CGExpr.cpp revision f0fe5bc0e46038dc79cdd27fcf0c77ad4789fdff
1//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "CGCall.h"
17#include "CGRecordLayout.h"
18#include "CGObjCRuntime.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/DeclObjC.h"
21#include "llvm/Intrinsics.h"
22#include "clang/CodeGen/CodeGenOptions.h"
23#include "llvm/Target/TargetData.h"
24using namespace clang;
25using namespace CodeGen;
26
27//===--------------------------------------------------------------------===//
28//                        Miscellaneous Helper Methods
29//===--------------------------------------------------------------------===//
30
31/// CreateTempAlloca - This creates a alloca and inserts it into the entry
32/// block.
33llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(const llvm::Type *Ty,
34                                                    const llvm::Twine &Name) {
35  if (!Builder.isNamePreserving())
36    return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
37  return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
38}
39
40llvm::Value *CodeGenFunction::CreateIRTemp(QualType Ty,
41                                           const llvm::Twine &Name) {
42  llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
43  // FIXME: Should we prefer the preferred type alignment here?
44  CharUnits Align = getContext().getTypeAlignInChars(Ty);
45  Alloc->setAlignment(Align.getQuantity());
46  return Alloc;
47}
48
49llvm::Value *CodeGenFunction::CreateMemTemp(QualType Ty,
50                                            const llvm::Twine &Name) {
51  llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
52  // FIXME: Should we prefer the preferred type alignment here?
53  CharUnits Align = getContext().getTypeAlignInChars(Ty);
54  Alloc->setAlignment(Align.getQuantity());
55  return Alloc;
56}
57
58/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
59/// expression and compare the result against zero, returning an Int1Ty value.
60llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
61  QualType BoolTy = getContext().BoolTy;
62  if (E->getType()->isMemberFunctionPointerType()) {
63    LValue LV = EmitAggExprToLValue(E);
64
65    // Get the pointer.
66    llvm::Value *FuncPtr = Builder.CreateStructGEP(LV.getAddress(), 0,
67                                                   "src.ptr");
68    FuncPtr = Builder.CreateLoad(FuncPtr);
69
70    llvm::Value *IsNotNull =
71      Builder.CreateICmpNE(FuncPtr,
72                            llvm::Constant::getNullValue(FuncPtr->getType()),
73                            "tobool");
74
75    return IsNotNull;
76  }
77  if (!E->getType()->isAnyComplexType())
78    return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
79
80  return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
81}
82
83/// EmitAnyExpr - Emit code to compute the specified expression which can have
84/// any type.  The result is returned as an RValue struct.  If this is an
85/// aggregate expression, the aggloc/agglocvolatile arguments indicate where the
86/// result should be returned.
87RValue CodeGenFunction::EmitAnyExpr(const Expr *E, llvm::Value *AggLoc,
88                                    bool IsAggLocVolatile, bool IgnoreResult,
89                                    bool IsInitializer) {
90  if (!hasAggregateLLVMType(E->getType()))
91    return RValue::get(EmitScalarExpr(E, IgnoreResult));
92  else if (E->getType()->isAnyComplexType())
93    return RValue::getComplex(EmitComplexExpr(E, false, false,
94                                              IgnoreResult, IgnoreResult));
95
96  EmitAggExpr(E, AggLoc, IsAggLocVolatile, IgnoreResult, IsInitializer);
97  return RValue::getAggregate(AggLoc, IsAggLocVolatile);
98}
99
100/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
101/// always be accessible even if no aggregate location is provided.
102RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E,
103                                          bool IsAggLocVolatile,
104                                          bool IsInitializer) {
105  llvm::Value *AggLoc = 0;
106
107  if (hasAggregateLLVMType(E->getType()) &&
108      !E->getType()->isAnyComplexType())
109    AggLoc = CreateMemTemp(E->getType(), "agg.tmp");
110  return EmitAnyExpr(E, AggLoc, IsAggLocVolatile, /*IgnoreResult=*/false,
111                     IsInitializer);
112}
113
114RValue CodeGenFunction::EmitReferenceBindingToExpr(const Expr* E,
115                                                   bool IsInitializer) {
116  bool ShouldDestroyTemporaries = false;
117  unsigned OldNumLiveTemporaries = 0;
118
119  if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E))
120    E = DAE->getExpr();
121
122  if (const CXXExprWithTemporaries *TE = dyn_cast<CXXExprWithTemporaries>(E)) {
123    ShouldDestroyTemporaries = true;
124
125    // Keep track of the current cleanup stack depth.
126    OldNumLiveTemporaries = LiveTemporaries.size();
127
128    E = TE->getSubExpr();
129  }
130
131  RValue Val;
132  if (E->isLvalue(getContext()) == Expr::LV_Valid) {
133    // Emit the expr as an lvalue.
134    LValue LV = EmitLValue(E);
135    if (LV.isSimple()) {
136      if (ShouldDestroyTemporaries) {
137        // Pop temporaries.
138        while (LiveTemporaries.size() > OldNumLiveTemporaries)
139          PopCXXTemporary();
140      }
141
142      return RValue::get(LV.getAddress());
143    }
144
145    Val = EmitLoadOfLValue(LV, E->getType());
146
147    if (ShouldDestroyTemporaries) {
148      // Pop temporaries.
149      while (LiveTemporaries.size() > OldNumLiveTemporaries)
150        PopCXXTemporary();
151    }
152  } else {
153    const CXXRecordDecl *BaseClassDecl = 0;
154    const CXXRecordDecl *DerivedClassDecl = 0;
155
156    if (const CastExpr *CE =
157          dyn_cast<CastExpr>(E->IgnoreParenNoopCasts(getContext()))) {
158      if (CE->getCastKind() == CastExpr::CK_DerivedToBase) {
159        E = CE->getSubExpr();
160
161        BaseClassDecl =
162          cast<CXXRecordDecl>(CE->getType()->getAs<RecordType>()->getDecl());
163        DerivedClassDecl =
164          cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
165      }
166    }
167
168    Val = EmitAnyExprToTemp(E, /*IsAggLocVolatile=*/false,
169                            IsInitializer);
170
171    if (ShouldDestroyTemporaries) {
172      // Pop temporaries.
173      while (LiveTemporaries.size() > OldNumLiveTemporaries)
174        PopCXXTemporary();
175    }
176
177    if (IsInitializer) {
178      // We might have to destroy the temporary variable.
179      if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
180        if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
181          if (!ClassDecl->hasTrivialDestructor()) {
182            const CXXDestructorDecl *Dtor =
183              ClassDecl->getDestructor(getContext());
184
185            {
186              DelayedCleanupBlock Scope(*this);
187              EmitCXXDestructorCall(Dtor, Dtor_Complete,
188                                    Val.getAggregateAddr());
189
190              // Make sure to jump to the exit block.
191              EmitBranch(Scope.getCleanupExitBlock());
192            }
193            if (Exceptions) {
194              EHCleanupBlock Cleanup(*this);
195              EmitCXXDestructorCall(Dtor, Dtor_Complete,
196                                    Val.getAggregateAddr());
197            }
198          }
199        }
200      }
201    }
202
203    // Check if need to perform the derived-to-base cast.
204    if (BaseClassDecl) {
205      llvm::Value *Derived = Val.getAggregateAddr();
206      llvm::Value *Base =
207        GetAddressOfBaseClass(Derived, DerivedClassDecl, BaseClassDecl,
208                              /*NullCheckValue=*/false);
209      return RValue::get(Base);
210    }
211  }
212
213  if (Val.isAggregate()) {
214    Val = RValue::get(Val.getAggregateAddr());
215  } else {
216    // Create a temporary variable that we can bind the reference to.
217    llvm::Value *Temp = CreateMemTemp(E->getType(), "reftmp");
218    if (Val.isScalar())
219      EmitStoreOfScalar(Val.getScalarVal(), Temp, false, E->getType());
220    else
221      StoreComplexToAddr(Val.getComplexVal(), Temp, false);
222    Val = RValue::get(Temp);
223  }
224
225  return Val;
226}
227
228
229/// getAccessedFieldNo - Given an encoded value and a result number, return the
230/// input field number being accessed.
231unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
232                                             const llvm::Constant *Elts) {
233  if (isa<llvm::ConstantAggregateZero>(Elts))
234    return 0;
235
236  return cast<llvm::ConstantInt>(Elts->getOperand(Idx))->getZExtValue();
237}
238
239void CodeGenFunction::EmitCheck(llvm::Value *Address, unsigned Size) {
240  if (!CatchUndefined)
241    return;
242
243  const llvm::IntegerType *Size_tTy
244    = llvm::IntegerType::get(VMContext, LLVMPointerWidth);
245  Address = Builder.CreateBitCast(Address, PtrToInt8Ty);
246
247  const llvm::Type *ResType[] = {
248    Size_tTy
249  };
250  llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, ResType, 1);
251  const llvm::IntegerType *IntTy = cast<llvm::IntegerType>(
252    CGM.getTypes().ConvertType(CGM.getContext().IntTy));
253  // In time, people may want to control this and use a 1 here.
254  llvm::Value *Arg = llvm::ConstantInt::get(IntTy, 0);
255  llvm::Value *C = Builder.CreateCall2(F, Address, Arg);
256  llvm::BasicBlock *Cont = createBasicBlock();
257  llvm::BasicBlock *Check = createBasicBlock();
258  llvm::Value *NegativeOne = llvm::ConstantInt::get(Size_tTy, -1ULL);
259  Builder.CreateCondBr(Builder.CreateICmpEQ(C, NegativeOne), Cont, Check);
260
261  EmitBlock(Check);
262  Builder.CreateCondBr(Builder.CreateICmpUGE(C,
263                                        llvm::ConstantInt::get(Size_tTy, Size)),
264                       Cont, getTrapBB());
265  EmitBlock(Cont);
266}
267
268
269llvm::Value *CodeGenFunction::
270EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
271                        bool isInc, bool isPre) {
272  QualType ValTy = E->getSubExpr()->getType();
273  llvm::Value *InVal = EmitLoadOfLValue(LV, ValTy).getScalarVal();
274
275  int AmountVal = isInc ? 1 : -1;
276
277  if (ValTy->isPointerType() &&
278      ValTy->getAs<PointerType>()->isVariableArrayType()) {
279    // The amount of the addition/subtraction needs to account for the VLA size
280    ErrorUnsupported(E, "VLA pointer inc/dec");
281  }
282
283  llvm::Value *NextVal;
284  if (const llvm::PointerType *PT =
285      dyn_cast<llvm::PointerType>(InVal->getType())) {
286    llvm::Constant *Inc =
287    llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), AmountVal);
288    if (!isa<llvm::FunctionType>(PT->getElementType())) {
289      QualType PTEE = ValTy->getPointeeType();
290      if (const ObjCInterfaceType *OIT =
291          dyn_cast<ObjCInterfaceType>(PTEE)) {
292        // Handle interface types, which are not represented with a concrete
293        // type.
294        int size = getContext().getTypeSize(OIT) / 8;
295        if (!isInc)
296          size = -size;
297        Inc = llvm::ConstantInt::get(Inc->getType(), size);
298        const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
299        InVal = Builder.CreateBitCast(InVal, i8Ty);
300        NextVal = Builder.CreateGEP(InVal, Inc, "add.ptr");
301        llvm::Value *lhs = LV.getAddress();
302        lhs = Builder.CreateBitCast(lhs, llvm::PointerType::getUnqual(i8Ty));
303        LV = LValue::MakeAddr(lhs, MakeQualifiers(ValTy));
304      } else
305        NextVal = Builder.CreateInBoundsGEP(InVal, Inc, "ptrincdec");
306    } else {
307      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
308      NextVal = Builder.CreateBitCast(InVal, i8Ty, "tmp");
309      NextVal = Builder.CreateGEP(NextVal, Inc, "ptrincdec");
310      NextVal = Builder.CreateBitCast(NextVal, InVal->getType());
311    }
312  } else if (InVal->getType() == llvm::Type::getInt1Ty(VMContext) && isInc) {
313    // Bool++ is an interesting case, due to promotion rules, we get:
314    // Bool++ -> Bool = Bool+1 -> Bool = (int)Bool+1 ->
315    // Bool = ((int)Bool+1) != 0
316    // An interesting aspect of this is that increment is always true.
317    // Decrement does not have this property.
318    NextVal = llvm::ConstantInt::getTrue(VMContext);
319  } else if (isa<llvm::IntegerType>(InVal->getType())) {
320    NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
321
322    // Signed integer overflow is undefined behavior.
323    if (ValTy->isSignedIntegerType())
324      NextVal = Builder.CreateNSWAdd(InVal, NextVal, isInc ? "inc" : "dec");
325    else
326      NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
327  } else {
328    // Add the inc/dec to the real part.
329    if (InVal->getType()->isFloatTy())
330      NextVal =
331      llvm::ConstantFP::get(VMContext,
332                            llvm::APFloat(static_cast<float>(AmountVal)));
333    else if (InVal->getType()->isDoubleTy())
334      NextVal =
335      llvm::ConstantFP::get(VMContext,
336                            llvm::APFloat(static_cast<double>(AmountVal)));
337    else {
338      llvm::APFloat F(static_cast<float>(AmountVal));
339      bool ignored;
340      F.convert(Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
341                &ignored);
342      NextVal = llvm::ConstantFP::get(VMContext, F);
343    }
344    NextVal = Builder.CreateFAdd(InVal, NextVal, isInc ? "inc" : "dec");
345  }
346
347  // Store the updated result through the lvalue.
348  if (LV.isBitField())
349    EmitStoreThroughBitfieldLValue(RValue::get(NextVal), LV, ValTy, &NextVal);
350  else
351    EmitStoreThroughLValue(RValue::get(NextVal), LV, ValTy);
352
353  // If this is a postinc, return the value read from memory, otherwise use the
354  // updated value.
355  return isPre ? NextVal : InVal;
356}
357
358
359CodeGenFunction::ComplexPairTy CodeGenFunction::
360EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
361                         bool isInc, bool isPre) {
362  ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(),
363                                            LV.isVolatileQualified());
364
365  llvm::Value *NextVal;
366  if (isa<llvm::IntegerType>(InVal.first->getType())) {
367    uint64_t AmountVal = isInc ? 1 : -1;
368    NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
369
370    // Add the inc/dec to the real part.
371    NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
372  } else {
373    QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
374    llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
375    if (!isInc)
376      FVal.changeSign();
377    NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
378
379    // Add the inc/dec to the real part.
380    NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
381  }
382
383  ComplexPairTy IncVal(NextVal, InVal.second);
384
385  // Store the updated result through the lvalue.
386  StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified());
387
388  // If this is a postinc, return the value read from memory, otherwise use the
389  // updated value.
390  return isPre ? IncVal : InVal;
391}
392
393
394//===----------------------------------------------------------------------===//
395//                         LValue Expression Emission
396//===----------------------------------------------------------------------===//
397
398RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
399  if (Ty->isVoidType())
400    return RValue::get(0);
401
402  if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
403    const llvm::Type *EltTy = ConvertType(CTy->getElementType());
404    llvm::Value *U = llvm::UndefValue::get(EltTy);
405    return RValue::getComplex(std::make_pair(U, U));
406  }
407
408  if (hasAggregateLLVMType(Ty)) {
409    const llvm::Type *LTy = llvm::PointerType::getUnqual(ConvertType(Ty));
410    return RValue::getAggregate(llvm::UndefValue::get(LTy));
411  }
412
413  return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
414}
415
416RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
417                                              const char *Name) {
418  ErrorUnsupported(E, Name);
419  return GetUndefRValue(E->getType());
420}
421
422LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
423                                              const char *Name) {
424  ErrorUnsupported(E, Name);
425  llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
426  return LValue::MakeAddr(llvm::UndefValue::get(Ty),
427                          MakeQualifiers(E->getType()));
428}
429
430LValue CodeGenFunction::EmitCheckedLValue(const Expr *E) {
431  LValue LV = EmitLValue(E);
432  if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
433    EmitCheck(LV.getAddress(), getContext().getTypeSize(E->getType()) / 8);
434  return LV;
435}
436
437/// EmitLValue - Emit code to compute a designator that specifies the location
438/// of the expression.
439///
440/// This can return one of two things: a simple address or a bitfield reference.
441/// In either case, the LLVM Value* in the LValue structure is guaranteed to be
442/// an LLVM pointer type.
443///
444/// If this returns a bitfield reference, nothing about the pointee type of the
445/// LLVM value is known: For example, it may not be a pointer to an integer.
446///
447/// If this returns a normal address, and if the lvalue's C type is fixed size,
448/// this method guarantees that the returned pointer type will point to an LLVM
449/// type of the same size of the lvalue's type.  If the lvalue has a variable
450/// length type, this is not possible.
451///
452LValue CodeGenFunction::EmitLValue(const Expr *E) {
453  switch (E->getStmtClass()) {
454  default: return EmitUnsupportedLValue(E, "l-value expression");
455
456  case Expr::ObjCIsaExprClass:
457    return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
458  case Expr::BinaryOperatorClass:
459    return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
460  case Expr::CallExprClass:
461  case Expr::CXXMemberCallExprClass:
462  case Expr::CXXOperatorCallExprClass:
463    return EmitCallExprLValue(cast<CallExpr>(E));
464  case Expr::VAArgExprClass:
465    return EmitVAArgExprLValue(cast<VAArgExpr>(E));
466  case Expr::DeclRefExprClass:
467    return EmitDeclRefLValue(cast<DeclRefExpr>(E));
468  case Expr::ParenExprClass:return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
469  case Expr::PredefinedExprClass:
470    return EmitPredefinedLValue(cast<PredefinedExpr>(E));
471  case Expr::StringLiteralClass:
472    return EmitStringLiteralLValue(cast<StringLiteral>(E));
473  case Expr::ObjCEncodeExprClass:
474    return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
475
476  case Expr::BlockDeclRefExprClass:
477    return EmitBlockDeclRefLValue(cast<BlockDeclRefExpr>(E));
478
479  case Expr::CXXTemporaryObjectExprClass:
480  case Expr::CXXConstructExprClass:
481    return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
482  case Expr::CXXBindTemporaryExprClass:
483    return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
484  case Expr::CXXExprWithTemporariesClass:
485    return EmitCXXExprWithTemporariesLValue(cast<CXXExprWithTemporaries>(E));
486  case Expr::CXXZeroInitValueExprClass:
487    return EmitNullInitializationLValue(cast<CXXZeroInitValueExpr>(E));
488  case Expr::CXXDefaultArgExprClass:
489    return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
490  case Expr::CXXTypeidExprClass:
491    return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
492
493  case Expr::ObjCMessageExprClass:
494    return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
495  case Expr::ObjCIvarRefExprClass:
496    return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
497  case Expr::ObjCPropertyRefExprClass:
498    return EmitObjCPropertyRefLValue(cast<ObjCPropertyRefExpr>(E));
499  case Expr::ObjCImplicitSetterGetterRefExprClass:
500    return EmitObjCKVCRefLValue(cast<ObjCImplicitSetterGetterRefExpr>(E));
501  case Expr::ObjCSuperExprClass:
502    return EmitObjCSuperExprLValue(cast<ObjCSuperExpr>(E));
503
504  case Expr::StmtExprClass:
505    return EmitStmtExprLValue(cast<StmtExpr>(E));
506  case Expr::UnaryOperatorClass:
507    return EmitUnaryOpLValue(cast<UnaryOperator>(E));
508  case Expr::ArraySubscriptExprClass:
509    return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
510  case Expr::ExtVectorElementExprClass:
511    return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
512  case Expr::MemberExprClass:
513    return EmitMemberExpr(cast<MemberExpr>(E));
514  case Expr::CompoundLiteralExprClass:
515    return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
516  case Expr::ConditionalOperatorClass:
517    return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
518  case Expr::ChooseExprClass:
519    return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext()));
520  case Expr::ImplicitCastExprClass:
521  case Expr::CStyleCastExprClass:
522  case Expr::CXXFunctionalCastExprClass:
523  case Expr::CXXStaticCastExprClass:
524  case Expr::CXXDynamicCastExprClass:
525  case Expr::CXXReinterpretCastExprClass:
526  case Expr::CXXConstCastExprClass:
527    return EmitCastLValue(cast<CastExpr>(E));
528  }
529}
530
531llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
532                                               QualType Ty) {
533  llvm::LoadInst *Load = Builder.CreateLoad(Addr, "tmp");
534  if (Volatile)
535    Load->setVolatile(true);
536
537  // Bool can have different representation in memory than in registers.
538  llvm::Value *V = Load;
539  if (Ty->isBooleanType())
540    if (V->getType() != llvm::Type::getInt1Ty(VMContext))
541      V = Builder.CreateTrunc(V, llvm::Type::getInt1Ty(VMContext), "tobool");
542
543  return V;
544}
545
546void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
547                                        bool Volatile, QualType Ty) {
548
549  if (Ty->isBooleanType()) {
550    // Bool can have different representation in memory than in registers.
551    const llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType());
552    Value = Builder.CreateIntCast(Value, DstPtr->getElementType(), false);
553  }
554  Builder.CreateStore(Value, Addr, Volatile);
555}
556
557/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
558/// method emits the address of the lvalue, then loads the result as an rvalue,
559/// returning the rvalue.
560RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, QualType ExprType) {
561  if (LV.isObjCWeak()) {
562    // load of a __weak object.
563    llvm::Value *AddrWeakObj = LV.getAddress();
564    return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
565                                                             AddrWeakObj));
566  }
567
568  if (LV.isSimple()) {
569    llvm::Value *Ptr = LV.getAddress();
570    const llvm::Type *EltTy =
571      cast<llvm::PointerType>(Ptr->getType())->getElementType();
572
573    // Simple scalar l-value.
574    //
575    // FIXME: We shouldn't have to use isSingleValueType here.
576    if (EltTy->isSingleValueType())
577      return RValue::get(EmitLoadOfScalar(Ptr, LV.isVolatileQualified(),
578                                          ExprType));
579
580    assert(ExprType->isFunctionType() && "Unknown scalar value");
581    return RValue::get(Ptr);
582  }
583
584  if (LV.isVectorElt()) {
585    llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(),
586                                          LV.isVolatileQualified(), "tmp");
587    return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(),
588                                                    "vecext"));
589  }
590
591  // If this is a reference to a subset of the elements of a vector, either
592  // shuffle the input or extract/insert them as appropriate.
593  if (LV.isExtVectorElt())
594    return EmitLoadOfExtVectorElementLValue(LV, ExprType);
595
596  if (LV.isBitField())
597    return EmitLoadOfBitfieldLValue(LV, ExprType);
598
599  if (LV.isPropertyRef())
600    return EmitLoadOfPropertyRefLValue(LV, ExprType);
601
602  assert(LV.isKVCRef() && "Unknown LValue type!");
603  return EmitLoadOfKVCRefLValue(LV, ExprType);
604}
605
606RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
607                                                 QualType ExprType) {
608  unsigned StartBit = LV.getBitFieldInfo().Start;
609  unsigned BitfieldSize = LV.getBitFieldInfo().Size;
610  llvm::Value *Ptr = LV.getBitFieldAddr();
611
612  const llvm::Type *EltTy =
613    cast<llvm::PointerType>(Ptr->getType())->getElementType();
614  unsigned EltTySize = CGM.getTargetData().getTypeSizeInBits(EltTy);
615
616  // In some cases the bitfield may straddle two memory locations.  Currently we
617  // load the entire bitfield, then do the magic to sign-extend it if
618  // necessary. This results in somewhat more code than necessary for the common
619  // case (one load), since two shifts accomplish both the masking and sign
620  // extension.
621  unsigned LowBits = std::min(BitfieldSize, EltTySize - StartBit);
622  llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "tmp");
623
624  // Shift to proper location.
625  if (StartBit)
626    Val = Builder.CreateLShr(Val, StartBit, "bf.lo");
627
628  // Mask off unused bits.
629  llvm::Constant *LowMask = llvm::ConstantInt::get(VMContext,
630                                llvm::APInt::getLowBitsSet(EltTySize, LowBits));
631  Val = Builder.CreateAnd(Val, LowMask, "bf.lo.cleared");
632
633  // Fetch the high bits if necessary.
634  if (LowBits < BitfieldSize) {
635    unsigned HighBits = BitfieldSize - LowBits;
636    llvm::Value *HighPtr = Builder.CreateGEP(Ptr, llvm::ConstantInt::get(
637                            llvm::Type::getInt32Ty(VMContext), 1), "bf.ptr.hi");
638    llvm::Value *HighVal = Builder.CreateLoad(HighPtr,
639                                              LV.isVolatileQualified(),
640                                              "tmp");
641
642    // Mask off unused bits.
643    llvm::Constant *HighMask = llvm::ConstantInt::get(VMContext,
644                               llvm::APInt::getLowBitsSet(EltTySize, HighBits));
645    HighVal = Builder.CreateAnd(HighVal, HighMask, "bf.lo.cleared");
646
647    // Shift to proper location and or in to bitfield value.
648    HighVal = Builder.CreateShl(HighVal, LowBits);
649    Val = Builder.CreateOr(Val, HighVal, "bf.val");
650  }
651
652  // Sign extend if necessary.
653  if (LV.isBitFieldSigned()) {
654    llvm::Value *ExtraBits = llvm::ConstantInt::get(EltTy,
655                                                    EltTySize - BitfieldSize);
656    Val = Builder.CreateAShr(Builder.CreateShl(Val, ExtraBits),
657                             ExtraBits, "bf.val.sext");
658  }
659
660  // The bitfield type and the normal type differ when the storage sizes differ
661  // (currently just _Bool).
662  Val = Builder.CreateIntCast(Val, ConvertType(ExprType), false, "tmp");
663
664  return RValue::get(Val);
665}
666
667RValue CodeGenFunction::EmitLoadOfPropertyRefLValue(LValue LV,
668                                                    QualType ExprType) {
669  return EmitObjCPropertyGet(LV.getPropertyRefExpr());
670}
671
672RValue CodeGenFunction::EmitLoadOfKVCRefLValue(LValue LV,
673                                               QualType ExprType) {
674  return EmitObjCPropertyGet(LV.getKVCRefExpr());
675}
676
677// If this is a reference to a subset of the elements of a vector, create an
678// appropriate shufflevector.
679RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV,
680                                                         QualType ExprType) {
681  llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddr(),
682                                        LV.isVolatileQualified(), "tmp");
683
684  const llvm::Constant *Elts = LV.getExtVectorElts();
685
686  // If the result of the expression is a non-vector type, we must be extracting
687  // a single element.  Just codegen as an extractelement.
688  const VectorType *ExprVT = ExprType->getAs<VectorType>();
689  if (!ExprVT) {
690    unsigned InIdx = getAccessedFieldNo(0, Elts);
691    llvm::Value *Elt = llvm::ConstantInt::get(
692                                      llvm::Type::getInt32Ty(VMContext), InIdx);
693    return RValue::get(Builder.CreateExtractElement(Vec, Elt, "tmp"));
694  }
695
696  // Always use shuffle vector to try to retain the original program structure
697  unsigned NumResultElts = ExprVT->getNumElements();
698
699  llvm::SmallVector<llvm::Constant*, 4> Mask;
700  for (unsigned i = 0; i != NumResultElts; ++i) {
701    unsigned InIdx = getAccessedFieldNo(i, Elts);
702    Mask.push_back(llvm::ConstantInt::get(
703                                     llvm::Type::getInt32Ty(VMContext), InIdx));
704  }
705
706  llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size());
707  Vec = Builder.CreateShuffleVector(Vec,
708                                    llvm::UndefValue::get(Vec->getType()),
709                                    MaskV, "tmp");
710  return RValue::get(Vec);
711}
712
713
714
715/// EmitStoreThroughLValue - Store the specified rvalue into the specified
716/// lvalue, where both are guaranteed to the have the same type, and that type
717/// is 'Ty'.
718void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
719                                             QualType Ty) {
720  if (!Dst.isSimple()) {
721    if (Dst.isVectorElt()) {
722      // Read/modify/write the vector, inserting the new element.
723      llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(),
724                                            Dst.isVolatileQualified(), "tmp");
725      Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
726                                        Dst.getVectorIdx(), "vecins");
727      Builder.CreateStore(Vec, Dst.getVectorAddr(),Dst.isVolatileQualified());
728      return;
729    }
730
731    // If this is an update of extended vector elements, insert them as
732    // appropriate.
733    if (Dst.isExtVectorElt())
734      return EmitStoreThroughExtVectorComponentLValue(Src, Dst, Ty);
735
736    if (Dst.isBitField())
737      return EmitStoreThroughBitfieldLValue(Src, Dst, Ty);
738
739    if (Dst.isPropertyRef())
740      return EmitStoreThroughPropertyRefLValue(Src, Dst, Ty);
741
742    assert(Dst.isKVCRef() && "Unknown LValue type");
743    return EmitStoreThroughKVCRefLValue(Src, Dst, Ty);
744  }
745
746  if (Dst.isObjCWeak() && !Dst.isNonGC()) {
747    // load of a __weak object.
748    llvm::Value *LvalueDst = Dst.getAddress();
749    llvm::Value *src = Src.getScalarVal();
750     CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
751    return;
752  }
753
754  if (Dst.isObjCStrong() && !Dst.isNonGC()) {
755    // load of a __strong object.
756    llvm::Value *LvalueDst = Dst.getAddress();
757    llvm::Value *src = Src.getScalarVal();
758    if (Dst.isObjCIvar()) {
759      assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
760      const llvm::Type *ResultType = ConvertType(getContext().LongTy);
761      llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
762      llvm::Value *dst = RHS;
763      RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
764      llvm::Value *LHS =
765        Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
766      llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
767      CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
768                                              BytesBetween);
769    } else if (Dst.isGlobalObjCRef())
770      CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst);
771    else
772      CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
773    return;
774  }
775
776  assert(Src.isScalar() && "Can't emit an agg store with this method");
777  EmitStoreOfScalar(Src.getScalarVal(), Dst.getAddress(),
778                    Dst.isVolatileQualified(), Ty);
779}
780
781void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
782                                                     QualType Ty,
783                                                     llvm::Value **Result) {
784  unsigned StartBit = Dst.getBitFieldInfo().Start;
785  unsigned BitfieldSize = Dst.getBitFieldInfo().Size;
786  llvm::Value *Ptr = Dst.getBitFieldAddr();
787
788  const llvm::Type *EltTy =
789    cast<llvm::PointerType>(Ptr->getType())->getElementType();
790  unsigned EltTySize = CGM.getTargetData().getTypeSizeInBits(EltTy);
791
792  // Get the new value, cast to the appropriate type and masked to exactly the
793  // size of the bit-field.
794  llvm::Value *SrcVal = Src.getScalarVal();
795  llvm::Value *NewVal = Builder.CreateIntCast(SrcVal, EltTy, false, "tmp");
796  llvm::Constant *Mask = llvm::ConstantInt::get(VMContext,
797                           llvm::APInt::getLowBitsSet(EltTySize, BitfieldSize));
798  NewVal = Builder.CreateAnd(NewVal, Mask, "bf.value");
799
800  // Return the new value of the bit-field, if requested.
801  if (Result) {
802    // Cast back to the proper type for result.
803    const llvm::Type *SrcTy = SrcVal->getType();
804    llvm::Value *SrcTrunc = Builder.CreateIntCast(NewVal, SrcTy, false,
805                                                  "bf.reload.val");
806
807    // Sign extend if necessary.
808    if (Dst.isBitFieldSigned()) {
809      unsigned SrcTySize = CGM.getTargetData().getTypeSizeInBits(SrcTy);
810      llvm::Value *ExtraBits = llvm::ConstantInt::get(SrcTy,
811                                                      SrcTySize - BitfieldSize);
812      SrcTrunc = Builder.CreateAShr(Builder.CreateShl(SrcTrunc, ExtraBits),
813                                    ExtraBits, "bf.reload.sext");
814    }
815
816    *Result = SrcTrunc;
817  }
818
819  // In some cases the bitfield may straddle two memory locations.  Emit the low
820  // part first and check to see if the high needs to be done.
821  unsigned LowBits = std::min(BitfieldSize, EltTySize - StartBit);
822  llvm::Value *LowVal = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
823                                           "bf.prev.low");
824
825  // Compute the mask for zero-ing the low part of this bitfield.
826  llvm::Constant *InvMask =
827    llvm::ConstantInt::get(VMContext,
828             ~llvm::APInt::getBitsSet(EltTySize, StartBit, StartBit + LowBits));
829
830  // Compute the new low part as
831  //   LowVal = (LowVal & InvMask) | (NewVal << StartBit),
832  // with the shift of NewVal implicitly stripping the high bits.
833  llvm::Value *NewLowVal =
834    Builder.CreateShl(NewVal, StartBit, "bf.value.lo");
835  LowVal = Builder.CreateAnd(LowVal, InvMask, "bf.prev.lo.cleared");
836  LowVal = Builder.CreateOr(LowVal, NewLowVal, "bf.new.lo");
837
838  // Write back.
839  Builder.CreateStore(LowVal, Ptr, Dst.isVolatileQualified());
840
841  // If the low part doesn't cover the bitfield emit a high part.
842  if (LowBits < BitfieldSize) {
843    unsigned HighBits = BitfieldSize - LowBits;
844    llvm::Value *HighPtr =  Builder.CreateGEP(Ptr, llvm::ConstantInt::get(
845                            llvm::Type::getInt32Ty(VMContext), 1), "bf.ptr.hi");
846    llvm::Value *HighVal = Builder.CreateLoad(HighPtr,
847                                              Dst.isVolatileQualified(),
848                                              "bf.prev.hi");
849
850    // Compute the mask for zero-ing the high part of this bitfield.
851    llvm::Constant *InvMask =
852      llvm::ConstantInt::get(VMContext, ~llvm::APInt::getLowBitsSet(EltTySize,
853                               HighBits));
854
855    // Compute the new high part as
856    //   HighVal = (HighVal & InvMask) | (NewVal lshr LowBits),
857    // where the high bits of NewVal have already been cleared and the
858    // shift stripping the low bits.
859    llvm::Value *NewHighVal =
860      Builder.CreateLShr(NewVal, LowBits, "bf.value.high");
861    HighVal = Builder.CreateAnd(HighVal, InvMask, "bf.prev.hi.cleared");
862    HighVal = Builder.CreateOr(HighVal, NewHighVal, "bf.new.hi");
863
864    // Write back.
865    Builder.CreateStore(HighVal, HighPtr, Dst.isVolatileQualified());
866  }
867}
868
869void CodeGenFunction::EmitStoreThroughPropertyRefLValue(RValue Src,
870                                                        LValue Dst,
871                                                        QualType Ty) {
872  EmitObjCPropertySet(Dst.getPropertyRefExpr(), Src);
873}
874
875void CodeGenFunction::EmitStoreThroughKVCRefLValue(RValue Src,
876                                                   LValue Dst,
877                                                   QualType Ty) {
878  EmitObjCPropertySet(Dst.getKVCRefExpr(), Src);
879}
880
881void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
882                                                               LValue Dst,
883                                                               QualType Ty) {
884  // This access turns into a read/modify/write of the vector.  Load the input
885  // value now.
886  llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddr(),
887                                        Dst.isVolatileQualified(), "tmp");
888  const llvm::Constant *Elts = Dst.getExtVectorElts();
889
890  llvm::Value *SrcVal = Src.getScalarVal();
891
892  if (const VectorType *VTy = Ty->getAs<VectorType>()) {
893    unsigned NumSrcElts = VTy->getNumElements();
894    unsigned NumDstElts =
895       cast<llvm::VectorType>(Vec->getType())->getNumElements();
896    if (NumDstElts == NumSrcElts) {
897      // Use shuffle vector is the src and destination are the same number of
898      // elements and restore the vector mask since it is on the side it will be
899      // stored.
900      llvm::SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
901      for (unsigned i = 0; i != NumSrcElts; ++i) {
902        unsigned InIdx = getAccessedFieldNo(i, Elts);
903        Mask[InIdx] = llvm::ConstantInt::get(
904                                          llvm::Type::getInt32Ty(VMContext), i);
905      }
906
907      llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size());
908      Vec = Builder.CreateShuffleVector(SrcVal,
909                                        llvm::UndefValue::get(Vec->getType()),
910                                        MaskV, "tmp");
911    } else if (NumDstElts > NumSrcElts) {
912      // Extended the source vector to the same length and then shuffle it
913      // into the destination.
914      // FIXME: since we're shuffling with undef, can we just use the indices
915      //        into that?  This could be simpler.
916      llvm::SmallVector<llvm::Constant*, 4> ExtMask;
917      const llvm::Type *Int32Ty = llvm::Type::getInt32Ty(VMContext);
918      unsigned i;
919      for (i = 0; i != NumSrcElts; ++i)
920        ExtMask.push_back(llvm::ConstantInt::get(Int32Ty, i));
921      for (; i != NumDstElts; ++i)
922        ExtMask.push_back(llvm::UndefValue::get(Int32Ty));
923      llvm::Value *ExtMaskV = llvm::ConstantVector::get(&ExtMask[0],
924                                                        ExtMask.size());
925      llvm::Value *ExtSrcVal =
926        Builder.CreateShuffleVector(SrcVal,
927                                    llvm::UndefValue::get(SrcVal->getType()),
928                                    ExtMaskV, "tmp");
929      // build identity
930      llvm::SmallVector<llvm::Constant*, 4> Mask;
931      for (unsigned i = 0; i != NumDstElts; ++i)
932        Mask.push_back(llvm::ConstantInt::get(Int32Ty, i));
933
934      // modify when what gets shuffled in
935      for (unsigned i = 0; i != NumSrcElts; ++i) {
936        unsigned Idx = getAccessedFieldNo(i, Elts);
937        Mask[Idx] = llvm::ConstantInt::get(Int32Ty, i+NumDstElts);
938      }
939      llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size());
940      Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV, "tmp");
941    } else {
942      // We should never shorten the vector
943      assert(0 && "unexpected shorten vector length");
944    }
945  } else {
946    // If the Src is a scalar (not a vector) it must be updating one element.
947    unsigned InIdx = getAccessedFieldNo(0, Elts);
948    const llvm::Type *Int32Ty = llvm::Type::getInt32Ty(VMContext);
949    llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
950    Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt, "tmp");
951  }
952
953  Builder.CreateStore(Vec, Dst.getExtVectorAddr(), Dst.isVolatileQualified());
954}
955
956// setObjCGCLValueClass - sets class of he lvalue for the purpose of
957// generating write-barries API. It is currently a global, ivar,
958// or neither.
959static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
960                                 LValue &LV) {
961  if (Ctx.getLangOptions().getGCMode() == LangOptions::NonGC)
962    return;
963
964  if (isa<ObjCIvarRefExpr>(E)) {
965    LV.SetObjCIvar(LV, true);
966    ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
967    LV.setBaseIvarExp(Exp->getBase());
968    LV.SetObjCArray(LV, E->getType()->isArrayType());
969    return;
970  }
971
972  if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
973    if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
974      if ((VD->isBlockVarDecl() && !VD->hasLocalStorage()) ||
975          VD->isFileVarDecl())
976        LV.SetGlobalObjCRef(LV, true);
977    }
978    LV.SetObjCArray(LV, E->getType()->isArrayType());
979    return;
980  }
981
982  if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
983    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
984    return;
985  }
986
987  if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
988    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
989    if (LV.isObjCIvar()) {
990      // If cast is to a structure pointer, follow gcc's behavior and make it
991      // a non-ivar write-barrier.
992      QualType ExpTy = E->getType();
993      if (ExpTy->isPointerType())
994        ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
995      if (ExpTy->isRecordType())
996        LV.SetObjCIvar(LV, false);
997    }
998    return;
999  }
1000  if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1001    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
1002    return;
1003  }
1004
1005  if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
1006    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
1007    return;
1008  }
1009
1010  if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1011    setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1012    if (LV.isObjCIvar() && !LV.isObjCArray())
1013      // Using array syntax to assigning to what an ivar points to is not
1014      // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1015      LV.SetObjCIvar(LV, false);
1016    else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1017      // Using array syntax to assigning to what global points to is not
1018      // same as assigning to the global itself. {id *G;} G[i] = 0;
1019      LV.SetGlobalObjCRef(LV, false);
1020    return;
1021  }
1022
1023  if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
1024    setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1025    // We don't know if member is an 'ivar', but this flag is looked at
1026    // only in the context of LV.isObjCIvar().
1027    LV.SetObjCArray(LV, E->getType()->isArrayType());
1028    return;
1029  }
1030}
1031
1032static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1033                                      const Expr *E, const VarDecl *VD) {
1034  assert((VD->hasExternalStorage() || VD->isFileVarDecl()) &&
1035         "Var decl must have external storage or be a file var decl!");
1036
1037  llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1038  if (VD->getType()->isReferenceType())
1039    V = CGF.Builder.CreateLoad(V, "tmp");
1040  LValue LV = LValue::MakeAddr(V, CGF.MakeQualifiers(E->getType()));
1041  setObjCGCLValueClass(CGF.getContext(), E, LV);
1042  return LV;
1043}
1044
1045static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1046                                      const Expr *E, const FunctionDecl *FD) {
1047  llvm::Value* V = CGF.CGM.GetAddrOfFunction(FD);
1048  if (!FD->hasPrototype()) {
1049    if (const FunctionProtoType *Proto =
1050            FD->getType()->getAs<FunctionProtoType>()) {
1051      // Ugly case: for a K&R-style definition, the type of the definition
1052      // isn't the same as the type of a use.  Correct for this with a
1053      // bitcast.
1054      QualType NoProtoType =
1055          CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
1056      NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1057      V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType), "tmp");
1058    }
1059  }
1060  return LValue::MakeAddr(V, CGF.MakeQualifiers(E->getType()));
1061}
1062
1063LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1064  const NamedDecl *ND = E->getDecl();
1065
1066  if (ND->hasAttr<WeakRefAttr>()) {
1067    const ValueDecl* VD = cast<ValueDecl>(ND);
1068    llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1069
1070    Qualifiers Quals = MakeQualifiers(E->getType());
1071    LValue LV = LValue::MakeAddr(Aliasee, Quals);
1072
1073    return LV;
1074  }
1075
1076  if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1077
1078    // Check if this is a global variable.
1079    if (VD->hasExternalStorage() || VD->isFileVarDecl())
1080      return EmitGlobalVarDeclLValue(*this, E, VD);
1081
1082    bool NonGCable = VD->hasLocalStorage() && !VD->hasAttr<BlocksAttr>();
1083
1084    llvm::Value *V = LocalDeclMap[VD];
1085    assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1086
1087    Qualifiers Quals = MakeQualifiers(E->getType());
1088    // local variables do not get their gc attribute set.
1089    // local static?
1090    if (NonGCable) Quals.removeObjCGCAttr();
1091
1092    if (VD->hasAttr<BlocksAttr>()) {
1093      V = Builder.CreateStructGEP(V, 1, "forwarding");
1094      V = Builder.CreateLoad(V);
1095      V = Builder.CreateStructGEP(V, getByRefValueLLVMField(VD),
1096                                  VD->getNameAsString());
1097    }
1098    if (VD->getType()->isReferenceType())
1099      V = Builder.CreateLoad(V, "tmp");
1100    LValue LV = LValue::MakeAddr(V, Quals);
1101    LValue::SetObjCNonGC(LV, NonGCable);
1102    setObjCGCLValueClass(getContext(), E, LV);
1103    return LV;
1104  }
1105
1106  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
1107    return EmitFunctionDeclLValue(*this, E, FD);
1108
1109  // FIXME: the qualifier check does not seem sufficient here
1110  if (E->getQualifier()) {
1111    const FieldDecl *FD = cast<FieldDecl>(ND);
1112    llvm::Value *V = CGM.EmitPointerToDataMember(FD);
1113
1114    return LValue::MakeAddr(V, MakeQualifiers(FD->getType()));
1115  }
1116
1117  assert(false && "Unhandled DeclRefExpr");
1118
1119  // an invalid LValue, but the assert will
1120  // ensure that this point is never reached.
1121  return LValue();
1122}
1123
1124LValue CodeGenFunction::EmitBlockDeclRefLValue(const BlockDeclRefExpr *E) {
1125  return LValue::MakeAddr(GetAddrOfBlockDecl(E), MakeQualifiers(E->getType()));
1126}
1127
1128LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1129  // __extension__ doesn't affect lvalue-ness.
1130  if (E->getOpcode() == UnaryOperator::Extension)
1131    return EmitLValue(E->getSubExpr());
1132
1133  QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1134  switch (E->getOpcode()) {
1135  default: assert(0 && "Unknown unary operator lvalue!");
1136  case UnaryOperator::Deref: {
1137    QualType T = E->getSubExpr()->getType()->getPointeeType();
1138    assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1139
1140    Qualifiers Quals = MakeQualifiers(T);
1141    Quals.setAddressSpace(ExprTy.getAddressSpace());
1142
1143    LValue LV = LValue::MakeAddr(EmitScalarExpr(E->getSubExpr()), Quals);
1144    // We should not generate __weak write barrier on indirect reference
1145    // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1146    // But, we continue to generate __strong write barrier on indirect write
1147    // into a pointer to object.
1148    if (getContext().getLangOptions().ObjC1 &&
1149        getContext().getLangOptions().getGCMode() != LangOptions::NonGC &&
1150        LV.isObjCWeak())
1151      LValue::SetObjCNonGC(LV, !E->isOBJCGCCandidate(getContext()));
1152    return LV;
1153  }
1154  case UnaryOperator::Real:
1155  case UnaryOperator::Imag: {
1156    LValue LV = EmitLValue(E->getSubExpr());
1157    unsigned Idx = E->getOpcode() == UnaryOperator::Imag;
1158    return LValue::MakeAddr(Builder.CreateStructGEP(LV.getAddress(),
1159                                                    Idx, "idx"),
1160                            MakeQualifiers(ExprTy));
1161  }
1162  case UnaryOperator::PreInc:
1163  case UnaryOperator::PreDec: {
1164    LValue LV = EmitLValue(E->getSubExpr());
1165    bool isInc = E->getOpcode() == UnaryOperator::PreInc;
1166
1167    if (E->getType()->isAnyComplexType())
1168      EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1169    else
1170      EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1171    return LV;
1172  }
1173  }
1174}
1175
1176LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1177  return LValue::MakeAddr(CGM.GetAddrOfConstantStringFromLiteral(E),
1178                          Qualifiers());
1179}
1180
1181LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1182  return LValue::MakeAddr(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1183                          Qualifiers());
1184}
1185
1186
1187LValue CodeGenFunction::EmitPredefinedFunctionName(unsigned Type) {
1188  std::string GlobalVarName;
1189
1190  switch (Type) {
1191  default: assert(0 && "Invalid type");
1192  case PredefinedExpr::Func:
1193    GlobalVarName = "__func__.";
1194    break;
1195  case PredefinedExpr::Function:
1196    GlobalVarName = "__FUNCTION__.";
1197    break;
1198  case PredefinedExpr::PrettyFunction:
1199    GlobalVarName = "__PRETTY_FUNCTION__.";
1200    break;
1201  }
1202
1203  llvm::StringRef FnName = CurFn->getName();
1204  if (FnName.startswith("\01"))
1205    FnName = FnName.substr(1);
1206  GlobalVarName += FnName;
1207
1208  std::string FunctionName =
1209    PredefinedExpr::ComputeName((PredefinedExpr::IdentType)Type, CurCodeDecl);
1210
1211  llvm::Constant *C =
1212    CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str());
1213  return LValue::MakeAddr(C, Qualifiers());
1214}
1215
1216LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
1217  switch (E->getIdentType()) {
1218  default:
1219    return EmitUnsupportedLValue(E, "predefined expression");
1220  case PredefinedExpr::Func:
1221  case PredefinedExpr::Function:
1222  case PredefinedExpr::PrettyFunction:
1223    return EmitPredefinedFunctionName(E->getIdentType());
1224  }
1225}
1226
1227llvm::BasicBlock *CodeGenFunction::getTrapBB() {
1228  const CodeGenOptions &GCO = CGM.getCodeGenOpts();
1229
1230  // If we are not optimzing, don't collapse all calls to trap in the function
1231  // to the same call, that way, in the debugger they can see which operation
1232  // did in fact fail.  If we are optimizing, we collpase all call to trap down
1233  // to just one per function to save on codesize.
1234  if (GCO.OptimizationLevel
1235      && TrapBB)
1236    return TrapBB;
1237
1238  llvm::BasicBlock *Cont = 0;
1239  if (HaveInsertPoint()) {
1240    Cont = createBasicBlock("cont");
1241    EmitBranch(Cont);
1242  }
1243  TrapBB = createBasicBlock("trap");
1244  EmitBlock(TrapBB);
1245
1246  llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap, 0, 0);
1247  llvm::CallInst *TrapCall = Builder.CreateCall(F);
1248  TrapCall->setDoesNotReturn();
1249  TrapCall->setDoesNotThrow();
1250  Builder.CreateUnreachable();
1251
1252  if (Cont)
1253    EmitBlock(Cont);
1254  return TrapBB;
1255}
1256
1257LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
1258  // The index must always be an integer, which is not an aggregate.  Emit it.
1259  llvm::Value *Idx = EmitScalarExpr(E->getIdx());
1260  QualType IdxTy  = E->getIdx()->getType();
1261  bool IdxSigned = IdxTy->isSignedIntegerType();
1262
1263  // If the base is a vector type, then we are forming a vector element lvalue
1264  // with this subscript.
1265  if (E->getBase()->getType()->isVectorType()) {
1266    // Emit the vector as an lvalue to get its address.
1267    LValue LHS = EmitLValue(E->getBase());
1268    assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
1269    Idx = Builder.CreateIntCast(Idx,
1270                          llvm::Type::getInt32Ty(VMContext), IdxSigned, "vidx");
1271    return LValue::MakeVectorElt(LHS.getAddress(), Idx,
1272                                 E->getBase()->getType().getCVRQualifiers());
1273  }
1274
1275  // The base must be a pointer, which is not an aggregate.  Emit it.
1276  llvm::Value *Base = EmitScalarExpr(E->getBase());
1277
1278  // Extend or truncate the index type to 32 or 64-bits.
1279  unsigned IdxBitwidth = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1280  if (IdxBitwidth != LLVMPointerWidth)
1281    Idx = Builder.CreateIntCast(Idx,
1282                            llvm::IntegerType::get(VMContext, LLVMPointerWidth),
1283                                IdxSigned, "idxprom");
1284
1285  // FIXME: As llvm implements the object size checking, this can come out.
1286  if (CatchUndefined) {
1287    if (const ImplicitCastExpr *ICE=dyn_cast<ImplicitCastExpr>(E->getBase())) {
1288      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1289        if (ICE->getCastKind() == CastExpr::CK_ArrayToPointerDecay) {
1290          if (const ConstantArrayType *CAT
1291              = getContext().getAsConstantArrayType(DRE->getType())) {
1292            llvm::APInt Size = CAT->getSize();
1293            llvm::BasicBlock *Cont = createBasicBlock("cont");
1294            Builder.CreateCondBr(Builder.CreateICmpULE(Idx,
1295                                  llvm::ConstantInt::get(Idx->getType(), Size)),
1296                                 Cont, getTrapBB());
1297            EmitBlock(Cont);
1298          }
1299        }
1300      }
1301    }
1302  }
1303
1304  // We know that the pointer points to a type of the correct size, unless the
1305  // size is a VLA or Objective-C interface.
1306  llvm::Value *Address = 0;
1307  if (const VariableArrayType *VAT =
1308        getContext().getAsVariableArrayType(E->getType())) {
1309    llvm::Value *VLASize = GetVLASize(VAT);
1310
1311    Idx = Builder.CreateMul(Idx, VLASize);
1312
1313    QualType BaseType = getContext().getBaseElementType(VAT);
1314
1315    CharUnits BaseTypeSize = getContext().getTypeSizeInChars(BaseType);
1316    Idx = Builder.CreateUDiv(Idx,
1317                             llvm::ConstantInt::get(Idx->getType(),
1318                                 BaseTypeSize.getQuantity()));
1319    Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
1320  } else if (const ObjCInterfaceType *OIT =
1321             dyn_cast<ObjCInterfaceType>(E->getType())) {
1322    llvm::Value *InterfaceSize =
1323      llvm::ConstantInt::get(Idx->getType(),
1324          getContext().getTypeSizeInChars(OIT).getQuantity());
1325
1326    Idx = Builder.CreateMul(Idx, InterfaceSize);
1327
1328    const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
1329    Address = Builder.CreateGEP(Builder.CreateBitCast(Base, i8PTy),
1330                                Idx, "arrayidx");
1331    Address = Builder.CreateBitCast(Address, Base->getType());
1332  } else {
1333    Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
1334  }
1335
1336  QualType T = E->getBase()->getType()->getPointeeType();
1337  assert(!T.isNull() &&
1338         "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
1339
1340  Qualifiers Quals = MakeQualifiers(T);
1341  Quals.setAddressSpace(E->getBase()->getType().getAddressSpace());
1342
1343  LValue LV = LValue::MakeAddr(Address, Quals);
1344  if (getContext().getLangOptions().ObjC1 &&
1345      getContext().getLangOptions().getGCMode() != LangOptions::NonGC) {
1346    LValue::SetObjCNonGC(LV, !E->isOBJCGCCandidate(getContext()));
1347    setObjCGCLValueClass(getContext(), E, LV);
1348  }
1349  return LV;
1350}
1351
1352static
1353llvm::Constant *GenerateConstantVector(llvm::LLVMContext &VMContext,
1354                                       llvm::SmallVector<unsigned, 4> &Elts) {
1355  llvm::SmallVector<llvm::Constant*, 4> CElts;
1356
1357  for (unsigned i = 0, e = Elts.size(); i != e; ++i)
1358    CElts.push_back(llvm::ConstantInt::get(
1359                                   llvm::Type::getInt32Ty(VMContext), Elts[i]));
1360
1361  return llvm::ConstantVector::get(&CElts[0], CElts.size());
1362}
1363
1364LValue CodeGenFunction::
1365EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
1366  const llvm::Type *Int32Ty = llvm::Type::getInt32Ty(VMContext);
1367
1368  // Emit the base vector as an l-value.
1369  LValue Base;
1370
1371  // ExtVectorElementExpr's base can either be a vector or pointer to vector.
1372  if (E->isArrow()) {
1373    // If it is a pointer to a vector, emit the address and form an lvalue with
1374    // it.
1375    llvm::Value *Ptr = EmitScalarExpr(E->getBase());
1376    const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
1377    Qualifiers Quals = MakeQualifiers(PT->getPointeeType());
1378    Quals.removeObjCGCAttr();
1379    Base = LValue::MakeAddr(Ptr, Quals);
1380  } else if (E->getBase()->isLvalue(getContext()) == Expr::LV_Valid) {
1381    // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
1382    // emit the base as an lvalue.
1383    assert(E->getBase()->getType()->isVectorType());
1384    Base = EmitLValue(E->getBase());
1385  } else {
1386    // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
1387    assert(E->getBase()->getType()->getAs<VectorType>() &&
1388           "Result must be a vector");
1389    llvm::Value *Vec = EmitScalarExpr(E->getBase());
1390
1391    // Store the vector to memory (because LValue wants an address).
1392    llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
1393    Builder.CreateStore(Vec, VecMem);
1394    Base = LValue::MakeAddr(VecMem, Qualifiers());
1395  }
1396
1397  // Encode the element access list into a vector of unsigned indices.
1398  llvm::SmallVector<unsigned, 4> Indices;
1399  E->getEncodedElementAccess(Indices);
1400
1401  if (Base.isSimple()) {
1402    llvm::Constant *CV = GenerateConstantVector(VMContext, Indices);
1403    return LValue::MakeExtVectorElt(Base.getAddress(), CV,
1404                                    Base.getVRQualifiers());
1405  }
1406  assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
1407
1408  llvm::Constant *BaseElts = Base.getExtVectorElts();
1409  llvm::SmallVector<llvm::Constant *, 4> CElts;
1410
1411  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1412    if (isa<llvm::ConstantAggregateZero>(BaseElts))
1413      CElts.push_back(llvm::ConstantInt::get(Int32Ty, 0));
1414    else
1415      CElts.push_back(cast<llvm::Constant>(BaseElts->getOperand(Indices[i])));
1416  }
1417  llvm::Constant *CV = llvm::ConstantVector::get(&CElts[0], CElts.size());
1418  return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV,
1419                                  Base.getVRQualifiers());
1420}
1421
1422LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
1423  bool isNonGC = false;
1424  Expr *BaseExpr = E->getBase();
1425  llvm::Value *BaseValue = NULL;
1426  Qualifiers BaseQuals;
1427
1428  // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
1429  if (E->isArrow()) {
1430    BaseValue = EmitScalarExpr(BaseExpr);
1431    const PointerType *PTy =
1432      BaseExpr->getType()->getAs<PointerType>();
1433    BaseQuals = PTy->getPointeeType().getQualifiers();
1434  } else if (isa<ObjCPropertyRefExpr>(BaseExpr->IgnoreParens()) ||
1435             isa<ObjCImplicitSetterGetterRefExpr>(
1436               BaseExpr->IgnoreParens())) {
1437    RValue RV = EmitObjCPropertyGet(BaseExpr);
1438    BaseValue = RV.getAggregateAddr();
1439    BaseQuals = BaseExpr->getType().getQualifiers();
1440  } else {
1441    LValue BaseLV = EmitLValue(BaseExpr);
1442    if (BaseLV.isNonGC())
1443      isNonGC = true;
1444    // FIXME: this isn't right for bitfields.
1445    BaseValue = BaseLV.getAddress();
1446    QualType BaseTy = BaseExpr->getType();
1447    BaseQuals = BaseTy.getQualifiers();
1448  }
1449
1450  NamedDecl *ND = E->getMemberDecl();
1451  if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
1452    LValue LV = EmitLValueForField(BaseValue, Field,
1453                                   BaseQuals.getCVRQualifiers());
1454    LValue::SetObjCNonGC(LV, isNonGC);
1455    setObjCGCLValueClass(getContext(), E, LV);
1456    return LV;
1457  }
1458
1459  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
1460    return EmitGlobalVarDeclLValue(*this, E, VD);
1461
1462  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
1463    return EmitFunctionDeclLValue(*this, E, FD);
1464
1465  assert(false && "Unhandled member declaration!");
1466  return LValue();
1467}
1468
1469LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value* BaseValue,
1470                                              const FieldDecl* Field,
1471                                              unsigned CVRQualifiers) {
1472  const CGRecordLayout &RL =
1473    CGM.getTypes().getCGRecordLayout(Field->getParent());
1474  const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field);
1475
1476  // FIXME: CodeGenTypes should expose a method to get the appropriate type for
1477  // FieldTy (the appropriate type is ABI-dependent).
1478  const llvm::Type *FieldTy =
1479    CGM.getTypes().ConvertTypeForMem(Field->getType());
1480  const llvm::PointerType *BaseTy =
1481  cast<llvm::PointerType>(BaseValue->getType());
1482  unsigned AS = BaseTy->getAddressSpace();
1483  BaseValue = Builder.CreateBitCast(BaseValue,
1484                                    llvm::PointerType::get(FieldTy, AS),
1485                                    "tmp");
1486
1487  llvm::Value *Idx =
1488    llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), Info.FieldNo);
1489  llvm::Value *V = Builder.CreateGEP(BaseValue, Idx, "tmp");
1490
1491  return LValue::MakeBitfield(V, Info, Field->getType()->isSignedIntegerType(),
1492                             Field->getType().getCVRQualifiers()|CVRQualifiers);
1493}
1494
1495LValue CodeGenFunction::EmitLValueForField(llvm::Value* BaseValue,
1496                                           const FieldDecl* Field,
1497                                           unsigned CVRQualifiers) {
1498  if (Field->isBitField())
1499    return EmitLValueForBitfield(BaseValue, Field, CVRQualifiers);
1500
1501  const CGRecordLayout &RL =
1502    CGM.getTypes().getCGRecordLayout(Field->getParent());
1503  unsigned idx = RL.getLLVMFieldNo(Field);
1504  llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx, "tmp");
1505
1506  // Match union field type.
1507  if (Field->getParent()->isUnion()) {
1508    const llvm::Type *FieldTy =
1509      CGM.getTypes().ConvertTypeForMem(Field->getType());
1510    const llvm::PointerType * BaseTy =
1511      cast<llvm::PointerType>(BaseValue->getType());
1512    unsigned AS = BaseTy->getAddressSpace();
1513    V = Builder.CreateBitCast(V,
1514                              llvm::PointerType::get(FieldTy, AS),
1515                              "tmp");
1516  }
1517  if (Field->getType()->isReferenceType())
1518    V = Builder.CreateLoad(V, "tmp");
1519
1520  Qualifiers Quals = MakeQualifiers(Field->getType());
1521  Quals.addCVRQualifiers(CVRQualifiers);
1522  // __weak attribute on a field is ignored.
1523  if (Quals.getObjCGCAttr() == Qualifiers::Weak)
1524    Quals.removeObjCGCAttr();
1525
1526  return LValue::MakeAddr(V, Quals);
1527}
1528
1529LValue
1530CodeGenFunction::EmitLValueForFieldInitialization(llvm::Value* BaseValue,
1531                                                  const FieldDecl* Field,
1532                                                  unsigned CVRQualifiers) {
1533  QualType FieldType = Field->getType();
1534
1535  if (!FieldType->isReferenceType())
1536    return EmitLValueForField(BaseValue, Field, CVRQualifiers);
1537
1538  const CGRecordLayout &RL =
1539    CGM.getTypes().getCGRecordLayout(Field->getParent());
1540  unsigned idx = RL.getLLVMFieldNo(Field);
1541  llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx, "tmp");
1542
1543  assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
1544
1545  return LValue::MakeAddr(V, MakeQualifiers(FieldType));
1546}
1547
1548LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr* E){
1549  llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
1550  const Expr* InitExpr = E->getInitializer();
1551  LValue Result = LValue::MakeAddr(DeclPtr, MakeQualifiers(E->getType()));
1552
1553  if (E->getType()->isComplexType())
1554    EmitComplexExprIntoAddr(InitExpr, DeclPtr, false);
1555  else if (hasAggregateLLVMType(E->getType()))
1556    EmitAnyExpr(InitExpr, DeclPtr, false);
1557  else
1558    EmitStoreThroughLValue(EmitAnyExpr(InitExpr), Result, E->getType());
1559
1560  return Result;
1561}
1562
1563LValue
1564CodeGenFunction::EmitConditionalOperatorLValue(const ConditionalOperator* E) {
1565  if (E->isLvalue(getContext()) == Expr::LV_Valid) {
1566    if (int Cond = ConstantFoldsToSimpleInteger(E->getCond())) {
1567      Expr *Live = Cond == 1 ? E->getLHS() : E->getRHS();
1568      if (Live)
1569        return EmitLValue(Live);
1570    }
1571
1572    if (!E->getLHS())
1573      return EmitUnsupportedLValue(E, "conditional operator with missing LHS");
1574
1575    llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1576    llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1577    llvm::BasicBlock *ContBlock = createBasicBlock("cond.end");
1578
1579    EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
1580
1581    // Any temporaries created here are conditional.
1582    BeginConditionalBranch();
1583    EmitBlock(LHSBlock);
1584    LValue LHS = EmitLValue(E->getLHS());
1585    EndConditionalBranch();
1586
1587    if (!LHS.isSimple())
1588      return EmitUnsupportedLValue(E, "conditional operator");
1589
1590    // FIXME: We shouldn't need an alloca for this.
1591    llvm::Value *Temp = CreateTempAlloca(LHS.getAddress()->getType(),"condtmp");
1592    Builder.CreateStore(LHS.getAddress(), Temp);
1593    EmitBranch(ContBlock);
1594
1595    // Any temporaries created here are conditional.
1596    BeginConditionalBranch();
1597    EmitBlock(RHSBlock);
1598    LValue RHS = EmitLValue(E->getRHS());
1599    EndConditionalBranch();
1600    if (!RHS.isSimple())
1601      return EmitUnsupportedLValue(E, "conditional operator");
1602
1603    Builder.CreateStore(RHS.getAddress(), Temp);
1604    EmitBranch(ContBlock);
1605
1606    EmitBlock(ContBlock);
1607
1608    Temp = Builder.CreateLoad(Temp, "lv");
1609    return LValue::MakeAddr(Temp, MakeQualifiers(E->getType()));
1610  }
1611
1612  // ?: here should be an aggregate.
1613  assert((hasAggregateLLVMType(E->getType()) &&
1614          !E->getType()->isAnyComplexType()) &&
1615         "Unexpected conditional operator!");
1616
1617  return EmitAggExprToLValue(E);
1618}
1619
1620/// EmitCastLValue - Casts are never lvalues unless that cast is a dynamic_cast.
1621/// If the cast is a dynamic_cast, we can have the usual lvalue result,
1622/// otherwise if a cast is needed by the code generator in an lvalue context,
1623/// then it must mean that we need the address of an aggregate in order to
1624/// access one of its fields.  This can happen for all the reasons that casts
1625/// are permitted with aggregate result, including noop aggregate casts, and
1626/// cast from scalar to union.
1627LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
1628  switch (E->getCastKind()) {
1629  default:
1630    return EmitUnsupportedLValue(E, "unexpected cast lvalue");
1631
1632  case CastExpr::CK_Dynamic: {
1633    LValue LV = EmitLValue(E->getSubExpr());
1634    llvm::Value *V = LV.getAddress();
1635    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
1636    return LValue::MakeAddr(EmitDynamicCast(V, DCE),
1637                            MakeQualifiers(E->getType()));
1638  }
1639
1640  case CastExpr::CK_NoOp:
1641  case CastExpr::CK_ConstructorConversion:
1642  case CastExpr::CK_UserDefinedConversion:
1643  case CastExpr::CK_AnyPointerToObjCPointerCast:
1644    return EmitLValue(E->getSubExpr());
1645
1646  case CastExpr::CK_UncheckedDerivedToBase:
1647  case CastExpr::CK_DerivedToBase: {
1648    const RecordType *DerivedClassTy =
1649      E->getSubExpr()->getType()->getAs<RecordType>();
1650    CXXRecordDecl *DerivedClassDecl =
1651      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1652
1653    const RecordType *BaseClassTy = E->getType()->getAs<RecordType>();
1654    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseClassTy->getDecl());
1655
1656    LValue LV = EmitLValue(E->getSubExpr());
1657
1658    // Perform the derived-to-base conversion
1659    llvm::Value *Base =
1660      GetAddressOfBaseClass(LV.getAddress(), DerivedClassDecl,
1661                            BaseClassDecl, /*NullCheckValue=*/false);
1662
1663    return LValue::MakeAddr(Base, MakeQualifiers(E->getType()));
1664  }
1665  case CastExpr::CK_ToUnion:
1666    return EmitAggExprToLValue(E);
1667  case CastExpr::CK_BaseToDerived: {
1668    const RecordType *BaseClassTy =
1669      E->getSubExpr()->getType()->getAs<RecordType>();
1670    CXXRecordDecl *BaseClassDecl =
1671      cast<CXXRecordDecl>(BaseClassTy->getDecl());
1672
1673    const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
1674    CXXRecordDecl *DerivedClassDecl =
1675      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1676
1677    LValue LV = EmitLValue(E->getSubExpr());
1678
1679    // Perform the base-to-derived conversion
1680    llvm::Value *Derived =
1681      GetAddressOfDerivedClass(LV.getAddress(), BaseClassDecl,
1682                               DerivedClassDecl, /*NullCheckValue=*/false);
1683
1684    return LValue::MakeAddr(Derived, MakeQualifiers(E->getType()));
1685  }
1686  case CastExpr::CK_BitCast: {
1687    // This must be a reinterpret_cast (or c-style equivalent).
1688    const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
1689
1690    LValue LV = EmitLValue(E->getSubExpr());
1691    llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
1692                                           ConvertType(CE->getTypeAsWritten()));
1693    return LValue::MakeAddr(V, MakeQualifiers(E->getType()));
1694  }
1695  }
1696}
1697
1698LValue CodeGenFunction::EmitNullInitializationLValue(
1699                                              const CXXZeroInitValueExpr *E) {
1700  QualType Ty = E->getType();
1701  LValue LV = LValue::MakeAddr(CreateMemTemp(Ty), MakeQualifiers(Ty));
1702  EmitMemSetToZero(LV.getAddress(), Ty);
1703  return LV;
1704}
1705
1706//===--------------------------------------------------------------------===//
1707//                             Expression Emission
1708//===--------------------------------------------------------------------===//
1709
1710
1711RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
1712                                     ReturnValueSlot ReturnValue) {
1713  // Builtins never have block type.
1714  if (E->getCallee()->getType()->isBlockPointerType())
1715    return EmitBlockCallExpr(E, ReturnValue);
1716
1717  if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
1718    return EmitCXXMemberCallExpr(CE, ReturnValue);
1719
1720  const Decl *TargetDecl = 0;
1721  if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E->getCallee())) {
1722    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) {
1723      TargetDecl = DRE->getDecl();
1724      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(TargetDecl))
1725        if (unsigned builtinID = FD->getBuiltinID())
1726          return EmitBuiltinExpr(FD, builtinID, E);
1727    }
1728  }
1729
1730  if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
1731    if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
1732      return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
1733
1734  if (isa<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
1735    // C++ [expr.pseudo]p1:
1736    //   The result shall only be used as the operand for the function call
1737    //   operator (), and the result of such a call has type void. The only
1738    //   effect is the evaluation of the postfix-expression before the dot or
1739    //   arrow.
1740    EmitScalarExpr(E->getCallee());
1741    return RValue::get(0);
1742  }
1743
1744  llvm::Value *Callee = EmitScalarExpr(E->getCallee());
1745  return EmitCall(E->getCallee()->getType(), Callee, ReturnValue,
1746                  E->arg_begin(), E->arg_end(), TargetDecl);
1747}
1748
1749LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
1750  // Comma expressions just emit their LHS then their RHS as an l-value.
1751  if (E->getOpcode() == BinaryOperator::Comma) {
1752    EmitAnyExpr(E->getLHS());
1753    EnsureInsertPoint();
1754    return EmitLValue(E->getRHS());
1755  }
1756
1757  if (E->getOpcode() == BinaryOperator::PtrMemD ||
1758      E->getOpcode() == BinaryOperator::PtrMemI)
1759    return EmitPointerToDataMemberBinaryExpr(E);
1760
1761  // Can only get l-value for binary operator expressions which are a
1762  // simple assignment of aggregate type.
1763  if (E->getOpcode() != BinaryOperator::Assign)
1764    return EmitUnsupportedLValue(E, "binary l-value expression");
1765
1766  if (!hasAggregateLLVMType(E->getType())) {
1767    // Emit the LHS as an l-value.
1768    LValue LV = EmitLValue(E->getLHS());
1769
1770    llvm::Value *RHS = EmitScalarExpr(E->getRHS());
1771    EmitStoreOfScalar(RHS, LV.getAddress(), LV.isVolatileQualified(),
1772                      E->getType());
1773    return LV;
1774  }
1775
1776  return EmitAggExprToLValue(E);
1777}
1778
1779LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
1780  RValue RV = EmitCallExpr(E);
1781
1782  if (!RV.isScalar())
1783    return LValue::MakeAddr(RV.getAggregateAddr(),MakeQualifiers(E->getType()));
1784
1785  assert(E->getCallReturnType()->isReferenceType() &&
1786         "Can't have a scalar return unless the return type is a "
1787         "reference type!");
1788
1789  return LValue::MakeAddr(RV.getScalarVal(), MakeQualifiers(E->getType()));
1790}
1791
1792LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
1793  // FIXME: This shouldn't require another copy.
1794  return EmitAggExprToLValue(E);
1795}
1796
1797LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
1798  llvm::Value *Temp = CreateMemTemp(E->getType(), "tmp");
1799  EmitCXXConstructExpr(Temp, E);
1800  return LValue::MakeAddr(Temp, MakeQualifiers(E->getType()));
1801}
1802
1803LValue
1804CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
1805  llvm::Value *Temp = EmitCXXTypeidExpr(E);
1806  return LValue::MakeAddr(Temp, MakeQualifiers(E->getType()));
1807}
1808
1809LValue
1810CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
1811  LValue LV = EmitLValue(E->getSubExpr());
1812  PushCXXTemporary(E->getTemporary(), LV.getAddress());
1813  return LV;
1814}
1815
1816LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
1817  // Can only get l-value for message expression returning aggregate type
1818  RValue RV = EmitObjCMessageExpr(E);
1819  // FIXME: can this be volatile?
1820  return LValue::MakeAddr(RV.getAggregateAddr(), MakeQualifiers(E->getType()));
1821}
1822
1823llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
1824                                             const ObjCIvarDecl *Ivar) {
1825  return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
1826}
1827
1828LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
1829                                          llvm::Value *BaseValue,
1830                                          const ObjCIvarDecl *Ivar,
1831                                          unsigned CVRQualifiers) {
1832  return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
1833                                                   Ivar, CVRQualifiers);
1834}
1835
1836LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
1837  // FIXME: A lot of the code below could be shared with EmitMemberExpr.
1838  llvm::Value *BaseValue = 0;
1839  const Expr *BaseExpr = E->getBase();
1840  Qualifiers BaseQuals;
1841  QualType ObjectTy;
1842  if (E->isArrow()) {
1843    BaseValue = EmitScalarExpr(BaseExpr);
1844    ObjectTy = BaseExpr->getType()->getPointeeType();
1845    BaseQuals = ObjectTy.getQualifiers();
1846  } else {
1847    LValue BaseLV = EmitLValue(BaseExpr);
1848    // FIXME: this isn't right for bitfields.
1849    BaseValue = BaseLV.getAddress();
1850    ObjectTy = BaseExpr->getType();
1851    BaseQuals = ObjectTy.getQualifiers();
1852  }
1853
1854  LValue LV =
1855    EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
1856                      BaseQuals.getCVRQualifiers());
1857  setObjCGCLValueClass(getContext(), E, LV);
1858  return LV;
1859}
1860
1861LValue
1862CodeGenFunction::EmitObjCPropertyRefLValue(const ObjCPropertyRefExpr *E) {
1863  // This is a special l-value that just issues sends when we load or store
1864  // through it.
1865  return LValue::MakePropertyRef(E, E->getType().getCVRQualifiers());
1866}
1867
1868LValue CodeGenFunction::EmitObjCKVCRefLValue(
1869                                const ObjCImplicitSetterGetterRefExpr *E) {
1870  // This is a special l-value that just issues sends when we load or store
1871  // through it.
1872  return LValue::MakeKVCRef(E, E->getType().getCVRQualifiers());
1873}
1874
1875LValue CodeGenFunction::EmitObjCSuperExprLValue(const ObjCSuperExpr *E) {
1876  return EmitUnsupportedLValue(E, "use of super");
1877}
1878
1879LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
1880  // Can only get l-value for message expression returning aggregate type
1881  RValue RV = EmitAnyExprToTemp(E);
1882  return LValue::MakeAddr(RV.getAggregateAddr(), MakeQualifiers(E->getType()));
1883}
1884
1885RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
1886                                 ReturnValueSlot ReturnValue,
1887                                 CallExpr::const_arg_iterator ArgBeg,
1888                                 CallExpr::const_arg_iterator ArgEnd,
1889                                 const Decl *TargetDecl) {
1890  // Get the actual function type. The callee type will always be a pointer to
1891  // function type or a block pointer type.
1892  assert(CalleeType->isFunctionPointerType() &&
1893         "Call must have function pointer type!");
1894
1895  CalleeType = getContext().getCanonicalType(CalleeType);
1896
1897  const FunctionType *FnType
1898    = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
1899  QualType ResultType = FnType->getResultType();
1900
1901  CallArgList Args;
1902  EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd);
1903
1904  return EmitCall(CGM.getTypes().getFunctionInfo(Args, FnType),
1905                  Callee, ReturnValue, Args, TargetDecl);
1906}
1907
1908LValue CodeGenFunction::
1909EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
1910  llvm::Value *BaseV;
1911  if (E->getOpcode() == BinaryOperator::PtrMemI)
1912    BaseV = EmitScalarExpr(E->getLHS());
1913  else
1914    BaseV = EmitLValue(E->getLHS()).getAddress();
1915  const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(getLLVMContext());
1916  BaseV = Builder.CreateBitCast(BaseV, i8Ty);
1917  llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
1918  llvm::Value *AddV = Builder.CreateInBoundsGEP(BaseV, OffsetV, "add.ptr");
1919
1920  QualType Ty = E->getRHS()->getType();
1921  Ty = Ty->getAs<MemberPointerType>()->getPointeeType();
1922
1923  const llvm::Type *PType = ConvertType(getContext().getPointerType(Ty));
1924  AddV = Builder.CreateBitCast(AddV, PType);
1925  return LValue::MakeAddr(AddV, MakeQualifiers(Ty));
1926}
1927
1928