TargetInfo.cpp revision 60e25804d14a52c173548f0f6c66d3d831cb901c
1//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// These classes wrap the information about a call or function
11// definition used to handle ABI compliancy.
12//
13//===----------------------------------------------------------------------===//
14
15#include "TargetInfo.h"
16#include "ABIInfo.h"
17#include "CodeGenFunction.h"
18#include "clang/AST/RecordLayout.h"
19#include "clang/Frontend/CodeGenOptions.h"
20#include "llvm/Type.h"
21#include "llvm/Target/TargetData.h"
22#include "llvm/ADT/Triple.h"
23#include "llvm/Support/raw_ostream.h"
24using namespace clang;
25using namespace CodeGen;
26
27static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
28                               llvm::Value *Array,
29                               llvm::Value *Value,
30                               unsigned FirstIndex,
31                               unsigned LastIndex) {
32  // Alternatively, we could emit this as a loop in the source.
33  for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
34    llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
35    Builder.CreateStore(Value, Cell);
36  }
37}
38
39static bool isAggregateTypeForABI(QualType T) {
40  return CodeGenFunction::hasAggregateLLVMType(T) ||
41         T->isMemberFunctionPointerType();
42}
43
44ABIInfo::~ABIInfo() {}
45
46ASTContext &ABIInfo::getContext() const {
47  return CGT.getContext();
48}
49
50llvm::LLVMContext &ABIInfo::getVMContext() const {
51  return CGT.getLLVMContext();
52}
53
54const llvm::TargetData &ABIInfo::getTargetData() const {
55  return CGT.getTargetData();
56}
57
58
59void ABIArgInfo::dump() const {
60  raw_ostream &OS = llvm::errs();
61  OS << "(ABIArgInfo Kind=";
62  switch (TheKind) {
63  case Direct:
64    OS << "Direct Type=";
65    if (llvm::Type *Ty = getCoerceToType())
66      Ty->print(OS);
67    else
68      OS << "null";
69    break;
70  case Extend:
71    OS << "Extend";
72    break;
73  case Ignore:
74    OS << "Ignore";
75    break;
76  case Indirect:
77    OS << "Indirect Align=" << getIndirectAlign()
78       << " ByVal=" << getIndirectByVal()
79       << " Realign=" << getIndirectRealign();
80    break;
81  case Expand:
82    OS << "Expand";
83    break;
84  }
85  OS << ")\n";
86}
87
88TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
89
90// If someone can figure out a general rule for this, that would be great.
91// It's probably just doomed to be platform-dependent, though.
92unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
93  // Verified for:
94  //   x86-64     FreeBSD, Linux, Darwin
95  //   x86-32     FreeBSD, Linux, Darwin
96  //   PowerPC    Linux, Darwin
97  //   ARM        Darwin (*not* EABI)
98  return 32;
99}
100
101bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
102                                     const FunctionNoProtoType *fnType) const {
103  // The following conventions are known to require this to be false:
104  //   x86_stdcall
105  //   MIPS
106  // For everything else, we just prefer false unless we opt out.
107  return false;
108}
109
110static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
111
112/// isEmptyField - Return true iff a the field is "empty", that is it
113/// is an unnamed bit-field or an (array of) empty record(s).
114static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
115                         bool AllowArrays) {
116  if (FD->isUnnamedBitfield())
117    return true;
118
119  QualType FT = FD->getType();
120
121  // Constant arrays of empty records count as empty, strip them off.
122  // Constant arrays of zero length always count as empty.
123  if (AllowArrays)
124    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
125      if (AT->getSize() == 0)
126        return true;
127      FT = AT->getElementType();
128    }
129
130  const RecordType *RT = FT->getAs<RecordType>();
131  if (!RT)
132    return false;
133
134  // C++ record fields are never empty, at least in the Itanium ABI.
135  //
136  // FIXME: We should use a predicate for whether this behavior is true in the
137  // current ABI.
138  if (isa<CXXRecordDecl>(RT->getDecl()))
139    return false;
140
141  return isEmptyRecord(Context, FT, AllowArrays);
142}
143
144/// isEmptyRecord - Return true iff a structure contains only empty
145/// fields. Note that a structure with a flexible array member is not
146/// considered empty.
147static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
148  const RecordType *RT = T->getAs<RecordType>();
149  if (!RT)
150    return 0;
151  const RecordDecl *RD = RT->getDecl();
152  if (RD->hasFlexibleArrayMember())
153    return false;
154
155  // If this is a C++ record, check the bases first.
156  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
157    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
158           e = CXXRD->bases_end(); i != e; ++i)
159      if (!isEmptyRecord(Context, i->getType(), true))
160        return false;
161
162  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
163         i != e; ++i)
164    if (!isEmptyField(Context, *i, AllowArrays))
165      return false;
166  return true;
167}
168
169/// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
170/// a non-trivial destructor or a non-trivial copy constructor.
171static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
172  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
173  if (!RD)
174    return false;
175
176  return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
177}
178
179/// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
180/// a record type with either a non-trivial destructor or a non-trivial copy
181/// constructor.
182static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
183  const RecordType *RT = T->getAs<RecordType>();
184  if (!RT)
185    return false;
186
187  return hasNonTrivialDestructorOrCopyConstructor(RT);
188}
189
190/// isSingleElementStruct - Determine if a structure is a "single
191/// element struct", i.e. it has exactly one non-empty field or
192/// exactly one field which is itself a single element
193/// struct. Structures with flexible array members are never
194/// considered single element structs.
195///
196/// \return The field declaration for the single non-empty field, if
197/// it exists.
198static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
199  const RecordType *RT = T->getAsStructureType();
200  if (!RT)
201    return 0;
202
203  const RecordDecl *RD = RT->getDecl();
204  if (RD->hasFlexibleArrayMember())
205    return 0;
206
207  const Type *Found = 0;
208
209  // If this is a C++ record, check the bases first.
210  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
211    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
212           e = CXXRD->bases_end(); i != e; ++i) {
213      // Ignore empty records.
214      if (isEmptyRecord(Context, i->getType(), true))
215        continue;
216
217      // If we already found an element then this isn't a single-element struct.
218      if (Found)
219        return 0;
220
221      // If this is non-empty and not a single element struct, the composite
222      // cannot be a single element struct.
223      Found = isSingleElementStruct(i->getType(), Context);
224      if (!Found)
225        return 0;
226    }
227  }
228
229  // Check for single element.
230  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
231         i != e; ++i) {
232    const FieldDecl *FD = *i;
233    QualType FT = FD->getType();
234
235    // Ignore empty fields.
236    if (isEmptyField(Context, FD, true))
237      continue;
238
239    // If we already found an element then this isn't a single-element
240    // struct.
241    if (Found)
242      return 0;
243
244    // Treat single element arrays as the element.
245    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
246      if (AT->getSize().getZExtValue() != 1)
247        break;
248      FT = AT->getElementType();
249    }
250
251    if (!isAggregateTypeForABI(FT)) {
252      Found = FT.getTypePtr();
253    } else {
254      Found = isSingleElementStruct(FT, Context);
255      if (!Found)
256        return 0;
257    }
258  }
259
260  // We don't consider a struct a single-element struct if it has
261  // padding beyond the element type.
262  if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
263    return 0;
264
265  return Found;
266}
267
268static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
269  if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
270      !Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
271      !Ty->isBlockPointerType())
272    return false;
273
274  uint64_t Size = Context.getTypeSize(Ty);
275  return Size == 32 || Size == 64;
276}
277
278/// canExpandIndirectArgument - Test whether an argument type which is to be
279/// passed indirectly (on the stack) would have the equivalent layout if it was
280/// expanded into separate arguments. If so, we prefer to do the latter to avoid
281/// inhibiting optimizations.
282///
283// FIXME: This predicate is missing many cases, currently it just follows
284// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
285// should probably make this smarter, or better yet make the LLVM backend
286// capable of handling it.
287static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
288  // We can only expand structure types.
289  const RecordType *RT = Ty->getAs<RecordType>();
290  if (!RT)
291    return false;
292
293  // We can only expand (C) structures.
294  //
295  // FIXME: This needs to be generalized to handle classes as well.
296  const RecordDecl *RD = RT->getDecl();
297  if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
298    return false;
299
300  uint64_t Size = 0;
301
302  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
303         i != e; ++i) {
304    const FieldDecl *FD = *i;
305
306    if (!is32Or64BitBasicType(FD->getType(), Context))
307      return false;
308
309    // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
310    // how to expand them yet, and the predicate for telling if a bitfield still
311    // counts as "basic" is more complicated than what we were doing previously.
312    if (FD->isBitField())
313      return false;
314
315    Size += Context.getTypeSize(FD->getType());
316  }
317
318  // Make sure there are not any holes in the struct.
319  if (Size != Context.getTypeSize(Ty))
320    return false;
321
322  return true;
323}
324
325namespace {
326/// DefaultABIInfo - The default implementation for ABI specific
327/// details. This implementation provides information which results in
328/// self-consistent and sensible LLVM IR generation, but does not
329/// conform to any particular ABI.
330class DefaultABIInfo : public ABIInfo {
331public:
332  DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
333
334  ABIArgInfo classifyReturnType(QualType RetTy) const;
335  ABIArgInfo classifyArgumentType(QualType RetTy) const;
336
337  virtual void computeInfo(CGFunctionInfo &FI) const {
338    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
339    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
340         it != ie; ++it)
341      it->info = classifyArgumentType(it->type);
342  }
343
344  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
345                                 CodeGenFunction &CGF) const;
346};
347
348class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
349public:
350  DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
351    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
352};
353
354llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
355                                       CodeGenFunction &CGF) const {
356  return 0;
357}
358
359ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
360  if (isAggregateTypeForABI(Ty)) {
361    // Records with non trivial destructors/constructors should not be passed
362    // by value.
363    if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
364      return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
365
366    return ABIArgInfo::getIndirect(0);
367  }
368
369  // Treat an enum type as its underlying type.
370  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
371    Ty = EnumTy->getDecl()->getIntegerType();
372
373  return (Ty->isPromotableIntegerType() ?
374          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
375}
376
377ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
378  if (RetTy->isVoidType())
379    return ABIArgInfo::getIgnore();
380
381  if (isAggregateTypeForABI(RetTy))
382    return ABIArgInfo::getIndirect(0);
383
384  // Treat an enum type as its underlying type.
385  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
386    RetTy = EnumTy->getDecl()->getIntegerType();
387
388  return (RetTy->isPromotableIntegerType() ?
389          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
390}
391
392/// UseX86_MMXType - Return true if this is an MMX type that should use the
393/// special x86_mmx type.
394bool UseX86_MMXType(llvm::Type *IRType) {
395  // If the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>, use the
396  // special x86_mmx type.
397  return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
398    cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
399    IRType->getScalarSizeInBits() != 64;
400}
401
402static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
403                                          StringRef Constraint,
404                                          llvm::Type* Ty) {
405  if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy())
406    return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
407  return Ty;
408}
409
410//===----------------------------------------------------------------------===//
411// X86-32 ABI Implementation
412//===----------------------------------------------------------------------===//
413
414/// X86_32ABIInfo - The X86-32 ABI information.
415class X86_32ABIInfo : public ABIInfo {
416  enum Class {
417    Integer,
418    Float
419  };
420
421  static const unsigned MinABIStackAlignInBytes = 4;
422
423  bool IsDarwinVectorABI;
424  bool IsSmallStructInRegABI;
425  bool IsMMXDisabled;
426  bool IsWin32FloatStructABI;
427  unsigned DefaultNumRegisterParameters;
428
429  static bool isRegisterSize(unsigned Size) {
430    return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
431  }
432
433  static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context,
434                                          unsigned callingConvention);
435
436  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
437  /// such that the argument will be passed in memory.
438  ABIArgInfo getIndirectResult(QualType Ty, bool ByVal = true) const;
439
440  /// \brief Return the alignment to use for the given type on the stack.
441  unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
442
443  Class classify(QualType Ty) const;
444  ABIArgInfo classifyReturnType(QualType RetTy,
445                                unsigned callingConvention) const;
446  ABIArgInfo classifyArgumentTypeWithReg(QualType RetTy,
447                                         unsigned &FreeRegs) const;
448  ABIArgInfo classifyArgumentType(QualType RetTy) const;
449
450public:
451
452  virtual void computeInfo(CGFunctionInfo &FI) const;
453  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
454                                 CodeGenFunction &CGF) const;
455
456  X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool m, bool w,
457                unsigned r)
458    : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
459      IsMMXDisabled(m), IsWin32FloatStructABI(w),
460      DefaultNumRegisterParameters(r) {}
461};
462
463class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
464public:
465  X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
466      bool d, bool p, bool m, bool w, unsigned r)
467    :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, m, w, r)) {}
468
469  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
470                           CodeGen::CodeGenModule &CGM) const;
471
472  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
473    // Darwin uses different dwarf register numbers for EH.
474    if (CGM.isTargetDarwin()) return 5;
475
476    return 4;
477  }
478
479  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
480                               llvm::Value *Address) const;
481
482  llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
483                                  StringRef Constraint,
484                                  llvm::Type* Ty) const {
485    return X86AdjustInlineAsmType(CGF, Constraint, Ty);
486  }
487
488};
489
490}
491
492/// shouldReturnTypeInRegister - Determine if the given type should be
493/// passed in a register (for the Darwin ABI).
494bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
495                                               ASTContext &Context,
496                                               unsigned callingConvention) {
497  uint64_t Size = Context.getTypeSize(Ty);
498
499  // Type must be register sized.
500  if (!isRegisterSize(Size))
501    return false;
502
503  if (Ty->isVectorType()) {
504    // 64- and 128- bit vectors inside structures are not returned in
505    // registers.
506    if (Size == 64 || Size == 128)
507      return false;
508
509    return true;
510  }
511
512  // If this is a builtin, pointer, enum, complex type, member pointer, or
513  // member function pointer it is ok.
514  if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
515      Ty->isAnyComplexType() || Ty->isEnumeralType() ||
516      Ty->isBlockPointerType() || Ty->isMemberPointerType())
517    return true;
518
519  // Arrays are treated like records.
520  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
521    return shouldReturnTypeInRegister(AT->getElementType(), Context,
522                                      callingConvention);
523
524  // Otherwise, it must be a record type.
525  const RecordType *RT = Ty->getAs<RecordType>();
526  if (!RT) return false;
527
528  // FIXME: Traverse bases here too.
529
530  // For thiscall conventions, structures will never be returned in
531  // a register.  This is for compatibility with the MSVC ABI
532  if (callingConvention == llvm::CallingConv::X86_ThisCall &&
533      RT->isStructureType()) {
534    return false;
535  }
536
537  // Structure types are passed in register if all fields would be
538  // passed in a register.
539  for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
540         e = RT->getDecl()->field_end(); i != e; ++i) {
541    const FieldDecl *FD = *i;
542
543    // Empty fields are ignored.
544    if (isEmptyField(Context, FD, true))
545      continue;
546
547    // Check fields recursively.
548    if (!shouldReturnTypeInRegister(FD->getType(), Context,
549                                    callingConvention))
550      return false;
551  }
552  return true;
553}
554
555ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
556                                            unsigned callingConvention) const {
557  if (RetTy->isVoidType())
558    return ABIArgInfo::getIgnore();
559
560  if (const VectorType *VT = RetTy->getAs<VectorType>()) {
561    // On Darwin, some vectors are returned in registers.
562    if (IsDarwinVectorABI) {
563      uint64_t Size = getContext().getTypeSize(RetTy);
564
565      // 128-bit vectors are a special case; they are returned in
566      // registers and we need to make sure to pick a type the LLVM
567      // backend will like.
568      if (Size == 128)
569        return ABIArgInfo::getDirect(llvm::VectorType::get(
570                  llvm::Type::getInt64Ty(getVMContext()), 2));
571
572      // Always return in register if it fits in a general purpose
573      // register, or if it is 64 bits and has a single element.
574      if ((Size == 8 || Size == 16 || Size == 32) ||
575          (Size == 64 && VT->getNumElements() == 1))
576        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
577                                                            Size));
578
579      return ABIArgInfo::getIndirect(0);
580    }
581
582    return ABIArgInfo::getDirect();
583  }
584
585  if (isAggregateTypeForABI(RetTy)) {
586    if (const RecordType *RT = RetTy->getAs<RecordType>()) {
587      // Structures with either a non-trivial destructor or a non-trivial
588      // copy constructor are always indirect.
589      if (hasNonTrivialDestructorOrCopyConstructor(RT))
590        return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
591
592      // Structures with flexible arrays are always indirect.
593      if (RT->getDecl()->hasFlexibleArrayMember())
594        return ABIArgInfo::getIndirect(0);
595    }
596
597    // If specified, structs and unions are always indirect.
598    if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
599      return ABIArgInfo::getIndirect(0);
600
601    // Small structures which are register sized are generally returned
602    // in a register.
603    if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext(),
604                                                  callingConvention)) {
605      uint64_t Size = getContext().getTypeSize(RetTy);
606
607      // As a special-case, if the struct is a "single-element" struct, and
608      // the field is of type "float" or "double", return it in a
609      // floating-point register. (MSVC does not apply this special case.)
610      // We apply a similar transformation for pointer types to improve the
611      // quality of the generated IR.
612      if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
613        if ((!IsWin32FloatStructABI && SeltTy->isRealFloatingType())
614            || SeltTy->hasPointerRepresentation())
615          return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
616
617      // FIXME: We should be able to narrow this integer in cases with dead
618      // padding.
619      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
620    }
621
622    return ABIArgInfo::getIndirect(0);
623  }
624
625  // Treat an enum type as its underlying type.
626  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
627    RetTy = EnumTy->getDecl()->getIntegerType();
628
629  return (RetTy->isPromotableIntegerType() ?
630          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
631}
632
633static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
634  return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
635}
636
637static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
638  const RecordType *RT = Ty->getAs<RecordType>();
639  if (!RT)
640    return 0;
641  const RecordDecl *RD = RT->getDecl();
642
643  // If this is a C++ record, check the bases first.
644  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
645    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
646           e = CXXRD->bases_end(); i != e; ++i)
647      if (!isRecordWithSSEVectorType(Context, i->getType()))
648        return false;
649
650  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
651       i != e; ++i) {
652    QualType FT = i->getType();
653
654    if (isSSEVectorType(Context, FT))
655      return true;
656
657    if (isRecordWithSSEVectorType(Context, FT))
658      return true;
659  }
660
661  return false;
662}
663
664unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
665                                                 unsigned Align) const {
666  // Otherwise, if the alignment is less than or equal to the minimum ABI
667  // alignment, just use the default; the backend will handle this.
668  if (Align <= MinABIStackAlignInBytes)
669    return 0; // Use default alignment.
670
671  // On non-Darwin, the stack type alignment is always 4.
672  if (!IsDarwinVectorABI) {
673    // Set explicit alignment, since we may need to realign the top.
674    return MinABIStackAlignInBytes;
675  }
676
677  // Otherwise, if the type contains an SSE vector type, the alignment is 16.
678  if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
679                      isRecordWithSSEVectorType(getContext(), Ty)))
680    return 16;
681
682  return MinABIStackAlignInBytes;
683}
684
685ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal) const {
686  if (!ByVal)
687    return ABIArgInfo::getIndirect(0, false);
688
689  // Compute the byval alignment.
690  unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
691  unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
692  if (StackAlign == 0)
693    return ABIArgInfo::getIndirect(4);
694
695  // If the stack alignment is less than the type alignment, realign the
696  // argument.
697  if (StackAlign < TypeAlign)
698    return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true,
699                                   /*Realign=*/true);
700
701  return ABIArgInfo::getIndirect(StackAlign);
702}
703
704X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
705  const Type *T = isSingleElementStruct(Ty, getContext());
706  if (!T)
707    T = Ty.getTypePtr();
708
709  if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
710    BuiltinType::Kind K = BT->getKind();
711    if (K == BuiltinType::Float || K == BuiltinType::Double)
712      return Float;
713  }
714  return Integer;
715}
716
717ABIArgInfo
718X86_32ABIInfo::classifyArgumentTypeWithReg(QualType Ty,
719                                           unsigned &FreeRegs) const {
720  // Common case first.
721  if (FreeRegs == 0)
722    return classifyArgumentType(Ty);
723
724  Class C = classify(Ty);
725  if (C == Float)
726    return classifyArgumentType(Ty);
727
728  unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
729  if (SizeInRegs == 0)
730    return classifyArgumentType(Ty);
731
732  if (SizeInRegs > FreeRegs) {
733    FreeRegs = 0;
734    return classifyArgumentType(Ty);
735  }
736  assert(SizeInRegs >= 1 && SizeInRegs <= 3);
737  FreeRegs -= SizeInRegs;
738
739  // If it is a simple scalar, keep the type so that we produce a cleaner IR.
740  ABIArgInfo Foo = classifyArgumentType(Ty);
741  if (Foo.isDirect() && !Foo.getDirectOffset() && !Foo.getPaddingType())
742    return ABIArgInfo::getDirectInReg(Foo.getCoerceToType());
743  if (Foo.isExtend())
744    return ABIArgInfo::getExtendInReg(Foo.getCoerceToType());
745
746  llvm::LLVMContext &LLVMContext = getVMContext();
747  llvm::Type *Int32 = llvm::Type::getInt32Ty(LLVMContext);
748  SmallVector<llvm::Type*, 3> Elements;
749  for (unsigned I = 0; I < SizeInRegs; ++I)
750    Elements.push_back(Int32);
751  llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
752  return ABIArgInfo::getDirectInReg(Result);
753}
754
755ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty) const {
756  // FIXME: Set alignment on indirect arguments.
757  if (isAggregateTypeForABI(Ty)) {
758    // Structures with flexible arrays are always indirect.
759    if (const RecordType *RT = Ty->getAs<RecordType>()) {
760      // Structures with either a non-trivial destructor or a non-trivial
761      // copy constructor are always indirect.
762      if (hasNonTrivialDestructorOrCopyConstructor(RT))
763        return getIndirectResult(Ty, /*ByVal=*/false);
764
765      if (RT->getDecl()->hasFlexibleArrayMember())
766        return getIndirectResult(Ty);
767    }
768
769    // Ignore empty structs/unions.
770    if (isEmptyRecord(getContext(), Ty, true))
771      return ABIArgInfo::getIgnore();
772
773    // Expand small (<= 128-bit) record types when we know that the stack layout
774    // of those arguments will match the struct. This is important because the
775    // LLVM backend isn't smart enough to remove byval, which inhibits many
776    // optimizations.
777    if (getContext().getTypeSize(Ty) <= 4*32 &&
778        canExpandIndirectArgument(Ty, getContext()))
779      return ABIArgInfo::getExpand();
780
781    return getIndirectResult(Ty);
782  }
783
784  if (const VectorType *VT = Ty->getAs<VectorType>()) {
785    // On Darwin, some vectors are passed in memory, we handle this by passing
786    // it as an i8/i16/i32/i64.
787    if (IsDarwinVectorABI) {
788      uint64_t Size = getContext().getTypeSize(Ty);
789      if ((Size == 8 || Size == 16 || Size == 32) ||
790          (Size == 64 && VT->getNumElements() == 1))
791        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
792                                                            Size));
793    }
794
795    llvm::Type *IRType = CGT.ConvertType(Ty);
796    if (UseX86_MMXType(IRType)) {
797      if (IsMMXDisabled)
798        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
799                                                            64));
800      ABIArgInfo AAI = ABIArgInfo::getDirect(IRType);
801      AAI.setCoerceToType(llvm::Type::getX86_MMXTy(getVMContext()));
802      return AAI;
803    }
804
805    return ABIArgInfo::getDirect();
806  }
807
808
809  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
810    Ty = EnumTy->getDecl()->getIntegerType();
811
812  return (Ty->isPromotableIntegerType() ?
813          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
814}
815
816void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
817  FI.getReturnInfo() = classifyReturnType(FI.getReturnType(),
818                                          FI.getCallingConvention());
819
820  unsigned FreeRegs = FI.getHasRegParm() ? FI.getRegParm() :
821    DefaultNumRegisterParameters;
822
823  // If the return value is indirect, then the hidden argument is consuming one
824  // integer register.
825  if (FI.getReturnInfo().isIndirect() && FreeRegs) {
826    --FreeRegs;
827    ABIArgInfo &Old = FI.getReturnInfo();
828    Old = ABIArgInfo::getIndirectInReg(Old.getIndirectAlign(),
829                                       Old.getIndirectByVal(),
830                                       Old.getIndirectRealign());
831  }
832
833  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
834       it != ie; ++it)
835    it->info = classifyArgumentTypeWithReg(it->type, FreeRegs);
836}
837
838llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
839                                      CodeGenFunction &CGF) const {
840  llvm::Type *BPP = CGF.Int8PtrPtrTy;
841
842  CGBuilderTy &Builder = CGF.Builder;
843  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
844                                                       "ap");
845  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
846
847  // Compute if the address needs to be aligned
848  unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
849  Align = getTypeStackAlignInBytes(Ty, Align);
850  Align = std::max(Align, 4U);
851  if (Align > 4) {
852    // addr = (addr + align - 1) & -align;
853    llvm::Value *Offset =
854      llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
855    Addr = CGF.Builder.CreateGEP(Addr, Offset);
856    llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
857                                                    CGF.Int32Ty);
858    llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
859    Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
860                                      Addr->getType(),
861                                      "ap.cur.aligned");
862  }
863
864  llvm::Type *PTy =
865    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
866  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
867
868  uint64_t Offset =
869    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
870  llvm::Value *NextAddr =
871    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
872                      "ap.next");
873  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
874
875  return AddrTyped;
876}
877
878void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
879                                                  llvm::GlobalValue *GV,
880                                            CodeGen::CodeGenModule &CGM) const {
881  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
882    if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
883      // Get the LLVM function.
884      llvm::Function *Fn = cast<llvm::Function>(GV);
885
886      // Now add the 'alignstack' attribute with a value of 16.
887      Fn->addFnAttr(llvm::Attribute::constructStackAlignmentFromInt(16));
888    }
889  }
890}
891
892bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
893                                               CodeGen::CodeGenFunction &CGF,
894                                               llvm::Value *Address) const {
895  CodeGen::CGBuilderTy &Builder = CGF.Builder;
896
897  llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
898
899  // 0-7 are the eight integer registers;  the order is different
900  //   on Darwin (for EH), but the range is the same.
901  // 8 is %eip.
902  AssignToArrayRange(Builder, Address, Four8, 0, 8);
903
904  if (CGF.CGM.isTargetDarwin()) {
905    // 12-16 are st(0..4).  Not sure why we stop at 4.
906    // These have size 16, which is sizeof(long double) on
907    // platforms with 8-byte alignment for that type.
908    llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
909    AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
910
911  } else {
912    // 9 is %eflags, which doesn't get a size on Darwin for some
913    // reason.
914    Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
915
916    // 11-16 are st(0..5).  Not sure why we stop at 5.
917    // These have size 12, which is sizeof(long double) on
918    // platforms with 4-byte alignment for that type.
919    llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
920    AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
921  }
922
923  return false;
924}
925
926//===----------------------------------------------------------------------===//
927// X86-64 ABI Implementation
928//===----------------------------------------------------------------------===//
929
930
931namespace {
932/// X86_64ABIInfo - The X86_64 ABI information.
933class X86_64ABIInfo : public ABIInfo {
934  enum Class {
935    Integer = 0,
936    SSE,
937    SSEUp,
938    X87,
939    X87Up,
940    ComplexX87,
941    NoClass,
942    Memory
943  };
944
945  /// merge - Implement the X86_64 ABI merging algorithm.
946  ///
947  /// Merge an accumulating classification \arg Accum with a field
948  /// classification \arg Field.
949  ///
950  /// \param Accum - The accumulating classification. This should
951  /// always be either NoClass or the result of a previous merge
952  /// call. In addition, this should never be Memory (the caller
953  /// should just return Memory for the aggregate).
954  static Class merge(Class Accum, Class Field);
955
956  /// postMerge - Implement the X86_64 ABI post merging algorithm.
957  ///
958  /// Post merger cleanup, reduces a malformed Hi and Lo pair to
959  /// final MEMORY or SSE classes when necessary.
960  ///
961  /// \param AggregateSize - The size of the current aggregate in
962  /// the classification process.
963  ///
964  /// \param Lo - The classification for the parts of the type
965  /// residing in the low word of the containing object.
966  ///
967  /// \param Hi - The classification for the parts of the type
968  /// residing in the higher words of the containing object.
969  ///
970  void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
971
972  /// classify - Determine the x86_64 register classes in which the
973  /// given type T should be passed.
974  ///
975  /// \param Lo - The classification for the parts of the type
976  /// residing in the low word of the containing object.
977  ///
978  /// \param Hi - The classification for the parts of the type
979  /// residing in the high word of the containing object.
980  ///
981  /// \param OffsetBase - The bit offset of this type in the
982  /// containing object.  Some parameters are classified different
983  /// depending on whether they straddle an eightbyte boundary.
984  ///
985  /// If a word is unused its result will be NoClass; if a type should
986  /// be passed in Memory then at least the classification of \arg Lo
987  /// will be Memory.
988  ///
989  /// The \arg Lo class will be NoClass iff the argument is ignored.
990  ///
991  /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
992  /// also be ComplexX87.
993  void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi) const;
994
995  llvm::Type *GetByteVectorType(QualType Ty) const;
996  llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
997                                 unsigned IROffset, QualType SourceTy,
998                                 unsigned SourceOffset) const;
999  llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1000                                     unsigned IROffset, QualType SourceTy,
1001                                     unsigned SourceOffset) const;
1002
1003  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1004  /// such that the argument will be returned in memory.
1005  ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1006
1007  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1008  /// such that the argument will be passed in memory.
1009  ///
1010  /// \param freeIntRegs - The number of free integer registers remaining
1011  /// available.
1012  ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1013
1014  ABIArgInfo classifyReturnType(QualType RetTy) const;
1015
1016  ABIArgInfo classifyArgumentType(QualType Ty,
1017                                  unsigned freeIntRegs,
1018                                  unsigned &neededInt,
1019                                  unsigned &neededSSE) const;
1020
1021  bool IsIllegalVectorType(QualType Ty) const;
1022
1023  /// The 0.98 ABI revision clarified a lot of ambiguities,
1024  /// unfortunately in ways that were not always consistent with
1025  /// certain previous compilers.  In particular, platforms which
1026  /// required strict binary compatibility with older versions of GCC
1027  /// may need to exempt themselves.
1028  bool honorsRevision0_98() const {
1029    return !getContext().getTargetInfo().getTriple().isOSDarwin();
1030  }
1031
1032  bool HasAVX;
1033
1034public:
1035  X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) :
1036      ABIInfo(CGT), HasAVX(hasavx) {}
1037
1038  bool isPassedUsingAVXType(QualType type) const {
1039    unsigned neededInt, neededSSE;
1040    // The freeIntRegs argument doesn't matter here.
1041    ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE);
1042    if (info.isDirect()) {
1043      llvm::Type *ty = info.getCoerceToType();
1044      if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1045        return (vectorTy->getBitWidth() > 128);
1046    }
1047    return false;
1048  }
1049
1050  virtual void computeInfo(CGFunctionInfo &FI) const;
1051
1052  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1053                                 CodeGenFunction &CGF) const;
1054};
1055
1056/// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1057class WinX86_64ABIInfo : public ABIInfo {
1058
1059  ABIArgInfo classify(QualType Ty) const;
1060
1061public:
1062  WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
1063
1064  virtual void computeInfo(CGFunctionInfo &FI) const;
1065
1066  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1067                                 CodeGenFunction &CGF) const;
1068};
1069
1070class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1071public:
1072  X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1073    : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {}
1074
1075  const X86_64ABIInfo &getABIInfo() const {
1076    return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
1077  }
1078
1079  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1080    return 7;
1081  }
1082
1083  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1084                               llvm::Value *Address) const {
1085    llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1086
1087    // 0-15 are the 16 integer registers.
1088    // 16 is %rip.
1089    AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1090    return false;
1091  }
1092
1093  llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1094                                  StringRef Constraint,
1095                                  llvm::Type* Ty) const {
1096    return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1097  }
1098
1099  bool isNoProtoCallVariadic(const CallArgList &args,
1100                             const FunctionNoProtoType *fnType) const {
1101    // The default CC on x86-64 sets %al to the number of SSA
1102    // registers used, and GCC sets this when calling an unprototyped
1103    // function, so we override the default behavior.  However, don't do
1104    // that when AVX types are involved: the ABI explicitly states it is
1105    // undefined, and it doesn't work in practice because of how the ABI
1106    // defines varargs anyway.
1107    if (fnType->getCallConv() == CC_Default || fnType->getCallConv() == CC_C) {
1108      bool HasAVXType = false;
1109      for (CallArgList::const_iterator
1110             it = args.begin(), ie = args.end(); it != ie; ++it) {
1111        if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1112          HasAVXType = true;
1113          break;
1114        }
1115      }
1116
1117      if (!HasAVXType)
1118        return true;
1119    }
1120
1121    return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1122  }
1123
1124};
1125
1126class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1127public:
1128  WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
1129    : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
1130
1131  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1132    return 7;
1133  }
1134
1135  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1136                               llvm::Value *Address) const {
1137    llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1138
1139    // 0-15 are the 16 integer registers.
1140    // 16 is %rip.
1141    AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1142    return false;
1143  }
1144};
1145
1146}
1147
1148void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1149                              Class &Hi) const {
1150  // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1151  //
1152  // (a) If one of the classes is Memory, the whole argument is passed in
1153  //     memory.
1154  //
1155  // (b) If X87UP is not preceded by X87, the whole argument is passed in
1156  //     memory.
1157  //
1158  // (c) If the size of the aggregate exceeds two eightbytes and the first
1159  //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1160  //     argument is passed in memory. NOTE: This is necessary to keep the
1161  //     ABI working for processors that don't support the __m256 type.
1162  //
1163  // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1164  //
1165  // Some of these are enforced by the merging logic.  Others can arise
1166  // only with unions; for example:
1167  //   union { _Complex double; unsigned; }
1168  //
1169  // Note that clauses (b) and (c) were added in 0.98.
1170  //
1171  if (Hi == Memory)
1172    Lo = Memory;
1173  if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1174    Lo = Memory;
1175  if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1176    Lo = Memory;
1177  if (Hi == SSEUp && Lo != SSE)
1178    Hi = SSE;
1179}
1180
1181X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1182  // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1183  // classified recursively so that always two fields are
1184  // considered. The resulting class is calculated according to
1185  // the classes of the fields in the eightbyte:
1186  //
1187  // (a) If both classes are equal, this is the resulting class.
1188  //
1189  // (b) If one of the classes is NO_CLASS, the resulting class is
1190  // the other class.
1191  //
1192  // (c) If one of the classes is MEMORY, the result is the MEMORY
1193  // class.
1194  //
1195  // (d) If one of the classes is INTEGER, the result is the
1196  // INTEGER.
1197  //
1198  // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1199  // MEMORY is used as class.
1200  //
1201  // (f) Otherwise class SSE is used.
1202
1203  // Accum should never be memory (we should have returned) or
1204  // ComplexX87 (because this cannot be passed in a structure).
1205  assert((Accum != Memory && Accum != ComplexX87) &&
1206         "Invalid accumulated classification during merge.");
1207  if (Accum == Field || Field == NoClass)
1208    return Accum;
1209  if (Field == Memory)
1210    return Memory;
1211  if (Accum == NoClass)
1212    return Field;
1213  if (Accum == Integer || Field == Integer)
1214    return Integer;
1215  if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1216      Accum == X87 || Accum == X87Up)
1217    return Memory;
1218  return SSE;
1219}
1220
1221void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1222                             Class &Lo, Class &Hi) const {
1223  // FIXME: This code can be simplified by introducing a simple value class for
1224  // Class pairs with appropriate constructor methods for the various
1225  // situations.
1226
1227  // FIXME: Some of the split computations are wrong; unaligned vectors
1228  // shouldn't be passed in registers for example, so there is no chance they
1229  // can straddle an eightbyte. Verify & simplify.
1230
1231  Lo = Hi = NoClass;
1232
1233  Class &Current = OffsetBase < 64 ? Lo : Hi;
1234  Current = Memory;
1235
1236  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1237    BuiltinType::Kind k = BT->getKind();
1238
1239    if (k == BuiltinType::Void) {
1240      Current = NoClass;
1241    } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1242      Lo = Integer;
1243      Hi = Integer;
1244    } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1245      Current = Integer;
1246    } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
1247      Current = SSE;
1248    } else if (k == BuiltinType::LongDouble) {
1249      Lo = X87;
1250      Hi = X87Up;
1251    }
1252    // FIXME: _Decimal32 and _Decimal64 are SSE.
1253    // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1254    return;
1255  }
1256
1257  if (const EnumType *ET = Ty->getAs<EnumType>()) {
1258    // Classify the underlying integer type.
1259    classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi);
1260    return;
1261  }
1262
1263  if (Ty->hasPointerRepresentation()) {
1264    Current = Integer;
1265    return;
1266  }
1267
1268  if (Ty->isMemberPointerType()) {
1269    if (Ty->isMemberFunctionPointerType())
1270      Lo = Hi = Integer;
1271    else
1272      Current = Integer;
1273    return;
1274  }
1275
1276  if (const VectorType *VT = Ty->getAs<VectorType>()) {
1277    uint64_t Size = getContext().getTypeSize(VT);
1278    if (Size == 32) {
1279      // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1280      // float> as integer.
1281      Current = Integer;
1282
1283      // If this type crosses an eightbyte boundary, it should be
1284      // split.
1285      uint64_t EB_Real = (OffsetBase) / 64;
1286      uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1287      if (EB_Real != EB_Imag)
1288        Hi = Lo;
1289    } else if (Size == 64) {
1290      // gcc passes <1 x double> in memory. :(
1291      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1292        return;
1293
1294      // gcc passes <1 x long long> as INTEGER.
1295      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1296          VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1297          VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1298          VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1299        Current = Integer;
1300      else
1301        Current = SSE;
1302
1303      // If this type crosses an eightbyte boundary, it should be
1304      // split.
1305      if (OffsetBase && OffsetBase != 64)
1306        Hi = Lo;
1307    } else if (Size == 128 || (HasAVX && Size == 256)) {
1308      // Arguments of 256-bits are split into four eightbyte chunks. The
1309      // least significant one belongs to class SSE and all the others to class
1310      // SSEUP. The original Lo and Hi design considers that types can't be
1311      // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1312      // This design isn't correct for 256-bits, but since there're no cases
1313      // where the upper parts would need to be inspected, avoid adding
1314      // complexity and just consider Hi to match the 64-256 part.
1315      Lo = SSE;
1316      Hi = SSEUp;
1317    }
1318    return;
1319  }
1320
1321  if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1322    QualType ET = getContext().getCanonicalType(CT->getElementType());
1323
1324    uint64_t Size = getContext().getTypeSize(Ty);
1325    if (ET->isIntegralOrEnumerationType()) {
1326      if (Size <= 64)
1327        Current = Integer;
1328      else if (Size <= 128)
1329        Lo = Hi = Integer;
1330    } else if (ET == getContext().FloatTy)
1331      Current = SSE;
1332    else if (ET == getContext().DoubleTy)
1333      Lo = Hi = SSE;
1334    else if (ET == getContext().LongDoubleTy)
1335      Current = ComplexX87;
1336
1337    // If this complex type crosses an eightbyte boundary then it
1338    // should be split.
1339    uint64_t EB_Real = (OffsetBase) / 64;
1340    uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1341    if (Hi == NoClass && EB_Real != EB_Imag)
1342      Hi = Lo;
1343
1344    return;
1345  }
1346
1347  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1348    // Arrays are treated like structures.
1349
1350    uint64_t Size = getContext().getTypeSize(Ty);
1351
1352    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1353    // than four eightbytes, ..., it has class MEMORY.
1354    if (Size > 256)
1355      return;
1356
1357    // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1358    // fields, it has class MEMORY.
1359    //
1360    // Only need to check alignment of array base.
1361    if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1362      return;
1363
1364    // Otherwise implement simplified merge. We could be smarter about
1365    // this, but it isn't worth it and would be harder to verify.
1366    Current = NoClass;
1367    uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1368    uint64_t ArraySize = AT->getSize().getZExtValue();
1369
1370    // The only case a 256-bit wide vector could be used is when the array
1371    // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1372    // to work for sizes wider than 128, early check and fallback to memory.
1373    if (Size > 128 && EltSize != 256)
1374      return;
1375
1376    for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1377      Class FieldLo, FieldHi;
1378      classify(AT->getElementType(), Offset, FieldLo, FieldHi);
1379      Lo = merge(Lo, FieldLo);
1380      Hi = merge(Hi, FieldHi);
1381      if (Lo == Memory || Hi == Memory)
1382        break;
1383    }
1384
1385    postMerge(Size, Lo, Hi);
1386    assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1387    return;
1388  }
1389
1390  if (const RecordType *RT = Ty->getAs<RecordType>()) {
1391    uint64_t Size = getContext().getTypeSize(Ty);
1392
1393    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1394    // than four eightbytes, ..., it has class MEMORY.
1395    if (Size > 256)
1396      return;
1397
1398    // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1399    // copy constructor or a non-trivial destructor, it is passed by invisible
1400    // reference.
1401    if (hasNonTrivialDestructorOrCopyConstructor(RT))
1402      return;
1403
1404    const RecordDecl *RD = RT->getDecl();
1405
1406    // Assume variable sized types are passed in memory.
1407    if (RD->hasFlexibleArrayMember())
1408      return;
1409
1410    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1411
1412    // Reset Lo class, this will be recomputed.
1413    Current = NoClass;
1414
1415    // If this is a C++ record, classify the bases first.
1416    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1417      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1418             e = CXXRD->bases_end(); i != e; ++i) {
1419        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1420               "Unexpected base class!");
1421        const CXXRecordDecl *Base =
1422          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1423
1424        // Classify this field.
1425        //
1426        // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1427        // single eightbyte, each is classified separately. Each eightbyte gets
1428        // initialized to class NO_CLASS.
1429        Class FieldLo, FieldHi;
1430        uint64_t Offset =
1431          OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
1432        classify(i->getType(), Offset, FieldLo, FieldHi);
1433        Lo = merge(Lo, FieldLo);
1434        Hi = merge(Hi, FieldHi);
1435        if (Lo == Memory || Hi == Memory)
1436          break;
1437      }
1438    }
1439
1440    // Classify the fields one at a time, merging the results.
1441    unsigned idx = 0;
1442    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1443           i != e; ++i, ++idx) {
1444      uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1445      bool BitField = i->isBitField();
1446
1447      // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
1448      // four eightbytes, or it contains unaligned fields, it has class MEMORY.
1449      //
1450      // The only case a 256-bit wide vector could be used is when the struct
1451      // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1452      // to work for sizes wider than 128, early check and fallback to memory.
1453      //
1454      if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
1455        Lo = Memory;
1456        return;
1457      }
1458      // Note, skip this test for bit-fields, see below.
1459      if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1460        Lo = Memory;
1461        return;
1462      }
1463
1464      // Classify this field.
1465      //
1466      // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1467      // exceeds a single eightbyte, each is classified
1468      // separately. Each eightbyte gets initialized to class
1469      // NO_CLASS.
1470      Class FieldLo, FieldHi;
1471
1472      // Bit-fields require special handling, they do not force the
1473      // structure to be passed in memory even if unaligned, and
1474      // therefore they can straddle an eightbyte.
1475      if (BitField) {
1476        // Ignore padding bit-fields.
1477        if (i->isUnnamedBitfield())
1478          continue;
1479
1480        uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1481        uint64_t Size = i->getBitWidthValue(getContext());
1482
1483        uint64_t EB_Lo = Offset / 64;
1484        uint64_t EB_Hi = (Offset + Size - 1) / 64;
1485        FieldLo = FieldHi = NoClass;
1486        if (EB_Lo) {
1487          assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1488          FieldLo = NoClass;
1489          FieldHi = Integer;
1490        } else {
1491          FieldLo = Integer;
1492          FieldHi = EB_Hi ? Integer : NoClass;
1493        }
1494      } else
1495        classify(i->getType(), Offset, FieldLo, FieldHi);
1496      Lo = merge(Lo, FieldLo);
1497      Hi = merge(Hi, FieldHi);
1498      if (Lo == Memory || Hi == Memory)
1499        break;
1500    }
1501
1502    postMerge(Size, Lo, Hi);
1503  }
1504}
1505
1506ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1507  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1508  // place naturally.
1509  if (!isAggregateTypeForABI(Ty)) {
1510    // Treat an enum type as its underlying type.
1511    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1512      Ty = EnumTy->getDecl()->getIntegerType();
1513
1514    return (Ty->isPromotableIntegerType() ?
1515            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1516  }
1517
1518  return ABIArgInfo::getIndirect(0);
1519}
1520
1521bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
1522  if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
1523    uint64_t Size = getContext().getTypeSize(VecTy);
1524    unsigned LargestVector = HasAVX ? 256 : 128;
1525    if (Size <= 64 || Size > LargestVector)
1526      return true;
1527  }
1528
1529  return false;
1530}
1531
1532ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
1533                                            unsigned freeIntRegs) const {
1534  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1535  // place naturally.
1536  //
1537  // This assumption is optimistic, as there could be free registers available
1538  // when we need to pass this argument in memory, and LLVM could try to pass
1539  // the argument in the free register. This does not seem to happen currently,
1540  // but this code would be much safer if we could mark the argument with
1541  // 'onstack'. See PR12193.
1542  if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
1543    // Treat an enum type as its underlying type.
1544    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1545      Ty = EnumTy->getDecl()->getIntegerType();
1546
1547    return (Ty->isPromotableIntegerType() ?
1548            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1549  }
1550
1551  if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1552    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
1553
1554  // Compute the byval alignment. We specify the alignment of the byval in all
1555  // cases so that the mid-level optimizer knows the alignment of the byval.
1556  unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
1557
1558  // Attempt to avoid passing indirect results using byval when possible. This
1559  // is important for good codegen.
1560  //
1561  // We do this by coercing the value into a scalar type which the backend can
1562  // handle naturally (i.e., without using byval).
1563  //
1564  // For simplicity, we currently only do this when we have exhausted all of the
1565  // free integer registers. Doing this when there are free integer registers
1566  // would require more care, as we would have to ensure that the coerced value
1567  // did not claim the unused register. That would require either reording the
1568  // arguments to the function (so that any subsequent inreg values came first),
1569  // or only doing this optimization when there were no following arguments that
1570  // might be inreg.
1571  //
1572  // We currently expect it to be rare (particularly in well written code) for
1573  // arguments to be passed on the stack when there are still free integer
1574  // registers available (this would typically imply large structs being passed
1575  // by value), so this seems like a fair tradeoff for now.
1576  //
1577  // We can revisit this if the backend grows support for 'onstack' parameter
1578  // attributes. See PR12193.
1579  if (freeIntRegs == 0) {
1580    uint64_t Size = getContext().getTypeSize(Ty);
1581
1582    // If this type fits in an eightbyte, coerce it into the matching integral
1583    // type, which will end up on the stack (with alignment 8).
1584    if (Align == 8 && Size <= 64)
1585      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1586                                                          Size));
1587  }
1588
1589  return ABIArgInfo::getIndirect(Align);
1590}
1591
1592/// GetByteVectorType - The ABI specifies that a value should be passed in an
1593/// full vector XMM/YMM register.  Pick an LLVM IR type that will be passed as a
1594/// vector register.
1595llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
1596  llvm::Type *IRType = CGT.ConvertType(Ty);
1597
1598  // Wrapper structs that just contain vectors are passed just like vectors,
1599  // strip them off if present.
1600  llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1601  while (STy && STy->getNumElements() == 1) {
1602    IRType = STy->getElementType(0);
1603    STy = dyn_cast<llvm::StructType>(IRType);
1604  }
1605
1606  // If the preferred type is a 16-byte vector, prefer to pass it.
1607  if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
1608    llvm::Type *EltTy = VT->getElementType();
1609    unsigned BitWidth = VT->getBitWidth();
1610    if ((BitWidth >= 128 && BitWidth <= 256) &&
1611        (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1612         EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1613         EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1614         EltTy->isIntegerTy(128)))
1615      return VT;
1616  }
1617
1618  return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1619}
1620
1621/// BitsContainNoUserData - Return true if the specified [start,end) bit range
1622/// is known to either be off the end of the specified type or being in
1623/// alignment padding.  The user type specified is known to be at most 128 bits
1624/// in size, and have passed through X86_64ABIInfo::classify with a successful
1625/// classification that put one of the two halves in the INTEGER class.
1626///
1627/// It is conservatively correct to return false.
1628static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1629                                  unsigned EndBit, ASTContext &Context) {
1630  // If the bytes being queried are off the end of the type, there is no user
1631  // data hiding here.  This handles analysis of builtins, vectors and other
1632  // types that don't contain interesting padding.
1633  unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1634  if (TySize <= StartBit)
1635    return true;
1636
1637  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1638    unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1639    unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1640
1641    // Check each element to see if the element overlaps with the queried range.
1642    for (unsigned i = 0; i != NumElts; ++i) {
1643      // If the element is after the span we care about, then we're done..
1644      unsigned EltOffset = i*EltSize;
1645      if (EltOffset >= EndBit) break;
1646
1647      unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1648      if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1649                                 EndBit-EltOffset, Context))
1650        return false;
1651    }
1652    // If it overlaps no elements, then it is safe to process as padding.
1653    return true;
1654  }
1655
1656  if (const RecordType *RT = Ty->getAs<RecordType>()) {
1657    const RecordDecl *RD = RT->getDecl();
1658    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1659
1660    // If this is a C++ record, check the bases first.
1661    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1662      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1663           e = CXXRD->bases_end(); i != e; ++i) {
1664        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1665               "Unexpected base class!");
1666        const CXXRecordDecl *Base =
1667          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1668
1669        // If the base is after the span we care about, ignore it.
1670        unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
1671        if (BaseOffset >= EndBit) continue;
1672
1673        unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1674        if (!BitsContainNoUserData(i->getType(), BaseStart,
1675                                   EndBit-BaseOffset, Context))
1676          return false;
1677      }
1678    }
1679
1680    // Verify that no field has data that overlaps the region of interest.  Yes
1681    // this could be sped up a lot by being smarter about queried fields,
1682    // however we're only looking at structs up to 16 bytes, so we don't care
1683    // much.
1684    unsigned idx = 0;
1685    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1686         i != e; ++i, ++idx) {
1687      unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
1688
1689      // If we found a field after the region we care about, then we're done.
1690      if (FieldOffset >= EndBit) break;
1691
1692      unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
1693      if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
1694                                 Context))
1695        return false;
1696    }
1697
1698    // If nothing in this record overlapped the area of interest, then we're
1699    // clean.
1700    return true;
1701  }
1702
1703  return false;
1704}
1705
1706/// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
1707/// float member at the specified offset.  For example, {int,{float}} has a
1708/// float at offset 4.  It is conservatively correct for this routine to return
1709/// false.
1710static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
1711                                  const llvm::TargetData &TD) {
1712  // Base case if we find a float.
1713  if (IROffset == 0 && IRType->isFloatTy())
1714    return true;
1715
1716  // If this is a struct, recurse into the field at the specified offset.
1717  if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1718    const llvm::StructLayout *SL = TD.getStructLayout(STy);
1719    unsigned Elt = SL->getElementContainingOffset(IROffset);
1720    IROffset -= SL->getElementOffset(Elt);
1721    return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
1722  }
1723
1724  // If this is an array, recurse into the field at the specified offset.
1725  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1726    llvm::Type *EltTy = ATy->getElementType();
1727    unsigned EltSize = TD.getTypeAllocSize(EltTy);
1728    IROffset -= IROffset/EltSize*EltSize;
1729    return ContainsFloatAtOffset(EltTy, IROffset, TD);
1730  }
1731
1732  return false;
1733}
1734
1735
1736/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
1737/// low 8 bytes of an XMM register, corresponding to the SSE class.
1738llvm::Type *X86_64ABIInfo::
1739GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1740                   QualType SourceTy, unsigned SourceOffset) const {
1741  // The only three choices we have are either double, <2 x float>, or float. We
1742  // pass as float if the last 4 bytes is just padding.  This happens for
1743  // structs that contain 3 floats.
1744  if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
1745                            SourceOffset*8+64, getContext()))
1746    return llvm::Type::getFloatTy(getVMContext());
1747
1748  // We want to pass as <2 x float> if the LLVM IR type contains a float at
1749  // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
1750  // case.
1751  if (ContainsFloatAtOffset(IRType, IROffset, getTargetData()) &&
1752      ContainsFloatAtOffset(IRType, IROffset+4, getTargetData()))
1753    return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
1754
1755  return llvm::Type::getDoubleTy(getVMContext());
1756}
1757
1758
1759/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
1760/// an 8-byte GPR.  This means that we either have a scalar or we are talking
1761/// about the high or low part of an up-to-16-byte struct.  This routine picks
1762/// the best LLVM IR type to represent this, which may be i64 or may be anything
1763/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
1764/// etc).
1765///
1766/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
1767/// the source type.  IROffset is an offset in bytes into the LLVM IR type that
1768/// the 8-byte value references.  PrefType may be null.
1769///
1770/// SourceTy is the source level type for the entire argument.  SourceOffset is
1771/// an offset into this that we're processing (which is always either 0 or 8).
1772///
1773llvm::Type *X86_64ABIInfo::
1774GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1775                       QualType SourceTy, unsigned SourceOffset) const {
1776  // If we're dealing with an un-offset LLVM IR type, then it means that we're
1777  // returning an 8-byte unit starting with it.  See if we can safely use it.
1778  if (IROffset == 0) {
1779    // Pointers and int64's always fill the 8-byte unit.
1780    if (isa<llvm::PointerType>(IRType) || IRType->isIntegerTy(64))
1781      return IRType;
1782
1783    // If we have a 1/2/4-byte integer, we can use it only if the rest of the
1784    // goodness in the source type is just tail padding.  This is allowed to
1785    // kick in for struct {double,int} on the int, but not on
1786    // struct{double,int,int} because we wouldn't return the second int.  We
1787    // have to do this analysis on the source type because we can't depend on
1788    // unions being lowered a specific way etc.
1789    if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
1790        IRType->isIntegerTy(32)) {
1791      unsigned BitWidth = cast<llvm::IntegerType>(IRType)->getBitWidth();
1792
1793      if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
1794                                SourceOffset*8+64, getContext()))
1795        return IRType;
1796    }
1797  }
1798
1799  if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1800    // If this is a struct, recurse into the field at the specified offset.
1801    const llvm::StructLayout *SL = getTargetData().getStructLayout(STy);
1802    if (IROffset < SL->getSizeInBytes()) {
1803      unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
1804      IROffset -= SL->getElementOffset(FieldIdx);
1805
1806      return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
1807                                    SourceTy, SourceOffset);
1808    }
1809  }
1810
1811  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1812    llvm::Type *EltTy = ATy->getElementType();
1813    unsigned EltSize = getTargetData().getTypeAllocSize(EltTy);
1814    unsigned EltOffset = IROffset/EltSize*EltSize;
1815    return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
1816                                  SourceOffset);
1817  }
1818
1819  // Okay, we don't have any better idea of what to pass, so we pass this in an
1820  // integer register that isn't too big to fit the rest of the struct.
1821  unsigned TySizeInBytes =
1822    (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
1823
1824  assert(TySizeInBytes != SourceOffset && "Empty field?");
1825
1826  // It is always safe to classify this as an integer type up to i64 that
1827  // isn't larger than the structure.
1828  return llvm::IntegerType::get(getVMContext(),
1829                                std::min(TySizeInBytes-SourceOffset, 8U)*8);
1830}
1831
1832
1833/// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
1834/// be used as elements of a two register pair to pass or return, return a
1835/// first class aggregate to represent them.  For example, if the low part of
1836/// a by-value argument should be passed as i32* and the high part as float,
1837/// return {i32*, float}.
1838static llvm::Type *
1839GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
1840                           const llvm::TargetData &TD) {
1841  // In order to correctly satisfy the ABI, we need to the high part to start
1842  // at offset 8.  If the high and low parts we inferred are both 4-byte types
1843  // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
1844  // the second element at offset 8.  Check for this:
1845  unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
1846  unsigned HiAlign = TD.getABITypeAlignment(Hi);
1847  unsigned HiStart = llvm::TargetData::RoundUpAlignment(LoSize, HiAlign);
1848  assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
1849
1850  // To handle this, we have to increase the size of the low part so that the
1851  // second element will start at an 8 byte offset.  We can't increase the size
1852  // of the second element because it might make us access off the end of the
1853  // struct.
1854  if (HiStart != 8) {
1855    // There are only two sorts of types the ABI generation code can produce for
1856    // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
1857    // Promote these to a larger type.
1858    if (Lo->isFloatTy())
1859      Lo = llvm::Type::getDoubleTy(Lo->getContext());
1860    else {
1861      assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
1862      Lo = llvm::Type::getInt64Ty(Lo->getContext());
1863    }
1864  }
1865
1866  llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL);
1867
1868
1869  // Verify that the second element is at an 8-byte offset.
1870  assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
1871         "Invalid x86-64 argument pair!");
1872  return Result;
1873}
1874
1875ABIArgInfo X86_64ABIInfo::
1876classifyReturnType(QualType RetTy) const {
1877  // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
1878  // classification algorithm.
1879  X86_64ABIInfo::Class Lo, Hi;
1880  classify(RetTy, 0, Lo, Hi);
1881
1882  // Check some invariants.
1883  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1884  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1885
1886  llvm::Type *ResType = 0;
1887  switch (Lo) {
1888  case NoClass:
1889    if (Hi == NoClass)
1890      return ABIArgInfo::getIgnore();
1891    // If the low part is just padding, it takes no register, leave ResType
1892    // null.
1893    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1894           "Unknown missing lo part");
1895    break;
1896
1897  case SSEUp:
1898  case X87Up:
1899    llvm_unreachable("Invalid classification for lo word.");
1900
1901    // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
1902    // hidden argument.
1903  case Memory:
1904    return getIndirectReturnResult(RetTy);
1905
1906    // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
1907    // available register of the sequence %rax, %rdx is used.
1908  case Integer:
1909    ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
1910
1911    // If we have a sign or zero extended integer, make sure to return Extend
1912    // so that the parameter gets the right LLVM IR attributes.
1913    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
1914      // Treat an enum type as its underlying type.
1915      if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1916        RetTy = EnumTy->getDecl()->getIntegerType();
1917
1918      if (RetTy->isIntegralOrEnumerationType() &&
1919          RetTy->isPromotableIntegerType())
1920        return ABIArgInfo::getExtend();
1921    }
1922    break;
1923
1924    // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
1925    // available SSE register of the sequence %xmm0, %xmm1 is used.
1926  case SSE:
1927    ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
1928    break;
1929
1930    // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
1931    // returned on the X87 stack in %st0 as 80-bit x87 number.
1932  case X87:
1933    ResType = llvm::Type::getX86_FP80Ty(getVMContext());
1934    break;
1935
1936    // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
1937    // part of the value is returned in %st0 and the imaginary part in
1938    // %st1.
1939  case ComplexX87:
1940    assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
1941    ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
1942                                    llvm::Type::getX86_FP80Ty(getVMContext()),
1943                                    NULL);
1944    break;
1945  }
1946
1947  llvm::Type *HighPart = 0;
1948  switch (Hi) {
1949    // Memory was handled previously and X87 should
1950    // never occur as a hi class.
1951  case Memory:
1952  case X87:
1953    llvm_unreachable("Invalid classification for hi word.");
1954
1955  case ComplexX87: // Previously handled.
1956  case NoClass:
1957    break;
1958
1959  case Integer:
1960    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
1961    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1962      return ABIArgInfo::getDirect(HighPart, 8);
1963    break;
1964  case SSE:
1965    HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
1966    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1967      return ABIArgInfo::getDirect(HighPart, 8);
1968    break;
1969
1970    // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
1971    // is passed in the next available eightbyte chunk if the last used
1972    // vector register.
1973    //
1974    // SSEUP should always be preceded by SSE, just widen.
1975  case SSEUp:
1976    assert(Lo == SSE && "Unexpected SSEUp classification.");
1977    ResType = GetByteVectorType(RetTy);
1978    break;
1979
1980    // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
1981    // returned together with the previous X87 value in %st0.
1982  case X87Up:
1983    // If X87Up is preceded by X87, we don't need to do
1984    // anything. However, in some cases with unions it may not be
1985    // preceded by X87. In such situations we follow gcc and pass the
1986    // extra bits in an SSE reg.
1987    if (Lo != X87) {
1988      HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
1989      if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1990        return ABIArgInfo::getDirect(HighPart, 8);
1991    }
1992    break;
1993  }
1994
1995  // If a high part was specified, merge it together with the low part.  It is
1996  // known to pass in the high eightbyte of the result.  We do this by forming a
1997  // first class struct aggregate with the high and low part: {low, high}
1998  if (HighPart)
1999    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
2000
2001  return ABIArgInfo::getDirect(ResType);
2002}
2003
2004ABIArgInfo X86_64ABIInfo::classifyArgumentType(
2005  QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE)
2006  const
2007{
2008  X86_64ABIInfo::Class Lo, Hi;
2009  classify(Ty, 0, Lo, Hi);
2010
2011  // Check some invariants.
2012  // FIXME: Enforce these by construction.
2013  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2014  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2015
2016  neededInt = 0;
2017  neededSSE = 0;
2018  llvm::Type *ResType = 0;
2019  switch (Lo) {
2020  case NoClass:
2021    if (Hi == NoClass)
2022      return ABIArgInfo::getIgnore();
2023    // If the low part is just padding, it takes no register, leave ResType
2024    // null.
2025    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2026           "Unknown missing lo part");
2027    break;
2028
2029    // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2030    // on the stack.
2031  case Memory:
2032
2033    // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2034    // COMPLEX_X87, it is passed in memory.
2035  case X87:
2036  case ComplexX87:
2037    if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
2038      ++neededInt;
2039    return getIndirectResult(Ty, freeIntRegs);
2040
2041  case SSEUp:
2042  case X87Up:
2043    llvm_unreachable("Invalid classification for lo word.");
2044
2045    // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2046    // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2047    // and %r9 is used.
2048  case Integer:
2049    ++neededInt;
2050
2051    // Pick an 8-byte type based on the preferred type.
2052    ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2053
2054    // If we have a sign or zero extended integer, make sure to return Extend
2055    // so that the parameter gets the right LLVM IR attributes.
2056    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2057      // Treat an enum type as its underlying type.
2058      if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2059        Ty = EnumTy->getDecl()->getIntegerType();
2060
2061      if (Ty->isIntegralOrEnumerationType() &&
2062          Ty->isPromotableIntegerType())
2063        return ABIArgInfo::getExtend();
2064    }
2065
2066    break;
2067
2068    // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2069    // available SSE register is used, the registers are taken in the
2070    // order from %xmm0 to %xmm7.
2071  case SSE: {
2072    llvm::Type *IRType = CGT.ConvertType(Ty);
2073    ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2074    ++neededSSE;
2075    break;
2076  }
2077  }
2078
2079  llvm::Type *HighPart = 0;
2080  switch (Hi) {
2081    // Memory was handled previously, ComplexX87 and X87 should
2082    // never occur as hi classes, and X87Up must be preceded by X87,
2083    // which is passed in memory.
2084  case Memory:
2085  case X87:
2086  case ComplexX87:
2087    llvm_unreachable("Invalid classification for hi word.");
2088
2089  case NoClass: break;
2090
2091  case Integer:
2092    ++neededInt;
2093    // Pick an 8-byte type based on the preferred type.
2094    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2095
2096    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2097      return ABIArgInfo::getDirect(HighPart, 8);
2098    break;
2099
2100    // X87Up generally doesn't occur here (long double is passed in
2101    // memory), except in situations involving unions.
2102  case X87Up:
2103  case SSE:
2104    HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2105
2106    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2107      return ABIArgInfo::getDirect(HighPart, 8);
2108
2109    ++neededSSE;
2110    break;
2111
2112    // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2113    // eightbyte is passed in the upper half of the last used SSE
2114    // register.  This only happens when 128-bit vectors are passed.
2115  case SSEUp:
2116    assert(Lo == SSE && "Unexpected SSEUp classification");
2117    ResType = GetByteVectorType(Ty);
2118    break;
2119  }
2120
2121  // If a high part was specified, merge it together with the low part.  It is
2122  // known to pass in the high eightbyte of the result.  We do this by forming a
2123  // first class struct aggregate with the high and low part: {low, high}
2124  if (HighPart)
2125    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
2126
2127  return ABIArgInfo::getDirect(ResType);
2128}
2129
2130void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2131
2132  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2133
2134  // Keep track of the number of assigned registers.
2135  unsigned freeIntRegs = 6, freeSSERegs = 8;
2136
2137  // If the return value is indirect, then the hidden argument is consuming one
2138  // integer register.
2139  if (FI.getReturnInfo().isIndirect())
2140    --freeIntRegs;
2141
2142  // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2143  // get assigned (in left-to-right order) for passing as follows...
2144  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2145       it != ie; ++it) {
2146    unsigned neededInt, neededSSE;
2147    it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
2148                                    neededSSE);
2149
2150    // AMD64-ABI 3.2.3p3: If there are no registers available for any
2151    // eightbyte of an argument, the whole argument is passed on the
2152    // stack. If registers have already been assigned for some
2153    // eightbytes of such an argument, the assignments get reverted.
2154    if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
2155      freeIntRegs -= neededInt;
2156      freeSSERegs -= neededSSE;
2157    } else {
2158      it->info = getIndirectResult(it->type, freeIntRegs);
2159    }
2160  }
2161}
2162
2163static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
2164                                        QualType Ty,
2165                                        CodeGenFunction &CGF) {
2166  llvm::Value *overflow_arg_area_p =
2167    CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
2168  llvm::Value *overflow_arg_area =
2169    CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2170
2171  // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2172  // byte boundary if alignment needed by type exceeds 8 byte boundary.
2173  // It isn't stated explicitly in the standard, but in practice we use
2174  // alignment greater than 16 where necessary.
2175  uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
2176  if (Align > 8) {
2177    // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
2178    llvm::Value *Offset =
2179      llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
2180    overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
2181    llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
2182                                                    CGF.Int64Ty);
2183    llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
2184    overflow_arg_area =
2185      CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
2186                                 overflow_arg_area->getType(),
2187                                 "overflow_arg_area.align");
2188  }
2189
2190  // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2191  llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2192  llvm::Value *Res =
2193    CGF.Builder.CreateBitCast(overflow_arg_area,
2194                              llvm::PointerType::getUnqual(LTy));
2195
2196  // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
2197  // l->overflow_arg_area + sizeof(type).
2198  // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
2199  // an 8 byte boundary.
2200
2201  uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
2202  llvm::Value *Offset =
2203      llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
2204  overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
2205                                            "overflow_arg_area.next");
2206  CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2207
2208  // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2209  return Res;
2210}
2211
2212llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2213                                      CodeGenFunction &CGF) const {
2214  // Assume that va_list type is correct; should be pointer to LLVM type:
2215  // struct {
2216  //   i32 gp_offset;
2217  //   i32 fp_offset;
2218  //   i8* overflow_arg_area;
2219  //   i8* reg_save_area;
2220  // };
2221  unsigned neededInt, neededSSE;
2222
2223  Ty = CGF.getContext().getCanonicalType(Ty);
2224  ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE);
2225
2226  // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2227  // in the registers. If not go to step 7.
2228  if (!neededInt && !neededSSE)
2229    return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2230
2231  // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2232  // general purpose registers needed to pass type and num_fp to hold
2233  // the number of floating point registers needed.
2234
2235  // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2236  // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2237  // l->fp_offset > 304 - num_fp * 16 go to step 7.
2238  //
2239  // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
2240  // register save space).
2241
2242  llvm::Value *InRegs = 0;
2243  llvm::Value *gp_offset_p = 0, *gp_offset = 0;
2244  llvm::Value *fp_offset_p = 0, *fp_offset = 0;
2245  if (neededInt) {
2246    gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
2247    gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
2248    InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
2249    InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
2250  }
2251
2252  if (neededSSE) {
2253    fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
2254    fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
2255    llvm::Value *FitsInFP =
2256      llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2257    FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2258    InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2259  }
2260
2261  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2262  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2263  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2264  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2265
2266  // Emit code to load the value if it was passed in registers.
2267
2268  CGF.EmitBlock(InRegBlock);
2269
2270  // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2271  // an offset of l->gp_offset and/or l->fp_offset. This may require
2272  // copying to a temporary location in case the parameter is passed
2273  // in different register classes or requires an alignment greater
2274  // than 8 for general purpose registers and 16 for XMM registers.
2275  //
2276  // FIXME: This really results in shameful code when we end up needing to
2277  // collect arguments from different places; often what should result in a
2278  // simple assembling of a structure from scattered addresses has many more
2279  // loads than necessary. Can we clean this up?
2280  llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2281  llvm::Value *RegAddr =
2282    CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
2283                           "reg_save_area");
2284  if (neededInt && neededSSE) {
2285    // FIXME: Cleanup.
2286    assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2287    llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2288    llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
2289    assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2290    llvm::Type *TyLo = ST->getElementType(0);
2291    llvm::Type *TyHi = ST->getElementType(1);
2292    assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2293           "Unexpected ABI info for mixed regs");
2294    llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2295    llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2296    llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2297    llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2298    llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
2299    llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
2300    llvm::Value *V =
2301      CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2302    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2303    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2304    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2305
2306    RegAddr = CGF.Builder.CreateBitCast(Tmp,
2307                                        llvm::PointerType::getUnqual(LTy));
2308  } else if (neededInt) {
2309    RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2310    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2311                                        llvm::PointerType::getUnqual(LTy));
2312  } else if (neededSSE == 1) {
2313    RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2314    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2315                                        llvm::PointerType::getUnqual(LTy));
2316  } else {
2317    assert(neededSSE == 2 && "Invalid number of needed registers!");
2318    // SSE registers are spaced 16 bytes apart in the register save
2319    // area, we need to collect the two eightbytes together.
2320    llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2321    llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2322    llvm::Type *DoubleTy = CGF.DoubleTy;
2323    llvm::Type *DblPtrTy =
2324      llvm::PointerType::getUnqual(DoubleTy);
2325    llvm::StructType *ST = llvm::StructType::get(DoubleTy,
2326                                                       DoubleTy, NULL);
2327    llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
2328    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2329                                                         DblPtrTy));
2330    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2331    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2332                                                         DblPtrTy));
2333    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2334    RegAddr = CGF.Builder.CreateBitCast(Tmp,
2335                                        llvm::PointerType::getUnqual(LTy));
2336  }
2337
2338  // AMD64-ABI 3.5.7p5: Step 5. Set:
2339  // l->gp_offset = l->gp_offset + num_gp * 8
2340  // l->fp_offset = l->fp_offset + num_fp * 16.
2341  if (neededInt) {
2342    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2343    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2344                            gp_offset_p);
2345  }
2346  if (neededSSE) {
2347    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2348    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2349                            fp_offset_p);
2350  }
2351  CGF.EmitBranch(ContBlock);
2352
2353  // Emit code to load the value if it was passed in memory.
2354
2355  CGF.EmitBlock(InMemBlock);
2356  llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2357
2358  // Return the appropriate result.
2359
2360  CGF.EmitBlock(ContBlock);
2361  llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2362                                                 "vaarg.addr");
2363  ResAddr->addIncoming(RegAddr, InRegBlock);
2364  ResAddr->addIncoming(MemAddr, InMemBlock);
2365  return ResAddr;
2366}
2367
2368ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty) const {
2369
2370  if (Ty->isVoidType())
2371    return ABIArgInfo::getIgnore();
2372
2373  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2374    Ty = EnumTy->getDecl()->getIntegerType();
2375
2376  uint64_t Size = getContext().getTypeSize(Ty);
2377
2378  if (const RecordType *RT = Ty->getAs<RecordType>()) {
2379    if (hasNonTrivialDestructorOrCopyConstructor(RT) ||
2380        RT->getDecl()->hasFlexibleArrayMember())
2381      return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2382
2383    // FIXME: mingw-w64-gcc emits 128-bit struct as i128
2384    if (Size == 128 &&
2385        getContext().getTargetInfo().getTriple().getOS()
2386          == llvm::Triple::MinGW32)
2387      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2388                                                          Size));
2389
2390    // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
2391    // not 1, 2, 4, or 8 bytes, must be passed by reference."
2392    if (Size <= 64 &&
2393        (Size & (Size - 1)) == 0)
2394      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2395                                                          Size));
2396
2397    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2398  }
2399
2400  if (Ty->isPromotableIntegerType())
2401    return ABIArgInfo::getExtend();
2402
2403  return ABIArgInfo::getDirect();
2404}
2405
2406void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2407
2408  QualType RetTy = FI.getReturnType();
2409  FI.getReturnInfo() = classify(RetTy);
2410
2411  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2412       it != ie; ++it)
2413    it->info = classify(it->type);
2414}
2415
2416llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2417                                      CodeGenFunction &CGF) const {
2418  llvm::Type *BPP = CGF.Int8PtrPtrTy;
2419
2420  CGBuilderTy &Builder = CGF.Builder;
2421  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2422                                                       "ap");
2423  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2424  llvm::Type *PTy =
2425    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2426  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2427
2428  uint64_t Offset =
2429    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
2430  llvm::Value *NextAddr =
2431    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2432                      "ap.next");
2433  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2434
2435  return AddrTyped;
2436}
2437
2438// PowerPC-32
2439
2440namespace {
2441class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2442public:
2443  PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2444
2445  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2446    // This is recovered from gcc output.
2447    return 1; // r1 is the dedicated stack pointer
2448  }
2449
2450  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2451                               llvm::Value *Address) const;
2452};
2453
2454}
2455
2456bool
2457PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2458                                                llvm::Value *Address) const {
2459  // This is calculated from the LLVM and GCC tables and verified
2460  // against gcc output.  AFAIK all ABIs use the same encoding.
2461
2462  CodeGen::CGBuilderTy &Builder = CGF.Builder;
2463
2464  llvm::IntegerType *i8 = CGF.Int8Ty;
2465  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2466  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2467  llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2468
2469  // 0-31: r0-31, the 4-byte general-purpose registers
2470  AssignToArrayRange(Builder, Address, Four8, 0, 31);
2471
2472  // 32-63: fp0-31, the 8-byte floating-point registers
2473  AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2474
2475  // 64-76 are various 4-byte special-purpose registers:
2476  // 64: mq
2477  // 65: lr
2478  // 66: ctr
2479  // 67: ap
2480  // 68-75 cr0-7
2481  // 76: xer
2482  AssignToArrayRange(Builder, Address, Four8, 64, 76);
2483
2484  // 77-108: v0-31, the 16-byte vector registers
2485  AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2486
2487  // 109: vrsave
2488  // 110: vscr
2489  // 111: spe_acc
2490  // 112: spefscr
2491  // 113: sfp
2492  AssignToArrayRange(Builder, Address, Four8, 109, 113);
2493
2494  return false;
2495}
2496
2497// PowerPC-64
2498
2499namespace {
2500class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2501public:
2502  PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2503
2504  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2505    // This is recovered from gcc output.
2506    return 1; // r1 is the dedicated stack pointer
2507  }
2508
2509  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2510                               llvm::Value *Address) const;
2511};
2512
2513}
2514
2515bool
2516PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2517                                                llvm::Value *Address) const {
2518  // This is calculated from the LLVM and GCC tables and verified
2519  // against gcc output.  AFAIK all ABIs use the same encoding.
2520
2521  CodeGen::CGBuilderTy &Builder = CGF.Builder;
2522
2523  llvm::IntegerType *i8 = CGF.Int8Ty;
2524  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2525  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2526  llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2527
2528  // 0-31: r0-31, the 8-byte general-purpose registers
2529  AssignToArrayRange(Builder, Address, Eight8, 0, 31);
2530
2531  // 32-63: fp0-31, the 8-byte floating-point registers
2532  AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2533
2534  // 64-76 are various 4-byte special-purpose registers:
2535  // 64: mq
2536  // 65: lr
2537  // 66: ctr
2538  // 67: ap
2539  // 68-75 cr0-7
2540  // 76: xer
2541  AssignToArrayRange(Builder, Address, Four8, 64, 76);
2542
2543  // 77-108: v0-31, the 16-byte vector registers
2544  AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2545
2546  // 109: vrsave
2547  // 110: vscr
2548  // 111: spe_acc
2549  // 112: spefscr
2550  // 113: sfp
2551  AssignToArrayRange(Builder, Address, Four8, 109, 113);
2552
2553  return false;
2554}
2555
2556//===----------------------------------------------------------------------===//
2557// ARM ABI Implementation
2558//===----------------------------------------------------------------------===//
2559
2560namespace {
2561
2562class ARMABIInfo : public ABIInfo {
2563public:
2564  enum ABIKind {
2565    APCS = 0,
2566    AAPCS = 1,
2567    AAPCS_VFP
2568  };
2569
2570private:
2571  ABIKind Kind;
2572
2573public:
2574  ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {}
2575
2576  bool isEABI() const {
2577    StringRef Env =
2578      getContext().getTargetInfo().getTriple().getEnvironmentName();
2579    return (Env == "gnueabi" || Env == "eabi" || Env == "androideabi");
2580  }
2581
2582private:
2583  ABIKind getABIKind() const { return Kind; }
2584
2585  ABIArgInfo classifyReturnType(QualType RetTy) const;
2586  ABIArgInfo classifyArgumentType(QualType RetTy) const;
2587
2588  virtual void computeInfo(CGFunctionInfo &FI) const;
2589
2590  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2591                                 CodeGenFunction &CGF) const;
2592};
2593
2594class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
2595public:
2596  ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
2597    :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
2598
2599  const ARMABIInfo &getABIInfo() const {
2600    return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
2601  }
2602
2603  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2604    return 13;
2605  }
2606
2607  StringRef getARCRetainAutoreleasedReturnValueMarker() const {
2608    return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
2609  }
2610
2611  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2612                               llvm::Value *Address) const {
2613    llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
2614
2615    // 0-15 are the 16 integer registers.
2616    AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
2617    return false;
2618  }
2619
2620  unsigned getSizeOfUnwindException() const {
2621    if (getABIInfo().isEABI()) return 88;
2622    return TargetCodeGenInfo::getSizeOfUnwindException();
2623  }
2624};
2625
2626}
2627
2628void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
2629  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2630  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2631       it != ie; ++it)
2632    it->info = classifyArgumentType(it->type);
2633
2634  // Always honor user-specified calling convention.
2635  if (FI.getCallingConvention() != llvm::CallingConv::C)
2636    return;
2637
2638  // Calling convention as default by an ABI.
2639  llvm::CallingConv::ID DefaultCC;
2640  if (isEABI())
2641    DefaultCC = llvm::CallingConv::ARM_AAPCS;
2642  else
2643    DefaultCC = llvm::CallingConv::ARM_APCS;
2644
2645  // If user did not ask for specific calling convention explicitly (e.g. via
2646  // pcs attribute), set effective calling convention if it's different than ABI
2647  // default.
2648  switch (getABIKind()) {
2649  case APCS:
2650    if (DefaultCC != llvm::CallingConv::ARM_APCS)
2651      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
2652    break;
2653  case AAPCS:
2654    if (DefaultCC != llvm::CallingConv::ARM_AAPCS)
2655      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
2656    break;
2657  case AAPCS_VFP:
2658    if (DefaultCC != llvm::CallingConv::ARM_AAPCS_VFP)
2659      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
2660    break;
2661  }
2662}
2663
2664/// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous
2665/// aggregate.  If HAMembers is non-null, the number of base elements
2666/// contained in the type is returned through it; this is used for the
2667/// recursive calls that check aggregate component types.
2668static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
2669                                   ASTContext &Context,
2670                                   uint64_t *HAMembers = 0) {
2671  uint64_t Members = 0;
2672  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2673    if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members))
2674      return false;
2675    Members *= AT->getSize().getZExtValue();
2676  } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
2677    const RecordDecl *RD = RT->getDecl();
2678    if (RD->hasFlexibleArrayMember())
2679      return false;
2680
2681    Members = 0;
2682    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2683         i != e; ++i) {
2684      const FieldDecl *FD = *i;
2685      uint64_t FldMembers;
2686      if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers))
2687        return false;
2688
2689      Members = (RD->isUnion() ?
2690                 std::max(Members, FldMembers) : Members + FldMembers);
2691    }
2692  } else {
2693    Members = 1;
2694    if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2695      Members = 2;
2696      Ty = CT->getElementType();
2697    }
2698
2699    // Homogeneous aggregates for AAPCS-VFP must have base types of float,
2700    // double, or 64-bit or 128-bit vectors.
2701    if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2702      if (BT->getKind() != BuiltinType::Float &&
2703          BT->getKind() != BuiltinType::Double &&
2704          BT->getKind() != BuiltinType::LongDouble)
2705        return false;
2706    } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
2707      unsigned VecSize = Context.getTypeSize(VT);
2708      if (VecSize != 64 && VecSize != 128)
2709        return false;
2710    } else {
2711      return false;
2712    }
2713
2714    // The base type must be the same for all members.  Vector types of the
2715    // same total size are treated as being equivalent here.
2716    const Type *TyPtr = Ty.getTypePtr();
2717    if (!Base)
2718      Base = TyPtr;
2719    if (Base != TyPtr &&
2720        (!Base->isVectorType() || !TyPtr->isVectorType() ||
2721         Context.getTypeSize(Base) != Context.getTypeSize(TyPtr)))
2722      return false;
2723  }
2724
2725  // Homogeneous Aggregates can have at most 4 members of the base type.
2726  if (HAMembers)
2727    *HAMembers = Members;
2728
2729  return (Members > 0 && Members <= 4);
2730}
2731
2732ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty) const {
2733  if (!isAggregateTypeForABI(Ty)) {
2734    // Treat an enum type as its underlying type.
2735    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2736      Ty = EnumTy->getDecl()->getIntegerType();
2737
2738    return (Ty->isPromotableIntegerType() ?
2739            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2740  }
2741
2742  // Ignore empty records.
2743  if (isEmptyRecord(getContext(), Ty, true))
2744    return ABIArgInfo::getIgnore();
2745
2746  // Structures with either a non-trivial destructor or a non-trivial
2747  // copy constructor are always indirect.
2748  if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
2749    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2750
2751  if (getABIKind() == ARMABIInfo::AAPCS_VFP) {
2752    // Homogeneous Aggregates need to be expanded.
2753    const Type *Base = 0;
2754    if (isHomogeneousAggregate(Ty, Base, getContext())) {
2755      assert(Base && "Base class should be set for homogeneous aggregate");
2756      return ABIArgInfo::getExpand();
2757    }
2758  }
2759
2760  // Turn on byval for APCS and AAPCS.
2761  // FIXME: turn on byval for AAPCS_VFP for performance.
2762  if (getABIKind() == ARMABIInfo::APCS || getABIKind() == ARMABIInfo::AAPCS) {
2763    if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64) ||
2764        getContext().getTypeAlign(Ty) > 64) {
2765      return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
2766    }
2767  }
2768
2769  // Otherwise, pass by coercing to a structure of the appropriate size.
2770  llvm::Type* ElemTy;
2771  unsigned SizeRegs;
2772  // FIXME: Try to match the types of the arguments more accurately where
2773  // we can.
2774  if (getContext().getTypeAlign(Ty) <= 32) {
2775    ElemTy = llvm::Type::getInt32Ty(getVMContext());
2776    SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
2777  } else {
2778    ElemTy = llvm::Type::getInt64Ty(getVMContext());
2779    SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
2780  }
2781
2782  llvm::Type *STy =
2783    llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL);
2784  return ABIArgInfo::getDirect(STy);
2785}
2786
2787static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
2788                              llvm::LLVMContext &VMContext) {
2789  // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
2790  // is called integer-like if its size is less than or equal to one word, and
2791  // the offset of each of its addressable sub-fields is zero.
2792
2793  uint64_t Size = Context.getTypeSize(Ty);
2794
2795  // Check that the type fits in a word.
2796  if (Size > 32)
2797    return false;
2798
2799  // FIXME: Handle vector types!
2800  if (Ty->isVectorType())
2801    return false;
2802
2803  // Float types are never treated as "integer like".
2804  if (Ty->isRealFloatingType())
2805    return false;
2806
2807  // If this is a builtin or pointer type then it is ok.
2808  if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
2809    return true;
2810
2811  // Small complex integer types are "integer like".
2812  if (const ComplexType *CT = Ty->getAs<ComplexType>())
2813    return isIntegerLikeType(CT->getElementType(), Context, VMContext);
2814
2815  // Single element and zero sized arrays should be allowed, by the definition
2816  // above, but they are not.
2817
2818  // Otherwise, it must be a record type.
2819  const RecordType *RT = Ty->getAs<RecordType>();
2820  if (!RT) return false;
2821
2822  // Ignore records with flexible arrays.
2823  const RecordDecl *RD = RT->getDecl();
2824  if (RD->hasFlexibleArrayMember())
2825    return false;
2826
2827  // Check that all sub-fields are at offset 0, and are themselves "integer
2828  // like".
2829  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2830
2831  bool HadField = false;
2832  unsigned idx = 0;
2833  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2834       i != e; ++i, ++idx) {
2835    const FieldDecl *FD = *i;
2836
2837    // Bit-fields are not addressable, we only need to verify they are "integer
2838    // like". We still have to disallow a subsequent non-bitfield, for example:
2839    //   struct { int : 0; int x }
2840    // is non-integer like according to gcc.
2841    if (FD->isBitField()) {
2842      if (!RD->isUnion())
2843        HadField = true;
2844
2845      if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2846        return false;
2847
2848      continue;
2849    }
2850
2851    // Check if this field is at offset 0.
2852    if (Layout.getFieldOffset(idx) != 0)
2853      return false;
2854
2855    if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2856      return false;
2857
2858    // Only allow at most one field in a structure. This doesn't match the
2859    // wording above, but follows gcc in situations with a field following an
2860    // empty structure.
2861    if (!RD->isUnion()) {
2862      if (HadField)
2863        return false;
2864
2865      HadField = true;
2866    }
2867  }
2868
2869  return true;
2870}
2871
2872ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
2873  if (RetTy->isVoidType())
2874    return ABIArgInfo::getIgnore();
2875
2876  // Large vector types should be returned via memory.
2877  if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
2878    return ABIArgInfo::getIndirect(0);
2879
2880  if (!isAggregateTypeForABI(RetTy)) {
2881    // Treat an enum type as its underlying type.
2882    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2883      RetTy = EnumTy->getDecl()->getIntegerType();
2884
2885    return (RetTy->isPromotableIntegerType() ?
2886            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2887  }
2888
2889  // Structures with either a non-trivial destructor or a non-trivial
2890  // copy constructor are always indirect.
2891  if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
2892    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2893
2894  // Are we following APCS?
2895  if (getABIKind() == APCS) {
2896    if (isEmptyRecord(getContext(), RetTy, false))
2897      return ABIArgInfo::getIgnore();
2898
2899    // Complex types are all returned as packed integers.
2900    //
2901    // FIXME: Consider using 2 x vector types if the back end handles them
2902    // correctly.
2903    if (RetTy->isAnyComplexType())
2904      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2905                                              getContext().getTypeSize(RetTy)));
2906
2907    // Integer like structures are returned in r0.
2908    if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
2909      // Return in the smallest viable integer type.
2910      uint64_t Size = getContext().getTypeSize(RetTy);
2911      if (Size <= 8)
2912        return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2913      if (Size <= 16)
2914        return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2915      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2916    }
2917
2918    // Otherwise return in memory.
2919    return ABIArgInfo::getIndirect(0);
2920  }
2921
2922  // Otherwise this is an AAPCS variant.
2923
2924  if (isEmptyRecord(getContext(), RetTy, true))
2925    return ABIArgInfo::getIgnore();
2926
2927  // Check for homogeneous aggregates with AAPCS-VFP.
2928  if (getABIKind() == AAPCS_VFP) {
2929    const Type *Base = 0;
2930    if (isHomogeneousAggregate(RetTy, Base, getContext())) {
2931      assert(Base && "Base class should be set for homogeneous aggregate");
2932      // Homogeneous Aggregates are returned directly.
2933      return ABIArgInfo::getDirect();
2934    }
2935  }
2936
2937  // Aggregates <= 4 bytes are returned in r0; other aggregates
2938  // are returned indirectly.
2939  uint64_t Size = getContext().getTypeSize(RetTy);
2940  if (Size <= 32) {
2941    // Return in the smallest viable integer type.
2942    if (Size <= 8)
2943      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2944    if (Size <= 16)
2945      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2946    return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2947  }
2948
2949  return ABIArgInfo::getIndirect(0);
2950}
2951
2952llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2953                                   CodeGenFunction &CGF) const {
2954  llvm::Type *BP = CGF.Int8PtrTy;
2955  llvm::Type *BPP = CGF.Int8PtrPtrTy;
2956
2957  CGBuilderTy &Builder = CGF.Builder;
2958  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
2959  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2960  // Handle address alignment for type alignment > 32 bits
2961  uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
2962  if (TyAlign > 4) {
2963    assert((TyAlign & (TyAlign - 1)) == 0 &&
2964           "Alignment is not power of 2!");
2965    llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
2966    AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
2967    AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
2968    Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
2969  }
2970  llvm::Type *PTy =
2971    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2972  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2973
2974  uint64_t Offset =
2975    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
2976  llvm::Value *NextAddr =
2977    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2978                      "ap.next");
2979  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2980
2981  return AddrTyped;
2982}
2983
2984//===----------------------------------------------------------------------===//
2985// NVPTX ABI Implementation
2986//===----------------------------------------------------------------------===//
2987
2988namespace {
2989
2990class NVPTXABIInfo : public ABIInfo {
2991public:
2992  NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
2993
2994  ABIArgInfo classifyReturnType(QualType RetTy) const;
2995  ABIArgInfo classifyArgumentType(QualType Ty) const;
2996
2997  virtual void computeInfo(CGFunctionInfo &FI) const;
2998  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2999                                 CodeGenFunction &CFG) const;
3000};
3001
3002class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
3003public:
3004  NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
3005    : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
3006
3007  virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3008                                   CodeGen::CodeGenModule &M) const;
3009};
3010
3011ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
3012  if (RetTy->isVoidType())
3013    return ABIArgInfo::getIgnore();
3014  if (isAggregateTypeForABI(RetTy))
3015    return ABIArgInfo::getIndirect(0);
3016  return ABIArgInfo::getDirect();
3017}
3018
3019ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
3020  if (isAggregateTypeForABI(Ty))
3021    return ABIArgInfo::getIndirect(0);
3022
3023  return ABIArgInfo::getDirect();
3024}
3025
3026void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
3027  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3028  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3029       it != ie; ++it)
3030    it->info = classifyArgumentType(it->type);
3031
3032  // Always honor user-specified calling convention.
3033  if (FI.getCallingConvention() != llvm::CallingConv::C)
3034    return;
3035
3036  // Calling convention as default by an ABI.
3037  // We're still using the PTX_Kernel/PTX_Device calling conventions here,
3038  // but we should switch to NVVM metadata later on.
3039  llvm::CallingConv::ID DefaultCC;
3040  const LangOptions &LangOpts = getContext().getLangOpts();
3041  if (LangOpts.OpenCL || LangOpts.CUDA) {
3042    // If we are in OpenCL or CUDA mode, then default to device functions
3043    DefaultCC = llvm::CallingConv::PTX_Device;
3044  } else {
3045    // If we are in standard C/C++ mode, use the triple to decide on the default
3046    StringRef Env =
3047      getContext().getTargetInfo().getTriple().getEnvironmentName();
3048    if (Env == "device")
3049      DefaultCC = llvm::CallingConv::PTX_Device;
3050    else
3051      DefaultCC = llvm::CallingConv::PTX_Kernel;
3052  }
3053  FI.setEffectiveCallingConvention(DefaultCC);
3054
3055}
3056
3057llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3058                                     CodeGenFunction &CFG) const {
3059  llvm_unreachable("NVPTX does not support varargs");
3060}
3061
3062void NVPTXTargetCodeGenInfo::
3063SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3064                    CodeGen::CodeGenModule &M) const{
3065  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3066  if (!FD) return;
3067
3068  llvm::Function *F = cast<llvm::Function>(GV);
3069
3070  // Perform special handling in OpenCL mode
3071  if (M.getLangOpts().OpenCL) {
3072    // Use OpenCL function attributes to set proper calling conventions
3073    // By default, all functions are device functions
3074    if (FD->hasAttr<OpenCLKernelAttr>()) {
3075      // OpenCL __kernel functions get a kernel calling convention
3076      F->setCallingConv(llvm::CallingConv::PTX_Kernel);
3077      // And kernel functions are not subject to inlining
3078      F->addFnAttr(llvm::Attribute::NoInline);
3079    }
3080  }
3081
3082  // Perform special handling in CUDA mode.
3083  if (M.getLangOpts().CUDA) {
3084    // CUDA __global__ functions get a kernel calling convention.  Since
3085    // __global__ functions cannot be called from the device, we do not
3086    // need to set the noinline attribute.
3087    if (FD->getAttr<CUDAGlobalAttr>())
3088      F->setCallingConv(llvm::CallingConv::PTX_Kernel);
3089  }
3090}
3091
3092}
3093
3094//===----------------------------------------------------------------------===//
3095// MBlaze ABI Implementation
3096//===----------------------------------------------------------------------===//
3097
3098namespace {
3099
3100class MBlazeABIInfo : public ABIInfo {
3101public:
3102  MBlazeABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
3103
3104  bool isPromotableIntegerType(QualType Ty) const;
3105
3106  ABIArgInfo classifyReturnType(QualType RetTy) const;
3107  ABIArgInfo classifyArgumentType(QualType RetTy) const;
3108
3109  virtual void computeInfo(CGFunctionInfo &FI) const {
3110    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3111    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3112         it != ie; ++it)
3113      it->info = classifyArgumentType(it->type);
3114  }
3115
3116  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3117                                 CodeGenFunction &CGF) const;
3118};
3119
3120class MBlazeTargetCodeGenInfo : public TargetCodeGenInfo {
3121public:
3122  MBlazeTargetCodeGenInfo(CodeGenTypes &CGT)
3123    : TargetCodeGenInfo(new MBlazeABIInfo(CGT)) {}
3124  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3125                           CodeGen::CodeGenModule &M) const;
3126};
3127
3128}
3129
3130bool MBlazeABIInfo::isPromotableIntegerType(QualType Ty) const {
3131  // MBlaze ABI requires all 8 and 16 bit quantities to be extended.
3132  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
3133    switch (BT->getKind()) {
3134    case BuiltinType::Bool:
3135    case BuiltinType::Char_S:
3136    case BuiltinType::Char_U:
3137    case BuiltinType::SChar:
3138    case BuiltinType::UChar:
3139    case BuiltinType::Short:
3140    case BuiltinType::UShort:
3141      return true;
3142    default:
3143      return false;
3144    }
3145  return false;
3146}
3147
3148llvm::Value *MBlazeABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3149                                      CodeGenFunction &CGF) const {
3150  // FIXME: Implement
3151  return 0;
3152}
3153
3154
3155ABIArgInfo MBlazeABIInfo::classifyReturnType(QualType RetTy) const {
3156  if (RetTy->isVoidType())
3157    return ABIArgInfo::getIgnore();
3158  if (isAggregateTypeForABI(RetTy))
3159    return ABIArgInfo::getIndirect(0);
3160
3161  return (isPromotableIntegerType(RetTy) ?
3162          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3163}
3164
3165ABIArgInfo MBlazeABIInfo::classifyArgumentType(QualType Ty) const {
3166  if (isAggregateTypeForABI(Ty))
3167    return ABIArgInfo::getIndirect(0);
3168
3169  return (isPromotableIntegerType(Ty) ?
3170          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3171}
3172
3173void MBlazeTargetCodeGenInfo::SetTargetAttributes(const Decl *D,
3174                                                  llvm::GlobalValue *GV,
3175                                                  CodeGen::CodeGenModule &M)
3176                                                  const {
3177  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3178  if (!FD) return;
3179
3180  llvm::CallingConv::ID CC = llvm::CallingConv::C;
3181  if (FD->hasAttr<MBlazeInterruptHandlerAttr>())
3182    CC = llvm::CallingConv::MBLAZE_INTR;
3183  else if (FD->hasAttr<MBlazeSaveVolatilesAttr>())
3184    CC = llvm::CallingConv::MBLAZE_SVOL;
3185
3186  if (CC != llvm::CallingConv::C) {
3187      // Handle 'interrupt_handler' attribute:
3188      llvm::Function *F = cast<llvm::Function>(GV);
3189
3190      // Step 1: Set ISR calling convention.
3191      F->setCallingConv(CC);
3192
3193      // Step 2: Add attributes goodness.
3194      F->addFnAttr(llvm::Attribute::NoInline);
3195  }
3196
3197  // Step 3: Emit _interrupt_handler alias.
3198  if (CC == llvm::CallingConv::MBLAZE_INTR)
3199    new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
3200                          "_interrupt_handler", GV, &M.getModule());
3201}
3202
3203
3204//===----------------------------------------------------------------------===//
3205// MSP430 ABI Implementation
3206//===----------------------------------------------------------------------===//
3207
3208namespace {
3209
3210class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
3211public:
3212  MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
3213    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
3214  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3215                           CodeGen::CodeGenModule &M) const;
3216};
3217
3218}
3219
3220void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
3221                                                  llvm::GlobalValue *GV,
3222                                             CodeGen::CodeGenModule &M) const {
3223  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3224    if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
3225      // Handle 'interrupt' attribute:
3226      llvm::Function *F = cast<llvm::Function>(GV);
3227
3228      // Step 1: Set ISR calling convention.
3229      F->setCallingConv(llvm::CallingConv::MSP430_INTR);
3230
3231      // Step 2: Add attributes goodness.
3232      F->addFnAttr(llvm::Attribute::NoInline);
3233
3234      // Step 3: Emit ISR vector alias.
3235      unsigned Num = attr->getNumber() + 0xffe0;
3236      new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
3237                            "vector_" + Twine::utohexstr(Num),
3238                            GV, &M.getModule());
3239    }
3240  }
3241}
3242
3243//===----------------------------------------------------------------------===//
3244// MIPS ABI Implementation.  This works for both little-endian and
3245// big-endian variants.
3246//===----------------------------------------------------------------------===//
3247
3248namespace {
3249class MipsABIInfo : public ABIInfo {
3250  bool IsO32;
3251  unsigned MinABIStackAlignInBytes, StackAlignInBytes;
3252  void CoerceToIntArgs(uint64_t TySize,
3253                       SmallVector<llvm::Type*, 8> &ArgList) const;
3254  llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
3255  llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
3256  llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
3257public:
3258  MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
3259    ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
3260    StackAlignInBytes(IsO32 ? 8 : 16) {}
3261
3262  ABIArgInfo classifyReturnType(QualType RetTy) const;
3263  ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
3264  virtual void computeInfo(CGFunctionInfo &FI) const;
3265  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3266                                 CodeGenFunction &CGF) const;
3267};
3268
3269class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
3270  unsigned SizeOfUnwindException;
3271public:
3272  MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
3273    : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
3274      SizeOfUnwindException(IsO32 ? 24 : 32) {}
3275
3276  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
3277    return 29;
3278  }
3279
3280  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3281                               llvm::Value *Address) const;
3282
3283  unsigned getSizeOfUnwindException() const {
3284    return SizeOfUnwindException;
3285  }
3286};
3287}
3288
3289void MipsABIInfo::CoerceToIntArgs(uint64_t TySize,
3290                                  SmallVector<llvm::Type*, 8> &ArgList) const {
3291  llvm::IntegerType *IntTy =
3292    llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
3293
3294  // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
3295  for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
3296    ArgList.push_back(IntTy);
3297
3298  // If necessary, add one more integer type to ArgList.
3299  unsigned R = TySize % (MinABIStackAlignInBytes * 8);
3300
3301  if (R)
3302    ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
3303}
3304
3305// In N32/64, an aligned double precision floating point field is passed in
3306// a register.
3307llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
3308  SmallVector<llvm::Type*, 8> ArgList, IntArgList;
3309
3310  if (IsO32) {
3311    CoerceToIntArgs(TySize, ArgList);
3312    return llvm::StructType::get(getVMContext(), ArgList);
3313  }
3314
3315  if (Ty->isComplexType())
3316    return CGT.ConvertType(Ty);
3317
3318  const RecordType *RT = Ty->getAs<RecordType>();
3319
3320  // Unions/vectors are passed in integer registers.
3321  if (!RT || !RT->isStructureOrClassType()) {
3322    CoerceToIntArgs(TySize, ArgList);
3323    return llvm::StructType::get(getVMContext(), ArgList);
3324  }
3325
3326  const RecordDecl *RD = RT->getDecl();
3327  const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3328  assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
3329
3330  uint64_t LastOffset = 0;
3331  unsigned idx = 0;
3332  llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
3333
3334  // Iterate over fields in the struct/class and check if there are any aligned
3335  // double fields.
3336  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3337       i != e; ++i, ++idx) {
3338    const QualType Ty = i->getType();
3339    const BuiltinType *BT = Ty->getAs<BuiltinType>();
3340
3341    if (!BT || BT->getKind() != BuiltinType::Double)
3342      continue;
3343
3344    uint64_t Offset = Layout.getFieldOffset(idx);
3345    if (Offset % 64) // Ignore doubles that are not aligned.
3346      continue;
3347
3348    // Add ((Offset - LastOffset) / 64) args of type i64.
3349    for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
3350      ArgList.push_back(I64);
3351
3352    // Add double type.
3353    ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
3354    LastOffset = Offset + 64;
3355  }
3356
3357  CoerceToIntArgs(TySize - LastOffset, IntArgList);
3358  ArgList.append(IntArgList.begin(), IntArgList.end());
3359
3360  return llvm::StructType::get(getVMContext(), ArgList);
3361}
3362
3363llvm::Type *MipsABIInfo::getPaddingType(uint64_t Align, uint64_t Offset) const {
3364  assert((Offset % MinABIStackAlignInBytes) == 0);
3365
3366  if ((Align - 1) & Offset)
3367    return llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
3368
3369  return 0;
3370}
3371
3372ABIArgInfo
3373MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
3374  uint64_t OrigOffset = Offset;
3375  uint64_t TySize = getContext().getTypeSize(Ty);
3376  uint64_t Align = getContext().getTypeAlign(Ty) / 8;
3377
3378  Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
3379                   (uint64_t)StackAlignInBytes);
3380  Offset = llvm::RoundUpToAlignment(Offset, Align);
3381  Offset += llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
3382
3383  if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
3384    // Ignore empty aggregates.
3385    if (TySize == 0)
3386      return ABIArgInfo::getIgnore();
3387
3388    // Records with non trivial destructors/constructors should not be passed
3389    // by value.
3390    if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty)) {
3391      Offset = OrigOffset + MinABIStackAlignInBytes;
3392      return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3393    }
3394
3395    // If we have reached here, aggregates are passed directly by coercing to
3396    // another structure type. Padding is inserted if the offset of the
3397    // aggregate is unaligned.
3398    return ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
3399                                 getPaddingType(Align, OrigOffset));
3400  }
3401
3402  // Treat an enum type as its underlying type.
3403  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3404    Ty = EnumTy->getDecl()->getIntegerType();
3405
3406  if (Ty->isPromotableIntegerType())
3407    return ABIArgInfo::getExtend();
3408
3409  return ABIArgInfo::getDirect(0, 0, getPaddingType(Align, OrigOffset));
3410}
3411
3412llvm::Type*
3413MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
3414  const RecordType *RT = RetTy->getAs<RecordType>();
3415  SmallVector<llvm::Type*, 8> RTList;
3416
3417  if (RT && RT->isStructureOrClassType()) {
3418    const RecordDecl *RD = RT->getDecl();
3419    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3420    unsigned FieldCnt = Layout.getFieldCount();
3421
3422    // N32/64 returns struct/classes in floating point registers if the
3423    // following conditions are met:
3424    // 1. The size of the struct/class is no larger than 128-bit.
3425    // 2. The struct/class has one or two fields all of which are floating
3426    //    point types.
3427    // 3. The offset of the first field is zero (this follows what gcc does).
3428    //
3429    // Any other composite results are returned in integer registers.
3430    //
3431    if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
3432      RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
3433      for (; b != e; ++b) {
3434        const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
3435
3436        if (!BT || !BT->isFloatingPoint())
3437          break;
3438
3439        RTList.push_back(CGT.ConvertType(b->getType()));
3440      }
3441
3442      if (b == e)
3443        return llvm::StructType::get(getVMContext(), RTList,
3444                                     RD->hasAttr<PackedAttr>());
3445
3446      RTList.clear();
3447    }
3448  }
3449
3450  CoerceToIntArgs(Size, RTList);
3451  return llvm::StructType::get(getVMContext(), RTList);
3452}
3453
3454ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
3455  uint64_t Size = getContext().getTypeSize(RetTy);
3456
3457  if (RetTy->isVoidType() || Size == 0)
3458    return ABIArgInfo::getIgnore();
3459
3460  if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
3461    if (Size <= 128) {
3462      if (RetTy->isAnyComplexType())
3463        return ABIArgInfo::getDirect();
3464
3465      // O32 returns integer vectors in registers.
3466      if (IsO32 && RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())
3467        return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
3468
3469      if (!IsO32 && !isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
3470        return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
3471    }
3472
3473    return ABIArgInfo::getIndirect(0);
3474  }
3475
3476  // Treat an enum type as its underlying type.
3477  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3478    RetTy = EnumTy->getDecl()->getIntegerType();
3479
3480  return (RetTy->isPromotableIntegerType() ?
3481          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3482}
3483
3484void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
3485  ABIArgInfo &RetInfo = FI.getReturnInfo();
3486  RetInfo = classifyReturnType(FI.getReturnType());
3487
3488  // Check if a pointer to an aggregate is passed as a hidden argument.
3489  uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
3490
3491  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3492       it != ie; ++it)
3493    it->info = classifyArgumentType(it->type, Offset);
3494}
3495
3496llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3497                                    CodeGenFunction &CGF) const {
3498  llvm::Type *BP = CGF.Int8PtrTy;
3499  llvm::Type *BPP = CGF.Int8PtrPtrTy;
3500
3501  CGBuilderTy &Builder = CGF.Builder;
3502  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3503  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3504  int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8;
3505  llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3506  llvm::Value *AddrTyped;
3507  unsigned PtrWidth = getContext().getTargetInfo().getPointerWidth(0);
3508  llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
3509
3510  if (TypeAlign > MinABIStackAlignInBytes) {
3511    llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
3512    llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
3513    llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
3514    llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
3515    llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
3516    AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
3517  }
3518  else
3519    AddrTyped = Builder.CreateBitCast(Addr, PTy);
3520
3521  llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
3522  TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
3523  uint64_t Offset =
3524    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign);
3525  llvm::Value *NextAddr =
3526    Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
3527                      "ap.next");
3528  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3529
3530  return AddrTyped;
3531}
3532
3533bool
3534MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3535                                               llvm::Value *Address) const {
3536  // This information comes from gcc's implementation, which seems to
3537  // as canonical as it gets.
3538
3539  // Everything on MIPS is 4 bytes.  Double-precision FP registers
3540  // are aliased to pairs of single-precision FP registers.
3541  llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
3542
3543  // 0-31 are the general purpose registers, $0 - $31.
3544  // 32-63 are the floating-point registers, $f0 - $f31.
3545  // 64 and 65 are the multiply/divide registers, $hi and $lo.
3546  // 66 is the (notional, I think) register for signal-handler return.
3547  AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
3548
3549  // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
3550  // They are one bit wide and ignored here.
3551
3552  // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
3553  // (coprocessor 1 is the FP unit)
3554  // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
3555  // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
3556  // 176-181 are the DSP accumulator registers.
3557  AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
3558  return false;
3559}
3560
3561//===----------------------------------------------------------------------===//
3562// TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
3563// Currently subclassed only to implement custom OpenCL C function attribute
3564// handling.
3565//===----------------------------------------------------------------------===//
3566
3567namespace {
3568
3569class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
3570public:
3571  TCETargetCodeGenInfo(CodeGenTypes &CGT)
3572    : DefaultTargetCodeGenInfo(CGT) {}
3573
3574  virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3575                                   CodeGen::CodeGenModule &M) const;
3576};
3577
3578void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
3579                                               llvm::GlobalValue *GV,
3580                                               CodeGen::CodeGenModule &M) const {
3581  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3582  if (!FD) return;
3583
3584  llvm::Function *F = cast<llvm::Function>(GV);
3585
3586  if (M.getLangOpts().OpenCL) {
3587    if (FD->hasAttr<OpenCLKernelAttr>()) {
3588      // OpenCL C Kernel functions are not subject to inlining
3589      F->addFnAttr(llvm::Attribute::NoInline);
3590
3591      if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
3592
3593        // Convert the reqd_work_group_size() attributes to metadata.
3594        llvm::LLVMContext &Context = F->getContext();
3595        llvm::NamedMDNode *OpenCLMetadata =
3596            M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
3597
3598        SmallVector<llvm::Value*, 5> Operands;
3599        Operands.push_back(F);
3600
3601        Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
3602                             llvm::APInt(32,
3603                             FD->getAttr<ReqdWorkGroupSizeAttr>()->getXDim())));
3604        Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
3605                             llvm::APInt(32,
3606                               FD->getAttr<ReqdWorkGroupSizeAttr>()->getYDim())));
3607        Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
3608                             llvm::APInt(32,
3609                               FD->getAttr<ReqdWorkGroupSizeAttr>()->getZDim())));
3610
3611        // Add a boolean constant operand for "required" (true) or "hint" (false)
3612        // for implementing the work_group_size_hint attr later. Currently
3613        // always true as the hint is not yet implemented.
3614        Operands.push_back(llvm::ConstantInt::getTrue(Context));
3615        OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
3616      }
3617    }
3618  }
3619}
3620
3621}
3622
3623//===----------------------------------------------------------------------===//
3624// Hexagon ABI Implementation
3625//===----------------------------------------------------------------------===//
3626
3627namespace {
3628
3629class HexagonABIInfo : public ABIInfo {
3630
3631
3632public:
3633  HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
3634
3635private:
3636
3637  ABIArgInfo classifyReturnType(QualType RetTy) const;
3638  ABIArgInfo classifyArgumentType(QualType RetTy) const;
3639
3640  virtual void computeInfo(CGFunctionInfo &FI) const;
3641
3642  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3643                                 CodeGenFunction &CGF) const;
3644};
3645
3646class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
3647public:
3648  HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
3649    :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
3650
3651  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
3652    return 29;
3653  }
3654};
3655
3656}
3657
3658void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
3659  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3660  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3661       it != ie; ++it)
3662    it->info = classifyArgumentType(it->type);
3663}
3664
3665ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
3666  if (!isAggregateTypeForABI(Ty)) {
3667    // Treat an enum type as its underlying type.
3668    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3669      Ty = EnumTy->getDecl()->getIntegerType();
3670
3671    return (Ty->isPromotableIntegerType() ?
3672            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3673  }
3674
3675  // Ignore empty records.
3676  if (isEmptyRecord(getContext(), Ty, true))
3677    return ABIArgInfo::getIgnore();
3678
3679  // Structures with either a non-trivial destructor or a non-trivial
3680  // copy constructor are always indirect.
3681  if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
3682    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3683
3684  uint64_t Size = getContext().getTypeSize(Ty);
3685  if (Size > 64)
3686    return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
3687    // Pass in the smallest viable integer type.
3688  else if (Size > 32)
3689      return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
3690  else if (Size > 16)
3691      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3692  else if (Size > 8)
3693      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3694  else
3695      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3696}
3697
3698ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
3699  if (RetTy->isVoidType())
3700    return ABIArgInfo::getIgnore();
3701
3702  // Large vector types should be returned via memory.
3703  if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
3704    return ABIArgInfo::getIndirect(0);
3705
3706  if (!isAggregateTypeForABI(RetTy)) {
3707    // Treat an enum type as its underlying type.
3708    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3709      RetTy = EnumTy->getDecl()->getIntegerType();
3710
3711    return (RetTy->isPromotableIntegerType() ?
3712            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3713  }
3714
3715  // Structures with either a non-trivial destructor or a non-trivial
3716  // copy constructor are always indirect.
3717  if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
3718    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3719
3720  if (isEmptyRecord(getContext(), RetTy, true))
3721    return ABIArgInfo::getIgnore();
3722
3723  // Aggregates <= 8 bytes are returned in r0; other aggregates
3724  // are returned indirectly.
3725  uint64_t Size = getContext().getTypeSize(RetTy);
3726  if (Size <= 64) {
3727    // Return in the smallest viable integer type.
3728    if (Size <= 8)
3729      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3730    if (Size <= 16)
3731      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3732    if (Size <= 32)
3733      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3734    return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
3735  }
3736
3737  return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
3738}
3739
3740llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3741                                       CodeGenFunction &CGF) const {
3742  // FIXME: Need to handle alignment
3743  llvm::Type *BPP = CGF.Int8PtrPtrTy;
3744
3745  CGBuilderTy &Builder = CGF.Builder;
3746  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
3747                                                       "ap");
3748  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3749  llvm::Type *PTy =
3750    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3751  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
3752
3753  uint64_t Offset =
3754    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
3755  llvm::Value *NextAddr =
3756    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
3757                      "ap.next");
3758  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3759
3760  return AddrTyped;
3761}
3762
3763
3764const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
3765  if (TheTargetCodeGenInfo)
3766    return *TheTargetCodeGenInfo;
3767
3768  const llvm::Triple &Triple = getContext().getTargetInfo().getTriple();
3769  switch (Triple.getArch()) {
3770  default:
3771    return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
3772
3773  case llvm::Triple::mips:
3774  case llvm::Triple::mipsel:
3775    return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
3776
3777  case llvm::Triple::mips64:
3778  case llvm::Triple::mips64el:
3779    return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
3780
3781  case llvm::Triple::arm:
3782  case llvm::Triple::thumb:
3783    {
3784      ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
3785
3786      if (strcmp(getContext().getTargetInfo().getABI(), "apcs-gnu") == 0)
3787        Kind = ARMABIInfo::APCS;
3788      else if (CodeGenOpts.FloatABI == "hard")
3789        Kind = ARMABIInfo::AAPCS_VFP;
3790
3791      return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind));
3792    }
3793
3794  case llvm::Triple::ppc:
3795    return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
3796  case llvm::Triple::ppc64:
3797    return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
3798
3799  case llvm::Triple::nvptx:
3800  case llvm::Triple::nvptx64:
3801    return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
3802
3803  case llvm::Triple::mblaze:
3804    return *(TheTargetCodeGenInfo = new MBlazeTargetCodeGenInfo(Types));
3805
3806  case llvm::Triple::msp430:
3807    return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
3808
3809  case llvm::Triple::tce:
3810    return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
3811
3812  case llvm::Triple::x86: {
3813    bool DisableMMX = strcmp(getContext().getTargetInfo().getABI(), "no-mmx") == 0;
3814
3815    if (Triple.isOSDarwin())
3816      return *(TheTargetCodeGenInfo =
3817               new X86_32TargetCodeGenInfo(Types, true, true, DisableMMX, false,
3818                                           CodeGenOpts.NumRegisterParameters));
3819
3820    switch (Triple.getOS()) {
3821    case llvm::Triple::Cygwin:
3822    case llvm::Triple::MinGW32:
3823    case llvm::Triple::AuroraUX:
3824    case llvm::Triple::DragonFly:
3825    case llvm::Triple::FreeBSD:
3826    case llvm::Triple::OpenBSD:
3827    case llvm::Triple::Bitrig:
3828      return *(TheTargetCodeGenInfo =
3829               new X86_32TargetCodeGenInfo(Types, false, true, DisableMMX,
3830                                           false,
3831                                           CodeGenOpts.NumRegisterParameters));
3832
3833    case llvm::Triple::Win32:
3834      return *(TheTargetCodeGenInfo =
3835               new X86_32TargetCodeGenInfo(Types, false, true, DisableMMX, true,
3836                                           CodeGenOpts.NumRegisterParameters));
3837
3838    default:
3839      return *(TheTargetCodeGenInfo =
3840               new X86_32TargetCodeGenInfo(Types, false, false, DisableMMX,
3841                                           false,
3842                                           CodeGenOpts.NumRegisterParameters));
3843    }
3844  }
3845
3846  case llvm::Triple::x86_64: {
3847    bool HasAVX = strcmp(getContext().getTargetInfo().getABI(), "avx") == 0;
3848
3849    switch (Triple.getOS()) {
3850    case llvm::Triple::Win32:
3851    case llvm::Triple::MinGW32:
3852    case llvm::Triple::Cygwin:
3853      return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
3854    default:
3855      return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types,
3856                                                                  HasAVX));
3857    }
3858  }
3859  case llvm::Triple::hexagon:
3860    return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
3861  }
3862}
3863