TargetInfo.cpp revision 29dd67bc59249adef304827d68b094f5b5cfc645
1//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// These classes wrap the information about a call or function
11// definition used to handle ABI compliancy.
12//
13//===----------------------------------------------------------------------===//
14
15#include "TargetInfo.h"
16#include "ABIInfo.h"
17#include "CodeGenFunction.h"
18#include "clang/AST/RecordLayout.h"
19#include "llvm/Type.h"
20#include "llvm/Target/TargetData.h"
21#include "llvm/ADT/Triple.h"
22#include "llvm/Support/raw_ostream.h"
23using namespace clang;
24using namespace CodeGen;
25
26static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
27                               llvm::Value *Array,
28                               llvm::Value *Value,
29                               unsigned FirstIndex,
30                               unsigned LastIndex) {
31  // Alternatively, we could emit this as a loop in the source.
32  for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
33    llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
34    Builder.CreateStore(Value, Cell);
35  }
36}
37
38static bool isAggregateTypeForABI(QualType T) {
39  return CodeGenFunction::hasAggregateLLVMType(T) ||
40         T->isMemberFunctionPointerType();
41}
42
43ABIInfo::~ABIInfo() {}
44
45ASTContext &ABIInfo::getContext() const {
46  return CGT.getContext();
47}
48
49llvm::LLVMContext &ABIInfo::getVMContext() const {
50  return CGT.getLLVMContext();
51}
52
53const llvm::TargetData &ABIInfo::getTargetData() const {
54  return CGT.getTargetData();
55}
56
57
58void ABIArgInfo::dump() const {
59  llvm::raw_ostream &OS = llvm::errs();
60  OS << "(ABIArgInfo Kind=";
61  switch (TheKind) {
62  case Direct:
63    OS << "Direct Type=";
64    if (const llvm::Type *Ty = getCoerceToType())
65      Ty->print(OS);
66    else
67      OS << "null";
68    break;
69  case Extend:
70    OS << "Extend";
71    break;
72  case Ignore:
73    OS << "Ignore";
74    break;
75  case Indirect:
76    OS << "Indirect Align=" << getIndirectAlign()
77       << " Byal=" << getIndirectByVal()
78       << " Realign=" << getIndirectRealign();
79    break;
80  case Expand:
81    OS << "Expand";
82    break;
83  }
84  OS << ")\n";
85}
86
87TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
88
89static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
90
91/// isEmptyField - Return true iff a the field is "empty", that is it
92/// is an unnamed bit-field or an (array of) empty record(s).
93static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
94                         bool AllowArrays) {
95  if (FD->isUnnamedBitfield())
96    return true;
97
98  QualType FT = FD->getType();
99
100    // Constant arrays of empty records count as empty, strip them off.
101  if (AllowArrays)
102    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT))
103      FT = AT->getElementType();
104
105  const RecordType *RT = FT->getAs<RecordType>();
106  if (!RT)
107    return false;
108
109  // C++ record fields are never empty, at least in the Itanium ABI.
110  //
111  // FIXME: We should use a predicate for whether this behavior is true in the
112  // current ABI.
113  if (isa<CXXRecordDecl>(RT->getDecl()))
114    return false;
115
116  return isEmptyRecord(Context, FT, AllowArrays);
117}
118
119/// isEmptyRecord - Return true iff a structure contains only empty
120/// fields. Note that a structure with a flexible array member is not
121/// considered empty.
122static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
123  const RecordType *RT = T->getAs<RecordType>();
124  if (!RT)
125    return 0;
126  const RecordDecl *RD = RT->getDecl();
127  if (RD->hasFlexibleArrayMember())
128    return false;
129
130  // If this is a C++ record, check the bases first.
131  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
132    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
133           e = CXXRD->bases_end(); i != e; ++i)
134      if (!isEmptyRecord(Context, i->getType(), true))
135        return false;
136
137  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
138         i != e; ++i)
139    if (!isEmptyField(Context, *i, AllowArrays))
140      return false;
141  return true;
142}
143
144/// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
145/// a non-trivial destructor or a non-trivial copy constructor.
146static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
147  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
148  if (!RD)
149    return false;
150
151  return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
152}
153
154/// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
155/// a record type with either a non-trivial destructor or a non-trivial copy
156/// constructor.
157static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
158  const RecordType *RT = T->getAs<RecordType>();
159  if (!RT)
160    return false;
161
162  return hasNonTrivialDestructorOrCopyConstructor(RT);
163}
164
165/// isSingleElementStruct - Determine if a structure is a "single
166/// element struct", i.e. it has exactly one non-empty field or
167/// exactly one field which is itself a single element
168/// struct. Structures with flexible array members are never
169/// considered single element structs.
170///
171/// \return The field declaration for the single non-empty field, if
172/// it exists.
173static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
174  const RecordType *RT = T->getAsStructureType();
175  if (!RT)
176    return 0;
177
178  const RecordDecl *RD = RT->getDecl();
179  if (RD->hasFlexibleArrayMember())
180    return 0;
181
182  const Type *Found = 0;
183
184  // If this is a C++ record, check the bases first.
185  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
186    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
187           e = CXXRD->bases_end(); i != e; ++i) {
188      // Ignore empty records.
189      if (isEmptyRecord(Context, i->getType(), true))
190        continue;
191
192      // If we already found an element then this isn't a single-element struct.
193      if (Found)
194        return 0;
195
196      // If this is non-empty and not a single element struct, the composite
197      // cannot be a single element struct.
198      Found = isSingleElementStruct(i->getType(), Context);
199      if (!Found)
200        return 0;
201    }
202  }
203
204  // Check for single element.
205  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
206         i != e; ++i) {
207    const FieldDecl *FD = *i;
208    QualType FT = FD->getType();
209
210    // Ignore empty fields.
211    if (isEmptyField(Context, FD, true))
212      continue;
213
214    // If we already found an element then this isn't a single-element
215    // struct.
216    if (Found)
217      return 0;
218
219    // Treat single element arrays as the element.
220    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
221      if (AT->getSize().getZExtValue() != 1)
222        break;
223      FT = AT->getElementType();
224    }
225
226    if (!isAggregateTypeForABI(FT)) {
227      Found = FT.getTypePtr();
228    } else {
229      Found = isSingleElementStruct(FT, Context);
230      if (!Found)
231        return 0;
232    }
233  }
234
235  return Found;
236}
237
238static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
239  if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
240      !Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
241      !Ty->isBlockPointerType())
242    return false;
243
244  uint64_t Size = Context.getTypeSize(Ty);
245  return Size == 32 || Size == 64;
246}
247
248/// canExpandIndirectArgument - Test whether an argument type which is to be
249/// passed indirectly (on the stack) would have the equivalent layout if it was
250/// expanded into separate arguments. If so, we prefer to do the latter to avoid
251/// inhibiting optimizations.
252///
253// FIXME: This predicate is missing many cases, currently it just follows
254// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
255// should probably make this smarter, or better yet make the LLVM backend
256// capable of handling it.
257static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
258  // We can only expand structure types.
259  const RecordType *RT = Ty->getAs<RecordType>();
260  if (!RT)
261    return false;
262
263  // We can only expand (C) structures.
264  //
265  // FIXME: This needs to be generalized to handle classes as well.
266  const RecordDecl *RD = RT->getDecl();
267  if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
268    return false;
269
270  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
271         i != e; ++i) {
272    const FieldDecl *FD = *i;
273
274    if (!is32Or64BitBasicType(FD->getType(), Context))
275      return false;
276
277    // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
278    // how to expand them yet, and the predicate for telling if a bitfield still
279    // counts as "basic" is more complicated than what we were doing previously.
280    if (FD->isBitField())
281      return false;
282  }
283
284  return true;
285}
286
287namespace {
288/// DefaultABIInfo - The default implementation for ABI specific
289/// details. This implementation provides information which results in
290/// self-consistent and sensible LLVM IR generation, but does not
291/// conform to any particular ABI.
292class DefaultABIInfo : public ABIInfo {
293public:
294  DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
295
296  ABIArgInfo classifyReturnType(QualType RetTy) const;
297  ABIArgInfo classifyArgumentType(QualType RetTy) const;
298
299  virtual void computeInfo(CGFunctionInfo &FI) const {
300    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
301    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
302         it != ie; ++it)
303      it->info = classifyArgumentType(it->type);
304  }
305
306  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
307                                 CodeGenFunction &CGF) const;
308};
309
310class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
311public:
312  DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
313    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
314};
315
316llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
317                                       CodeGenFunction &CGF) const {
318  return 0;
319}
320
321ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
322  if (isAggregateTypeForABI(Ty))
323    return ABIArgInfo::getIndirect(0);
324
325  // Treat an enum type as its underlying type.
326  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
327    Ty = EnumTy->getDecl()->getIntegerType();
328
329  return (Ty->isPromotableIntegerType() ?
330          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
331}
332
333ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
334  if (RetTy->isVoidType())
335    return ABIArgInfo::getIgnore();
336
337  if (isAggregateTypeForABI(RetTy))
338    return ABIArgInfo::getIndirect(0);
339
340  // Treat an enum type as its underlying type.
341  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
342    RetTy = EnumTy->getDecl()->getIntegerType();
343
344  return (RetTy->isPromotableIntegerType() ?
345          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
346}
347
348/// UseX86_MMXType - Return true if this is an MMX type that should use the special
349/// x86_mmx type.
350bool UseX86_MMXType(const llvm::Type *IRType) {
351  // If the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>, use the
352  // special x86_mmx type.
353  return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
354    cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
355    IRType->getScalarSizeInBits() != 64;
356}
357
358//===----------------------------------------------------------------------===//
359// X86-32 ABI Implementation
360//===----------------------------------------------------------------------===//
361
362/// X86_32ABIInfo - The X86-32 ABI information.
363class X86_32ABIInfo : public ABIInfo {
364  static const unsigned MinABIStackAlignInBytes = 4;
365
366  bool IsDarwinVectorABI;
367  bool IsSmallStructInRegABI;
368
369  static bool isRegisterSize(unsigned Size) {
370    return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
371  }
372
373  static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);
374
375  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
376  /// such that the argument will be passed in memory.
377  ABIArgInfo getIndirectResult(QualType Ty, bool ByVal = true) const;
378
379  /// \brief Return the alignment to use for the given type on the stack.
380  unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
381
382public:
383
384  ABIArgInfo classifyReturnType(QualType RetTy) const;
385  ABIArgInfo classifyArgumentType(QualType RetTy) const;
386
387  virtual void computeInfo(CGFunctionInfo &FI) const {
388    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
389    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
390         it != ie; ++it)
391      it->info = classifyArgumentType(it->type);
392  }
393
394  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
395                                 CodeGenFunction &CGF) const;
396
397  X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p)
398    : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p) {}
399};
400
401class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
402public:
403  X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p)
404    :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p)) {}
405
406  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
407                           CodeGen::CodeGenModule &CGM) const;
408
409  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
410    // Darwin uses different dwarf register numbers for EH.
411    if (CGM.isTargetDarwin()) return 5;
412
413    return 4;
414  }
415
416  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
417                               llvm::Value *Address) const;
418};
419
420}
421
422/// shouldReturnTypeInRegister - Determine if the given type should be
423/// passed in a register (for the Darwin ABI).
424bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
425                                               ASTContext &Context) {
426  uint64_t Size = Context.getTypeSize(Ty);
427
428  // Type must be register sized.
429  if (!isRegisterSize(Size))
430    return false;
431
432  if (Ty->isVectorType()) {
433    // 64- and 128- bit vectors inside structures are not returned in
434    // registers.
435    if (Size == 64 || Size == 128)
436      return false;
437
438    return true;
439  }
440
441  // If this is a builtin, pointer, enum, complex type, member pointer, or
442  // member function pointer it is ok.
443  if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
444      Ty->isAnyComplexType() || Ty->isEnumeralType() ||
445      Ty->isBlockPointerType() || Ty->isMemberPointerType())
446    return true;
447
448  // Arrays are treated like records.
449  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
450    return shouldReturnTypeInRegister(AT->getElementType(), Context);
451
452  // Otherwise, it must be a record type.
453  const RecordType *RT = Ty->getAs<RecordType>();
454  if (!RT) return false;
455
456  // FIXME: Traverse bases here too.
457
458  // Structure types are passed in register if all fields would be
459  // passed in a register.
460  for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
461         e = RT->getDecl()->field_end(); i != e; ++i) {
462    const FieldDecl *FD = *i;
463
464    // Empty fields are ignored.
465    if (isEmptyField(Context, FD, true))
466      continue;
467
468    // Check fields recursively.
469    if (!shouldReturnTypeInRegister(FD->getType(), Context))
470      return false;
471  }
472
473  return true;
474}
475
476ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy) const {
477  if (RetTy->isVoidType())
478    return ABIArgInfo::getIgnore();
479
480  if (const VectorType *VT = RetTy->getAs<VectorType>()) {
481    // On Darwin, some vectors are returned in registers.
482    if (IsDarwinVectorABI) {
483      uint64_t Size = getContext().getTypeSize(RetTy);
484
485      // 128-bit vectors are a special case; they are returned in
486      // registers and we need to make sure to pick a type the LLVM
487      // backend will like.
488      if (Size == 128)
489        return ABIArgInfo::getDirect(llvm::VectorType::get(
490                  llvm::Type::getInt64Ty(getVMContext()), 2));
491
492      // Always return in register if it fits in a general purpose
493      // register, or if it is 64 bits and has a single element.
494      if ((Size == 8 || Size == 16 || Size == 32) ||
495          (Size == 64 && VT->getNumElements() == 1))
496        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
497                                                            Size));
498
499      return ABIArgInfo::getIndirect(0);
500    }
501
502    return ABIArgInfo::getDirect();
503  }
504
505  if (isAggregateTypeForABI(RetTy)) {
506    if (const RecordType *RT = RetTy->getAs<RecordType>()) {
507      // Structures with either a non-trivial destructor or a non-trivial
508      // copy constructor are always indirect.
509      if (hasNonTrivialDestructorOrCopyConstructor(RT))
510        return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
511
512      // Structures with flexible arrays are always indirect.
513      if (RT->getDecl()->hasFlexibleArrayMember())
514        return ABIArgInfo::getIndirect(0);
515    }
516
517    // If specified, structs and unions are always indirect.
518    if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
519      return ABIArgInfo::getIndirect(0);
520
521    // Classify "single element" structs as their element type.
522    if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) {
523      if (const BuiltinType *BT = SeltTy->getAs<BuiltinType>()) {
524        if (BT->isIntegerType()) {
525          // We need to use the size of the structure, padding
526          // bit-fields can adjust that to be larger than the single
527          // element type.
528          uint64_t Size = getContext().getTypeSize(RetTy);
529          return ABIArgInfo::getDirect(
530            llvm::IntegerType::get(getVMContext(), (unsigned)Size));
531        }
532
533        if (BT->getKind() == BuiltinType::Float) {
534          assert(getContext().getTypeSize(RetTy) ==
535                 getContext().getTypeSize(SeltTy) &&
536                 "Unexpect single element structure size!");
537          return ABIArgInfo::getDirect(llvm::Type::getFloatTy(getVMContext()));
538        }
539
540        if (BT->getKind() == BuiltinType::Double) {
541          assert(getContext().getTypeSize(RetTy) ==
542                 getContext().getTypeSize(SeltTy) &&
543                 "Unexpect single element structure size!");
544          return ABIArgInfo::getDirect(llvm::Type::getDoubleTy(getVMContext()));
545        }
546      } else if (SeltTy->isPointerType()) {
547        // FIXME: It would be really nice if this could come out as the proper
548        // pointer type.
549        const llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(getVMContext());
550        return ABIArgInfo::getDirect(PtrTy);
551      } else if (SeltTy->isVectorType()) {
552        // 64- and 128-bit vectors are never returned in a
553        // register when inside a structure.
554        uint64_t Size = getContext().getTypeSize(RetTy);
555        if (Size == 64 || Size == 128)
556          return ABIArgInfo::getIndirect(0);
557
558        return classifyReturnType(QualType(SeltTy, 0));
559      }
560    }
561
562    // Small structures which are register sized are generally returned
563    // in a register.
564    if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext())) {
565      uint64_t Size = getContext().getTypeSize(RetTy);
566      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
567    }
568
569    return ABIArgInfo::getIndirect(0);
570  }
571
572  // Treat an enum type as its underlying type.
573  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
574    RetTy = EnumTy->getDecl()->getIntegerType();
575
576  return (RetTy->isPromotableIntegerType() ?
577          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
578}
579
580static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
581  const RecordType *RT = Ty->getAs<RecordType>();
582  if (!RT)
583    return 0;
584  const RecordDecl *RD = RT->getDecl();
585
586  // If this is a C++ record, check the bases first.
587  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
588    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
589           e = CXXRD->bases_end(); i != e; ++i)
590      if (!isRecordWithSSEVectorType(Context, i->getType()))
591        return false;
592
593  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
594       i != e; ++i) {
595    QualType FT = i->getType();
596
597    if (FT->getAs<VectorType>() && Context.getTypeSize(Ty) == 128)
598      return true;
599
600    if (isRecordWithSSEVectorType(Context, FT))
601      return true;
602  }
603
604  return false;
605}
606
607unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
608                                                 unsigned Align) const {
609  // Otherwise, if the alignment is less than or equal to the minimum ABI
610  // alignment, just use the default; the backend will handle this.
611  if (Align <= MinABIStackAlignInBytes)
612    return 0; // Use default alignment.
613
614  // On non-Darwin, the stack type alignment is always 4.
615  if (!IsDarwinVectorABI) {
616    // Set explicit alignment, since we may need to realign the top.
617    return MinABIStackAlignInBytes;
618  }
619
620  // Otherwise, if the type contains an SSE vector type, the alignment is 16.
621  if (isRecordWithSSEVectorType(getContext(), Ty))
622    return 16;
623
624  return MinABIStackAlignInBytes;
625}
626
627ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal) const {
628  if (!ByVal)
629    return ABIArgInfo::getIndirect(0, false);
630
631  // Compute the byval alignment.
632  unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
633  unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
634  if (StackAlign == 0)
635    return ABIArgInfo::getIndirect(0);
636
637  // If the stack alignment is less than the type alignment, realign the
638  // argument.
639  if (StackAlign < TypeAlign)
640    return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true,
641                                   /*Realign=*/true);
642
643  return ABIArgInfo::getIndirect(StackAlign);
644}
645
646ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty) const {
647  // FIXME: Set alignment on indirect arguments.
648  if (isAggregateTypeForABI(Ty)) {
649    // Structures with flexible arrays are always indirect.
650    if (const RecordType *RT = Ty->getAs<RecordType>()) {
651      // Structures with either a non-trivial destructor or a non-trivial
652      // copy constructor are always indirect.
653      if (hasNonTrivialDestructorOrCopyConstructor(RT))
654        return getIndirectResult(Ty, /*ByVal=*/false);
655
656      if (RT->getDecl()->hasFlexibleArrayMember())
657        return getIndirectResult(Ty);
658    }
659
660    // Ignore empty structs.
661    if (Ty->isStructureType() && getContext().getTypeSize(Ty) == 0)
662      return ABIArgInfo::getIgnore();
663
664    // Expand small (<= 128-bit) record types when we know that the stack layout
665    // of those arguments will match the struct. This is important because the
666    // LLVM backend isn't smart enough to remove byval, which inhibits many
667    // optimizations.
668    if (getContext().getTypeSize(Ty) <= 4*32 &&
669        canExpandIndirectArgument(Ty, getContext()))
670      return ABIArgInfo::getExpand();
671
672    return getIndirectResult(Ty);
673  }
674
675  if (const VectorType *VT = Ty->getAs<VectorType>()) {
676    // On Darwin, some vectors are passed in memory, we handle this by passing
677    // it as an i8/i16/i32/i64.
678    if (IsDarwinVectorABI) {
679      uint64_t Size = getContext().getTypeSize(Ty);
680      if ((Size == 8 || Size == 16 || Size == 32) ||
681          (Size == 64 && VT->getNumElements() == 1))
682        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
683                                                            Size));
684    }
685
686    const llvm::Type *IRType = CGT.ConvertTypeRecursive(Ty);
687    if (UseX86_MMXType(IRType)) {
688      ABIArgInfo AAI = ABIArgInfo::getDirect(IRType);
689      AAI.setCoerceToType(llvm::Type::getX86_MMXTy(getVMContext()));
690      return AAI;
691    }
692
693    return ABIArgInfo::getDirect();
694  }
695
696
697  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
698    Ty = EnumTy->getDecl()->getIntegerType();
699
700  return (Ty->isPromotableIntegerType() ?
701          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
702}
703
704llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
705                                      CodeGenFunction &CGF) const {
706  const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
707  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
708
709  CGBuilderTy &Builder = CGF.Builder;
710  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
711                                                       "ap");
712  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
713  llvm::Type *PTy =
714    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
715  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
716
717  uint64_t Offset =
718    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
719  llvm::Value *NextAddr =
720    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
721                      "ap.next");
722  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
723
724  return AddrTyped;
725}
726
727void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
728                                                  llvm::GlobalValue *GV,
729                                            CodeGen::CodeGenModule &CGM) const {
730  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
731    if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
732      // Get the LLVM function.
733      llvm::Function *Fn = cast<llvm::Function>(GV);
734
735      // Now add the 'alignstack' attribute with a value of 16.
736      Fn->addFnAttr(llvm::Attribute::constructStackAlignmentFromInt(16));
737    }
738  }
739}
740
741bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
742                                               CodeGen::CodeGenFunction &CGF,
743                                               llvm::Value *Address) const {
744  CodeGen::CGBuilderTy &Builder = CGF.Builder;
745  llvm::LLVMContext &Context = CGF.getLLVMContext();
746
747  const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
748  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
749
750  // 0-7 are the eight integer registers;  the order is different
751  //   on Darwin (for EH), but the range is the same.
752  // 8 is %eip.
753  AssignToArrayRange(Builder, Address, Four8, 0, 8);
754
755  if (CGF.CGM.isTargetDarwin()) {
756    // 12-16 are st(0..4).  Not sure why we stop at 4.
757    // These have size 16, which is sizeof(long double) on
758    // platforms with 8-byte alignment for that type.
759    llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
760    AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
761
762  } else {
763    // 9 is %eflags, which doesn't get a size on Darwin for some
764    // reason.
765    Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
766
767    // 11-16 are st(0..5).  Not sure why we stop at 5.
768    // These have size 12, which is sizeof(long double) on
769    // platforms with 4-byte alignment for that type.
770    llvm::Value *Twelve8 = llvm::ConstantInt::get(i8, 12);
771    AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
772  }
773
774  return false;
775}
776
777//===----------------------------------------------------------------------===//
778// X86-64 ABI Implementation
779//===----------------------------------------------------------------------===//
780
781
782namespace {
783/// X86_64ABIInfo - The X86_64 ABI information.
784class X86_64ABIInfo : public ABIInfo {
785  enum Class {
786    Integer = 0,
787    SSE,
788    SSEUp,
789    X87,
790    X87Up,
791    ComplexX87,
792    NoClass,
793    Memory
794  };
795
796  /// merge - Implement the X86_64 ABI merging algorithm.
797  ///
798  /// Merge an accumulating classification \arg Accum with a field
799  /// classification \arg Field.
800  ///
801  /// \param Accum - The accumulating classification. This should
802  /// always be either NoClass or the result of a previous merge
803  /// call. In addition, this should never be Memory (the caller
804  /// should just return Memory for the aggregate).
805  static Class merge(Class Accum, Class Field);
806
807  /// classify - Determine the x86_64 register classes in which the
808  /// given type T should be passed.
809  ///
810  /// \param Lo - The classification for the parts of the type
811  /// residing in the low word of the containing object.
812  ///
813  /// \param Hi - The classification for the parts of the type
814  /// residing in the high word of the containing object.
815  ///
816  /// \param OffsetBase - The bit offset of this type in the
817  /// containing object.  Some parameters are classified different
818  /// depending on whether they straddle an eightbyte boundary.
819  ///
820  /// If a word is unused its result will be NoClass; if a type should
821  /// be passed in Memory then at least the classification of \arg Lo
822  /// will be Memory.
823  ///
824  /// The \arg Lo class will be NoClass iff the argument is ignored.
825  ///
826  /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
827  /// also be ComplexX87.
828  void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi) const;
829
830  const llvm::Type *Get16ByteVectorType(QualType Ty) const;
831  const llvm::Type *GetSSETypeAtOffset(const llvm::Type *IRType,
832                                       unsigned IROffset, QualType SourceTy,
833                                       unsigned SourceOffset) const;
834  const llvm::Type *GetINTEGERTypeAtOffset(const llvm::Type *IRType,
835                                           unsigned IROffset, QualType SourceTy,
836                                           unsigned SourceOffset) const;
837
838  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
839  /// such that the argument will be returned in memory.
840  ABIArgInfo getIndirectReturnResult(QualType Ty) const;
841
842  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
843  /// such that the argument will be passed in memory.
844  ABIArgInfo getIndirectResult(QualType Ty) const;
845
846  ABIArgInfo classifyReturnType(QualType RetTy) const;
847
848  ABIArgInfo classifyArgumentType(QualType Ty,
849                                  unsigned &neededInt,
850                                  unsigned &neededSSE) const;
851
852public:
853  X86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
854
855  virtual void computeInfo(CGFunctionInfo &FI) const;
856
857  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
858                                 CodeGenFunction &CGF) const;
859};
860
861/// WinX86_64ABIInfo - The Windows X86_64 ABI information.
862class WinX86_64ABIInfo : public X86_64ABIInfo {
863public:
864  WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : X86_64ABIInfo(CGT) {}
865
866  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
867                                 CodeGenFunction &CGF) const;
868};
869
870class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
871public:
872  X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
873    : TargetCodeGenInfo(new X86_64ABIInfo(CGT)) {}
874
875  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
876    return 7;
877  }
878
879  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
880                               llvm::Value *Address) const {
881    CodeGen::CGBuilderTy &Builder = CGF.Builder;
882    llvm::LLVMContext &Context = CGF.getLLVMContext();
883
884    const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
885    llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
886
887    // 0-15 are the 16 integer registers.
888    // 16 is %rip.
889    AssignToArrayRange(Builder, Address, Eight8, 0, 16);
890
891    return false;
892  }
893};
894
895class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
896public:
897  WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
898    : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
899
900  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
901    return 7;
902  }
903
904  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
905                               llvm::Value *Address) const {
906    CodeGen::CGBuilderTy &Builder = CGF.Builder;
907    llvm::LLVMContext &Context = CGF.getLLVMContext();
908
909    const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
910    llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
911
912    // 0-15 are the 16 integer registers.
913    // 16 is %rip.
914    AssignToArrayRange(Builder, Address, Eight8, 0, 16);
915
916    return false;
917  }
918};
919
920}
921
922X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
923  // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
924  // classified recursively so that always two fields are
925  // considered. The resulting class is calculated according to
926  // the classes of the fields in the eightbyte:
927  //
928  // (a) If both classes are equal, this is the resulting class.
929  //
930  // (b) If one of the classes is NO_CLASS, the resulting class is
931  // the other class.
932  //
933  // (c) If one of the classes is MEMORY, the result is the MEMORY
934  // class.
935  //
936  // (d) If one of the classes is INTEGER, the result is the
937  // INTEGER.
938  //
939  // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
940  // MEMORY is used as class.
941  //
942  // (f) Otherwise class SSE is used.
943
944  // Accum should never be memory (we should have returned) or
945  // ComplexX87 (because this cannot be passed in a structure).
946  assert((Accum != Memory && Accum != ComplexX87) &&
947         "Invalid accumulated classification during merge.");
948  if (Accum == Field || Field == NoClass)
949    return Accum;
950  if (Field == Memory)
951    return Memory;
952  if (Accum == NoClass)
953    return Field;
954  if (Accum == Integer || Field == Integer)
955    return Integer;
956  if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
957      Accum == X87 || Accum == X87Up)
958    return Memory;
959  return SSE;
960}
961
962void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
963                             Class &Lo, Class &Hi) const {
964  // FIXME: This code can be simplified by introducing a simple value class for
965  // Class pairs with appropriate constructor methods for the various
966  // situations.
967
968  // FIXME: Some of the split computations are wrong; unaligned vectors
969  // shouldn't be passed in registers for example, so there is no chance they
970  // can straddle an eightbyte. Verify & simplify.
971
972  Lo = Hi = NoClass;
973
974  Class &Current = OffsetBase < 64 ? Lo : Hi;
975  Current = Memory;
976
977  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
978    BuiltinType::Kind k = BT->getKind();
979
980    if (k == BuiltinType::Void) {
981      Current = NoClass;
982    } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
983      Lo = Integer;
984      Hi = Integer;
985    } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
986      Current = Integer;
987    } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
988      Current = SSE;
989    } else if (k == BuiltinType::LongDouble) {
990      Lo = X87;
991      Hi = X87Up;
992    }
993    // FIXME: _Decimal32 and _Decimal64 are SSE.
994    // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
995    return;
996  }
997
998  if (const EnumType *ET = Ty->getAs<EnumType>()) {
999    // Classify the underlying integer type.
1000    classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi);
1001    return;
1002  }
1003
1004  if (Ty->hasPointerRepresentation()) {
1005    Current = Integer;
1006    return;
1007  }
1008
1009  if (Ty->isMemberPointerType()) {
1010    if (Ty->isMemberFunctionPointerType())
1011      Lo = Hi = Integer;
1012    else
1013      Current = Integer;
1014    return;
1015  }
1016
1017  if (const VectorType *VT = Ty->getAs<VectorType>()) {
1018    uint64_t Size = getContext().getTypeSize(VT);
1019    if (Size == 32) {
1020      // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1021      // float> as integer.
1022      Current = Integer;
1023
1024      // If this type crosses an eightbyte boundary, it should be
1025      // split.
1026      uint64_t EB_Real = (OffsetBase) / 64;
1027      uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1028      if (EB_Real != EB_Imag)
1029        Hi = Lo;
1030    } else if (Size == 64) {
1031      // gcc passes <1 x double> in memory. :(
1032      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1033        return;
1034
1035      // gcc passes <1 x long long> as INTEGER.
1036      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1037          VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1038          VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1039          VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1040        Current = Integer;
1041      else
1042        Current = SSE;
1043
1044      // If this type crosses an eightbyte boundary, it should be
1045      // split.
1046      if (OffsetBase && OffsetBase != 64)
1047        Hi = Lo;
1048    } else if (Size == 128) {
1049      Lo = SSE;
1050      Hi = SSEUp;
1051    }
1052    return;
1053  }
1054
1055  if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1056    QualType ET = getContext().getCanonicalType(CT->getElementType());
1057
1058    uint64_t Size = getContext().getTypeSize(Ty);
1059    if (ET->isIntegralOrEnumerationType()) {
1060      if (Size <= 64)
1061        Current = Integer;
1062      else if (Size <= 128)
1063        Lo = Hi = Integer;
1064    } else if (ET == getContext().FloatTy)
1065      Current = SSE;
1066    else if (ET == getContext().DoubleTy)
1067      Lo = Hi = SSE;
1068    else if (ET == getContext().LongDoubleTy)
1069      Current = ComplexX87;
1070
1071    // If this complex type crosses an eightbyte boundary then it
1072    // should be split.
1073    uint64_t EB_Real = (OffsetBase) / 64;
1074    uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1075    if (Hi == NoClass && EB_Real != EB_Imag)
1076      Hi = Lo;
1077
1078    return;
1079  }
1080
1081  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1082    // Arrays are treated like structures.
1083
1084    uint64_t Size = getContext().getTypeSize(Ty);
1085
1086    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1087    // than two eightbytes, ..., it has class MEMORY.
1088    if (Size > 128)
1089      return;
1090
1091    // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1092    // fields, it has class MEMORY.
1093    //
1094    // Only need to check alignment of array base.
1095    if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1096      return;
1097
1098    // Otherwise implement simplified merge. We could be smarter about
1099    // this, but it isn't worth it and would be harder to verify.
1100    Current = NoClass;
1101    uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1102    uint64_t ArraySize = AT->getSize().getZExtValue();
1103    for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1104      Class FieldLo, FieldHi;
1105      classify(AT->getElementType(), Offset, FieldLo, FieldHi);
1106      Lo = merge(Lo, FieldLo);
1107      Hi = merge(Hi, FieldHi);
1108      if (Lo == Memory || Hi == Memory)
1109        break;
1110    }
1111
1112    // Do post merger cleanup (see below). Only case we worry about is Memory.
1113    if (Hi == Memory)
1114      Lo = Memory;
1115    assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1116    return;
1117  }
1118
1119  if (const RecordType *RT = Ty->getAs<RecordType>()) {
1120    uint64_t Size = getContext().getTypeSize(Ty);
1121
1122    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1123    // than two eightbytes, ..., it has class MEMORY.
1124    if (Size > 128)
1125      return;
1126
1127    // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1128    // copy constructor or a non-trivial destructor, it is passed by invisible
1129    // reference.
1130    if (hasNonTrivialDestructorOrCopyConstructor(RT))
1131      return;
1132
1133    const RecordDecl *RD = RT->getDecl();
1134
1135    // Assume variable sized types are passed in memory.
1136    if (RD->hasFlexibleArrayMember())
1137      return;
1138
1139    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1140
1141    // Reset Lo class, this will be recomputed.
1142    Current = NoClass;
1143
1144    // If this is a C++ record, classify the bases first.
1145    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1146      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1147             e = CXXRD->bases_end(); i != e; ++i) {
1148        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1149               "Unexpected base class!");
1150        const CXXRecordDecl *Base =
1151          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1152
1153        // Classify this field.
1154        //
1155        // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1156        // single eightbyte, each is classified separately. Each eightbyte gets
1157        // initialized to class NO_CLASS.
1158        Class FieldLo, FieldHi;
1159        uint64_t Offset = OffsetBase + Layout.getBaseClassOffsetInBits(Base);
1160        classify(i->getType(), Offset, FieldLo, FieldHi);
1161        Lo = merge(Lo, FieldLo);
1162        Hi = merge(Hi, FieldHi);
1163        if (Lo == Memory || Hi == Memory)
1164          break;
1165      }
1166    }
1167
1168    // Classify the fields one at a time, merging the results.
1169    unsigned idx = 0;
1170    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1171           i != e; ++i, ++idx) {
1172      uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1173      bool BitField = i->isBitField();
1174
1175      // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1176      // fields, it has class MEMORY.
1177      //
1178      // Note, skip this test for bit-fields, see below.
1179      if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1180        Lo = Memory;
1181        return;
1182      }
1183
1184      // Classify this field.
1185      //
1186      // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1187      // exceeds a single eightbyte, each is classified
1188      // separately. Each eightbyte gets initialized to class
1189      // NO_CLASS.
1190      Class FieldLo, FieldHi;
1191
1192      // Bit-fields require special handling, they do not force the
1193      // structure to be passed in memory even if unaligned, and
1194      // therefore they can straddle an eightbyte.
1195      if (BitField) {
1196        // Ignore padding bit-fields.
1197        if (i->isUnnamedBitfield())
1198          continue;
1199
1200        uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1201        uint64_t Size =
1202          i->getBitWidth()->EvaluateAsInt(getContext()).getZExtValue();
1203
1204        uint64_t EB_Lo = Offset / 64;
1205        uint64_t EB_Hi = (Offset + Size - 1) / 64;
1206        FieldLo = FieldHi = NoClass;
1207        if (EB_Lo) {
1208          assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1209          FieldLo = NoClass;
1210          FieldHi = Integer;
1211        } else {
1212          FieldLo = Integer;
1213          FieldHi = EB_Hi ? Integer : NoClass;
1214        }
1215      } else
1216        classify(i->getType(), Offset, FieldLo, FieldHi);
1217      Lo = merge(Lo, FieldLo);
1218      Hi = merge(Hi, FieldHi);
1219      if (Lo == Memory || Hi == Memory)
1220        break;
1221    }
1222
1223    // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1224    //
1225    // (a) If one of the classes is MEMORY, the whole argument is
1226    // passed in memory.
1227    //
1228    // (b) If SSEUP is not preceeded by SSE, it is converted to SSE.
1229
1230    // The first of these conditions is guaranteed by how we implement
1231    // the merge (just bail).
1232    //
1233    // The second condition occurs in the case of unions; for example
1234    // union { _Complex double; unsigned; }.
1235    if (Hi == Memory)
1236      Lo = Memory;
1237    if (Hi == SSEUp && Lo != SSE)
1238      Hi = SSE;
1239  }
1240}
1241
1242ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1243  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1244  // place naturally.
1245  if (!isAggregateTypeForABI(Ty)) {
1246    // Treat an enum type as its underlying type.
1247    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1248      Ty = EnumTy->getDecl()->getIntegerType();
1249
1250    return (Ty->isPromotableIntegerType() ?
1251            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1252  }
1253
1254  return ABIArgInfo::getIndirect(0);
1255}
1256
1257ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty) const {
1258  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1259  // place naturally.
1260  if (!isAggregateTypeForABI(Ty)) {
1261    // Treat an enum type as its underlying type.
1262    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1263      Ty = EnumTy->getDecl()->getIntegerType();
1264
1265    return (Ty->isPromotableIntegerType() ?
1266            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1267  }
1268
1269  if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1270    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
1271
1272  // Compute the byval alignment. We trust the back-end to honor the
1273  // minimum ABI alignment for byval, to make cleaner IR.
1274  const unsigned MinABIAlign = 8;
1275  unsigned Align = getContext().getTypeAlign(Ty) / 8;
1276  if (Align > MinABIAlign)
1277    return ABIArgInfo::getIndirect(Align);
1278  return ABIArgInfo::getIndirect(0);
1279}
1280
1281/// Get16ByteVectorType - The ABI specifies that a value should be passed in an
1282/// full vector XMM register.  Pick an LLVM IR type that will be passed as a
1283/// vector register.
1284const llvm::Type *X86_64ABIInfo::Get16ByteVectorType(QualType Ty) const {
1285  const llvm::Type *IRType = CGT.ConvertTypeRecursive(Ty);
1286
1287  // Wrapper structs that just contain vectors are passed just like vectors,
1288  // strip them off if present.
1289  const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1290  while (STy && STy->getNumElements() == 1) {
1291    IRType = STy->getElementType(0);
1292    STy = dyn_cast<llvm::StructType>(IRType);
1293  }
1294
1295  // If the preferred type is a 16-byte vector, prefer to pass it.
1296  if (const llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
1297    const llvm::Type *EltTy = VT->getElementType();
1298    if (VT->getBitWidth() == 128 &&
1299        (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1300         EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1301         EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1302         EltTy->isIntegerTy(128)))
1303      return VT;
1304  }
1305
1306  return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1307}
1308
1309/// BitsContainNoUserData - Return true if the specified [start,end) bit range
1310/// is known to either be off the end of the specified type or being in
1311/// alignment padding.  The user type specified is known to be at most 128 bits
1312/// in size, and have passed through X86_64ABIInfo::classify with a successful
1313/// classification that put one of the two halves in the INTEGER class.
1314///
1315/// It is conservatively correct to return false.
1316static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1317                                  unsigned EndBit, ASTContext &Context) {
1318  // If the bytes being queried are off the end of the type, there is no user
1319  // data hiding here.  This handles analysis of builtins, vectors and other
1320  // types that don't contain interesting padding.
1321  unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1322  if (TySize <= StartBit)
1323    return true;
1324
1325  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1326    unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1327    unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1328
1329    // Check each element to see if the element overlaps with the queried range.
1330    for (unsigned i = 0; i != NumElts; ++i) {
1331      // If the element is after the span we care about, then we're done..
1332      unsigned EltOffset = i*EltSize;
1333      if (EltOffset >= EndBit) break;
1334
1335      unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1336      if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1337                                 EndBit-EltOffset, Context))
1338        return false;
1339    }
1340    // If it overlaps no elements, then it is safe to process as padding.
1341    return true;
1342  }
1343
1344  if (const RecordType *RT = Ty->getAs<RecordType>()) {
1345    const RecordDecl *RD = RT->getDecl();
1346    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1347
1348    // If this is a C++ record, check the bases first.
1349    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1350      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1351           e = CXXRD->bases_end(); i != e; ++i) {
1352        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1353               "Unexpected base class!");
1354        const CXXRecordDecl *Base =
1355          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1356
1357        // If the base is after the span we care about, ignore it.
1358        unsigned BaseOffset = (unsigned)Layout.getBaseClassOffsetInBits(Base);
1359        if (BaseOffset >= EndBit) continue;
1360
1361        unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1362        if (!BitsContainNoUserData(i->getType(), BaseStart,
1363                                   EndBit-BaseOffset, Context))
1364          return false;
1365      }
1366    }
1367
1368    // Verify that no field has data that overlaps the region of interest.  Yes
1369    // this could be sped up a lot by being smarter about queried fields,
1370    // however we're only looking at structs up to 16 bytes, so we don't care
1371    // much.
1372    unsigned idx = 0;
1373    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1374         i != e; ++i, ++idx) {
1375      unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
1376
1377      // If we found a field after the region we care about, then we're done.
1378      if (FieldOffset >= EndBit) break;
1379
1380      unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
1381      if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
1382                                 Context))
1383        return false;
1384    }
1385
1386    // If nothing in this record overlapped the area of interest, then we're
1387    // clean.
1388    return true;
1389  }
1390
1391  return false;
1392}
1393
1394/// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
1395/// float member at the specified offset.  For example, {int,{float}} has a
1396/// float at offset 4.  It is conservatively correct for this routine to return
1397/// false.
1398static bool ContainsFloatAtOffset(const llvm::Type *IRType, unsigned IROffset,
1399                                  const llvm::TargetData &TD) {
1400  // Base case if we find a float.
1401  if (IROffset == 0 && IRType->isFloatTy())
1402    return true;
1403
1404  // If this is a struct, recurse into the field at the specified offset.
1405  if (const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1406    const llvm::StructLayout *SL = TD.getStructLayout(STy);
1407    unsigned Elt = SL->getElementContainingOffset(IROffset);
1408    IROffset -= SL->getElementOffset(Elt);
1409    return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
1410  }
1411
1412  // If this is an array, recurse into the field at the specified offset.
1413  if (const llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1414    const llvm::Type *EltTy = ATy->getElementType();
1415    unsigned EltSize = TD.getTypeAllocSize(EltTy);
1416    IROffset -= IROffset/EltSize*EltSize;
1417    return ContainsFloatAtOffset(EltTy, IROffset, TD);
1418  }
1419
1420  return false;
1421}
1422
1423
1424/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
1425/// low 8 bytes of an XMM register, corresponding to the SSE class.
1426const llvm::Type *X86_64ABIInfo::
1427GetSSETypeAtOffset(const llvm::Type *IRType, unsigned IROffset,
1428                   QualType SourceTy, unsigned SourceOffset) const {
1429  // The only three choices we have are either double, <2 x float>, or float. We
1430  // pass as float if the last 4 bytes is just padding.  This happens for
1431  // structs that contain 3 floats.
1432  if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
1433                            SourceOffset*8+64, getContext()))
1434    return llvm::Type::getFloatTy(getVMContext());
1435
1436  // We want to pass as <2 x float> if the LLVM IR type contains a float at
1437  // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
1438  // case.
1439  if (ContainsFloatAtOffset(IRType, IROffset, getTargetData()) &&
1440      ContainsFloatAtOffset(IRType, IROffset+4, getTargetData()))
1441    return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
1442
1443  return llvm::Type::getDoubleTy(getVMContext());
1444}
1445
1446
1447/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
1448/// an 8-byte GPR.  This means that we either have a scalar or we are talking
1449/// about the high or low part of an up-to-16-byte struct.  This routine picks
1450/// the best LLVM IR type to represent this, which may be i64 or may be anything
1451/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
1452/// etc).
1453///
1454/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
1455/// the source type.  IROffset is an offset in bytes into the LLVM IR type that
1456/// the 8-byte value references.  PrefType may be null.
1457///
1458/// SourceTy is the source level type for the entire argument.  SourceOffset is
1459/// an offset into this that we're processing (which is always either 0 or 8).
1460///
1461const llvm::Type *X86_64ABIInfo::
1462GetINTEGERTypeAtOffset(const llvm::Type *IRType, unsigned IROffset,
1463                       QualType SourceTy, unsigned SourceOffset) const {
1464  // If we're dealing with an un-offset LLVM IR type, then it means that we're
1465  // returning an 8-byte unit starting with it.  See if we can safely use it.
1466  if (IROffset == 0) {
1467    // Pointers and int64's always fill the 8-byte unit.
1468    if (isa<llvm::PointerType>(IRType) || IRType->isIntegerTy(64))
1469      return IRType;
1470
1471    // If we have a 1/2/4-byte integer, we can use it only if the rest of the
1472    // goodness in the source type is just tail padding.  This is allowed to
1473    // kick in for struct {double,int} on the int, but not on
1474    // struct{double,int,int} because we wouldn't return the second int.  We
1475    // have to do this analysis on the source type because we can't depend on
1476    // unions being lowered a specific way etc.
1477    if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
1478        IRType->isIntegerTy(32)) {
1479      unsigned BitWidth = cast<llvm::IntegerType>(IRType)->getBitWidth();
1480
1481      if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
1482                                SourceOffset*8+64, getContext()))
1483        return IRType;
1484    }
1485  }
1486
1487  if (const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1488    // If this is a struct, recurse into the field at the specified offset.
1489    const llvm::StructLayout *SL = getTargetData().getStructLayout(STy);
1490    if (IROffset < SL->getSizeInBytes()) {
1491      unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
1492      IROffset -= SL->getElementOffset(FieldIdx);
1493
1494      return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
1495                                    SourceTy, SourceOffset);
1496    }
1497  }
1498
1499  if (const llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1500    const llvm::Type *EltTy = ATy->getElementType();
1501    unsigned EltSize = getTargetData().getTypeAllocSize(EltTy);
1502    unsigned EltOffset = IROffset/EltSize*EltSize;
1503    return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
1504                                  SourceOffset);
1505  }
1506
1507  // Okay, we don't have any better idea of what to pass, so we pass this in an
1508  // integer register that isn't too big to fit the rest of the struct.
1509  unsigned TySizeInBytes =
1510    (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
1511
1512  assert(TySizeInBytes != SourceOffset && "Empty field?");
1513
1514  // It is always safe to classify this as an integer type up to i64 that
1515  // isn't larger than the structure.
1516  return llvm::IntegerType::get(getVMContext(),
1517                                std::min(TySizeInBytes-SourceOffset, 8U)*8);
1518}
1519
1520
1521/// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
1522/// be used as elements of a two register pair to pass or return, return a
1523/// first class aggregate to represent them.  For example, if the low part of
1524/// a by-value argument should be passed as i32* and the high part as float,
1525/// return {i32*, float}.
1526static const llvm::Type *
1527GetX86_64ByValArgumentPair(const llvm::Type *Lo, const llvm::Type *Hi,
1528                           const llvm::TargetData &TD) {
1529  // In order to correctly satisfy the ABI, we need to the high part to start
1530  // at offset 8.  If the high and low parts we inferred are both 4-byte types
1531  // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
1532  // the second element at offset 8.  Check for this:
1533  unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
1534  unsigned HiAlign = TD.getABITypeAlignment(Hi);
1535  unsigned HiStart = llvm::TargetData::RoundUpAlignment(LoSize, HiAlign);
1536  assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
1537
1538  // To handle this, we have to increase the size of the low part so that the
1539  // second element will start at an 8 byte offset.  We can't increase the size
1540  // of the second element because it might make us access off the end of the
1541  // struct.
1542  if (HiStart != 8) {
1543    // There are only two sorts of types the ABI generation code can produce for
1544    // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
1545    // Promote these to a larger type.
1546    if (Lo->isFloatTy())
1547      Lo = llvm::Type::getDoubleTy(Lo->getContext());
1548    else {
1549      assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
1550      Lo = llvm::Type::getInt64Ty(Lo->getContext());
1551    }
1552  }
1553
1554  const llvm::StructType *Result =
1555    llvm::StructType::get(Lo->getContext(), Lo, Hi, NULL);
1556
1557
1558  // Verify that the second element is at an 8-byte offset.
1559  assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
1560         "Invalid x86-64 argument pair!");
1561  return Result;
1562}
1563
1564ABIArgInfo X86_64ABIInfo::
1565classifyReturnType(QualType RetTy) const {
1566  // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
1567  // classification algorithm.
1568  X86_64ABIInfo::Class Lo, Hi;
1569  classify(RetTy, 0, Lo, Hi);
1570
1571  // Check some invariants.
1572  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1573  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1574
1575  const llvm::Type *ResType = 0;
1576  switch (Lo) {
1577  case NoClass:
1578    if (Hi == NoClass)
1579      return ABIArgInfo::getIgnore();
1580    // If the low part is just padding, it takes no register, leave ResType
1581    // null.
1582    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1583           "Unknown missing lo part");
1584    break;
1585
1586  case SSEUp:
1587  case X87Up:
1588    assert(0 && "Invalid classification for lo word.");
1589
1590    // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
1591    // hidden argument.
1592  case Memory:
1593    return getIndirectReturnResult(RetTy);
1594
1595    // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
1596    // available register of the sequence %rax, %rdx is used.
1597  case Integer:
1598    ResType = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 0,
1599                                     RetTy, 0);
1600
1601    // If we have a sign or zero extended integer, make sure to return Extend
1602    // so that the parameter gets the right LLVM IR attributes.
1603    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
1604      // Treat an enum type as its underlying type.
1605      if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1606        RetTy = EnumTy->getDecl()->getIntegerType();
1607
1608      if (RetTy->isIntegralOrEnumerationType() &&
1609          RetTy->isPromotableIntegerType())
1610        return ABIArgInfo::getExtend();
1611    }
1612    break;
1613
1614    // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
1615    // available SSE register of the sequence %xmm0, %xmm1 is used.
1616  case SSE:
1617    ResType = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 0, RetTy, 0);
1618    break;
1619
1620    // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
1621    // returned on the X87 stack in %st0 as 80-bit x87 number.
1622  case X87:
1623    ResType = llvm::Type::getX86_FP80Ty(getVMContext());
1624    break;
1625
1626    // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
1627    // part of the value is returned in %st0 and the imaginary part in
1628    // %st1.
1629  case ComplexX87:
1630    assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
1631    ResType = llvm::StructType::get(getVMContext(),
1632                                    llvm::Type::getX86_FP80Ty(getVMContext()),
1633                                    llvm::Type::getX86_FP80Ty(getVMContext()),
1634                                    NULL);
1635    break;
1636  }
1637
1638  const llvm::Type *HighPart = 0;
1639  switch (Hi) {
1640    // Memory was handled previously and X87 should
1641    // never occur as a hi class.
1642  case Memory:
1643  case X87:
1644    assert(0 && "Invalid classification for hi word.");
1645
1646  case ComplexX87: // Previously handled.
1647  case NoClass:
1648    break;
1649
1650  case Integer:
1651    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(RetTy),
1652                                      8, RetTy, 8);
1653    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1654      return ABIArgInfo::getDirect(HighPart, 8);
1655    break;
1656  case SSE:
1657    HighPart = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 8, RetTy, 8);
1658    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1659      return ABIArgInfo::getDirect(HighPart, 8);
1660    break;
1661
1662    // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
1663    // is passed in the upper half of the last used SSE register.
1664    //
1665    // SSEUP should always be preceeded by SSE, just widen.
1666  case SSEUp:
1667    assert(Lo == SSE && "Unexpected SSEUp classification.");
1668    ResType = Get16ByteVectorType(RetTy);
1669    break;
1670
1671    // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
1672    // returned together with the previous X87 value in %st0.
1673  case X87Up:
1674    // If X87Up is preceeded by X87, we don't need to do
1675    // anything. However, in some cases with unions it may not be
1676    // preceeded by X87. In such situations we follow gcc and pass the
1677    // extra bits in an SSE reg.
1678    if (Lo != X87) {
1679      HighPart = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy),
1680                                    8, RetTy, 8);
1681      if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1682        return ABIArgInfo::getDirect(HighPart, 8);
1683    }
1684    break;
1685  }
1686
1687  // If a high part was specified, merge it together with the low part.  It is
1688  // known to pass in the high eightbyte of the result.  We do this by forming a
1689  // first class struct aggregate with the high and low part: {low, high}
1690  if (HighPart)
1691    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
1692
1693  return ABIArgInfo::getDirect(ResType);
1694}
1695
1696ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned &neededInt,
1697                                               unsigned &neededSSE) const {
1698  X86_64ABIInfo::Class Lo, Hi;
1699  classify(Ty, 0, Lo, Hi);
1700
1701  // Check some invariants.
1702  // FIXME: Enforce these by construction.
1703  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1704  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1705
1706  neededInt = 0;
1707  neededSSE = 0;
1708  const llvm::Type *ResType = 0;
1709  switch (Lo) {
1710  case NoClass:
1711    if (Hi == NoClass)
1712      return ABIArgInfo::getIgnore();
1713    // If the low part is just padding, it takes no register, leave ResType
1714    // null.
1715    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1716           "Unknown missing lo part");
1717    break;
1718
1719    // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
1720    // on the stack.
1721  case Memory:
1722
1723    // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
1724    // COMPLEX_X87, it is passed in memory.
1725  case X87:
1726  case ComplexX87:
1727    return getIndirectResult(Ty);
1728
1729  case SSEUp:
1730  case X87Up:
1731    assert(0 && "Invalid classification for lo word.");
1732
1733    // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
1734    // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
1735    // and %r9 is used.
1736  case Integer:
1737    ++neededInt;
1738
1739    // Pick an 8-byte type based on the preferred type.
1740    ResType = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(Ty), 0, Ty, 0);
1741
1742    // If we have a sign or zero extended integer, make sure to return Extend
1743    // so that the parameter gets the right LLVM IR attributes.
1744    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
1745      // Treat an enum type as its underlying type.
1746      if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1747        Ty = EnumTy->getDecl()->getIntegerType();
1748
1749      if (Ty->isIntegralOrEnumerationType() &&
1750          Ty->isPromotableIntegerType())
1751        return ABIArgInfo::getExtend();
1752    }
1753
1754    break;
1755
1756    // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
1757    // available SSE register is used, the registers are taken in the
1758    // order from %xmm0 to %xmm7.
1759  case SSE: {
1760    const llvm::Type *IRType = CGT.ConvertTypeRecursive(Ty);
1761    if (Hi != NoClass || !UseX86_MMXType(IRType))
1762      ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
1763    else
1764      // This is an MMX type. Treat it as such.
1765      ResType = llvm::Type::getX86_MMXTy(getVMContext());
1766
1767    ++neededSSE;
1768    break;
1769  }
1770  }
1771
1772  const llvm::Type *HighPart = 0;
1773  switch (Hi) {
1774    // Memory was handled previously, ComplexX87 and X87 should
1775    // never occur as hi classes, and X87Up must be preceed by X87,
1776    // which is passed in memory.
1777  case Memory:
1778  case X87:
1779  case ComplexX87:
1780    assert(0 && "Invalid classification for hi word.");
1781    break;
1782
1783  case NoClass: break;
1784
1785  case Integer:
1786    ++neededInt;
1787    // Pick an 8-byte type based on the preferred type.
1788    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(Ty), 8, Ty, 8);
1789
1790    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
1791      return ABIArgInfo::getDirect(HighPart, 8);
1792    break;
1793
1794    // X87Up generally doesn't occur here (long double is passed in
1795    // memory), except in situations involving unions.
1796  case X87Up:
1797  case SSE:
1798    HighPart = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(Ty), 8, Ty, 8);
1799
1800    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
1801      return ABIArgInfo::getDirect(HighPart, 8);
1802
1803    ++neededSSE;
1804    break;
1805
1806    // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
1807    // eightbyte is passed in the upper half of the last used SSE
1808    // register.  This only happens when 128-bit vectors are passed.
1809  case SSEUp:
1810    assert(Lo == SSE && "Unexpected SSEUp classification");
1811    ResType = Get16ByteVectorType(Ty);
1812    break;
1813  }
1814
1815  // If a high part was specified, merge it together with the low part.  It is
1816  // known to pass in the high eightbyte of the result.  We do this by forming a
1817  // first class struct aggregate with the high and low part: {low, high}
1818  if (HighPart)
1819    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
1820
1821  return ABIArgInfo::getDirect(ResType);
1822}
1823
1824void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1825
1826  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
1827
1828  // Keep track of the number of assigned registers.
1829  unsigned freeIntRegs = 6, freeSSERegs = 8;
1830
1831  // If the return value is indirect, then the hidden argument is consuming one
1832  // integer register.
1833  if (FI.getReturnInfo().isIndirect())
1834    --freeIntRegs;
1835
1836  // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
1837  // get assigned (in left-to-right order) for passing as follows...
1838  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1839       it != ie; ++it) {
1840    unsigned neededInt, neededSSE;
1841    it->info = classifyArgumentType(it->type, neededInt, neededSSE);
1842
1843    // AMD64-ABI 3.2.3p3: If there are no registers available for any
1844    // eightbyte of an argument, the whole argument is passed on the
1845    // stack. If registers have already been assigned for some
1846    // eightbytes of such an argument, the assignments get reverted.
1847    if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
1848      freeIntRegs -= neededInt;
1849      freeSSERegs -= neededSSE;
1850    } else {
1851      it->info = getIndirectResult(it->type);
1852    }
1853  }
1854}
1855
1856static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
1857                                        QualType Ty,
1858                                        CodeGenFunction &CGF) {
1859  llvm::Value *overflow_arg_area_p =
1860    CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
1861  llvm::Value *overflow_arg_area =
1862    CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
1863
1864  // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
1865  // byte boundary if alignment needed by type exceeds 8 byte boundary.
1866  uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
1867  if (Align > 8) {
1868    // Note that we follow the ABI & gcc here, even though the type
1869    // could in theory have an alignment greater than 16. This case
1870    // shouldn't ever matter in practice.
1871
1872    // overflow_arg_area = (overflow_arg_area + 15) & ~15;
1873    llvm::Value *Offset =
1874      llvm::ConstantInt::get(CGF.Int32Ty, 15);
1875    overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
1876    llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
1877                                                    CGF.Int64Ty);
1878    llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~15LL);
1879    overflow_arg_area =
1880      CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1881                                 overflow_arg_area->getType(),
1882                                 "overflow_arg_area.align");
1883  }
1884
1885  // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
1886  const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
1887  llvm::Value *Res =
1888    CGF.Builder.CreateBitCast(overflow_arg_area,
1889                              llvm::PointerType::getUnqual(LTy));
1890
1891  // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
1892  // l->overflow_arg_area + sizeof(type).
1893  // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
1894  // an 8 byte boundary.
1895
1896  uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
1897  llvm::Value *Offset =
1898      llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
1899  overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
1900                                            "overflow_arg_area.next");
1901  CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
1902
1903  // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
1904  return Res;
1905}
1906
1907llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1908                                      CodeGenFunction &CGF) const {
1909  llvm::LLVMContext &VMContext = CGF.getLLVMContext();
1910
1911  // Assume that va_list type is correct; should be pointer to LLVM type:
1912  // struct {
1913  //   i32 gp_offset;
1914  //   i32 fp_offset;
1915  //   i8* overflow_arg_area;
1916  //   i8* reg_save_area;
1917  // };
1918  unsigned neededInt, neededSSE;
1919
1920  Ty = CGF.getContext().getCanonicalType(Ty);
1921  ABIArgInfo AI = classifyArgumentType(Ty, neededInt, neededSSE);
1922
1923  // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
1924  // in the registers. If not go to step 7.
1925  if (!neededInt && !neededSSE)
1926    return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
1927
1928  // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
1929  // general purpose registers needed to pass type and num_fp to hold
1930  // the number of floating point registers needed.
1931
1932  // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
1933  // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
1934  // l->fp_offset > 304 - num_fp * 16 go to step 7.
1935  //
1936  // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
1937  // register save space).
1938
1939  llvm::Value *InRegs = 0;
1940  llvm::Value *gp_offset_p = 0, *gp_offset = 0;
1941  llvm::Value *fp_offset_p = 0, *fp_offset = 0;
1942  if (neededInt) {
1943    gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
1944    gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
1945    InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
1946    InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
1947  }
1948
1949  if (neededSSE) {
1950    fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
1951    fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
1952    llvm::Value *FitsInFP =
1953      llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
1954    FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
1955    InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
1956  }
1957
1958  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
1959  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
1960  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
1961  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
1962
1963  // Emit code to load the value if it was passed in registers.
1964
1965  CGF.EmitBlock(InRegBlock);
1966
1967  // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
1968  // an offset of l->gp_offset and/or l->fp_offset. This may require
1969  // copying to a temporary location in case the parameter is passed
1970  // in different register classes or requires an alignment greater
1971  // than 8 for general purpose registers and 16 for XMM registers.
1972  //
1973  // FIXME: This really results in shameful code when we end up needing to
1974  // collect arguments from different places; often what should result in a
1975  // simple assembling of a structure from scattered addresses has many more
1976  // loads than necessary. Can we clean this up?
1977  const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
1978  llvm::Value *RegAddr =
1979    CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
1980                           "reg_save_area");
1981  if (neededInt && neededSSE) {
1982    // FIXME: Cleanup.
1983    assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
1984    const llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
1985    llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
1986    assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
1987    const llvm::Type *TyLo = ST->getElementType(0);
1988    const llvm::Type *TyHi = ST->getElementType(1);
1989    assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
1990           "Unexpected ABI info for mixed regs");
1991    const llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
1992    const llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
1993    llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
1994    llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
1995    llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
1996    llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
1997    llvm::Value *V =
1998      CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
1999    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2000    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2001    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2002
2003    RegAddr = CGF.Builder.CreateBitCast(Tmp,
2004                                        llvm::PointerType::getUnqual(LTy));
2005  } else if (neededInt) {
2006    RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2007    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2008                                        llvm::PointerType::getUnqual(LTy));
2009  } else if (neededSSE == 1) {
2010    RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2011    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2012                                        llvm::PointerType::getUnqual(LTy));
2013  } else {
2014    assert(neededSSE == 2 && "Invalid number of needed registers!");
2015    // SSE registers are spaced 16 bytes apart in the register save
2016    // area, we need to collect the two eightbytes together.
2017    llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2018    llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2019    const llvm::Type *DoubleTy = llvm::Type::getDoubleTy(VMContext);
2020    const llvm::Type *DblPtrTy =
2021      llvm::PointerType::getUnqual(DoubleTy);
2022    const llvm::StructType *ST = llvm::StructType::get(VMContext, DoubleTy,
2023                                                       DoubleTy, NULL);
2024    llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
2025    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2026                                                         DblPtrTy));
2027    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2028    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2029                                                         DblPtrTy));
2030    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2031    RegAddr = CGF.Builder.CreateBitCast(Tmp,
2032                                        llvm::PointerType::getUnqual(LTy));
2033  }
2034
2035  // AMD64-ABI 3.5.7p5: Step 5. Set:
2036  // l->gp_offset = l->gp_offset + num_gp * 8
2037  // l->fp_offset = l->fp_offset + num_fp * 16.
2038  if (neededInt) {
2039    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2040    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2041                            gp_offset_p);
2042  }
2043  if (neededSSE) {
2044    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2045    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2046                            fp_offset_p);
2047  }
2048  CGF.EmitBranch(ContBlock);
2049
2050  // Emit code to load the value if it was passed in memory.
2051
2052  CGF.EmitBlock(InMemBlock);
2053  llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2054
2055  // Return the appropriate result.
2056
2057  CGF.EmitBlock(ContBlock);
2058  llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(),
2059                                                 "vaarg.addr");
2060  ResAddr->reserveOperandSpace(2);
2061  ResAddr->addIncoming(RegAddr, InRegBlock);
2062  ResAddr->addIncoming(MemAddr, InMemBlock);
2063  return ResAddr;
2064}
2065
2066llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2067                                      CodeGenFunction &CGF) const {
2068  const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
2069  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
2070
2071  CGBuilderTy &Builder = CGF.Builder;
2072  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2073                                                       "ap");
2074  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2075  llvm::Type *PTy =
2076    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2077  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2078
2079  uint64_t Offset =
2080    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
2081  llvm::Value *NextAddr =
2082    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2083                      "ap.next");
2084  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2085
2086  return AddrTyped;
2087}
2088
2089// PowerPC-32
2090
2091namespace {
2092class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2093public:
2094  PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2095
2096  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2097    // This is recovered from gcc output.
2098    return 1; // r1 is the dedicated stack pointer
2099  }
2100
2101  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2102                               llvm::Value *Address) const;
2103};
2104
2105}
2106
2107bool
2108PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2109                                                llvm::Value *Address) const {
2110  // This is calculated from the LLVM and GCC tables and verified
2111  // against gcc output.  AFAIK all ABIs use the same encoding.
2112
2113  CodeGen::CGBuilderTy &Builder = CGF.Builder;
2114  llvm::LLVMContext &Context = CGF.getLLVMContext();
2115
2116  const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
2117  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2118  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2119  llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2120
2121  // 0-31: r0-31, the 4-byte general-purpose registers
2122  AssignToArrayRange(Builder, Address, Four8, 0, 31);
2123
2124  // 32-63: fp0-31, the 8-byte floating-point registers
2125  AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2126
2127  // 64-76 are various 4-byte special-purpose registers:
2128  // 64: mq
2129  // 65: lr
2130  // 66: ctr
2131  // 67: ap
2132  // 68-75 cr0-7
2133  // 76: xer
2134  AssignToArrayRange(Builder, Address, Four8, 64, 76);
2135
2136  // 77-108: v0-31, the 16-byte vector registers
2137  AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2138
2139  // 109: vrsave
2140  // 110: vscr
2141  // 111: spe_acc
2142  // 112: spefscr
2143  // 113: sfp
2144  AssignToArrayRange(Builder, Address, Four8, 109, 113);
2145
2146  return false;
2147}
2148
2149
2150//===----------------------------------------------------------------------===//
2151// ARM ABI Implementation
2152//===----------------------------------------------------------------------===//
2153
2154namespace {
2155
2156class ARMABIInfo : public ABIInfo {
2157public:
2158  enum ABIKind {
2159    APCS = 0,
2160    AAPCS = 1,
2161    AAPCS_VFP
2162  };
2163
2164private:
2165  ABIKind Kind;
2166
2167public:
2168  ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {}
2169
2170private:
2171  ABIKind getABIKind() const { return Kind; }
2172
2173  ABIArgInfo classifyReturnType(QualType RetTy) const;
2174  ABIArgInfo classifyArgumentType(QualType RetTy) const;
2175
2176  virtual void computeInfo(CGFunctionInfo &FI) const;
2177
2178  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2179                                 CodeGenFunction &CGF) const;
2180};
2181
2182class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
2183public:
2184  ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
2185    :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
2186
2187  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2188    return 13;
2189  }
2190};
2191
2192}
2193
2194void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
2195  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2196  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2197       it != ie; ++it)
2198    it->info = classifyArgumentType(it->type);
2199
2200  const llvm::Triple &Triple(getContext().Target.getTriple());
2201  llvm::CallingConv::ID DefaultCC;
2202  if (Triple.getEnvironmentName() == "gnueabi" ||
2203      Triple.getEnvironmentName() == "eabi")
2204    DefaultCC = llvm::CallingConv::ARM_AAPCS;
2205  else
2206    DefaultCC = llvm::CallingConv::ARM_APCS;
2207
2208  switch (getABIKind()) {
2209  case APCS:
2210    if (DefaultCC != llvm::CallingConv::ARM_APCS)
2211      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
2212    break;
2213
2214  case AAPCS:
2215    if (DefaultCC != llvm::CallingConv::ARM_AAPCS)
2216      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
2217    break;
2218
2219  case AAPCS_VFP:
2220    FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
2221    break;
2222  }
2223}
2224
2225ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty) const {
2226  if (!isAggregateTypeForABI(Ty)) {
2227    // Treat an enum type as its underlying type.
2228    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2229      Ty = EnumTy->getDecl()->getIntegerType();
2230
2231    return (Ty->isPromotableIntegerType() ?
2232            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2233  }
2234
2235  // Ignore empty records.
2236  if (isEmptyRecord(getContext(), Ty, true))
2237    return ABIArgInfo::getIgnore();
2238
2239  // Structures with either a non-trivial destructor or a non-trivial
2240  // copy constructor are always indirect.
2241  if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
2242    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2243
2244  // Otherwise, pass by coercing to a structure of the appropriate size.
2245  //
2246  // FIXME: This is kind of nasty... but there isn't much choice because the ARM
2247  // backend doesn't support byval.
2248  // FIXME: This doesn't handle alignment > 64 bits.
2249  const llvm::Type* ElemTy;
2250  unsigned SizeRegs;
2251  if (getContext().getTypeAlign(Ty) > 32) {
2252    ElemTy = llvm::Type::getInt64Ty(getVMContext());
2253    SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
2254  } else {
2255    ElemTy = llvm::Type::getInt32Ty(getVMContext());
2256    SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
2257  }
2258  std::vector<const llvm::Type*> LLVMFields;
2259  LLVMFields.push_back(llvm::ArrayType::get(ElemTy, SizeRegs));
2260  const llvm::Type* STy = llvm::StructType::get(getVMContext(), LLVMFields,
2261                                                true);
2262  return ABIArgInfo::getDirect(STy);
2263}
2264
2265static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
2266                              llvm::LLVMContext &VMContext) {
2267  // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
2268  // is called integer-like if its size is less than or equal to one word, and
2269  // the offset of each of its addressable sub-fields is zero.
2270
2271  uint64_t Size = Context.getTypeSize(Ty);
2272
2273  // Check that the type fits in a word.
2274  if (Size > 32)
2275    return false;
2276
2277  // FIXME: Handle vector types!
2278  if (Ty->isVectorType())
2279    return false;
2280
2281  // Float types are never treated as "integer like".
2282  if (Ty->isRealFloatingType())
2283    return false;
2284
2285  // If this is a builtin or pointer type then it is ok.
2286  if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
2287    return true;
2288
2289  // Small complex integer types are "integer like".
2290  if (const ComplexType *CT = Ty->getAs<ComplexType>())
2291    return isIntegerLikeType(CT->getElementType(), Context, VMContext);
2292
2293  // Single element and zero sized arrays should be allowed, by the definition
2294  // above, but they are not.
2295
2296  // Otherwise, it must be a record type.
2297  const RecordType *RT = Ty->getAs<RecordType>();
2298  if (!RT) return false;
2299
2300  // Ignore records with flexible arrays.
2301  const RecordDecl *RD = RT->getDecl();
2302  if (RD->hasFlexibleArrayMember())
2303    return false;
2304
2305  // Check that all sub-fields are at offset 0, and are themselves "integer
2306  // like".
2307  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2308
2309  bool HadField = false;
2310  unsigned idx = 0;
2311  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2312       i != e; ++i, ++idx) {
2313    const FieldDecl *FD = *i;
2314
2315    // Bit-fields are not addressable, we only need to verify they are "integer
2316    // like". We still have to disallow a subsequent non-bitfield, for example:
2317    //   struct { int : 0; int x }
2318    // is non-integer like according to gcc.
2319    if (FD->isBitField()) {
2320      if (!RD->isUnion())
2321        HadField = true;
2322
2323      if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2324        return false;
2325
2326      continue;
2327    }
2328
2329    // Check if this field is at offset 0.
2330    if (Layout.getFieldOffset(idx) != 0)
2331      return false;
2332
2333    if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2334      return false;
2335
2336    // Only allow at most one field in a structure. This doesn't match the
2337    // wording above, but follows gcc in situations with a field following an
2338    // empty structure.
2339    if (!RD->isUnion()) {
2340      if (HadField)
2341        return false;
2342
2343      HadField = true;
2344    }
2345  }
2346
2347  return true;
2348}
2349
2350ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
2351  if (RetTy->isVoidType())
2352    return ABIArgInfo::getIgnore();
2353
2354  // Large vector types should be returned via memory.
2355  if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
2356    return ABIArgInfo::getIndirect(0);
2357
2358  if (!isAggregateTypeForABI(RetTy)) {
2359    // Treat an enum type as its underlying type.
2360    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2361      RetTy = EnumTy->getDecl()->getIntegerType();
2362
2363    return (RetTy->isPromotableIntegerType() ?
2364            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2365  }
2366
2367  // Structures with either a non-trivial destructor or a non-trivial
2368  // copy constructor are always indirect.
2369  if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
2370    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2371
2372  // Are we following APCS?
2373  if (getABIKind() == APCS) {
2374    if (isEmptyRecord(getContext(), RetTy, false))
2375      return ABIArgInfo::getIgnore();
2376
2377    // Complex types are all returned as packed integers.
2378    //
2379    // FIXME: Consider using 2 x vector types if the back end handles them
2380    // correctly.
2381    if (RetTy->isAnyComplexType())
2382      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2383                                              getContext().getTypeSize(RetTy)));
2384
2385    // Integer like structures are returned in r0.
2386    if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
2387      // Return in the smallest viable integer type.
2388      uint64_t Size = getContext().getTypeSize(RetTy);
2389      if (Size <= 8)
2390        return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2391      if (Size <= 16)
2392        return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2393      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2394    }
2395
2396    // Otherwise return in memory.
2397    return ABIArgInfo::getIndirect(0);
2398  }
2399
2400  // Otherwise this is an AAPCS variant.
2401
2402  if (isEmptyRecord(getContext(), RetTy, true))
2403    return ABIArgInfo::getIgnore();
2404
2405  // Aggregates <= 4 bytes are returned in r0; other aggregates
2406  // are returned indirectly.
2407  uint64_t Size = getContext().getTypeSize(RetTy);
2408  if (Size <= 32) {
2409    // Return in the smallest viable integer type.
2410    if (Size <= 8)
2411      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2412    if (Size <= 16)
2413      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2414    return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2415  }
2416
2417  return ABIArgInfo::getIndirect(0);
2418}
2419
2420llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2421                                   CodeGenFunction &CGF) const {
2422  // FIXME: Need to handle alignment
2423  const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
2424  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
2425
2426  CGBuilderTy &Builder = CGF.Builder;
2427  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2428                                                       "ap");
2429  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2430  llvm::Type *PTy =
2431    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2432  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2433
2434  uint64_t Offset =
2435    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
2436  llvm::Value *NextAddr =
2437    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2438                      "ap.next");
2439  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2440
2441  return AddrTyped;
2442}
2443
2444//===----------------------------------------------------------------------===//
2445// SystemZ ABI Implementation
2446//===----------------------------------------------------------------------===//
2447
2448namespace {
2449
2450class SystemZABIInfo : public ABIInfo {
2451public:
2452  SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
2453
2454  bool isPromotableIntegerType(QualType Ty) const;
2455
2456  ABIArgInfo classifyReturnType(QualType RetTy) const;
2457  ABIArgInfo classifyArgumentType(QualType RetTy) const;
2458
2459  virtual void computeInfo(CGFunctionInfo &FI) const {
2460    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2461    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2462         it != ie; ++it)
2463      it->info = classifyArgumentType(it->type);
2464  }
2465
2466  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2467                                 CodeGenFunction &CGF) const;
2468};
2469
2470class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
2471public:
2472  SystemZTargetCodeGenInfo(CodeGenTypes &CGT)
2473    : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {}
2474};
2475
2476}
2477
2478bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
2479  // SystemZ ABI requires all 8, 16 and 32 bit quantities to be extended.
2480  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2481    switch (BT->getKind()) {
2482    case BuiltinType::Bool:
2483    case BuiltinType::Char_S:
2484    case BuiltinType::Char_U:
2485    case BuiltinType::SChar:
2486    case BuiltinType::UChar:
2487    case BuiltinType::Short:
2488    case BuiltinType::UShort:
2489    case BuiltinType::Int:
2490    case BuiltinType::UInt:
2491      return true;
2492    default:
2493      return false;
2494    }
2495  return false;
2496}
2497
2498llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2499                                       CodeGenFunction &CGF) const {
2500  // FIXME: Implement
2501  return 0;
2502}
2503
2504
2505ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
2506  if (RetTy->isVoidType())
2507    return ABIArgInfo::getIgnore();
2508  if (isAggregateTypeForABI(RetTy))
2509    return ABIArgInfo::getIndirect(0);
2510
2511  return (isPromotableIntegerType(RetTy) ?
2512          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2513}
2514
2515ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
2516  if (isAggregateTypeForABI(Ty))
2517    return ABIArgInfo::getIndirect(0);
2518
2519  return (isPromotableIntegerType(Ty) ?
2520          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2521}
2522
2523//===----------------------------------------------------------------------===//
2524// MBlaze ABI Implementation
2525//===----------------------------------------------------------------------===//
2526
2527namespace {
2528
2529class MBlazeABIInfo : public ABIInfo {
2530public:
2531  MBlazeABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
2532
2533  bool isPromotableIntegerType(QualType Ty) const;
2534
2535  ABIArgInfo classifyReturnType(QualType RetTy) const;
2536  ABIArgInfo classifyArgumentType(QualType RetTy) const;
2537
2538  virtual void computeInfo(CGFunctionInfo &FI) const {
2539    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2540    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2541         it != ie; ++it)
2542      it->info = classifyArgumentType(it->type);
2543  }
2544
2545  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2546                                 CodeGenFunction &CGF) const;
2547};
2548
2549class MBlazeTargetCodeGenInfo : public TargetCodeGenInfo {
2550public:
2551  MBlazeTargetCodeGenInfo(CodeGenTypes &CGT)
2552    : TargetCodeGenInfo(new MBlazeABIInfo(CGT)) {}
2553  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2554                           CodeGen::CodeGenModule &M) const;
2555};
2556
2557}
2558
2559bool MBlazeABIInfo::isPromotableIntegerType(QualType Ty) const {
2560  // MBlaze ABI requires all 8 and 16 bit quantities to be extended.
2561  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2562    switch (BT->getKind()) {
2563    case BuiltinType::Bool:
2564    case BuiltinType::Char_S:
2565    case BuiltinType::Char_U:
2566    case BuiltinType::SChar:
2567    case BuiltinType::UChar:
2568    case BuiltinType::Short:
2569    case BuiltinType::UShort:
2570      return true;
2571    default:
2572      return false;
2573    }
2574  return false;
2575}
2576
2577llvm::Value *MBlazeABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2578                                      CodeGenFunction &CGF) const {
2579  // FIXME: Implement
2580  return 0;
2581}
2582
2583
2584ABIArgInfo MBlazeABIInfo::classifyReturnType(QualType RetTy) const {
2585  if (RetTy->isVoidType())
2586    return ABIArgInfo::getIgnore();
2587  if (isAggregateTypeForABI(RetTy))
2588    return ABIArgInfo::getIndirect(0);
2589
2590  return (isPromotableIntegerType(RetTy) ?
2591          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2592}
2593
2594ABIArgInfo MBlazeABIInfo::classifyArgumentType(QualType Ty) const {
2595  if (isAggregateTypeForABI(Ty))
2596    return ABIArgInfo::getIndirect(0);
2597
2598  return (isPromotableIntegerType(Ty) ?
2599          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2600}
2601
2602void MBlazeTargetCodeGenInfo::SetTargetAttributes(const Decl *D,
2603                                                  llvm::GlobalValue *GV,
2604                                                  CodeGen::CodeGenModule &M)
2605                                                  const {
2606  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
2607  if (!FD) return;
2608
2609  llvm::CallingConv::ID CC = llvm::CallingConv::C;
2610  if (FD->hasAttr<MBlazeInterruptHandlerAttr>())
2611    CC = llvm::CallingConv::MBLAZE_INTR;
2612  else if (FD->hasAttr<MBlazeSaveVolatilesAttr>())
2613    CC = llvm::CallingConv::MBLAZE_SVOL;
2614
2615  if (CC != llvm::CallingConv::C) {
2616      // Handle 'interrupt_handler' attribute:
2617      llvm::Function *F = cast<llvm::Function>(GV);
2618
2619      // Step 1: Set ISR calling convention.
2620      F->setCallingConv(CC);
2621
2622      // Step 2: Add attributes goodness.
2623      F->addFnAttr(llvm::Attribute::NoInline);
2624  }
2625
2626  // Step 3: Emit _interrupt_handler alias.
2627  if (CC == llvm::CallingConv::MBLAZE_INTR)
2628    new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
2629                          "_interrupt_handler", GV, &M.getModule());
2630}
2631
2632
2633//===----------------------------------------------------------------------===//
2634// MSP430 ABI Implementation
2635//===----------------------------------------------------------------------===//
2636
2637namespace {
2638
2639class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
2640public:
2641  MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
2642    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
2643  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2644                           CodeGen::CodeGenModule &M) const;
2645};
2646
2647}
2648
2649void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
2650                                                  llvm::GlobalValue *GV,
2651                                             CodeGen::CodeGenModule &M) const {
2652  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2653    if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
2654      // Handle 'interrupt' attribute:
2655      llvm::Function *F = cast<llvm::Function>(GV);
2656
2657      // Step 1: Set ISR calling convention.
2658      F->setCallingConv(llvm::CallingConv::MSP430_INTR);
2659
2660      // Step 2: Add attributes goodness.
2661      F->addFnAttr(llvm::Attribute::NoInline);
2662
2663      // Step 3: Emit ISR vector alias.
2664      unsigned Num = attr->getNumber() + 0xffe0;
2665      new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
2666                            "vector_" + llvm::Twine::utohexstr(Num),
2667                            GV, &M.getModule());
2668    }
2669  }
2670}
2671
2672//===----------------------------------------------------------------------===//
2673// MIPS ABI Implementation.  This works for both little-endian and
2674// big-endian variants.
2675//===----------------------------------------------------------------------===//
2676
2677namespace {
2678class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
2679public:
2680  MIPSTargetCodeGenInfo(CodeGenTypes &CGT)
2681    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
2682
2683  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
2684    return 29;
2685  }
2686
2687  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2688                               llvm::Value *Address) const;
2689};
2690}
2691
2692bool
2693MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2694                                               llvm::Value *Address) const {
2695  // This information comes from gcc's implementation, which seems to
2696  // as canonical as it gets.
2697
2698  CodeGen::CGBuilderTy &Builder = CGF.Builder;
2699  llvm::LLVMContext &Context = CGF.getLLVMContext();
2700
2701  // Everything on MIPS is 4 bytes.  Double-precision FP registers
2702  // are aliased to pairs of single-precision FP registers.
2703  const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
2704  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2705
2706  // 0-31 are the general purpose registers, $0 - $31.
2707  // 32-63 are the floating-point registers, $f0 - $f31.
2708  // 64 and 65 are the multiply/divide registers, $hi and $lo.
2709  // 66 is the (notional, I think) register for signal-handler return.
2710  AssignToArrayRange(Builder, Address, Four8, 0, 65);
2711
2712  // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
2713  // They are one bit wide and ignored here.
2714
2715  // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
2716  // (coprocessor 1 is the FP unit)
2717  // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
2718  // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
2719  // 176-181 are the DSP accumulator registers.
2720  AssignToArrayRange(Builder, Address, Four8, 80, 181);
2721
2722  return false;
2723}
2724
2725
2726const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
2727  if (TheTargetCodeGenInfo)
2728    return *TheTargetCodeGenInfo;
2729
2730  // For now we just cache the TargetCodeGenInfo in CodeGenModule and don't
2731  // free it.
2732
2733  const llvm::Triple &Triple = getContext().Target.getTriple();
2734  switch (Triple.getArch()) {
2735  default:
2736    return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
2737
2738  case llvm::Triple::mips:
2739  case llvm::Triple::mipsel:
2740    return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types));
2741
2742  case llvm::Triple::arm:
2743  case llvm::Triple::thumb:
2744    // FIXME: We want to know the float calling convention as well.
2745    if (strcmp(getContext().Target.getABI(), "apcs-gnu") == 0)
2746      return *(TheTargetCodeGenInfo =
2747               new ARMTargetCodeGenInfo(Types, ARMABIInfo::APCS));
2748
2749    return *(TheTargetCodeGenInfo =
2750             new ARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS));
2751
2752  case llvm::Triple::ppc:
2753    return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
2754
2755  case llvm::Triple::systemz:
2756    return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types));
2757
2758  case llvm::Triple::mblaze:
2759    return *(TheTargetCodeGenInfo = new MBlazeTargetCodeGenInfo(Types));
2760
2761  case llvm::Triple::msp430:
2762    return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
2763
2764  case llvm::Triple::x86:
2765    switch (Triple.getOS()) {
2766    case llvm::Triple::Darwin:
2767      return *(TheTargetCodeGenInfo =
2768               new X86_32TargetCodeGenInfo(Types, true, true));
2769    case llvm::Triple::Cygwin:
2770    case llvm::Triple::MinGW32:
2771    case llvm::Triple::AuroraUX:
2772    case llvm::Triple::DragonFly:
2773    case llvm::Triple::FreeBSD:
2774    case llvm::Triple::OpenBSD:
2775      return *(TheTargetCodeGenInfo =
2776               new X86_32TargetCodeGenInfo(Types, false, true));
2777
2778    default:
2779      return *(TheTargetCodeGenInfo =
2780               new X86_32TargetCodeGenInfo(Types, false, false));
2781    }
2782
2783  case llvm::Triple::x86_64:
2784    switch (Triple.getOS()) {
2785    case llvm::Triple::Win32:
2786    case llvm::Triple::MinGW64:
2787    case llvm::Triple::Cygwin:
2788      return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
2789    default:
2790      return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types));
2791    }
2792  }
2793}
2794