if (!E->getSubExpr()->Classify(getContext()).isPRValue()
2074        || E->getType()->isRecordType())
2075      return EmitLValue(E->getSubExpr());
2076    // Fall through to synthesize a temporary.
2077
2078  case CK_BitCast:
2079  case CK_ArrayToPointerDecay:
2080  case CK_FunctionToPointerDecay:
2081  case CK_NullToMemberPointer:
2082  case CK_NullToPointer:
2083  case CK_IntegralToPointer:
2084  case CK_PointerToIntegral:
2085  case CK_PointerToBoolean:
2086  case CK_VectorSplat:
2087  case CK_IntegralCast:
2088  case CK_IntegralToBoolean:
2089  case CK_IntegralToFloating:
2090  case CK_FloatingToIntegral:
2091  case CK_FloatingToBoolean:
2092  case CK_FloatingCast:
2093  case CK_FloatingRealToComplex:
2094  case CK_FloatingComplexToReal:
2095  case CK_FloatingComplexToBoolean:
2096  case CK_FloatingComplexCast:
2097  case CK_FloatingComplexToIntegralComplex:
2098  case CK_IntegralRealToComplex:
2099  case CK_IntegralComplexToReal:
2100  case CK_IntegralComplexToBoolean:
2101  case CK_IntegralComplexCast:
2102  case CK_IntegralComplexToFloatingComplex:
2103  case CK_DerivedToBaseMemberPointer:
2104  case CK_BaseToDerivedMemberPointer:
2105  case CK_MemberPointerToBoolean:
2106  case CK_AnyPointerToBlockPointerCast:
2107  case CK_ARCProduceObject:
2108  case CK_ARCConsumeObject:
2109  case CK_ARCReclaimReturnedObject:
2110  case CK_ARCExtendBlockObject: {
2111    // These casts only produce lvalues when we're binding a reference to a
2112    // temporary realized from a (converted) pure rvalue. Emit the expression
2113    // as a value, copy it into a temporary, and return an lvalue referring to
2114    // that temporary.
2115    llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp");
2116    EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false);
2117    return MakeAddrLValue(V, E->getType());
2118  }
2119
2120  case CK_Dynamic: {
2121    LValue LV = EmitLValue(E->getSubExpr());
2122    llvm::Value *V = LV.getAddress();
2123    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
2124    return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2125  }
2126
2127  case CK_ConstructorConversion:
2128  case CK_UserDefinedConversion:
2129  case CK_CPointerToObjCPointerCast:
2130  case CK_BlockPointerToObjCPointerCast:
2131    return EmitLValue(E->getSubExpr());
2132
2133  case CK_UncheckedDerivedToBase:
2134  case CK_DerivedToBase: {
2135    const RecordType *DerivedClassTy =
2136      E->getSubExpr()->getType()->getAs<RecordType>();
2137    CXXRecordDecl *DerivedClassDecl =
2138      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2139
2140    LValue LV = EmitLValue(E->getSubExpr());
2141    llvm::Value *This = LV.getAddress();
2142
2143    // Perform the derived-to-base conversion
2144    llvm::Value *Base =
2145      GetAddressOfBaseClass(This, DerivedClassDecl,
2146                            E->path_begin(), E->path_end(),
2147                            /*NullCheckValue=*/false);
2148
2149    return MakeAddrLValue(Base, E->getType());
2150  }
2151  case CK_ToUnion:
2152    return EmitAggExprToLValue(E);
2153  case CK_BaseToDerived: {
2154    const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2155    CXXRecordDecl *DerivedClassDecl =
2156      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2157
2158    LValue LV = EmitLValue(E->getSubExpr());
2159
2160    // Perform the base-to-derived conversion
2161    llvm::Value *Derived =
2162      GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
2163                               E->path_begin(), E->path_end(),
2164                               /*NullCheckValue=*/false);
2165
2166    return MakeAddrLValue(Derived, E->getType());
2167  }
2168  case CK_LValueBitCast: {
2169    // This must be a reinterpret_cast (or c-style equivalent).
2170    const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
2171
2172    LValue LV = EmitLValue(E->getSubExpr());
2173    llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2174                                           ConvertType(CE->getTypeAsWritten()));
2175    return MakeAddrLValue(V, E->getType());
2176  }
2177  case CK_ObjCObjectLValueCast: {
2178    LValue LV = EmitLValue(E->getSubExpr());
2179    QualType ToType = getContext().getLValueReferenceType(E->getType());
2180    llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2181                                           ConvertType(ToType));
2182    return MakeAddrLValue(V, E->getType());
2183  }
2184  }
2185
2186  llvm_unreachable("Unhandled lvalue cast kind?");
2187}
2188
2189LValue CodeGenFunction::EmitNullInitializationLValue(
2190                                              const CXXScalarValueInitExpr *E) {
2191  QualType Ty = E->getType();
2192  LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty);
2193  EmitNullInitialization(LV.getAddress(), Ty);
2194  return LV;
2195}
2196
2197LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
2198  assert(OpaqueValueMappingData::shouldBindAsLValue(e));
2199  return getOpaqueLValueMapping(e);
2200}
2201
2202LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
2203                                           const MaterializeTemporaryExpr *E) {
2204  RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
2205  return MakeAddrLValue(RV.getScalarVal(), E->getType());
2206}
2207
2208
2209//===--------------------------------------------------------------------===//
2210//                             Expression Emission
2211//===--------------------------------------------------------------------===//
2212
2213RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
2214                                     ReturnValueSlot ReturnValue) {
2215  if (CGDebugInfo *DI = getDebugInfo())
2216    DI->EmitLocation(Builder, E->getLocStart());
2217
2218  // Builtins never have block type.
2219  if (E->getCallee()->getType()->isBlockPointerType())
2220    return EmitBlockCallExpr(E, ReturnValue);
2221
2222  if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
2223    return EmitCXXMemberCallExpr(CE, ReturnValue);
2224
2225  if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E))
2226    return EmitCUDAKernelCallExpr(CE, ReturnValue);
2227
2228  const Decl *TargetDecl = E->getCalleeDecl();
2229  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2230    if (unsigned builtinID = FD->getBuiltinID())
2231      return EmitBuiltinExpr(FD, builtinID, E);
2232  }
2233
2234  if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
2235    if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
2236      return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
2237
2238  if (const CXXPseudoDestructorExpr *PseudoDtor
2239          = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
2240    QualType DestroyedType = PseudoDtor->getDestroyedType();
2241    if (getContext().getLangOptions().ObjCAutoRefCount &&
2242        DestroyedType->isObjCLifetimeType() &&
2243        (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
2244         DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
2245      // Automatic Reference Counting:
2246      //   If the pseudo-expression names a retainable object with weak or
2247      //   strong lifetime, the object shall be released.
2248      Expr *BaseExpr = PseudoDtor->getBase();
2249      llvm::Value *BaseValue = NULL;
2250      Qualifiers BaseQuals;
2251
2252      // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2253      if (PseudoDtor->isArrow()) {
2254        BaseValue = EmitScalarExpr(BaseExpr);
2255        const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
2256        BaseQuals = PTy->getPointeeType().getQualifiers();
2257      } else {
2258        LValue BaseLV = EmitLValue(BaseExpr);
2259        BaseValue = BaseLV.getAddress();
2260        QualType BaseTy = BaseExpr->getType();
2261        BaseQuals = BaseTy.getQualifiers();
2262      }
2263
2264      switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
2265      case Qualifiers::OCL_None:
2266      case Qualifiers::OCL_ExplicitNone:
2267      case Qualifiers::OCL_Autoreleasing:
2268        break;
2269
2270      case Qualifiers::OCL_Strong:
2271        EmitARCRelease(Builder.CreateLoad(BaseValue,
2272                          PseudoDtor->getDestroyedType().isVolatileQualified()),
2273                       /*precise*/ true);
2274        break;
2275
2276      case Qualifiers::OCL_Weak:
2277        EmitARCDestroyWeak(BaseValue);
2278        break;
2279      }
2280    } else {
2281      // C++ [expr.pseudo]p1:
2282      //   The result shall only be used as the operand for the function call
2283      //   operator (), and the result of such a call has type void. The only
2284      //   effect is the evaluation of the postfix-expression before the dot or
2285      //   arrow.
2286      EmitScalarExpr(E->getCallee());
2287    }
2288
2289    return RValue::get(0);
2290  }
2291
2292  llvm::Value *Callee = EmitScalarExpr(E->getCallee());
2293  return EmitCall(E->getCallee()->getType(), Callee, ReturnValue,
2294                  E->arg_begin(), E->arg_end(), TargetDecl);
2295}
2296
2297LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
2298  // Comma expressions just emit their LHS then their RHS as an l-value.
2299  if (E->getOpcode() == BO_Comma) {
2300    EmitIgnoredExpr(E->getLHS());
2301    EnsureInsertPoint();
2302    return EmitLValue(E->getRHS());
2303  }
2304
2305  if (E->getOpcode() == BO_PtrMemD ||
2306      E->getOpcode() == BO_PtrMemI)
2307    return EmitPointerToDataMemberBinaryExpr(E);
2308
2309  assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
2310
2311  // Note that in all of these cases, __block variables need the RHS
2312  // evaluated first just in case the variable gets moved by the RHS.
2313
2314  if (!hasAggregateLLVMType(E->getType())) {
2315    switch (E->getLHS()->getType().getObjCLifetime()) {
2316    case Qualifiers::OCL_Strong:
2317      return EmitARCStoreStrong(E, /*ignored*/ false).first;
2318
2319    case Qualifiers::OCL_Autoreleasing:
2320      return EmitARCStoreAutoreleasing(E).first;
2321
2322    // No reason to do any of these differently.
2323    case Qualifiers::OCL_None:
2324    case Qualifiers::OCL_ExplicitNone:
2325    case Qualifiers::OCL_Weak:
2326      break;
2327    }
2328
2329    RValue RV = EmitAnyExpr(E->getRHS());
2330    LValue LV = EmitLValue(E->getLHS());
2331    EmitStoreThroughLValue(RV, LV);
2332    return LV;
2333  }
2334
2335  if (E->getType()->isAnyComplexType())
2336    return EmitComplexAssignmentLValue(E);
2337
2338  return EmitAggExprToLValue(E);
2339}
2340
2341LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
2342  RValue RV = EmitCallExpr(E);
2343
2344  if (!RV.isScalar())
2345    return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2346
2347  assert(E->getCallReturnType()->isReferenceType() &&
2348         "Can't have a scalar return unless the return type is a "
2349         "reference type!");
2350
2351  return MakeAddrLValue(RV.getScalarVal(), E->getType());
2352}
2353
2354LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
2355  // FIXME: This shouldn't require another copy.
2356  return EmitAggExprToLValue(E);
2357}
2358
2359LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
2360  assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
2361         && "binding l-value to type which needs a temporary");
2362  AggValueSlot Slot = CreateAggTemp(E->getType());
2363  EmitCXXConstructExpr(E, Slot);
2364  return MakeAddrLValue(Slot.getAddr(), E->getType());
2365}
2366
2367LValue
2368CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
2369  return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
2370}
2371
2372LValue
2373CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
2374  AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
2375  Slot.setExternallyDestructed();
2376  EmitAggExpr(E->getSubExpr(), Slot);
2377  EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
2378  return MakeAddrLValue(Slot.getAddr(), E->getType());
2379}
2380
2381LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
2382  RValue RV = EmitObjCMessageExpr(E);
2383
2384  if (!RV.isScalar())
2385    return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2386
2387  assert(E->getMethodDecl()->getResultType()->isReferenceType() &&
2388         "Can't have a scalar return unless the return type is a "
2389         "reference type!");
2390
2391  return MakeAddrLValue(RV.getScalarVal(), E->getType());
2392}
2393
2394LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
2395  llvm::Value *V =
2396    CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true);
2397  return MakeAddrLValue(V, E->getType());
2398}
2399
2400llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2401                                             const ObjCIvarDecl *Ivar) {
2402  return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
2403}
2404
2405LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
2406                                          llvm::Value *BaseValue,
2407                                          const ObjCIvarDecl *Ivar,
2408                                          unsigned CVRQualifiers) {
2409  return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
2410                                                   Ivar, CVRQualifiers);
2411}
2412
2413LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
2414  // FIXME: A lot of the code below could be shared with EmitMemberExpr.
2415  llvm::Value *BaseValue = 0;
2416  const Expr *BaseExpr = E->getBase();
2417  Qualifiers BaseQuals;
2418  QualType ObjectTy;
2419  if (E->isArrow()) {
2420    BaseValue = EmitScalarExpr(BaseExpr);
2421    ObjectTy = BaseExpr->getType()->getPointeeType();
2422    BaseQuals = ObjectTy.getQualifiers();
2423  } else {
2424    LValue BaseLV = EmitLValue(BaseExpr);
2425    // FIXME: this isn't right for bitfields.
2426    BaseValue = BaseLV.getAddress();
2427    ObjectTy = BaseExpr->getType();
2428    BaseQuals = ObjectTy.getQualifiers();
2429  }
2430
2431  LValue LV =
2432    EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
2433                      BaseQuals.getCVRQualifiers());
2434  setObjCGCLValueClass(getContext(), E, LV);
2435  return LV;
2436}
2437
2438LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
2439  // Can only get l-value for message expression returning aggregate type
2440  RValue RV = EmitAnyExprToTemp(E);
2441  return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2442}
2443
2444RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
2445                                 ReturnValueSlot ReturnValue,
2446                                 CallExpr::const_arg_iterator ArgBeg,
2447                                 CallExpr::const_arg_iterator ArgEnd,
2448                                 const Decl *TargetDecl) {
2449  // Get the actual function type. The callee type will always be a pointer to
2450  // function type or a block pointer type.
2451  assert(CalleeType->isFunctionPointerType() &&
2452         "Call must have function pointer type!");
2453
2454  CalleeType = getContext().getCanonicalType(CalleeType);
2455
2456  const FunctionType *FnType
2457    = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
2458
2459  CallArgList Args;
2460  EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd);
2461
2462  const CGFunctionInfo &FnInfo = CGM.getTypes().getFunctionInfo(Args, FnType);
2463
2464  // C99 6.5.2.2p6:
2465  //   If the expression that denotes the called function has a type
2466  //   that does not include a prototype, [the default argument
2467  //   promotions are performed]. If the number of arguments does not
2468  //   equal the number of parameters, the behavior is undefined. If
2469  //   the function is defined with a type that includes a prototype,
2470  //   and either the prototype ends with an ellipsis (, ...) or the
2471  //   types of the arguments after promotion are not compatible with
2472  //   the types of the parameters, the behavior is undefined. If the
2473  //   function is defined with a type that does not include a
2474  //   prototype, and the types of the arguments after promotion are
2475  //   not compatible with those of the parameters after promotion,
2476  //   the behavior is undefined [except in some trivial cases].
2477  // That is, in the general case, we should assume that a call
2478  // through an unprototyped function type works like a *non-variadic*
2479  // call.  The way we make this work is to cast to the exact type
2480  // of the promoted arguments.
2481  if (isa<FunctionNoProtoType>(FnType) &&
2482      !getTargetHooks().isNoProtoCallVariadic(FnInfo)) {
2483    assert(cast<llvm::FunctionType>(Callee->getType()->getContainedType(0))
2484             ->isVarArg());
2485    llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo, false);
2486    CalleeTy = CalleeTy->getPointerTo();
2487    Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
2488  }
2489
2490  return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
2491}
2492
2493LValue CodeGenFunction::
2494EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
2495  llvm::Value *BaseV;
2496  if (E->getOpcode() == BO_PtrMemI)
2497    BaseV = EmitScalarExpr(E->getLHS());
2498  else
2499    BaseV = EmitLValue(E->getLHS()).getAddress();
2500
2501  llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
2502
2503  const MemberPointerType *MPT
2504    = E->getRHS()->getType()->getAs<MemberPointerType>();
2505
2506  llvm::Value *AddV =
2507    CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT);
2508
2509  return MakeAddrLValue(AddV, MPT->getPointeeType());
2510}
2511
2512static void
2513EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest,
2514             llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2,
2515             uint64_t Size, unsigned Align, llvm::AtomicOrdering Order) {
2516  if (E->isCmpXChg()) {
2517    // Note that cmpxchg only supports specifying one ordering and
2518    // doesn't support weak cmpxchg, at least at the moment.
2519    llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2520    LoadVal1->setAlignment(Align);
2521    llvm::LoadInst *LoadVal2 = CGF.Builder.CreateLoad(Val2);
2522    LoadVal2->setAlignment(Align);
2523    llvm::AtomicCmpXchgInst *CXI =
2524        CGF.Builder.CreateAtomicCmpXchg(Ptr, LoadVal1, LoadVal2, Order);
2525    CXI->setVolatile(E->isVolatile());
2526    llvm::StoreInst *StoreVal1 = CGF.Builder.CreateStore(CXI, Val1);
2527    StoreVal1->setAlignment(Align);
2528    llvm::Value *Cmp = CGF.Builder.CreateICmpEQ(CXI, LoadVal1);
2529    CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType()));
2530    return;
2531  }
2532
2533  if (E->getOp() == AtomicExpr::Load) {
2534    llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr);
2535    Load->setAtomic(Order);
2536    Load->setAlignment(Size);
2537    Load->setVolatile(E->isVolatile());
2538    llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest);
2539    StoreDest->setAlignment(Align);
2540    return;
2541  }
2542
2543  if (E->getOp() == AtomicExpr::Store) {
2544    assert(!Dest && "Store does not return a value");
2545    llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2546    LoadVal1->setAlignment(Align);
2547    llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr);
2548    Store->setAtomic(Order);
2549    Store->setAlignment(Size);
2550    Store->setVolatile(E->isVolatile());
2551    return;
2552  }
2553
2554  llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add;
2555  switch (E->getOp()) {
2556    case AtomicExpr::CmpXchgWeak:
2557    case AtomicExpr::CmpXchgStrong:
2558    case AtomicExpr::Store:
2559    case AtomicExpr::Init:
2560    case AtomicExpr::Load:  assert(0 && "Already handled!");
2561    case AtomicExpr::Add:   Op = llvm::AtomicRMWInst::Add;  break;
2562    case AtomicExpr::Sub:   Op = llvm::AtomicRMWInst::Sub;  break;
2563    case AtomicExpr::And:   Op = llvm::AtomicRMWInst::And;  break;
2564    case AtomicExpr::Or:    Op = llvm::AtomicRMWInst::Or;   break;
2565    case AtomicExpr::Xor:   Op = llvm::AtomicRMWInst::Xor;  break;
2566    case AtomicExpr::Xchg:  Op = llvm::AtomicRMWInst::Xchg; break;
2567  }
2568  llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2569  LoadVal1->setAlignment(Align);
2570  llvm::AtomicRMWInst *RMWI =
2571      CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order);
2572  RMWI->setVolatile(E->isVolatile());
2573  llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(RMWI, Dest);
2574  StoreDest->setAlignment(Align);
2575}
2576
2577// This function emits any expression (scalar, complex, or aggregate)
2578// into a temporary alloca.
2579static llvm::Value *
2580EmitValToTemp(CodeGenFunction &CGF, Expr *E) {
2581  llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp");
2582  CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(),
2583                       /*Init*/ true);
2584  return DeclPtr;
2585}
2586
2587static RValue ConvertTempToRValue(CodeGenFunction &CGF, QualType Ty,
2588                                  llvm::Value *Dest) {
2589  if (Ty->isAnyComplexType())
2590    return RValue::getComplex(CGF.LoadComplexFromAddr(Dest, false));
2591  if (CGF.hasAggregateLLVMType(Ty))
2592    return RValue::getAggregate(Dest);
2593  return RValue::get(CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(Dest, Ty)));
2594}
2595
2596RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) {
2597  QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
2598  QualType MemTy = AtomicTy->getAs<AtomicType>()->getValueType();
2599  CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy);
2600  uint64_t Size = sizeChars.getQuantity();
2601  CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy);
2602  unsigned Align = alignChars.getQuantity();
2603  unsigned MaxInlineWidth =
2604      getContext().getTargetInfo().getMaxAtomicInlineWidth();
2605  bool UseLibcall = (Size != Align || Size > MaxInlineWidth);
2606
2607
2608
2609  llvm::Value *Ptr, *Order, *OrderFail = 0, *Val1 = 0, *Val2 = 0;
2610  Ptr = EmitScalarExpr(E->getPtr());
2611
2612  if (E->getOp() == AtomicExpr::Init) {
2613    assert(!Dest && "Init does not return a value");
2614    Val1 = EmitScalarExpr(E->getVal1());
2615    llvm::StoreInst *Store = Builder.CreateStore(Val1, Ptr);
2616    Store->setAlignment(Size);
2617    Store->setVolatile(E->isVolatile());
2618    return RValue::get(0);
2619  }
2620
2621  Order = EmitScalarExpr(E->getOrder());
2622  if (E->isCmpXChg()) {
2623    Val1 = EmitScalarExpr(E->getVal1());
2624    Val2 = EmitValToTemp(*this, E->getVal2());
2625    OrderFail = EmitScalarExpr(E->getOrderFail());
2626    (void)OrderFail; // OrderFail is unused at the moment
2627  } else if ((E->getOp() == AtomicExpr::Add || E->getOp() == AtomicExpr::Sub) &&
2628             MemTy->isPointerType()) {
2629    // For pointers, we're required to do a bit of math: adding 1 to an int*
2630    // is not the same as adding 1 to a uintptr_t.
2631    QualType Val1Ty = E->getVal1()->getType();
2632    llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1());
2633    CharUnits PointeeIncAmt =
2634        getContext().getTypeSizeInChars(MemTy->getPointeeType());
2635    Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt));
2636    Val1 = CreateMemTemp(Val1Ty, ".atomictmp");
2637    EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty));
2638  } else if (E->getOp() != AtomicExpr::Load) {
2639    Val1 = EmitValToTemp(*this, E->getVal1());
2640  }
2641
2642  if (E->getOp() != AtomicExpr::Store && !Dest)
2643    Dest = CreateMemTemp(E->getType(), ".atomicdst");
2644
2645  if (UseLibcall) {
2646    // FIXME: Finalize what the libcalls are actually supposed to look like.
2647    // See also http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary .
2648    return EmitUnsupportedRValue(E, "atomic library call");
2649  }
2650#if 0
2651  if (UseLibcall) {
2652    const char* LibCallName;
2653    switch (E->getOp()) {
2654    case AtomicExpr::CmpXchgWeak:
2655      LibCallName = "__atomic_compare_exchange_generic"; break;
2656    case AtomicExpr::CmpXchgStrong:
2657      LibCallName = "__atomic_compare_exchange_generic"; break;
2658    case AtomicExpr::Add:   LibCallName = "__atomic_fetch_add_generic"; break;
2659    case AtomicExpr::Sub:   LibCallName = "__atomic_fetch_sub_generic"; break;
2660    case AtomicExpr::And:   LibCallName = "__atomic_fetch_and_generic"; break;
2661    case AtomicExpr::Or:    LibCallName = "__atomic_fetch_or_generic"; break;
2662    case AtomicExpr::Xor:   LibCallName = "__atomic_fetch_xor_generic"; break;
2663    case AtomicExpr::Xchg:  LibCallName = "__atomic_exchange_generic"; break;
2664    case AtomicExpr::Store: LibCallName = "__atomic_store_generic"; break;
2665    case AtomicExpr::Load:  LibCallName = "__atomic_load_generic"; break;
2666    }
2667    llvm::SmallVector<QualType, 4> Params;
2668    CallArgList Args;
2669    QualType RetTy = getContext().VoidTy;
2670    if (E->getOp() != AtomicExpr::Store && !E->isCmpXChg())
2671      Args.add(RValue::get(EmitCastToVoidPtr(Dest)),
2672               getContext().VoidPtrTy);
2673    Args.add(RValue::get(EmitCastToVoidPtr(Ptr)),
2674             getContext().VoidPtrTy);
2675    if (E->getOp() != AtomicExpr::Load)
2676      Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
2677               getContext().VoidPtrTy);
2678    if (E->isCmpXChg()) {
2679      Args.add(RValue::get(EmitCastToVoidPtr(Val2)),
2680               getContext().VoidPtrTy);
2681      RetTy = getContext().IntTy;
2682    }
2683    Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)),
2684             getContext().getSizeType());
2685    const CGFunctionInfo &FuncInfo =
2686        CGM.getTypes().getFunctionInfo(RetTy, Args, FunctionType::ExtInfo());
2687    llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo, false);
2688    llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
2689    RValue Res = EmitCall(FuncInfo, Func, ReturnValueSlot(), Args);
2690    if (E->isCmpXChg())
2691      return Res;
2692    if (E->getOp() == AtomicExpr::Store)
2693      return RValue::get(0);
2694    return ConvertTempToRValue(*this, E->getType(), Dest);
2695  }
2696#endif
2697  llvm::Type *IPtrTy =
2698      llvm::IntegerType::get(getLLVMContext(), Size * 8)->getPointerTo();
2699  llvm::Value *OrigDest = Dest;
2700  Ptr = Builder.CreateBitCast(Ptr, IPtrTy);
2701  if (Val1) Val1 = Builder.CreateBitCast(Val1, IPtrTy);
2702  if (Val2) Val2 = Builder.CreateBitCast(Val2, IPtrTy);
2703  if (Dest && !E->isCmpXChg()) Dest = Builder.CreateBitCast(Dest, IPtrTy);
2704
2705  if (isa<llvm::ConstantInt>(Order)) {
2706    int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
2707    switch (ord) {
2708    case 0:  // memory_order_relaxed
2709      EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2710                   llvm::Monotonic);
2711      break;
2712    case 1:  // memory_order_consume
2713    case 2:  // memory_order_acquire
2714      EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2715                   llvm::Acquire);
2716      break;
2717    case 3:  // memory_order_release
2718      EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2719                   llvm::Release);
2720      break;
2721    case 4:  // memory_order_acq_rel
2722      EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2723                   llvm::AcquireRelease);
2724      break;
2725    case 5:  // memory_order_seq_cst
2726      EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2727                   llvm::SequentiallyConsistent);
2728      break;
2729    default: // invalid order
2730      // We should not ever get here normally, but it's hard to
2731      // enforce that in general.
2732      break;
2733    }
2734    if (E->getOp() == AtomicExpr::Store || E->getOp() == AtomicExpr::Init)
2735      return RValue::get(0);
2736    return ConvertTempToRValue(*this, E->getType(), OrigDest);
2737  }
2738
2739  // Long case, when Order isn't obviously constant.
2740
2741  // Create all the relevant BB's
2742  llvm::BasicBlock *MonotonicBB = 0, *AcquireBB = 0, *ReleaseBB = 0,
2743                   *AcqRelBB = 0, *SeqCstBB = 0;
2744  MonotonicBB = createBasicBlock("monotonic", CurFn);
2745  if (E->getOp() != AtomicExpr::Store)
2746    AcquireBB = createBasicBlock("acquire", CurFn);
2747  if (E->getOp() != AtomicExpr::Load)
2748    ReleaseBB = createBasicBlock("release", CurFn);
2749  if (E->getOp() != AtomicExpr::Load && E->getOp() != AtomicExpr::Store)
2750    AcqRelBB = createBasicBlock("acqrel", CurFn);
2751  SeqCstBB = createBasicBlock("seqcst", CurFn);
2752  llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
2753
2754  // Create the switch for the split
2755  // MonotonicBB is arbitrarily chosen as the default case; in practice, this
2756  // doesn't matter unless someone is crazy enough to use something that
2757  // doesn't fold to a constant for the ordering.
2758  Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
2759  llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB);
2760
2761  // Emit all the different atomics
2762  Builder.SetInsertPoint(MonotonicBB);
2763  EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2764               llvm::Monotonic);
2765  Builder.CreateBr(ContBB);
2766  if (E->getOp() != AtomicExpr::Store) {
2767    Builder.SetInsertPoint(AcquireBB);
2768    EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2769                 llvm::Acquire);
2770    Builder.CreateBr(ContBB);
2771    SI->addCase(Builder.getInt32(1), AcquireBB);
2772    SI->addCase(Builder.getInt32(2), AcquireBB);
2773  }
2774  if (E->getOp() != AtomicExpr::Load) {
2775    Builder.SetInsertPoint(ReleaseBB);
2776    EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2777                 llvm::Release);
2778    Builder.CreateBr(ContBB);
2779    SI->addCase(Builder.getInt32(3), ReleaseBB);
2780  }
2781  if (E->getOp() != AtomicExpr::Load && E->getOp() != AtomicExpr::Store) {
2782    Builder.SetInsertPoint(AcqRelBB);
2783    EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2784                 llvm::AcquireRelease);
2785    Builder.CreateBr(ContBB);
2786    SI->addCase(Builder.getInt32(4), AcqRelBB);
2787  }
2788  Builder.SetInsertPoint(SeqCstBB);
2789  EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2790               llvm::SequentiallyConsistent);
2791  Builder.CreateBr(ContBB);
2792  SI->addCase(Builder.getInt32(5), SeqCstBB);
2793
2794  // Cleanup and return
2795  Builder.SetInsertPoint(ContBB);
2796  if (E->getOp() == AtomicExpr::Store)
2797    return RValue::get(0);
2798  return ConvertTempToRValue(*this, E->getType(), OrigDest);
2799}
2800
2801void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, unsigned AccuracyN,
2802                                    unsigned AccuracyD) {
2803  assert(Val->getType()->isFPOrFPVectorTy());
2804  if (!AccuracyN || !isa<llvm::Instruction>(Val))
2805    return;
2806
2807  llvm::Value *Vals[2];
2808  Vals[0] = llvm::ConstantInt::get(Int32Ty, AccuracyN);
2809  Vals[1] = llvm::ConstantInt::get(Int32Ty, AccuracyD);
2810  llvm::MDNode *Node = llvm::MDNode::get(getLLVMContext(), Vals);
2811
2812  cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpaccuracy,
2813                                            Node);
2814}
2815
2816namespace {
2817  struct LValueOrRValue {
2818    LValue LV;
2819    RValue RV;
2820  };
2821}
2822
2823static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
2824                                           const PseudoObjectExpr *E,
2825                                           bool forLValue,
2826                                           AggValueSlot slot) {
2827  llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2828
2829  // Find the result expression, if any.
2830  const Expr *resultExpr = E->getResultExpr();
2831  LValueOrRValue result;
2832
2833  for (PseudoObjectExpr::const_semantics_iterator
2834         i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2835    const Expr *semantic = *i;
2836
2837    // If this semantic expression is an opaque value, bind it
2838    // to the result of its source expression.
2839    if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2840
2841      // If this is the result expression, we may need to evaluate
2842      // directly into the slot.
2843      typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2844      OVMA opaqueData;
2845      if (ov == resultExpr && ov->isRValue() && !forLValue &&
2846          CodeGenFunction::hasAggregateLLVMType(ov->getType()) &&
2847          !ov->getType()->isAnyComplexType()) {
2848        CGF.EmitAggExpr(ov->getSourceExpr(), slot);
2849
2850        LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
2851        opaqueData = OVMA::bind(CGF, ov, LV);
2852        result.RV = slot.asRValue();
2853
2854      // Otherwise, emit as normal.
2855      } else {
2856        opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2857
2858        // If this is the result, also evaluate the result now.
2859        if (ov == resultExpr) {
2860          if (forLValue)
2861            result.LV = CGF.EmitLValue(ov);
2862          else
2863            result.RV = CGF.EmitAnyExpr(ov, slot);
2864        }
2865      }
2866
2867      opaques.push_back(opaqueData);
2868
2869    // Otherwise, if the expression is the result, evaluate it
2870    // and remember the result.
2871    } else if (semantic == resultExpr) {
2872      if (forLValue)
2873        result.LV = CGF.EmitLValue(semantic);
2874      else
2875        result.RV = CGF.EmitAnyExpr(semantic, slot);
2876
2877    // Otherwise, evaluate the expression in an ignored context.
2878    } else {
2879      CGF.EmitIgnoredExpr(semantic);
2880    }
2881  }
2882
2883  // Unbind all the opaques now.
2884  for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2885    opaques[i].unbind(CGF);
2886
2887  return result;
2888}
2889
2890RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
2891                                               AggValueSlot slot) {
2892  return emitPseudoObjectExpr(*this, E, false, slot).RV;
2893}
2894
2895LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
2896  return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
2897}
2898