TargetInfo.cpp revision 1cce1958b127f1722a18825b2cd793ce21246911
1//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// These classes wrap the information about a call or function
11// definition used to handle ABI compliancy.
12//
13//===----------------------------------------------------------------------===//
14
15#include "TargetInfo.h"
16#include "ABIInfo.h"
17#include "CodeGenFunction.h"
18#include "clang/AST/RecordLayout.h"
19#include "llvm/Type.h"
20#include "llvm/Target/TargetData.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/ADT/Triple.h"
23#include "llvm/Support/raw_ostream.h"
24using namespace clang;
25using namespace CodeGen;
26
27static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
28                               llvm::Value *Array,
29                               llvm::Value *Value,
30                               unsigned FirstIndex,
31                               unsigned LastIndex) {
32  // Alternatively, we could emit this as a loop in the source.
33  for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
34    llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
35    Builder.CreateStore(Value, Cell);
36  }
37}
38
39ABIInfo::~ABIInfo() {}
40
41ASTContext &ABIInfo::getContext() const {
42  return CGT.getContext();
43}
44
45llvm::LLVMContext &ABIInfo::getVMContext() const {
46  return CGT.getLLVMContext();
47}
48
49const llvm::TargetData &ABIInfo::getTargetData() const {
50  return CGT.getTargetData();
51}
52
53
54void ABIArgInfo::dump() const {
55  llvm::raw_ostream &OS = llvm::errs();
56  OS << "(ABIArgInfo Kind=";
57  switch (TheKind) {
58  case Direct:
59    OS << "Direct Type=";
60    if (const llvm::Type *Ty = getCoerceToType())
61      Ty->print(OS);
62    else
63      OS << "null";
64    break;
65  case Extend:
66    OS << "Extend";
67    break;
68  case Ignore:
69    OS << "Ignore";
70    break;
71  case Indirect:
72    OS << "Indirect Align=" << getIndirectAlign()
73       << " Byal=" << getIndirectByVal();
74    break;
75  case Expand:
76    OS << "Expand";
77    break;
78  }
79  OS << ")\n";
80}
81
82TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
83
84static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
85
86/// isEmptyField - Return true iff a the field is "empty", that is it
87/// is an unnamed bit-field or an (array of) empty record(s).
88static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
89                         bool AllowArrays) {
90  if (FD->isUnnamedBitfield())
91    return true;
92
93  QualType FT = FD->getType();
94
95    // Constant arrays of empty records count as empty, strip them off.
96  if (AllowArrays)
97    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT))
98      FT = AT->getElementType();
99
100  const RecordType *RT = FT->getAs<RecordType>();
101  if (!RT)
102    return false;
103
104  // C++ record fields are never empty, at least in the Itanium ABI.
105  //
106  // FIXME: We should use a predicate for whether this behavior is true in the
107  // current ABI.
108  if (isa<CXXRecordDecl>(RT->getDecl()))
109    return false;
110
111  return isEmptyRecord(Context, FT, AllowArrays);
112}
113
114/// isEmptyRecord - Return true iff a structure contains only empty
115/// fields. Note that a structure with a flexible array member is not
116/// considered empty.
117static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
118  const RecordType *RT = T->getAs<RecordType>();
119  if (!RT)
120    return 0;
121  const RecordDecl *RD = RT->getDecl();
122  if (RD->hasFlexibleArrayMember())
123    return false;
124
125  // If this is a C++ record, check the bases first.
126  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
127    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
128           e = CXXRD->bases_end(); i != e; ++i)
129      if (!isEmptyRecord(Context, i->getType(), true))
130        return false;
131
132  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
133         i != e; ++i)
134    if (!isEmptyField(Context, *i, AllowArrays))
135      return false;
136  return true;
137}
138
139/// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
140/// a non-trivial destructor or a non-trivial copy constructor.
141static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
142  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
143  if (!RD)
144    return false;
145
146  return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
147}
148
149/// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
150/// a record type with either a non-trivial destructor or a non-trivial copy
151/// constructor.
152static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
153  const RecordType *RT = T->getAs<RecordType>();
154  if (!RT)
155    return false;
156
157  return hasNonTrivialDestructorOrCopyConstructor(RT);
158}
159
160/// isSingleElementStruct - Determine if a structure is a "single
161/// element struct", i.e. it has exactly one non-empty field or
162/// exactly one field which is itself a single element
163/// struct. Structures with flexible array members are never
164/// considered single element structs.
165///
166/// \return The field declaration for the single non-empty field, if
167/// it exists.
168static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
169  const RecordType *RT = T->getAsStructureType();
170  if (!RT)
171    return 0;
172
173  const RecordDecl *RD = RT->getDecl();
174  if (RD->hasFlexibleArrayMember())
175    return 0;
176
177  const Type *Found = 0;
178
179  // If this is a C++ record, check the bases first.
180  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
181    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
182           e = CXXRD->bases_end(); i != e; ++i) {
183      // Ignore empty records.
184      if (isEmptyRecord(Context, i->getType(), true))
185        continue;
186
187      // If we already found an element then this isn't a single-element struct.
188      if (Found)
189        return 0;
190
191      // If this is non-empty and not a single element struct, the composite
192      // cannot be a single element struct.
193      Found = isSingleElementStruct(i->getType(), Context);
194      if (!Found)
195        return 0;
196    }
197  }
198
199  // Check for single element.
200  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
201         i != e; ++i) {
202    const FieldDecl *FD = *i;
203    QualType FT = FD->getType();
204
205    // Ignore empty fields.
206    if (isEmptyField(Context, FD, true))
207      continue;
208
209    // If we already found an element then this isn't a single-element
210    // struct.
211    if (Found)
212      return 0;
213
214    // Treat single element arrays as the element.
215    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
216      if (AT->getSize().getZExtValue() != 1)
217        break;
218      FT = AT->getElementType();
219    }
220
221    if (!CodeGenFunction::hasAggregateLLVMType(FT)) {
222      Found = FT.getTypePtr();
223    } else {
224      Found = isSingleElementStruct(FT, Context);
225      if (!Found)
226        return 0;
227    }
228  }
229
230  return Found;
231}
232
233static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
234  if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
235      !Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
236      !Ty->isBlockPointerType())
237    return false;
238
239  uint64_t Size = Context.getTypeSize(Ty);
240  return Size == 32 || Size == 64;
241}
242
243/// canExpandIndirectArgument - Test whether an argument type which is to be
244/// passed indirectly (on the stack) would have the equivalent layout if it was
245/// expanded into separate arguments. If so, we prefer to do the latter to avoid
246/// inhibiting optimizations.
247///
248// FIXME: This predicate is missing many cases, currently it just follows
249// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
250// should probably make this smarter, or better yet make the LLVM backend
251// capable of handling it.
252static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
253  // We can only expand structure types.
254  const RecordType *RT = Ty->getAs<RecordType>();
255  if (!RT)
256    return false;
257
258  // We can only expand (C) structures.
259  //
260  // FIXME: This needs to be generalized to handle classes as well.
261  const RecordDecl *RD = RT->getDecl();
262  if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
263    return false;
264
265  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
266         i != e; ++i) {
267    const FieldDecl *FD = *i;
268
269    if (!is32Or64BitBasicType(FD->getType(), Context))
270      return false;
271
272    // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
273    // how to expand them yet, and the predicate for telling if a bitfield still
274    // counts as "basic" is more complicated than what we were doing previously.
275    if (FD->isBitField())
276      return false;
277  }
278
279  return true;
280}
281
282namespace {
283/// DefaultABIInfo - The default implementation for ABI specific
284/// details. This implementation provides information which results in
285/// self-consistent and sensible LLVM IR generation, but does not
286/// conform to any particular ABI.
287class DefaultABIInfo : public ABIInfo {
288public:
289  DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
290
291  ABIArgInfo classifyReturnType(QualType RetTy) const;
292  ABIArgInfo classifyArgumentType(QualType RetTy) const;
293
294  virtual void computeInfo(CGFunctionInfo &FI) const {
295    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
296    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
297         it != ie; ++it)
298      it->info = classifyArgumentType(it->type);
299  }
300
301  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
302                                 CodeGenFunction &CGF) const;
303};
304
305class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
306public:
307  DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
308    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
309};
310
311llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
312                                       CodeGenFunction &CGF) const {
313  return 0;
314}
315
316ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
317  if (CodeGenFunction::hasAggregateLLVMType(Ty))
318    return ABIArgInfo::getIndirect(0);
319
320  // Treat an enum type as its underlying type.
321  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
322    Ty = EnumTy->getDecl()->getIntegerType();
323
324  return (Ty->isPromotableIntegerType() ?
325          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
326}
327
328//===----------------------------------------------------------------------===//
329// X86-32 ABI Implementation
330//===----------------------------------------------------------------------===//
331
332/// X86_32ABIInfo - The X86-32 ABI information.
333class X86_32ABIInfo : public ABIInfo {
334  bool IsDarwinVectorABI;
335  bool IsSmallStructInRegABI;
336
337  static bool isRegisterSize(unsigned Size) {
338    return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
339  }
340
341  static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);
342
343  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
344  /// such that the argument will be passed in memory.
345  ABIArgInfo getIndirectResult(QualType Ty, bool ByVal = true) const;
346
347public:
348
349  ABIArgInfo classifyReturnType(QualType RetTy) const;
350  ABIArgInfo classifyArgumentType(QualType RetTy) const;
351
352  virtual void computeInfo(CGFunctionInfo &FI) const {
353    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
354    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
355         it != ie; ++it)
356      it->info = classifyArgumentType(it->type);
357  }
358
359  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
360                                 CodeGenFunction &CGF) const;
361
362  X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p)
363    : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p) {}
364};
365
366class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
367public:
368  X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p)
369    :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p)) {}
370
371  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
372                           CodeGen::CodeGenModule &CGM) const;
373
374  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
375    // Darwin uses different dwarf register numbers for EH.
376    if (CGM.isTargetDarwin()) return 5;
377
378    return 4;
379  }
380
381  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
382                               llvm::Value *Address) const;
383};
384
385}
386
387/// shouldReturnTypeInRegister - Determine if the given type should be
388/// passed in a register (for the Darwin ABI).
389bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
390                                               ASTContext &Context) {
391  uint64_t Size = Context.getTypeSize(Ty);
392
393  // Type must be register sized.
394  if (!isRegisterSize(Size))
395    return false;
396
397  if (Ty->isVectorType()) {
398    // 64- and 128- bit vectors inside structures are not returned in
399    // registers.
400    if (Size == 64 || Size == 128)
401      return false;
402
403    return true;
404  }
405
406  // If this is a builtin, pointer, enum, complex type, member pointer, or
407  // member function pointer it is ok.
408  if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
409      Ty->isAnyComplexType() || Ty->isEnumeralType() ||
410      Ty->isBlockPointerType() || Ty->isMemberPointerType())
411    return true;
412
413  // Arrays are treated like records.
414  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
415    return shouldReturnTypeInRegister(AT->getElementType(), Context);
416
417  // Otherwise, it must be a record type.
418  const RecordType *RT = Ty->getAs<RecordType>();
419  if (!RT) return false;
420
421  // FIXME: Traverse bases here too.
422
423  // Structure types are passed in register if all fields would be
424  // passed in a register.
425  for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
426         e = RT->getDecl()->field_end(); i != e; ++i) {
427    const FieldDecl *FD = *i;
428
429    // Empty fields are ignored.
430    if (isEmptyField(Context, FD, true))
431      continue;
432
433    // Check fields recursively.
434    if (!shouldReturnTypeInRegister(FD->getType(), Context))
435      return false;
436  }
437
438  return true;
439}
440
441ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy) const {
442  if (RetTy->isVoidType())
443    return ABIArgInfo::getIgnore();
444
445  if (const VectorType *VT = RetTy->getAs<VectorType>()) {
446    // On Darwin, some vectors are returned in registers.
447    if (IsDarwinVectorABI) {
448      uint64_t Size = getContext().getTypeSize(RetTy);
449
450      // 128-bit vectors are a special case; they are returned in
451      // registers and we need to make sure to pick a type the LLVM
452      // backend will like.
453      if (Size == 128)
454        return ABIArgInfo::getDirect(llvm::VectorType::get(
455                  llvm::Type::getInt64Ty(getVMContext()), 2));
456
457      // Always return in register if it fits in a general purpose
458      // register, or if it is 64 bits and has a single element.
459      if ((Size == 8 || Size == 16 || Size == 32) ||
460          (Size == 64 && VT->getNumElements() == 1))
461        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
462                                                            Size));
463
464      return ABIArgInfo::getIndirect(0);
465    }
466
467    return ABIArgInfo::getDirect();
468  }
469
470  if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
471    if (const RecordType *RT = RetTy->getAs<RecordType>()) {
472      // Structures with either a non-trivial destructor or a non-trivial
473      // copy constructor are always indirect.
474      if (hasNonTrivialDestructorOrCopyConstructor(RT))
475        return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
476
477      // Structures with flexible arrays are always indirect.
478      if (RT->getDecl()->hasFlexibleArrayMember())
479        return ABIArgInfo::getIndirect(0);
480    }
481
482    // If specified, structs and unions are always indirect.
483    if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
484      return ABIArgInfo::getIndirect(0);
485
486    // Classify "single element" structs as their element type.
487    if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) {
488      if (const BuiltinType *BT = SeltTy->getAs<BuiltinType>()) {
489        if (BT->isIntegerType()) {
490          // We need to use the size of the structure, padding
491          // bit-fields can adjust that to be larger than the single
492          // element type.
493          uint64_t Size = getContext().getTypeSize(RetTy);
494          return ABIArgInfo::getDirect(
495            llvm::IntegerType::get(getVMContext(), (unsigned)Size));
496        }
497
498        if (BT->getKind() == BuiltinType::Float) {
499          assert(getContext().getTypeSize(RetTy) ==
500                 getContext().getTypeSize(SeltTy) &&
501                 "Unexpect single element structure size!");
502          return ABIArgInfo::getDirect(llvm::Type::getFloatTy(getVMContext()));
503        }
504
505        if (BT->getKind() == BuiltinType::Double) {
506          assert(getContext().getTypeSize(RetTy) ==
507                 getContext().getTypeSize(SeltTy) &&
508                 "Unexpect single element structure size!");
509          return ABIArgInfo::getDirect(llvm::Type::getDoubleTy(getVMContext()));
510        }
511      } else if (SeltTy->isPointerType()) {
512        // FIXME: It would be really nice if this could come out as the proper
513        // pointer type.
514        const llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(getVMContext());
515        return ABIArgInfo::getDirect(PtrTy);
516      } else if (SeltTy->isVectorType()) {
517        // 64- and 128-bit vectors are never returned in a
518        // register when inside a structure.
519        uint64_t Size = getContext().getTypeSize(RetTy);
520        if (Size == 64 || Size == 128)
521          return ABIArgInfo::getIndirect(0);
522
523        return classifyReturnType(QualType(SeltTy, 0));
524      }
525    }
526
527    // Small structures which are register sized are generally returned
528    // in a register.
529    if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext())) {
530      uint64_t Size = getContext().getTypeSize(RetTy);
531      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
532    }
533
534    return ABIArgInfo::getIndirect(0);
535  }
536
537  // Treat an enum type as its underlying type.
538  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
539    RetTy = EnumTy->getDecl()->getIntegerType();
540
541  return (RetTy->isPromotableIntegerType() ?
542          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
543}
544
545ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal) const {
546  if (!ByVal)
547    return ABIArgInfo::getIndirect(0, false);
548
549  // Compute the byval alignment. We trust the back-end to honor the
550  // minimum ABI alignment for byval, to make cleaner IR.
551  const unsigned MinABIAlign = 4;
552  unsigned Align = getContext().getTypeAlign(Ty) / 8;
553  if (Align > MinABIAlign)
554    return ABIArgInfo::getIndirect(Align);
555  return ABIArgInfo::getIndirect(0);
556}
557
558ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty) const {
559  // FIXME: Set alignment on indirect arguments.
560  if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
561    // Structures with flexible arrays are always indirect.
562    if (const RecordType *RT = Ty->getAs<RecordType>()) {
563      // Structures with either a non-trivial destructor or a non-trivial
564      // copy constructor are always indirect.
565      if (hasNonTrivialDestructorOrCopyConstructor(RT))
566        return getIndirectResult(Ty, /*ByVal=*/false);
567
568      if (RT->getDecl()->hasFlexibleArrayMember())
569        return getIndirectResult(Ty);
570    }
571
572    // Ignore empty structs.
573    if (Ty->isStructureType() && getContext().getTypeSize(Ty) == 0)
574      return ABIArgInfo::getIgnore();
575
576    // Expand small (<= 128-bit) record types when we know that the stack layout
577    // of those arguments will match the struct. This is important because the
578    // LLVM backend isn't smart enough to remove byval, which inhibits many
579    // optimizations.
580    if (getContext().getTypeSize(Ty) <= 4*32 &&
581        canExpandIndirectArgument(Ty, getContext()))
582      return ABIArgInfo::getExpand();
583
584    return getIndirectResult(Ty);
585  }
586
587  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
588    Ty = EnumTy->getDecl()->getIntegerType();
589
590  return (Ty->isPromotableIntegerType() ?
591          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
592}
593
594llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
595                                      CodeGenFunction &CGF) const {
596  const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
597  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
598
599  CGBuilderTy &Builder = CGF.Builder;
600  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
601                                                       "ap");
602  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
603  llvm::Type *PTy =
604    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
605  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
606
607  uint64_t Offset =
608    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
609  llvm::Value *NextAddr =
610    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
611                      "ap.next");
612  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
613
614  return AddrTyped;
615}
616
617void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
618                                                  llvm::GlobalValue *GV,
619                                            CodeGen::CodeGenModule &CGM) const {
620  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
621    if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
622      // Get the LLVM function.
623      llvm::Function *Fn = cast<llvm::Function>(GV);
624
625      // Now add the 'alignstack' attribute with a value of 16.
626      Fn->addFnAttr(llvm::Attribute::constructStackAlignmentFromInt(16));
627    }
628  }
629}
630
631bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
632                                               CodeGen::CodeGenFunction &CGF,
633                                               llvm::Value *Address) const {
634  CodeGen::CGBuilderTy &Builder = CGF.Builder;
635  llvm::LLVMContext &Context = CGF.getLLVMContext();
636
637  const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
638  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
639
640  // 0-7 are the eight integer registers;  the order is different
641  //   on Darwin (for EH), but the range is the same.
642  // 8 is %eip.
643  AssignToArrayRange(Builder, Address, Four8, 0, 8);
644
645  if (CGF.CGM.isTargetDarwin()) {
646    // 12-16 are st(0..4).  Not sure why we stop at 4.
647    // These have size 16, which is sizeof(long double) on
648    // platforms with 8-byte alignment for that type.
649    llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
650    AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
651
652  } else {
653    // 9 is %eflags, which doesn't get a size on Darwin for some
654    // reason.
655    Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
656
657    // 11-16 are st(0..5).  Not sure why we stop at 5.
658    // These have size 12, which is sizeof(long double) on
659    // platforms with 4-byte alignment for that type.
660    llvm::Value *Twelve8 = llvm::ConstantInt::get(i8, 12);
661    AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
662  }
663
664  return false;
665}
666
667//===----------------------------------------------------------------------===//
668// X86-64 ABI Implementation
669//===----------------------------------------------------------------------===//
670
671
672namespace {
673/// X86_64ABIInfo - The X86_64 ABI information.
674class X86_64ABIInfo : public ABIInfo {
675  enum Class {
676    Integer = 0,
677    SSE,
678    SSEUp,
679    X87,
680    X87Up,
681    ComplexX87,
682    NoClass,
683    Memory
684  };
685
686  /// merge - Implement the X86_64 ABI merging algorithm.
687  ///
688  /// Merge an accumulating classification \arg Accum with a field
689  /// classification \arg Field.
690  ///
691  /// \param Accum - The accumulating classification. This should
692  /// always be either NoClass or the result of a previous merge
693  /// call. In addition, this should never be Memory (the caller
694  /// should just return Memory for the aggregate).
695  static Class merge(Class Accum, Class Field);
696
697  /// classify - Determine the x86_64 register classes in which the
698  /// given type T should be passed.
699  ///
700  /// \param Lo - The classification for the parts of the type
701  /// residing in the low word of the containing object.
702  ///
703  /// \param Hi - The classification for the parts of the type
704  /// residing in the high word of the containing object.
705  ///
706  /// \param OffsetBase - The bit offset of this type in the
707  /// containing object.  Some parameters are classified different
708  /// depending on whether they straddle an eightbyte boundary.
709  ///
710  /// If a word is unused its result will be NoClass; if a type should
711  /// be passed in Memory then at least the classification of \arg Lo
712  /// will be Memory.
713  ///
714  /// The \arg Lo class will be NoClass iff the argument is ignored.
715  ///
716  /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
717  /// also be ComplexX87.
718  void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi) const;
719
720  const llvm::Type *Get16ByteVectorType(QualType Ty) const;
721  const llvm::Type *GetSSETypeAtOffset(const llvm::Type *IRType,
722                                       unsigned IROffset, QualType SourceTy,
723                                       unsigned SourceOffset) const;
724  const llvm::Type *GetINTEGERTypeAtOffset(const llvm::Type *IRType,
725                                           unsigned IROffset, QualType SourceTy,
726                                           unsigned SourceOffset) const;
727
728  /// getCoerceResult - Given a source type \arg Ty and an LLVM type
729  /// to coerce to, chose the best way to pass Ty in the same place
730  /// that \arg CoerceTo would be passed, but while keeping the
731  /// emitted code as simple as possible.
732  ///
733  /// FIXME: Note, this should be cleaned up to just take an enumeration of all
734  /// the ways we might want to pass things, instead of constructing an LLVM
735  /// type. This makes this code more explicit, and it makes it clearer that we
736  /// are also doing this for correctness in the case of passing scalar types.
737  ABIArgInfo getCoerceResult(QualType Ty,
738                             const llvm::Type *CoerceTo) const;
739
740  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
741  /// such that the argument will be returned in memory.
742  ABIArgInfo getIndirectReturnResult(QualType Ty) const;
743
744  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
745  /// such that the argument will be passed in memory.
746  ABIArgInfo getIndirectResult(QualType Ty) const;
747
748  ABIArgInfo classifyReturnType(QualType RetTy) const;
749
750  ABIArgInfo classifyArgumentType(QualType Ty, unsigned &neededInt,
751                                  unsigned &neededSSE) const;
752
753public:
754  X86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
755
756  virtual void computeInfo(CGFunctionInfo &FI) const;
757
758  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
759                                 CodeGenFunction &CGF) const;
760};
761
762class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
763public:
764  X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
765    : TargetCodeGenInfo(new X86_64ABIInfo(CGT)) {}
766
767  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
768    return 7;
769  }
770
771  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
772                               llvm::Value *Address) const {
773    CodeGen::CGBuilderTy &Builder = CGF.Builder;
774    llvm::LLVMContext &Context = CGF.getLLVMContext();
775
776    const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
777    llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
778
779    // 0-15 are the 16 integer registers.
780    // 16 is %rip.
781    AssignToArrayRange(Builder, Address, Eight8, 0, 16);
782
783    return false;
784  }
785};
786
787}
788
789X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
790  // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
791  // classified recursively so that always two fields are
792  // considered. The resulting class is calculated according to
793  // the classes of the fields in the eightbyte:
794  //
795  // (a) If both classes are equal, this is the resulting class.
796  //
797  // (b) If one of the classes is NO_CLASS, the resulting class is
798  // the other class.
799  //
800  // (c) If one of the classes is MEMORY, the result is the MEMORY
801  // class.
802  //
803  // (d) If one of the classes is INTEGER, the result is the
804  // INTEGER.
805  //
806  // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
807  // MEMORY is used as class.
808  //
809  // (f) Otherwise class SSE is used.
810
811  // Accum should never be memory (we should have returned) or
812  // ComplexX87 (because this cannot be passed in a structure).
813  assert((Accum != Memory && Accum != ComplexX87) &&
814         "Invalid accumulated classification during merge.");
815  if (Accum == Field || Field == NoClass)
816    return Accum;
817  if (Field == Memory)
818    return Memory;
819  if (Accum == NoClass)
820    return Field;
821  if (Accum == Integer || Field == Integer)
822    return Integer;
823  if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
824      Accum == X87 || Accum == X87Up)
825    return Memory;
826  return SSE;
827}
828
829void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
830                             Class &Lo, Class &Hi) const {
831  // FIXME: This code can be simplified by introducing a simple value class for
832  // Class pairs with appropriate constructor methods for the various
833  // situations.
834
835  // FIXME: Some of the split computations are wrong; unaligned vectors
836  // shouldn't be passed in registers for example, so there is no chance they
837  // can straddle an eightbyte. Verify & simplify.
838
839  Lo = Hi = NoClass;
840
841  Class &Current = OffsetBase < 64 ? Lo : Hi;
842  Current = Memory;
843
844  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
845    BuiltinType::Kind k = BT->getKind();
846
847    if (k == BuiltinType::Void) {
848      Current = NoClass;
849    } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
850      Lo = Integer;
851      Hi = Integer;
852    } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
853      Current = Integer;
854    } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
855      Current = SSE;
856    } else if (k == BuiltinType::LongDouble) {
857      Lo = X87;
858      Hi = X87Up;
859    }
860    // FIXME: _Decimal32 and _Decimal64 are SSE.
861    // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
862    return;
863  }
864
865  if (const EnumType *ET = Ty->getAs<EnumType>()) {
866    // Classify the underlying integer type.
867    classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi);
868    return;
869  }
870
871  if (Ty->hasPointerRepresentation()) {
872    Current = Integer;
873    return;
874  }
875
876  if (Ty->isMemberPointerType()) {
877    if (Ty->isMemberFunctionPointerType())
878      Lo = Hi = Integer;
879    else
880      Current = Integer;
881    return;
882  }
883
884  if (const VectorType *VT = Ty->getAs<VectorType>()) {
885    uint64_t Size = getContext().getTypeSize(VT);
886    if (Size == 32) {
887      // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
888      // float> as integer.
889      Current = Integer;
890
891      // If this type crosses an eightbyte boundary, it should be
892      // split.
893      uint64_t EB_Real = (OffsetBase) / 64;
894      uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
895      if (EB_Real != EB_Imag)
896        Hi = Lo;
897    } else if (Size == 64) {
898      // gcc passes <1 x double> in memory. :(
899      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
900        return;
901
902      // gcc passes <1 x long long> as INTEGER.
903      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong))
904        Current = Integer;
905      else
906        Current = SSE;
907
908      // If this type crosses an eightbyte boundary, it should be
909      // split.
910      if (OffsetBase && OffsetBase != 64)
911        Hi = Lo;
912    } else if (Size == 128) {
913      Lo = SSE;
914      Hi = SSEUp;
915    }
916    return;
917  }
918
919  if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
920    QualType ET = getContext().getCanonicalType(CT->getElementType());
921
922    uint64_t Size = getContext().getTypeSize(Ty);
923    if (ET->isIntegralOrEnumerationType()) {
924      if (Size <= 64)
925        Current = Integer;
926      else if (Size <= 128)
927        Lo = Hi = Integer;
928    } else if (ET == getContext().FloatTy)
929      Current = SSE;
930    else if (ET == getContext().DoubleTy)
931      Lo = Hi = SSE;
932    else if (ET == getContext().LongDoubleTy)
933      Current = ComplexX87;
934
935    // If this complex type crosses an eightbyte boundary then it
936    // should be split.
937    uint64_t EB_Real = (OffsetBase) / 64;
938    uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
939    if (Hi == NoClass && EB_Real != EB_Imag)
940      Hi = Lo;
941
942    return;
943  }
944
945  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
946    // Arrays are treated like structures.
947
948    uint64_t Size = getContext().getTypeSize(Ty);
949
950    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
951    // than two eightbytes, ..., it has class MEMORY.
952    if (Size > 128)
953      return;
954
955    // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
956    // fields, it has class MEMORY.
957    //
958    // Only need to check alignment of array base.
959    if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
960      return;
961
962    // Otherwise implement simplified merge. We could be smarter about
963    // this, but it isn't worth it and would be harder to verify.
964    Current = NoClass;
965    uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
966    uint64_t ArraySize = AT->getSize().getZExtValue();
967    for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
968      Class FieldLo, FieldHi;
969      classify(AT->getElementType(), Offset, FieldLo, FieldHi);
970      Lo = merge(Lo, FieldLo);
971      Hi = merge(Hi, FieldHi);
972      if (Lo == Memory || Hi == Memory)
973        break;
974    }
975
976    // Do post merger cleanup (see below). Only case we worry about is Memory.
977    if (Hi == Memory)
978      Lo = Memory;
979    assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
980    return;
981  }
982
983  if (const RecordType *RT = Ty->getAs<RecordType>()) {
984    uint64_t Size = getContext().getTypeSize(Ty);
985
986    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
987    // than two eightbytes, ..., it has class MEMORY.
988    if (Size > 128)
989      return;
990
991    // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
992    // copy constructor or a non-trivial destructor, it is passed by invisible
993    // reference.
994    if (hasNonTrivialDestructorOrCopyConstructor(RT))
995      return;
996
997    const RecordDecl *RD = RT->getDecl();
998
999    // Assume variable sized types are passed in memory.
1000    if (RD->hasFlexibleArrayMember())
1001      return;
1002
1003    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1004
1005    // Reset Lo class, this will be recomputed.
1006    Current = NoClass;
1007
1008    // If this is a C++ record, classify the bases first.
1009    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1010      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1011             e = CXXRD->bases_end(); i != e; ++i) {
1012        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1013               "Unexpected base class!");
1014        const CXXRecordDecl *Base =
1015          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1016
1017        // Classify this field.
1018        //
1019        // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1020        // single eightbyte, each is classified separately. Each eightbyte gets
1021        // initialized to class NO_CLASS.
1022        Class FieldLo, FieldHi;
1023        uint64_t Offset = OffsetBase + Layout.getBaseClassOffset(Base);
1024        classify(i->getType(), Offset, FieldLo, FieldHi);
1025        Lo = merge(Lo, FieldLo);
1026        Hi = merge(Hi, FieldHi);
1027        if (Lo == Memory || Hi == Memory)
1028          break;
1029      }
1030
1031      // If this record has no fields, no bases, no vtable, but isn't empty,
1032      // classify as INTEGER.
1033      if (CXXRD->isEmpty() && Size)
1034        Current = Integer;
1035    }
1036
1037    // Classify the fields one at a time, merging the results.
1038    unsigned idx = 0;
1039    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1040           i != e; ++i, ++idx) {
1041      uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1042      bool BitField = i->isBitField();
1043
1044      // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1045      // fields, it has class MEMORY.
1046      //
1047      // Note, skip this test for bit-fields, see below.
1048      if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1049        Lo = Memory;
1050        return;
1051      }
1052
1053      // Classify this field.
1054      //
1055      // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1056      // exceeds a single eightbyte, each is classified
1057      // separately. Each eightbyte gets initialized to class
1058      // NO_CLASS.
1059      Class FieldLo, FieldHi;
1060
1061      // Bit-fields require special handling, they do not force the
1062      // structure to be passed in memory even if unaligned, and
1063      // therefore they can straddle an eightbyte.
1064      if (BitField) {
1065        // Ignore padding bit-fields.
1066        if (i->isUnnamedBitfield())
1067          continue;
1068
1069        uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1070        uint64_t Size =
1071          i->getBitWidth()->EvaluateAsInt(getContext()).getZExtValue();
1072
1073        uint64_t EB_Lo = Offset / 64;
1074        uint64_t EB_Hi = (Offset + Size - 1) / 64;
1075        FieldLo = FieldHi = NoClass;
1076        if (EB_Lo) {
1077          assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1078          FieldLo = NoClass;
1079          FieldHi = Integer;
1080        } else {
1081          FieldLo = Integer;
1082          FieldHi = EB_Hi ? Integer : NoClass;
1083        }
1084      } else
1085        classify(i->getType(), Offset, FieldLo, FieldHi);
1086      Lo = merge(Lo, FieldLo);
1087      Hi = merge(Hi, FieldHi);
1088      if (Lo == Memory || Hi == Memory)
1089        break;
1090    }
1091
1092    // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1093    //
1094    // (a) If one of the classes is MEMORY, the whole argument is
1095    // passed in memory.
1096    //
1097    // (b) If SSEUP is not preceeded by SSE, it is converted to SSE.
1098
1099    // The first of these conditions is guaranteed by how we implement
1100    // the merge (just bail).
1101    //
1102    // The second condition occurs in the case of unions; for example
1103    // union { _Complex double; unsigned; }.
1104    if (Hi == Memory)
1105      Lo = Memory;
1106    if (Hi == SSEUp && Lo != SSE)
1107      Hi = SSE;
1108  }
1109}
1110
1111ABIArgInfo X86_64ABIInfo::getCoerceResult(QualType Ty,
1112                                          const llvm::Type *CoerceTo) const {
1113  if (isa<llvm::IntegerType>(CoerceTo)) {
1114    // Integer and pointer types will end up in a general purpose
1115    // register.
1116
1117    // Treat an enum type as its underlying type.
1118    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1119      Ty = EnumTy->getDecl()->getIntegerType();
1120
1121    if (Ty->isIntegralOrEnumerationType())
1122      return (Ty->isPromotableIntegerType() ?
1123              ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1124
1125  }
1126  return ABIArgInfo::getDirect(CoerceTo);
1127}
1128
1129ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1130  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1131  // place naturally.
1132  if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
1133    // Treat an enum type as its underlying type.
1134    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1135      Ty = EnumTy->getDecl()->getIntegerType();
1136
1137    return (Ty->isPromotableIntegerType() ?
1138            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1139  }
1140
1141  return ABIArgInfo::getIndirect(0);
1142}
1143
1144ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty) const {
1145  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1146  // place naturally.
1147  if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
1148    // Treat an enum type as its underlying type.
1149    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1150      Ty = EnumTy->getDecl()->getIntegerType();
1151
1152    return (Ty->isPromotableIntegerType() ?
1153            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1154  }
1155
1156  if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1157    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
1158
1159  // Compute the byval alignment. We trust the back-end to honor the
1160  // minimum ABI alignment for byval, to make cleaner IR.
1161  const unsigned MinABIAlign = 8;
1162  unsigned Align = getContext().getTypeAlign(Ty) / 8;
1163  if (Align > MinABIAlign)
1164    return ABIArgInfo::getIndirect(Align);
1165  return ABIArgInfo::getIndirect(0);
1166}
1167
1168/// Get16ByteVectorType - The ABI specifies that a value should be passed in an
1169/// full vector XMM register.  Pick an LLVM IR type that will be passed as a
1170/// vector register.
1171const llvm::Type *X86_64ABIInfo::Get16ByteVectorType(QualType Ty) const {
1172  const llvm::Type *IRType = CGT.ConvertTypeRecursive(Ty);
1173
1174  // Wrapper structs that just contain vectors are passed just like vectors,
1175  // strip them off if present.
1176  const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1177  while (STy && STy->getNumElements() == 1) {
1178    IRType = STy->getElementType(0);
1179    STy = dyn_cast<llvm::StructType>(IRType);
1180  }
1181
1182  // If the preferred type is a 16-byte vector, prefer to pass it.
1183  if (const llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
1184    const llvm::Type *EltTy = VT->getElementType();
1185    if (VT->getBitWidth() == 128 &&
1186        (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1187         EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1188         EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1189         EltTy->isIntegerTy(128)))
1190      return VT;
1191  }
1192
1193  return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1194}
1195
1196/// BitsContainNoUserData - Return true if the specified [start,end) bit range
1197/// is known to either be off the end of the specified type or being in
1198/// alignment padding.  The user type specified is known to be at most 128 bits
1199/// in size, and have passed through X86_64ABIInfo::classify with a successful
1200/// classification that put one of the two halves in the INTEGER class.
1201///
1202/// It is conservatively correct to return false.
1203static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1204                                  unsigned EndBit, ASTContext &Context) {
1205  // If the bytes being queried are off the end of the type, there is no user
1206  // data hiding here.  This handles analysis of builtins, vectors and other
1207  // types that don't contain interesting padding.
1208  unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1209  if (TySize <= StartBit)
1210    return true;
1211
1212  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1213    unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1214    unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1215
1216    // Check each element to see if the element overlaps with the queried range.
1217    for (unsigned i = 0; i != NumElts; ++i) {
1218      // If the element is after the span we care about, then we're done..
1219      unsigned EltOffset = i*EltSize;
1220      if (EltOffset >= EndBit) break;
1221
1222      unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1223      if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1224                                 EndBit-EltOffset, Context))
1225        return false;
1226    }
1227    // If it overlaps no elements, then it is safe to process as padding.
1228    return true;
1229  }
1230
1231  if (const RecordType *RT = Ty->getAs<RecordType>()) {
1232    const RecordDecl *RD = RT->getDecl();
1233    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1234
1235    // If this is a C++ record, check the bases first.
1236    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1237      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1238           e = CXXRD->bases_end(); i != e; ++i) {
1239        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1240               "Unexpected base class!");
1241        const CXXRecordDecl *Base =
1242          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1243
1244        // If the base is after the span we care about, ignore it.
1245        unsigned BaseOffset = (unsigned)Layout.getBaseClassOffset(Base);
1246        if (BaseOffset >= EndBit) continue;
1247
1248        unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1249        if (!BitsContainNoUserData(i->getType(), BaseStart,
1250                                   EndBit-BaseOffset, Context))
1251          return false;
1252      }
1253    }
1254
1255    // Verify that no field has data that overlaps the region of interest.  Yes
1256    // this could be sped up a lot by being smarter about queried fields,
1257    // however we're only looking at structs up to 16 bytes, so we don't care
1258    // much.
1259    unsigned idx = 0;
1260    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1261         i != e; ++i, ++idx) {
1262      unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
1263
1264      // If we found a field after the region we care about, then we're done.
1265      if (FieldOffset >= EndBit) break;
1266
1267      unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
1268      if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
1269                                 Context))
1270        return false;
1271    }
1272
1273    // If nothing in this record overlapped the area of interest, then we're
1274    // clean.
1275    return true;
1276  }
1277
1278  return false;
1279}
1280
1281/// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
1282/// float member at the specified offset.  For example, {int,{float}} has a
1283/// float at offset 4.  It is conservatively correct for this routine to return
1284/// false.
1285static bool ContainsFloatAtOffset(const llvm::Type *IRType, unsigned IROffset,
1286                                  const llvm::TargetData &TD) {
1287  // Base case if we find a float.
1288  if (IROffset == 0 && IRType->isFloatTy())
1289    return true;
1290
1291  // If this is a struct, recurse into the field at the specified offset.
1292  if (const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1293    const llvm::StructLayout *SL = TD.getStructLayout(STy);
1294    unsigned Elt = SL->getElementContainingOffset(IROffset);
1295    IROffset -= SL->getElementOffset(Elt);
1296    return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
1297  }
1298
1299  // If this is an array, recurse into the field at the specified offset.
1300  if (const llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1301    const llvm::Type *EltTy = ATy->getElementType();
1302    unsigned EltSize = TD.getTypeAllocSize(EltTy);
1303    IROffset -= IROffset/EltSize*EltSize;
1304    return ContainsFloatAtOffset(EltTy, IROffset, TD);
1305  }
1306
1307  return false;
1308}
1309
1310
1311/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
1312/// low 8 bytes of an XMM register, corresponding to the SSE class.
1313const llvm::Type *X86_64ABIInfo::
1314GetSSETypeAtOffset(const llvm::Type *IRType, unsigned IROffset,
1315                   QualType SourceTy, unsigned SourceOffset) const {
1316  // The only three choices we have are either double, <2 x float>, or float. We
1317  // pass as float if the last 4 bytes is just padding.  This happens for
1318  // structs that contain 3 floats.
1319  if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
1320                            SourceOffset*8+64, getContext()))
1321    return llvm::Type::getFloatTy(getVMContext());
1322
1323  // We want to pass as <2 x float> if the LLVM IR type contains a float at
1324  // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
1325  // case.
1326  if (ContainsFloatAtOffset(IRType, IROffset, getTargetData()) &&
1327      ContainsFloatAtOffset(IRType, IROffset+4, getTargetData())) {
1328    // FIXME: <2 x float> doesn't pass as one XMM register yet.  Don't enable
1329    // this code until it does.
1330    //return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
1331
1332  }
1333
1334  return llvm::Type::getDoubleTy(getVMContext());
1335}
1336
1337
1338/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
1339/// an 8-byte GPR.  This means that we either have a scalar or we are talking
1340/// about the high or low part of an up-to-16-byte struct.  This routine picks
1341/// the best LLVM IR type to represent this, which may be i64 or may be anything
1342/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
1343/// etc).
1344///
1345/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
1346/// the source type.  IROffset is an offset in bytes into the LLVM IR type that
1347/// the 8-byte value references.  PrefType may be null.
1348///
1349/// SourceTy is the source level type for the entire argument.  SourceOffset is
1350/// an offset into this that we're processing (which is always either 0 or 8).
1351///
1352const llvm::Type *X86_64ABIInfo::
1353GetINTEGERTypeAtOffset(const llvm::Type *IRType, unsigned IROffset,
1354                       QualType SourceTy, unsigned SourceOffset) const {
1355  // If we're dealing with an un-offset LLVM IR type, then it means that we're
1356  // returning an 8-byte unit starting with it.  See if we can safely use it.
1357  if (IROffset == 0) {
1358    // Pointers and int64's always fill the 8-byte unit.
1359    if (isa<llvm::PointerType>(IRType) || IRType->isIntegerTy(64))
1360      return IRType;
1361
1362    // If we have a 1/2/4-byte integer, we can use it only if the rest of the
1363    // goodness in the source type is just tail padding.  This is allowed to
1364    // kick in for struct {double,int} on the int, but not on
1365    // struct{double,int,int} because we wouldn't return the second int.  We
1366    // have to do this analysis on the source type because we can't depend on
1367    // unions being lowered a specific way etc.
1368    if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
1369        IRType->isIntegerTy(32)) {
1370      unsigned BitWidth = cast<llvm::IntegerType>(IRType)->getBitWidth();
1371
1372      if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
1373                                SourceOffset*8+64, getContext()))
1374        return IRType;
1375    }
1376  }
1377
1378  if (const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1379    // If this is a struct, recurse into the field at the specified offset.
1380    const llvm::StructLayout *SL = getTargetData().getStructLayout(STy);
1381    if (IROffset < SL->getSizeInBytes()) {
1382      unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
1383      IROffset -= SL->getElementOffset(FieldIdx);
1384
1385      return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
1386                                    SourceTy, SourceOffset);
1387    }
1388  }
1389
1390  if (const llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1391    const llvm::Type *EltTy = ATy->getElementType();
1392    unsigned EltSize = getTargetData().getTypeAllocSize(EltTy);
1393    unsigned EltOffset = IROffset/EltSize*EltSize;
1394    return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
1395                                  SourceOffset);
1396  }
1397
1398  // Okay, we don't have any better idea of what to pass, so we pass this in an
1399  // integer register that isn't too big to fit the rest of the struct.
1400  unsigned TySizeInBytes =
1401    (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
1402
1403  assert(TySizeInBytes != SourceOffset && "Empty field?");
1404
1405  // It is always safe to classify this as an integer type up to i64 that
1406  // isn't larger than the structure.
1407  return llvm::IntegerType::get(getVMContext(),
1408                                std::min(TySizeInBytes-SourceOffset, 8U)*8);
1409}
1410
1411ABIArgInfo X86_64ABIInfo::
1412classifyReturnType(QualType RetTy) const {
1413  // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
1414  // classification algorithm.
1415  X86_64ABIInfo::Class Lo, Hi;
1416  classify(RetTy, 0, Lo, Hi);
1417
1418  // Check some invariants.
1419  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1420  assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification.");
1421  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1422
1423  const llvm::Type *ResType = 0;
1424  switch (Lo) {
1425  case NoClass:
1426    return ABIArgInfo::getIgnore();
1427
1428  case SSEUp:
1429  case X87Up:
1430    assert(0 && "Invalid classification for lo word.");
1431
1432    // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
1433    // hidden argument.
1434  case Memory:
1435    return getIndirectReturnResult(RetTy);
1436
1437    // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
1438    // available register of the sequence %rax, %rdx is used.
1439  case Integer:
1440    ResType = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 0,
1441                                     RetTy, 0);
1442    break;
1443
1444    // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
1445    // available SSE register of the sequence %xmm0, %xmm1 is used.
1446  case SSE:
1447    ResType = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 0, RetTy, 0);
1448    break;
1449
1450    // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
1451    // returned on the X87 stack in %st0 as 80-bit x87 number.
1452  case X87:
1453    ResType = llvm::Type::getX86_FP80Ty(getVMContext());
1454    break;
1455
1456    // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
1457    // part of the value is returned in %st0 and the imaginary part in
1458    // %st1.
1459  case ComplexX87:
1460    assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
1461    ResType = llvm::StructType::get(getVMContext(),
1462                                    llvm::Type::getX86_FP80Ty(getVMContext()),
1463                                    llvm::Type::getX86_FP80Ty(getVMContext()),
1464                                    NULL);
1465    break;
1466  }
1467
1468  switch (Hi) {
1469    // Memory was handled previously and X87 should
1470    // never occur as a hi class.
1471  case Memory:
1472  case X87:
1473    assert(0 && "Invalid classification for hi word.");
1474
1475  case ComplexX87: // Previously handled.
1476  case NoClass:
1477    break;
1478
1479  case Integer: {
1480    const llvm::Type *HiType =
1481      GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 8, RetTy, 8);
1482    ResType = llvm::StructType::get(getVMContext(), ResType, HiType, NULL);
1483    break;
1484  }
1485  case SSE: {
1486    const llvm::Type *HiType =
1487      GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 8, RetTy, 8);
1488    ResType = llvm::StructType::get(getVMContext(), ResType, HiType,NULL);
1489    break;
1490  }
1491
1492    // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
1493    // is passed in the upper half of the last used SSE register.
1494    //
1495    // SSEUP should always be preceeded by SSE, just widen.
1496  case SSEUp:
1497    assert(Lo == SSE && "Unexpected SSEUp classification.");
1498    ResType = Get16ByteVectorType(RetTy);
1499    break;
1500
1501    // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
1502    // returned together with the previous X87 value in %st0.
1503  case X87Up:
1504    // If X87Up is preceeded by X87, we don't need to do
1505    // anything. However, in some cases with unions it may not be
1506    // preceeded by X87. In such situations we follow gcc and pass the
1507    // extra bits in an SSE reg.
1508    if (Lo != X87) {
1509      const llvm::Type *HiType =
1510        GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 8, RetTy, 8);
1511      ResType = llvm::StructType::get(getVMContext(), ResType, HiType, NULL);
1512    }
1513    break;
1514  }
1515
1516  return getCoerceResult(RetTy, ResType);
1517}
1518
1519ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned &neededInt,
1520                                               unsigned &neededSSE) const {
1521  X86_64ABIInfo::Class Lo, Hi;
1522  classify(Ty, 0, Lo, Hi);
1523
1524  // Check some invariants.
1525  // FIXME: Enforce these by construction.
1526  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1527  assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification.");
1528  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1529
1530  neededInt = 0;
1531  neededSSE = 0;
1532  const llvm::Type *ResType = 0;
1533  switch (Lo) {
1534  case NoClass:
1535    return ABIArgInfo::getIgnore();
1536
1537    // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
1538    // on the stack.
1539  case Memory:
1540
1541    // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
1542    // COMPLEX_X87, it is passed in memory.
1543  case X87:
1544  case ComplexX87:
1545    return getIndirectResult(Ty);
1546
1547  case SSEUp:
1548  case X87Up:
1549    assert(0 && "Invalid classification for lo word.");
1550
1551    // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
1552    // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
1553    // and %r9 is used.
1554  case Integer:
1555    ++neededInt;
1556
1557    // Pick an 8-byte type based on the preferred type.
1558    ResType = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(Ty), 0, Ty, 0);
1559    break;
1560
1561    // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
1562    // available SSE register is used, the registers are taken in the
1563    // order from %xmm0 to %xmm7.
1564  case SSE:
1565    ++neededSSE;
1566    ResType = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(Ty), 0, Ty, 0);
1567    break;
1568  }
1569
1570  switch (Hi) {
1571    // Memory was handled previously, ComplexX87 and X87 should
1572    // never occur as hi classes, and X87Up must be preceed by X87,
1573    // which is passed in memory.
1574  case Memory:
1575  case X87:
1576  case ComplexX87:
1577    assert(0 && "Invalid classification for hi word.");
1578    break;
1579
1580  case NoClass: break;
1581
1582  case Integer: {
1583    ++neededInt;
1584    // Pick an 8-byte type based on the preferred type.
1585    const llvm::Type *HiType =
1586      GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(Ty), 8, Ty, 8);
1587    ResType = llvm::StructType::get(getVMContext(), ResType, HiType, NULL);
1588    break;
1589  }
1590
1591    // X87Up generally doesn't occur here (long double is passed in
1592    // memory), except in situations involving unions.
1593  case X87Up:
1594  case SSE: {
1595    const llvm::Type *HiType =
1596      GetSSETypeAtOffset(CGT.ConvertTypeRecursive(Ty), 8, Ty, 8);
1597    ResType = llvm::StructType::get(getVMContext(), ResType, HiType, NULL);
1598    ++neededSSE;
1599    break;
1600  }
1601
1602    // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
1603    // eightbyte is passed in the upper half of the last used SSE
1604    // register.  This only happens when 128-bit vectors are passed.
1605  case SSEUp:
1606    assert(Lo == SSE && "Unexpected SSEUp classification");
1607    ResType = Get16ByteVectorType(Ty);
1608    break;
1609  }
1610
1611  return getCoerceResult(Ty, ResType);
1612}
1613
1614void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1615
1616  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
1617
1618  // Keep track of the number of assigned registers.
1619  unsigned freeIntRegs = 6, freeSSERegs = 8;
1620
1621  // If the return value is indirect, then the hidden argument is consuming one
1622  // integer register.
1623  if (FI.getReturnInfo().isIndirect())
1624    --freeIntRegs;
1625
1626  // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
1627  // get assigned (in left-to-right order) for passing as follows...
1628  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1629       it != ie; ++it) {
1630    unsigned neededInt, neededSSE;
1631    it->info = classifyArgumentType(it->type, neededInt, neededSSE);
1632
1633    // AMD64-ABI 3.2.3p3: If there are no registers available for any
1634    // eightbyte of an argument, the whole argument is passed on the
1635    // stack. If registers have already been assigned for some
1636    // eightbytes of such an argument, the assignments get reverted.
1637    if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
1638      freeIntRegs -= neededInt;
1639      freeSSERegs -= neededSSE;
1640    } else {
1641      it->info = getIndirectResult(it->type);
1642    }
1643  }
1644}
1645
1646static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
1647                                        QualType Ty,
1648                                        CodeGenFunction &CGF) {
1649  llvm::Value *overflow_arg_area_p =
1650    CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
1651  llvm::Value *overflow_arg_area =
1652    CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
1653
1654  // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
1655  // byte boundary if alignment needed by type exceeds 8 byte boundary.
1656  uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
1657  if (Align > 8) {
1658    // Note that we follow the ABI & gcc here, even though the type
1659    // could in theory have an alignment greater than 16. This case
1660    // shouldn't ever matter in practice.
1661
1662    // overflow_arg_area = (overflow_arg_area + 15) & ~15;
1663    llvm::Value *Offset =
1664      llvm::ConstantInt::get(CGF.Int32Ty, 15);
1665    overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
1666    llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
1667                                                    CGF.Int64Ty);
1668    llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~15LL);
1669    overflow_arg_area =
1670      CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1671                                 overflow_arg_area->getType(),
1672                                 "overflow_arg_area.align");
1673  }
1674
1675  // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
1676  const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
1677  llvm::Value *Res =
1678    CGF.Builder.CreateBitCast(overflow_arg_area,
1679                              llvm::PointerType::getUnqual(LTy));
1680
1681  // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
1682  // l->overflow_arg_area + sizeof(type).
1683  // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
1684  // an 8 byte boundary.
1685
1686  uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
1687  llvm::Value *Offset =
1688      llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
1689  overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
1690                                            "overflow_arg_area.next");
1691  CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
1692
1693  // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
1694  return Res;
1695}
1696
1697llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1698                                      CodeGenFunction &CGF) const {
1699  llvm::LLVMContext &VMContext = CGF.getLLVMContext();
1700
1701  // Assume that va_list type is correct; should be pointer to LLVM type:
1702  // struct {
1703  //   i32 gp_offset;
1704  //   i32 fp_offset;
1705  //   i8* overflow_arg_area;
1706  //   i8* reg_save_area;
1707  // };
1708  unsigned neededInt, neededSSE;
1709
1710  Ty = CGF.getContext().getCanonicalType(Ty);
1711  ABIArgInfo AI = classifyArgumentType(Ty, neededInt, neededSSE);
1712
1713  // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
1714  // in the registers. If not go to step 7.
1715  if (!neededInt && !neededSSE)
1716    return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
1717
1718  // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
1719  // general purpose registers needed to pass type and num_fp to hold
1720  // the number of floating point registers needed.
1721
1722  // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
1723  // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
1724  // l->fp_offset > 304 - num_fp * 16 go to step 7.
1725  //
1726  // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
1727  // register save space).
1728
1729  llvm::Value *InRegs = 0;
1730  llvm::Value *gp_offset_p = 0, *gp_offset = 0;
1731  llvm::Value *fp_offset_p = 0, *fp_offset = 0;
1732  if (neededInt) {
1733    gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
1734    gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
1735    InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
1736    InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
1737  }
1738
1739  if (neededSSE) {
1740    fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
1741    fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
1742    llvm::Value *FitsInFP =
1743      llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
1744    FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
1745    InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
1746  }
1747
1748  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
1749  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
1750  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
1751  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
1752
1753  // Emit code to load the value if it was passed in registers.
1754
1755  CGF.EmitBlock(InRegBlock);
1756
1757  // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
1758  // an offset of l->gp_offset and/or l->fp_offset. This may require
1759  // copying to a temporary location in case the parameter is passed
1760  // in different register classes or requires an alignment greater
1761  // than 8 for general purpose registers and 16 for XMM registers.
1762  //
1763  // FIXME: This really results in shameful code when we end up needing to
1764  // collect arguments from different places; often what should result in a
1765  // simple assembling of a structure from scattered addresses has many more
1766  // loads than necessary. Can we clean this up?
1767  const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
1768  llvm::Value *RegAddr =
1769    CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
1770                           "reg_save_area");
1771  if (neededInt && neededSSE) {
1772    // FIXME: Cleanup.
1773    assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
1774    const llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
1775    llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
1776    assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
1777    const llvm::Type *TyLo = ST->getElementType(0);
1778    const llvm::Type *TyHi = ST->getElementType(1);
1779    assert((TyLo->isFloatingPointTy() ^ TyHi->isFloatingPointTy()) &&
1780           "Unexpected ABI info for mixed regs");
1781    const llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
1782    const llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
1783    llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
1784    llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
1785    llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
1786    llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
1787    llvm::Value *V =
1788      CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
1789    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
1790    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
1791    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
1792
1793    RegAddr = CGF.Builder.CreateBitCast(Tmp,
1794                                        llvm::PointerType::getUnqual(LTy));
1795  } else if (neededInt) {
1796    RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
1797    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
1798                                        llvm::PointerType::getUnqual(LTy));
1799  } else if (neededSSE == 1) {
1800    RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
1801    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
1802                                        llvm::PointerType::getUnqual(LTy));
1803  } else {
1804    assert(neededSSE == 2 && "Invalid number of needed registers!");
1805    // SSE registers are spaced 16 bytes apart in the register save
1806    // area, we need to collect the two eightbytes together.
1807    llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
1808    llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
1809    const llvm::Type *DoubleTy = llvm::Type::getDoubleTy(VMContext);
1810    const llvm::Type *DblPtrTy =
1811      llvm::PointerType::getUnqual(DoubleTy);
1812    const llvm::StructType *ST = llvm::StructType::get(VMContext, DoubleTy,
1813                                                       DoubleTy, NULL);
1814    llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
1815    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
1816                                                         DblPtrTy));
1817    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
1818    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
1819                                                         DblPtrTy));
1820    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
1821    RegAddr = CGF.Builder.CreateBitCast(Tmp,
1822                                        llvm::PointerType::getUnqual(LTy));
1823  }
1824
1825  // AMD64-ABI 3.5.7p5: Step 5. Set:
1826  // l->gp_offset = l->gp_offset + num_gp * 8
1827  // l->fp_offset = l->fp_offset + num_fp * 16.
1828  if (neededInt) {
1829    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
1830    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
1831                            gp_offset_p);
1832  }
1833  if (neededSSE) {
1834    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
1835    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
1836                            fp_offset_p);
1837  }
1838  CGF.EmitBranch(ContBlock);
1839
1840  // Emit code to load the value if it was passed in memory.
1841
1842  CGF.EmitBlock(InMemBlock);
1843  llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
1844
1845  // Return the appropriate result.
1846
1847  CGF.EmitBlock(ContBlock);
1848  llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(),
1849                                                 "vaarg.addr");
1850  ResAddr->reserveOperandSpace(2);
1851  ResAddr->addIncoming(RegAddr, InRegBlock);
1852  ResAddr->addIncoming(MemAddr, InMemBlock);
1853  return ResAddr;
1854}
1855
1856
1857
1858//===----------------------------------------------------------------------===//
1859// PIC16 ABI Implementation
1860//===----------------------------------------------------------------------===//
1861
1862namespace {
1863
1864class PIC16ABIInfo : public ABIInfo {
1865public:
1866  PIC16ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
1867
1868  ABIArgInfo classifyReturnType(QualType RetTy) const;
1869
1870  ABIArgInfo classifyArgumentType(QualType RetTy) const;
1871
1872  virtual void computeInfo(CGFunctionInfo &FI) const {
1873    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
1874    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1875         it != ie; ++it)
1876      it->info = classifyArgumentType(it->type);
1877  }
1878
1879  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1880                                 CodeGenFunction &CGF) const;
1881};
1882
1883class PIC16TargetCodeGenInfo : public TargetCodeGenInfo {
1884public:
1885  PIC16TargetCodeGenInfo(CodeGenTypes &CGT)
1886    : TargetCodeGenInfo(new PIC16ABIInfo(CGT)) {}
1887};
1888
1889}
1890
1891ABIArgInfo PIC16ABIInfo::classifyReturnType(QualType RetTy) const {
1892  if (RetTy->isVoidType()) {
1893    return ABIArgInfo::getIgnore();
1894  } else {
1895    return ABIArgInfo::getDirect();
1896  }
1897}
1898
1899ABIArgInfo PIC16ABIInfo::classifyArgumentType(QualType Ty) const {
1900  return ABIArgInfo::getDirect();
1901}
1902
1903llvm::Value *PIC16ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1904                                     CodeGenFunction &CGF) const {
1905  const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
1906  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
1907
1908  CGBuilderTy &Builder = CGF.Builder;
1909  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
1910                                                       "ap");
1911  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
1912  llvm::Type *PTy =
1913    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
1914  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
1915
1916  uint64_t Offset = CGF.getContext().getTypeSize(Ty) / 8;
1917
1918  llvm::Value *NextAddr =
1919    Builder.CreateGEP(Addr, llvm::ConstantInt::get(
1920                          llvm::Type::getInt32Ty(CGF.getLLVMContext()), Offset),
1921                      "ap.next");
1922  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
1923
1924  return AddrTyped;
1925}
1926
1927
1928// PowerPC-32
1929
1930namespace {
1931class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
1932public:
1933  PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
1934
1935  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
1936    // This is recovered from gcc output.
1937    return 1; // r1 is the dedicated stack pointer
1938  }
1939
1940  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1941                               llvm::Value *Address) const;
1942};
1943
1944}
1945
1946bool
1947PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1948                                                llvm::Value *Address) const {
1949  // This is calculated from the LLVM and GCC tables and verified
1950  // against gcc output.  AFAIK all ABIs use the same encoding.
1951
1952  CodeGen::CGBuilderTy &Builder = CGF.Builder;
1953  llvm::LLVMContext &Context = CGF.getLLVMContext();
1954
1955  const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
1956  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
1957  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
1958  llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
1959
1960  // 0-31: r0-31, the 4-byte general-purpose registers
1961  AssignToArrayRange(Builder, Address, Four8, 0, 31);
1962
1963  // 32-63: fp0-31, the 8-byte floating-point registers
1964  AssignToArrayRange(Builder, Address, Eight8, 32, 63);
1965
1966  // 64-76 are various 4-byte special-purpose registers:
1967  // 64: mq
1968  // 65: lr
1969  // 66: ctr
1970  // 67: ap
1971  // 68-75 cr0-7
1972  // 76: xer
1973  AssignToArrayRange(Builder, Address, Four8, 64, 76);
1974
1975  // 77-108: v0-31, the 16-byte vector registers
1976  AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
1977
1978  // 109: vrsave
1979  // 110: vscr
1980  // 111: spe_acc
1981  // 112: spefscr
1982  // 113: sfp
1983  AssignToArrayRange(Builder, Address, Four8, 109, 113);
1984
1985  return false;
1986}
1987
1988
1989//===----------------------------------------------------------------------===//
1990// ARM ABI Implementation
1991//===----------------------------------------------------------------------===//
1992
1993namespace {
1994
1995class ARMABIInfo : public ABIInfo {
1996public:
1997  enum ABIKind {
1998    APCS = 0,
1999    AAPCS = 1,
2000    AAPCS_VFP
2001  };
2002
2003private:
2004  ABIKind Kind;
2005
2006public:
2007  ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {}
2008
2009private:
2010  ABIKind getABIKind() const { return Kind; }
2011
2012  ABIArgInfo classifyReturnType(QualType RetTy) const;
2013  ABIArgInfo classifyArgumentType(QualType RetTy) const;
2014
2015  virtual void computeInfo(CGFunctionInfo &FI) const;
2016
2017  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2018                                 CodeGenFunction &CGF) const;
2019};
2020
2021class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
2022public:
2023  ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
2024    :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
2025
2026  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2027    return 13;
2028  }
2029};
2030
2031}
2032
2033void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
2034  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2035  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2036       it != ie; ++it)
2037    it->info = classifyArgumentType(it->type);
2038
2039  const llvm::Triple &Triple(getContext().Target.getTriple());
2040  llvm::CallingConv::ID DefaultCC;
2041  if (Triple.getEnvironmentName() == "gnueabi" ||
2042      Triple.getEnvironmentName() == "eabi")
2043    DefaultCC = llvm::CallingConv::ARM_AAPCS;
2044  else
2045    DefaultCC = llvm::CallingConv::ARM_APCS;
2046
2047  switch (getABIKind()) {
2048  case APCS:
2049    if (DefaultCC != llvm::CallingConv::ARM_APCS)
2050      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
2051    break;
2052
2053  case AAPCS:
2054    if (DefaultCC != llvm::CallingConv::ARM_AAPCS)
2055      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
2056    break;
2057
2058  case AAPCS_VFP:
2059    FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
2060    break;
2061  }
2062}
2063
2064ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty) const {
2065  if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
2066    // Treat an enum type as its underlying type.
2067    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2068      Ty = EnumTy->getDecl()->getIntegerType();
2069
2070    return (Ty->isPromotableIntegerType() ?
2071            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2072  }
2073
2074  // Ignore empty records.
2075  if (isEmptyRecord(getContext(), Ty, true))
2076    return ABIArgInfo::getIgnore();
2077
2078  // Structures with either a non-trivial destructor or a non-trivial
2079  // copy constructor are always indirect.
2080  if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
2081    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2082
2083  // FIXME: This is kind of nasty... but there isn't much choice because the ARM
2084  // backend doesn't support byval.
2085  // FIXME: This doesn't handle alignment > 64 bits.
2086  const llvm::Type* ElemTy;
2087  unsigned SizeRegs;
2088  if (getContext().getTypeAlign(Ty) > 32) {
2089    ElemTy = llvm::Type::getInt64Ty(getVMContext());
2090    SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
2091  } else {
2092    ElemTy = llvm::Type::getInt32Ty(getVMContext());
2093    SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
2094  }
2095  std::vector<const llvm::Type*> LLVMFields;
2096  LLVMFields.push_back(llvm::ArrayType::get(ElemTy, SizeRegs));
2097  const llvm::Type* STy = llvm::StructType::get(getVMContext(), LLVMFields,
2098                                                true);
2099  return ABIArgInfo::getDirect(STy);
2100}
2101
2102static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
2103                              llvm::LLVMContext &VMContext) {
2104  // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
2105  // is called integer-like if its size is less than or equal to one word, and
2106  // the offset of each of its addressable sub-fields is zero.
2107
2108  uint64_t Size = Context.getTypeSize(Ty);
2109
2110  // Check that the type fits in a word.
2111  if (Size > 32)
2112    return false;
2113
2114  // FIXME: Handle vector types!
2115  if (Ty->isVectorType())
2116    return false;
2117
2118  // Float types are never treated as "integer like".
2119  if (Ty->isRealFloatingType())
2120    return false;
2121
2122  // If this is a builtin or pointer type then it is ok.
2123  if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
2124    return true;
2125
2126  // Small complex integer types are "integer like".
2127  if (const ComplexType *CT = Ty->getAs<ComplexType>())
2128    return isIntegerLikeType(CT->getElementType(), Context, VMContext);
2129
2130  // Single element and zero sized arrays should be allowed, by the definition
2131  // above, but they are not.
2132
2133  // Otherwise, it must be a record type.
2134  const RecordType *RT = Ty->getAs<RecordType>();
2135  if (!RT) return false;
2136
2137  // Ignore records with flexible arrays.
2138  const RecordDecl *RD = RT->getDecl();
2139  if (RD->hasFlexibleArrayMember())
2140    return false;
2141
2142  // Check that all sub-fields are at offset 0, and are themselves "integer
2143  // like".
2144  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2145
2146  bool HadField = false;
2147  unsigned idx = 0;
2148  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2149       i != e; ++i, ++idx) {
2150    const FieldDecl *FD = *i;
2151
2152    // Bit-fields are not addressable, we only need to verify they are "integer
2153    // like". We still have to disallow a subsequent non-bitfield, for example:
2154    //   struct { int : 0; int x }
2155    // is non-integer like according to gcc.
2156    if (FD->isBitField()) {
2157      if (!RD->isUnion())
2158        HadField = true;
2159
2160      if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2161        return false;
2162
2163      continue;
2164    }
2165
2166    // Check if this field is at offset 0.
2167    if (Layout.getFieldOffset(idx) != 0)
2168      return false;
2169
2170    if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2171      return false;
2172
2173    // Only allow at most one field in a structure. This doesn't match the
2174    // wording above, but follows gcc in situations with a field following an
2175    // empty structure.
2176    if (!RD->isUnion()) {
2177      if (HadField)
2178        return false;
2179
2180      HadField = true;
2181    }
2182  }
2183
2184  return true;
2185}
2186
2187ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
2188  if (RetTy->isVoidType())
2189    return ABIArgInfo::getIgnore();
2190
2191  if (!CodeGenFunction::hasAggregateLLVMType(RetTy)) {
2192    // Treat an enum type as its underlying type.
2193    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2194      RetTy = EnumTy->getDecl()->getIntegerType();
2195
2196    return (RetTy->isPromotableIntegerType() ?
2197            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2198  }
2199
2200  // Structures with either a non-trivial destructor or a non-trivial
2201  // copy constructor are always indirect.
2202  if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
2203    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2204
2205  // Are we following APCS?
2206  if (getABIKind() == APCS) {
2207    if (isEmptyRecord(getContext(), RetTy, false))
2208      return ABIArgInfo::getIgnore();
2209
2210    // Complex types are all returned as packed integers.
2211    //
2212    // FIXME: Consider using 2 x vector types if the back end handles them
2213    // correctly.
2214    if (RetTy->isAnyComplexType())
2215      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2216                                              getContext().getTypeSize(RetTy)));
2217
2218    // Integer like structures are returned in r0.
2219    if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
2220      // Return in the smallest viable integer type.
2221      uint64_t Size = getContext().getTypeSize(RetTy);
2222      if (Size <= 8)
2223        return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2224      if (Size <= 16)
2225        return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2226      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2227    }
2228
2229    // Otherwise return in memory.
2230    return ABIArgInfo::getIndirect(0);
2231  }
2232
2233  // Otherwise this is an AAPCS variant.
2234
2235  if (isEmptyRecord(getContext(), RetTy, true))
2236    return ABIArgInfo::getIgnore();
2237
2238  // Aggregates <= 4 bytes are returned in r0; other aggregates
2239  // are returned indirectly.
2240  uint64_t Size = getContext().getTypeSize(RetTy);
2241  if (Size <= 32) {
2242    // Return in the smallest viable integer type.
2243    if (Size <= 8)
2244      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2245    if (Size <= 16)
2246      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2247    return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2248  }
2249
2250  return ABIArgInfo::getIndirect(0);
2251}
2252
2253llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2254                                   CodeGenFunction &CGF) const {
2255  // FIXME: Need to handle alignment
2256  const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
2257  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
2258
2259  CGBuilderTy &Builder = CGF.Builder;
2260  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2261                                                       "ap");
2262  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2263  llvm::Type *PTy =
2264    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2265  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2266
2267  uint64_t Offset =
2268    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
2269  llvm::Value *NextAddr =
2270    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2271                      "ap.next");
2272  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2273
2274  return AddrTyped;
2275}
2276
2277ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
2278  if (RetTy->isVoidType())
2279    return ABIArgInfo::getIgnore();
2280
2281  if (CodeGenFunction::hasAggregateLLVMType(RetTy))
2282    return ABIArgInfo::getIndirect(0);
2283
2284  // Treat an enum type as its underlying type.
2285  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2286    RetTy = EnumTy->getDecl()->getIntegerType();
2287
2288  return (RetTy->isPromotableIntegerType() ?
2289          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2290}
2291
2292//===----------------------------------------------------------------------===//
2293// SystemZ ABI Implementation
2294//===----------------------------------------------------------------------===//
2295
2296namespace {
2297
2298class SystemZABIInfo : public ABIInfo {
2299public:
2300  SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
2301
2302  bool isPromotableIntegerType(QualType Ty) const;
2303
2304  ABIArgInfo classifyReturnType(QualType RetTy) const;
2305  ABIArgInfo classifyArgumentType(QualType RetTy) const;
2306
2307  virtual void computeInfo(CGFunctionInfo &FI) const {
2308    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2309    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2310         it != ie; ++it)
2311      it->info = classifyArgumentType(it->type);
2312  }
2313
2314  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2315                                 CodeGenFunction &CGF) const;
2316};
2317
2318class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
2319public:
2320  SystemZTargetCodeGenInfo(CodeGenTypes &CGT)
2321    : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {}
2322};
2323
2324}
2325
2326bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
2327  // SystemZ ABI requires all 8, 16 and 32 bit quantities to be extended.
2328  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2329    switch (BT->getKind()) {
2330    case BuiltinType::Bool:
2331    case BuiltinType::Char_S:
2332    case BuiltinType::Char_U:
2333    case BuiltinType::SChar:
2334    case BuiltinType::UChar:
2335    case BuiltinType::Short:
2336    case BuiltinType::UShort:
2337    case BuiltinType::Int:
2338    case BuiltinType::UInt:
2339      return true;
2340    default:
2341      return false;
2342    }
2343  return false;
2344}
2345
2346llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2347                                       CodeGenFunction &CGF) const {
2348  // FIXME: Implement
2349  return 0;
2350}
2351
2352
2353ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
2354  if (RetTy->isVoidType())
2355    return ABIArgInfo::getIgnore();
2356  if (CodeGenFunction::hasAggregateLLVMType(RetTy))
2357    return ABIArgInfo::getIndirect(0);
2358
2359  return (isPromotableIntegerType(RetTy) ?
2360          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2361}
2362
2363ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
2364  if (CodeGenFunction::hasAggregateLLVMType(Ty))
2365    return ABIArgInfo::getIndirect(0);
2366
2367  return (isPromotableIntegerType(Ty) ?
2368          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2369}
2370
2371//===----------------------------------------------------------------------===//
2372// MSP430 ABI Implementation
2373//===----------------------------------------------------------------------===//
2374
2375namespace {
2376
2377class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
2378public:
2379  MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
2380    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
2381  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2382                           CodeGen::CodeGenModule &M) const;
2383};
2384
2385}
2386
2387void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
2388                                                  llvm::GlobalValue *GV,
2389                                             CodeGen::CodeGenModule &M) const {
2390  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2391    if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
2392      // Handle 'interrupt' attribute:
2393      llvm::Function *F = cast<llvm::Function>(GV);
2394
2395      // Step 1: Set ISR calling convention.
2396      F->setCallingConv(llvm::CallingConv::MSP430_INTR);
2397
2398      // Step 2: Add attributes goodness.
2399      F->addFnAttr(llvm::Attribute::NoInline);
2400
2401      // Step 3: Emit ISR vector alias.
2402      unsigned Num = attr->getNumber() + 0xffe0;
2403      new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
2404                            "vector_" +
2405                            llvm::LowercaseString(llvm::utohexstr(Num)),
2406                            GV, &M.getModule());
2407    }
2408  }
2409}
2410
2411//===----------------------------------------------------------------------===//
2412// MIPS ABI Implementation.  This works for both little-endian and
2413// big-endian variants.
2414//===----------------------------------------------------------------------===//
2415
2416namespace {
2417class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
2418public:
2419  MIPSTargetCodeGenInfo(CodeGenTypes &CGT)
2420    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
2421
2422  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
2423    return 29;
2424  }
2425
2426  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2427                               llvm::Value *Address) const;
2428};
2429}
2430
2431bool
2432MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2433                                               llvm::Value *Address) const {
2434  // This information comes from gcc's implementation, which seems to
2435  // as canonical as it gets.
2436
2437  CodeGen::CGBuilderTy &Builder = CGF.Builder;
2438  llvm::LLVMContext &Context = CGF.getLLVMContext();
2439
2440  // Everything on MIPS is 4 bytes.  Double-precision FP registers
2441  // are aliased to pairs of single-precision FP registers.
2442  const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
2443  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2444
2445  // 0-31 are the general purpose registers, $0 - $31.
2446  // 32-63 are the floating-point registers, $f0 - $f31.
2447  // 64 and 65 are the multiply/divide registers, $hi and $lo.
2448  // 66 is the (notional, I think) register for signal-handler return.
2449  AssignToArrayRange(Builder, Address, Four8, 0, 65);
2450
2451  // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
2452  // They are one bit wide and ignored here.
2453
2454  // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
2455  // (coprocessor 1 is the FP unit)
2456  // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
2457  // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
2458  // 176-181 are the DSP accumulator registers.
2459  AssignToArrayRange(Builder, Address, Four8, 80, 181);
2460
2461  return false;
2462}
2463
2464
2465const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
2466  if (TheTargetCodeGenInfo)
2467    return *TheTargetCodeGenInfo;
2468
2469  // For now we just cache the TargetCodeGenInfo in CodeGenModule and don't
2470  // free it.
2471
2472  const llvm::Triple &Triple = getContext().Target.getTriple();
2473  switch (Triple.getArch()) {
2474  default:
2475    return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
2476
2477  case llvm::Triple::mips:
2478  case llvm::Triple::mipsel:
2479    return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types));
2480
2481  case llvm::Triple::arm:
2482  case llvm::Triple::thumb:
2483    // FIXME: We want to know the float calling convention as well.
2484    if (strcmp(getContext().Target.getABI(), "apcs-gnu") == 0)
2485      return *(TheTargetCodeGenInfo =
2486               new ARMTargetCodeGenInfo(Types, ARMABIInfo::APCS));
2487
2488    return *(TheTargetCodeGenInfo =
2489             new ARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS));
2490
2491  case llvm::Triple::pic16:
2492    return *(TheTargetCodeGenInfo = new PIC16TargetCodeGenInfo(Types));
2493
2494  case llvm::Triple::ppc:
2495    return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
2496
2497  case llvm::Triple::systemz:
2498    return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types));
2499
2500  case llvm::Triple::msp430:
2501    return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
2502
2503  case llvm::Triple::x86:
2504    switch (Triple.getOS()) {
2505    case llvm::Triple::Darwin:
2506      return *(TheTargetCodeGenInfo =
2507               new X86_32TargetCodeGenInfo(Types, true, true));
2508    case llvm::Triple::Cygwin:
2509    case llvm::Triple::MinGW32:
2510    case llvm::Triple::MinGW64:
2511    case llvm::Triple::AuroraUX:
2512    case llvm::Triple::DragonFly:
2513    case llvm::Triple::FreeBSD:
2514    case llvm::Triple::OpenBSD:
2515      return *(TheTargetCodeGenInfo =
2516               new X86_32TargetCodeGenInfo(Types, false, true));
2517
2518    default:
2519      return *(TheTargetCodeGenInfo =
2520               new X86_32TargetCodeGenInfo(Types, false, false));
2521    }
2522
2523  case llvm::Triple::x86_64:
2524    return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types));
2525  }
2526}
2527