TargetInfo.cpp revision 5f14fcbd45870585a136ae735d29d0e085c0d7f8
1//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// These classes wrap the information about a call or function
11// definition used to handle ABI compliancy.
12//
13//===----------------------------------------------------------------------===//
14
15#include "TargetInfo.h"
16#include "ABIInfo.h"
17#include "CodeGenFunction.h"
18#include "clang/AST/RecordLayout.h"
19#include "clang/Frontend/CodeGenOptions.h"
20#include "llvm/Type.h"
21#include "llvm/DataLayout.h"
22#include "llvm/ADT/Triple.h"
23#include "llvm/Support/raw_ostream.h"
24using namespace clang;
25using namespace CodeGen;
26
27static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
28                               llvm::Value *Array,
29                               llvm::Value *Value,
30                               unsigned FirstIndex,
31                               unsigned LastIndex) {
32  // Alternatively, we could emit this as a loop in the source.
33  for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
34    llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
35    Builder.CreateStore(Value, Cell);
36  }
37}
38
39static bool isAggregateTypeForABI(QualType T) {
40  return CodeGenFunction::hasAggregateLLVMType(T) ||
41         T->isMemberFunctionPointerType();
42}
43
44ABIInfo::~ABIInfo() {}
45
46ASTContext &ABIInfo::getContext() const {
47  return CGT.getContext();
48}
49
50llvm::LLVMContext &ABIInfo::getVMContext() const {
51  return CGT.getLLVMContext();
52}
53
54const llvm::DataLayout &ABIInfo::getDataLayout() const {
55  return CGT.getDataLayout();
56}
57
58
59void ABIArgInfo::dump() const {
60  raw_ostream &OS = llvm::errs();
61  OS << "(ABIArgInfo Kind=";
62  switch (TheKind) {
63  case Direct:
64    OS << "Direct Type=";
65    if (llvm::Type *Ty = getCoerceToType())
66      Ty->print(OS);
67    else
68      OS << "null";
69    break;
70  case Extend:
71    OS << "Extend";
72    break;
73  case Ignore:
74    OS << "Ignore";
75    break;
76  case Indirect:
77    OS << "Indirect Align=" << getIndirectAlign()
78       << " ByVal=" << getIndirectByVal()
79       << " Realign=" << getIndirectRealign();
80    break;
81  case Expand:
82    OS << "Expand";
83    break;
84  }
85  OS << ")\n";
86}
87
88TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
89
90// If someone can figure out a general rule for this, that would be great.
91// It's probably just doomed to be platform-dependent, though.
92unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
93  // Verified for:
94  //   x86-64     FreeBSD, Linux, Darwin
95  //   x86-32     FreeBSD, Linux, Darwin
96  //   PowerPC    Linux, Darwin
97  //   ARM        Darwin (*not* EABI)
98  return 32;
99}
100
101bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
102                                     const FunctionNoProtoType *fnType) const {
103  // The following conventions are known to require this to be false:
104  //   x86_stdcall
105  //   MIPS
106  // For everything else, we just prefer false unless we opt out.
107  return false;
108}
109
110static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
111
112/// isEmptyField - Return true iff a the field is "empty", that is it
113/// is an unnamed bit-field or an (array of) empty record(s).
114static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
115                         bool AllowArrays) {
116  if (FD->isUnnamedBitfield())
117    return true;
118
119  QualType FT = FD->getType();
120
121  // Constant arrays of empty records count as empty, strip them off.
122  // Constant arrays of zero length always count as empty.
123  if (AllowArrays)
124    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
125      if (AT->getSize() == 0)
126        return true;
127      FT = AT->getElementType();
128    }
129
130  const RecordType *RT = FT->getAs<RecordType>();
131  if (!RT)
132    return false;
133
134  // C++ record fields are never empty, at least in the Itanium ABI.
135  //
136  // FIXME: We should use a predicate for whether this behavior is true in the
137  // current ABI.
138  if (isa<CXXRecordDecl>(RT->getDecl()))
139    return false;
140
141  return isEmptyRecord(Context, FT, AllowArrays);
142}
143
144/// isEmptyRecord - Return true iff a structure contains only empty
145/// fields. Note that a structure with a flexible array member is not
146/// considered empty.
147static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
148  const RecordType *RT = T->getAs<RecordType>();
149  if (!RT)
150    return 0;
151  const RecordDecl *RD = RT->getDecl();
152  if (RD->hasFlexibleArrayMember())
153    return false;
154
155  // If this is a C++ record, check the bases first.
156  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
157    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
158           e = CXXRD->bases_end(); i != e; ++i)
159      if (!isEmptyRecord(Context, i->getType(), true))
160        return false;
161
162  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
163         i != e; ++i)
164    if (!isEmptyField(Context, *i, AllowArrays))
165      return false;
166  return true;
167}
168
169/// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
170/// a non-trivial destructor or a non-trivial copy constructor.
171static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
172  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
173  if (!RD)
174    return false;
175
176  return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
177}
178
179/// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
180/// a record type with either a non-trivial destructor or a non-trivial copy
181/// constructor.
182static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
183  const RecordType *RT = T->getAs<RecordType>();
184  if (!RT)
185    return false;
186
187  return hasNonTrivialDestructorOrCopyConstructor(RT);
188}
189
190/// isSingleElementStruct - Determine if a structure is a "single
191/// element struct", i.e. it has exactly one non-empty field or
192/// exactly one field which is itself a single element
193/// struct. Structures with flexible array members are never
194/// considered single element structs.
195///
196/// \return The field declaration for the single non-empty field, if
197/// it exists.
198static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
199  const RecordType *RT = T->getAsStructureType();
200  if (!RT)
201    return 0;
202
203  const RecordDecl *RD = RT->getDecl();
204  if (RD->hasFlexibleArrayMember())
205    return 0;
206
207  const Type *Found = 0;
208
209  // If this is a C++ record, check the bases first.
210  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
211    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
212           e = CXXRD->bases_end(); i != e; ++i) {
213      // Ignore empty records.
214      if (isEmptyRecord(Context, i->getType(), true))
215        continue;
216
217      // If we already found an element then this isn't a single-element struct.
218      if (Found)
219        return 0;
220
221      // If this is non-empty and not a single element struct, the composite
222      // cannot be a single element struct.
223      Found = isSingleElementStruct(i->getType(), Context);
224      if (!Found)
225        return 0;
226    }
227  }
228
229  // Check for single element.
230  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
231         i != e; ++i) {
232    const FieldDecl *FD = *i;
233    QualType FT = FD->getType();
234
235    // Ignore empty fields.
236    if (isEmptyField(Context, FD, true))
237      continue;
238
239    // If we already found an element then this isn't a single-element
240    // struct.
241    if (Found)
242      return 0;
243
244    // Treat single element arrays as the element.
245    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
246      if (AT->getSize().getZExtValue() != 1)
247        break;
248      FT = AT->getElementType();
249    }
250
251    if (!isAggregateTypeForABI(FT)) {
252      Found = FT.getTypePtr();
253    } else {
254      Found = isSingleElementStruct(FT, Context);
255      if (!Found)
256        return 0;
257    }
258  }
259
260  // We don't consider a struct a single-element struct if it has
261  // padding beyond the element type.
262  if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
263    return 0;
264
265  return Found;
266}
267
268static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
269  if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
270      !Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
271      !Ty->isBlockPointerType())
272    return false;
273
274  uint64_t Size = Context.getTypeSize(Ty);
275  return Size == 32 || Size == 64;
276}
277
278/// canExpandIndirectArgument - Test whether an argument type which is to be
279/// passed indirectly (on the stack) would have the equivalent layout if it was
280/// expanded into separate arguments. If so, we prefer to do the latter to avoid
281/// inhibiting optimizations.
282///
283// FIXME: This predicate is missing many cases, currently it just follows
284// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
285// should probably make this smarter, or better yet make the LLVM backend
286// capable of handling it.
287static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
288  // We can only expand structure types.
289  const RecordType *RT = Ty->getAs<RecordType>();
290  if (!RT)
291    return false;
292
293  // We can only expand (C) structures.
294  //
295  // FIXME: This needs to be generalized to handle classes as well.
296  const RecordDecl *RD = RT->getDecl();
297  if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
298    return false;
299
300  uint64_t Size = 0;
301
302  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
303         i != e; ++i) {
304    const FieldDecl *FD = *i;
305
306    if (!is32Or64BitBasicType(FD->getType(), Context))
307      return false;
308
309    // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
310    // how to expand them yet, and the predicate for telling if a bitfield still
311    // counts as "basic" is more complicated than what we were doing previously.
312    if (FD->isBitField())
313      return false;
314
315    Size += Context.getTypeSize(FD->getType());
316  }
317
318  // Make sure there are not any holes in the struct.
319  if (Size != Context.getTypeSize(Ty))
320    return false;
321
322  return true;
323}
324
325namespace {
326/// DefaultABIInfo - The default implementation for ABI specific
327/// details. This implementation provides information which results in
328/// self-consistent and sensible LLVM IR generation, but does not
329/// conform to any particular ABI.
330class DefaultABIInfo : public ABIInfo {
331public:
332  DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
333
334  ABIArgInfo classifyReturnType(QualType RetTy) const;
335  ABIArgInfo classifyArgumentType(QualType RetTy) const;
336
337  virtual void computeInfo(CGFunctionInfo &FI) const {
338    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
339    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
340         it != ie; ++it)
341      it->info = classifyArgumentType(it->type);
342  }
343
344  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
345                                 CodeGenFunction &CGF) const;
346};
347
348class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
349public:
350  DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
351    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
352};
353
354llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
355                                       CodeGenFunction &CGF) const {
356  return 0;
357}
358
359ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
360  if (isAggregateTypeForABI(Ty)) {
361    // Records with non trivial destructors/constructors should not be passed
362    // by value.
363    if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
364      return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
365
366    return ABIArgInfo::getIndirect(0);
367  }
368
369  // Treat an enum type as its underlying type.
370  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
371    Ty = EnumTy->getDecl()->getIntegerType();
372
373  return (Ty->isPromotableIntegerType() ?
374          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
375}
376
377ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
378  if (RetTy->isVoidType())
379    return ABIArgInfo::getIgnore();
380
381  if (isAggregateTypeForABI(RetTy))
382    return ABIArgInfo::getIndirect(0);
383
384  // Treat an enum type as its underlying type.
385  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
386    RetTy = EnumTy->getDecl()->getIntegerType();
387
388  return (RetTy->isPromotableIntegerType() ?
389          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
390}
391
392//===----------------------------------------------------------------------===//
393// le32/PNaCl bitcode ABI Implementation
394//===----------------------------------------------------------------------===//
395
396class PNaClABIInfo : public ABIInfo {
397 public:
398  PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
399
400  ABIArgInfo classifyReturnType(QualType RetTy) const;
401  ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &FreeRegs) const;
402
403  virtual void computeInfo(CGFunctionInfo &FI) const;
404  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
405                                 CodeGenFunction &CGF) const;
406};
407
408class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
409 public:
410  PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
411    : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
412};
413
414void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
415    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
416
417    unsigned FreeRegs = FI.getHasRegParm() ? FI.getRegParm() : 0;
418
419    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
420         it != ie; ++it)
421      it->info = classifyArgumentType(it->type, FreeRegs);
422  }
423
424llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
425                                       CodeGenFunction &CGF) const {
426  return 0;
427}
428
429ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty,
430                                              unsigned &FreeRegs) const {
431  if (isAggregateTypeForABI(Ty)) {
432    // Records with non trivial destructors/constructors should not be passed
433    // by value.
434    FreeRegs = 0;
435    if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
436      return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
437
438    return ABIArgInfo::getIndirect(0);
439  }
440
441  // Treat an enum type as its underlying type.
442  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
443    Ty = EnumTy->getDecl()->getIntegerType();
444
445  ABIArgInfo BaseInfo = (Ty->isPromotableIntegerType() ?
446          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
447
448  // Regparm regs hold 32 bits.
449  unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
450  if (SizeInRegs == 0) return BaseInfo;
451  if (SizeInRegs > FreeRegs) {
452    FreeRegs = 0;
453    return BaseInfo;
454  }
455  FreeRegs -= SizeInRegs;
456  return BaseInfo.isDirect() ?
457      ABIArgInfo::getDirectInReg(BaseInfo.getCoerceToType()) :
458      ABIArgInfo::getExtendInReg(BaseInfo.getCoerceToType());
459}
460
461ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
462  if (RetTy->isVoidType())
463    return ABIArgInfo::getIgnore();
464
465  if (isAggregateTypeForABI(RetTy))
466    return ABIArgInfo::getIndirect(0);
467
468  // Treat an enum type as its underlying type.
469  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
470    RetTy = EnumTy->getDecl()->getIntegerType();
471
472  return (RetTy->isPromotableIntegerType() ?
473          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
474}
475
476/// UseX86_MMXType - Return true if this is an MMX type that should use the
477/// special x86_mmx type.
478bool UseX86_MMXType(llvm::Type *IRType) {
479  // If the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>, use the
480  // special x86_mmx type.
481  return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
482    cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
483    IRType->getScalarSizeInBits() != 64;
484}
485
486static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
487                                          StringRef Constraint,
488                                          llvm::Type* Ty) {
489  if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy())
490    return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
491  return Ty;
492}
493
494//===----------------------------------------------------------------------===//
495// X86-32 ABI Implementation
496//===----------------------------------------------------------------------===//
497
498/// X86_32ABIInfo - The X86-32 ABI information.
499class X86_32ABIInfo : public ABIInfo {
500  enum Class {
501    Integer,
502    Float
503  };
504
505  static const unsigned MinABIStackAlignInBytes = 4;
506
507  bool IsDarwinVectorABI;
508  bool IsSmallStructInRegABI;
509  bool IsMMXDisabled;
510  bool IsWin32FloatStructABI;
511  unsigned DefaultNumRegisterParameters;
512
513  static bool isRegisterSize(unsigned Size) {
514    return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
515  }
516
517  static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context,
518                                          unsigned callingConvention);
519
520  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
521  /// such that the argument will be passed in memory.
522  ABIArgInfo getIndirectResult(QualType Ty, bool ByVal,
523                               unsigned &FreeRegs) const;
524
525  /// \brief Return the alignment to use for the given type on the stack.
526  unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
527
528  Class classify(QualType Ty) const;
529  ABIArgInfo classifyReturnType(QualType RetTy,
530                                unsigned callingConvention) const;
531  ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &FreeRegs) const;
532  bool shouldUseInReg(QualType Ty, unsigned &FreeRegs) const;
533
534public:
535
536  virtual void computeInfo(CGFunctionInfo &FI) const;
537  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
538                                 CodeGenFunction &CGF) const;
539
540  X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool m, bool w,
541                unsigned r)
542    : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
543      IsMMXDisabled(m), IsWin32FloatStructABI(w),
544      DefaultNumRegisterParameters(r) {}
545};
546
547class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
548public:
549  X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
550      bool d, bool p, bool m, bool w, unsigned r)
551    :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, m, w, r)) {}
552
553  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
554                           CodeGen::CodeGenModule &CGM) const;
555
556  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
557    // Darwin uses different dwarf register numbers for EH.
558    if (CGM.isTargetDarwin()) return 5;
559
560    return 4;
561  }
562
563  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
564                               llvm::Value *Address) const;
565
566  llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
567                                  StringRef Constraint,
568                                  llvm::Type* Ty) const {
569    return X86AdjustInlineAsmType(CGF, Constraint, Ty);
570  }
571
572};
573
574}
575
576/// shouldReturnTypeInRegister - Determine if the given type should be
577/// passed in a register (for the Darwin ABI).
578bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
579                                               ASTContext &Context,
580                                               unsigned callingConvention) {
581  uint64_t Size = Context.getTypeSize(Ty);
582
583  // Type must be register sized.
584  if (!isRegisterSize(Size))
585    return false;
586
587  if (Ty->isVectorType()) {
588    // 64- and 128- bit vectors inside structures are not returned in
589    // registers.
590    if (Size == 64 || Size == 128)
591      return false;
592
593    return true;
594  }
595
596  // If this is a builtin, pointer, enum, complex type, member pointer, or
597  // member function pointer it is ok.
598  if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
599      Ty->isAnyComplexType() || Ty->isEnumeralType() ||
600      Ty->isBlockPointerType() || Ty->isMemberPointerType())
601    return true;
602
603  // Arrays are treated like records.
604  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
605    return shouldReturnTypeInRegister(AT->getElementType(), Context,
606                                      callingConvention);
607
608  // Otherwise, it must be a record type.
609  const RecordType *RT = Ty->getAs<RecordType>();
610  if (!RT) return false;
611
612  // FIXME: Traverse bases here too.
613
614  // For thiscall conventions, structures will never be returned in
615  // a register.  This is for compatibility with the MSVC ABI
616  if (callingConvention == llvm::CallingConv::X86_ThisCall &&
617      RT->isStructureType()) {
618    return false;
619  }
620
621  // Structure types are passed in register if all fields would be
622  // passed in a register.
623  for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
624         e = RT->getDecl()->field_end(); i != e; ++i) {
625    const FieldDecl *FD = *i;
626
627    // Empty fields are ignored.
628    if (isEmptyField(Context, FD, true))
629      continue;
630
631    // Check fields recursively.
632    if (!shouldReturnTypeInRegister(FD->getType(), Context,
633                                    callingConvention))
634      return false;
635  }
636  return true;
637}
638
639ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
640                                            unsigned callingConvention) const {
641  if (RetTy->isVoidType())
642    return ABIArgInfo::getIgnore();
643
644  if (const VectorType *VT = RetTy->getAs<VectorType>()) {
645    // On Darwin, some vectors are returned in registers.
646    if (IsDarwinVectorABI) {
647      uint64_t Size = getContext().getTypeSize(RetTy);
648
649      // 128-bit vectors are a special case; they are returned in
650      // registers and we need to make sure to pick a type the LLVM
651      // backend will like.
652      if (Size == 128)
653        return ABIArgInfo::getDirect(llvm::VectorType::get(
654                  llvm::Type::getInt64Ty(getVMContext()), 2));
655
656      // Always return in register if it fits in a general purpose
657      // register, or if it is 64 bits and has a single element.
658      if ((Size == 8 || Size == 16 || Size == 32) ||
659          (Size == 64 && VT->getNumElements() == 1))
660        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
661                                                            Size));
662
663      return ABIArgInfo::getIndirect(0);
664    }
665
666    return ABIArgInfo::getDirect();
667  }
668
669  if (isAggregateTypeForABI(RetTy)) {
670    if (const RecordType *RT = RetTy->getAs<RecordType>()) {
671      // Structures with either a non-trivial destructor or a non-trivial
672      // copy constructor are always indirect.
673      if (hasNonTrivialDestructorOrCopyConstructor(RT))
674        return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
675
676      // Structures with flexible arrays are always indirect.
677      if (RT->getDecl()->hasFlexibleArrayMember())
678        return ABIArgInfo::getIndirect(0);
679    }
680
681    // If specified, structs and unions are always indirect.
682    if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
683      return ABIArgInfo::getIndirect(0);
684
685    // Small structures which are register sized are generally returned
686    // in a register.
687    if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext(),
688                                                  callingConvention)) {
689      uint64_t Size = getContext().getTypeSize(RetTy);
690
691      // As a special-case, if the struct is a "single-element" struct, and
692      // the field is of type "float" or "double", return it in a
693      // floating-point register. (MSVC does not apply this special case.)
694      // We apply a similar transformation for pointer types to improve the
695      // quality of the generated IR.
696      if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
697        if ((!IsWin32FloatStructABI && SeltTy->isRealFloatingType())
698            || SeltTy->hasPointerRepresentation())
699          return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
700
701      // FIXME: We should be able to narrow this integer in cases with dead
702      // padding.
703      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
704    }
705
706    return ABIArgInfo::getIndirect(0);
707  }
708
709  // Treat an enum type as its underlying type.
710  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
711    RetTy = EnumTy->getDecl()->getIntegerType();
712
713  return (RetTy->isPromotableIntegerType() ?
714          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
715}
716
717static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
718  return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
719}
720
721static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
722  const RecordType *RT = Ty->getAs<RecordType>();
723  if (!RT)
724    return 0;
725  const RecordDecl *RD = RT->getDecl();
726
727  // If this is a C++ record, check the bases first.
728  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
729    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
730           e = CXXRD->bases_end(); i != e; ++i)
731      if (!isRecordWithSSEVectorType(Context, i->getType()))
732        return false;
733
734  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
735       i != e; ++i) {
736    QualType FT = i->getType();
737
738    if (isSSEVectorType(Context, FT))
739      return true;
740
741    if (isRecordWithSSEVectorType(Context, FT))
742      return true;
743  }
744
745  return false;
746}
747
748unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
749                                                 unsigned Align) const {
750  // Otherwise, if the alignment is less than or equal to the minimum ABI
751  // alignment, just use the default; the backend will handle this.
752  if (Align <= MinABIStackAlignInBytes)
753    return 0; // Use default alignment.
754
755  // On non-Darwin, the stack type alignment is always 4.
756  if (!IsDarwinVectorABI) {
757    // Set explicit alignment, since we may need to realign the top.
758    return MinABIStackAlignInBytes;
759  }
760
761  // Otherwise, if the type contains an SSE vector type, the alignment is 16.
762  if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
763                      isRecordWithSSEVectorType(getContext(), Ty)))
764    return 16;
765
766  return MinABIStackAlignInBytes;
767}
768
769ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
770                                            unsigned &FreeRegs) const {
771  if (!ByVal) {
772    if (FreeRegs) {
773      --FreeRegs; // Non byval indirects just use one pointer.
774      return ABIArgInfo::getIndirectInReg(0, false);
775    }
776    return ABIArgInfo::getIndirect(0, false);
777  }
778
779  // Compute the byval alignment.
780  unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
781  unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
782  if (StackAlign == 0)
783    return ABIArgInfo::getIndirect(4);
784
785  // If the stack alignment is less than the type alignment, realign the
786  // argument.
787  if (StackAlign < TypeAlign)
788    return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true,
789                                   /*Realign=*/true);
790
791  return ABIArgInfo::getIndirect(StackAlign);
792}
793
794X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
795  const Type *T = isSingleElementStruct(Ty, getContext());
796  if (!T)
797    T = Ty.getTypePtr();
798
799  if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
800    BuiltinType::Kind K = BT->getKind();
801    if (K == BuiltinType::Float || K == BuiltinType::Double)
802      return Float;
803  }
804  return Integer;
805}
806
807bool X86_32ABIInfo::shouldUseInReg(QualType Ty, unsigned &FreeRegs) const {
808  Class C = classify(Ty);
809  if (C == Float)
810    return false;
811
812  unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
813
814  if (SizeInRegs == 0)
815    return false;
816
817  if (SizeInRegs > FreeRegs) {
818    FreeRegs = 0;
819    return false;
820  }
821
822  FreeRegs -= SizeInRegs;
823  return true;
824}
825
826ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
827                                               unsigned &FreeRegs) const {
828  // FIXME: Set alignment on indirect arguments.
829  if (isAggregateTypeForABI(Ty)) {
830    // Structures with flexible arrays are always indirect.
831    if (const RecordType *RT = Ty->getAs<RecordType>()) {
832      // Structures with either a non-trivial destructor or a non-trivial
833      // copy constructor are always indirect.
834      if (hasNonTrivialDestructorOrCopyConstructor(RT))
835        return getIndirectResult(Ty, false, FreeRegs);
836
837      if (RT->getDecl()->hasFlexibleArrayMember())
838        return getIndirectResult(Ty, true, FreeRegs);
839    }
840
841    // Ignore empty structs/unions.
842    if (isEmptyRecord(getContext(), Ty, true))
843      return ABIArgInfo::getIgnore();
844
845    if (shouldUseInReg(Ty, FreeRegs)) {
846      unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
847      llvm::LLVMContext &LLVMContext = getVMContext();
848      llvm::Type *Int32 = llvm::Type::getInt32Ty(LLVMContext);
849      SmallVector<llvm::Type*, 3> Elements;
850      for (unsigned I = 0; I < SizeInRegs; ++I)
851        Elements.push_back(Int32);
852      llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
853      return ABIArgInfo::getDirectInReg(Result);
854    }
855
856    // Expand small (<= 128-bit) record types when we know that the stack layout
857    // of those arguments will match the struct. This is important because the
858    // LLVM backend isn't smart enough to remove byval, which inhibits many
859    // optimizations.
860    if (getContext().getTypeSize(Ty) <= 4*32 &&
861        canExpandIndirectArgument(Ty, getContext()))
862      return ABIArgInfo::getExpand();
863
864    return getIndirectResult(Ty, true, FreeRegs);
865  }
866
867  if (const VectorType *VT = Ty->getAs<VectorType>()) {
868    // On Darwin, some vectors are passed in memory, we handle this by passing
869    // it as an i8/i16/i32/i64.
870    if (IsDarwinVectorABI) {
871      uint64_t Size = getContext().getTypeSize(Ty);
872      if ((Size == 8 || Size == 16 || Size == 32) ||
873          (Size == 64 && VT->getNumElements() == 1))
874        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
875                                                            Size));
876    }
877
878    llvm::Type *IRType = CGT.ConvertType(Ty);
879    if (UseX86_MMXType(IRType)) {
880      if (IsMMXDisabled)
881        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
882                                                            64));
883      ABIArgInfo AAI = ABIArgInfo::getDirect(IRType);
884      AAI.setCoerceToType(llvm::Type::getX86_MMXTy(getVMContext()));
885      return AAI;
886    }
887
888    return ABIArgInfo::getDirect();
889  }
890
891
892  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
893    Ty = EnumTy->getDecl()->getIntegerType();
894
895  bool InReg = shouldUseInReg(Ty, FreeRegs);
896
897  if (Ty->isPromotableIntegerType()) {
898    if (InReg)
899      return ABIArgInfo::getExtendInReg();
900    return ABIArgInfo::getExtend();
901  }
902  if (InReg)
903    return ABIArgInfo::getDirectInReg();
904  return ABIArgInfo::getDirect();
905}
906
907void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
908  FI.getReturnInfo() = classifyReturnType(FI.getReturnType(),
909                                          FI.getCallingConvention());
910
911  unsigned FreeRegs = FI.getHasRegParm() ? FI.getRegParm() :
912    DefaultNumRegisterParameters;
913
914  // If the return value is indirect, then the hidden argument is consuming one
915  // integer register.
916  if (FI.getReturnInfo().isIndirect() && FreeRegs) {
917    --FreeRegs;
918    ABIArgInfo &Old = FI.getReturnInfo();
919    Old = ABIArgInfo::getIndirectInReg(Old.getIndirectAlign(),
920                                       Old.getIndirectByVal(),
921                                       Old.getIndirectRealign());
922  }
923
924  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
925       it != ie; ++it)
926    it->info = classifyArgumentType(it->type, FreeRegs);
927}
928
929llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
930                                      CodeGenFunction &CGF) const {
931  llvm::Type *BPP = CGF.Int8PtrPtrTy;
932
933  CGBuilderTy &Builder = CGF.Builder;
934  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
935                                                       "ap");
936  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
937
938  // Compute if the address needs to be aligned
939  unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
940  Align = getTypeStackAlignInBytes(Ty, Align);
941  Align = std::max(Align, 4U);
942  if (Align > 4) {
943    // addr = (addr + align - 1) & -align;
944    llvm::Value *Offset =
945      llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
946    Addr = CGF.Builder.CreateGEP(Addr, Offset);
947    llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
948                                                    CGF.Int32Ty);
949    llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
950    Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
951                                      Addr->getType(),
952                                      "ap.cur.aligned");
953  }
954
955  llvm::Type *PTy =
956    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
957  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
958
959  uint64_t Offset =
960    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
961  llvm::Value *NextAddr =
962    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
963                      "ap.next");
964  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
965
966  return AddrTyped;
967}
968
969void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
970                                                  llvm::GlobalValue *GV,
971                                            CodeGen::CodeGenModule &CGM) const {
972  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
973    if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
974      // Get the LLVM function.
975      llvm::Function *Fn = cast<llvm::Function>(GV);
976
977      // Now add the 'alignstack' attribute with a value of 16.
978      llvm::AttrBuilder B;
979      B.addStackAlignmentAttr(16);
980      Fn->addAttribute(llvm::AttrListPtr::FunctionIndex,
981                       llvm::Attributes::get(CGM.getLLVMContext(), B));
982    }
983  }
984}
985
986bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
987                                               CodeGen::CodeGenFunction &CGF,
988                                               llvm::Value *Address) const {
989  CodeGen::CGBuilderTy &Builder = CGF.Builder;
990
991  llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
992
993  // 0-7 are the eight integer registers;  the order is different
994  //   on Darwin (for EH), but the range is the same.
995  // 8 is %eip.
996  AssignToArrayRange(Builder, Address, Four8, 0, 8);
997
998  if (CGF.CGM.isTargetDarwin()) {
999    // 12-16 are st(0..4).  Not sure why we stop at 4.
1000    // These have size 16, which is sizeof(long double) on
1001    // platforms with 8-byte alignment for that type.
1002    llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1003    AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1004
1005  } else {
1006    // 9 is %eflags, which doesn't get a size on Darwin for some
1007    // reason.
1008    Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
1009
1010    // 11-16 are st(0..5).  Not sure why we stop at 5.
1011    // These have size 12, which is sizeof(long double) on
1012    // platforms with 4-byte alignment for that type.
1013    llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1014    AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1015  }
1016
1017  return false;
1018}
1019
1020//===----------------------------------------------------------------------===//
1021// X86-64 ABI Implementation
1022//===----------------------------------------------------------------------===//
1023
1024
1025namespace {
1026/// X86_64ABIInfo - The X86_64 ABI information.
1027class X86_64ABIInfo : public ABIInfo {
1028  enum Class {
1029    Integer = 0,
1030    SSE,
1031    SSEUp,
1032    X87,
1033    X87Up,
1034    ComplexX87,
1035    NoClass,
1036    Memory
1037  };
1038
1039  /// merge - Implement the X86_64 ABI merging algorithm.
1040  ///
1041  /// Merge an accumulating classification \arg Accum with a field
1042  /// classification \arg Field.
1043  ///
1044  /// \param Accum - The accumulating classification. This should
1045  /// always be either NoClass or the result of a previous merge
1046  /// call. In addition, this should never be Memory (the caller
1047  /// should just return Memory for the aggregate).
1048  static Class merge(Class Accum, Class Field);
1049
1050  /// postMerge - Implement the X86_64 ABI post merging algorithm.
1051  ///
1052  /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1053  /// final MEMORY or SSE classes when necessary.
1054  ///
1055  /// \param AggregateSize - The size of the current aggregate in
1056  /// the classification process.
1057  ///
1058  /// \param Lo - The classification for the parts of the type
1059  /// residing in the low word of the containing object.
1060  ///
1061  /// \param Hi - The classification for the parts of the type
1062  /// residing in the higher words of the containing object.
1063  ///
1064  void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1065
1066  /// classify - Determine the x86_64 register classes in which the
1067  /// given type T should be passed.
1068  ///
1069  /// \param Lo - The classification for the parts of the type
1070  /// residing in the low word of the containing object.
1071  ///
1072  /// \param Hi - The classification for the parts of the type
1073  /// residing in the high word of the containing object.
1074  ///
1075  /// \param OffsetBase - The bit offset of this type in the
1076  /// containing object.  Some parameters are classified different
1077  /// depending on whether they straddle an eightbyte boundary.
1078  ///
1079  /// If a word is unused its result will be NoClass; if a type should
1080  /// be passed in Memory then at least the classification of \arg Lo
1081  /// will be Memory.
1082  ///
1083  /// The \arg Lo class will be NoClass iff the argument is ignored.
1084  ///
1085  /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1086  /// also be ComplexX87.
1087  void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi) const;
1088
1089  llvm::Type *GetByteVectorType(QualType Ty) const;
1090  llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1091                                 unsigned IROffset, QualType SourceTy,
1092                                 unsigned SourceOffset) const;
1093  llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1094                                     unsigned IROffset, QualType SourceTy,
1095                                     unsigned SourceOffset) const;
1096
1097  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1098  /// such that the argument will be returned in memory.
1099  ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1100
1101  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1102  /// such that the argument will be passed in memory.
1103  ///
1104  /// \param freeIntRegs - The number of free integer registers remaining
1105  /// available.
1106  ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1107
1108  ABIArgInfo classifyReturnType(QualType RetTy) const;
1109
1110  ABIArgInfo classifyArgumentType(QualType Ty,
1111                                  unsigned freeIntRegs,
1112                                  unsigned &neededInt,
1113                                  unsigned &neededSSE) const;
1114
1115  bool IsIllegalVectorType(QualType Ty) const;
1116
1117  /// The 0.98 ABI revision clarified a lot of ambiguities,
1118  /// unfortunately in ways that were not always consistent with
1119  /// certain previous compilers.  In particular, platforms which
1120  /// required strict binary compatibility with older versions of GCC
1121  /// may need to exempt themselves.
1122  bool honorsRevision0_98() const {
1123    return !getContext().getTargetInfo().getTriple().isOSDarwin();
1124  }
1125
1126  bool HasAVX;
1127  // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1128  // 64-bit hardware.
1129  bool Has64BitPointers;
1130
1131public:
1132  X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) :
1133      ABIInfo(CGT), HasAVX(hasavx),
1134      Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1135  }
1136
1137  bool isPassedUsingAVXType(QualType type) const {
1138    unsigned neededInt, neededSSE;
1139    // The freeIntRegs argument doesn't matter here.
1140    ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE);
1141    if (info.isDirect()) {
1142      llvm::Type *ty = info.getCoerceToType();
1143      if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1144        return (vectorTy->getBitWidth() > 128);
1145    }
1146    return false;
1147  }
1148
1149  virtual void computeInfo(CGFunctionInfo &FI) const;
1150
1151  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1152                                 CodeGenFunction &CGF) const;
1153};
1154
1155/// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1156class WinX86_64ABIInfo : public ABIInfo {
1157
1158  ABIArgInfo classify(QualType Ty) const;
1159
1160public:
1161  WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
1162
1163  virtual void computeInfo(CGFunctionInfo &FI) const;
1164
1165  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1166                                 CodeGenFunction &CGF) const;
1167};
1168
1169class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1170public:
1171  X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1172      : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {}
1173
1174  const X86_64ABIInfo &getABIInfo() const {
1175    return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
1176  }
1177
1178  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1179    return 7;
1180  }
1181
1182  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1183                               llvm::Value *Address) const {
1184    llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1185
1186    // 0-15 are the 16 integer registers.
1187    // 16 is %rip.
1188    AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1189    return false;
1190  }
1191
1192  llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1193                                  StringRef Constraint,
1194                                  llvm::Type* Ty) const {
1195    return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1196  }
1197
1198  bool isNoProtoCallVariadic(const CallArgList &args,
1199                             const FunctionNoProtoType *fnType) const {
1200    // The default CC on x86-64 sets %al to the number of SSA
1201    // registers used, and GCC sets this when calling an unprototyped
1202    // function, so we override the default behavior.  However, don't do
1203    // that when AVX types are involved: the ABI explicitly states it is
1204    // undefined, and it doesn't work in practice because of how the ABI
1205    // defines varargs anyway.
1206    if (fnType->getCallConv() == CC_Default || fnType->getCallConv() == CC_C) {
1207      bool HasAVXType = false;
1208      for (CallArgList::const_iterator
1209             it = args.begin(), ie = args.end(); it != ie; ++it) {
1210        if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1211          HasAVXType = true;
1212          break;
1213        }
1214      }
1215
1216      if (!HasAVXType)
1217        return true;
1218    }
1219
1220    return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1221  }
1222
1223};
1224
1225class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1226public:
1227  WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
1228    : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
1229
1230  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1231    return 7;
1232  }
1233
1234  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1235                               llvm::Value *Address) const {
1236    llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1237
1238    // 0-15 are the 16 integer registers.
1239    // 16 is %rip.
1240    AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1241    return false;
1242  }
1243};
1244
1245}
1246
1247void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1248                              Class &Hi) const {
1249  // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1250  //
1251  // (a) If one of the classes is Memory, the whole argument is passed in
1252  //     memory.
1253  //
1254  // (b) If X87UP is not preceded by X87, the whole argument is passed in
1255  //     memory.
1256  //
1257  // (c) If the size of the aggregate exceeds two eightbytes and the first
1258  //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1259  //     argument is passed in memory. NOTE: This is necessary to keep the
1260  //     ABI working for processors that don't support the __m256 type.
1261  //
1262  // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1263  //
1264  // Some of these are enforced by the merging logic.  Others can arise
1265  // only with unions; for example:
1266  //   union { _Complex double; unsigned; }
1267  //
1268  // Note that clauses (b) and (c) were added in 0.98.
1269  //
1270  if (Hi == Memory)
1271    Lo = Memory;
1272  if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1273    Lo = Memory;
1274  if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1275    Lo = Memory;
1276  if (Hi == SSEUp && Lo != SSE)
1277    Hi = SSE;
1278}
1279
1280X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1281  // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1282  // classified recursively so that always two fields are
1283  // considered. The resulting class is calculated according to
1284  // the classes of the fields in the eightbyte:
1285  //
1286  // (a) If both classes are equal, this is the resulting class.
1287  //
1288  // (b) If one of the classes is NO_CLASS, the resulting class is
1289  // the other class.
1290  //
1291  // (c) If one of the classes is MEMORY, the result is the MEMORY
1292  // class.
1293  //
1294  // (d) If one of the classes is INTEGER, the result is the
1295  // INTEGER.
1296  //
1297  // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1298  // MEMORY is used as class.
1299  //
1300  // (f) Otherwise class SSE is used.
1301
1302  // Accum should never be memory (we should have returned) or
1303  // ComplexX87 (because this cannot be passed in a structure).
1304  assert((Accum != Memory && Accum != ComplexX87) &&
1305         "Invalid accumulated classification during merge.");
1306  if (Accum == Field || Field == NoClass)
1307    return Accum;
1308  if (Field == Memory)
1309    return Memory;
1310  if (Accum == NoClass)
1311    return Field;
1312  if (Accum == Integer || Field == Integer)
1313    return Integer;
1314  if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1315      Accum == X87 || Accum == X87Up)
1316    return Memory;
1317  return SSE;
1318}
1319
1320void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1321                             Class &Lo, Class &Hi) const {
1322  // FIXME: This code can be simplified by introducing a simple value class for
1323  // Class pairs with appropriate constructor methods for the various
1324  // situations.
1325
1326  // FIXME: Some of the split computations are wrong; unaligned vectors
1327  // shouldn't be passed in registers for example, so there is no chance they
1328  // can straddle an eightbyte. Verify & simplify.
1329
1330  Lo = Hi = NoClass;
1331
1332  Class &Current = OffsetBase < 64 ? Lo : Hi;
1333  Current = Memory;
1334
1335  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1336    BuiltinType::Kind k = BT->getKind();
1337
1338    if (k == BuiltinType::Void) {
1339      Current = NoClass;
1340    } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1341      Lo = Integer;
1342      Hi = Integer;
1343    } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1344      Current = Integer;
1345    } else if ((k == BuiltinType::Float || k == BuiltinType::Double) ||
1346               (k == BuiltinType::LongDouble &&
1347                getContext().getTargetInfo().getTriple().getOS() ==
1348                llvm::Triple::NativeClient)) {
1349      Current = SSE;
1350    } else if (k == BuiltinType::LongDouble) {
1351      Lo = X87;
1352      Hi = X87Up;
1353    }
1354    // FIXME: _Decimal32 and _Decimal64 are SSE.
1355    // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1356    return;
1357  }
1358
1359  if (const EnumType *ET = Ty->getAs<EnumType>()) {
1360    // Classify the underlying integer type.
1361    classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi);
1362    return;
1363  }
1364
1365  if (Ty->hasPointerRepresentation()) {
1366    Current = Integer;
1367    return;
1368  }
1369
1370  if (Ty->isMemberPointerType()) {
1371    if (Ty->isMemberFunctionPointerType() && Has64BitPointers)
1372      Lo = Hi = Integer;
1373    else
1374      Current = Integer;
1375    return;
1376  }
1377
1378  if (const VectorType *VT = Ty->getAs<VectorType>()) {
1379    uint64_t Size = getContext().getTypeSize(VT);
1380    if (Size == 32) {
1381      // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1382      // float> as integer.
1383      Current = Integer;
1384
1385      // If this type crosses an eightbyte boundary, it should be
1386      // split.
1387      uint64_t EB_Real = (OffsetBase) / 64;
1388      uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1389      if (EB_Real != EB_Imag)
1390        Hi = Lo;
1391    } else if (Size == 64) {
1392      // gcc passes <1 x double> in memory. :(
1393      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1394        return;
1395
1396      // gcc passes <1 x long long> as INTEGER.
1397      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1398          VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1399          VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1400          VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1401        Current = Integer;
1402      else
1403        Current = SSE;
1404
1405      // If this type crosses an eightbyte boundary, it should be
1406      // split.
1407      if (OffsetBase && OffsetBase != 64)
1408        Hi = Lo;
1409    } else if (Size == 128 || (HasAVX && Size == 256)) {
1410      // Arguments of 256-bits are split into four eightbyte chunks. The
1411      // least significant one belongs to class SSE and all the others to class
1412      // SSEUP. The original Lo and Hi design considers that types can't be
1413      // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1414      // This design isn't correct for 256-bits, but since there're no cases
1415      // where the upper parts would need to be inspected, avoid adding
1416      // complexity and just consider Hi to match the 64-256 part.
1417      Lo = SSE;
1418      Hi = SSEUp;
1419    }
1420    return;
1421  }
1422
1423  if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1424    QualType ET = getContext().getCanonicalType(CT->getElementType());
1425
1426    uint64_t Size = getContext().getTypeSize(Ty);
1427    if (ET->isIntegralOrEnumerationType()) {
1428      if (Size <= 64)
1429        Current = Integer;
1430      else if (Size <= 128)
1431        Lo = Hi = Integer;
1432    } else if (ET == getContext().FloatTy)
1433      Current = SSE;
1434    else if (ET == getContext().DoubleTy ||
1435             (ET == getContext().LongDoubleTy &&
1436              getContext().getTargetInfo().getTriple().getOS() ==
1437              llvm::Triple::NativeClient))
1438      Lo = Hi = SSE;
1439    else if (ET == getContext().LongDoubleTy)
1440      Current = ComplexX87;
1441
1442    // If this complex type crosses an eightbyte boundary then it
1443    // should be split.
1444    uint64_t EB_Real = (OffsetBase) / 64;
1445    uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1446    if (Hi == NoClass && EB_Real != EB_Imag)
1447      Hi = Lo;
1448
1449    return;
1450  }
1451
1452  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1453    // Arrays are treated like structures.
1454
1455    uint64_t Size = getContext().getTypeSize(Ty);
1456
1457    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1458    // than four eightbytes, ..., it has class MEMORY.
1459    if (Size > 256)
1460      return;
1461
1462    // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1463    // fields, it has class MEMORY.
1464    //
1465    // Only need to check alignment of array base.
1466    if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1467      return;
1468
1469    // Otherwise implement simplified merge. We could be smarter about
1470    // this, but it isn't worth it and would be harder to verify.
1471    Current = NoClass;
1472    uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1473    uint64_t ArraySize = AT->getSize().getZExtValue();
1474
1475    // The only case a 256-bit wide vector could be used is when the array
1476    // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1477    // to work for sizes wider than 128, early check and fallback to memory.
1478    if (Size > 128 && EltSize != 256)
1479      return;
1480
1481    for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1482      Class FieldLo, FieldHi;
1483      classify(AT->getElementType(), Offset, FieldLo, FieldHi);
1484      Lo = merge(Lo, FieldLo);
1485      Hi = merge(Hi, FieldHi);
1486      if (Lo == Memory || Hi == Memory)
1487        break;
1488    }
1489
1490    postMerge(Size, Lo, Hi);
1491    assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1492    return;
1493  }
1494
1495  if (const RecordType *RT = Ty->getAs<RecordType>()) {
1496    uint64_t Size = getContext().getTypeSize(Ty);
1497
1498    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1499    // than four eightbytes, ..., it has class MEMORY.
1500    if (Size > 256)
1501      return;
1502
1503    // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1504    // copy constructor or a non-trivial destructor, it is passed by invisible
1505    // reference.
1506    if (hasNonTrivialDestructorOrCopyConstructor(RT))
1507      return;
1508
1509    const RecordDecl *RD = RT->getDecl();
1510
1511    // Assume variable sized types are passed in memory.
1512    if (RD->hasFlexibleArrayMember())
1513      return;
1514
1515    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1516
1517    // Reset Lo class, this will be recomputed.
1518    Current = NoClass;
1519
1520    // If this is a C++ record, classify the bases first.
1521    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1522      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1523             e = CXXRD->bases_end(); i != e; ++i) {
1524        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1525               "Unexpected base class!");
1526        const CXXRecordDecl *Base =
1527          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1528
1529        // Classify this field.
1530        //
1531        // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1532        // single eightbyte, each is classified separately. Each eightbyte gets
1533        // initialized to class NO_CLASS.
1534        Class FieldLo, FieldHi;
1535        uint64_t Offset =
1536          OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
1537        classify(i->getType(), Offset, FieldLo, FieldHi);
1538        Lo = merge(Lo, FieldLo);
1539        Hi = merge(Hi, FieldHi);
1540        if (Lo == Memory || Hi == Memory)
1541          break;
1542      }
1543    }
1544
1545    // Classify the fields one at a time, merging the results.
1546    unsigned idx = 0;
1547    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1548           i != e; ++i, ++idx) {
1549      uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1550      bool BitField = i->isBitField();
1551
1552      // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
1553      // four eightbytes, or it contains unaligned fields, it has class MEMORY.
1554      //
1555      // The only case a 256-bit wide vector could be used is when the struct
1556      // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1557      // to work for sizes wider than 128, early check and fallback to memory.
1558      //
1559      if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
1560        Lo = Memory;
1561        return;
1562      }
1563      // Note, skip this test for bit-fields, see below.
1564      if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1565        Lo = Memory;
1566        return;
1567      }
1568
1569      // Classify this field.
1570      //
1571      // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1572      // exceeds a single eightbyte, each is classified
1573      // separately. Each eightbyte gets initialized to class
1574      // NO_CLASS.
1575      Class FieldLo, FieldHi;
1576
1577      // Bit-fields require special handling, they do not force the
1578      // structure to be passed in memory even if unaligned, and
1579      // therefore they can straddle an eightbyte.
1580      if (BitField) {
1581        // Ignore padding bit-fields.
1582        if (i->isUnnamedBitfield())
1583          continue;
1584
1585        uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1586        uint64_t Size = i->getBitWidthValue(getContext());
1587
1588        uint64_t EB_Lo = Offset / 64;
1589        uint64_t EB_Hi = (Offset + Size - 1) / 64;
1590        FieldLo = FieldHi = NoClass;
1591        if (EB_Lo) {
1592          assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1593          FieldLo = NoClass;
1594          FieldHi = Integer;
1595        } else {
1596          FieldLo = Integer;
1597          FieldHi = EB_Hi ? Integer : NoClass;
1598        }
1599      } else
1600        classify(i->getType(), Offset, FieldLo, FieldHi);
1601      Lo = merge(Lo, FieldLo);
1602      Hi = merge(Hi, FieldHi);
1603      if (Lo == Memory || Hi == Memory)
1604        break;
1605    }
1606
1607    postMerge(Size, Lo, Hi);
1608  }
1609}
1610
1611ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1612  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1613  // place naturally.
1614  if (!isAggregateTypeForABI(Ty)) {
1615    // Treat an enum type as its underlying type.
1616    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1617      Ty = EnumTy->getDecl()->getIntegerType();
1618
1619    return (Ty->isPromotableIntegerType() ?
1620            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1621  }
1622
1623  return ABIArgInfo::getIndirect(0);
1624}
1625
1626bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
1627  if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
1628    uint64_t Size = getContext().getTypeSize(VecTy);
1629    unsigned LargestVector = HasAVX ? 256 : 128;
1630    if (Size <= 64 || Size > LargestVector)
1631      return true;
1632  }
1633
1634  return false;
1635}
1636
1637ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
1638                                            unsigned freeIntRegs) const {
1639  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1640  // place naturally.
1641  //
1642  // This assumption is optimistic, as there could be free registers available
1643  // when we need to pass this argument in memory, and LLVM could try to pass
1644  // the argument in the free register. This does not seem to happen currently,
1645  // but this code would be much safer if we could mark the argument with
1646  // 'onstack'. See PR12193.
1647  if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
1648    // Treat an enum type as its underlying type.
1649    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1650      Ty = EnumTy->getDecl()->getIntegerType();
1651
1652    return (Ty->isPromotableIntegerType() ?
1653            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1654  }
1655
1656  if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1657    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
1658
1659  // Compute the byval alignment. We specify the alignment of the byval in all
1660  // cases so that the mid-level optimizer knows the alignment of the byval.
1661  unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
1662
1663  // Attempt to avoid passing indirect results using byval when possible. This
1664  // is important for good codegen.
1665  //
1666  // We do this by coercing the value into a scalar type which the backend can
1667  // handle naturally (i.e., without using byval).
1668  //
1669  // For simplicity, we currently only do this when we have exhausted all of the
1670  // free integer registers. Doing this when there are free integer registers
1671  // would require more care, as we would have to ensure that the coerced value
1672  // did not claim the unused register. That would require either reording the
1673  // arguments to the function (so that any subsequent inreg values came first),
1674  // or only doing this optimization when there were no following arguments that
1675  // might be inreg.
1676  //
1677  // We currently expect it to be rare (particularly in well written code) for
1678  // arguments to be passed on the stack when there are still free integer
1679  // registers available (this would typically imply large structs being passed
1680  // by value), so this seems like a fair tradeoff for now.
1681  //
1682  // We can revisit this if the backend grows support for 'onstack' parameter
1683  // attributes. See PR12193.
1684  if (freeIntRegs == 0) {
1685    uint64_t Size = getContext().getTypeSize(Ty);
1686
1687    // If this type fits in an eightbyte, coerce it into the matching integral
1688    // type, which will end up on the stack (with alignment 8).
1689    if (Align == 8 && Size <= 64)
1690      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1691                                                          Size));
1692  }
1693
1694  return ABIArgInfo::getIndirect(Align);
1695}
1696
1697/// GetByteVectorType - The ABI specifies that a value should be passed in an
1698/// full vector XMM/YMM register.  Pick an LLVM IR type that will be passed as a
1699/// vector register.
1700llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
1701  llvm::Type *IRType = CGT.ConvertType(Ty);
1702
1703  // Wrapper structs that just contain vectors are passed just like vectors,
1704  // strip them off if present.
1705  llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1706  while (STy && STy->getNumElements() == 1) {
1707    IRType = STy->getElementType(0);
1708    STy = dyn_cast<llvm::StructType>(IRType);
1709  }
1710
1711  // If the preferred type is a 16-byte vector, prefer to pass it.
1712  if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
1713    llvm::Type *EltTy = VT->getElementType();
1714    unsigned BitWidth = VT->getBitWidth();
1715    if ((BitWidth >= 128 && BitWidth <= 256) &&
1716        (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1717         EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1718         EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1719         EltTy->isIntegerTy(128)))
1720      return VT;
1721  }
1722
1723  return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1724}
1725
1726/// BitsContainNoUserData - Return true if the specified [start,end) bit range
1727/// is known to either be off the end of the specified type or being in
1728/// alignment padding.  The user type specified is known to be at most 128 bits
1729/// in size, and have passed through X86_64ABIInfo::classify with a successful
1730/// classification that put one of the two halves in the INTEGER class.
1731///
1732/// It is conservatively correct to return false.
1733static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1734                                  unsigned EndBit, ASTContext &Context) {
1735  // If the bytes being queried are off the end of the type, there is no user
1736  // data hiding here.  This handles analysis of builtins, vectors and other
1737  // types that don't contain interesting padding.
1738  unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1739  if (TySize <= StartBit)
1740    return true;
1741
1742  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1743    unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1744    unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1745
1746    // Check each element to see if the element overlaps with the queried range.
1747    for (unsigned i = 0; i != NumElts; ++i) {
1748      // If the element is after the span we care about, then we're done..
1749      unsigned EltOffset = i*EltSize;
1750      if (EltOffset >= EndBit) break;
1751
1752      unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1753      if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1754                                 EndBit-EltOffset, Context))
1755        return false;
1756    }
1757    // If it overlaps no elements, then it is safe to process as padding.
1758    return true;
1759  }
1760
1761  if (const RecordType *RT = Ty->getAs<RecordType>()) {
1762    const RecordDecl *RD = RT->getDecl();
1763    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1764
1765    // If this is a C++ record, check the bases first.
1766    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1767      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1768           e = CXXRD->bases_end(); i != e; ++i) {
1769        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1770               "Unexpected base class!");
1771        const CXXRecordDecl *Base =
1772          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1773
1774        // If the base is after the span we care about, ignore it.
1775        unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
1776        if (BaseOffset >= EndBit) continue;
1777
1778        unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1779        if (!BitsContainNoUserData(i->getType(), BaseStart,
1780                                   EndBit-BaseOffset, Context))
1781          return false;
1782      }
1783    }
1784
1785    // Verify that no field has data that overlaps the region of interest.  Yes
1786    // this could be sped up a lot by being smarter about queried fields,
1787    // however we're only looking at structs up to 16 bytes, so we don't care
1788    // much.
1789    unsigned idx = 0;
1790    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1791         i != e; ++i, ++idx) {
1792      unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
1793
1794      // If we found a field after the region we care about, then we're done.
1795      if (FieldOffset >= EndBit) break;
1796
1797      unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
1798      if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
1799                                 Context))
1800        return false;
1801    }
1802
1803    // If nothing in this record overlapped the area of interest, then we're
1804    // clean.
1805    return true;
1806  }
1807
1808  return false;
1809}
1810
1811/// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
1812/// float member at the specified offset.  For example, {int,{float}} has a
1813/// float at offset 4.  It is conservatively correct for this routine to return
1814/// false.
1815static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
1816                                  const llvm::DataLayout &TD) {
1817  // Base case if we find a float.
1818  if (IROffset == 0 && IRType->isFloatTy())
1819    return true;
1820
1821  // If this is a struct, recurse into the field at the specified offset.
1822  if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1823    const llvm::StructLayout *SL = TD.getStructLayout(STy);
1824    unsigned Elt = SL->getElementContainingOffset(IROffset);
1825    IROffset -= SL->getElementOffset(Elt);
1826    return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
1827  }
1828
1829  // If this is an array, recurse into the field at the specified offset.
1830  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1831    llvm::Type *EltTy = ATy->getElementType();
1832    unsigned EltSize = TD.getTypeAllocSize(EltTy);
1833    IROffset -= IROffset/EltSize*EltSize;
1834    return ContainsFloatAtOffset(EltTy, IROffset, TD);
1835  }
1836
1837  return false;
1838}
1839
1840
1841/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
1842/// low 8 bytes of an XMM register, corresponding to the SSE class.
1843llvm::Type *X86_64ABIInfo::
1844GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1845                   QualType SourceTy, unsigned SourceOffset) const {
1846  // The only three choices we have are either double, <2 x float>, or float. We
1847  // pass as float if the last 4 bytes is just padding.  This happens for
1848  // structs that contain 3 floats.
1849  if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
1850                            SourceOffset*8+64, getContext()))
1851    return llvm::Type::getFloatTy(getVMContext());
1852
1853  // We want to pass as <2 x float> if the LLVM IR type contains a float at
1854  // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
1855  // case.
1856  if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
1857      ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
1858    return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
1859
1860  return llvm::Type::getDoubleTy(getVMContext());
1861}
1862
1863
1864/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
1865/// an 8-byte GPR.  This means that we either have a scalar or we are talking
1866/// about the high or low part of an up-to-16-byte struct.  This routine picks
1867/// the best LLVM IR type to represent this, which may be i64 or may be anything
1868/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
1869/// etc).
1870///
1871/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
1872/// the source type.  IROffset is an offset in bytes into the LLVM IR type that
1873/// the 8-byte value references.  PrefType may be null.
1874///
1875/// SourceTy is the source level type for the entire argument.  SourceOffset is
1876/// an offset into this that we're processing (which is always either 0 or 8).
1877///
1878llvm::Type *X86_64ABIInfo::
1879GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1880                       QualType SourceTy, unsigned SourceOffset) const {
1881  // If we're dealing with an un-offset LLVM IR type, then it means that we're
1882  // returning an 8-byte unit starting with it.  See if we can safely use it.
1883  if (IROffset == 0) {
1884    // Pointers and int64's always fill the 8-byte unit.
1885    if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
1886        IRType->isIntegerTy(64))
1887      return IRType;
1888
1889    // If we have a 1/2/4-byte integer, we can use it only if the rest of the
1890    // goodness in the source type is just tail padding.  This is allowed to
1891    // kick in for struct {double,int} on the int, but not on
1892    // struct{double,int,int} because we wouldn't return the second int.  We
1893    // have to do this analysis on the source type because we can't depend on
1894    // unions being lowered a specific way etc.
1895    if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
1896        IRType->isIntegerTy(32) ||
1897        (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
1898      unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
1899          cast<llvm::IntegerType>(IRType)->getBitWidth();
1900
1901      if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
1902                                SourceOffset*8+64, getContext()))
1903        return IRType;
1904    }
1905  }
1906
1907  if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1908    // If this is a struct, recurse into the field at the specified offset.
1909    const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
1910    if (IROffset < SL->getSizeInBytes()) {
1911      unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
1912      IROffset -= SL->getElementOffset(FieldIdx);
1913
1914      return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
1915                                    SourceTy, SourceOffset);
1916    }
1917  }
1918
1919  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1920    llvm::Type *EltTy = ATy->getElementType();
1921    unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
1922    unsigned EltOffset = IROffset/EltSize*EltSize;
1923    return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
1924                                  SourceOffset);
1925  }
1926
1927  // Okay, we don't have any better idea of what to pass, so we pass this in an
1928  // integer register that isn't too big to fit the rest of the struct.
1929  unsigned TySizeInBytes =
1930    (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
1931
1932  assert(TySizeInBytes != SourceOffset && "Empty field?");
1933
1934  // It is always safe to classify this as an integer type up to i64 that
1935  // isn't larger than the structure.
1936  return llvm::IntegerType::get(getVMContext(),
1937                                std::min(TySizeInBytes-SourceOffset, 8U)*8);
1938}
1939
1940
1941/// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
1942/// be used as elements of a two register pair to pass or return, return a
1943/// first class aggregate to represent them.  For example, if the low part of
1944/// a by-value argument should be passed as i32* and the high part as float,
1945/// return {i32*, float}.
1946static llvm::Type *
1947GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
1948                           const llvm::DataLayout &TD) {
1949  // In order to correctly satisfy the ABI, we need to the high part to start
1950  // at offset 8.  If the high and low parts we inferred are both 4-byte types
1951  // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
1952  // the second element at offset 8.  Check for this:
1953  unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
1954  unsigned HiAlign = TD.getABITypeAlignment(Hi);
1955  unsigned HiStart = llvm::DataLayout::RoundUpAlignment(LoSize, HiAlign);
1956  assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
1957
1958  // To handle this, we have to increase the size of the low part so that the
1959  // second element will start at an 8 byte offset.  We can't increase the size
1960  // of the second element because it might make us access off the end of the
1961  // struct.
1962  if (HiStart != 8) {
1963    // There are only two sorts of types the ABI generation code can produce for
1964    // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
1965    // Promote these to a larger type.
1966    if (Lo->isFloatTy())
1967      Lo = llvm::Type::getDoubleTy(Lo->getContext());
1968    else {
1969      assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
1970      Lo = llvm::Type::getInt64Ty(Lo->getContext());
1971    }
1972  }
1973
1974  llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL);
1975
1976
1977  // Verify that the second element is at an 8-byte offset.
1978  assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
1979         "Invalid x86-64 argument pair!");
1980  return Result;
1981}
1982
1983ABIArgInfo X86_64ABIInfo::
1984classifyReturnType(QualType RetTy) const {
1985  // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
1986  // classification algorithm.
1987  X86_64ABIInfo::Class Lo, Hi;
1988  classify(RetTy, 0, Lo, Hi);
1989
1990  // Check some invariants.
1991  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1992  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1993
1994  llvm::Type *ResType = 0;
1995  switch (Lo) {
1996  case NoClass:
1997    if (Hi == NoClass)
1998      return ABIArgInfo::getIgnore();
1999    // If the low part is just padding, it takes no register, leave ResType
2000    // null.
2001    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2002           "Unknown missing lo part");
2003    break;
2004
2005  case SSEUp:
2006  case X87Up:
2007    llvm_unreachable("Invalid classification for lo word.");
2008
2009    // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2010    // hidden argument.
2011  case Memory:
2012    return getIndirectReturnResult(RetTy);
2013
2014    // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2015    // available register of the sequence %rax, %rdx is used.
2016  case Integer:
2017    ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2018
2019    // If we have a sign or zero extended integer, make sure to return Extend
2020    // so that the parameter gets the right LLVM IR attributes.
2021    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2022      // Treat an enum type as its underlying type.
2023      if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2024        RetTy = EnumTy->getDecl()->getIntegerType();
2025
2026      if (RetTy->isIntegralOrEnumerationType() &&
2027          RetTy->isPromotableIntegerType())
2028        return ABIArgInfo::getExtend();
2029    }
2030    break;
2031
2032    // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2033    // available SSE register of the sequence %xmm0, %xmm1 is used.
2034  case SSE:
2035    ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2036    break;
2037
2038    // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2039    // returned on the X87 stack in %st0 as 80-bit x87 number.
2040  case X87:
2041    ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2042    break;
2043
2044    // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2045    // part of the value is returned in %st0 and the imaginary part in
2046    // %st1.
2047  case ComplexX87:
2048    assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2049    ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2050                                    llvm::Type::getX86_FP80Ty(getVMContext()),
2051                                    NULL);
2052    break;
2053  }
2054
2055  llvm::Type *HighPart = 0;
2056  switch (Hi) {
2057    // Memory was handled previously and X87 should
2058    // never occur as a hi class.
2059  case Memory:
2060  case X87:
2061    llvm_unreachable("Invalid classification for hi word.");
2062
2063  case ComplexX87: // Previously handled.
2064  case NoClass:
2065    break;
2066
2067  case Integer:
2068    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2069    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2070      return ABIArgInfo::getDirect(HighPart, 8);
2071    break;
2072  case SSE:
2073    HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2074    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2075      return ABIArgInfo::getDirect(HighPart, 8);
2076    break;
2077
2078    // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2079    // is passed in the next available eightbyte chunk if the last used
2080    // vector register.
2081    //
2082    // SSEUP should always be preceded by SSE, just widen.
2083  case SSEUp:
2084    assert(Lo == SSE && "Unexpected SSEUp classification.");
2085    ResType = GetByteVectorType(RetTy);
2086    break;
2087
2088    // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2089    // returned together with the previous X87 value in %st0.
2090  case X87Up:
2091    // If X87Up is preceded by X87, we don't need to do
2092    // anything. However, in some cases with unions it may not be
2093    // preceded by X87. In such situations we follow gcc and pass the
2094    // extra bits in an SSE reg.
2095    if (Lo != X87) {
2096      HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2097      if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2098        return ABIArgInfo::getDirect(HighPart, 8);
2099    }
2100    break;
2101  }
2102
2103  // If a high part was specified, merge it together with the low part.  It is
2104  // known to pass in the high eightbyte of the result.  We do this by forming a
2105  // first class struct aggregate with the high and low part: {low, high}
2106  if (HighPart)
2107    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2108
2109  return ABIArgInfo::getDirect(ResType);
2110}
2111
2112ABIArgInfo X86_64ABIInfo::classifyArgumentType(
2113  QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE)
2114  const
2115{
2116  X86_64ABIInfo::Class Lo, Hi;
2117  classify(Ty, 0, Lo, Hi);
2118
2119  // Check some invariants.
2120  // FIXME: Enforce these by construction.
2121  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2122  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2123
2124  neededInt = 0;
2125  neededSSE = 0;
2126  llvm::Type *ResType = 0;
2127  switch (Lo) {
2128  case NoClass:
2129    if (Hi == NoClass)
2130      return ABIArgInfo::getIgnore();
2131    // If the low part is just padding, it takes no register, leave ResType
2132    // null.
2133    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2134           "Unknown missing lo part");
2135    break;
2136
2137    // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2138    // on the stack.
2139  case Memory:
2140
2141    // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2142    // COMPLEX_X87, it is passed in memory.
2143  case X87:
2144  case ComplexX87:
2145    if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
2146      ++neededInt;
2147    return getIndirectResult(Ty, freeIntRegs);
2148
2149  case SSEUp:
2150  case X87Up:
2151    llvm_unreachable("Invalid classification for lo word.");
2152
2153    // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2154    // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2155    // and %r9 is used.
2156  case Integer:
2157    ++neededInt;
2158
2159    // Pick an 8-byte type based on the preferred type.
2160    ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2161
2162    // If we have a sign or zero extended integer, make sure to return Extend
2163    // so that the parameter gets the right LLVM IR attributes.
2164    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2165      // Treat an enum type as its underlying type.
2166      if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2167        Ty = EnumTy->getDecl()->getIntegerType();
2168
2169      if (Ty->isIntegralOrEnumerationType() &&
2170          Ty->isPromotableIntegerType())
2171        return ABIArgInfo::getExtend();
2172    }
2173
2174    break;
2175
2176    // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2177    // available SSE register is used, the registers are taken in the
2178    // order from %xmm0 to %xmm7.
2179  case SSE: {
2180    llvm::Type *IRType = CGT.ConvertType(Ty);
2181    ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2182    ++neededSSE;
2183    break;
2184  }
2185  }
2186
2187  llvm::Type *HighPart = 0;
2188  switch (Hi) {
2189    // Memory was handled previously, ComplexX87 and X87 should
2190    // never occur as hi classes, and X87Up must be preceded by X87,
2191    // which is passed in memory.
2192  case Memory:
2193  case X87:
2194  case ComplexX87:
2195    llvm_unreachable("Invalid classification for hi word.");
2196
2197  case NoClass: break;
2198
2199  case Integer:
2200    ++neededInt;
2201    // Pick an 8-byte type based on the preferred type.
2202    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2203
2204    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2205      return ABIArgInfo::getDirect(HighPart, 8);
2206    break;
2207
2208    // X87Up generally doesn't occur here (long double is passed in
2209    // memory), except in situations involving unions.
2210  case X87Up:
2211  case SSE:
2212    HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2213
2214    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2215      return ABIArgInfo::getDirect(HighPart, 8);
2216
2217    ++neededSSE;
2218    break;
2219
2220    // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2221    // eightbyte is passed in the upper half of the last used SSE
2222    // register.  This only happens when 128-bit vectors are passed.
2223  case SSEUp:
2224    assert(Lo == SSE && "Unexpected SSEUp classification");
2225    ResType = GetByteVectorType(Ty);
2226    break;
2227  }
2228
2229  // If a high part was specified, merge it together with the low part.  It is
2230  // known to pass in the high eightbyte of the result.  We do this by forming a
2231  // first class struct aggregate with the high and low part: {low, high}
2232  if (HighPart)
2233    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2234
2235  return ABIArgInfo::getDirect(ResType);
2236}
2237
2238void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2239
2240  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2241
2242  // Keep track of the number of assigned registers.
2243  unsigned freeIntRegs = 6, freeSSERegs = 8;
2244
2245  // If the return value is indirect, then the hidden argument is consuming one
2246  // integer register.
2247  if (FI.getReturnInfo().isIndirect())
2248    --freeIntRegs;
2249
2250  // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2251  // get assigned (in left-to-right order) for passing as follows...
2252  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2253       it != ie; ++it) {
2254    unsigned neededInt, neededSSE;
2255    it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
2256                                    neededSSE);
2257
2258    // AMD64-ABI 3.2.3p3: If there are no registers available for any
2259    // eightbyte of an argument, the whole argument is passed on the
2260    // stack. If registers have already been assigned for some
2261    // eightbytes of such an argument, the assignments get reverted.
2262    if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
2263      freeIntRegs -= neededInt;
2264      freeSSERegs -= neededSSE;
2265    } else {
2266      it->info = getIndirectResult(it->type, freeIntRegs);
2267    }
2268  }
2269}
2270
2271static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
2272                                        QualType Ty,
2273                                        CodeGenFunction &CGF) {
2274  llvm::Value *overflow_arg_area_p =
2275    CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
2276  llvm::Value *overflow_arg_area =
2277    CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2278
2279  // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2280  // byte boundary if alignment needed by type exceeds 8 byte boundary.
2281  // It isn't stated explicitly in the standard, but in practice we use
2282  // alignment greater than 16 where necessary.
2283  uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
2284  if (Align > 8) {
2285    // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
2286    llvm::Value *Offset =
2287      llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
2288    overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
2289    llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
2290                                                    CGF.Int64Ty);
2291    llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
2292    overflow_arg_area =
2293      CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
2294                                 overflow_arg_area->getType(),
2295                                 "overflow_arg_area.align");
2296  }
2297
2298  // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2299  llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2300  llvm::Value *Res =
2301    CGF.Builder.CreateBitCast(overflow_arg_area,
2302                              llvm::PointerType::getUnqual(LTy));
2303
2304  // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
2305  // l->overflow_arg_area + sizeof(type).
2306  // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
2307  // an 8 byte boundary.
2308
2309  uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
2310  llvm::Value *Offset =
2311      llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
2312  overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
2313                                            "overflow_arg_area.next");
2314  CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2315
2316  // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2317  return Res;
2318}
2319
2320llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2321                                      CodeGenFunction &CGF) const {
2322  // Assume that va_list type is correct; should be pointer to LLVM type:
2323  // struct {
2324  //   i32 gp_offset;
2325  //   i32 fp_offset;
2326  //   i8* overflow_arg_area;
2327  //   i8* reg_save_area;
2328  // };
2329  unsigned neededInt, neededSSE;
2330
2331  Ty = CGF.getContext().getCanonicalType(Ty);
2332  ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE);
2333
2334  // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2335  // in the registers. If not go to step 7.
2336  if (!neededInt && !neededSSE)
2337    return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2338
2339  // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2340  // general purpose registers needed to pass type and num_fp to hold
2341  // the number of floating point registers needed.
2342
2343  // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2344  // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2345  // l->fp_offset > 304 - num_fp * 16 go to step 7.
2346  //
2347  // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
2348  // register save space).
2349
2350  llvm::Value *InRegs = 0;
2351  llvm::Value *gp_offset_p = 0, *gp_offset = 0;
2352  llvm::Value *fp_offset_p = 0, *fp_offset = 0;
2353  if (neededInt) {
2354    gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
2355    gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
2356    InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
2357    InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
2358  }
2359
2360  if (neededSSE) {
2361    fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
2362    fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
2363    llvm::Value *FitsInFP =
2364      llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2365    FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2366    InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2367  }
2368
2369  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2370  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2371  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2372  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2373
2374  // Emit code to load the value if it was passed in registers.
2375
2376  CGF.EmitBlock(InRegBlock);
2377
2378  // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2379  // an offset of l->gp_offset and/or l->fp_offset. This may require
2380  // copying to a temporary location in case the parameter is passed
2381  // in different register classes or requires an alignment greater
2382  // than 8 for general purpose registers and 16 for XMM registers.
2383  //
2384  // FIXME: This really results in shameful code when we end up needing to
2385  // collect arguments from different places; often what should result in a
2386  // simple assembling of a structure from scattered addresses has many more
2387  // loads than necessary. Can we clean this up?
2388  llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2389  llvm::Value *RegAddr =
2390    CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
2391                           "reg_save_area");
2392  if (neededInt && neededSSE) {
2393    // FIXME: Cleanup.
2394    assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2395    llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2396    llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
2397    assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2398    llvm::Type *TyLo = ST->getElementType(0);
2399    llvm::Type *TyHi = ST->getElementType(1);
2400    assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2401           "Unexpected ABI info for mixed regs");
2402    llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2403    llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2404    llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2405    llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2406    llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
2407    llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
2408    llvm::Value *V =
2409      CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2410    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2411    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2412    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2413
2414    RegAddr = CGF.Builder.CreateBitCast(Tmp,
2415                                        llvm::PointerType::getUnqual(LTy));
2416  } else if (neededInt) {
2417    RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2418    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2419                                        llvm::PointerType::getUnqual(LTy));
2420  } else if (neededSSE == 1) {
2421    RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2422    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2423                                        llvm::PointerType::getUnqual(LTy));
2424  } else {
2425    assert(neededSSE == 2 && "Invalid number of needed registers!");
2426    // SSE registers are spaced 16 bytes apart in the register save
2427    // area, we need to collect the two eightbytes together.
2428    llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2429    llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2430    llvm::Type *DoubleTy = CGF.DoubleTy;
2431    llvm::Type *DblPtrTy =
2432      llvm::PointerType::getUnqual(DoubleTy);
2433    llvm::StructType *ST = llvm::StructType::get(DoubleTy,
2434                                                       DoubleTy, NULL);
2435    llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
2436    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2437                                                         DblPtrTy));
2438    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2439    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2440                                                         DblPtrTy));
2441    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2442    RegAddr = CGF.Builder.CreateBitCast(Tmp,
2443                                        llvm::PointerType::getUnqual(LTy));
2444  }
2445
2446  // AMD64-ABI 3.5.7p5: Step 5. Set:
2447  // l->gp_offset = l->gp_offset + num_gp * 8
2448  // l->fp_offset = l->fp_offset + num_fp * 16.
2449  if (neededInt) {
2450    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2451    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2452                            gp_offset_p);
2453  }
2454  if (neededSSE) {
2455    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2456    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2457                            fp_offset_p);
2458  }
2459  CGF.EmitBranch(ContBlock);
2460
2461  // Emit code to load the value if it was passed in memory.
2462
2463  CGF.EmitBlock(InMemBlock);
2464  llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2465
2466  // Return the appropriate result.
2467
2468  CGF.EmitBlock(ContBlock);
2469  llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2470                                                 "vaarg.addr");
2471  ResAddr->addIncoming(RegAddr, InRegBlock);
2472  ResAddr->addIncoming(MemAddr, InMemBlock);
2473  return ResAddr;
2474}
2475
2476ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty) const {
2477
2478  if (Ty->isVoidType())
2479    return ABIArgInfo::getIgnore();
2480
2481  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2482    Ty = EnumTy->getDecl()->getIntegerType();
2483
2484  uint64_t Size = getContext().getTypeSize(Ty);
2485
2486  if (const RecordType *RT = Ty->getAs<RecordType>()) {
2487    if (hasNonTrivialDestructorOrCopyConstructor(RT) ||
2488        RT->getDecl()->hasFlexibleArrayMember())
2489      return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2490
2491    // FIXME: mingw-w64-gcc emits 128-bit struct as i128
2492    if (Size == 128 &&
2493        getContext().getTargetInfo().getTriple().getOS()
2494          == llvm::Triple::MinGW32)
2495      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2496                                                          Size));
2497
2498    // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
2499    // not 1, 2, 4, or 8 bytes, must be passed by reference."
2500    if (Size <= 64 &&
2501        (Size & (Size - 1)) == 0)
2502      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2503                                                          Size));
2504
2505    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2506  }
2507
2508  if (Ty->isPromotableIntegerType())
2509    return ABIArgInfo::getExtend();
2510
2511  return ABIArgInfo::getDirect();
2512}
2513
2514void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2515
2516  QualType RetTy = FI.getReturnType();
2517  FI.getReturnInfo() = classify(RetTy);
2518
2519  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2520       it != ie; ++it)
2521    it->info = classify(it->type);
2522}
2523
2524llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2525                                      CodeGenFunction &CGF) const {
2526  llvm::Type *BPP = CGF.Int8PtrPtrTy;
2527
2528  CGBuilderTy &Builder = CGF.Builder;
2529  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2530                                                       "ap");
2531  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2532  llvm::Type *PTy =
2533    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2534  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2535
2536  uint64_t Offset =
2537    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
2538  llvm::Value *NextAddr =
2539    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2540                      "ap.next");
2541  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2542
2543  return AddrTyped;
2544}
2545
2546namespace {
2547
2548class NaClX86_64ABIInfo : public ABIInfo {
2549 public:
2550  NaClX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
2551      : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, HasAVX) {}
2552  virtual void computeInfo(CGFunctionInfo &FI) const;
2553  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2554                                 CodeGenFunction &CGF) const;
2555 private:
2556  PNaClABIInfo PInfo;  // Used for generating calls with pnaclcall callingconv.
2557  X86_64ABIInfo NInfo; // Used for everything else.
2558};
2559
2560class NaClX86_64TargetCodeGenInfo : public TargetCodeGenInfo  {
2561 public:
2562  NaClX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
2563      : TargetCodeGenInfo(new NaClX86_64ABIInfo(CGT, HasAVX)) {}
2564};
2565
2566}
2567
2568void NaClX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2569  if (FI.getASTCallingConvention() == CC_PnaclCall)
2570    PInfo.computeInfo(FI);
2571  else
2572    NInfo.computeInfo(FI);
2573}
2574
2575llvm::Value *NaClX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2576                                          CodeGenFunction &CGF) const {
2577  // Always use the native convention; calling pnacl-style varargs functions
2578  // is unuspported.
2579  return NInfo.EmitVAArg(VAListAddr, Ty, CGF);
2580}
2581
2582
2583// PowerPC-32
2584
2585namespace {
2586class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2587public:
2588  PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2589
2590  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2591    // This is recovered from gcc output.
2592    return 1; // r1 is the dedicated stack pointer
2593  }
2594
2595  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2596                               llvm::Value *Address) const;
2597};
2598
2599}
2600
2601bool
2602PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2603                                                llvm::Value *Address) const {
2604  // This is calculated from the LLVM and GCC tables and verified
2605  // against gcc output.  AFAIK all ABIs use the same encoding.
2606
2607  CodeGen::CGBuilderTy &Builder = CGF.Builder;
2608
2609  llvm::IntegerType *i8 = CGF.Int8Ty;
2610  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2611  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2612  llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2613
2614  // 0-31: r0-31, the 4-byte general-purpose registers
2615  AssignToArrayRange(Builder, Address, Four8, 0, 31);
2616
2617  // 32-63: fp0-31, the 8-byte floating-point registers
2618  AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2619
2620  // 64-76 are various 4-byte special-purpose registers:
2621  // 64: mq
2622  // 65: lr
2623  // 66: ctr
2624  // 67: ap
2625  // 68-75 cr0-7
2626  // 76: xer
2627  AssignToArrayRange(Builder, Address, Four8, 64, 76);
2628
2629  // 77-108: v0-31, the 16-byte vector registers
2630  AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2631
2632  // 109: vrsave
2633  // 110: vscr
2634  // 111: spe_acc
2635  // 112: spefscr
2636  // 113: sfp
2637  AssignToArrayRange(Builder, Address, Four8, 109, 113);
2638
2639  return false;
2640}
2641
2642// PowerPC-64
2643
2644namespace {
2645/// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
2646class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
2647
2648public:
2649  PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
2650
2651  // TODO: We can add more logic to computeInfo to improve performance.
2652  // Example: For aggregate arguments that fit in a register, we could
2653  // use getDirectInReg (as is done below for structs containing a single
2654  // floating-point value) to avoid pushing them to memory on function
2655  // entry.  This would require changing the logic in PPCISelLowering
2656  // when lowering the parameters in the caller and args in the callee.
2657  virtual void computeInfo(CGFunctionInfo &FI) const {
2658    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2659    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2660         it != ie; ++it) {
2661      // We rely on the default argument classification for the most part.
2662      // One exception:  An aggregate containing a single floating-point
2663      // item must be passed in a register if one is available.
2664      const Type *T = isSingleElementStruct(it->type, getContext());
2665      if (T) {
2666        const BuiltinType *BT = T->getAs<BuiltinType>();
2667        if (BT && BT->isFloatingPoint()) {
2668          QualType QT(T, 0);
2669          it->info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
2670          continue;
2671        }
2672      }
2673      it->info = classifyArgumentType(it->type);
2674    }
2675  }
2676
2677  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr,
2678                                 QualType Ty,
2679                                 CodeGenFunction &CGF) const;
2680};
2681
2682class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
2683public:
2684  PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT)
2685    : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT)) {}
2686
2687  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2688    // This is recovered from gcc output.
2689    return 1; // r1 is the dedicated stack pointer
2690  }
2691
2692  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2693                               llvm::Value *Address) const;
2694};
2695
2696class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2697public:
2698  PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2699
2700  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2701    // This is recovered from gcc output.
2702    return 1; // r1 is the dedicated stack pointer
2703  }
2704
2705  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2706                               llvm::Value *Address) const;
2707};
2708
2709}
2710
2711// Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
2712llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
2713                                           QualType Ty,
2714                                           CodeGenFunction &CGF) const {
2715  llvm::Type *BP = CGF.Int8PtrTy;
2716  llvm::Type *BPP = CGF.Int8PtrPtrTy;
2717
2718  CGBuilderTy &Builder = CGF.Builder;
2719  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
2720  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2721
2722  // Handle address alignment for type alignment > 64 bits.  Although
2723  // long double normally requires 16-byte alignment, this is not the
2724  // case when it is passed as an argument; so handle that special case.
2725  const BuiltinType *BT = Ty->getAs<BuiltinType>();
2726  unsigned TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
2727
2728  if (TyAlign > 8 && (!BT || !BT->isFloatingPoint())) {
2729    assert((TyAlign & (TyAlign - 1)) == 0 &&
2730           "Alignment is not power of 2!");
2731    llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
2732    AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(TyAlign - 1));
2733    AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt64(~(TyAlign - 1)));
2734    Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
2735  }
2736
2737  // Update the va_list pointer.
2738  unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8;
2739  unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8);
2740  llvm::Value *NextAddr =
2741    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset),
2742                      "ap.next");
2743  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2744
2745  // If the argument is smaller than 8 bytes, it is right-adjusted in
2746  // its doubleword slot.  Adjust the pointer to pick it up from the
2747  // correct offset.
2748  if (SizeInBytes < 8) {
2749    llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
2750    AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes));
2751    Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
2752  }
2753
2754  llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2755  return Builder.CreateBitCast(Addr, PTy);
2756}
2757
2758static bool
2759PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2760                              llvm::Value *Address) {
2761  // This is calculated from the LLVM and GCC tables and verified
2762  // against gcc output.  AFAIK all ABIs use the same encoding.
2763
2764  CodeGen::CGBuilderTy &Builder = CGF.Builder;
2765
2766  llvm::IntegerType *i8 = CGF.Int8Ty;
2767  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2768  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2769  llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2770
2771  // 0-31: r0-31, the 8-byte general-purpose registers
2772  AssignToArrayRange(Builder, Address, Eight8, 0, 31);
2773
2774  // 32-63: fp0-31, the 8-byte floating-point registers
2775  AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2776
2777  // 64-76 are various 4-byte special-purpose registers:
2778  // 64: mq
2779  // 65: lr
2780  // 66: ctr
2781  // 67: ap
2782  // 68-75 cr0-7
2783  // 76: xer
2784  AssignToArrayRange(Builder, Address, Four8, 64, 76);
2785
2786  // 77-108: v0-31, the 16-byte vector registers
2787  AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2788
2789  // 109: vrsave
2790  // 110: vscr
2791  // 111: spe_acc
2792  // 112: spefscr
2793  // 113: sfp
2794  AssignToArrayRange(Builder, Address, Four8, 109, 113);
2795
2796  return false;
2797}
2798
2799bool
2800PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
2801  CodeGen::CodeGenFunction &CGF,
2802  llvm::Value *Address) const {
2803
2804  return PPC64_initDwarfEHRegSizeTable(CGF, Address);
2805}
2806
2807bool
2808PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2809                                                llvm::Value *Address) const {
2810
2811  return PPC64_initDwarfEHRegSizeTable(CGF, Address);
2812}
2813
2814//===----------------------------------------------------------------------===//
2815// ARM ABI Implementation
2816//===----------------------------------------------------------------------===//
2817
2818namespace {
2819
2820class ARMABIInfo : public ABIInfo {
2821public:
2822  enum ABIKind {
2823    APCS = 0,
2824    AAPCS = 1,
2825    AAPCS_VFP
2826  };
2827
2828private:
2829  ABIKind Kind;
2830
2831public:
2832  ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {}
2833
2834  bool isEABI() const {
2835    StringRef Env =
2836      getContext().getTargetInfo().getTriple().getEnvironmentName();
2837    return (Env == "gnueabi" || Env == "eabi" ||
2838            Env == "android" || Env == "androideabi");
2839  }
2840
2841private:
2842  ABIKind getABIKind() const { return Kind; }
2843
2844  ABIArgInfo classifyReturnType(QualType RetTy) const;
2845  ABIArgInfo classifyArgumentType(QualType RetTy) const;
2846  bool isIllegalVectorType(QualType Ty) const;
2847
2848  virtual void computeInfo(CGFunctionInfo &FI) const;
2849
2850  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2851                                 CodeGenFunction &CGF) const;
2852};
2853
2854class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
2855public:
2856  ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
2857    :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
2858
2859  const ARMABIInfo &getABIInfo() const {
2860    return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
2861  }
2862
2863  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2864    return 13;
2865  }
2866
2867  StringRef getARCRetainAutoreleasedReturnValueMarker() const {
2868    return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
2869  }
2870
2871  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2872                               llvm::Value *Address) const {
2873    llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
2874
2875    // 0-15 are the 16 integer registers.
2876    AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
2877    return false;
2878  }
2879
2880  unsigned getSizeOfUnwindException() const {
2881    if (getABIInfo().isEABI()) return 88;
2882    return TargetCodeGenInfo::getSizeOfUnwindException();
2883  }
2884};
2885
2886}
2887
2888void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
2889  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2890  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2891       it != ie; ++it)
2892    it->info = classifyArgumentType(it->type);
2893
2894  // Always honor user-specified calling convention.
2895  if (FI.getCallingConvention() != llvm::CallingConv::C)
2896    return;
2897
2898  // Calling convention as default by an ABI.
2899  llvm::CallingConv::ID DefaultCC;
2900  if (isEABI())
2901    DefaultCC = llvm::CallingConv::ARM_AAPCS;
2902  else
2903    DefaultCC = llvm::CallingConv::ARM_APCS;
2904
2905  // If user did not ask for specific calling convention explicitly (e.g. via
2906  // pcs attribute), set effective calling convention if it's different than ABI
2907  // default.
2908  switch (getABIKind()) {
2909  case APCS:
2910    if (DefaultCC != llvm::CallingConv::ARM_APCS)
2911      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
2912    break;
2913  case AAPCS:
2914    if (DefaultCC != llvm::CallingConv::ARM_AAPCS)
2915      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
2916    break;
2917  case AAPCS_VFP:
2918    if (DefaultCC != llvm::CallingConv::ARM_AAPCS_VFP)
2919      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
2920    break;
2921  }
2922}
2923
2924/// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous
2925/// aggregate.  If HAMembers is non-null, the number of base elements
2926/// contained in the type is returned through it; this is used for the
2927/// recursive calls that check aggregate component types.
2928static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
2929                                   ASTContext &Context,
2930                                   uint64_t *HAMembers = 0) {
2931  uint64_t Members = 0;
2932  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2933    if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members))
2934      return false;
2935    Members *= AT->getSize().getZExtValue();
2936  } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
2937    const RecordDecl *RD = RT->getDecl();
2938    if (RD->hasFlexibleArrayMember())
2939      return false;
2940
2941    Members = 0;
2942    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2943         i != e; ++i) {
2944      const FieldDecl *FD = *i;
2945      uint64_t FldMembers;
2946      if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers))
2947        return false;
2948
2949      Members = (RD->isUnion() ?
2950                 std::max(Members, FldMembers) : Members + FldMembers);
2951    }
2952  } else {
2953    Members = 1;
2954    if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2955      Members = 2;
2956      Ty = CT->getElementType();
2957    }
2958
2959    // Homogeneous aggregates for AAPCS-VFP must have base types of float,
2960    // double, or 64-bit or 128-bit vectors.
2961    if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2962      if (BT->getKind() != BuiltinType::Float &&
2963          BT->getKind() != BuiltinType::Double &&
2964          BT->getKind() != BuiltinType::LongDouble)
2965        return false;
2966    } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
2967      unsigned VecSize = Context.getTypeSize(VT);
2968      if (VecSize != 64 && VecSize != 128)
2969        return false;
2970    } else {
2971      return false;
2972    }
2973
2974    // The base type must be the same for all members.  Vector types of the
2975    // same total size are treated as being equivalent here.
2976    const Type *TyPtr = Ty.getTypePtr();
2977    if (!Base)
2978      Base = TyPtr;
2979    if (Base != TyPtr &&
2980        (!Base->isVectorType() || !TyPtr->isVectorType() ||
2981         Context.getTypeSize(Base) != Context.getTypeSize(TyPtr)))
2982      return false;
2983  }
2984
2985  // Homogeneous Aggregates can have at most 4 members of the base type.
2986  if (HAMembers)
2987    *HAMembers = Members;
2988
2989  return (Members > 0 && Members <= 4);
2990}
2991
2992ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty) const {
2993  // Handle illegal vector types here.
2994  if (isIllegalVectorType(Ty)) {
2995    uint64_t Size = getContext().getTypeSize(Ty);
2996    if (Size <= 32) {
2997      llvm::Type *ResType =
2998          llvm::Type::getInt32Ty(getVMContext());
2999      return ABIArgInfo::getDirect(ResType);
3000    }
3001    if (Size == 64) {
3002      llvm::Type *ResType = llvm::VectorType::get(
3003          llvm::Type::getInt32Ty(getVMContext()), 2);
3004      return ABIArgInfo::getDirect(ResType);
3005    }
3006    if (Size == 128) {
3007      llvm::Type *ResType = llvm::VectorType::get(
3008          llvm::Type::getInt32Ty(getVMContext()), 4);
3009      return ABIArgInfo::getDirect(ResType);
3010    }
3011    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3012  }
3013
3014  if (!isAggregateTypeForABI(Ty)) {
3015    // Treat an enum type as its underlying type.
3016    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3017      Ty = EnumTy->getDecl()->getIntegerType();
3018
3019    return (Ty->isPromotableIntegerType() ?
3020            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3021  }
3022
3023  // Ignore empty records.
3024  if (isEmptyRecord(getContext(), Ty, true))
3025    return ABIArgInfo::getIgnore();
3026
3027  // Structures with either a non-trivial destructor or a non-trivial
3028  // copy constructor are always indirect.
3029  if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
3030    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3031
3032  if (getABIKind() == ARMABIInfo::AAPCS_VFP) {
3033    // Homogeneous Aggregates need to be expanded.
3034    const Type *Base = 0;
3035    if (isHomogeneousAggregate(Ty, Base, getContext())) {
3036      assert(Base && "Base class should be set for homogeneous aggregate");
3037      return ABIArgInfo::getExpand();
3038    }
3039  }
3040
3041  // Support byval for ARM.
3042  if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64) ||
3043      getContext().getTypeAlign(Ty) > 64) {
3044    return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
3045  }
3046
3047  // Otherwise, pass by coercing to a structure of the appropriate size.
3048  llvm::Type* ElemTy;
3049  unsigned SizeRegs;
3050  // FIXME: Try to match the types of the arguments more accurately where
3051  // we can.
3052  if (getContext().getTypeAlign(Ty) <= 32) {
3053    ElemTy = llvm::Type::getInt32Ty(getVMContext());
3054    SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
3055  } else {
3056    ElemTy = llvm::Type::getInt64Ty(getVMContext());
3057    SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
3058  }
3059
3060  llvm::Type *STy =
3061    llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL);
3062  return ABIArgInfo::getDirect(STy);
3063}
3064
3065static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
3066                              llvm::LLVMContext &VMContext) {
3067  // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
3068  // is called integer-like if its size is less than or equal to one word, and
3069  // the offset of each of its addressable sub-fields is zero.
3070
3071  uint64_t Size = Context.getTypeSize(Ty);
3072
3073  // Check that the type fits in a word.
3074  if (Size > 32)
3075    return false;
3076
3077  // FIXME: Handle vector types!
3078  if (Ty->isVectorType())
3079    return false;
3080
3081  // Float types are never treated as "integer like".
3082  if (Ty->isRealFloatingType())
3083    return false;
3084
3085  // If this is a builtin or pointer type then it is ok.
3086  if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
3087    return true;
3088
3089  // Small complex integer types are "integer like".
3090  if (const ComplexType *CT = Ty->getAs<ComplexType>())
3091    return isIntegerLikeType(CT->getElementType(), Context, VMContext);
3092
3093  // Single element and zero sized arrays should be allowed, by the definition
3094  // above, but they are not.
3095
3096  // Otherwise, it must be a record type.
3097  const RecordType *RT = Ty->getAs<RecordType>();
3098  if (!RT) return false;
3099
3100  // Ignore records with flexible arrays.
3101  const RecordDecl *RD = RT->getDecl();
3102  if (RD->hasFlexibleArrayMember())
3103    return false;
3104
3105  // Check that all sub-fields are at offset 0, and are themselves "integer
3106  // like".
3107  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3108
3109  bool HadField = false;
3110  unsigned idx = 0;
3111  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3112       i != e; ++i, ++idx) {
3113    const FieldDecl *FD = *i;
3114
3115    // Bit-fields are not addressable, we only need to verify they are "integer
3116    // like". We still have to disallow a subsequent non-bitfield, for example:
3117    //   struct { int : 0; int x }
3118    // is non-integer like according to gcc.
3119    if (FD->isBitField()) {
3120      if (!RD->isUnion())
3121        HadField = true;
3122
3123      if (!isIntegerLikeType(FD->getType(), Context, VMContext))
3124        return false;
3125
3126      continue;
3127    }
3128
3129    // Check if this field is at offset 0.
3130    if (Layout.getFieldOffset(idx) != 0)
3131      return false;
3132
3133    if (!isIntegerLikeType(FD->getType(), Context, VMContext))
3134      return false;
3135
3136    // Only allow at most one field in a structure. This doesn't match the
3137    // wording above, but follows gcc in situations with a field following an
3138    // empty structure.
3139    if (!RD->isUnion()) {
3140      if (HadField)
3141        return false;
3142
3143      HadField = true;
3144    }
3145  }
3146
3147  return true;
3148}
3149
3150ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
3151  if (RetTy->isVoidType())
3152    return ABIArgInfo::getIgnore();
3153
3154  // Large vector types should be returned via memory.
3155  if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
3156    return ABIArgInfo::getIndirect(0);
3157
3158  if (!isAggregateTypeForABI(RetTy)) {
3159    // Treat an enum type as its underlying type.
3160    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3161      RetTy = EnumTy->getDecl()->getIntegerType();
3162
3163    return (RetTy->isPromotableIntegerType() ?
3164            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3165  }
3166
3167  // Structures with either a non-trivial destructor or a non-trivial
3168  // copy constructor are always indirect.
3169  if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
3170    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3171
3172  // Are we following APCS?
3173  if (getABIKind() == APCS) {
3174    if (isEmptyRecord(getContext(), RetTy, false))
3175      return ABIArgInfo::getIgnore();
3176
3177    // Complex types are all returned as packed integers.
3178    //
3179    // FIXME: Consider using 2 x vector types if the back end handles them
3180    // correctly.
3181    if (RetTy->isAnyComplexType())
3182      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3183                                              getContext().getTypeSize(RetTy)));
3184
3185    // Integer like structures are returned in r0.
3186    if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
3187      // Return in the smallest viable integer type.
3188      uint64_t Size = getContext().getTypeSize(RetTy);
3189      if (Size <= 8)
3190        return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3191      if (Size <= 16)
3192        return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3193      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3194    }
3195
3196    // Otherwise return in memory.
3197    return ABIArgInfo::getIndirect(0);
3198  }
3199
3200  // Otherwise this is an AAPCS variant.
3201
3202  if (isEmptyRecord(getContext(), RetTy, true))
3203    return ABIArgInfo::getIgnore();
3204
3205  // Check for homogeneous aggregates with AAPCS-VFP.
3206  if (getABIKind() == AAPCS_VFP) {
3207    const Type *Base = 0;
3208    if (isHomogeneousAggregate(RetTy, Base, getContext())) {
3209      assert(Base && "Base class should be set for homogeneous aggregate");
3210      // Homogeneous Aggregates are returned directly.
3211      return ABIArgInfo::getDirect();
3212    }
3213  }
3214
3215  // Aggregates <= 4 bytes are returned in r0; other aggregates
3216  // are returned indirectly.
3217  uint64_t Size = getContext().getTypeSize(RetTy);
3218  if (Size <= 32) {
3219    // Return in the smallest viable integer type.
3220    if (Size <= 8)
3221      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3222    if (Size <= 16)
3223      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3224    return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3225  }
3226
3227  return ABIArgInfo::getIndirect(0);
3228}
3229
3230/// isIllegalVector - check whether Ty is an illegal vector type.
3231bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
3232  if (const VectorType *VT = Ty->getAs<VectorType>()) {
3233    // Check whether VT is legal.
3234    unsigned NumElements = VT->getNumElements();
3235    uint64_t Size = getContext().getTypeSize(VT);
3236    // NumElements should be power of 2.
3237    if ((NumElements & (NumElements - 1)) != 0)
3238      return true;
3239    // Size should be greater than 32 bits.
3240    return Size <= 32;
3241  }
3242  return false;
3243}
3244
3245llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3246                                   CodeGenFunction &CGF) const {
3247  llvm::Type *BP = CGF.Int8PtrTy;
3248  llvm::Type *BPP = CGF.Int8PtrPtrTy;
3249
3250  CGBuilderTy &Builder = CGF.Builder;
3251  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3252  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3253
3254  uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
3255  uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
3256  bool IsIndirect = false;
3257
3258  // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
3259  // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
3260  if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
3261      getABIKind() == ARMABIInfo::AAPCS)
3262    TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
3263  else
3264    TyAlign = 4;
3265  // Use indirect if size of the illegal vector is bigger than 16 bytes.
3266  if (isIllegalVectorType(Ty) && Size > 16) {
3267    IsIndirect = true;
3268    Size = 4;
3269    TyAlign = 4;
3270  }
3271
3272  // Handle address alignment for ABI alignment > 4 bytes.
3273  if (TyAlign > 4) {
3274    assert((TyAlign & (TyAlign - 1)) == 0 &&
3275           "Alignment is not power of 2!");
3276    llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
3277    AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
3278    AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
3279    Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
3280  }
3281
3282  uint64_t Offset =
3283    llvm::RoundUpToAlignment(Size, 4);
3284  llvm::Value *NextAddr =
3285    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
3286                      "ap.next");
3287  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3288
3289  if (IsIndirect)
3290    Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
3291  else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) {
3292    // We can't directly cast ap.cur to pointer to a vector type, since ap.cur
3293    // may not be correctly aligned for the vector type. We create an aligned
3294    // temporary space and copy the content over from ap.cur to the temporary
3295    // space. This is necessary if the natural alignment of the type is greater
3296    // than the ABI alignment.
3297    llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
3298    CharUnits CharSize = getContext().getTypeSizeInChars(Ty);
3299    llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty),
3300                                                    "var.align");
3301    llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
3302    llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy);
3303    Builder.CreateMemCpy(Dst, Src,
3304        llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()),
3305        TyAlign, false);
3306    Addr = AlignedTemp; //The content is in aligned location.
3307  }
3308  llvm::Type *PTy =
3309    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3310  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
3311
3312  return AddrTyped;
3313}
3314
3315namespace {
3316
3317class NaClARMABIInfo : public ABIInfo {
3318 public:
3319  NaClARMABIInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
3320      : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, Kind) {}
3321  virtual void computeInfo(CGFunctionInfo &FI) const;
3322  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3323                                 CodeGenFunction &CGF) const;
3324 private:
3325  PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv.
3326  ARMABIInfo NInfo; // Used for everything else.
3327};
3328
3329class NaClARMTargetCodeGenInfo : public TargetCodeGenInfo  {
3330 public:
3331  NaClARMTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
3332      : TargetCodeGenInfo(new NaClARMABIInfo(CGT, Kind)) {}
3333};
3334
3335}
3336
3337void NaClARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
3338  if (FI.getASTCallingConvention() == CC_PnaclCall)
3339    PInfo.computeInfo(FI);
3340  else
3341    static_cast<const ABIInfo&>(NInfo).computeInfo(FI);
3342}
3343
3344llvm::Value *NaClARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3345                                       CodeGenFunction &CGF) const {
3346  // Always use the native convention; calling pnacl-style varargs functions
3347  // is unsupported.
3348  return static_cast<const ABIInfo&>(NInfo).EmitVAArg(VAListAddr, Ty, CGF);
3349}
3350
3351//===----------------------------------------------------------------------===//
3352// NVPTX ABI Implementation
3353//===----------------------------------------------------------------------===//
3354
3355namespace {
3356
3357class NVPTXABIInfo : public ABIInfo {
3358public:
3359  NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
3360
3361  ABIArgInfo classifyReturnType(QualType RetTy) const;
3362  ABIArgInfo classifyArgumentType(QualType Ty) const;
3363
3364  virtual void computeInfo(CGFunctionInfo &FI) const;
3365  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3366                                 CodeGenFunction &CFG) const;
3367};
3368
3369class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
3370public:
3371  NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
3372    : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
3373
3374  virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3375                                   CodeGen::CodeGenModule &M) const;
3376};
3377
3378ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
3379  if (RetTy->isVoidType())
3380    return ABIArgInfo::getIgnore();
3381  if (isAggregateTypeForABI(RetTy))
3382    return ABIArgInfo::getIndirect(0);
3383  return ABIArgInfo::getDirect();
3384}
3385
3386ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
3387  if (isAggregateTypeForABI(Ty))
3388    return ABIArgInfo::getIndirect(0);
3389
3390  return ABIArgInfo::getDirect();
3391}
3392
3393void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
3394  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3395  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3396       it != ie; ++it)
3397    it->info = classifyArgumentType(it->type);
3398
3399  // Always honor user-specified calling convention.
3400  if (FI.getCallingConvention() != llvm::CallingConv::C)
3401    return;
3402
3403  // Calling convention as default by an ABI.
3404  // We're still using the PTX_Kernel/PTX_Device calling conventions here,
3405  // but we should switch to NVVM metadata later on.
3406  llvm::CallingConv::ID DefaultCC;
3407  const LangOptions &LangOpts = getContext().getLangOpts();
3408  if (LangOpts.OpenCL || LangOpts.CUDA) {
3409    // If we are in OpenCL or CUDA mode, then default to device functions
3410    DefaultCC = llvm::CallingConv::PTX_Device;
3411  } else {
3412    // If we are in standard C/C++ mode, use the triple to decide on the default
3413    StringRef Env =
3414      getContext().getTargetInfo().getTriple().getEnvironmentName();
3415    if (Env == "device")
3416      DefaultCC = llvm::CallingConv::PTX_Device;
3417    else
3418      DefaultCC = llvm::CallingConv::PTX_Kernel;
3419  }
3420  FI.setEffectiveCallingConvention(DefaultCC);
3421
3422}
3423
3424llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3425                                     CodeGenFunction &CFG) const {
3426  llvm_unreachable("NVPTX does not support varargs");
3427}
3428
3429void NVPTXTargetCodeGenInfo::
3430SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3431                    CodeGen::CodeGenModule &M) const{
3432  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3433  if (!FD) return;
3434
3435  llvm::Function *F = cast<llvm::Function>(GV);
3436
3437  // Perform special handling in OpenCL mode
3438  if (M.getLangOpts().OpenCL) {
3439    // Use OpenCL function attributes to set proper calling conventions
3440    // By default, all functions are device functions
3441    if (FD->hasAttr<OpenCLKernelAttr>()) {
3442      // OpenCL __kernel functions get a kernel calling convention
3443      F->setCallingConv(llvm::CallingConv::PTX_Kernel);
3444      // And kernel functions are not subject to inlining
3445      F->addFnAttr(llvm::Attributes::NoInline);
3446    }
3447  }
3448
3449  // Perform special handling in CUDA mode.
3450  if (M.getLangOpts().CUDA) {
3451    // CUDA __global__ functions get a kernel calling convention.  Since
3452    // __global__ functions cannot be called from the device, we do not
3453    // need to set the noinline attribute.
3454    if (FD->getAttr<CUDAGlobalAttr>())
3455      F->setCallingConv(llvm::CallingConv::PTX_Kernel);
3456  }
3457}
3458
3459}
3460
3461//===----------------------------------------------------------------------===//
3462// MBlaze ABI Implementation
3463//===----------------------------------------------------------------------===//
3464
3465namespace {
3466
3467class MBlazeABIInfo : public ABIInfo {
3468public:
3469  MBlazeABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
3470
3471  bool isPromotableIntegerType(QualType Ty) const;
3472
3473  ABIArgInfo classifyReturnType(QualType RetTy) const;
3474  ABIArgInfo classifyArgumentType(QualType RetTy) const;
3475
3476  virtual void computeInfo(CGFunctionInfo &FI) const {
3477    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3478    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3479         it != ie; ++it)
3480      it->info = classifyArgumentType(it->type);
3481  }
3482
3483  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3484                                 CodeGenFunction &CGF) const;
3485};
3486
3487class MBlazeTargetCodeGenInfo : public TargetCodeGenInfo {
3488public:
3489  MBlazeTargetCodeGenInfo(CodeGenTypes &CGT)
3490    : TargetCodeGenInfo(new MBlazeABIInfo(CGT)) {}
3491  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3492                           CodeGen::CodeGenModule &M) const;
3493};
3494
3495}
3496
3497bool MBlazeABIInfo::isPromotableIntegerType(QualType Ty) const {
3498  // MBlaze ABI requires all 8 and 16 bit quantities to be extended.
3499  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
3500    switch (BT->getKind()) {
3501    case BuiltinType::Bool:
3502    case BuiltinType::Char_S:
3503    case BuiltinType::Char_U:
3504    case BuiltinType::SChar:
3505    case BuiltinType::UChar:
3506    case BuiltinType::Short:
3507    case BuiltinType::UShort:
3508      return true;
3509    default:
3510      return false;
3511    }
3512  return false;
3513}
3514
3515llvm::Value *MBlazeABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3516                                      CodeGenFunction &CGF) const {
3517  // FIXME: Implement
3518  return 0;
3519}
3520
3521
3522ABIArgInfo MBlazeABIInfo::classifyReturnType(QualType RetTy) const {
3523  if (RetTy->isVoidType())
3524    return ABIArgInfo::getIgnore();
3525  if (isAggregateTypeForABI(RetTy))
3526    return ABIArgInfo::getIndirect(0);
3527
3528  return (isPromotableIntegerType(RetTy) ?
3529          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3530}
3531
3532ABIArgInfo MBlazeABIInfo::classifyArgumentType(QualType Ty) const {
3533  if (isAggregateTypeForABI(Ty))
3534    return ABIArgInfo::getIndirect(0);
3535
3536  return (isPromotableIntegerType(Ty) ?
3537          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3538}
3539
3540void MBlazeTargetCodeGenInfo::SetTargetAttributes(const Decl *D,
3541                                                  llvm::GlobalValue *GV,
3542                                                  CodeGen::CodeGenModule &M)
3543                                                  const {
3544  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3545  if (!FD) return;
3546
3547  llvm::CallingConv::ID CC = llvm::CallingConv::C;
3548  if (FD->hasAttr<MBlazeInterruptHandlerAttr>())
3549    CC = llvm::CallingConv::MBLAZE_INTR;
3550  else if (FD->hasAttr<MBlazeSaveVolatilesAttr>())
3551    CC = llvm::CallingConv::MBLAZE_SVOL;
3552
3553  if (CC != llvm::CallingConv::C) {
3554      // Handle 'interrupt_handler' attribute:
3555      llvm::Function *F = cast<llvm::Function>(GV);
3556
3557      // Step 1: Set ISR calling convention.
3558      F->setCallingConv(CC);
3559
3560      // Step 2: Add attributes goodness.
3561      F->addFnAttr(llvm::Attributes::NoInline);
3562  }
3563
3564  // Step 3: Emit _interrupt_handler alias.
3565  if (CC == llvm::CallingConv::MBLAZE_INTR)
3566    new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
3567                          "_interrupt_handler", GV, &M.getModule());
3568}
3569
3570
3571//===----------------------------------------------------------------------===//
3572// MSP430 ABI Implementation
3573//===----------------------------------------------------------------------===//
3574
3575namespace {
3576
3577class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
3578public:
3579  MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
3580    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
3581  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3582                           CodeGen::CodeGenModule &M) const;
3583};
3584
3585}
3586
3587void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
3588                                                  llvm::GlobalValue *GV,
3589                                             CodeGen::CodeGenModule &M) const {
3590  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3591    if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
3592      // Handle 'interrupt' attribute:
3593      llvm::Function *F = cast<llvm::Function>(GV);
3594
3595      // Step 1: Set ISR calling convention.
3596      F->setCallingConv(llvm::CallingConv::MSP430_INTR);
3597
3598      // Step 2: Add attributes goodness.
3599      F->addFnAttr(llvm::Attributes::NoInline);
3600
3601      // Step 3: Emit ISR vector alias.
3602      unsigned Num = attr->getNumber() + 0xffe0;
3603      new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
3604                            "vector_" + Twine::utohexstr(Num),
3605                            GV, &M.getModule());
3606    }
3607  }
3608}
3609
3610//===----------------------------------------------------------------------===//
3611// MIPS ABI Implementation.  This works for both little-endian and
3612// big-endian variants.
3613//===----------------------------------------------------------------------===//
3614
3615namespace {
3616class MipsABIInfo : public ABIInfo {
3617  bool IsO32;
3618  unsigned MinABIStackAlignInBytes, StackAlignInBytes;
3619  void CoerceToIntArgs(uint64_t TySize,
3620                       SmallVector<llvm::Type*, 8> &ArgList) const;
3621  llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
3622  llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
3623  llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
3624public:
3625  MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
3626    ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
3627    StackAlignInBytes(IsO32 ? 8 : 16) {}
3628
3629  ABIArgInfo classifyReturnType(QualType RetTy) const;
3630  ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
3631  virtual void computeInfo(CGFunctionInfo &FI) const;
3632  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3633                                 CodeGenFunction &CGF) const;
3634};
3635
3636class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
3637  unsigned SizeOfUnwindException;
3638public:
3639  MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
3640    : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
3641      SizeOfUnwindException(IsO32 ? 24 : 32) {}
3642
3643  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
3644    return 29;
3645  }
3646
3647  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3648                               llvm::Value *Address) const;
3649
3650  unsigned getSizeOfUnwindException() const {
3651    return SizeOfUnwindException;
3652  }
3653};
3654}
3655
3656void MipsABIInfo::CoerceToIntArgs(uint64_t TySize,
3657                                  SmallVector<llvm::Type*, 8> &ArgList) const {
3658  llvm::IntegerType *IntTy =
3659    llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
3660
3661  // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
3662  for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
3663    ArgList.push_back(IntTy);
3664
3665  // If necessary, add one more integer type to ArgList.
3666  unsigned R = TySize % (MinABIStackAlignInBytes * 8);
3667
3668  if (R)
3669    ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
3670}
3671
3672// In N32/64, an aligned double precision floating point field is passed in
3673// a register.
3674llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
3675  SmallVector<llvm::Type*, 8> ArgList, IntArgList;
3676
3677  if (IsO32) {
3678    CoerceToIntArgs(TySize, ArgList);
3679    return llvm::StructType::get(getVMContext(), ArgList);
3680  }
3681
3682  if (Ty->isComplexType())
3683    return CGT.ConvertType(Ty);
3684
3685  const RecordType *RT = Ty->getAs<RecordType>();
3686
3687  // Unions/vectors are passed in integer registers.
3688  if (!RT || !RT->isStructureOrClassType()) {
3689    CoerceToIntArgs(TySize, ArgList);
3690    return llvm::StructType::get(getVMContext(), ArgList);
3691  }
3692
3693  const RecordDecl *RD = RT->getDecl();
3694  const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3695  assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
3696
3697  uint64_t LastOffset = 0;
3698  unsigned idx = 0;
3699  llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
3700
3701  // Iterate over fields in the struct/class and check if there are any aligned
3702  // double fields.
3703  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3704       i != e; ++i, ++idx) {
3705    const QualType Ty = i->getType();
3706    const BuiltinType *BT = Ty->getAs<BuiltinType>();
3707
3708    if (!BT || BT->getKind() != BuiltinType::Double)
3709      continue;
3710
3711    uint64_t Offset = Layout.getFieldOffset(idx);
3712    if (Offset % 64) // Ignore doubles that are not aligned.
3713      continue;
3714
3715    // Add ((Offset - LastOffset) / 64) args of type i64.
3716    for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
3717      ArgList.push_back(I64);
3718
3719    // Add double type.
3720    ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
3721    LastOffset = Offset + 64;
3722  }
3723
3724  CoerceToIntArgs(TySize - LastOffset, IntArgList);
3725  ArgList.append(IntArgList.begin(), IntArgList.end());
3726
3727  return llvm::StructType::get(getVMContext(), ArgList);
3728}
3729
3730llvm::Type *MipsABIInfo::getPaddingType(uint64_t Align, uint64_t Offset) const {
3731  assert((Offset % MinABIStackAlignInBytes) == 0);
3732
3733  if ((Align - 1) & Offset)
3734    return llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
3735
3736  return 0;
3737}
3738
3739ABIArgInfo
3740MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
3741  uint64_t OrigOffset = Offset;
3742  uint64_t TySize = getContext().getTypeSize(Ty);
3743  uint64_t Align = getContext().getTypeAlign(Ty) / 8;
3744
3745  Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
3746                   (uint64_t)StackAlignInBytes);
3747  Offset = llvm::RoundUpToAlignment(Offset, Align);
3748  Offset += llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
3749
3750  if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
3751    // Ignore empty aggregates.
3752    if (TySize == 0)
3753      return ABIArgInfo::getIgnore();
3754
3755    // Records with non trivial destructors/constructors should not be passed
3756    // by value.
3757    if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty)) {
3758      Offset = OrigOffset + MinABIStackAlignInBytes;
3759      return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3760    }
3761
3762    // If we have reached here, aggregates are passed directly by coercing to
3763    // another structure type. Padding is inserted if the offset of the
3764    // aggregate is unaligned.
3765    return ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
3766                                 getPaddingType(Align, OrigOffset));
3767  }
3768
3769  // Treat an enum type as its underlying type.
3770  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3771    Ty = EnumTy->getDecl()->getIntegerType();
3772
3773  if (Ty->isPromotableIntegerType())
3774    return ABIArgInfo::getExtend();
3775
3776  return ABIArgInfo::getDirect(0, 0, getPaddingType(Align, OrigOffset));
3777}
3778
3779llvm::Type*
3780MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
3781  const RecordType *RT = RetTy->getAs<RecordType>();
3782  SmallVector<llvm::Type*, 8> RTList;
3783
3784  if (RT && RT->isStructureOrClassType()) {
3785    const RecordDecl *RD = RT->getDecl();
3786    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3787    unsigned FieldCnt = Layout.getFieldCount();
3788
3789    // N32/64 returns struct/classes in floating point registers if the
3790    // following conditions are met:
3791    // 1. The size of the struct/class is no larger than 128-bit.
3792    // 2. The struct/class has one or two fields all of which are floating
3793    //    point types.
3794    // 3. The offset of the first field is zero (this follows what gcc does).
3795    //
3796    // Any other composite results are returned in integer registers.
3797    //
3798    if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
3799      RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
3800      for (; b != e; ++b) {
3801        const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
3802
3803        if (!BT || !BT->isFloatingPoint())
3804          break;
3805
3806        RTList.push_back(CGT.ConvertType(b->getType()));
3807      }
3808
3809      if (b == e)
3810        return llvm::StructType::get(getVMContext(), RTList,
3811                                     RD->hasAttr<PackedAttr>());
3812
3813      RTList.clear();
3814    }
3815  }
3816
3817  CoerceToIntArgs(Size, RTList);
3818  return llvm::StructType::get(getVMContext(), RTList);
3819}
3820
3821ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
3822  uint64_t Size = getContext().getTypeSize(RetTy);
3823
3824  if (RetTy->isVoidType() || Size == 0)
3825    return ABIArgInfo::getIgnore();
3826
3827  if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
3828    if (Size <= 128) {
3829      if (RetTy->isAnyComplexType())
3830        return ABIArgInfo::getDirect();
3831
3832      // O32 returns integer vectors in registers.
3833      if (IsO32 && RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())
3834        return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
3835
3836      if (!IsO32 && !isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
3837        return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
3838    }
3839
3840    return ABIArgInfo::getIndirect(0);
3841  }
3842
3843  // Treat an enum type as its underlying type.
3844  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3845    RetTy = EnumTy->getDecl()->getIntegerType();
3846
3847  return (RetTy->isPromotableIntegerType() ?
3848          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3849}
3850
3851void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
3852  ABIArgInfo &RetInfo = FI.getReturnInfo();
3853  RetInfo = classifyReturnType(FI.getReturnType());
3854
3855  // Check if a pointer to an aggregate is passed as a hidden argument.
3856  uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
3857
3858  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3859       it != ie; ++it)
3860    it->info = classifyArgumentType(it->type, Offset);
3861}
3862
3863llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3864                                    CodeGenFunction &CGF) const {
3865  llvm::Type *BP = CGF.Int8PtrTy;
3866  llvm::Type *BPP = CGF.Int8PtrPtrTy;
3867
3868  CGBuilderTy &Builder = CGF.Builder;
3869  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3870  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3871  int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8;
3872  llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3873  llvm::Value *AddrTyped;
3874  unsigned PtrWidth = getContext().getTargetInfo().getPointerWidth(0);
3875  llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
3876
3877  if (TypeAlign > MinABIStackAlignInBytes) {
3878    llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
3879    llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
3880    llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
3881    llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
3882    llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
3883    AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
3884  }
3885  else
3886    AddrTyped = Builder.CreateBitCast(Addr, PTy);
3887
3888  llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
3889  TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
3890  uint64_t Offset =
3891    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign);
3892  llvm::Value *NextAddr =
3893    Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
3894                      "ap.next");
3895  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3896
3897  return AddrTyped;
3898}
3899
3900bool
3901MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3902                                               llvm::Value *Address) const {
3903  // This information comes from gcc's implementation, which seems to
3904  // as canonical as it gets.
3905
3906  // Everything on MIPS is 4 bytes.  Double-precision FP registers
3907  // are aliased to pairs of single-precision FP registers.
3908  llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
3909
3910  // 0-31 are the general purpose registers, $0 - $31.
3911  // 32-63 are the floating-point registers, $f0 - $f31.
3912  // 64 and 65 are the multiply/divide registers, $hi and $lo.
3913  // 66 is the (notional, I think) register for signal-handler return.
3914  AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
3915
3916  // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
3917  // They are one bit wide and ignored here.
3918
3919  // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
3920  // (coprocessor 1 is the FP unit)
3921  // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
3922  // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
3923  // 176-181 are the DSP accumulator registers.
3924  AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
3925  return false;
3926}
3927
3928//===----------------------------------------------------------------------===//
3929// TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
3930// Currently subclassed only to implement custom OpenCL C function attribute
3931// handling.
3932//===----------------------------------------------------------------------===//
3933
3934namespace {
3935
3936class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
3937public:
3938  TCETargetCodeGenInfo(CodeGenTypes &CGT)
3939    : DefaultTargetCodeGenInfo(CGT) {}
3940
3941  virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3942                                   CodeGen::CodeGenModule &M) const;
3943};
3944
3945void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
3946                                               llvm::GlobalValue *GV,
3947                                               CodeGen::CodeGenModule &M) const {
3948  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3949  if (!FD) return;
3950
3951  llvm::Function *F = cast<llvm::Function>(GV);
3952
3953  if (M.getLangOpts().OpenCL) {
3954    if (FD->hasAttr<OpenCLKernelAttr>()) {
3955      // OpenCL C Kernel functions are not subject to inlining
3956      F->addFnAttr(llvm::Attributes::NoInline);
3957
3958      if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
3959
3960        // Convert the reqd_work_group_size() attributes to metadata.
3961        llvm::LLVMContext &Context = F->getContext();
3962        llvm::NamedMDNode *OpenCLMetadata =
3963            M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
3964
3965        SmallVector<llvm::Value*, 5> Operands;
3966        Operands.push_back(F);
3967
3968        Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
3969                             llvm::APInt(32,
3970                             FD->getAttr<ReqdWorkGroupSizeAttr>()->getXDim())));
3971        Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
3972                             llvm::APInt(32,
3973                               FD->getAttr<ReqdWorkGroupSizeAttr>()->getYDim())));
3974        Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
3975                             llvm::APInt(32,
3976                               FD->getAttr<ReqdWorkGroupSizeAttr>()->getZDim())));
3977
3978        // Add a boolean constant operand for "required" (true) or "hint" (false)
3979        // for implementing the work_group_size_hint attr later. Currently
3980        // always true as the hint is not yet implemented.
3981        Operands.push_back(llvm::ConstantInt::getTrue(Context));
3982        OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
3983      }
3984    }
3985  }
3986}
3987
3988}
3989
3990//===----------------------------------------------------------------------===//
3991// Hexagon ABI Implementation
3992//===----------------------------------------------------------------------===//
3993
3994namespace {
3995
3996class HexagonABIInfo : public ABIInfo {
3997
3998
3999public:
4000  HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
4001
4002private:
4003
4004  ABIArgInfo classifyReturnType(QualType RetTy) const;
4005  ABIArgInfo classifyArgumentType(QualType RetTy) const;
4006
4007  virtual void computeInfo(CGFunctionInfo &FI) const;
4008
4009  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4010                                 CodeGenFunction &CGF) const;
4011};
4012
4013class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
4014public:
4015  HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
4016    :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
4017
4018  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
4019    return 29;
4020  }
4021};
4022
4023}
4024
4025void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
4026  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4027  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
4028       it != ie; ++it)
4029    it->info = classifyArgumentType(it->type);
4030}
4031
4032ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
4033  if (!isAggregateTypeForABI(Ty)) {
4034    // Treat an enum type as its underlying type.
4035    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4036      Ty = EnumTy->getDecl()->getIntegerType();
4037
4038    return (Ty->isPromotableIntegerType() ?
4039            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4040  }
4041
4042  // Ignore empty records.
4043  if (isEmptyRecord(getContext(), Ty, true))
4044    return ABIArgInfo::getIgnore();
4045
4046  // Structures with either a non-trivial destructor or a non-trivial
4047  // copy constructor are always indirect.
4048  if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
4049    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4050
4051  uint64_t Size = getContext().getTypeSize(Ty);
4052  if (Size > 64)
4053    return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
4054    // Pass in the smallest viable integer type.
4055  else if (Size > 32)
4056      return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
4057  else if (Size > 16)
4058      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4059  else if (Size > 8)
4060      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
4061  else
4062      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4063}
4064
4065ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
4066  if (RetTy->isVoidType())
4067    return ABIArgInfo::getIgnore();
4068
4069  // Large vector types should be returned via memory.
4070  if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
4071    return ABIArgInfo::getIndirect(0);
4072
4073  if (!isAggregateTypeForABI(RetTy)) {
4074    // Treat an enum type as its underlying type.
4075    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4076      RetTy = EnumTy->getDecl()->getIntegerType();
4077
4078    return (RetTy->isPromotableIntegerType() ?
4079            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4080  }
4081
4082  // Structures with either a non-trivial destructor or a non-trivial
4083  // copy constructor are always indirect.
4084  if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
4085    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4086
4087  if (isEmptyRecord(getContext(), RetTy, true))
4088    return ABIArgInfo::getIgnore();
4089
4090  // Aggregates <= 8 bytes are returned in r0; other aggregates
4091  // are returned indirectly.
4092  uint64_t Size = getContext().getTypeSize(RetTy);
4093  if (Size <= 64) {
4094    // Return in the smallest viable integer type.
4095    if (Size <= 8)
4096      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4097    if (Size <= 16)
4098      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
4099    if (Size <= 32)
4100      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4101    return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
4102  }
4103
4104  return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
4105}
4106
4107llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4108                                       CodeGenFunction &CGF) const {
4109  // FIXME: Need to handle alignment
4110  llvm::Type *BPP = CGF.Int8PtrPtrTy;
4111
4112  CGBuilderTy &Builder = CGF.Builder;
4113  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
4114                                                       "ap");
4115  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
4116  llvm::Type *PTy =
4117    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4118  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
4119
4120  uint64_t Offset =
4121    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
4122  llvm::Value *NextAddr =
4123    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
4124                      "ap.next");
4125  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
4126
4127  return AddrTyped;
4128}
4129
4130
4131const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
4132  if (TheTargetCodeGenInfo)
4133    return *TheTargetCodeGenInfo;
4134
4135  const llvm::Triple &Triple = getContext().getTargetInfo().getTriple();
4136  switch (Triple.getArch()) {
4137  default:
4138    return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
4139
4140  case llvm::Triple::le32:
4141    return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
4142  case llvm::Triple::mips:
4143  case llvm::Triple::mipsel:
4144    return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
4145
4146  case llvm::Triple::mips64:
4147  case llvm::Triple::mips64el:
4148    return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
4149
4150  case llvm::Triple::arm:
4151  case llvm::Triple::thumb:
4152    {
4153      ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
4154
4155      if (strcmp(getContext().getTargetInfo().getABI(), "apcs-gnu") == 0)
4156        Kind = ARMABIInfo::APCS;
4157      else if (CodeGenOpts.FloatABI == "hard")
4158        Kind = ARMABIInfo::AAPCS_VFP;
4159
4160      switch (Triple.getOS()) {
4161        case llvm::Triple::NativeClient:
4162          return *(TheTargetCodeGenInfo =
4163                   new NaClARMTargetCodeGenInfo(Types, Kind));
4164        default:
4165          return *(TheTargetCodeGenInfo =
4166                   new ARMTargetCodeGenInfo(Types, Kind));
4167      }
4168    }
4169
4170  case llvm::Triple::ppc:
4171    return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
4172  case llvm::Triple::ppc64:
4173    if (Triple.isOSBinFormatELF())
4174      return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types));
4175    else
4176      return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
4177
4178  case llvm::Triple::nvptx:
4179  case llvm::Triple::nvptx64:
4180    return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
4181
4182  case llvm::Triple::mblaze:
4183    return *(TheTargetCodeGenInfo = new MBlazeTargetCodeGenInfo(Types));
4184
4185  case llvm::Triple::msp430:
4186    return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
4187
4188  case llvm::Triple::tce:
4189    return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
4190
4191  case llvm::Triple::x86: {
4192    bool DisableMMX = strcmp(getContext().getTargetInfo().getABI(), "no-mmx") == 0;
4193
4194    if (Triple.isOSDarwin())
4195      return *(TheTargetCodeGenInfo =
4196               new X86_32TargetCodeGenInfo(Types, true, true, DisableMMX, false,
4197                                           CodeGenOpts.NumRegisterParameters));
4198
4199    switch (Triple.getOS()) {
4200    case llvm::Triple::Cygwin:
4201    case llvm::Triple::MinGW32:
4202    case llvm::Triple::AuroraUX:
4203    case llvm::Triple::DragonFly:
4204    case llvm::Triple::FreeBSD:
4205    case llvm::Triple::OpenBSD:
4206    case llvm::Triple::Bitrig:
4207      return *(TheTargetCodeGenInfo =
4208               new X86_32TargetCodeGenInfo(Types, false, true, DisableMMX,
4209                                           false,
4210                                           CodeGenOpts.NumRegisterParameters));
4211
4212    case llvm::Triple::Win32:
4213      return *(TheTargetCodeGenInfo =
4214               new X86_32TargetCodeGenInfo(Types, false, true, DisableMMX, true,
4215                                           CodeGenOpts.NumRegisterParameters));
4216
4217    default:
4218      return *(TheTargetCodeGenInfo =
4219               new X86_32TargetCodeGenInfo(Types, false, false, DisableMMX,
4220                                           false,
4221                                           CodeGenOpts.NumRegisterParameters));
4222    }
4223  }
4224
4225  case llvm::Triple::x86_64: {
4226    bool HasAVX = strcmp(getContext().getTargetInfo().getABI(), "avx") == 0;
4227
4228    switch (Triple.getOS()) {
4229    case llvm::Triple::Win32:
4230    case llvm::Triple::MinGW32:
4231    case llvm::Triple::Cygwin:
4232      return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
4233    case llvm::Triple::NativeClient:
4234      return *(TheTargetCodeGenInfo = new NaClX86_64TargetCodeGenInfo(Types, HasAVX));
4235    default:
4236      return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types,
4237                                                                  HasAVX));
4238    }
4239  }
4240  case llvm::Triple::hexagon:
4241    return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
4242  }
4243}
4244