CGExpr.cpp revision cf18ae57176a827b668e059d559ee5f1d6f8f910
1//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "CGCall.h"
17#include "CGCXXABI.h"
18#include "CGDebugInfo.h"
19#include "CGRecordLayout.h"
20#include "CGObjCRuntime.h"
21#include "TargetInfo.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/Frontend/CodeGenOptions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/LLVMContext.h"
27#include "llvm/Support/MDBuilder.h"
28#include "llvm/Target/TargetData.h"
29using namespace clang;
30using namespace CodeGen;
31
32//===--------------------------------------------------------------------===//
33//                        Miscellaneous Helper Methods
34//===--------------------------------------------------------------------===//
35
36llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
37  unsigned addressSpace =
38    cast<llvm::PointerType>(value->getType())->getAddressSpace();
39
40  llvm::PointerType *destType = Int8PtrTy;
41  if (addressSpace)
42    destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
43
44  if (value->getType() == destType) return value;
45  return Builder.CreateBitCast(value, destType);
46}
47
48/// CreateTempAlloca - This creates a alloca and inserts it into the entry
49/// block.
50llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
51                                                    const Twine &Name) {
52  if (!Builder.isNamePreserving())
53    return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
54  return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
55}
56
57void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
58                                     llvm::Value *Init) {
59  llvm::StoreInst *Store = new llvm::StoreInst(Init, Var);
60  llvm::BasicBlock *Block = AllocaInsertPt->getParent();
61  Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
62}
63
64llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
65                                                const Twine &Name) {
66  llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
67  // FIXME: Should we prefer the preferred type alignment here?
68  CharUnits Align = getContext().getTypeAlignInChars(Ty);
69  Alloc->setAlignment(Align.getQuantity());
70  return Alloc;
71}
72
73llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
74                                                 const Twine &Name) {
75  llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
76  // FIXME: Should we prefer the preferred type alignment here?
77  CharUnits Align = getContext().getTypeAlignInChars(Ty);
78  Alloc->setAlignment(Align.getQuantity());
79  return Alloc;
80}
81
82/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
83/// expression and compare the result against zero, returning an Int1Ty value.
84llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
85  if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
86    llvm::Value *MemPtr = EmitScalarExpr(E);
87    return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
88  }
89
90  QualType BoolTy = getContext().BoolTy;
91  if (!E->getType()->isAnyComplexType())
92    return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
93
94  return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
95}
96
97/// EmitIgnoredExpr - Emit code to compute the specified expression,
98/// ignoring the result.
99void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
100  if (E->isRValue())
101    return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
102
103  // Just emit it as an l-value and drop the result.
104  EmitLValue(E);
105}
106
107/// EmitAnyExpr - Emit code to compute the specified expression which
108/// can have any type.  The result is returned as an RValue struct.
109/// If this is an aggregate expression, AggSlot indicates where the
110/// result should be returned.
111RValue CodeGenFunction::EmitAnyExpr(const Expr *E, AggValueSlot AggSlot,
112                                    bool IgnoreResult) {
113  if (!hasAggregateLLVMType(E->getType()))
114    return RValue::get(EmitScalarExpr(E, IgnoreResult));
115  else if (E->getType()->isAnyComplexType())
116    return RValue::getComplex(EmitComplexExpr(E, IgnoreResult, IgnoreResult));
117
118  EmitAggExpr(E, AggSlot, IgnoreResult);
119  return AggSlot.asRValue();
120}
121
122/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
123/// always be accessible even if no aggregate location is provided.
124RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
125  AggValueSlot AggSlot = AggValueSlot::ignored();
126
127  if (hasAggregateLLVMType(E->getType()) &&
128      !E->getType()->isAnyComplexType())
129    AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
130  return EmitAnyExpr(E, AggSlot);
131}
132
133/// EmitAnyExprToMem - Evaluate an expression into a given memory
134/// location.
135void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
136                                       llvm::Value *Location,
137                                       Qualifiers Quals,
138                                       bool IsInit) {
139  // FIXME: This function should take an LValue as an argument.
140  if (E->getType()->isAnyComplexType()) {
141    EmitComplexExprIntoAddr(E, Location, Quals.hasVolatile());
142  } else if (hasAggregateLLVMType(E->getType())) {
143    CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
144    EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
145                                         AggValueSlot::IsDestructed_t(IsInit),
146                                         AggValueSlot::DoesNotNeedGCBarriers,
147                                         AggValueSlot::IsAliased_t(!IsInit)));
148  } else {
149    RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
150    LValue LV = MakeAddrLValue(Location, E->getType());
151    EmitStoreThroughLValue(RV, LV);
152  }
153}
154
155namespace {
156/// \brief An adjustment to be made to the temporary created when emitting a
157/// reference binding, which accesses a particular subobject of that temporary.
158  struct SubobjectAdjustment {
159    enum { DerivedToBaseAdjustment, FieldAdjustment } Kind;
160
161    union {
162      struct {
163        const CastExpr *BasePath;
164        const CXXRecordDecl *DerivedClass;
165      } DerivedToBase;
166
167      FieldDecl *Field;
168    };
169
170    SubobjectAdjustment(const CastExpr *BasePath,
171                        const CXXRecordDecl *DerivedClass)
172      : Kind(DerivedToBaseAdjustment) {
173      DerivedToBase.BasePath = BasePath;
174      DerivedToBase.DerivedClass = DerivedClass;
175    }
176
177    SubobjectAdjustment(FieldDecl *Field)
178      : Kind(FieldAdjustment) {
179      this->Field = Field;
180    }
181  };
182}
183
184static llvm::Value *
185CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type,
186                         const NamedDecl *InitializedDecl) {
187  if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
188    if (VD->hasGlobalStorage()) {
189      SmallString<256> Name;
190      llvm::raw_svector_ostream Out(Name);
191      CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
192      Out.flush();
193
194      llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type);
195
196      // Create the reference temporary.
197      llvm::GlobalValue *RefTemp =
198        new llvm::GlobalVariable(CGF.CGM.getModule(),
199                                 RefTempTy, /*isConstant=*/false,
200                                 llvm::GlobalValue::InternalLinkage,
201                                 llvm::Constant::getNullValue(RefTempTy),
202                                 Name.str());
203      return RefTemp;
204    }
205  }
206
207  return CGF.CreateMemTemp(Type, "ref.tmp");
208}
209
210static llvm::Value *
211EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E,
212                            llvm::Value *&ReferenceTemporary,
213                            const CXXDestructorDecl *&ReferenceTemporaryDtor,
214                            QualType &ObjCARCReferenceLifetimeType,
215                            const NamedDecl *InitializedDecl) {
216  // Look through single-element init lists that claim to be lvalues. They're
217  // just syntactic wrappers in this case.
218  if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E)) {
219    if (ILE->getNumInits() == 1 && ILE->isGLValue())
220      E = ILE->getInit(0);
221  }
222
223  // Look through expressions for materialized temporaries (for now).
224  if (const MaterializeTemporaryExpr *M
225                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
226    // Objective-C++ ARC:
227    //   If we are binding a reference to a temporary that has ownership, we
228    //   need to perform retain/release operations on the temporary.
229    if (CGF.getContext().getLangOpts().ObjCAutoRefCount &&
230        E->getType()->isObjCLifetimeType() &&
231        (E->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
232         E->getType().getObjCLifetime() == Qualifiers::OCL_Weak ||
233         E->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing))
234      ObjCARCReferenceLifetimeType = E->getType();
235
236    E = M->GetTemporaryExpr();
237  }
238
239  if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E))
240    E = DAE->getExpr();
241
242  if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E)) {
243    CGF.enterFullExpression(EWC);
244    CodeGenFunction::RunCleanupsScope Scope(CGF);
245
246    return EmitExprForReferenceBinding(CGF, EWC->getSubExpr(),
247                                       ReferenceTemporary,
248                                       ReferenceTemporaryDtor,
249                                       ObjCARCReferenceLifetimeType,
250                                       InitializedDecl);
251  }
252
253  RValue RV;
254  if (E->isGLValue()) {
255    // Emit the expression as an lvalue.
256    LValue LV = CGF.EmitLValue(E);
257
258    if (LV.isSimple())
259      return LV.getAddress();
260
261    // We have to load the lvalue.
262    RV = CGF.EmitLoadOfLValue(LV);
263  } else {
264    if (!ObjCARCReferenceLifetimeType.isNull()) {
265      ReferenceTemporary = CreateReferenceTemporary(CGF,
266                                                  ObjCARCReferenceLifetimeType,
267                                                    InitializedDecl);
268
269
270      LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary,
271                                             ObjCARCReferenceLifetimeType);
272
273      CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl),
274                         RefTempDst, false);
275
276      bool ExtendsLifeOfTemporary = false;
277      if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
278        if (Var->extendsLifetimeOfTemporary())
279          ExtendsLifeOfTemporary = true;
280      } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) {
281        ExtendsLifeOfTemporary = true;
282      }
283
284      if (!ExtendsLifeOfTemporary) {
285        // Since the lifetime of this temporary isn't going to be extended,
286        // we need to clean it up ourselves at the end of the full expression.
287        switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
288        case Qualifiers::OCL_None:
289        case Qualifiers::OCL_ExplicitNone:
290        case Qualifiers::OCL_Autoreleasing:
291          break;
292
293        case Qualifiers::OCL_Strong: {
294          assert(!ObjCARCReferenceLifetimeType->isArrayType());
295          CleanupKind cleanupKind = CGF.getARCCleanupKind();
296          CGF.pushDestroy(cleanupKind,
297                          ReferenceTemporary,
298                          ObjCARCReferenceLifetimeType,
299                          CodeGenFunction::destroyARCStrongImprecise,
300                          cleanupKind & EHCleanup);
301          break;
302        }
303
304        case Qualifiers::OCL_Weak:
305          assert(!ObjCARCReferenceLifetimeType->isArrayType());
306          CGF.pushDestroy(NormalAndEHCleanup,
307                          ReferenceTemporary,
308                          ObjCARCReferenceLifetimeType,
309                          CodeGenFunction::destroyARCWeak,
310                          /*useEHCleanupForArray*/ true);
311          break;
312        }
313
314        ObjCARCReferenceLifetimeType = QualType();
315      }
316
317      return ReferenceTemporary;
318    }
319
320    SmallVector<SubobjectAdjustment, 2> Adjustments;
321    while (true) {
322      E = E->IgnoreParens();
323
324      if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
325        if ((CE->getCastKind() == CK_DerivedToBase ||
326             CE->getCastKind() == CK_UncheckedDerivedToBase) &&
327            E->getType()->isRecordType()) {
328          E = CE->getSubExpr();
329          CXXRecordDecl *Derived
330            = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
331          Adjustments.push_back(SubobjectAdjustment(CE, Derived));
332          continue;
333        }
334
335        if (CE->getCastKind() == CK_NoOp) {
336          E = CE->getSubExpr();
337          continue;
338        }
339      } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
340        if (!ME->isArrow() && ME->getBase()->isRValue()) {
341          assert(ME->getBase()->getType()->isRecordType());
342          if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
343            E = ME->getBase();
344            Adjustments.push_back(SubobjectAdjustment(Field));
345            continue;
346          }
347        }
348      }
349
350      if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E))
351        if (opaque->getType()->isRecordType())
352          return CGF.EmitOpaqueValueLValue(opaque).getAddress();
353
354      // Nothing changed.
355      break;
356    }
357
358    // Create a reference temporary if necessary.
359    AggValueSlot AggSlot = AggValueSlot::ignored();
360    if (CGF.hasAggregateLLVMType(E->getType()) &&
361        !E->getType()->isAnyComplexType()) {
362      ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
363                                                    InitializedDecl);
364      CharUnits Alignment = CGF.getContext().getTypeAlignInChars(E->getType());
365      AggValueSlot::IsDestructed_t isDestructed
366        = AggValueSlot::IsDestructed_t(InitializedDecl != 0);
367      AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Alignment,
368                                      Qualifiers(), isDestructed,
369                                      AggValueSlot::DoesNotNeedGCBarriers,
370                                      AggValueSlot::IsNotAliased);
371    }
372
373    if (InitializedDecl) {
374      // Get the destructor for the reference temporary.
375      if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
376        CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
377        if (!ClassDecl->hasTrivialDestructor())
378          ReferenceTemporaryDtor = ClassDecl->getDestructor();
379      }
380    }
381
382    RV = CGF.EmitAnyExpr(E, AggSlot);
383
384    // Check if need to perform derived-to-base casts and/or field accesses, to
385    // get from the temporary object we created (and, potentially, for which we
386    // extended the lifetime) to the subobject we're binding the reference to.
387    if (!Adjustments.empty()) {
388      llvm::Value *Object = RV.getAggregateAddr();
389      for (unsigned I = Adjustments.size(); I != 0; --I) {
390        SubobjectAdjustment &Adjustment = Adjustments[I-1];
391        switch (Adjustment.Kind) {
392        case SubobjectAdjustment::DerivedToBaseAdjustment:
393          Object =
394              CGF.GetAddressOfBaseClass(Object,
395                                        Adjustment.DerivedToBase.DerivedClass,
396                              Adjustment.DerivedToBase.BasePath->path_begin(),
397                              Adjustment.DerivedToBase.BasePath->path_end(),
398                                        /*NullCheckValue=*/false);
399          break;
400
401        case SubobjectAdjustment::FieldAdjustment: {
402          LValue LV = CGF.MakeAddrLValue(Object, E->getType());
403          LV = CGF.EmitLValueForField(LV, Adjustment.Field);
404          if (LV.isSimple()) {
405            Object = LV.getAddress();
406            break;
407          }
408
409          // For non-simple lvalues, we actually have to create a copy of
410          // the object we're binding to.
411          QualType T = Adjustment.Field->getType().getNonReferenceType()
412                                                  .getUnqualifiedType();
413          Object = CreateReferenceTemporary(CGF, T, InitializedDecl);
414          LValue TempLV = CGF.MakeAddrLValue(Object,
415                                             Adjustment.Field->getType());
416          CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV);
417          break;
418        }
419
420        }
421      }
422
423      return Object;
424    }
425  }
426
427  if (RV.isAggregate())
428    return RV.getAggregateAddr();
429
430  // Create a temporary variable that we can bind the reference to.
431  ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
432                                                InitializedDecl);
433
434
435  unsigned Alignment =
436    CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity();
437  if (RV.isScalar())
438    CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary,
439                          /*Volatile=*/false, Alignment, E->getType());
440  else
441    CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary,
442                           /*Volatile=*/false);
443  return ReferenceTemporary;
444}
445
446RValue
447CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E,
448                                            const NamedDecl *InitializedDecl) {
449  llvm::Value *ReferenceTemporary = 0;
450  const CXXDestructorDecl *ReferenceTemporaryDtor = 0;
451  QualType ObjCARCReferenceLifetimeType;
452  llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary,
453                                                   ReferenceTemporaryDtor,
454                                                   ObjCARCReferenceLifetimeType,
455                                                   InitializedDecl);
456  if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull())
457    return RValue::get(Value);
458
459  // Make sure to call the destructor for the reference temporary.
460  const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl);
461  if (VD && VD->hasGlobalStorage()) {
462    if (ReferenceTemporaryDtor) {
463      llvm::Constant *DtorFn =
464        CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
465      CGM.getCXXABI().registerGlobalDtor(*this, DtorFn,
466                                    cast<llvm::Constant>(ReferenceTemporary));
467    } else {
468      assert(!ObjCARCReferenceLifetimeType.isNull());
469      // Note: We intentionally do not register a global "destructor" to
470      // release the object.
471    }
472
473    return RValue::get(Value);
474  }
475
476  if (ReferenceTemporaryDtor)
477    PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary);
478  else {
479    switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
480    case Qualifiers::OCL_None:
481      llvm_unreachable(
482                      "Not a reference temporary that needs to be deallocated");
483    case Qualifiers::OCL_ExplicitNone:
484    case Qualifiers::OCL_Autoreleasing:
485      // Nothing to do.
486      break;
487
488    case Qualifiers::OCL_Strong: {
489      bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>();
490      CleanupKind cleanupKind = getARCCleanupKind();
491      pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType,
492                  precise ? destroyARCStrongPrecise : destroyARCStrongImprecise,
493                  cleanupKind & EHCleanup);
494      break;
495    }
496
497    case Qualifiers::OCL_Weak: {
498      // __weak objects always get EH cleanups; otherwise, exceptions
499      // could cause really nasty crashes instead of mere leaks.
500      pushDestroy(NormalAndEHCleanup, ReferenceTemporary,
501                  ObjCARCReferenceLifetimeType, destroyARCWeak, true);
502      break;
503    }
504    }
505  }
506
507  return RValue::get(Value);
508}
509
510
511/// getAccessedFieldNo - Given an encoded value and a result number, return the
512/// input field number being accessed.
513unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
514                                             const llvm::Constant *Elts) {
515  return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
516      ->getZExtValue();
517}
518
519void CodeGenFunction::EmitCheck(llvm::Value *Address, unsigned Size) {
520  if (!CatchUndefined)
521    return;
522
523  // This needs to be to the standard address space.
524  Address = Builder.CreateBitCast(Address, Int8PtrTy);
525
526  llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy);
527
528  // In time, people may want to control this and use a 1 here.
529  llvm::Value *Arg = Builder.getFalse();
530  llvm::Value *C = Builder.CreateCall2(F, Address, Arg);
531  llvm::BasicBlock *Cont = createBasicBlock();
532  llvm::BasicBlock *Check = createBasicBlock();
533  llvm::Value *NegativeOne = llvm::ConstantInt::get(IntPtrTy, -1ULL);
534  Builder.CreateCondBr(Builder.CreateICmpEQ(C, NegativeOne), Cont, Check);
535
536  EmitBlock(Check);
537  Builder.CreateCondBr(Builder.CreateICmpUGE(C,
538                                        llvm::ConstantInt::get(IntPtrTy, Size)),
539                       Cont, getTrapBB());
540  EmitBlock(Cont);
541}
542
543
544CodeGenFunction::ComplexPairTy CodeGenFunction::
545EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
546                         bool isInc, bool isPre) {
547  ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(),
548                                            LV.isVolatileQualified());
549
550  llvm::Value *NextVal;
551  if (isa<llvm::IntegerType>(InVal.first->getType())) {
552    uint64_t AmountVal = isInc ? 1 : -1;
553    NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
554
555    // Add the inc/dec to the real part.
556    NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
557  } else {
558    QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
559    llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
560    if (!isInc)
561      FVal.changeSign();
562    NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
563
564    // Add the inc/dec to the real part.
565    NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
566  }
567
568  ComplexPairTy IncVal(NextVal, InVal.second);
569
570  // Store the updated result through the lvalue.
571  StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified());
572
573  // If this is a postinc, return the value read from memory, otherwise use the
574  // updated value.
575  return isPre ? IncVal : InVal;
576}
577
578
579//===----------------------------------------------------------------------===//
580//                         LValue Expression Emission
581//===----------------------------------------------------------------------===//
582
583RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
584  if (Ty->isVoidType())
585    return RValue::get(0);
586
587  if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
588    llvm::Type *EltTy = ConvertType(CTy->getElementType());
589    llvm::Value *U = llvm::UndefValue::get(EltTy);
590    return RValue::getComplex(std::make_pair(U, U));
591  }
592
593  // If this is a use of an undefined aggregate type, the aggregate must have an
594  // identifiable address.  Just because the contents of the value are undefined
595  // doesn't mean that the address can't be taken and compared.
596  if (hasAggregateLLVMType(Ty)) {
597    llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
598    return RValue::getAggregate(DestPtr);
599  }
600
601  return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
602}
603
604RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
605                                              const char *Name) {
606  ErrorUnsupported(E, Name);
607  return GetUndefRValue(E->getType());
608}
609
610LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
611                                              const char *Name) {
612  ErrorUnsupported(E, Name);
613  llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
614  return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
615}
616
617LValue CodeGenFunction::EmitCheckedLValue(const Expr *E) {
618  LValue LV = EmitLValue(E);
619  if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
620    EmitCheck(LV.getAddress(),
621              getContext().getTypeSizeInChars(E->getType()).getQuantity());
622  return LV;
623}
624
625/// EmitLValue - Emit code to compute a designator that specifies the location
626/// of the expression.
627///
628/// This can return one of two things: a simple address or a bitfield reference.
629/// In either case, the LLVM Value* in the LValue structure is guaranteed to be
630/// an LLVM pointer type.
631///
632/// If this returns a bitfield reference, nothing about the pointee type of the
633/// LLVM value is known: For example, it may not be a pointer to an integer.
634///
635/// If this returns a normal address, and if the lvalue's C type is fixed size,
636/// this method guarantees that the returned pointer type will point to an LLVM
637/// type of the same size of the lvalue's type.  If the lvalue has a variable
638/// length type, this is not possible.
639///
640LValue CodeGenFunction::EmitLValue(const Expr *E) {
641  switch (E->getStmtClass()) {
642  default: return EmitUnsupportedLValue(E, "l-value expression");
643
644  case Expr::ObjCPropertyRefExprClass:
645    llvm_unreachable("cannot emit a property reference directly");
646
647  case Expr::ObjCSelectorExprClass:
648  return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
649  case Expr::ObjCIsaExprClass:
650    return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
651  case Expr::BinaryOperatorClass:
652    return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
653  case Expr::CompoundAssignOperatorClass:
654    if (!E->getType()->isAnyComplexType())
655      return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
656    return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
657  case Expr::CallExprClass:
658  case Expr::CXXMemberCallExprClass:
659  case Expr::CXXOperatorCallExprClass:
660  case Expr::UserDefinedLiteralClass:
661    return EmitCallExprLValue(cast<CallExpr>(E));
662  case Expr::VAArgExprClass:
663    return EmitVAArgExprLValue(cast<VAArgExpr>(E));
664  case Expr::DeclRefExprClass:
665    return EmitDeclRefLValue(cast<DeclRefExpr>(E));
666  case Expr::ParenExprClass:
667    return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
668  case Expr::GenericSelectionExprClass:
669    return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
670  case Expr::PredefinedExprClass:
671    return EmitPredefinedLValue(cast<PredefinedExpr>(E));
672  case Expr::StringLiteralClass:
673    return EmitStringLiteralLValue(cast<StringLiteral>(E));
674  case Expr::ObjCEncodeExprClass:
675    return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
676  case Expr::PseudoObjectExprClass:
677    return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
678  case Expr::InitListExprClass:
679    assert(cast<InitListExpr>(E)->getNumInits() == 1 &&
680           "Only single-element init list can be lvalue.");
681    return EmitLValue(cast<InitListExpr>(E)->getInit(0));
682
683  case Expr::CXXTemporaryObjectExprClass:
684  case Expr::CXXConstructExprClass:
685    return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
686  case Expr::CXXBindTemporaryExprClass:
687    return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
688  case Expr::LambdaExprClass:
689    return EmitLambdaLValue(cast<LambdaExpr>(E));
690
691  case Expr::ExprWithCleanupsClass: {
692    const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E);
693    enterFullExpression(cleanups);
694    RunCleanupsScope Scope(*this);
695    return EmitLValue(cleanups->getSubExpr());
696  }
697
698  case Expr::CXXScalarValueInitExprClass:
699    return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E));
700  case Expr::CXXDefaultArgExprClass:
701    return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
702  case Expr::CXXTypeidExprClass:
703    return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
704
705  case Expr::ObjCMessageExprClass:
706    return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
707  case Expr::ObjCIvarRefExprClass:
708    return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
709  case Expr::StmtExprClass:
710    return EmitStmtExprLValue(cast<StmtExpr>(E));
711  case Expr::UnaryOperatorClass:
712    return EmitUnaryOpLValue(cast<UnaryOperator>(E));
713  case Expr::ArraySubscriptExprClass:
714    return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
715  case Expr::ExtVectorElementExprClass:
716    return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
717  case Expr::MemberExprClass:
718    return EmitMemberExpr(cast<MemberExpr>(E));
719  case Expr::CompoundLiteralExprClass:
720    return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
721  case Expr::ConditionalOperatorClass:
722    return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
723  case Expr::BinaryConditionalOperatorClass:
724    return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
725  case Expr::ChooseExprClass:
726    return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext()));
727  case Expr::OpaqueValueExprClass:
728    return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
729  case Expr::SubstNonTypeTemplateParmExprClass:
730    return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
731  case Expr::ImplicitCastExprClass:
732  case Expr::CStyleCastExprClass:
733  case Expr::CXXFunctionalCastExprClass:
734  case Expr::CXXStaticCastExprClass:
735  case Expr::CXXDynamicCastExprClass:
736  case Expr::CXXReinterpretCastExprClass:
737  case Expr::CXXConstCastExprClass:
738  case Expr::ObjCBridgedCastExprClass:
739    return EmitCastLValue(cast<CastExpr>(E));
740
741  case Expr::MaterializeTemporaryExprClass:
742    return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
743  }
744}
745
746/// Given an object of the given canonical type, can we safely copy a
747/// value out of it based on its initializer?
748static bool isConstantEmittableObjectType(QualType type) {
749  assert(type.isCanonical());
750  assert(!type->isReferenceType());
751
752  // Must be const-qualified but non-volatile.
753  Qualifiers qs = type.getLocalQualifiers();
754  if (!qs.hasConst() || qs.hasVolatile()) return false;
755
756  // Otherwise, all object types satisfy this except C++ classes with
757  // mutable subobjects or non-trivial copy/destroy behavior.
758  if (const RecordType *RT = dyn_cast<RecordType>(type))
759    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
760      if (RD->hasMutableFields() || !RD->isTrivial())
761        return false;
762
763  return true;
764}
765
766/// Can we constant-emit a load of a reference to a variable of the
767/// given type?  This is different from predicates like
768/// Decl::isUsableInConstantExpressions because we do want it to apply
769/// in situations that don't necessarily satisfy the language's rules
770/// for this (e.g. C++'s ODR-use rules).  For example, we want to able
771/// to do this with const float variables even if those variables
772/// aren't marked 'constexpr'.
773enum ConstantEmissionKind {
774  CEK_None,
775  CEK_AsReferenceOnly,
776  CEK_AsValueOrReference,
777  CEK_AsValueOnly
778};
779static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
780  type = type.getCanonicalType();
781  if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) {
782    if (isConstantEmittableObjectType(ref->getPointeeType()))
783      return CEK_AsValueOrReference;
784    return CEK_AsReferenceOnly;
785  }
786  if (isConstantEmittableObjectType(type))
787    return CEK_AsValueOnly;
788  return CEK_None;
789}
790
791/// Try to emit a reference to the given value without producing it as
792/// an l-value.  This is actually more than an optimization: we can't
793/// produce an l-value for variables that we never actually captured
794/// in a block or lambda, which means const int variables or constexpr
795/// literals or similar.
796CodeGenFunction::ConstantEmission
797CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
798  ValueDecl *value = refExpr->getDecl();
799
800  // The value needs to be an enum constant or a constant variable.
801  ConstantEmissionKind CEK;
802  if (isa<ParmVarDecl>(value)) {
803    CEK = CEK_None;
804  } else if (VarDecl *var = dyn_cast<VarDecl>(value)) {
805    CEK = checkVarTypeForConstantEmission(var->getType());
806  } else if (isa<EnumConstantDecl>(value)) {
807    CEK = CEK_AsValueOnly;
808  } else {
809    CEK = CEK_None;
810  }
811  if (CEK == CEK_None) return ConstantEmission();
812
813  Expr::EvalResult result;
814  bool resultIsReference;
815  QualType resultType;
816
817  // It's best to evaluate all the way as an r-value if that's permitted.
818  if (CEK != CEK_AsReferenceOnly &&
819      refExpr->EvaluateAsRValue(result, getContext())) {
820    resultIsReference = false;
821    resultType = refExpr->getType();
822
823  // Otherwise, try to evaluate as an l-value.
824  } else if (CEK != CEK_AsValueOnly &&
825             refExpr->EvaluateAsLValue(result, getContext())) {
826    resultIsReference = true;
827    resultType = value->getType();
828
829  // Failure.
830  } else {
831    return ConstantEmission();
832  }
833
834  // In any case, if the initializer has side-effects, abandon ship.
835  if (result.HasSideEffects)
836    return ConstantEmission();
837
838  // Emit as a constant.
839  llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
840
841  // Make sure we emit a debug reference to the global variable.
842  // This should probably fire even for
843  if (isa<VarDecl>(value)) {
844    if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
845      EmitDeclRefExprDbgValue(refExpr, C);
846  } else {
847    assert(isa<EnumConstantDecl>(value));
848    EmitDeclRefExprDbgValue(refExpr, C);
849  }
850
851  // If we emitted a reference constant, we need to dereference that.
852  if (resultIsReference)
853    return ConstantEmission::forReference(C);
854
855  return ConstantEmission::forValue(C);
856}
857
858llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) {
859  return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
860                          lvalue.getAlignment().getQuantity(),
861                          lvalue.getType(), lvalue.getTBAAInfo());
862}
863
864static bool hasBooleanRepresentation(QualType Ty) {
865  if (Ty->isBooleanType())
866    return true;
867
868  if (const EnumType *ET = Ty->getAs<EnumType>())
869    return ET->getDecl()->getIntegerType()->isBooleanType();
870
871  if (const AtomicType *AT = Ty->getAs<AtomicType>())
872    return hasBooleanRepresentation(AT->getValueType());
873
874  return false;
875}
876
877llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
878  const EnumType *ET = Ty->getAs<EnumType>();
879  bool IsRegularCPlusPlusEnum = (getLangOpts().CPlusPlus && ET &&
880                                 CGM.getCodeGenOpts().StrictEnums &&
881                                 !ET->getDecl()->isFixed());
882  bool IsBool = hasBooleanRepresentation(Ty);
883  if (!IsBool && !IsRegularCPlusPlusEnum)
884    return NULL;
885
886  llvm::APInt Min;
887  llvm::APInt End;
888  if (IsBool) {
889    Min = llvm::APInt(8, 0);
890    End = llvm::APInt(8, 2);
891  } else {
892    const EnumDecl *ED = ET->getDecl();
893    llvm::Type *LTy = ConvertTypeForMem(ED->getIntegerType());
894    unsigned Bitwidth = LTy->getScalarSizeInBits();
895    unsigned NumNegativeBits = ED->getNumNegativeBits();
896    unsigned NumPositiveBits = ED->getNumPositiveBits();
897
898    if (NumNegativeBits) {
899      unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
900      assert(NumBits <= Bitwidth);
901      End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
902      Min = -End;
903    } else {
904      assert(NumPositiveBits <= Bitwidth);
905      End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
906      Min = llvm::APInt(Bitwidth, 0);
907    }
908  }
909
910  llvm::MDBuilder MDHelper(getLLVMContext());
911  return MDHelper.createRange(Min, End);
912}
913
914llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
915                                              unsigned Alignment, QualType Ty,
916                                              llvm::MDNode *TBAAInfo) {
917  llvm::LoadInst *Load = Builder.CreateLoad(Addr);
918  if (Volatile)
919    Load->setVolatile(true);
920  if (Alignment)
921    Load->setAlignment(Alignment);
922  if (TBAAInfo)
923    CGM.DecorateInstruction(Load, TBAAInfo);
924  // If this is an atomic type, all normal reads must be atomic
925  if (Ty->isAtomicType())
926    Load->setAtomic(llvm::SequentiallyConsistent);
927
928  if (CGM.getCodeGenOpts().OptimizationLevel > 0)
929    if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
930      Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
931
932  return EmitFromMemory(Load, Ty);
933}
934
935llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
936  // Bool has a different representation in memory than in registers.
937  if (hasBooleanRepresentation(Ty)) {
938    // This should really always be an i1, but sometimes it's already
939    // an i8, and it's awkward to track those cases down.
940    if (Value->getType()->isIntegerTy(1))
941      return Builder.CreateZExt(Value, Builder.getInt8Ty(), "frombool");
942    assert(Value->getType()->isIntegerTy(8) && "value rep of bool not i1/i8");
943  }
944
945  return Value;
946}
947
948llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
949  // Bool has a different representation in memory than in registers.
950  if (hasBooleanRepresentation(Ty)) {
951    assert(Value->getType()->isIntegerTy(8) && "memory rep of bool not i8");
952    return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
953  }
954
955  return Value;
956}
957
958void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
959                                        bool Volatile, unsigned Alignment,
960                                        QualType Ty,
961                                        llvm::MDNode *TBAAInfo,
962                                        bool isInit) {
963  Value = EmitToMemory(Value, Ty);
964
965  llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
966  if (Alignment)
967    Store->setAlignment(Alignment);
968  if (TBAAInfo)
969    CGM.DecorateInstruction(Store, TBAAInfo);
970  if (!isInit && Ty->isAtomicType())
971    Store->setAtomic(llvm::SequentiallyConsistent);
972}
973
974void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
975    bool isInit) {
976  EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
977                    lvalue.getAlignment().getQuantity(), lvalue.getType(),
978                    lvalue.getTBAAInfo(), isInit);
979}
980
981/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
982/// method emits the address of the lvalue, then loads the result as an rvalue,
983/// returning the rvalue.
984RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) {
985  if (LV.isObjCWeak()) {
986    // load of a __weak object.
987    llvm::Value *AddrWeakObj = LV.getAddress();
988    return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
989                                                             AddrWeakObj));
990  }
991  if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak)
992    return RValue::get(EmitARCLoadWeak(LV.getAddress()));
993
994  if (LV.isSimple()) {
995    assert(!LV.getType()->isFunctionType());
996
997    // Everything needs a load.
998    return RValue::get(EmitLoadOfScalar(LV));
999  }
1000
1001  if (LV.isVectorElt()) {
1002    llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
1003                                              LV.isVolatileQualified());
1004    Load->setAlignment(LV.getAlignment().getQuantity());
1005    return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1006                                                    "vecext"));
1007  }
1008
1009  // If this is a reference to a subset of the elements of a vector, either
1010  // shuffle the input or extract/insert them as appropriate.
1011  if (LV.isExtVectorElt())
1012    return EmitLoadOfExtVectorElementLValue(LV);
1013
1014  assert(LV.isBitField() && "Unknown LValue type!");
1015  return EmitLoadOfBitfieldLValue(LV);
1016}
1017
1018RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1019  const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1020
1021  // Get the output type.
1022  llvm::Type *ResLTy = ConvertType(LV.getType());
1023  unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy);
1024
1025  // Compute the result as an OR of all of the individual component accesses.
1026  llvm::Value *Res = 0;
1027  for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
1028    const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
1029
1030    // Get the field pointer.
1031    llvm::Value *Ptr = LV.getBitFieldBaseAddr();
1032
1033    // Only offset by the field index if used, so that incoming values are not
1034    // required to be structures.
1035    if (AI.FieldIndex)
1036      Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
1037
1038    // Offset by the byte offset, if used.
1039    if (!AI.FieldByteOffset.isZero()) {
1040      Ptr = EmitCastToVoidPtr(Ptr);
1041      Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(),
1042                                       "bf.field.offs");
1043    }
1044
1045    // Cast to the access type.
1046    llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), AI.AccessWidth,
1047                       CGM.getContext().getTargetAddressSpace(LV.getType()));
1048    Ptr = Builder.CreateBitCast(Ptr, PTy);
1049
1050    // Perform the load.
1051    llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified());
1052    if (!AI.AccessAlignment.isZero())
1053      Load->setAlignment(AI.AccessAlignment.getQuantity());
1054
1055    // Shift out unused low bits and mask out unused high bits.
1056    llvm::Value *Val = Load;
1057    if (AI.FieldBitStart)
1058      Val = Builder.CreateLShr(Load, AI.FieldBitStart);
1059    Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth,
1060                                                            AI.TargetBitWidth),
1061                            "bf.clear");
1062
1063    // Extend or truncate to the target size.
1064    if (AI.AccessWidth < ResSizeInBits)
1065      Val = Builder.CreateZExt(Val, ResLTy);
1066    else if (AI.AccessWidth > ResSizeInBits)
1067      Val = Builder.CreateTrunc(Val, ResLTy);
1068
1069    // Shift into place, and OR into the result.
1070    if (AI.TargetBitOffset)
1071      Val = Builder.CreateShl(Val, AI.TargetBitOffset);
1072    Res = Res ? Builder.CreateOr(Res, Val) : Val;
1073  }
1074
1075  // If the bit-field is signed, perform the sign-extension.
1076  //
1077  // FIXME: This can easily be folded into the load of the high bits, which
1078  // could also eliminate the mask of high bits in some situations.
1079  if (Info.isSigned()) {
1080    unsigned ExtraBits = ResSizeInBits - Info.getSize();
1081    if (ExtraBits)
1082      Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits),
1083                               ExtraBits, "bf.val.sext");
1084  }
1085
1086  return RValue::get(Res);
1087}
1088
1089// If this is a reference to a subset of the elements of a vector, create an
1090// appropriate shufflevector.
1091RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1092  llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
1093                                            LV.isVolatileQualified());
1094  Load->setAlignment(LV.getAlignment().getQuantity());
1095  llvm::Value *Vec = Load;
1096
1097  const llvm::Constant *Elts = LV.getExtVectorElts();
1098
1099  // If the result of the expression is a non-vector type, we must be extracting
1100  // a single element.  Just codegen as an extractelement.
1101  const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1102  if (!ExprVT) {
1103    unsigned InIdx = getAccessedFieldNo(0, Elts);
1104    llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1105    return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1106  }
1107
1108  // Always use shuffle vector to try to retain the original program structure
1109  unsigned NumResultElts = ExprVT->getNumElements();
1110
1111  SmallVector<llvm::Constant*, 4> Mask;
1112  for (unsigned i = 0; i != NumResultElts; ++i)
1113    Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1114
1115  llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1116  Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1117                                    MaskV);
1118  return RValue::get(Vec);
1119}
1120
1121
1122
1123/// EmitStoreThroughLValue - Store the specified rvalue into the specified
1124/// lvalue, where both are guaranteed to the have the same type, and that type
1125/// is 'Ty'.
1126void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) {
1127  if (!Dst.isSimple()) {
1128    if (Dst.isVectorElt()) {
1129      // Read/modify/write the vector, inserting the new element.
1130      llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
1131                                                Dst.isVolatileQualified());
1132      Load->setAlignment(Dst.getAlignment().getQuantity());
1133      llvm::Value *Vec = Load;
1134      Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1135                                        Dst.getVectorIdx(), "vecins");
1136      llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
1137                                                   Dst.isVolatileQualified());
1138      Store->setAlignment(Dst.getAlignment().getQuantity());
1139      return;
1140    }
1141
1142    // If this is an update of extended vector elements, insert them as
1143    // appropriate.
1144    if (Dst.isExtVectorElt())
1145      return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1146
1147    assert(Dst.isBitField() && "Unknown LValue type");
1148    return EmitStoreThroughBitfieldLValue(Src, Dst);
1149  }
1150
1151  // There's special magic for assigning into an ARC-qualified l-value.
1152  if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1153    switch (Lifetime) {
1154    case Qualifiers::OCL_None:
1155      llvm_unreachable("present but none");
1156
1157    case Qualifiers::OCL_ExplicitNone:
1158      // nothing special
1159      break;
1160
1161    case Qualifiers::OCL_Strong:
1162      EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1163      return;
1164
1165    case Qualifiers::OCL_Weak:
1166      EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1167      return;
1168
1169    case Qualifiers::OCL_Autoreleasing:
1170      Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1171                                                     Src.getScalarVal()));
1172      // fall into the normal path
1173      break;
1174    }
1175  }
1176
1177  if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1178    // load of a __weak object.
1179    llvm::Value *LvalueDst = Dst.getAddress();
1180    llvm::Value *src = Src.getScalarVal();
1181     CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1182    return;
1183  }
1184
1185  if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1186    // load of a __strong object.
1187    llvm::Value *LvalueDst = Dst.getAddress();
1188    llvm::Value *src = Src.getScalarVal();
1189    if (Dst.isObjCIvar()) {
1190      assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1191      llvm::Type *ResultType = ConvertType(getContext().LongTy);
1192      llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1193      llvm::Value *dst = RHS;
1194      RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1195      llvm::Value *LHS =
1196        Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1197      llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1198      CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1199                                              BytesBetween);
1200    } else if (Dst.isGlobalObjCRef()) {
1201      CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1202                                                Dst.isThreadLocalRef());
1203    }
1204    else
1205      CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1206    return;
1207  }
1208
1209  assert(Src.isScalar() && "Can't emit an agg store with this method");
1210  EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1211}
1212
1213void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1214                                                     llvm::Value **Result) {
1215  const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1216
1217  // Get the output type.
1218  llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1219  unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy);
1220
1221  // Get the source value, truncated to the width of the bit-field.
1222  llvm::Value *SrcVal = Src.getScalarVal();
1223
1224  if (hasBooleanRepresentation(Dst.getType()))
1225    SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false);
1226
1227  SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits,
1228                                                                Info.getSize()),
1229                             "bf.value");
1230
1231  // Return the new value of the bit-field, if requested.
1232  if (Result) {
1233    // Cast back to the proper type for result.
1234    llvm::Type *SrcTy = Src.getScalarVal()->getType();
1235    llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false,
1236                                                   "bf.reload.val");
1237
1238    // Sign extend if necessary.
1239    if (Info.isSigned()) {
1240      unsigned ExtraBits = ResSizeInBits - Info.getSize();
1241      if (ExtraBits)
1242        ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits),
1243                                       ExtraBits, "bf.reload.sext");
1244    }
1245
1246    *Result = ReloadVal;
1247  }
1248
1249  // Iterate over the components, writing each piece to memory.
1250  for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
1251    const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
1252
1253    // Get the field pointer.
1254    llvm::Value *Ptr = Dst.getBitFieldBaseAddr();
1255    unsigned addressSpace =
1256      cast<llvm::PointerType>(Ptr->getType())->getAddressSpace();
1257
1258    // Only offset by the field index if used, so that incoming values are not
1259    // required to be structures.
1260    if (AI.FieldIndex)
1261      Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
1262
1263    // Offset by the byte offset, if used.
1264    if (!AI.FieldByteOffset.isZero()) {
1265      Ptr = EmitCastToVoidPtr(Ptr);
1266      Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(),
1267                                       "bf.field.offs");
1268    }
1269
1270    // Cast to the access type.
1271    llvm::Type *AccessLTy =
1272      llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth);
1273
1274    llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace);
1275    Ptr = Builder.CreateBitCast(Ptr, PTy);
1276
1277    // Extract the piece of the bit-field value to write in this access, limited
1278    // to the values that are part of this access.
1279    llvm::Value *Val = SrcVal;
1280    if (AI.TargetBitOffset)
1281      Val = Builder.CreateLShr(Val, AI.TargetBitOffset);
1282    Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits,
1283                                                            AI.TargetBitWidth));
1284
1285    // Extend or truncate to the access size.
1286    if (ResSizeInBits < AI.AccessWidth)
1287      Val = Builder.CreateZExt(Val, AccessLTy);
1288    else if (ResSizeInBits > AI.AccessWidth)
1289      Val = Builder.CreateTrunc(Val, AccessLTy);
1290
1291    // Shift into the position in memory.
1292    if (AI.FieldBitStart)
1293      Val = Builder.CreateShl(Val, AI.FieldBitStart);
1294
1295    // If necessary, load and OR in bits that are outside of the bit-field.
1296    if (AI.TargetBitWidth != AI.AccessWidth) {
1297      llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified());
1298      if (!AI.AccessAlignment.isZero())
1299        Load->setAlignment(AI.AccessAlignment.getQuantity());
1300
1301      // Compute the mask for zeroing the bits that are part of the bit-field.
1302      llvm::APInt InvMask =
1303        ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart,
1304                                 AI.FieldBitStart + AI.TargetBitWidth);
1305
1306      // Apply the mask and OR in to the value to write.
1307      Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val);
1308    }
1309
1310    // Write the value.
1311    llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr,
1312                                                 Dst.isVolatileQualified());
1313    if (!AI.AccessAlignment.isZero())
1314      Store->setAlignment(AI.AccessAlignment.getQuantity());
1315  }
1316}
1317
1318void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1319                                                               LValue Dst) {
1320  // This access turns into a read/modify/write of the vector.  Load the input
1321  // value now.
1322  llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
1323                                            Dst.isVolatileQualified());
1324  Load->setAlignment(Dst.getAlignment().getQuantity());
1325  llvm::Value *Vec = Load;
1326  const llvm::Constant *Elts = Dst.getExtVectorElts();
1327
1328  llvm::Value *SrcVal = Src.getScalarVal();
1329
1330  if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1331    unsigned NumSrcElts = VTy->getNumElements();
1332    unsigned NumDstElts =
1333       cast<llvm::VectorType>(Vec->getType())->getNumElements();
1334    if (NumDstElts == NumSrcElts) {
1335      // Use shuffle vector is the src and destination are the same number of
1336      // elements and restore the vector mask since it is on the side it will be
1337      // stored.
1338      SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1339      for (unsigned i = 0; i != NumSrcElts; ++i)
1340        Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1341
1342      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1343      Vec = Builder.CreateShuffleVector(SrcVal,
1344                                        llvm::UndefValue::get(Vec->getType()),
1345                                        MaskV);
1346    } else if (NumDstElts > NumSrcElts) {
1347      // Extended the source vector to the same length and then shuffle it
1348      // into the destination.
1349      // FIXME: since we're shuffling with undef, can we just use the indices
1350      //        into that?  This could be simpler.
1351      SmallVector<llvm::Constant*, 4> ExtMask;
1352      for (unsigned i = 0; i != NumSrcElts; ++i)
1353        ExtMask.push_back(Builder.getInt32(i));
1354      ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1355      llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1356      llvm::Value *ExtSrcVal =
1357        Builder.CreateShuffleVector(SrcVal,
1358                                    llvm::UndefValue::get(SrcVal->getType()),
1359                                    ExtMaskV);
1360      // build identity
1361      SmallVector<llvm::Constant*, 4> Mask;
1362      for (unsigned i = 0; i != NumDstElts; ++i)
1363        Mask.push_back(Builder.getInt32(i));
1364
1365      // modify when what gets shuffled in
1366      for (unsigned i = 0; i != NumSrcElts; ++i)
1367        Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1368      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1369      Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1370    } else {
1371      // We should never shorten the vector
1372      llvm_unreachable("unexpected shorten vector length");
1373    }
1374  } else {
1375    // If the Src is a scalar (not a vector) it must be updating one element.
1376    unsigned InIdx = getAccessedFieldNo(0, Elts);
1377    llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1378    Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1379  }
1380
1381  llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
1382                                               Dst.isVolatileQualified());
1383  Store->setAlignment(Dst.getAlignment().getQuantity());
1384}
1385
1386// setObjCGCLValueClass - sets class of he lvalue for the purpose of
1387// generating write-barries API. It is currently a global, ivar,
1388// or neither.
1389static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1390                                 LValue &LV,
1391                                 bool IsMemberAccess=false) {
1392  if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1393    return;
1394
1395  if (isa<ObjCIvarRefExpr>(E)) {
1396    QualType ExpTy = E->getType();
1397    if (IsMemberAccess && ExpTy->isPointerType()) {
1398      // If ivar is a structure pointer, assigning to field of
1399      // this struct follows gcc's behavior and makes it a non-ivar
1400      // writer-barrier conservatively.
1401      ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1402      if (ExpTy->isRecordType()) {
1403        LV.setObjCIvar(false);
1404        return;
1405      }
1406    }
1407    LV.setObjCIvar(true);
1408    ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
1409    LV.setBaseIvarExp(Exp->getBase());
1410    LV.setObjCArray(E->getType()->isArrayType());
1411    return;
1412  }
1413
1414  if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
1415    if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1416      if (VD->hasGlobalStorage()) {
1417        LV.setGlobalObjCRef(true);
1418        LV.setThreadLocalRef(VD->isThreadSpecified());
1419      }
1420    }
1421    LV.setObjCArray(E->getType()->isArrayType());
1422    return;
1423  }
1424
1425  if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
1426    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1427    return;
1428  }
1429
1430  if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
1431    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1432    if (LV.isObjCIvar()) {
1433      // If cast is to a structure pointer, follow gcc's behavior and make it
1434      // a non-ivar write-barrier.
1435      QualType ExpTy = E->getType();
1436      if (ExpTy->isPointerType())
1437        ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1438      if (ExpTy->isRecordType())
1439        LV.setObjCIvar(false);
1440    }
1441    return;
1442  }
1443
1444  if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1445    setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1446    return;
1447  }
1448
1449  if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1450    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1451    return;
1452  }
1453
1454  if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
1455    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1456    return;
1457  }
1458
1459  if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1460    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1461    return;
1462  }
1463
1464  if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1465    setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1466    if (LV.isObjCIvar() && !LV.isObjCArray())
1467      // Using array syntax to assigning to what an ivar points to is not
1468      // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1469      LV.setObjCIvar(false);
1470    else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1471      // Using array syntax to assigning to what global points to is not
1472      // same as assigning to the global itself. {id *G;} G[i] = 0;
1473      LV.setGlobalObjCRef(false);
1474    return;
1475  }
1476
1477  if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
1478    setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1479    // We don't know if member is an 'ivar', but this flag is looked at
1480    // only in the context of LV.isObjCIvar().
1481    LV.setObjCArray(E->getType()->isArrayType());
1482    return;
1483  }
1484}
1485
1486static llvm::Value *
1487EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1488                                llvm::Value *V, llvm::Type *IRType,
1489                                StringRef Name = StringRef()) {
1490  unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1491  return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1492}
1493
1494static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1495                                      const Expr *E, const VarDecl *VD) {
1496  assert((VD->hasExternalStorage() || VD->isFileVarDecl()) &&
1497         "Var decl must have external storage or be a file var decl!");
1498
1499  llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1500  llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1501  V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1502  CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1503  QualType T = E->getType();
1504  LValue LV;
1505  if (VD->getType()->isReferenceType()) {
1506    llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1507    LI->setAlignment(Alignment.getQuantity());
1508    V = LI;
1509    LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1510  } else {
1511    LV = CGF.MakeAddrLValue(V, E->getType(), Alignment);
1512  }
1513  setObjCGCLValueClass(CGF.getContext(), E, LV);
1514  return LV;
1515}
1516
1517static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1518                                     const Expr *E, const FunctionDecl *FD) {
1519  llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1520  if (!FD->hasPrototype()) {
1521    if (const FunctionProtoType *Proto =
1522            FD->getType()->getAs<FunctionProtoType>()) {
1523      // Ugly case: for a K&R-style definition, the type of the definition
1524      // isn't the same as the type of a use.  Correct for this with a
1525      // bitcast.
1526      QualType NoProtoType =
1527          CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
1528      NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1529      V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1530    }
1531  }
1532  CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1533  return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1534}
1535
1536LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1537  const NamedDecl *ND = E->getDecl();
1538  CharUnits Alignment = getContext().getDeclAlign(ND);
1539  QualType T = E->getType();
1540
1541  // FIXME: We should be able to assert this for FunctionDecls as well!
1542  // FIXME: We should be able to assert this for all DeclRefExprs, not just
1543  // those with a valid source location.
1544  assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
1545          !E->getLocation().isValid()) &&
1546         "Should not use decl without marking it used!");
1547
1548  if (ND->hasAttr<WeakRefAttr>()) {
1549    const ValueDecl *VD = cast<ValueDecl>(ND);
1550    llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1551    return MakeAddrLValue(Aliasee, E->getType(), Alignment);
1552  }
1553
1554  if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1555    // Check if this is a global variable.
1556    if (VD->hasExternalStorage() || VD->isFileVarDecl())
1557      return EmitGlobalVarDeclLValue(*this, E, VD);
1558
1559    bool isBlockVariable = VD->hasAttr<BlocksAttr>();
1560
1561    bool NonGCable = VD->hasLocalStorage() &&
1562                     !VD->getType()->isReferenceType() &&
1563                     !isBlockVariable;
1564
1565    llvm::Value *V = LocalDeclMap[VD];
1566    if (!V && VD->isStaticLocal())
1567      V = CGM.getStaticLocalDeclAddress(VD);
1568
1569    // Use special handling for lambdas.
1570    if (!V) {
1571      if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) {
1572        QualType LambdaTagType = getContext().getTagDeclType(FD->getParent());
1573        LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue,
1574                                                     LambdaTagType);
1575        return EmitLValueForField(LambdaLV, FD);
1576      }
1577
1578      assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal());
1579      CharUnits alignment = getContext().getDeclAlign(VD);
1580      return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable),
1581                            E->getType(), alignment);
1582    }
1583
1584    assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1585
1586    if (isBlockVariable)
1587      V = BuildBlockByrefAddress(V, VD);
1588
1589    LValue LV;
1590    if (VD->getType()->isReferenceType()) {
1591      llvm::LoadInst *LI = Builder.CreateLoad(V);
1592      LI->setAlignment(Alignment.getQuantity());
1593      V = LI;
1594      LV = MakeNaturalAlignAddrLValue(V, T);
1595    } else {
1596      LV = MakeAddrLValue(V, T, Alignment);
1597    }
1598
1599    if (NonGCable) {
1600      LV.getQuals().removeObjCGCAttr();
1601      LV.setNonGC(true);
1602    }
1603    setObjCGCLValueClass(getContext(), E, LV);
1604    return LV;
1605  }
1606
1607  if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND))
1608    return EmitFunctionDeclLValue(*this, E, fn);
1609
1610  llvm_unreachable("Unhandled DeclRefExpr");
1611}
1612
1613LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1614  // __extension__ doesn't affect lvalue-ness.
1615  if (E->getOpcode() == UO_Extension)
1616    return EmitLValue(E->getSubExpr());
1617
1618  QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1619  switch (E->getOpcode()) {
1620  default: llvm_unreachable("Unknown unary operator lvalue!");
1621  case UO_Deref: {
1622    QualType T = E->getSubExpr()->getType()->getPointeeType();
1623    assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1624
1625    LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1626    LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1627
1628    // We should not generate __weak write barrier on indirect reference
1629    // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1630    // But, we continue to generate __strong write barrier on indirect write
1631    // into a pointer to object.
1632    if (getContext().getLangOpts().ObjC1 &&
1633        getContext().getLangOpts().getGC() != LangOptions::NonGC &&
1634        LV.isObjCWeak())
1635      LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1636    return LV;
1637  }
1638  case UO_Real:
1639  case UO_Imag: {
1640    LValue LV = EmitLValue(E->getSubExpr());
1641    assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1642    llvm::Value *Addr = LV.getAddress();
1643
1644    // __real is valid on scalars.  This is a faster way of testing that.
1645    // __imag can only produce an rvalue on scalars.
1646    if (E->getOpcode() == UO_Real &&
1647        !cast<llvm::PointerType>(Addr->getType())
1648           ->getElementType()->isStructTy()) {
1649      assert(E->getSubExpr()->getType()->isArithmeticType());
1650      return LV;
1651    }
1652
1653    assert(E->getSubExpr()->getType()->isAnyComplexType());
1654
1655    unsigned Idx = E->getOpcode() == UO_Imag;
1656    return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1657                                                  Idx, "idx"),
1658                          ExprTy);
1659  }
1660  case UO_PreInc:
1661  case UO_PreDec: {
1662    LValue LV = EmitLValue(E->getSubExpr());
1663    bool isInc = E->getOpcode() == UO_PreInc;
1664
1665    if (E->getType()->isAnyComplexType())
1666      EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1667    else
1668      EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1669    return LV;
1670  }
1671  }
1672}
1673
1674LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1675  return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1676                        E->getType());
1677}
1678
1679LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1680  return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1681                        E->getType());
1682}
1683
1684
1685LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
1686  switch (E->getIdentType()) {
1687  default:
1688    return EmitUnsupportedLValue(E, "predefined expression");
1689
1690  case PredefinedExpr::Func:
1691  case PredefinedExpr::Function:
1692  case PredefinedExpr::PrettyFunction: {
1693    unsigned Type = E->getIdentType();
1694    std::string GlobalVarName;
1695
1696    switch (Type) {
1697    default: llvm_unreachable("Invalid type");
1698    case PredefinedExpr::Func:
1699      GlobalVarName = "__func__.";
1700      break;
1701    case PredefinedExpr::Function:
1702      GlobalVarName = "__FUNCTION__.";
1703      break;
1704    case PredefinedExpr::PrettyFunction:
1705      GlobalVarName = "__PRETTY_FUNCTION__.";
1706      break;
1707    }
1708
1709    StringRef FnName = CurFn->getName();
1710    if (FnName.startswith("\01"))
1711      FnName = FnName.substr(1);
1712    GlobalVarName += FnName;
1713
1714    const Decl *CurDecl = CurCodeDecl;
1715    if (CurDecl == 0)
1716      CurDecl = getContext().getTranslationUnitDecl();
1717
1718    std::string FunctionName =
1719        (isa<BlockDecl>(CurDecl)
1720         ? FnName.str()
1721         : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)Type, CurDecl));
1722
1723    llvm::Constant *C =
1724      CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str());
1725    return MakeAddrLValue(C, E->getType());
1726  }
1727  }
1728}
1729
1730llvm::BasicBlock *CodeGenFunction::getTrapBB() {
1731  const CodeGenOptions &GCO = CGM.getCodeGenOpts();
1732
1733  // If we are not optimzing, don't collapse all calls to trap in the function
1734  // to the same call, that way, in the debugger they can see which operation
1735  // did in fact fail.  If we are optimizing, we collapse all calls to trap down
1736  // to just one per function to save on codesize.
1737  if (GCO.OptimizationLevel && TrapBB)
1738    return TrapBB;
1739
1740  llvm::BasicBlock *Cont = 0;
1741  if (HaveInsertPoint()) {
1742    Cont = createBasicBlock("cont");
1743    EmitBranch(Cont);
1744  }
1745  TrapBB = createBasicBlock("trap");
1746  EmitBlock(TrapBB);
1747
1748  llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
1749  llvm::CallInst *TrapCall = Builder.CreateCall(F);
1750  TrapCall->setDoesNotReturn();
1751  TrapCall->setDoesNotThrow();
1752  Builder.CreateUnreachable();
1753
1754  if (Cont)
1755    EmitBlock(Cont);
1756  return TrapBB;
1757}
1758
1759/// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
1760/// array to pointer, return the array subexpression.
1761static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
1762  // If this isn't just an array->pointer decay, bail out.
1763  const CastExpr *CE = dyn_cast<CastExpr>(E);
1764  if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
1765    return 0;
1766
1767  // If this is a decay from variable width array, bail out.
1768  const Expr *SubExpr = CE->getSubExpr();
1769  if (SubExpr->getType()->isVariableArrayType())
1770    return 0;
1771
1772  return SubExpr;
1773}
1774
1775LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
1776  // The index must always be an integer, which is not an aggregate.  Emit it.
1777  llvm::Value *Idx = EmitScalarExpr(E->getIdx());
1778  QualType IdxTy  = E->getIdx()->getType();
1779  bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
1780
1781  // If the base is a vector type, then we are forming a vector element lvalue
1782  // with this subscript.
1783  if (E->getBase()->getType()->isVectorType()) {
1784    // Emit the vector as an lvalue to get its address.
1785    LValue LHS = EmitLValue(E->getBase());
1786    assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
1787    Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
1788    return LValue::MakeVectorElt(LHS.getAddress(), Idx,
1789                                 E->getBase()->getType(), LHS.getAlignment());
1790  }
1791
1792  // Extend or truncate the index type to 32 or 64-bits.
1793  if (Idx->getType() != IntPtrTy)
1794    Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
1795
1796  // FIXME: As llvm implements the object size checking, this can come out.
1797  if (CatchUndefined) {
1798    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E->getBase())){
1799      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1800        if (ICE->getCastKind() == CK_ArrayToPointerDecay) {
1801          if (const ConstantArrayType *CAT
1802              = getContext().getAsConstantArrayType(DRE->getType())) {
1803            llvm::APInt Size = CAT->getSize();
1804            llvm::BasicBlock *Cont = createBasicBlock("cont");
1805            Builder.CreateCondBr(Builder.CreateICmpULE(Idx,
1806                                  llvm::ConstantInt::get(Idx->getType(), Size)),
1807                                 Cont, getTrapBB());
1808            EmitBlock(Cont);
1809          }
1810        }
1811      }
1812    }
1813  }
1814
1815  // We know that the pointer points to a type of the correct size, unless the
1816  // size is a VLA or Objective-C interface.
1817  llvm::Value *Address = 0;
1818  CharUnits ArrayAlignment;
1819  if (const VariableArrayType *vla =
1820        getContext().getAsVariableArrayType(E->getType())) {
1821    // The base must be a pointer, which is not an aggregate.  Emit
1822    // it.  It needs to be emitted first in case it's what captures
1823    // the VLA bounds.
1824    Address = EmitScalarExpr(E->getBase());
1825
1826    // The element count here is the total number of non-VLA elements.
1827    llvm::Value *numElements = getVLASize(vla).first;
1828
1829    // Effectively, the multiply by the VLA size is part of the GEP.
1830    // GEP indexes are signed, and scaling an index isn't permitted to
1831    // signed-overflow, so we use the same semantics for our explicit
1832    // multiply.  We suppress this if overflow is not undefined behavior.
1833    if (getLangOpts().isSignedOverflowDefined()) {
1834      Idx = Builder.CreateMul(Idx, numElements);
1835      Address = Builder.CreateGEP(Address, Idx, "arrayidx");
1836    } else {
1837      Idx = Builder.CreateNSWMul(Idx, numElements);
1838      Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
1839    }
1840  } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
1841    // Indexing over an interface, as in "NSString *P; P[4];"
1842    llvm::Value *InterfaceSize =
1843      llvm::ConstantInt::get(Idx->getType(),
1844          getContext().getTypeSizeInChars(OIT).getQuantity());
1845
1846    Idx = Builder.CreateMul(Idx, InterfaceSize);
1847
1848    // The base must be a pointer, which is not an aggregate.  Emit it.
1849    llvm::Value *Base = EmitScalarExpr(E->getBase());
1850    Address = EmitCastToVoidPtr(Base);
1851    Address = Builder.CreateGEP(Address, Idx, "arrayidx");
1852    Address = Builder.CreateBitCast(Address, Base->getType());
1853  } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
1854    // If this is A[i] where A is an array, the frontend will have decayed the
1855    // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
1856    // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
1857    // "gep x, i" here.  Emit one "gep A, 0, i".
1858    assert(Array->getType()->isArrayType() &&
1859           "Array to pointer decay must have array source type!");
1860    LValue ArrayLV = EmitLValue(Array);
1861    llvm::Value *ArrayPtr = ArrayLV.getAddress();
1862    llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
1863    llvm::Value *Args[] = { Zero, Idx };
1864
1865    // Propagate the alignment from the array itself to the result.
1866    ArrayAlignment = ArrayLV.getAlignment();
1867
1868    if (getContext().getLangOpts().isSignedOverflowDefined())
1869      Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
1870    else
1871      Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
1872  } else {
1873    // The base must be a pointer, which is not an aggregate.  Emit it.
1874    llvm::Value *Base = EmitScalarExpr(E->getBase());
1875    if (getContext().getLangOpts().isSignedOverflowDefined())
1876      Address = Builder.CreateGEP(Base, Idx, "arrayidx");
1877    else
1878      Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
1879  }
1880
1881  QualType T = E->getBase()->getType()->getPointeeType();
1882  assert(!T.isNull() &&
1883         "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
1884
1885
1886  // Limit the alignment to that of the result type.
1887  LValue LV;
1888  if (!ArrayAlignment.isZero()) {
1889    CharUnits Align = getContext().getTypeAlignInChars(T);
1890    ArrayAlignment = std::min(Align, ArrayAlignment);
1891    LV = MakeAddrLValue(Address, T, ArrayAlignment);
1892  } else {
1893    LV = MakeNaturalAlignAddrLValue(Address, T);
1894  }
1895
1896  LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
1897
1898  if (getContext().getLangOpts().ObjC1 &&
1899      getContext().getLangOpts().getGC() != LangOptions::NonGC) {
1900    LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1901    setObjCGCLValueClass(getContext(), E, LV);
1902  }
1903  return LV;
1904}
1905
1906static
1907llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
1908                                       SmallVector<unsigned, 4> &Elts) {
1909  SmallVector<llvm::Constant*, 4> CElts;
1910  for (unsigned i = 0, e = Elts.size(); i != e; ++i)
1911    CElts.push_back(Builder.getInt32(Elts[i]));
1912
1913  return llvm::ConstantVector::get(CElts);
1914}
1915
1916LValue CodeGenFunction::
1917EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
1918  // Emit the base vector as an l-value.
1919  LValue Base;
1920
1921  // ExtVectorElementExpr's base can either be a vector or pointer to vector.
1922  if (E->isArrow()) {
1923    // If it is a pointer to a vector, emit the address and form an lvalue with
1924    // it.
1925    llvm::Value *Ptr = EmitScalarExpr(E->getBase());
1926    const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
1927    Base = MakeAddrLValue(Ptr, PT->getPointeeType());
1928    Base.getQuals().removeObjCGCAttr();
1929  } else if (E->getBase()->isGLValue()) {
1930    // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
1931    // emit the base as an lvalue.
1932    assert(E->getBase()->getType()->isVectorType());
1933    Base = EmitLValue(E->getBase());
1934  } else {
1935    // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
1936    assert(E->getBase()->getType()->isVectorType() &&
1937           "Result must be a vector");
1938    llvm::Value *Vec = EmitScalarExpr(E->getBase());
1939
1940    // Store the vector to memory (because LValue wants an address).
1941    llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
1942    Builder.CreateStore(Vec, VecMem);
1943    Base = MakeAddrLValue(VecMem, E->getBase()->getType());
1944  }
1945
1946  QualType type =
1947    E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
1948
1949  // Encode the element access list into a vector of unsigned indices.
1950  SmallVector<unsigned, 4> Indices;
1951  E->getEncodedElementAccess(Indices);
1952
1953  if (Base.isSimple()) {
1954    llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
1955    return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
1956                                    Base.getAlignment());
1957  }
1958  assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
1959
1960  llvm::Constant *BaseElts = Base.getExtVectorElts();
1961  SmallVector<llvm::Constant *, 4> CElts;
1962
1963  for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1964    CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
1965  llvm::Constant *CV = llvm::ConstantVector::get(CElts);
1966  return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
1967                                  Base.getAlignment());
1968}
1969
1970LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
1971  Expr *BaseExpr = E->getBase();
1972
1973  // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
1974  LValue BaseLV;
1975  if (E->isArrow())
1976    BaseLV = MakeNaturalAlignAddrLValue(EmitScalarExpr(BaseExpr),
1977                                        BaseExpr->getType()->getPointeeType());
1978  else
1979    BaseLV = EmitLValue(BaseExpr);
1980
1981  NamedDecl *ND = E->getMemberDecl();
1982  if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
1983    LValue LV = EmitLValueForField(BaseLV, Field);
1984    setObjCGCLValueClass(getContext(), E, LV);
1985    return LV;
1986  }
1987
1988  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
1989    return EmitGlobalVarDeclLValue(*this, E, VD);
1990
1991  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
1992    return EmitFunctionDeclLValue(*this, E, FD);
1993
1994  llvm_unreachable("Unhandled member declaration!");
1995}
1996
1997LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value *BaseValue,
1998                                              const FieldDecl *Field,
1999                                              unsigned CVRQualifiers) {
2000  const CGRecordLayout &RL =
2001    CGM.getTypes().getCGRecordLayout(Field->getParent());
2002  const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field);
2003  return LValue::MakeBitfield(BaseValue, Info,
2004                          Field->getType().withCVRQualifiers(CVRQualifiers));
2005}
2006
2007/// EmitLValueForAnonRecordField - Given that the field is a member of
2008/// an anonymous struct or union buried inside a record, and given
2009/// that the base value is a pointer to the enclosing record, derive
2010/// an lvalue for the ultimate field.
2011LValue CodeGenFunction::EmitLValueForAnonRecordField(llvm::Value *BaseValue,
2012                                             const IndirectFieldDecl *Field,
2013                                                     unsigned CVRQualifiers) {
2014  IndirectFieldDecl::chain_iterator I = Field->chain_begin(),
2015    IEnd = Field->chain_end();
2016  while (true) {
2017    QualType RecordTy =
2018        getContext().getTypeDeclType(cast<FieldDecl>(*I)->getParent());
2019    LValue LV = EmitLValueForField(MakeAddrLValue(BaseValue, RecordTy),
2020                                   cast<FieldDecl>(*I));
2021    if (++I == IEnd) return LV;
2022
2023    assert(LV.isSimple());
2024    BaseValue = LV.getAddress();
2025    CVRQualifiers |= LV.getVRQualifiers();
2026  }
2027}
2028
2029LValue CodeGenFunction::EmitLValueForField(LValue base,
2030                                           const FieldDecl *field) {
2031  if (field->isBitField())
2032    return EmitLValueForBitfield(base.getAddress(), field,
2033                                 base.getVRQualifiers());
2034
2035  const RecordDecl *rec = field->getParent();
2036  QualType type = field->getType();
2037  CharUnits alignment = getContext().getDeclAlign(field);
2038
2039  // FIXME: It should be impossible to have an LValue without alignment for a
2040  // complete type.
2041  if (!base.getAlignment().isZero())
2042    alignment = std::min(alignment, base.getAlignment());
2043
2044  bool mayAlias = rec->hasAttr<MayAliasAttr>();
2045
2046  llvm::Value *addr = base.getAddress();
2047  unsigned cvr = base.getVRQualifiers();
2048  if (rec->isUnion()) {
2049    // For unions, there is no pointer adjustment.
2050    assert(!type->isReferenceType() && "union has reference member");
2051  } else {
2052    // For structs, we GEP to the field that the record layout suggests.
2053    unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
2054    addr = Builder.CreateStructGEP(addr, idx, field->getName());
2055
2056    // If this is a reference field, load the reference right now.
2057    if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
2058      llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
2059      if (cvr & Qualifiers::Volatile) load->setVolatile(true);
2060      load->setAlignment(alignment.getQuantity());
2061
2062      if (CGM.shouldUseTBAA()) {
2063        llvm::MDNode *tbaa;
2064        if (mayAlias)
2065          tbaa = CGM.getTBAAInfo(getContext().CharTy);
2066        else
2067          tbaa = CGM.getTBAAInfo(type);
2068        CGM.DecorateInstruction(load, tbaa);
2069      }
2070
2071      addr = load;
2072      mayAlias = false;
2073      type = refType->getPointeeType();
2074      if (type->isIncompleteType())
2075        alignment = CharUnits();
2076      else
2077        alignment = getContext().getTypeAlignInChars(type);
2078      cvr = 0; // qualifiers don't recursively apply to referencee
2079    }
2080  }
2081
2082  // Make sure that the address is pointing to the right type.  This is critical
2083  // for both unions and structs.  A union needs a bitcast, a struct element
2084  // will need a bitcast if the LLVM type laid out doesn't match the desired
2085  // type.
2086  addr = EmitBitCastOfLValueToProperType(*this, addr,
2087                                         CGM.getTypes().ConvertTypeForMem(type),
2088                                         field->getName());
2089
2090  if (field->hasAttr<AnnotateAttr>())
2091    addr = EmitFieldAnnotations(field, addr);
2092
2093  LValue LV = MakeAddrLValue(addr, type, alignment);
2094  LV.getQuals().addCVRQualifiers(cvr);
2095
2096  // __weak attribute on a field is ignored.
2097  if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
2098    LV.getQuals().removeObjCGCAttr();
2099
2100  // Fields of may_alias structs act like 'char' for TBAA purposes.
2101  // FIXME: this should get propagated down through anonymous structs
2102  // and unions.
2103  if (mayAlias && LV.getTBAAInfo())
2104    LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
2105
2106  return LV;
2107}
2108
2109LValue
2110CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
2111                                                  const FieldDecl *Field) {
2112  QualType FieldType = Field->getType();
2113
2114  if (!FieldType->isReferenceType())
2115    return EmitLValueForField(Base, Field);
2116
2117  const CGRecordLayout &RL =
2118    CGM.getTypes().getCGRecordLayout(Field->getParent());
2119  unsigned idx = RL.getLLVMFieldNo(Field);
2120  llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx);
2121  assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
2122
2123  // Make sure that the address is pointing to the right type.  This is critical
2124  // for both unions and structs.  A union needs a bitcast, a struct element
2125  // will need a bitcast if the LLVM type laid out doesn't match the desired
2126  // type.
2127  llvm::Type *llvmType = ConvertTypeForMem(FieldType);
2128  V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
2129
2130  CharUnits Alignment = getContext().getDeclAlign(Field);
2131
2132  // FIXME: It should be impossible to have an LValue without alignment for a
2133  // complete type.
2134  if (!Base.getAlignment().isZero())
2135    Alignment = std::min(Alignment, Base.getAlignment());
2136
2137  return MakeAddrLValue(V, FieldType, Alignment);
2138}
2139
2140LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
2141  if (E->isFileScope()) {
2142    llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
2143    return MakeAddrLValue(GlobalPtr, E->getType());
2144  }
2145
2146  llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
2147  const Expr *InitExpr = E->getInitializer();
2148  LValue Result = MakeAddrLValue(DeclPtr, E->getType());
2149
2150  EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
2151                   /*Init*/ true);
2152
2153  return Result;
2154}
2155
2156LValue CodeGenFunction::
2157EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
2158  if (!expr->isGLValue()) {
2159    // ?: here should be an aggregate.
2160    assert((hasAggregateLLVMType(expr->getType()) &&
2161            !expr->getType()->isAnyComplexType()) &&
2162           "Unexpected conditional operator!");
2163    return EmitAggExprToLValue(expr);
2164  }
2165
2166  OpaqueValueMapping binding(*this, expr);
2167
2168  const Expr *condExpr = expr->getCond();
2169  bool CondExprBool;
2170  if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2171    const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
2172    if (!CondExprBool) std::swap(live, dead);
2173
2174    if (!ContainsLabel(dead))
2175      return EmitLValue(live);
2176  }
2177
2178  llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2179  llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2180  llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2181
2182  ConditionalEvaluation eval(*this);
2183  EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock);
2184
2185  // Any temporaries created here are conditional.
2186  EmitBlock(lhsBlock);
2187  eval.begin(*this);
2188  LValue lhs = EmitLValue(expr->getTrueExpr());
2189  eval.end(*this);
2190
2191  if (!lhs.isSimple())
2192    return EmitUnsupportedLValue(expr, "conditional operator");
2193
2194  lhsBlock = Builder.GetInsertBlock();
2195  Builder.CreateBr(contBlock);
2196
2197  // Any temporaries created here are conditional.
2198  EmitBlock(rhsBlock);
2199  eval.begin(*this);
2200  LValue rhs = EmitLValue(expr->getFalseExpr());
2201  eval.end(*this);
2202  if (!rhs.isSimple())
2203    return EmitUnsupportedLValue(expr, "conditional operator");
2204  rhsBlock = Builder.GetInsertBlock();
2205
2206  EmitBlock(contBlock);
2207
2208  llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2,
2209                                         "cond-lvalue");
2210  phi->addIncoming(lhs.getAddress(), lhsBlock);
2211  phi->addIncoming(rhs.getAddress(), rhsBlock);
2212  return MakeAddrLValue(phi, expr->getType());
2213}
2214
2215/// EmitCastLValue - Casts are never lvalues unless that cast is a dynamic_cast.
2216/// If the cast is a dynamic_cast, we can have the usual lvalue result,
2217/// otherwise if a cast is needed by the code generator in an lvalue context,
2218/// then it must mean that we need the address of an aggregate in order to
2219/// access one of its fields.  This can happen for all the reasons that casts
2220/// are permitted with aggregate result, including noop aggregate casts, and
2221/// cast from scalar to union.
2222LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2223  switch (E->getCastKind()) {
2224  case CK_ToVoid:
2225    return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2226
2227  case CK_Dependent:
2228    llvm_unreachable("dependent cast kind in IR gen!");
2229
2230  // These two casts are currently treated as no-ops, although they could
2231  // potentially be real operations depending on the target's ABI.
2232  case CK_NonAtomicToAtomic:
2233  case CK_AtomicToNonAtomic:
2234
2235  case CK_NoOp:
2236  case CK_LValueToRValue:
2237    if (!E->getSubExpr()->Classify(getContext()).isPRValue()
2238        || E->getType()->isRecordType())
2239      return EmitLValue(E->getSubExpr());
2240    // Fall through to synthesize a temporary.
2241
2242  case CK_BitCast:
2243  case CK_ArrayToPointerDecay:
2244  case CK_FunctionToPointerDecay:
2245  case CK_NullToMemberPointer:
2246  case CK_NullToPointer:
2247  case CK_IntegralToPointer:
2248  case CK_PointerToIntegral:
2249  case CK_PointerToBoolean:
2250  case CK_VectorSplat:
2251  case CK_IntegralCast:
2252  case CK_IntegralToBoolean:
2253  case CK_IntegralToFloating:
2254  case CK_FloatingToIntegral:
2255  case CK_FloatingToBoolean:
2256  case CK_FloatingCast:
2257  case CK_FloatingRealToComplex:
2258  case CK_FloatingComplexToReal:
2259  case CK_FloatingComplexToBoolean:
2260  case CK_FloatingComplexCast:
2261  case CK_FloatingComplexToIntegralComplex:
2262  case CK_IntegralRealToComplex:
2263  case CK_IntegralComplexToReal:
2264  case CK_IntegralComplexToBoolean:
2265  case CK_IntegralComplexCast:
2266  case CK_IntegralComplexToFloatingComplex:
2267  case CK_DerivedToBaseMemberPointer:
2268  case CK_BaseToDerivedMemberPointer:
2269  case CK_MemberPointerToBoolean:
2270  case CK_ReinterpretMemberPointer:
2271  case CK_AnyPointerToBlockPointerCast:
2272  case CK_ARCProduceObject:
2273  case CK_ARCConsumeObject:
2274  case CK_ARCReclaimReturnedObject:
2275  case CK_ARCExtendBlockObject:
2276  case CK_CopyAndAutoreleaseBlockObject: {
2277    // These casts only produce lvalues when we're binding a reference to a
2278    // temporary realized from a (converted) pure rvalue. Emit the expression
2279    // as a value, copy it into a temporary, and return an lvalue referring to
2280    // that temporary.
2281    llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp");
2282    EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false);
2283    return MakeAddrLValue(V, E->getType());
2284  }
2285
2286  case CK_Dynamic: {
2287    LValue LV = EmitLValue(E->getSubExpr());
2288    llvm::Value *V = LV.getAddress();
2289    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
2290    return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2291  }
2292
2293  case CK_ConstructorConversion:
2294  case CK_UserDefinedConversion:
2295  case CK_CPointerToObjCPointerCast:
2296  case CK_BlockPointerToObjCPointerCast:
2297    return EmitLValue(E->getSubExpr());
2298
2299  case CK_UncheckedDerivedToBase:
2300  case CK_DerivedToBase: {
2301    const RecordType *DerivedClassTy =
2302      E->getSubExpr()->getType()->getAs<RecordType>();
2303    CXXRecordDecl *DerivedClassDecl =
2304      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2305
2306    LValue LV = EmitLValue(E->getSubExpr());
2307    llvm::Value *This = LV.getAddress();
2308
2309    // Perform the derived-to-base conversion
2310    llvm::Value *Base =
2311      GetAddressOfBaseClass(This, DerivedClassDecl,
2312                            E->path_begin(), E->path_end(),
2313                            /*NullCheckValue=*/false);
2314
2315    return MakeAddrLValue(Base, E->getType());
2316  }
2317  case CK_ToUnion:
2318    return EmitAggExprToLValue(E);
2319  case CK_BaseToDerived: {
2320    const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2321    CXXRecordDecl *DerivedClassDecl =
2322      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2323
2324    LValue LV = EmitLValue(E->getSubExpr());
2325
2326    // Perform the base-to-derived conversion
2327    llvm::Value *Derived =
2328      GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
2329                               E->path_begin(), E->path_end(),
2330                               /*NullCheckValue=*/false);
2331
2332    return MakeAddrLValue(Derived, E->getType());
2333  }
2334  case CK_LValueBitCast: {
2335    // This must be a reinterpret_cast (or c-style equivalent).
2336    const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
2337
2338    LValue LV = EmitLValue(E->getSubExpr());
2339    llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2340                                           ConvertType(CE->getTypeAsWritten()));
2341    return MakeAddrLValue(V, E->getType());
2342  }
2343  case CK_ObjCObjectLValueCast: {
2344    LValue LV = EmitLValue(E->getSubExpr());
2345    QualType ToType = getContext().getLValueReferenceType(E->getType());
2346    llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2347                                           ConvertType(ToType));
2348    return MakeAddrLValue(V, E->getType());
2349  }
2350  }
2351
2352  llvm_unreachable("Unhandled lvalue cast kind?");
2353}
2354
2355LValue CodeGenFunction::EmitNullInitializationLValue(
2356                                              const CXXScalarValueInitExpr *E) {
2357  QualType Ty = E->getType();
2358  LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty);
2359  EmitNullInitialization(LV.getAddress(), Ty);
2360  return LV;
2361}
2362
2363LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
2364  assert(OpaqueValueMappingData::shouldBindAsLValue(e));
2365  return getOpaqueLValueMapping(e);
2366}
2367
2368LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
2369                                           const MaterializeTemporaryExpr *E) {
2370  RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
2371  return MakeAddrLValue(RV.getScalarVal(), E->getType());
2372}
2373
2374RValue CodeGenFunction::EmitRValueForField(LValue LV,
2375                                           const FieldDecl *FD) {
2376  QualType FT = FD->getType();
2377  LValue FieldLV = EmitLValueForField(LV, FD);
2378  if (FT->isAnyComplexType())
2379    return RValue::getComplex(
2380        LoadComplexFromAddr(FieldLV.getAddress(),
2381                            FieldLV.isVolatileQualified()));
2382  else if (CodeGenFunction::hasAggregateLLVMType(FT))
2383    return FieldLV.asAggregateRValue();
2384
2385  return EmitLoadOfLValue(FieldLV);
2386}
2387
2388//===--------------------------------------------------------------------===//
2389//                             Expression Emission
2390//===--------------------------------------------------------------------===//
2391
2392RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
2393                                     ReturnValueSlot ReturnValue) {
2394  if (CGDebugInfo *DI = getDebugInfo())
2395    DI->EmitLocation(Builder, E->getLocStart());
2396
2397  // Builtins never have block type.
2398  if (E->getCallee()->getType()->isBlockPointerType())
2399    return EmitBlockCallExpr(E, ReturnValue);
2400
2401  if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
2402    return EmitCXXMemberCallExpr(CE, ReturnValue);
2403
2404  if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E))
2405    return EmitCUDAKernelCallExpr(CE, ReturnValue);
2406
2407  const Decl *TargetDecl = E->getCalleeDecl();
2408  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2409    if (unsigned builtinID = FD->getBuiltinID())
2410      return EmitBuiltinExpr(FD, builtinID, E);
2411  }
2412
2413  if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
2414    if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
2415      return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
2416
2417  if (const CXXPseudoDestructorExpr *PseudoDtor
2418          = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
2419    QualType DestroyedType = PseudoDtor->getDestroyedType();
2420    if (getContext().getLangOpts().ObjCAutoRefCount &&
2421        DestroyedType->isObjCLifetimeType() &&
2422        (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
2423         DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
2424      // Automatic Reference Counting:
2425      //   If the pseudo-expression names a retainable object with weak or
2426      //   strong lifetime, the object shall be released.
2427      Expr *BaseExpr = PseudoDtor->getBase();
2428      llvm::Value *BaseValue = NULL;
2429      Qualifiers BaseQuals;
2430
2431      // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2432      if (PseudoDtor->isArrow()) {
2433        BaseValue = EmitScalarExpr(BaseExpr);
2434        const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
2435        BaseQuals = PTy->getPointeeType().getQualifiers();
2436      } else {
2437        LValue BaseLV = EmitLValue(BaseExpr);
2438        BaseValue = BaseLV.getAddress();
2439        QualType BaseTy = BaseExpr->getType();
2440        BaseQuals = BaseTy.getQualifiers();
2441      }
2442
2443      switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
2444      case Qualifiers::OCL_None:
2445      case Qualifiers::OCL_ExplicitNone:
2446      case Qualifiers::OCL_Autoreleasing:
2447        break;
2448
2449      case Qualifiers::OCL_Strong:
2450        EmitARCRelease(Builder.CreateLoad(BaseValue,
2451                          PseudoDtor->getDestroyedType().isVolatileQualified()),
2452                       /*precise*/ true);
2453        break;
2454
2455      case Qualifiers::OCL_Weak:
2456        EmitARCDestroyWeak(BaseValue);
2457        break;
2458      }
2459    } else {
2460      // C++ [expr.pseudo]p1:
2461      //   The result shall only be used as the operand for the function call
2462      //   operator (), and the result of such a call has type void. The only
2463      //   effect is the evaluation of the postfix-expression before the dot or
2464      //   arrow.
2465      EmitScalarExpr(E->getCallee());
2466    }
2467
2468    return RValue::get(0);
2469  }
2470
2471  llvm::Value *Callee = EmitScalarExpr(E->getCallee());
2472  return EmitCall(E->getCallee()->getType(), Callee, ReturnValue,
2473                  E->arg_begin(), E->arg_end(), TargetDecl);
2474}
2475
2476LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
2477  // Comma expressions just emit their LHS then their RHS as an l-value.
2478  if (E->getOpcode() == BO_Comma) {
2479    EmitIgnoredExpr(E->getLHS());
2480    EnsureInsertPoint();
2481    return EmitLValue(E->getRHS());
2482  }
2483
2484  if (E->getOpcode() == BO_PtrMemD ||
2485      E->getOpcode() == BO_PtrMemI)
2486    return EmitPointerToDataMemberBinaryExpr(E);
2487
2488  assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
2489
2490  // Note that in all of these cases, __block variables need the RHS
2491  // evaluated first just in case the variable gets moved by the RHS.
2492
2493  if (!hasAggregateLLVMType(E->getType())) {
2494    switch (E->getLHS()->getType().getObjCLifetime()) {
2495    case Qualifiers::OCL_Strong:
2496      return EmitARCStoreStrong(E, /*ignored*/ false).first;
2497
2498    case Qualifiers::OCL_Autoreleasing:
2499      return EmitARCStoreAutoreleasing(E).first;
2500
2501    // No reason to do any of these differently.
2502    case Qualifiers::OCL_None:
2503    case Qualifiers::OCL_ExplicitNone:
2504    case Qualifiers::OCL_Weak:
2505      break;
2506    }
2507
2508    RValue RV = EmitAnyExpr(E->getRHS());
2509    LValue LV = EmitLValue(E->getLHS());
2510    EmitStoreThroughLValue(RV, LV);
2511    return LV;
2512  }
2513
2514  if (E->getType()->isAnyComplexType())
2515    return EmitComplexAssignmentLValue(E);
2516
2517  return EmitAggExprToLValue(E);
2518}
2519
2520LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
2521  RValue RV = EmitCallExpr(E);
2522
2523  if (!RV.isScalar())
2524    return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2525
2526  assert(E->getCallReturnType()->isReferenceType() &&
2527         "Can't have a scalar return unless the return type is a "
2528         "reference type!");
2529
2530  return MakeAddrLValue(RV.getScalarVal(), E->getType());
2531}
2532
2533LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
2534  // FIXME: This shouldn't require another copy.
2535  return EmitAggExprToLValue(E);
2536}
2537
2538LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
2539  assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
2540         && "binding l-value to type which needs a temporary");
2541  AggValueSlot Slot = CreateAggTemp(E->getType());
2542  EmitCXXConstructExpr(E, Slot);
2543  return MakeAddrLValue(Slot.getAddr(), E->getType());
2544}
2545
2546LValue
2547CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
2548  return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
2549}
2550
2551LValue
2552CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
2553  AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
2554  Slot.setExternallyDestructed();
2555  EmitAggExpr(E->getSubExpr(), Slot);
2556  EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
2557  return MakeAddrLValue(Slot.getAddr(), E->getType());
2558}
2559
2560LValue
2561CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
2562  AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
2563  EmitLambdaExpr(E, Slot);
2564  return MakeAddrLValue(Slot.getAddr(), E->getType());
2565}
2566
2567LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
2568  RValue RV = EmitObjCMessageExpr(E);
2569
2570  if (!RV.isScalar())
2571    return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2572
2573  assert(E->getMethodDecl()->getResultType()->isReferenceType() &&
2574         "Can't have a scalar return unless the return type is a "
2575         "reference type!");
2576
2577  return MakeAddrLValue(RV.getScalarVal(), E->getType());
2578}
2579
2580LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
2581  llvm::Value *V =
2582    CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true);
2583  return MakeAddrLValue(V, E->getType());
2584}
2585
2586llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2587                                             const ObjCIvarDecl *Ivar) {
2588  return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
2589}
2590
2591LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
2592                                          llvm::Value *BaseValue,
2593                                          const ObjCIvarDecl *Ivar,
2594                                          unsigned CVRQualifiers) {
2595  return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
2596                                                   Ivar, CVRQualifiers);
2597}
2598
2599LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
2600  // FIXME: A lot of the code below could be shared with EmitMemberExpr.
2601  llvm::Value *BaseValue = 0;
2602  const Expr *BaseExpr = E->getBase();
2603  Qualifiers BaseQuals;
2604  QualType ObjectTy;
2605  if (E->isArrow()) {
2606    BaseValue = EmitScalarExpr(BaseExpr);
2607    ObjectTy = BaseExpr->getType()->getPointeeType();
2608    BaseQuals = ObjectTy.getQualifiers();
2609  } else {
2610    LValue BaseLV = EmitLValue(BaseExpr);
2611    // FIXME: this isn't right for bitfields.
2612    BaseValue = BaseLV.getAddress();
2613    ObjectTy = BaseExpr->getType();
2614    BaseQuals = ObjectTy.getQualifiers();
2615  }
2616
2617  LValue LV =
2618    EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
2619                      BaseQuals.getCVRQualifiers());
2620  setObjCGCLValueClass(getContext(), E, LV);
2621  return LV;
2622}
2623
2624LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
2625  // Can only get l-value for message expression returning aggregate type
2626  RValue RV = EmitAnyExprToTemp(E);
2627  return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2628}
2629
2630RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
2631                                 ReturnValueSlot ReturnValue,
2632                                 CallExpr::const_arg_iterator ArgBeg,
2633                                 CallExpr::const_arg_iterator ArgEnd,
2634                                 const Decl *TargetDecl) {
2635  // Get the actual function type. The callee type will always be a pointer to
2636  // function type or a block pointer type.
2637  assert(CalleeType->isFunctionPointerType() &&
2638         "Call must have function pointer type!");
2639
2640  CalleeType = getContext().getCanonicalType(CalleeType);
2641
2642  const FunctionType *FnType
2643    = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
2644
2645  CallArgList Args;
2646  EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd);
2647
2648  const CGFunctionInfo &FnInfo =
2649    CGM.getTypes().arrangeFunctionCall(Args, FnType);
2650
2651  // C99 6.5.2.2p6:
2652  //   If the expression that denotes the called function has a type
2653  //   that does not include a prototype, [the default argument
2654  //   promotions are performed]. If the number of arguments does not
2655  //   equal the number of parameters, the behavior is undefined. If
2656  //   the function is defined with a type that includes a prototype,
2657  //   and either the prototype ends with an ellipsis (, ...) or the
2658  //   types of the arguments after promotion are not compatible with
2659  //   the types of the parameters, the behavior is undefined. If the
2660  //   function is defined with a type that does not include a
2661  //   prototype, and the types of the arguments after promotion are
2662  //   not compatible with those of the parameters after promotion,
2663  //   the behavior is undefined [except in some trivial cases].
2664  // That is, in the general case, we should assume that a call
2665  // through an unprototyped function type works like a *non-variadic*
2666  // call.  The way we make this work is to cast to the exact type
2667  // of the promoted arguments.
2668  if (isa<FunctionNoProtoType>(FnType) && !FnInfo.isVariadic()) {
2669    llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
2670    CalleeTy = CalleeTy->getPointerTo();
2671    Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
2672  }
2673
2674  return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
2675}
2676
2677LValue CodeGenFunction::
2678EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
2679  llvm::Value *BaseV;
2680  if (E->getOpcode() == BO_PtrMemI)
2681    BaseV = EmitScalarExpr(E->getLHS());
2682  else
2683    BaseV = EmitLValue(E->getLHS()).getAddress();
2684
2685  llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
2686
2687  const MemberPointerType *MPT
2688    = E->getRHS()->getType()->getAs<MemberPointerType>();
2689
2690  llvm::Value *AddV =
2691    CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT);
2692
2693  return MakeAddrLValue(AddV, MPT->getPointeeType());
2694}
2695
2696static void
2697EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest,
2698             llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2,
2699             uint64_t Size, unsigned Align, llvm::AtomicOrdering Order) {
2700  llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add;
2701  llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0;
2702
2703  switch (E->getOp()) {
2704  case AtomicExpr::AO__c11_atomic_init:
2705    llvm_unreachable("Already handled!");
2706
2707  case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
2708  case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
2709  case AtomicExpr::AO__atomic_compare_exchange:
2710  case AtomicExpr::AO__atomic_compare_exchange_n: {
2711    // Note that cmpxchg only supports specifying one ordering and
2712    // doesn't support weak cmpxchg, at least at the moment.
2713    llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2714    LoadVal1->setAlignment(Align);
2715    llvm::LoadInst *LoadVal2 = CGF.Builder.CreateLoad(Val2);
2716    LoadVal2->setAlignment(Align);
2717    llvm::AtomicCmpXchgInst *CXI =
2718        CGF.Builder.CreateAtomicCmpXchg(Ptr, LoadVal1, LoadVal2, Order);
2719    CXI->setVolatile(E->isVolatile());
2720    llvm::StoreInst *StoreVal1 = CGF.Builder.CreateStore(CXI, Val1);
2721    StoreVal1->setAlignment(Align);
2722    llvm::Value *Cmp = CGF.Builder.CreateICmpEQ(CXI, LoadVal1);
2723    CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType()));
2724    return;
2725  }
2726
2727  case AtomicExpr::AO__c11_atomic_load:
2728  case AtomicExpr::AO__atomic_load_n:
2729  case AtomicExpr::AO__atomic_load: {
2730    llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr);
2731    Load->setAtomic(Order);
2732    Load->setAlignment(Size);
2733    Load->setVolatile(E->isVolatile());
2734    llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest);
2735    StoreDest->setAlignment(Align);
2736    return;
2737  }
2738
2739  case AtomicExpr::AO__c11_atomic_store:
2740  case AtomicExpr::AO__atomic_store:
2741  case AtomicExpr::AO__atomic_store_n: {
2742    assert(!Dest && "Store does not return a value");
2743    llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2744    LoadVal1->setAlignment(Align);
2745    llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr);
2746    Store->setAtomic(Order);
2747    Store->setAlignment(Size);
2748    Store->setVolatile(E->isVolatile());
2749    return;
2750  }
2751
2752  case AtomicExpr::AO__c11_atomic_exchange:
2753  case AtomicExpr::AO__atomic_exchange_n:
2754  case AtomicExpr::AO__atomic_exchange:
2755    Op = llvm::AtomicRMWInst::Xchg;
2756    break;
2757
2758  case AtomicExpr::AO__atomic_add_fetch:
2759    PostOp = llvm::Instruction::Add;
2760    // Fall through.
2761  case AtomicExpr::AO__c11_atomic_fetch_add:
2762  case AtomicExpr::AO__atomic_fetch_add:
2763    Op = llvm::AtomicRMWInst::Add;
2764    break;
2765
2766  case AtomicExpr::AO__atomic_sub_fetch:
2767    PostOp = llvm::Instruction::Sub;
2768    // Fall through.
2769  case AtomicExpr::AO__c11_atomic_fetch_sub:
2770  case AtomicExpr::AO__atomic_fetch_sub:
2771    Op = llvm::AtomicRMWInst::Sub;
2772    break;
2773
2774  case AtomicExpr::AO__atomic_and_fetch:
2775    PostOp = llvm::Instruction::And;
2776    // Fall through.
2777  case AtomicExpr::AO__c11_atomic_fetch_and:
2778  case AtomicExpr::AO__atomic_fetch_and:
2779    Op = llvm::AtomicRMWInst::And;
2780    break;
2781
2782  case AtomicExpr::AO__atomic_or_fetch:
2783    PostOp = llvm::Instruction::Or;
2784    // Fall through.
2785  case AtomicExpr::AO__c11_atomic_fetch_or:
2786  case AtomicExpr::AO__atomic_fetch_or:
2787    Op = llvm::AtomicRMWInst::Or;
2788    break;
2789
2790  case AtomicExpr::AO__atomic_xor_fetch:
2791    PostOp = llvm::Instruction::Xor;
2792    // Fall through.
2793  case AtomicExpr::AO__c11_atomic_fetch_xor:
2794  case AtomicExpr::AO__atomic_fetch_xor:
2795    Op = llvm::AtomicRMWInst::Xor;
2796    break;
2797
2798  case AtomicExpr::AO__atomic_nand_fetch:
2799    PostOp = llvm::Instruction::And;
2800    // Fall through.
2801  case AtomicExpr::AO__atomic_fetch_nand:
2802    Op = llvm::AtomicRMWInst::Nand;
2803    break;
2804  }
2805
2806  llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2807  LoadVal1->setAlignment(Align);
2808  llvm::AtomicRMWInst *RMWI =
2809      CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order);
2810  RMWI->setVolatile(E->isVolatile());
2811
2812  // For __atomic_*_fetch operations, perform the operation again to
2813  // determine the value which was written.
2814  llvm::Value *Result = RMWI;
2815  if (PostOp)
2816    Result = CGF.Builder.CreateBinOp(PostOp, RMWI, LoadVal1);
2817  if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch)
2818    Result = CGF.Builder.CreateNot(Result);
2819  llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Result, Dest);
2820  StoreDest->setAlignment(Align);
2821}
2822
2823// This function emits any expression (scalar, complex, or aggregate)
2824// into a temporary alloca.
2825static llvm::Value *
2826EmitValToTemp(CodeGenFunction &CGF, Expr *E) {
2827  llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp");
2828  CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(),
2829                       /*Init*/ true);
2830  return DeclPtr;
2831}
2832
2833static RValue ConvertTempToRValue(CodeGenFunction &CGF, QualType Ty,
2834                                  llvm::Value *Dest) {
2835  if (Ty->isAnyComplexType())
2836    return RValue::getComplex(CGF.LoadComplexFromAddr(Dest, false));
2837  if (CGF.hasAggregateLLVMType(Ty))
2838    return RValue::getAggregate(Dest);
2839  return RValue::get(CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(Dest, Ty)));
2840}
2841
2842RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) {
2843  QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
2844  QualType MemTy = AtomicTy;
2845  if (const AtomicType *AT = AtomicTy->getAs<AtomicType>())
2846    MemTy = AT->getValueType();
2847  CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy);
2848  uint64_t Size = sizeChars.getQuantity();
2849  CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy);
2850  unsigned Align = alignChars.getQuantity();
2851  unsigned MaxInlineWidth =
2852      getContext().getTargetInfo().getMaxAtomicInlineWidth();
2853  bool UseLibcall = (Size != Align || Size > MaxInlineWidth);
2854
2855
2856
2857  llvm::Value *Ptr, *Order, *OrderFail = 0, *Val1 = 0, *Val2 = 0;
2858  Ptr = EmitScalarExpr(E->getPtr());
2859
2860  if (E->getOp() == AtomicExpr::AO__c11_atomic_init) {
2861    assert(!Dest && "Init does not return a value");
2862    if (!hasAggregateLLVMType(E->getVal1()->getType())) {
2863      QualType PointeeType
2864        = E->getPtr()->getType()->getAs<PointerType>()->getPointeeType();
2865      EmitScalarInit(EmitScalarExpr(E->getVal1()),
2866                     LValue::MakeAddr(Ptr, PointeeType, alignChars,
2867                                      getContext()));
2868    } else if (E->getType()->isAnyComplexType()) {
2869      EmitComplexExprIntoAddr(E->getVal1(), Ptr, E->isVolatile());
2870    } else {
2871      AggValueSlot Slot = AggValueSlot::forAddr(Ptr, alignChars,
2872                                        AtomicTy.getQualifiers(),
2873                                        AggValueSlot::IsNotDestructed,
2874                                        AggValueSlot::DoesNotNeedGCBarriers,
2875                                        AggValueSlot::IsNotAliased);
2876      EmitAggExpr(E->getVal1(), Slot);
2877    }
2878    return RValue::get(0);
2879  }
2880
2881  Order = EmitScalarExpr(E->getOrder());
2882
2883  switch (E->getOp()) {
2884  case AtomicExpr::AO__c11_atomic_init:
2885    llvm_unreachable("Already handled!");
2886
2887  case AtomicExpr::AO__c11_atomic_load:
2888  case AtomicExpr::AO__atomic_load_n:
2889    break;
2890
2891  case AtomicExpr::AO__atomic_load:
2892    Dest = EmitScalarExpr(E->getVal1());
2893    break;
2894
2895  case AtomicExpr::AO__atomic_store:
2896    Val1 = EmitScalarExpr(E->getVal1());
2897    break;
2898
2899  case AtomicExpr::AO__atomic_exchange:
2900    Val1 = EmitScalarExpr(E->getVal1());
2901    Dest = EmitScalarExpr(E->getVal2());
2902    break;
2903
2904  case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
2905  case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
2906  case AtomicExpr::AO__atomic_compare_exchange_n:
2907  case AtomicExpr::AO__atomic_compare_exchange:
2908    Val1 = EmitScalarExpr(E->getVal1());
2909    if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange)
2910      Val2 = EmitScalarExpr(E->getVal2());
2911    else
2912      Val2 = EmitValToTemp(*this, E->getVal2());
2913    OrderFail = EmitScalarExpr(E->getOrderFail());
2914    // Evaluate and discard the 'weak' argument.
2915    if (E->getNumSubExprs() == 6)
2916      EmitScalarExpr(E->getWeak());
2917    break;
2918
2919  case AtomicExpr::AO__c11_atomic_fetch_add:
2920  case AtomicExpr::AO__c11_atomic_fetch_sub:
2921    if (MemTy->isPointerType()) {
2922      // For pointer arithmetic, we're required to do a bit of math:
2923      // adding 1 to an int* is not the same as adding 1 to a uintptr_t.
2924      // ... but only for the C11 builtins. The GNU builtins expect the
2925      // user to multiply by sizeof(T).
2926      QualType Val1Ty = E->getVal1()->getType();
2927      llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1());
2928      CharUnits PointeeIncAmt =
2929          getContext().getTypeSizeInChars(MemTy->getPointeeType());
2930      Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt));
2931      Val1 = CreateMemTemp(Val1Ty, ".atomictmp");
2932      EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty));
2933      break;
2934    }
2935    // Fall through.
2936  case AtomicExpr::AO__atomic_fetch_add:
2937  case AtomicExpr::AO__atomic_fetch_sub:
2938  case AtomicExpr::AO__atomic_add_fetch:
2939  case AtomicExpr::AO__atomic_sub_fetch:
2940  case AtomicExpr::AO__c11_atomic_store:
2941  case AtomicExpr::AO__c11_atomic_exchange:
2942  case AtomicExpr::AO__atomic_store_n:
2943  case AtomicExpr::AO__atomic_exchange_n:
2944  case AtomicExpr::AO__c11_atomic_fetch_and:
2945  case AtomicExpr::AO__c11_atomic_fetch_or:
2946  case AtomicExpr::AO__c11_atomic_fetch_xor:
2947  case AtomicExpr::AO__atomic_fetch_and:
2948  case AtomicExpr::AO__atomic_fetch_or:
2949  case AtomicExpr::AO__atomic_fetch_xor:
2950  case AtomicExpr::AO__atomic_fetch_nand:
2951  case AtomicExpr::AO__atomic_and_fetch:
2952  case AtomicExpr::AO__atomic_or_fetch:
2953  case AtomicExpr::AO__atomic_xor_fetch:
2954  case AtomicExpr::AO__atomic_nand_fetch:
2955    Val1 = EmitValToTemp(*this, E->getVal1());
2956    break;
2957  }
2958
2959  if (!E->getType()->isVoidType() && !Dest)
2960    Dest = CreateMemTemp(E->getType(), ".atomicdst");
2961
2962  // Use a library call.  See: http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary .
2963  if (UseLibcall) {
2964
2965    llvm::SmallVector<QualType, 5> Params;
2966    CallArgList Args;
2967    // Size is always the first parameter
2968    Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)),
2969             getContext().getSizeType());
2970    // Atomic address is always the second parameter
2971    Args.add(RValue::get(EmitCastToVoidPtr(Ptr)),
2972             getContext().VoidPtrTy);
2973
2974    const char* LibCallName;
2975    QualType RetTy = getContext().VoidTy;
2976    switch (E->getOp()) {
2977    // There is only one libcall for compare an exchange, because there is no
2978    // optimisation benefit possible from a libcall version of a weak compare
2979    // and exchange.
2980    // bool __atomic_compare_exchange(size_t size, void *obj, void *expected,
2981    //                                void *desired, int success, int failure)
2982    case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
2983    case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
2984    case AtomicExpr::AO__atomic_compare_exchange:
2985    case AtomicExpr::AO__atomic_compare_exchange_n:
2986      LibCallName = "__atomic_compare_exchange";
2987      RetTy = getContext().BoolTy;
2988      Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
2989               getContext().VoidPtrTy);
2990      Args.add(RValue::get(EmitCastToVoidPtr(Val2)),
2991               getContext().VoidPtrTy);
2992      Args.add(RValue::get(Order),
2993               getContext().IntTy);
2994      Order = OrderFail;
2995      break;
2996    // void __atomic_exchange(size_t size, void *mem, void *val, void *return,
2997    //                        int order)
2998    case AtomicExpr::AO__c11_atomic_exchange:
2999    case AtomicExpr::AO__atomic_exchange_n:
3000    case AtomicExpr::AO__atomic_exchange:
3001      LibCallName = "__atomic_exchange";
3002      Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
3003               getContext().VoidPtrTy);
3004      Args.add(RValue::get(EmitCastToVoidPtr(Dest)),
3005               getContext().VoidPtrTy);
3006      break;
3007    // void __atomic_store(size_t size, void *mem, void *val, int order)
3008    case AtomicExpr::AO__c11_atomic_store:
3009    case AtomicExpr::AO__atomic_store:
3010    case AtomicExpr::AO__atomic_store_n:
3011      LibCallName = "__atomic_store";
3012      Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
3013               getContext().VoidPtrTy);
3014      break;
3015    // void __atomic_load(size_t size, void *mem, void *return, int order)
3016    case AtomicExpr::AO__c11_atomic_load:
3017    case AtomicExpr::AO__atomic_load:
3018    case AtomicExpr::AO__atomic_load_n:
3019      LibCallName = "__atomic_load";
3020      Args.add(RValue::get(EmitCastToVoidPtr(Dest)),
3021               getContext().VoidPtrTy);
3022      break;
3023#if 0
3024    // These are only defined for 1-16 byte integers.  It is not clear what
3025    // their semantics would be on anything else...
3026    case AtomicExpr::Add:   LibCallName = "__atomic_fetch_add_generic"; break;
3027    case AtomicExpr::Sub:   LibCallName = "__atomic_fetch_sub_generic"; break;
3028    case AtomicExpr::And:   LibCallName = "__atomic_fetch_and_generic"; break;
3029    case AtomicExpr::Or:    LibCallName = "__atomic_fetch_or_generic"; break;
3030    case AtomicExpr::Xor:   LibCallName = "__atomic_fetch_xor_generic"; break;
3031#endif
3032    default: return EmitUnsupportedRValue(E, "atomic library call");
3033    }
3034    // order is always the last parameter
3035    Args.add(RValue::get(Order),
3036             getContext().IntTy);
3037
3038    const CGFunctionInfo &FuncInfo =
3039        CGM.getTypes().arrangeFunctionCall(RetTy, Args,
3040            FunctionType::ExtInfo(), RequiredArgs::All);
3041    llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
3042    llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
3043    RValue Res = EmitCall(FuncInfo, Func, ReturnValueSlot(), Args);
3044    if (E->isCmpXChg())
3045      return Res;
3046    if (E->getType()->isVoidType())
3047      return RValue::get(0);
3048    return ConvertTempToRValue(*this, E->getType(), Dest);
3049  }
3050
3051  llvm::Type *IPtrTy =
3052      llvm::IntegerType::get(getLLVMContext(), Size * 8)->getPointerTo();
3053  llvm::Value *OrigDest = Dest;
3054  Ptr = Builder.CreateBitCast(Ptr, IPtrTy);
3055  if (Val1) Val1 = Builder.CreateBitCast(Val1, IPtrTy);
3056  if (Val2) Val2 = Builder.CreateBitCast(Val2, IPtrTy);
3057  if (Dest && !E->isCmpXChg()) Dest = Builder.CreateBitCast(Dest, IPtrTy);
3058
3059  if (isa<llvm::ConstantInt>(Order)) {
3060    int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3061    switch (ord) {
3062    case 0:  // memory_order_relaxed
3063      EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3064                   llvm::Monotonic);
3065      break;
3066    case 1:  // memory_order_consume
3067    case 2:  // memory_order_acquire
3068      EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3069                   llvm::Acquire);
3070      break;
3071    case 3:  // memory_order_release
3072      EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3073                   llvm::Release);
3074      break;
3075    case 4:  // memory_order_acq_rel
3076      EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3077                   llvm::AcquireRelease);
3078      break;
3079    case 5:  // memory_order_seq_cst
3080      EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3081                   llvm::SequentiallyConsistent);
3082      break;
3083    default: // invalid order
3084      // We should not ever get here normally, but it's hard to
3085      // enforce that in general.
3086      break;
3087    }
3088    if (E->getType()->isVoidType())
3089      return RValue::get(0);
3090    return ConvertTempToRValue(*this, E->getType(), OrigDest);
3091  }
3092
3093  // Long case, when Order isn't obviously constant.
3094
3095  bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store ||
3096                 E->getOp() == AtomicExpr::AO__atomic_store ||
3097                 E->getOp() == AtomicExpr::AO__atomic_store_n;
3098  bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load ||
3099                E->getOp() == AtomicExpr::AO__atomic_load ||
3100                E->getOp() == AtomicExpr::AO__atomic_load_n;
3101
3102  // Create all the relevant BB's
3103  llvm::BasicBlock *MonotonicBB = 0, *AcquireBB = 0, *ReleaseBB = 0,
3104                   *AcqRelBB = 0, *SeqCstBB = 0;
3105  MonotonicBB = createBasicBlock("monotonic", CurFn);
3106  if (!IsStore)
3107    AcquireBB = createBasicBlock("acquire", CurFn);
3108  if (!IsLoad)
3109    ReleaseBB = createBasicBlock("release", CurFn);
3110  if (!IsLoad && !IsStore)
3111    AcqRelBB = createBasicBlock("acqrel", CurFn);
3112  SeqCstBB = createBasicBlock("seqcst", CurFn);
3113  llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3114
3115  // Create the switch for the split
3116  // MonotonicBB is arbitrarily chosen as the default case; in practice, this
3117  // doesn't matter unless someone is crazy enough to use something that
3118  // doesn't fold to a constant for the ordering.
3119  Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3120  llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB);
3121
3122  // Emit all the different atomics
3123  Builder.SetInsertPoint(MonotonicBB);
3124  EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3125               llvm::Monotonic);
3126  Builder.CreateBr(ContBB);
3127  if (!IsStore) {
3128    Builder.SetInsertPoint(AcquireBB);
3129    EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3130                 llvm::Acquire);
3131    Builder.CreateBr(ContBB);
3132    SI->addCase(Builder.getInt32(1), AcquireBB);
3133    SI->addCase(Builder.getInt32(2), AcquireBB);
3134  }
3135  if (!IsLoad) {
3136    Builder.SetInsertPoint(ReleaseBB);
3137    EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3138                 llvm::Release);
3139    Builder.CreateBr(ContBB);
3140    SI->addCase(Builder.getInt32(3), ReleaseBB);
3141  }
3142  if (!IsLoad && !IsStore) {
3143    Builder.SetInsertPoint(AcqRelBB);
3144    EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3145                 llvm::AcquireRelease);
3146    Builder.CreateBr(ContBB);
3147    SI->addCase(Builder.getInt32(4), AcqRelBB);
3148  }
3149  Builder.SetInsertPoint(SeqCstBB);
3150  EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3151               llvm::SequentiallyConsistent);
3152  Builder.CreateBr(ContBB);
3153  SI->addCase(Builder.getInt32(5), SeqCstBB);
3154
3155  // Cleanup and return
3156  Builder.SetInsertPoint(ContBB);
3157  if (E->getType()->isVoidType())
3158    return RValue::get(0);
3159  return ConvertTempToRValue(*this, E->getType(), OrigDest);
3160}
3161
3162void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
3163  assert(Val->getType()->isFPOrFPVectorTy());
3164  if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
3165    return;
3166
3167  llvm::MDBuilder MDHelper(getLLVMContext());
3168  llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
3169
3170  cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
3171}
3172
3173namespace {
3174  struct LValueOrRValue {
3175    LValue LV;
3176    RValue RV;
3177  };
3178}
3179
3180static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
3181                                           const PseudoObjectExpr *E,
3182                                           bool forLValue,
3183                                           AggValueSlot slot) {
3184  llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3185
3186  // Find the result expression, if any.
3187  const Expr *resultExpr = E->getResultExpr();
3188  LValueOrRValue result;
3189
3190  for (PseudoObjectExpr::const_semantics_iterator
3191         i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3192    const Expr *semantic = *i;
3193
3194    // If this semantic expression is an opaque value, bind it
3195    // to the result of its source expression.
3196    if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3197
3198      // If this is the result expression, we may need to evaluate
3199      // directly into the slot.
3200      typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3201      OVMA opaqueData;
3202      if (ov == resultExpr && ov->isRValue() && !forLValue &&
3203          CodeGenFunction::hasAggregateLLVMType(ov->getType()) &&
3204          !ov->getType()->isAnyComplexType()) {
3205        CGF.EmitAggExpr(ov->getSourceExpr(), slot);
3206
3207        LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
3208        opaqueData = OVMA::bind(CGF, ov, LV);
3209        result.RV = slot.asRValue();
3210
3211      // Otherwise, emit as normal.
3212      } else {
3213        opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3214
3215        // If this is the result, also evaluate the result now.
3216        if (ov == resultExpr) {
3217          if (forLValue)
3218            result.LV = CGF.EmitLValue(ov);
3219          else
3220            result.RV = CGF.EmitAnyExpr(ov, slot);
3221        }
3222      }
3223
3224      opaques.push_back(opaqueData);
3225
3226    // Otherwise, if the expression is the result, evaluate it
3227    // and remember the result.
3228    } else if (semantic == resultExpr) {
3229      if (forLValue)
3230        result.LV = CGF.EmitLValue(semantic);
3231      else
3232        result.RV = CGF.EmitAnyExpr(semantic, slot);
3233
3234    // Otherwise, evaluate the expression in an ignored context.
3235    } else {
3236      CGF.EmitIgnoredExpr(semantic);
3237    }
3238  }
3239
3240  // Unbind all the opaques now.
3241  for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3242    opaques[i].unbind(CGF);
3243
3244  return result;
3245}
3246
3247RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
3248                                               AggValueSlot slot) {
3249  return emitPseudoObjectExpr(*this, E, false, slot).RV;
3250}
3251
3252LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
3253  return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
3254}
3255