TargetInfo.cpp revision 6b9240e058bf3451685df73fc8ce181b3046e92b
1//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// These classes wrap the information about a call or function
11// definition used to handle ABI compliancy.
12//
13//===----------------------------------------------------------------------===//
14
15#include "TargetInfo.h"
16#include "ABIInfo.h"
17#include "CGCXXABI.h"
18#include "CodeGenFunction.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/Frontend/CodeGenOptions.h"
21#include "llvm/ADT/Triple.h"
22#include "llvm/IR/DataLayout.h"
23#include "llvm/IR/Type.h"
24#include "llvm/Support/raw_ostream.h"
25using namespace clang;
26using namespace CodeGen;
27
28static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
29                               llvm::Value *Array,
30                               llvm::Value *Value,
31                               unsigned FirstIndex,
32                               unsigned LastIndex) {
33  // Alternatively, we could emit this as a loop in the source.
34  for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
35    llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
36    Builder.CreateStore(Value, Cell);
37  }
38}
39
40static bool isAggregateTypeForABI(QualType T) {
41  return !CodeGenFunction::hasScalarEvaluationKind(T) ||
42         T->isMemberFunctionPointerType();
43}
44
45ABIInfo::~ABIInfo() {}
46
47static bool isRecordReturnIndirect(const RecordType *RT, CodeGen::CodeGenTypes &CGT) {
48  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
49  if (!RD)
50    return false;
51  return CGT.CGM.getCXXABI().isReturnTypeIndirect(RD);
52}
53
54
55static bool isRecordReturnIndirect(QualType T, CodeGen::CodeGenTypes &CGT) {
56  const RecordType *RT = T->getAs<RecordType>();
57  if (!RT)
58    return false;
59  return isRecordReturnIndirect(RT, CGT);
60}
61
62static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
63                                              CodeGen::CodeGenTypes &CGT) {
64  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
65  if (!RD)
66    return CGCXXABI::RAA_Default;
67  return CGT.CGM.getCXXABI().getRecordArgABI(RD);
68}
69
70static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
71                                              CodeGen::CodeGenTypes &CGT) {
72  const RecordType *RT = T->getAs<RecordType>();
73  if (!RT)
74    return CGCXXABI::RAA_Default;
75  return getRecordArgABI(RT, CGT);
76}
77
78ASTContext &ABIInfo::getContext() const {
79  return CGT.getContext();
80}
81
82llvm::LLVMContext &ABIInfo::getVMContext() const {
83  return CGT.getLLVMContext();
84}
85
86const llvm::DataLayout &ABIInfo::getDataLayout() const {
87  return CGT.getDataLayout();
88}
89
90const TargetInfo &ABIInfo::getTarget() const {
91  return CGT.getTarget();
92}
93
94void ABIArgInfo::dump() const {
95  raw_ostream &OS = llvm::errs();
96  OS << "(ABIArgInfo Kind=";
97  switch (TheKind) {
98  case Direct:
99    OS << "Direct Type=";
100    if (llvm::Type *Ty = getCoerceToType())
101      Ty->print(OS);
102    else
103      OS << "null";
104    break;
105  case Extend:
106    OS << "Extend";
107    break;
108  case Ignore:
109    OS << "Ignore";
110    break;
111  case Indirect:
112    OS << "Indirect Align=" << getIndirectAlign()
113       << " ByVal=" << getIndirectByVal()
114       << " Realign=" << getIndirectRealign();
115    break;
116  case Expand:
117    OS << "Expand";
118    break;
119  }
120  OS << ")\n";
121}
122
123TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
124
125// If someone can figure out a general rule for this, that would be great.
126// It's probably just doomed to be platform-dependent, though.
127unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
128  // Verified for:
129  //   x86-64     FreeBSD, Linux, Darwin
130  //   x86-32     FreeBSD, Linux, Darwin
131  //   PowerPC    Linux, Darwin
132  //   ARM        Darwin (*not* EABI)
133  //   AArch64    Linux
134  return 32;
135}
136
137bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
138                                     const FunctionNoProtoType *fnType) const {
139  // The following conventions are known to require this to be false:
140  //   x86_stdcall
141  //   MIPS
142  // For everything else, we just prefer false unless we opt out.
143  return false;
144}
145
146void
147TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
148                                             llvm::SmallString<24> &Opt) const {
149  // This assumes the user is passing a library name like "rt" instead of a
150  // filename like "librt.a/so", and that they don't care whether it's static or
151  // dynamic.
152  Opt = "-l";
153  Opt += Lib;
154}
155
156static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
157
158/// isEmptyField - Return true iff a the field is "empty", that is it
159/// is an unnamed bit-field or an (array of) empty record(s).
160static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
161                         bool AllowArrays) {
162  if (FD->isUnnamedBitfield())
163    return true;
164
165  QualType FT = FD->getType();
166
167  // Constant arrays of empty records count as empty, strip them off.
168  // Constant arrays of zero length always count as empty.
169  if (AllowArrays)
170    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
171      if (AT->getSize() == 0)
172        return true;
173      FT = AT->getElementType();
174    }
175
176  const RecordType *RT = FT->getAs<RecordType>();
177  if (!RT)
178    return false;
179
180  // C++ record fields are never empty, at least in the Itanium ABI.
181  //
182  // FIXME: We should use a predicate for whether this behavior is true in the
183  // current ABI.
184  if (isa<CXXRecordDecl>(RT->getDecl()))
185    return false;
186
187  return isEmptyRecord(Context, FT, AllowArrays);
188}
189
190/// isEmptyRecord - Return true iff a structure contains only empty
191/// fields. Note that a structure with a flexible array member is not
192/// considered empty.
193static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
194  const RecordType *RT = T->getAs<RecordType>();
195  if (!RT)
196    return 0;
197  const RecordDecl *RD = RT->getDecl();
198  if (RD->hasFlexibleArrayMember())
199    return false;
200
201  // If this is a C++ record, check the bases first.
202  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
203    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
204           e = CXXRD->bases_end(); i != e; ++i)
205      if (!isEmptyRecord(Context, i->getType(), true))
206        return false;
207
208  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
209         i != e; ++i)
210    if (!isEmptyField(Context, *i, AllowArrays))
211      return false;
212  return true;
213}
214
215/// isSingleElementStruct - Determine if a structure is a "single
216/// element struct", i.e. it has exactly one non-empty field or
217/// exactly one field which is itself a single element
218/// struct. Structures with flexible array members are never
219/// considered single element structs.
220///
221/// \return The field declaration for the single non-empty field, if
222/// it exists.
223static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
224  const RecordType *RT = T->getAsStructureType();
225  if (!RT)
226    return 0;
227
228  const RecordDecl *RD = RT->getDecl();
229  if (RD->hasFlexibleArrayMember())
230    return 0;
231
232  const Type *Found = 0;
233
234  // If this is a C++ record, check the bases first.
235  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
236    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
237           e = CXXRD->bases_end(); i != e; ++i) {
238      // Ignore empty records.
239      if (isEmptyRecord(Context, i->getType(), true))
240        continue;
241
242      // If we already found an element then this isn't a single-element struct.
243      if (Found)
244        return 0;
245
246      // If this is non-empty and not a single element struct, the composite
247      // cannot be a single element struct.
248      Found = isSingleElementStruct(i->getType(), Context);
249      if (!Found)
250        return 0;
251    }
252  }
253
254  // Check for single element.
255  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
256         i != e; ++i) {
257    const FieldDecl *FD = *i;
258    QualType FT = FD->getType();
259
260    // Ignore empty fields.
261    if (isEmptyField(Context, FD, true))
262      continue;
263
264    // If we already found an element then this isn't a single-element
265    // struct.
266    if (Found)
267      return 0;
268
269    // Treat single element arrays as the element.
270    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
271      if (AT->getSize().getZExtValue() != 1)
272        break;
273      FT = AT->getElementType();
274    }
275
276    if (!isAggregateTypeForABI(FT)) {
277      Found = FT.getTypePtr();
278    } else {
279      Found = isSingleElementStruct(FT, Context);
280      if (!Found)
281        return 0;
282    }
283  }
284
285  // We don't consider a struct a single-element struct if it has
286  // padding beyond the element type.
287  if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
288    return 0;
289
290  return Found;
291}
292
293static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
294  // Treat complex types as the element type.
295  if (const ComplexType *CTy = Ty->getAs<ComplexType>())
296    Ty = CTy->getElementType();
297
298  // Check for a type which we know has a simple scalar argument-passing
299  // convention without any padding.  (We're specifically looking for 32
300  // and 64-bit integer and integer-equivalents, float, and double.)
301  if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
302      !Ty->isEnumeralType() && !Ty->isBlockPointerType())
303    return false;
304
305  uint64_t Size = Context.getTypeSize(Ty);
306  return Size == 32 || Size == 64;
307}
308
309/// canExpandIndirectArgument - Test whether an argument type which is to be
310/// passed indirectly (on the stack) would have the equivalent layout if it was
311/// expanded into separate arguments. If so, we prefer to do the latter to avoid
312/// inhibiting optimizations.
313///
314// FIXME: This predicate is missing many cases, currently it just follows
315// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
316// should probably make this smarter, or better yet make the LLVM backend
317// capable of handling it.
318static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
319  // We can only expand structure types.
320  const RecordType *RT = Ty->getAs<RecordType>();
321  if (!RT)
322    return false;
323
324  // We can only expand (C) structures.
325  //
326  // FIXME: This needs to be generalized to handle classes as well.
327  const RecordDecl *RD = RT->getDecl();
328  if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
329    return false;
330
331  uint64_t Size = 0;
332
333  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
334         i != e; ++i) {
335    const FieldDecl *FD = *i;
336
337    if (!is32Or64BitBasicType(FD->getType(), Context))
338      return false;
339
340    // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
341    // how to expand them yet, and the predicate for telling if a bitfield still
342    // counts as "basic" is more complicated than what we were doing previously.
343    if (FD->isBitField())
344      return false;
345
346    Size += Context.getTypeSize(FD->getType());
347  }
348
349  // Make sure there are not any holes in the struct.
350  if (Size != Context.getTypeSize(Ty))
351    return false;
352
353  return true;
354}
355
356namespace {
357/// DefaultABIInfo - The default implementation for ABI specific
358/// details. This implementation provides information which results in
359/// self-consistent and sensible LLVM IR generation, but does not
360/// conform to any particular ABI.
361class DefaultABIInfo : public ABIInfo {
362public:
363  DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
364
365  ABIArgInfo classifyReturnType(QualType RetTy) const;
366  ABIArgInfo classifyArgumentType(QualType RetTy) const;
367
368  virtual void computeInfo(CGFunctionInfo &FI) const {
369    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
370    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
371         it != ie; ++it)
372      it->info = classifyArgumentType(it->type);
373  }
374
375  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
376                                 CodeGenFunction &CGF) const;
377};
378
379class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
380public:
381  DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
382    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
383};
384
385llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
386                                       CodeGenFunction &CGF) const {
387  return 0;
388}
389
390ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
391  if (isAggregateTypeForABI(Ty)) {
392    // Records with non trivial destructors/constructors should not be passed
393    // by value.
394    if (isRecordReturnIndirect(Ty, CGT))
395      return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
396
397    return ABIArgInfo::getIndirect(0);
398  }
399
400  // Treat an enum type as its underlying type.
401  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
402    Ty = EnumTy->getDecl()->getIntegerType();
403
404  return (Ty->isPromotableIntegerType() ?
405          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
406}
407
408ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
409  if (RetTy->isVoidType())
410    return ABIArgInfo::getIgnore();
411
412  if (isAggregateTypeForABI(RetTy))
413    return ABIArgInfo::getIndirect(0);
414
415  // Treat an enum type as its underlying type.
416  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
417    RetTy = EnumTy->getDecl()->getIntegerType();
418
419  return (RetTy->isPromotableIntegerType() ?
420          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
421}
422
423//===----------------------------------------------------------------------===//
424// le32/PNaCl bitcode ABI Implementation
425//
426// This is a simplified version of the x86_32 ABI.  Arguments and return values
427// are always passed on the stack.
428//===----------------------------------------------------------------------===//
429
430class PNaClABIInfo : public ABIInfo {
431 public:
432  PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
433
434  ABIArgInfo classifyReturnType(QualType RetTy) const;
435  ABIArgInfo classifyArgumentType(QualType RetTy) const;
436
437  virtual void computeInfo(CGFunctionInfo &FI) const;
438  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
439                                 CodeGenFunction &CGF) const;
440};
441
442class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
443 public:
444  PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
445    : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
446
447  /// For PNaCl we don't want llvm.pow.* intrinsics to be emitted instead
448  /// of library function calls.
449  bool emitIntrinsicForPow() const { return false; }
450};
451
452void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
453    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
454
455    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
456         it != ie; ++it)
457      it->info = classifyArgumentType(it->type);
458  }
459
460llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
461                                       CodeGenFunction &CGF) const {
462  return 0;
463}
464
465/// \brief Classify argument of given type \p Ty.
466ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
467  if (isAggregateTypeForABI(Ty)) {
468    if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, CGT))
469      return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
470    return ABIArgInfo::getIndirect(0);
471  } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
472    // Treat an enum type as its underlying type.
473    Ty = EnumTy->getDecl()->getIntegerType();
474  } else if (Ty->isFloatingType()) {
475    // Floating-point types don't go inreg.
476    return ABIArgInfo::getDirect();
477  }
478
479  return (Ty->isPromotableIntegerType() ?
480          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
481}
482
483ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
484  if (RetTy->isVoidType())
485    return ABIArgInfo::getIgnore();
486
487  // In the PNaCl ABI we always return records/structures on the stack.
488  if (isAggregateTypeForABI(RetTy))
489    return ABIArgInfo::getIndirect(0);
490
491  // Treat an enum type as its underlying type.
492  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
493    RetTy = EnumTy->getDecl()->getIntegerType();
494
495  return (RetTy->isPromotableIntegerType() ?
496          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
497}
498
499/// IsX86_MMXType - Return true if this is an MMX type.
500bool IsX86_MMXType(llvm::Type *IRType) {
501  // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
502  return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
503    cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
504    IRType->getScalarSizeInBits() != 64;
505}
506
507static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
508                                          StringRef Constraint,
509                                          llvm::Type* Ty) {
510  if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
511    if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
512      // Invalid MMX constraint
513      return 0;
514    }
515
516    return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
517  }
518
519  // No operation needed
520  return Ty;
521}
522
523//===----------------------------------------------------------------------===//
524// X86-32 ABI Implementation
525//===----------------------------------------------------------------------===//
526
527/// X86_32ABIInfo - The X86-32 ABI information.
528class X86_32ABIInfo : public ABIInfo {
529  enum Class {
530    Integer,
531    Float
532  };
533
534  static const unsigned MinABIStackAlignInBytes = 4;
535
536  bool IsDarwinVectorABI;
537  bool IsSmallStructInRegABI;
538  bool IsWin32StructABI;
539  unsigned DefaultNumRegisterParameters;
540
541  static bool isRegisterSize(unsigned Size) {
542    return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
543  }
544
545  static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context,
546                                          unsigned callingConvention);
547
548  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
549  /// such that the argument will be passed in memory.
550  ABIArgInfo getIndirectResult(QualType Ty, bool ByVal,
551                               unsigned &FreeRegs) const;
552
553  /// \brief Return the alignment to use for the given type on the stack.
554  unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
555
556  Class classify(QualType Ty) const;
557  ABIArgInfo classifyReturnType(QualType RetTy,
558                                unsigned callingConvention) const;
559  ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &FreeRegs,
560                                  bool IsFastCall) const;
561  bool shouldUseInReg(QualType Ty, unsigned &FreeRegs,
562                      bool IsFastCall, bool &NeedsPadding) const;
563
564public:
565
566  virtual void computeInfo(CGFunctionInfo &FI) const;
567  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
568                                 CodeGenFunction &CGF) const;
569
570  X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w,
571                unsigned r)
572    : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
573      IsWin32StructABI(w), DefaultNumRegisterParameters(r) {}
574};
575
576class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
577public:
578  X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
579      bool d, bool p, bool w, unsigned r)
580    :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {}
581
582  static bool isStructReturnInRegABI(
583      const llvm::Triple &Triple, const CodeGenOptions &Opts);
584
585  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
586                           CodeGen::CodeGenModule &CGM) const;
587
588  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
589    // Darwin uses different dwarf register numbers for EH.
590    if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
591    return 4;
592  }
593
594  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
595                               llvm::Value *Address) const;
596
597  llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
598                                  StringRef Constraint,
599                                  llvm::Type* Ty) const {
600    return X86AdjustInlineAsmType(CGF, Constraint, Ty);
601  }
602
603};
604
605}
606
607/// shouldReturnTypeInRegister - Determine if the given type should be
608/// passed in a register (for the Darwin ABI).
609bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
610                                               ASTContext &Context,
611                                               unsigned callingConvention) {
612  uint64_t Size = Context.getTypeSize(Ty);
613
614  // Type must be register sized.
615  if (!isRegisterSize(Size))
616    return false;
617
618  if (Ty->isVectorType()) {
619    // 64- and 128- bit vectors inside structures are not returned in
620    // registers.
621    if (Size == 64 || Size == 128)
622      return false;
623
624    return true;
625  }
626
627  // If this is a builtin, pointer, enum, complex type, member pointer, or
628  // member function pointer it is ok.
629  if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
630      Ty->isAnyComplexType() || Ty->isEnumeralType() ||
631      Ty->isBlockPointerType() || Ty->isMemberPointerType())
632    return true;
633
634  // Arrays are treated like records.
635  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
636    return shouldReturnTypeInRegister(AT->getElementType(), Context,
637                                      callingConvention);
638
639  // Otherwise, it must be a record type.
640  const RecordType *RT = Ty->getAs<RecordType>();
641  if (!RT) return false;
642
643  // FIXME: Traverse bases here too.
644
645  // For thiscall conventions, structures will never be returned in
646  // a register.  This is for compatibility with the MSVC ABI
647  if (callingConvention == llvm::CallingConv::X86_ThisCall &&
648      RT->isStructureType()) {
649    return false;
650  }
651
652  // Structure types are passed in register if all fields would be
653  // passed in a register.
654  for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
655         e = RT->getDecl()->field_end(); i != e; ++i) {
656    const FieldDecl *FD = *i;
657
658    // Empty fields are ignored.
659    if (isEmptyField(Context, FD, true))
660      continue;
661
662    // Check fields recursively.
663    if (!shouldReturnTypeInRegister(FD->getType(), Context,
664                                    callingConvention))
665      return false;
666  }
667  return true;
668}
669
670ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
671                                            unsigned callingConvention) const {
672  if (RetTy->isVoidType())
673    return ABIArgInfo::getIgnore();
674
675  if (const VectorType *VT = RetTy->getAs<VectorType>()) {
676    // On Darwin, some vectors are returned in registers.
677    if (IsDarwinVectorABI) {
678      uint64_t Size = getContext().getTypeSize(RetTy);
679
680      // 128-bit vectors are a special case; they are returned in
681      // registers and we need to make sure to pick a type the LLVM
682      // backend will like.
683      if (Size == 128)
684        return ABIArgInfo::getDirect(llvm::VectorType::get(
685                  llvm::Type::getInt64Ty(getVMContext()), 2));
686
687      // Always return in register if it fits in a general purpose
688      // register, or if it is 64 bits and has a single element.
689      if ((Size == 8 || Size == 16 || Size == 32) ||
690          (Size == 64 && VT->getNumElements() == 1))
691        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
692                                                            Size));
693
694      return ABIArgInfo::getIndirect(0);
695    }
696
697    return ABIArgInfo::getDirect();
698  }
699
700  if (isAggregateTypeForABI(RetTy)) {
701    if (const RecordType *RT = RetTy->getAs<RecordType>()) {
702      if (isRecordReturnIndirect(RT, CGT))
703        return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
704
705      // Structures with flexible arrays are always indirect.
706      if (RT->getDecl()->hasFlexibleArrayMember())
707        return ABIArgInfo::getIndirect(0);
708    }
709
710    // If specified, structs and unions are always indirect.
711    if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
712      return ABIArgInfo::getIndirect(0);
713
714    // Small structures which are register sized are generally returned
715    // in a register.
716    if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext(),
717                                                  callingConvention)) {
718      uint64_t Size = getContext().getTypeSize(RetTy);
719
720      // As a special-case, if the struct is a "single-element" struct, and
721      // the field is of type "float" or "double", return it in a
722      // floating-point register. (MSVC does not apply this special case.)
723      // We apply a similar transformation for pointer types to improve the
724      // quality of the generated IR.
725      if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
726        if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
727            || SeltTy->hasPointerRepresentation())
728          return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
729
730      // FIXME: We should be able to narrow this integer in cases with dead
731      // padding.
732      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
733    }
734
735    return ABIArgInfo::getIndirect(0);
736  }
737
738  // Treat an enum type as its underlying type.
739  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
740    RetTy = EnumTy->getDecl()->getIntegerType();
741
742  return (RetTy->isPromotableIntegerType() ?
743          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
744}
745
746static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
747  return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
748}
749
750static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
751  const RecordType *RT = Ty->getAs<RecordType>();
752  if (!RT)
753    return 0;
754  const RecordDecl *RD = RT->getDecl();
755
756  // If this is a C++ record, check the bases first.
757  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
758    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
759           e = CXXRD->bases_end(); i != e; ++i)
760      if (!isRecordWithSSEVectorType(Context, i->getType()))
761        return false;
762
763  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
764       i != e; ++i) {
765    QualType FT = i->getType();
766
767    if (isSSEVectorType(Context, FT))
768      return true;
769
770    if (isRecordWithSSEVectorType(Context, FT))
771      return true;
772  }
773
774  return false;
775}
776
777unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
778                                                 unsigned Align) const {
779  // Otherwise, if the alignment is less than or equal to the minimum ABI
780  // alignment, just use the default; the backend will handle this.
781  if (Align <= MinABIStackAlignInBytes)
782    return 0; // Use default alignment.
783
784  // On non-Darwin, the stack type alignment is always 4.
785  if (!IsDarwinVectorABI) {
786    // Set explicit alignment, since we may need to realign the top.
787    return MinABIStackAlignInBytes;
788  }
789
790  // Otherwise, if the type contains an SSE vector type, the alignment is 16.
791  if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
792                      isRecordWithSSEVectorType(getContext(), Ty)))
793    return 16;
794
795  return MinABIStackAlignInBytes;
796}
797
798ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
799                                            unsigned &FreeRegs) const {
800  if (!ByVal) {
801    if (FreeRegs) {
802      --FreeRegs; // Non byval indirects just use one pointer.
803      return ABIArgInfo::getIndirectInReg(0, false);
804    }
805    return ABIArgInfo::getIndirect(0, false);
806  }
807
808  // Compute the byval alignment.
809  unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
810  unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
811  if (StackAlign == 0)
812    return ABIArgInfo::getIndirect(4);
813
814  // If the stack alignment is less than the type alignment, realign the
815  // argument.
816  if (StackAlign < TypeAlign)
817    return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true,
818                                   /*Realign=*/true);
819
820  return ABIArgInfo::getIndirect(StackAlign);
821}
822
823X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
824  const Type *T = isSingleElementStruct(Ty, getContext());
825  if (!T)
826    T = Ty.getTypePtr();
827
828  if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
829    BuiltinType::Kind K = BT->getKind();
830    if (K == BuiltinType::Float || K == BuiltinType::Double)
831      return Float;
832  }
833  return Integer;
834}
835
836bool X86_32ABIInfo::shouldUseInReg(QualType Ty, unsigned &FreeRegs,
837                                   bool IsFastCall, bool &NeedsPadding) const {
838  NeedsPadding = false;
839  Class C = classify(Ty);
840  if (C == Float)
841    return false;
842
843  unsigned Size = getContext().getTypeSize(Ty);
844  unsigned SizeInRegs = (Size + 31) / 32;
845
846  if (SizeInRegs == 0)
847    return false;
848
849  if (SizeInRegs > FreeRegs) {
850    FreeRegs = 0;
851    return false;
852  }
853
854  FreeRegs -= SizeInRegs;
855
856  if (IsFastCall) {
857    if (Size > 32)
858      return false;
859
860    if (Ty->isIntegralOrEnumerationType())
861      return true;
862
863    if (Ty->isPointerType())
864      return true;
865
866    if (Ty->isReferenceType())
867      return true;
868
869    if (FreeRegs)
870      NeedsPadding = true;
871
872    return false;
873  }
874
875  return true;
876}
877
878ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
879                                               unsigned &FreeRegs,
880                                               bool IsFastCall) const {
881  // FIXME: Set alignment on indirect arguments.
882  if (isAggregateTypeForABI(Ty)) {
883    if (const RecordType *RT = Ty->getAs<RecordType>()) {
884      if (IsWin32StructABI)
885        return getIndirectResult(Ty, true, FreeRegs);
886
887      if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, CGT))
888        return getIndirectResult(Ty, RAA == CGCXXABI::RAA_DirectInMemory, FreeRegs);
889
890      // Structures with flexible arrays are always indirect.
891      if (RT->getDecl()->hasFlexibleArrayMember())
892        return getIndirectResult(Ty, true, FreeRegs);
893    }
894
895    // Ignore empty structs/unions.
896    if (isEmptyRecord(getContext(), Ty, true))
897      return ABIArgInfo::getIgnore();
898
899    llvm::LLVMContext &LLVMContext = getVMContext();
900    llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
901    bool NeedsPadding;
902    if (shouldUseInReg(Ty, FreeRegs, IsFastCall, NeedsPadding)) {
903      unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
904      SmallVector<llvm::Type*, 3> Elements;
905      for (unsigned I = 0; I < SizeInRegs; ++I)
906        Elements.push_back(Int32);
907      llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
908      return ABIArgInfo::getDirectInReg(Result);
909    }
910    llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : 0;
911
912    // Expand small (<= 128-bit) record types when we know that the stack layout
913    // of those arguments will match the struct. This is important because the
914    // LLVM backend isn't smart enough to remove byval, which inhibits many
915    // optimizations.
916    if (getContext().getTypeSize(Ty) <= 4*32 &&
917        canExpandIndirectArgument(Ty, getContext()))
918      return ABIArgInfo::getExpandWithPadding(IsFastCall, PaddingType);
919
920    return getIndirectResult(Ty, true, FreeRegs);
921  }
922
923  if (const VectorType *VT = Ty->getAs<VectorType>()) {
924    // On Darwin, some vectors are passed in memory, we handle this by passing
925    // it as an i8/i16/i32/i64.
926    if (IsDarwinVectorABI) {
927      uint64_t Size = getContext().getTypeSize(Ty);
928      if ((Size == 8 || Size == 16 || Size == 32) ||
929          (Size == 64 && VT->getNumElements() == 1))
930        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
931                                                            Size));
932    }
933
934    if (IsX86_MMXType(CGT.ConvertType(Ty)))
935      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
936
937    return ABIArgInfo::getDirect();
938  }
939
940
941  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
942    Ty = EnumTy->getDecl()->getIntegerType();
943
944  bool NeedsPadding;
945  bool InReg = shouldUseInReg(Ty, FreeRegs, IsFastCall, NeedsPadding);
946
947  if (Ty->isPromotableIntegerType()) {
948    if (InReg)
949      return ABIArgInfo::getExtendInReg();
950    return ABIArgInfo::getExtend();
951  }
952  if (InReg)
953    return ABIArgInfo::getDirectInReg();
954  return ABIArgInfo::getDirect();
955}
956
957void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
958  FI.getReturnInfo() = classifyReturnType(FI.getReturnType(),
959                                          FI.getCallingConvention());
960
961  unsigned CC = FI.getCallingConvention();
962  bool IsFastCall = CC == llvm::CallingConv::X86_FastCall;
963  unsigned FreeRegs;
964  if (IsFastCall)
965    FreeRegs = 2;
966  else if (FI.getHasRegParm())
967    FreeRegs = FI.getRegParm();
968  else
969    FreeRegs = DefaultNumRegisterParameters;
970
971  // If the return value is indirect, then the hidden argument is consuming one
972  // integer register.
973  if (FI.getReturnInfo().isIndirect() && FreeRegs) {
974    --FreeRegs;
975    ABIArgInfo &Old = FI.getReturnInfo();
976    Old = ABIArgInfo::getIndirectInReg(Old.getIndirectAlign(),
977                                       Old.getIndirectByVal(),
978                                       Old.getIndirectRealign());
979  }
980
981  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
982       it != ie; ++it)
983    it->info = classifyArgumentType(it->type, FreeRegs, IsFastCall);
984}
985
986llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
987                                      CodeGenFunction &CGF) const {
988  llvm::Type *BPP = CGF.Int8PtrPtrTy;
989
990  CGBuilderTy &Builder = CGF.Builder;
991  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
992                                                       "ap");
993  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
994
995  // Compute if the address needs to be aligned
996  unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
997  Align = getTypeStackAlignInBytes(Ty, Align);
998  Align = std::max(Align, 4U);
999  if (Align > 4) {
1000    // addr = (addr + align - 1) & -align;
1001    llvm::Value *Offset =
1002      llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
1003    Addr = CGF.Builder.CreateGEP(Addr, Offset);
1004    llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
1005                                                    CGF.Int32Ty);
1006    llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
1007    Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1008                                      Addr->getType(),
1009                                      "ap.cur.aligned");
1010  }
1011
1012  llvm::Type *PTy =
1013    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
1014  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
1015
1016  uint64_t Offset =
1017    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
1018  llvm::Value *NextAddr =
1019    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
1020                      "ap.next");
1021  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
1022
1023  return AddrTyped;
1024}
1025
1026void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
1027                                                  llvm::GlobalValue *GV,
1028                                            CodeGen::CodeGenModule &CGM) const {
1029  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1030    if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1031      // Get the LLVM function.
1032      llvm::Function *Fn = cast<llvm::Function>(GV);
1033
1034      // Now add the 'alignstack' attribute with a value of 16.
1035      llvm::AttrBuilder B;
1036      B.addStackAlignmentAttr(16);
1037      Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
1038                      llvm::AttributeSet::get(CGM.getLLVMContext(),
1039                                              llvm::AttributeSet::FunctionIndex,
1040                                              B));
1041    }
1042  }
1043}
1044
1045bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1046                                               CodeGen::CodeGenFunction &CGF,
1047                                               llvm::Value *Address) const {
1048  CodeGen::CGBuilderTy &Builder = CGF.Builder;
1049
1050  llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1051
1052  // 0-7 are the eight integer registers;  the order is different
1053  //   on Darwin (for EH), but the range is the same.
1054  // 8 is %eip.
1055  AssignToArrayRange(Builder, Address, Four8, 0, 8);
1056
1057  if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1058    // 12-16 are st(0..4).  Not sure why we stop at 4.
1059    // These have size 16, which is sizeof(long double) on
1060    // platforms with 8-byte alignment for that type.
1061    llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1062    AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1063
1064  } else {
1065    // 9 is %eflags, which doesn't get a size on Darwin for some
1066    // reason.
1067    Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
1068
1069    // 11-16 are st(0..5).  Not sure why we stop at 5.
1070    // These have size 12, which is sizeof(long double) on
1071    // platforms with 4-byte alignment for that type.
1072    llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1073    AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1074  }
1075
1076  return false;
1077}
1078
1079//===----------------------------------------------------------------------===//
1080// X86-64 ABI Implementation
1081//===----------------------------------------------------------------------===//
1082
1083
1084namespace {
1085/// X86_64ABIInfo - The X86_64 ABI information.
1086class X86_64ABIInfo : public ABIInfo {
1087  enum Class {
1088    Integer = 0,
1089    SSE,
1090    SSEUp,
1091    X87,
1092    X87Up,
1093    ComplexX87,
1094    NoClass,
1095    Memory
1096  };
1097
1098  /// merge - Implement the X86_64 ABI merging algorithm.
1099  ///
1100  /// Merge an accumulating classification \arg Accum with a field
1101  /// classification \arg Field.
1102  ///
1103  /// \param Accum - The accumulating classification. This should
1104  /// always be either NoClass or the result of a previous merge
1105  /// call. In addition, this should never be Memory (the caller
1106  /// should just return Memory for the aggregate).
1107  static Class merge(Class Accum, Class Field);
1108
1109  /// postMerge - Implement the X86_64 ABI post merging algorithm.
1110  ///
1111  /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1112  /// final MEMORY or SSE classes when necessary.
1113  ///
1114  /// \param AggregateSize - The size of the current aggregate in
1115  /// the classification process.
1116  ///
1117  /// \param Lo - The classification for the parts of the type
1118  /// residing in the low word of the containing object.
1119  ///
1120  /// \param Hi - The classification for the parts of the type
1121  /// residing in the higher words of the containing object.
1122  ///
1123  void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1124
1125  /// classify - Determine the x86_64 register classes in which the
1126  /// given type T should be passed.
1127  ///
1128  /// \param Lo - The classification for the parts of the type
1129  /// residing in the low word of the containing object.
1130  ///
1131  /// \param Hi - The classification for the parts of the type
1132  /// residing in the high word of the containing object.
1133  ///
1134  /// \param OffsetBase - The bit offset of this type in the
1135  /// containing object.  Some parameters are classified different
1136  /// depending on whether they straddle an eightbyte boundary.
1137  ///
1138  /// \param isNamedArg - Whether the argument in question is a "named"
1139  /// argument, as used in AMD64-ABI 3.5.7.
1140  ///
1141  /// If a word is unused its result will be NoClass; if a type should
1142  /// be passed in Memory then at least the classification of \arg Lo
1143  /// will be Memory.
1144  ///
1145  /// The \arg Lo class will be NoClass iff the argument is ignored.
1146  ///
1147  /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1148  /// also be ComplexX87.
1149  void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1150                bool isNamedArg) const;
1151
1152  llvm::Type *GetByteVectorType(QualType Ty) const;
1153  llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1154                                 unsigned IROffset, QualType SourceTy,
1155                                 unsigned SourceOffset) const;
1156  llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1157                                     unsigned IROffset, QualType SourceTy,
1158                                     unsigned SourceOffset) const;
1159
1160  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1161  /// such that the argument will be returned in memory.
1162  ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1163
1164  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1165  /// such that the argument will be passed in memory.
1166  ///
1167  /// \param freeIntRegs - The number of free integer registers remaining
1168  /// available.
1169  ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1170
1171  ABIArgInfo classifyReturnType(QualType RetTy) const;
1172
1173  ABIArgInfo classifyArgumentType(QualType Ty,
1174                                  unsigned freeIntRegs,
1175                                  unsigned &neededInt,
1176                                  unsigned &neededSSE,
1177                                  bool isNamedArg) const;
1178
1179  bool IsIllegalVectorType(QualType Ty) const;
1180
1181  /// The 0.98 ABI revision clarified a lot of ambiguities,
1182  /// unfortunately in ways that were not always consistent with
1183  /// certain previous compilers.  In particular, platforms which
1184  /// required strict binary compatibility with older versions of GCC
1185  /// may need to exempt themselves.
1186  bool honorsRevision0_98() const {
1187    return !getTarget().getTriple().isOSDarwin();
1188  }
1189
1190  bool HasAVX;
1191  // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1192  // 64-bit hardware.
1193  bool Has64BitPointers;
1194
1195public:
1196  X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) :
1197      ABIInfo(CGT), HasAVX(hasavx),
1198      Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1199  }
1200
1201  bool isPassedUsingAVXType(QualType type) const {
1202    unsigned neededInt, neededSSE;
1203    // The freeIntRegs argument doesn't matter here.
1204    ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
1205                                           /*isNamedArg*/true);
1206    if (info.isDirect()) {
1207      llvm::Type *ty = info.getCoerceToType();
1208      if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1209        return (vectorTy->getBitWidth() > 128);
1210    }
1211    return false;
1212  }
1213
1214  virtual void computeInfo(CGFunctionInfo &FI) const;
1215
1216  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1217                                 CodeGenFunction &CGF) const;
1218};
1219
1220/// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1221class WinX86_64ABIInfo : public ABIInfo {
1222
1223  ABIArgInfo classify(QualType Ty, bool IsReturnType) const;
1224
1225public:
1226  WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
1227
1228  virtual void computeInfo(CGFunctionInfo &FI) const;
1229
1230  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1231                                 CodeGenFunction &CGF) const;
1232};
1233
1234class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1235public:
1236  X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1237      : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {}
1238
1239  const X86_64ABIInfo &getABIInfo() const {
1240    return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
1241  }
1242
1243  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1244    return 7;
1245  }
1246
1247  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1248                               llvm::Value *Address) const {
1249    llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1250
1251    // 0-15 are the 16 integer registers.
1252    // 16 is %rip.
1253    AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1254    return false;
1255  }
1256
1257  llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1258                                  StringRef Constraint,
1259                                  llvm::Type* Ty) const {
1260    return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1261  }
1262
1263  bool isNoProtoCallVariadic(const CallArgList &args,
1264                             const FunctionNoProtoType *fnType) const {
1265    // The default CC on x86-64 sets %al to the number of SSA
1266    // registers used, and GCC sets this when calling an unprototyped
1267    // function, so we override the default behavior.  However, don't do
1268    // that when AVX types are involved: the ABI explicitly states it is
1269    // undefined, and it doesn't work in practice because of how the ABI
1270    // defines varargs anyway.
1271    if (fnType->getCallConv() == CC_Default || fnType->getCallConv() == CC_C) {
1272      bool HasAVXType = false;
1273      for (CallArgList::const_iterator
1274             it = args.begin(), ie = args.end(); it != ie; ++it) {
1275        if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1276          HasAVXType = true;
1277          break;
1278        }
1279      }
1280
1281      if (!HasAVXType)
1282        return true;
1283    }
1284
1285    return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1286  }
1287
1288};
1289
1290static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
1291  // If the argument does not end in .lib, automatically add the suffix. This
1292  // matches the behavior of MSVC.
1293  std::string ArgStr = Lib;
1294  if (Lib.size() <= 4 ||
1295      Lib.substr(Lib.size() - 4).compare_lower(".lib") != 0) {
1296    ArgStr += ".lib";
1297  }
1298  return ArgStr;
1299}
1300
1301class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
1302public:
1303  WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1304        bool d, bool p, bool w, unsigned RegParms)
1305    : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {}
1306
1307  void getDependentLibraryOption(llvm::StringRef Lib,
1308                                 llvm::SmallString<24> &Opt) const {
1309    Opt = "/DEFAULTLIB:";
1310    Opt += qualifyWindowsLibrary(Lib);
1311  }
1312
1313  void getDetectMismatchOption(llvm::StringRef Name,
1314                               llvm::StringRef Value,
1315                               llvm::SmallString<32> &Opt) const {
1316    Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1317  }
1318};
1319
1320class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1321public:
1322  WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
1323    : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
1324
1325  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1326    return 7;
1327  }
1328
1329  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1330                               llvm::Value *Address) const {
1331    llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1332
1333    // 0-15 are the 16 integer registers.
1334    // 16 is %rip.
1335    AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1336    return false;
1337  }
1338
1339  void getDependentLibraryOption(llvm::StringRef Lib,
1340                                 llvm::SmallString<24> &Opt) const {
1341    Opt = "/DEFAULTLIB:";
1342    Opt += qualifyWindowsLibrary(Lib);
1343  }
1344
1345  void getDetectMismatchOption(llvm::StringRef Name,
1346                               llvm::StringRef Value,
1347                               llvm::SmallString<32> &Opt) const {
1348    Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1349  }
1350};
1351
1352}
1353
1354void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1355                              Class &Hi) const {
1356  // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1357  //
1358  // (a) If one of the classes is Memory, the whole argument is passed in
1359  //     memory.
1360  //
1361  // (b) If X87UP is not preceded by X87, the whole argument is passed in
1362  //     memory.
1363  //
1364  // (c) If the size of the aggregate exceeds two eightbytes and the first
1365  //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1366  //     argument is passed in memory. NOTE: This is necessary to keep the
1367  //     ABI working for processors that don't support the __m256 type.
1368  //
1369  // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1370  //
1371  // Some of these are enforced by the merging logic.  Others can arise
1372  // only with unions; for example:
1373  //   union { _Complex double; unsigned; }
1374  //
1375  // Note that clauses (b) and (c) were added in 0.98.
1376  //
1377  if (Hi == Memory)
1378    Lo = Memory;
1379  if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1380    Lo = Memory;
1381  if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1382    Lo = Memory;
1383  if (Hi == SSEUp && Lo != SSE)
1384    Hi = SSE;
1385}
1386
1387X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1388  // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1389  // classified recursively so that always two fields are
1390  // considered. The resulting class is calculated according to
1391  // the classes of the fields in the eightbyte:
1392  //
1393  // (a) If both classes are equal, this is the resulting class.
1394  //
1395  // (b) If one of the classes is NO_CLASS, the resulting class is
1396  // the other class.
1397  //
1398  // (c) If one of the classes is MEMORY, the result is the MEMORY
1399  // class.
1400  //
1401  // (d) If one of the classes is INTEGER, the result is the
1402  // INTEGER.
1403  //
1404  // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1405  // MEMORY is used as class.
1406  //
1407  // (f) Otherwise class SSE is used.
1408
1409  // Accum should never be memory (we should have returned) or
1410  // ComplexX87 (because this cannot be passed in a structure).
1411  assert((Accum != Memory && Accum != ComplexX87) &&
1412         "Invalid accumulated classification during merge.");
1413  if (Accum == Field || Field == NoClass)
1414    return Accum;
1415  if (Field == Memory)
1416    return Memory;
1417  if (Accum == NoClass)
1418    return Field;
1419  if (Accum == Integer || Field == Integer)
1420    return Integer;
1421  if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1422      Accum == X87 || Accum == X87Up)
1423    return Memory;
1424  return SSE;
1425}
1426
1427void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1428                             Class &Lo, Class &Hi, bool isNamedArg) const {
1429  // FIXME: This code can be simplified by introducing a simple value class for
1430  // Class pairs with appropriate constructor methods for the various
1431  // situations.
1432
1433  // FIXME: Some of the split computations are wrong; unaligned vectors
1434  // shouldn't be passed in registers for example, so there is no chance they
1435  // can straddle an eightbyte. Verify & simplify.
1436
1437  Lo = Hi = NoClass;
1438
1439  Class &Current = OffsetBase < 64 ? Lo : Hi;
1440  Current = Memory;
1441
1442  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1443    BuiltinType::Kind k = BT->getKind();
1444
1445    if (k == BuiltinType::Void) {
1446      Current = NoClass;
1447    } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1448      Lo = Integer;
1449      Hi = Integer;
1450    } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1451      Current = Integer;
1452    } else if ((k == BuiltinType::Float || k == BuiltinType::Double) ||
1453               (k == BuiltinType::LongDouble &&
1454                getTarget().getTriple().getOS() == llvm::Triple::NaCl)) {
1455      Current = SSE;
1456    } else if (k == BuiltinType::LongDouble) {
1457      Lo = X87;
1458      Hi = X87Up;
1459    }
1460    // FIXME: _Decimal32 and _Decimal64 are SSE.
1461    // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1462    return;
1463  }
1464
1465  if (const EnumType *ET = Ty->getAs<EnumType>()) {
1466    // Classify the underlying integer type.
1467    classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
1468    return;
1469  }
1470
1471  if (Ty->hasPointerRepresentation()) {
1472    Current = Integer;
1473    return;
1474  }
1475
1476  if (Ty->isMemberPointerType()) {
1477    if (Ty->isMemberFunctionPointerType() && Has64BitPointers)
1478      Lo = Hi = Integer;
1479    else
1480      Current = Integer;
1481    return;
1482  }
1483
1484  if (const VectorType *VT = Ty->getAs<VectorType>()) {
1485    uint64_t Size = getContext().getTypeSize(VT);
1486    if (Size == 32) {
1487      // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1488      // float> as integer.
1489      Current = Integer;
1490
1491      // If this type crosses an eightbyte boundary, it should be
1492      // split.
1493      uint64_t EB_Real = (OffsetBase) / 64;
1494      uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1495      if (EB_Real != EB_Imag)
1496        Hi = Lo;
1497    } else if (Size == 64) {
1498      // gcc passes <1 x double> in memory. :(
1499      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1500        return;
1501
1502      // gcc passes <1 x long long> as INTEGER.
1503      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1504          VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1505          VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1506          VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1507        Current = Integer;
1508      else
1509        Current = SSE;
1510
1511      // If this type crosses an eightbyte boundary, it should be
1512      // split.
1513      if (OffsetBase && OffsetBase != 64)
1514        Hi = Lo;
1515    } else if (Size == 128 || (HasAVX && isNamedArg && Size == 256)) {
1516      // Arguments of 256-bits are split into four eightbyte chunks. The
1517      // least significant one belongs to class SSE and all the others to class
1518      // SSEUP. The original Lo and Hi design considers that types can't be
1519      // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1520      // This design isn't correct for 256-bits, but since there're no cases
1521      // where the upper parts would need to be inspected, avoid adding
1522      // complexity and just consider Hi to match the 64-256 part.
1523      //
1524      // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
1525      // registers if they are "named", i.e. not part of the "..." of a
1526      // variadic function.
1527      Lo = SSE;
1528      Hi = SSEUp;
1529    }
1530    return;
1531  }
1532
1533  if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1534    QualType ET = getContext().getCanonicalType(CT->getElementType());
1535
1536    uint64_t Size = getContext().getTypeSize(Ty);
1537    if (ET->isIntegralOrEnumerationType()) {
1538      if (Size <= 64)
1539        Current = Integer;
1540      else if (Size <= 128)
1541        Lo = Hi = Integer;
1542    } else if (ET == getContext().FloatTy)
1543      Current = SSE;
1544    else if (ET == getContext().DoubleTy ||
1545             (ET == getContext().LongDoubleTy &&
1546              getTarget().getTriple().getOS() == llvm::Triple::NaCl))
1547      Lo = Hi = SSE;
1548    else if (ET == getContext().LongDoubleTy)
1549      Current = ComplexX87;
1550
1551    // If this complex type crosses an eightbyte boundary then it
1552    // should be split.
1553    uint64_t EB_Real = (OffsetBase) / 64;
1554    uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1555    if (Hi == NoClass && EB_Real != EB_Imag)
1556      Hi = Lo;
1557
1558    return;
1559  }
1560
1561  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1562    // Arrays are treated like structures.
1563
1564    uint64_t Size = getContext().getTypeSize(Ty);
1565
1566    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1567    // than four eightbytes, ..., it has class MEMORY.
1568    if (Size > 256)
1569      return;
1570
1571    // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1572    // fields, it has class MEMORY.
1573    //
1574    // Only need to check alignment of array base.
1575    if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1576      return;
1577
1578    // Otherwise implement simplified merge. We could be smarter about
1579    // this, but it isn't worth it and would be harder to verify.
1580    Current = NoClass;
1581    uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1582    uint64_t ArraySize = AT->getSize().getZExtValue();
1583
1584    // The only case a 256-bit wide vector could be used is when the array
1585    // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1586    // to work for sizes wider than 128, early check and fallback to memory.
1587    if (Size > 128 && EltSize != 256)
1588      return;
1589
1590    for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1591      Class FieldLo, FieldHi;
1592      classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
1593      Lo = merge(Lo, FieldLo);
1594      Hi = merge(Hi, FieldHi);
1595      if (Lo == Memory || Hi == Memory)
1596        break;
1597    }
1598
1599    postMerge(Size, Lo, Hi);
1600    assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1601    return;
1602  }
1603
1604  if (const RecordType *RT = Ty->getAs<RecordType>()) {
1605    uint64_t Size = getContext().getTypeSize(Ty);
1606
1607    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1608    // than four eightbytes, ..., it has class MEMORY.
1609    if (Size > 256)
1610      return;
1611
1612    // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1613    // copy constructor or a non-trivial destructor, it is passed by invisible
1614    // reference.
1615    if (getRecordArgABI(RT, CGT))
1616      return;
1617
1618    const RecordDecl *RD = RT->getDecl();
1619
1620    // Assume variable sized types are passed in memory.
1621    if (RD->hasFlexibleArrayMember())
1622      return;
1623
1624    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1625
1626    // Reset Lo class, this will be recomputed.
1627    Current = NoClass;
1628
1629    // If this is a C++ record, classify the bases first.
1630    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1631      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1632             e = CXXRD->bases_end(); i != e; ++i) {
1633        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1634               "Unexpected base class!");
1635        const CXXRecordDecl *Base =
1636          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1637
1638        // Classify this field.
1639        //
1640        // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1641        // single eightbyte, each is classified separately. Each eightbyte gets
1642        // initialized to class NO_CLASS.
1643        Class FieldLo, FieldHi;
1644        uint64_t Offset =
1645          OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
1646        classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
1647        Lo = merge(Lo, FieldLo);
1648        Hi = merge(Hi, FieldHi);
1649        if (Lo == Memory || Hi == Memory)
1650          break;
1651      }
1652    }
1653
1654    // Classify the fields one at a time, merging the results.
1655    unsigned idx = 0;
1656    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1657           i != e; ++i, ++idx) {
1658      uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1659      bool BitField = i->isBitField();
1660
1661      // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
1662      // four eightbytes, or it contains unaligned fields, it has class MEMORY.
1663      //
1664      // The only case a 256-bit wide vector could be used is when the struct
1665      // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1666      // to work for sizes wider than 128, early check and fallback to memory.
1667      //
1668      if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
1669        Lo = Memory;
1670        return;
1671      }
1672      // Note, skip this test for bit-fields, see below.
1673      if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1674        Lo = Memory;
1675        return;
1676      }
1677
1678      // Classify this field.
1679      //
1680      // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1681      // exceeds a single eightbyte, each is classified
1682      // separately. Each eightbyte gets initialized to class
1683      // NO_CLASS.
1684      Class FieldLo, FieldHi;
1685
1686      // Bit-fields require special handling, they do not force the
1687      // structure to be passed in memory even if unaligned, and
1688      // therefore they can straddle an eightbyte.
1689      if (BitField) {
1690        // Ignore padding bit-fields.
1691        if (i->isUnnamedBitfield())
1692          continue;
1693
1694        uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1695        uint64_t Size = i->getBitWidthValue(getContext());
1696
1697        uint64_t EB_Lo = Offset / 64;
1698        uint64_t EB_Hi = (Offset + Size - 1) / 64;
1699        FieldLo = FieldHi = NoClass;
1700        if (EB_Lo) {
1701          assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1702          FieldLo = NoClass;
1703          FieldHi = Integer;
1704        } else {
1705          FieldLo = Integer;
1706          FieldHi = EB_Hi ? Integer : NoClass;
1707        }
1708      } else
1709        classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
1710      Lo = merge(Lo, FieldLo);
1711      Hi = merge(Hi, FieldHi);
1712      if (Lo == Memory || Hi == Memory)
1713        break;
1714    }
1715
1716    postMerge(Size, Lo, Hi);
1717  }
1718}
1719
1720ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1721  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1722  // place naturally.
1723  if (!isAggregateTypeForABI(Ty)) {
1724    // Treat an enum type as its underlying type.
1725    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1726      Ty = EnumTy->getDecl()->getIntegerType();
1727
1728    return (Ty->isPromotableIntegerType() ?
1729            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1730  }
1731
1732  return ABIArgInfo::getIndirect(0);
1733}
1734
1735bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
1736  if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
1737    uint64_t Size = getContext().getTypeSize(VecTy);
1738    unsigned LargestVector = HasAVX ? 256 : 128;
1739    if (Size <= 64 || Size > LargestVector)
1740      return true;
1741  }
1742
1743  return false;
1744}
1745
1746ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
1747                                            unsigned freeIntRegs) const {
1748  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1749  // place naturally.
1750  //
1751  // This assumption is optimistic, as there could be free registers available
1752  // when we need to pass this argument in memory, and LLVM could try to pass
1753  // the argument in the free register. This does not seem to happen currently,
1754  // but this code would be much safer if we could mark the argument with
1755  // 'onstack'. See PR12193.
1756  if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
1757    // Treat an enum type as its underlying type.
1758    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1759      Ty = EnumTy->getDecl()->getIntegerType();
1760
1761    return (Ty->isPromotableIntegerType() ?
1762            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1763  }
1764
1765  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, CGT))
1766    return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
1767
1768  // Compute the byval alignment. We specify the alignment of the byval in all
1769  // cases so that the mid-level optimizer knows the alignment of the byval.
1770  unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
1771
1772  // Attempt to avoid passing indirect results using byval when possible. This
1773  // is important for good codegen.
1774  //
1775  // We do this by coercing the value into a scalar type which the backend can
1776  // handle naturally (i.e., without using byval).
1777  //
1778  // For simplicity, we currently only do this when we have exhausted all of the
1779  // free integer registers. Doing this when there are free integer registers
1780  // would require more care, as we would have to ensure that the coerced value
1781  // did not claim the unused register. That would require either reording the
1782  // arguments to the function (so that any subsequent inreg values came first),
1783  // or only doing this optimization when there were no following arguments that
1784  // might be inreg.
1785  //
1786  // We currently expect it to be rare (particularly in well written code) for
1787  // arguments to be passed on the stack when there are still free integer
1788  // registers available (this would typically imply large structs being passed
1789  // by value), so this seems like a fair tradeoff for now.
1790  //
1791  // We can revisit this if the backend grows support for 'onstack' parameter
1792  // attributes. See PR12193.
1793  if (freeIntRegs == 0) {
1794    uint64_t Size = getContext().getTypeSize(Ty);
1795
1796    // If this type fits in an eightbyte, coerce it into the matching integral
1797    // type, which will end up on the stack (with alignment 8).
1798    if (Align == 8 && Size <= 64)
1799      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1800                                                          Size));
1801  }
1802
1803  return ABIArgInfo::getIndirect(Align);
1804}
1805
1806/// GetByteVectorType - The ABI specifies that a value should be passed in an
1807/// full vector XMM/YMM register.  Pick an LLVM IR type that will be passed as a
1808/// vector register.
1809llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
1810  llvm::Type *IRType = CGT.ConvertType(Ty);
1811
1812  // Wrapper structs that just contain vectors are passed just like vectors,
1813  // strip them off if present.
1814  llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1815  while (STy && STy->getNumElements() == 1) {
1816    IRType = STy->getElementType(0);
1817    STy = dyn_cast<llvm::StructType>(IRType);
1818  }
1819
1820  // If the preferred type is a 16-byte vector, prefer to pass it.
1821  if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
1822    llvm::Type *EltTy = VT->getElementType();
1823    unsigned BitWidth = VT->getBitWidth();
1824    if ((BitWidth >= 128 && BitWidth <= 256) &&
1825        (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1826         EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1827         EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1828         EltTy->isIntegerTy(128)))
1829      return VT;
1830  }
1831
1832  return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1833}
1834
1835/// BitsContainNoUserData - Return true if the specified [start,end) bit range
1836/// is known to either be off the end of the specified type or being in
1837/// alignment padding.  The user type specified is known to be at most 128 bits
1838/// in size, and have passed through X86_64ABIInfo::classify with a successful
1839/// classification that put one of the two halves in the INTEGER class.
1840///
1841/// It is conservatively correct to return false.
1842static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1843                                  unsigned EndBit, ASTContext &Context) {
1844  // If the bytes being queried are off the end of the type, there is no user
1845  // data hiding here.  This handles analysis of builtins, vectors and other
1846  // types that don't contain interesting padding.
1847  unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1848  if (TySize <= StartBit)
1849    return true;
1850
1851  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1852    unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1853    unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1854
1855    // Check each element to see if the element overlaps with the queried range.
1856    for (unsigned i = 0; i != NumElts; ++i) {
1857      // If the element is after the span we care about, then we're done..
1858      unsigned EltOffset = i*EltSize;
1859      if (EltOffset >= EndBit) break;
1860
1861      unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1862      if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1863                                 EndBit-EltOffset, Context))
1864        return false;
1865    }
1866    // If it overlaps no elements, then it is safe to process as padding.
1867    return true;
1868  }
1869
1870  if (const RecordType *RT = Ty->getAs<RecordType>()) {
1871    const RecordDecl *RD = RT->getDecl();
1872    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1873
1874    // If this is a C++ record, check the bases first.
1875    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1876      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1877           e = CXXRD->bases_end(); i != e; ++i) {
1878        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1879               "Unexpected base class!");
1880        const CXXRecordDecl *Base =
1881          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1882
1883        // If the base is after the span we care about, ignore it.
1884        unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
1885        if (BaseOffset >= EndBit) continue;
1886
1887        unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1888        if (!BitsContainNoUserData(i->getType(), BaseStart,
1889                                   EndBit-BaseOffset, Context))
1890          return false;
1891      }
1892    }
1893
1894    // Verify that no field has data that overlaps the region of interest.  Yes
1895    // this could be sped up a lot by being smarter about queried fields,
1896    // however we're only looking at structs up to 16 bytes, so we don't care
1897    // much.
1898    unsigned idx = 0;
1899    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1900         i != e; ++i, ++idx) {
1901      unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
1902
1903      // If we found a field after the region we care about, then we're done.
1904      if (FieldOffset >= EndBit) break;
1905
1906      unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
1907      if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
1908                                 Context))
1909        return false;
1910    }
1911
1912    // If nothing in this record overlapped the area of interest, then we're
1913    // clean.
1914    return true;
1915  }
1916
1917  return false;
1918}
1919
1920/// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
1921/// float member at the specified offset.  For example, {int,{float}} has a
1922/// float at offset 4.  It is conservatively correct for this routine to return
1923/// false.
1924static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
1925                                  const llvm::DataLayout &TD) {
1926  // Base case if we find a float.
1927  if (IROffset == 0 && IRType->isFloatTy())
1928    return true;
1929
1930  // If this is a struct, recurse into the field at the specified offset.
1931  if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1932    const llvm::StructLayout *SL = TD.getStructLayout(STy);
1933    unsigned Elt = SL->getElementContainingOffset(IROffset);
1934    IROffset -= SL->getElementOffset(Elt);
1935    return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
1936  }
1937
1938  // If this is an array, recurse into the field at the specified offset.
1939  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1940    llvm::Type *EltTy = ATy->getElementType();
1941    unsigned EltSize = TD.getTypeAllocSize(EltTy);
1942    IROffset -= IROffset/EltSize*EltSize;
1943    return ContainsFloatAtOffset(EltTy, IROffset, TD);
1944  }
1945
1946  return false;
1947}
1948
1949
1950/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
1951/// low 8 bytes of an XMM register, corresponding to the SSE class.
1952llvm::Type *X86_64ABIInfo::
1953GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1954                   QualType SourceTy, unsigned SourceOffset) const {
1955  // The only three choices we have are either double, <2 x float>, or float. We
1956  // pass as float if the last 4 bytes is just padding.  This happens for
1957  // structs that contain 3 floats.
1958  if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
1959                            SourceOffset*8+64, getContext()))
1960    return llvm::Type::getFloatTy(getVMContext());
1961
1962  // We want to pass as <2 x float> if the LLVM IR type contains a float at
1963  // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
1964  // case.
1965  if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
1966      ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
1967    return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
1968
1969  return llvm::Type::getDoubleTy(getVMContext());
1970}
1971
1972
1973/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
1974/// an 8-byte GPR.  This means that we either have a scalar or we are talking
1975/// about the high or low part of an up-to-16-byte struct.  This routine picks
1976/// the best LLVM IR type to represent this, which may be i64 or may be anything
1977/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
1978/// etc).
1979///
1980/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
1981/// the source type.  IROffset is an offset in bytes into the LLVM IR type that
1982/// the 8-byte value references.  PrefType may be null.
1983///
1984/// SourceTy is the source level type for the entire argument.  SourceOffset is
1985/// an offset into this that we're processing (which is always either 0 or 8).
1986///
1987llvm::Type *X86_64ABIInfo::
1988GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1989                       QualType SourceTy, unsigned SourceOffset) const {
1990  // If we're dealing with an un-offset LLVM IR type, then it means that we're
1991  // returning an 8-byte unit starting with it.  See if we can safely use it.
1992  if (IROffset == 0) {
1993    // Pointers and int64's always fill the 8-byte unit.
1994    if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
1995        IRType->isIntegerTy(64))
1996      return IRType;
1997
1998    // If we have a 1/2/4-byte integer, we can use it only if the rest of the
1999    // goodness in the source type is just tail padding.  This is allowed to
2000    // kick in for struct {double,int} on the int, but not on
2001    // struct{double,int,int} because we wouldn't return the second int.  We
2002    // have to do this analysis on the source type because we can't depend on
2003    // unions being lowered a specific way etc.
2004    if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
2005        IRType->isIntegerTy(32) ||
2006        (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
2007      unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
2008          cast<llvm::IntegerType>(IRType)->getBitWidth();
2009
2010      if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
2011                                SourceOffset*8+64, getContext()))
2012        return IRType;
2013    }
2014  }
2015
2016  if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2017    // If this is a struct, recurse into the field at the specified offset.
2018    const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
2019    if (IROffset < SL->getSizeInBytes()) {
2020      unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
2021      IROffset -= SL->getElementOffset(FieldIdx);
2022
2023      return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
2024                                    SourceTy, SourceOffset);
2025    }
2026  }
2027
2028  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2029    llvm::Type *EltTy = ATy->getElementType();
2030    unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
2031    unsigned EltOffset = IROffset/EltSize*EltSize;
2032    return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
2033                                  SourceOffset);
2034  }
2035
2036  // Okay, we don't have any better idea of what to pass, so we pass this in an
2037  // integer register that isn't too big to fit the rest of the struct.
2038  unsigned TySizeInBytes =
2039    (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
2040
2041  assert(TySizeInBytes != SourceOffset && "Empty field?");
2042
2043  // It is always safe to classify this as an integer type up to i64 that
2044  // isn't larger than the structure.
2045  return llvm::IntegerType::get(getVMContext(),
2046                                std::min(TySizeInBytes-SourceOffset, 8U)*8);
2047}
2048
2049
2050/// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2051/// be used as elements of a two register pair to pass or return, return a
2052/// first class aggregate to represent them.  For example, if the low part of
2053/// a by-value argument should be passed as i32* and the high part as float,
2054/// return {i32*, float}.
2055static llvm::Type *
2056GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2057                           const llvm::DataLayout &TD) {
2058  // In order to correctly satisfy the ABI, we need to the high part to start
2059  // at offset 8.  If the high and low parts we inferred are both 4-byte types
2060  // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2061  // the second element at offset 8.  Check for this:
2062  unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
2063  unsigned HiAlign = TD.getABITypeAlignment(Hi);
2064  unsigned HiStart = llvm::DataLayout::RoundUpAlignment(LoSize, HiAlign);
2065  assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2066
2067  // To handle this, we have to increase the size of the low part so that the
2068  // second element will start at an 8 byte offset.  We can't increase the size
2069  // of the second element because it might make us access off the end of the
2070  // struct.
2071  if (HiStart != 8) {
2072    // There are only two sorts of types the ABI generation code can produce for
2073    // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
2074    // Promote these to a larger type.
2075    if (Lo->isFloatTy())
2076      Lo = llvm::Type::getDoubleTy(Lo->getContext());
2077    else {
2078      assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
2079      Lo = llvm::Type::getInt64Ty(Lo->getContext());
2080    }
2081  }
2082
2083  llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL);
2084
2085
2086  // Verify that the second element is at an 8-byte offset.
2087  assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2088         "Invalid x86-64 argument pair!");
2089  return Result;
2090}
2091
2092ABIArgInfo X86_64ABIInfo::
2093classifyReturnType(QualType RetTy) const {
2094  // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2095  // classification algorithm.
2096  X86_64ABIInfo::Class Lo, Hi;
2097  classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
2098
2099  // Check some invariants.
2100  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2101  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2102
2103  llvm::Type *ResType = 0;
2104  switch (Lo) {
2105  case NoClass:
2106    if (Hi == NoClass)
2107      return ABIArgInfo::getIgnore();
2108    // If the low part is just padding, it takes no register, leave ResType
2109    // null.
2110    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2111           "Unknown missing lo part");
2112    break;
2113
2114  case SSEUp:
2115  case X87Up:
2116    llvm_unreachable("Invalid classification for lo word.");
2117
2118    // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2119    // hidden argument.
2120  case Memory:
2121    return getIndirectReturnResult(RetTy);
2122
2123    // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2124    // available register of the sequence %rax, %rdx is used.
2125  case Integer:
2126    ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2127
2128    // If we have a sign or zero extended integer, make sure to return Extend
2129    // so that the parameter gets the right LLVM IR attributes.
2130    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2131      // Treat an enum type as its underlying type.
2132      if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2133        RetTy = EnumTy->getDecl()->getIntegerType();
2134
2135      if (RetTy->isIntegralOrEnumerationType() &&
2136          RetTy->isPromotableIntegerType())
2137        return ABIArgInfo::getExtend();
2138    }
2139    break;
2140
2141    // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2142    // available SSE register of the sequence %xmm0, %xmm1 is used.
2143  case SSE:
2144    ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2145    break;
2146
2147    // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2148    // returned on the X87 stack in %st0 as 80-bit x87 number.
2149  case X87:
2150    ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2151    break;
2152
2153    // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2154    // part of the value is returned in %st0 and the imaginary part in
2155    // %st1.
2156  case ComplexX87:
2157    assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2158    ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2159                                    llvm::Type::getX86_FP80Ty(getVMContext()),
2160                                    NULL);
2161    break;
2162  }
2163
2164  llvm::Type *HighPart = 0;
2165  switch (Hi) {
2166    // Memory was handled previously and X87 should
2167    // never occur as a hi class.
2168  case Memory:
2169  case X87:
2170    llvm_unreachable("Invalid classification for hi word.");
2171
2172  case ComplexX87: // Previously handled.
2173  case NoClass:
2174    break;
2175
2176  case Integer:
2177    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2178    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2179      return ABIArgInfo::getDirect(HighPart, 8);
2180    break;
2181  case SSE:
2182    HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2183    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2184      return ABIArgInfo::getDirect(HighPart, 8);
2185    break;
2186
2187    // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2188    // is passed in the next available eightbyte chunk if the last used
2189    // vector register.
2190    //
2191    // SSEUP should always be preceded by SSE, just widen.
2192  case SSEUp:
2193    assert(Lo == SSE && "Unexpected SSEUp classification.");
2194    ResType = GetByteVectorType(RetTy);
2195    break;
2196
2197    // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2198    // returned together with the previous X87 value in %st0.
2199  case X87Up:
2200    // If X87Up is preceded by X87, we don't need to do
2201    // anything. However, in some cases with unions it may not be
2202    // preceded by X87. In such situations we follow gcc and pass the
2203    // extra bits in an SSE reg.
2204    if (Lo != X87) {
2205      HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2206      if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2207        return ABIArgInfo::getDirect(HighPart, 8);
2208    }
2209    break;
2210  }
2211
2212  // If a high part was specified, merge it together with the low part.  It is
2213  // known to pass in the high eightbyte of the result.  We do this by forming a
2214  // first class struct aggregate with the high and low part: {low, high}
2215  if (HighPart)
2216    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2217
2218  return ABIArgInfo::getDirect(ResType);
2219}
2220
2221ABIArgInfo X86_64ABIInfo::classifyArgumentType(
2222  QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
2223  bool isNamedArg)
2224  const
2225{
2226  X86_64ABIInfo::Class Lo, Hi;
2227  classify(Ty, 0, Lo, Hi, isNamedArg);
2228
2229  // Check some invariants.
2230  // FIXME: Enforce these by construction.
2231  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2232  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2233
2234  neededInt = 0;
2235  neededSSE = 0;
2236  llvm::Type *ResType = 0;
2237  switch (Lo) {
2238  case NoClass:
2239    if (Hi == NoClass)
2240      return ABIArgInfo::getIgnore();
2241    // If the low part is just padding, it takes no register, leave ResType
2242    // null.
2243    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2244           "Unknown missing lo part");
2245    break;
2246
2247    // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2248    // on the stack.
2249  case Memory:
2250
2251    // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2252    // COMPLEX_X87, it is passed in memory.
2253  case X87:
2254  case ComplexX87:
2255    if (getRecordArgABI(Ty, CGT) == CGCXXABI::RAA_Indirect)
2256      ++neededInt;
2257    return getIndirectResult(Ty, freeIntRegs);
2258
2259  case SSEUp:
2260  case X87Up:
2261    llvm_unreachable("Invalid classification for lo word.");
2262
2263    // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2264    // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2265    // and %r9 is used.
2266  case Integer:
2267    ++neededInt;
2268
2269    // Pick an 8-byte type based on the preferred type.
2270    ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2271
2272    // If we have a sign or zero extended integer, make sure to return Extend
2273    // so that the parameter gets the right LLVM IR attributes.
2274    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2275      // Treat an enum type as its underlying type.
2276      if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2277        Ty = EnumTy->getDecl()->getIntegerType();
2278
2279      if (Ty->isIntegralOrEnumerationType() &&
2280          Ty->isPromotableIntegerType())
2281        return ABIArgInfo::getExtend();
2282    }
2283
2284    break;
2285
2286    // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2287    // available SSE register is used, the registers are taken in the
2288    // order from %xmm0 to %xmm7.
2289  case SSE: {
2290    llvm::Type *IRType = CGT.ConvertType(Ty);
2291    ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2292    ++neededSSE;
2293    break;
2294  }
2295  }
2296
2297  llvm::Type *HighPart = 0;
2298  switch (Hi) {
2299    // Memory was handled previously, ComplexX87 and X87 should
2300    // never occur as hi classes, and X87Up must be preceded by X87,
2301    // which is passed in memory.
2302  case Memory:
2303  case X87:
2304  case ComplexX87:
2305    llvm_unreachable("Invalid classification for hi word.");
2306
2307  case NoClass: break;
2308
2309  case Integer:
2310    ++neededInt;
2311    // Pick an 8-byte type based on the preferred type.
2312    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2313
2314    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2315      return ABIArgInfo::getDirect(HighPart, 8);
2316    break;
2317
2318    // X87Up generally doesn't occur here (long double is passed in
2319    // memory), except in situations involving unions.
2320  case X87Up:
2321  case SSE:
2322    HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2323
2324    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2325      return ABIArgInfo::getDirect(HighPart, 8);
2326
2327    ++neededSSE;
2328    break;
2329
2330    // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2331    // eightbyte is passed in the upper half of the last used SSE
2332    // register.  This only happens when 128-bit vectors are passed.
2333  case SSEUp:
2334    assert(Lo == SSE && "Unexpected SSEUp classification");
2335    ResType = GetByteVectorType(Ty);
2336    break;
2337  }
2338
2339  // If a high part was specified, merge it together with the low part.  It is
2340  // known to pass in the high eightbyte of the result.  We do this by forming a
2341  // first class struct aggregate with the high and low part: {low, high}
2342  if (HighPart)
2343    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2344
2345  return ABIArgInfo::getDirect(ResType);
2346}
2347
2348void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2349
2350  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2351
2352  // Keep track of the number of assigned registers.
2353  unsigned freeIntRegs = 6, freeSSERegs = 8;
2354
2355  // If the return value is indirect, then the hidden argument is consuming one
2356  // integer register.
2357  if (FI.getReturnInfo().isIndirect())
2358    --freeIntRegs;
2359
2360  bool isVariadic = FI.isVariadic();
2361  unsigned numRequiredArgs = 0;
2362  if (isVariadic)
2363    numRequiredArgs = FI.getRequiredArgs().getNumRequiredArgs();
2364
2365  // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2366  // get assigned (in left-to-right order) for passing as follows...
2367  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2368       it != ie; ++it) {
2369    bool isNamedArg = true;
2370    if (isVariadic)
2371      isNamedArg = (it - FI.arg_begin()) <
2372                    static_cast<signed>(numRequiredArgs);
2373
2374    unsigned neededInt, neededSSE;
2375    it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
2376                                    neededSSE, isNamedArg);
2377
2378    // AMD64-ABI 3.2.3p3: If there are no registers available for any
2379    // eightbyte of an argument, the whole argument is passed on the
2380    // stack. If registers have already been assigned for some
2381    // eightbytes of such an argument, the assignments get reverted.
2382    if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
2383      freeIntRegs -= neededInt;
2384      freeSSERegs -= neededSSE;
2385    } else {
2386      it->info = getIndirectResult(it->type, freeIntRegs);
2387    }
2388  }
2389}
2390
2391static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
2392                                        QualType Ty,
2393                                        CodeGenFunction &CGF) {
2394  llvm::Value *overflow_arg_area_p =
2395    CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
2396  llvm::Value *overflow_arg_area =
2397    CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2398
2399  // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2400  // byte boundary if alignment needed by type exceeds 8 byte boundary.
2401  // It isn't stated explicitly in the standard, but in practice we use
2402  // alignment greater than 16 where necessary.
2403  uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
2404  if (Align > 8) {
2405    // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
2406    llvm::Value *Offset =
2407      llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
2408    overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
2409    llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
2410                                                    CGF.Int64Ty);
2411    llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
2412    overflow_arg_area =
2413      CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
2414                                 overflow_arg_area->getType(),
2415                                 "overflow_arg_area.align");
2416  }
2417
2418  // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2419  llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2420  llvm::Value *Res =
2421    CGF.Builder.CreateBitCast(overflow_arg_area,
2422                              llvm::PointerType::getUnqual(LTy));
2423
2424  // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
2425  // l->overflow_arg_area + sizeof(type).
2426  // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
2427  // an 8 byte boundary.
2428
2429  uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
2430  llvm::Value *Offset =
2431      llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
2432  overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
2433                                            "overflow_arg_area.next");
2434  CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2435
2436  // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2437  return Res;
2438}
2439
2440llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2441                                      CodeGenFunction &CGF) const {
2442  // Assume that va_list type is correct; should be pointer to LLVM type:
2443  // struct {
2444  //   i32 gp_offset;
2445  //   i32 fp_offset;
2446  //   i8* overflow_arg_area;
2447  //   i8* reg_save_area;
2448  // };
2449  unsigned neededInt, neededSSE;
2450
2451  Ty = CGF.getContext().getCanonicalType(Ty);
2452  ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
2453                                       /*isNamedArg*/false);
2454
2455  // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2456  // in the registers. If not go to step 7.
2457  if (!neededInt && !neededSSE)
2458    return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2459
2460  // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2461  // general purpose registers needed to pass type and num_fp to hold
2462  // the number of floating point registers needed.
2463
2464  // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2465  // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2466  // l->fp_offset > 304 - num_fp * 16 go to step 7.
2467  //
2468  // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
2469  // register save space).
2470
2471  llvm::Value *InRegs = 0;
2472  llvm::Value *gp_offset_p = 0, *gp_offset = 0;
2473  llvm::Value *fp_offset_p = 0, *fp_offset = 0;
2474  if (neededInt) {
2475    gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
2476    gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
2477    InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
2478    InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
2479  }
2480
2481  if (neededSSE) {
2482    fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
2483    fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
2484    llvm::Value *FitsInFP =
2485      llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2486    FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2487    InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2488  }
2489
2490  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2491  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2492  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2493  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2494
2495  // Emit code to load the value if it was passed in registers.
2496
2497  CGF.EmitBlock(InRegBlock);
2498
2499  // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2500  // an offset of l->gp_offset and/or l->fp_offset. This may require
2501  // copying to a temporary location in case the parameter is passed
2502  // in different register classes or requires an alignment greater
2503  // than 8 for general purpose registers and 16 for XMM registers.
2504  //
2505  // FIXME: This really results in shameful code when we end up needing to
2506  // collect arguments from different places; often what should result in a
2507  // simple assembling of a structure from scattered addresses has many more
2508  // loads than necessary. Can we clean this up?
2509  llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2510  llvm::Value *RegAddr =
2511    CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
2512                           "reg_save_area");
2513  if (neededInt && neededSSE) {
2514    // FIXME: Cleanup.
2515    assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2516    llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2517    llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2518    Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2519    assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2520    llvm::Type *TyLo = ST->getElementType(0);
2521    llvm::Type *TyHi = ST->getElementType(1);
2522    assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2523           "Unexpected ABI info for mixed regs");
2524    llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2525    llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2526    llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2527    llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2528    llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
2529    llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
2530    llvm::Value *V =
2531      CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2532    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2533    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2534    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2535
2536    RegAddr = CGF.Builder.CreateBitCast(Tmp,
2537                                        llvm::PointerType::getUnqual(LTy));
2538  } else if (neededInt) {
2539    RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2540    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2541                                        llvm::PointerType::getUnqual(LTy));
2542
2543    // Copy to a temporary if necessary to ensure the appropriate alignment.
2544    std::pair<CharUnits, CharUnits> SizeAlign =
2545        CGF.getContext().getTypeInfoInChars(Ty);
2546    uint64_t TySize = SizeAlign.first.getQuantity();
2547    unsigned TyAlign = SizeAlign.second.getQuantity();
2548    if (TyAlign > 8) {
2549      llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2550      CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false);
2551      RegAddr = Tmp;
2552    }
2553  } else if (neededSSE == 1) {
2554    RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2555    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2556                                        llvm::PointerType::getUnqual(LTy));
2557  } else {
2558    assert(neededSSE == 2 && "Invalid number of needed registers!");
2559    // SSE registers are spaced 16 bytes apart in the register save
2560    // area, we need to collect the two eightbytes together.
2561    llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2562    llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2563    llvm::Type *DoubleTy = CGF.DoubleTy;
2564    llvm::Type *DblPtrTy =
2565      llvm::PointerType::getUnqual(DoubleTy);
2566    llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, NULL);
2567    llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty);
2568    Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2569    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2570                                                         DblPtrTy));
2571    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2572    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2573                                                         DblPtrTy));
2574    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2575    RegAddr = CGF.Builder.CreateBitCast(Tmp,
2576                                        llvm::PointerType::getUnqual(LTy));
2577  }
2578
2579  // AMD64-ABI 3.5.7p5: Step 5. Set:
2580  // l->gp_offset = l->gp_offset + num_gp * 8
2581  // l->fp_offset = l->fp_offset + num_fp * 16.
2582  if (neededInt) {
2583    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2584    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2585                            gp_offset_p);
2586  }
2587  if (neededSSE) {
2588    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2589    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2590                            fp_offset_p);
2591  }
2592  CGF.EmitBranch(ContBlock);
2593
2594  // Emit code to load the value if it was passed in memory.
2595
2596  CGF.EmitBlock(InMemBlock);
2597  llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2598
2599  // Return the appropriate result.
2600
2601  CGF.EmitBlock(ContBlock);
2602  llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2603                                                 "vaarg.addr");
2604  ResAddr->addIncoming(RegAddr, InRegBlock);
2605  ResAddr->addIncoming(MemAddr, InMemBlock);
2606  return ResAddr;
2607}
2608
2609ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, bool IsReturnType) const {
2610
2611  if (Ty->isVoidType())
2612    return ABIArgInfo::getIgnore();
2613
2614  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2615    Ty = EnumTy->getDecl()->getIntegerType();
2616
2617  uint64_t Size = getContext().getTypeSize(Ty);
2618
2619  if (const RecordType *RT = Ty->getAs<RecordType>()) {
2620    if (IsReturnType) {
2621      if (isRecordReturnIndirect(RT, CGT))
2622        return ABIArgInfo::getIndirect(0, false);
2623    } else {
2624      if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, CGT))
2625        return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
2626    }
2627
2628    if (RT->getDecl()->hasFlexibleArrayMember())
2629      return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2630
2631    // FIXME: mingw-w64-gcc emits 128-bit struct as i128
2632    if (Size == 128 && getTarget().getTriple().getOS() == llvm::Triple::MinGW32)
2633      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2634                                                          Size));
2635
2636    // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
2637    // not 1, 2, 4, or 8 bytes, must be passed by reference."
2638    if (Size <= 64 &&
2639        (Size & (Size - 1)) == 0)
2640      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2641                                                          Size));
2642
2643    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2644  }
2645
2646  if (Ty->isPromotableIntegerType())
2647    return ABIArgInfo::getExtend();
2648
2649  return ABIArgInfo::getDirect();
2650}
2651
2652void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2653
2654  QualType RetTy = FI.getReturnType();
2655  FI.getReturnInfo() = classify(RetTy, true);
2656
2657  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2658       it != ie; ++it)
2659    it->info = classify(it->type, false);
2660}
2661
2662llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2663                                      CodeGenFunction &CGF) const {
2664  llvm::Type *BPP = CGF.Int8PtrPtrTy;
2665
2666  CGBuilderTy &Builder = CGF.Builder;
2667  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2668                                                       "ap");
2669  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2670  llvm::Type *PTy =
2671    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2672  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2673
2674  uint64_t Offset =
2675    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
2676  llvm::Value *NextAddr =
2677    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2678                      "ap.next");
2679  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2680
2681  return AddrTyped;
2682}
2683
2684namespace {
2685
2686class NaClX86_64ABIInfo : public ABIInfo {
2687 public:
2688  NaClX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
2689      : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, HasAVX) {}
2690  virtual void computeInfo(CGFunctionInfo &FI) const;
2691  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2692                                 CodeGenFunction &CGF) const;
2693 private:
2694  PNaClABIInfo PInfo;  // Used for generating calls with pnaclcall callingconv.
2695  X86_64ABIInfo NInfo; // Used for everything else.
2696};
2697
2698class NaClX86_64TargetCodeGenInfo : public TargetCodeGenInfo  {
2699 public:
2700  NaClX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
2701      : TargetCodeGenInfo(new NaClX86_64ABIInfo(CGT, HasAVX)) {}
2702};
2703
2704}
2705
2706void NaClX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2707  if (FI.getASTCallingConvention() == CC_PnaclCall)
2708    PInfo.computeInfo(FI);
2709  else
2710    NInfo.computeInfo(FI);
2711}
2712
2713llvm::Value *NaClX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2714                                          CodeGenFunction &CGF) const {
2715  // Always use the native convention; calling pnacl-style varargs functions
2716  // is unuspported.
2717  return NInfo.EmitVAArg(VAListAddr, Ty, CGF);
2718}
2719
2720
2721// PowerPC-32
2722
2723namespace {
2724class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2725public:
2726  PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2727
2728  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2729    // This is recovered from gcc output.
2730    return 1; // r1 is the dedicated stack pointer
2731  }
2732
2733  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2734                               llvm::Value *Address) const;
2735};
2736
2737}
2738
2739bool
2740PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2741                                                llvm::Value *Address) const {
2742  // This is calculated from the LLVM and GCC tables and verified
2743  // against gcc output.  AFAIK all ABIs use the same encoding.
2744
2745  CodeGen::CGBuilderTy &Builder = CGF.Builder;
2746
2747  llvm::IntegerType *i8 = CGF.Int8Ty;
2748  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2749  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2750  llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2751
2752  // 0-31: r0-31, the 4-byte general-purpose registers
2753  AssignToArrayRange(Builder, Address, Four8, 0, 31);
2754
2755  // 32-63: fp0-31, the 8-byte floating-point registers
2756  AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2757
2758  // 64-76 are various 4-byte special-purpose registers:
2759  // 64: mq
2760  // 65: lr
2761  // 66: ctr
2762  // 67: ap
2763  // 68-75 cr0-7
2764  // 76: xer
2765  AssignToArrayRange(Builder, Address, Four8, 64, 76);
2766
2767  // 77-108: v0-31, the 16-byte vector registers
2768  AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2769
2770  // 109: vrsave
2771  // 110: vscr
2772  // 111: spe_acc
2773  // 112: spefscr
2774  // 113: sfp
2775  AssignToArrayRange(Builder, Address, Four8, 109, 113);
2776
2777  return false;
2778}
2779
2780// PowerPC-64
2781
2782namespace {
2783/// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
2784class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
2785
2786public:
2787  PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
2788
2789  bool isPromotableTypeForABI(QualType Ty) const;
2790
2791  ABIArgInfo classifyReturnType(QualType RetTy) const;
2792  ABIArgInfo classifyArgumentType(QualType Ty) const;
2793
2794  // TODO: We can add more logic to computeInfo to improve performance.
2795  // Example: For aggregate arguments that fit in a register, we could
2796  // use getDirectInReg (as is done below for structs containing a single
2797  // floating-point value) to avoid pushing them to memory on function
2798  // entry.  This would require changing the logic in PPCISelLowering
2799  // when lowering the parameters in the caller and args in the callee.
2800  virtual void computeInfo(CGFunctionInfo &FI) const {
2801    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2802    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2803         it != ie; ++it) {
2804      // We rely on the default argument classification for the most part.
2805      // One exception:  An aggregate containing a single floating-point
2806      // item must be passed in a register if one is available.
2807      const Type *T = isSingleElementStruct(it->type, getContext());
2808      if (T) {
2809        const BuiltinType *BT = T->getAs<BuiltinType>();
2810        if (BT && BT->isFloatingPoint()) {
2811          QualType QT(T, 0);
2812          it->info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
2813          continue;
2814        }
2815      }
2816      it->info = classifyArgumentType(it->type);
2817    }
2818  }
2819
2820  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr,
2821                                 QualType Ty,
2822                                 CodeGenFunction &CGF) const;
2823};
2824
2825class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
2826public:
2827  PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT)
2828    : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT)) {}
2829
2830  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2831    // This is recovered from gcc output.
2832    return 1; // r1 is the dedicated stack pointer
2833  }
2834
2835  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2836                               llvm::Value *Address) const;
2837};
2838
2839class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2840public:
2841  PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2842
2843  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2844    // This is recovered from gcc output.
2845    return 1; // r1 is the dedicated stack pointer
2846  }
2847
2848  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2849                               llvm::Value *Address) const;
2850};
2851
2852}
2853
2854// Return true if the ABI requires Ty to be passed sign- or zero-
2855// extended to 64 bits.
2856bool
2857PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
2858  // Treat an enum type as its underlying type.
2859  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2860    Ty = EnumTy->getDecl()->getIntegerType();
2861
2862  // Promotable integer types are required to be promoted by the ABI.
2863  if (Ty->isPromotableIntegerType())
2864    return true;
2865
2866  // In addition to the usual promotable integer types, we also need to
2867  // extend all 32-bit types, since the ABI requires promotion to 64 bits.
2868  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2869    switch (BT->getKind()) {
2870    case BuiltinType::Int:
2871    case BuiltinType::UInt:
2872      return true;
2873    default:
2874      break;
2875    }
2876
2877  return false;
2878}
2879
2880ABIArgInfo
2881PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
2882  if (Ty->isAnyComplexType())
2883    return ABIArgInfo::getDirect();
2884
2885  if (isAggregateTypeForABI(Ty)) {
2886    if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, CGT))
2887      return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
2888
2889    return ABIArgInfo::getIndirect(0);
2890  }
2891
2892  return (isPromotableTypeForABI(Ty) ?
2893          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2894}
2895
2896ABIArgInfo
2897PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
2898  if (RetTy->isVoidType())
2899    return ABIArgInfo::getIgnore();
2900
2901  if (RetTy->isAnyComplexType())
2902    return ABIArgInfo::getDirect();
2903
2904  if (isAggregateTypeForABI(RetTy))
2905    return ABIArgInfo::getIndirect(0);
2906
2907  return (isPromotableTypeForABI(RetTy) ?
2908          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2909}
2910
2911// Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
2912llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
2913                                           QualType Ty,
2914                                           CodeGenFunction &CGF) const {
2915  llvm::Type *BP = CGF.Int8PtrTy;
2916  llvm::Type *BPP = CGF.Int8PtrPtrTy;
2917
2918  CGBuilderTy &Builder = CGF.Builder;
2919  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
2920  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2921
2922  // Update the va_list pointer.  The pointer should be bumped by the
2923  // size of the object.  We can trust getTypeSize() except for a complex
2924  // type whose base type is smaller than a doubleword.  For these, the
2925  // size of the object is 16 bytes; see below for further explanation.
2926  unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8;
2927  QualType BaseTy;
2928  unsigned CplxBaseSize = 0;
2929
2930  if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
2931    BaseTy = CTy->getElementType();
2932    CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8;
2933    if (CplxBaseSize < 8)
2934      SizeInBytes = 16;
2935  }
2936
2937  unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8);
2938  llvm::Value *NextAddr =
2939    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset),
2940                      "ap.next");
2941  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2942
2943  // If we have a complex type and the base type is smaller than 8 bytes,
2944  // the ABI calls for the real and imaginary parts to be right-adjusted
2945  // in separate doublewords.  However, Clang expects us to produce a
2946  // pointer to a structure with the two parts packed tightly.  So generate
2947  // loads of the real and imaginary parts relative to the va_list pointer,
2948  // and store them to a temporary structure.
2949  if (CplxBaseSize && CplxBaseSize < 8) {
2950    llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
2951    llvm::Value *ImagAddr = RealAddr;
2952    RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize));
2953    ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize));
2954    llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy));
2955    RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy);
2956    ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy);
2957    llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal");
2958    llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag");
2959    llvm::Value *Ptr = CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty),
2960                                            "vacplx");
2961    llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, ".real");
2962    llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, ".imag");
2963    Builder.CreateStore(Real, RealPtr, false);
2964    Builder.CreateStore(Imag, ImagPtr, false);
2965    return Ptr;
2966  }
2967
2968  // If the argument is smaller than 8 bytes, it is right-adjusted in
2969  // its doubleword slot.  Adjust the pointer to pick it up from the
2970  // correct offset.
2971  if (SizeInBytes < 8) {
2972    llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
2973    AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes));
2974    Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
2975  }
2976
2977  llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2978  return Builder.CreateBitCast(Addr, PTy);
2979}
2980
2981static bool
2982PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2983                              llvm::Value *Address) {
2984  // This is calculated from the LLVM and GCC tables and verified
2985  // against gcc output.  AFAIK all ABIs use the same encoding.
2986
2987  CodeGen::CGBuilderTy &Builder = CGF.Builder;
2988
2989  llvm::IntegerType *i8 = CGF.Int8Ty;
2990  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2991  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2992  llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2993
2994  // 0-31: r0-31, the 8-byte general-purpose registers
2995  AssignToArrayRange(Builder, Address, Eight8, 0, 31);
2996
2997  // 32-63: fp0-31, the 8-byte floating-point registers
2998  AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2999
3000  // 64-76 are various 4-byte special-purpose registers:
3001  // 64: mq
3002  // 65: lr
3003  // 66: ctr
3004  // 67: ap
3005  // 68-75 cr0-7
3006  // 76: xer
3007  AssignToArrayRange(Builder, Address, Four8, 64, 76);
3008
3009  // 77-108: v0-31, the 16-byte vector registers
3010  AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3011
3012  // 109: vrsave
3013  // 110: vscr
3014  // 111: spe_acc
3015  // 112: spefscr
3016  // 113: sfp
3017  AssignToArrayRange(Builder, Address, Four8, 109, 113);
3018
3019  return false;
3020}
3021
3022bool
3023PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
3024  CodeGen::CodeGenFunction &CGF,
3025  llvm::Value *Address) const {
3026
3027  return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3028}
3029
3030bool
3031PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3032                                                llvm::Value *Address) const {
3033
3034  return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3035}
3036
3037//===----------------------------------------------------------------------===//
3038// ARM ABI Implementation
3039//===----------------------------------------------------------------------===//
3040
3041namespace {
3042
3043class ARMABIInfo : public ABIInfo {
3044public:
3045  enum ABIKind {
3046    APCS = 0,
3047    AAPCS = 1,
3048    AAPCS_VFP
3049  };
3050
3051private:
3052  ABIKind Kind;
3053
3054public:
3055  ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {
3056    setRuntimeCC();
3057  }
3058
3059  bool isEABI() const {
3060    StringRef Env = getTarget().getTriple().getEnvironmentName();
3061    return (Env == "gnueabi" || Env == "eabi" ||
3062            Env == "android" || Env == "androideabi");
3063  }
3064
3065private:
3066  ABIKind getABIKind() const { return Kind; }
3067
3068  ABIArgInfo classifyReturnType(QualType RetTy) const;
3069  ABIArgInfo classifyArgumentType(QualType RetTy, int *VFPRegs,
3070                                  unsigned &AllocatedVFP,
3071                                  bool &IsHA) const;
3072  bool isIllegalVectorType(QualType Ty) const;
3073
3074  virtual void computeInfo(CGFunctionInfo &FI) const;
3075
3076  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3077                                 CodeGenFunction &CGF) const;
3078
3079  llvm::CallingConv::ID getLLVMDefaultCC() const;
3080  llvm::CallingConv::ID getABIDefaultCC() const;
3081  void setRuntimeCC();
3082};
3083
3084class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
3085public:
3086  ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
3087    :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
3088
3089  const ARMABIInfo &getABIInfo() const {
3090    return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
3091  }
3092
3093  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
3094    return 13;
3095  }
3096
3097  StringRef getARCRetainAutoreleasedReturnValueMarker() const {
3098    return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
3099  }
3100
3101  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3102                               llvm::Value *Address) const {
3103    llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
3104
3105    // 0-15 are the 16 integer registers.
3106    AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
3107    return false;
3108  }
3109
3110  unsigned getSizeOfUnwindException() const {
3111    if (getABIInfo().isEABI()) return 88;
3112    return TargetCodeGenInfo::getSizeOfUnwindException();
3113  }
3114};
3115
3116}
3117
3118void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
3119  // To correctly handle Homogeneous Aggregate, we need to keep track of the
3120  // VFP registers allocated so far.
3121  // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
3122  // VFP registers of the appropriate type unallocated then the argument is
3123  // allocated to the lowest-numbered sequence of such registers.
3124  // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
3125  // unallocated are marked as unavailable.
3126  unsigned AllocatedVFP = 0;
3127  int VFPRegs[16] = { 0 };
3128  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3129  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3130       it != ie; ++it) {
3131    unsigned PreAllocation = AllocatedVFP;
3132    bool IsHA = false;
3133    // 6.1.2.3 There is one VFP co-processor register class using registers
3134    // s0-s15 (d0-d7) for passing arguments.
3135    const unsigned NumVFPs = 16;
3136    it->info = classifyArgumentType(it->type, VFPRegs, AllocatedVFP, IsHA);
3137    // If we do not have enough VFP registers for the HA, any VFP registers
3138    // that are unallocated are marked as unavailable. To achieve this, we add
3139    // padding of (NumVFPs - PreAllocation) floats.
3140    if (IsHA && AllocatedVFP > NumVFPs && PreAllocation < NumVFPs) {
3141      llvm::Type *PaddingTy = llvm::ArrayType::get(
3142          llvm::Type::getFloatTy(getVMContext()), NumVFPs - PreAllocation);
3143      it->info = ABIArgInfo::getExpandWithPadding(false, PaddingTy);
3144    }
3145  }
3146
3147  // Always honor user-specified calling convention.
3148  if (FI.getCallingConvention() != llvm::CallingConv::C)
3149    return;
3150
3151  llvm::CallingConv::ID cc = getRuntimeCC();
3152  if (cc != llvm::CallingConv::C)
3153    FI.setEffectiveCallingConvention(cc);
3154}
3155
3156/// Return the default calling convention that LLVM will use.
3157llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
3158  // The default calling convention that LLVM will infer.
3159  if (getTarget().getTriple().getEnvironmentName()=="gnueabihf")
3160    return llvm::CallingConv::ARM_AAPCS_VFP;
3161  else if (isEABI())
3162    return llvm::CallingConv::ARM_AAPCS;
3163  else
3164    return llvm::CallingConv::ARM_APCS;
3165}
3166
3167/// Return the calling convention that our ABI would like us to use
3168/// as the C calling convention.
3169llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
3170  switch (getABIKind()) {
3171  case APCS: return llvm::CallingConv::ARM_APCS;
3172  case AAPCS: return llvm::CallingConv::ARM_AAPCS;
3173  case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
3174  }
3175  llvm_unreachable("bad ABI kind");
3176}
3177
3178void ARMABIInfo::setRuntimeCC() {
3179  assert(getRuntimeCC() == llvm::CallingConv::C);
3180
3181  // Don't muddy up the IR with a ton of explicit annotations if
3182  // they'd just match what LLVM will infer from the triple.
3183  llvm::CallingConv::ID abiCC = getABIDefaultCC();
3184  if (abiCC != getLLVMDefaultCC())
3185    RuntimeCC = abiCC;
3186}
3187
3188/// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous
3189/// aggregate.  If HAMembers is non-null, the number of base elements
3190/// contained in the type is returned through it; this is used for the
3191/// recursive calls that check aggregate component types.
3192static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
3193                                   ASTContext &Context,
3194                                   uint64_t *HAMembers = 0) {
3195  uint64_t Members = 0;
3196  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3197    if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members))
3198      return false;
3199    Members *= AT->getSize().getZExtValue();
3200  } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
3201    const RecordDecl *RD = RT->getDecl();
3202    if (RD->hasFlexibleArrayMember())
3203      return false;
3204
3205    Members = 0;
3206    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3207         i != e; ++i) {
3208      const FieldDecl *FD = *i;
3209      uint64_t FldMembers;
3210      if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers))
3211        return false;
3212
3213      Members = (RD->isUnion() ?
3214                 std::max(Members, FldMembers) : Members + FldMembers);
3215    }
3216  } else {
3217    Members = 1;
3218    if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
3219      Members = 2;
3220      Ty = CT->getElementType();
3221    }
3222
3223    // Homogeneous aggregates for AAPCS-VFP must have base types of float,
3224    // double, or 64-bit or 128-bit vectors.
3225    if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3226      if (BT->getKind() != BuiltinType::Float &&
3227          BT->getKind() != BuiltinType::Double &&
3228          BT->getKind() != BuiltinType::LongDouble)
3229        return false;
3230    } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
3231      unsigned VecSize = Context.getTypeSize(VT);
3232      if (VecSize != 64 && VecSize != 128)
3233        return false;
3234    } else {
3235      return false;
3236    }
3237
3238    // The base type must be the same for all members.  Vector types of the
3239    // same total size are treated as being equivalent here.
3240    const Type *TyPtr = Ty.getTypePtr();
3241    if (!Base)
3242      Base = TyPtr;
3243    if (Base != TyPtr &&
3244        (!Base->isVectorType() || !TyPtr->isVectorType() ||
3245         Context.getTypeSize(Base) != Context.getTypeSize(TyPtr)))
3246      return false;
3247  }
3248
3249  // Homogeneous Aggregates can have at most 4 members of the base type.
3250  if (HAMembers)
3251    *HAMembers = Members;
3252
3253  return (Members > 0 && Members <= 4);
3254}
3255
3256/// markAllocatedVFPs - update VFPRegs according to the alignment and
3257/// number of VFP registers (unit is S register) requested.
3258static void markAllocatedVFPs(int *VFPRegs, unsigned &AllocatedVFP,
3259                              unsigned Alignment,
3260                              unsigned NumRequired) {
3261  // Early Exit.
3262  if (AllocatedVFP >= 16)
3263    return;
3264  // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
3265  // VFP registers of the appropriate type unallocated then the argument is
3266  // allocated to the lowest-numbered sequence of such registers.
3267  for (unsigned I = 0; I < 16; I += Alignment) {
3268    bool FoundSlot = true;
3269    for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
3270      if (J >= 16 || VFPRegs[J]) {
3271         FoundSlot = false;
3272         break;
3273      }
3274    if (FoundSlot) {
3275      for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
3276        VFPRegs[J] = 1;
3277      AllocatedVFP += NumRequired;
3278      return;
3279    }
3280  }
3281  // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
3282  // unallocated are marked as unavailable.
3283  for (unsigned I = 0; I < 16; I++)
3284    VFPRegs[I] = 1;
3285  AllocatedVFP = 17; // We do not have enough VFP registers.
3286}
3287
3288ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, int *VFPRegs,
3289                                            unsigned &AllocatedVFP,
3290                                            bool &IsHA) const {
3291  // We update number of allocated VFPs according to
3292  // 6.1.2.1 The following argument types are VFP CPRCs:
3293  //   A single-precision floating-point type (including promoted
3294  //   half-precision types); A double-precision floating-point type;
3295  //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
3296  //   with a Base Type of a single- or double-precision floating-point type,
3297  //   64-bit containerized vectors or 128-bit containerized vectors with one
3298  //   to four Elements.
3299
3300  // Handle illegal vector types here.
3301  if (isIllegalVectorType(Ty)) {
3302    uint64_t Size = getContext().getTypeSize(Ty);
3303    if (Size <= 32) {
3304      llvm::Type *ResType =
3305          llvm::Type::getInt32Ty(getVMContext());
3306      return ABIArgInfo::getDirect(ResType);
3307    }
3308    if (Size == 64) {
3309      llvm::Type *ResType = llvm::VectorType::get(
3310          llvm::Type::getInt32Ty(getVMContext()), 2);
3311      markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, 2);
3312      return ABIArgInfo::getDirect(ResType);
3313    }
3314    if (Size == 128) {
3315      llvm::Type *ResType = llvm::VectorType::get(
3316          llvm::Type::getInt32Ty(getVMContext()), 4);
3317      markAllocatedVFPs(VFPRegs, AllocatedVFP, 4, 4);
3318      return ABIArgInfo::getDirect(ResType);
3319    }
3320    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3321  }
3322  // Update VFPRegs for legal vector types.
3323  if (const VectorType *VT = Ty->getAs<VectorType>()) {
3324    uint64_t Size = getContext().getTypeSize(VT);
3325    // Size of a legal vector should be power of 2 and above 64.
3326    markAllocatedVFPs(VFPRegs, AllocatedVFP, Size >= 128 ? 4 : 2, Size / 32);
3327  }
3328  // Update VFPRegs for floating point types.
3329  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3330    if (BT->getKind() == BuiltinType::Half ||
3331        BT->getKind() == BuiltinType::Float)
3332      markAllocatedVFPs(VFPRegs, AllocatedVFP, 1, 1);
3333    if (BT->getKind() == BuiltinType::Double ||
3334        BT->getKind() == BuiltinType::LongDouble)
3335      markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, 2);
3336  }
3337
3338  if (!isAggregateTypeForABI(Ty)) {
3339    // Treat an enum type as its underlying type.
3340    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3341      Ty = EnumTy->getDecl()->getIntegerType();
3342
3343    return (Ty->isPromotableIntegerType() ?
3344            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3345  }
3346
3347  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, CGT))
3348    return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
3349
3350  // Ignore empty records.
3351  if (isEmptyRecord(getContext(), Ty, true))
3352    return ABIArgInfo::getIgnore();
3353
3354  if (getABIKind() == ARMABIInfo::AAPCS_VFP) {
3355    // Homogeneous Aggregates need to be expanded when we can fit the aggregate
3356    // into VFP registers.
3357    const Type *Base = 0;
3358    uint64_t Members = 0;
3359    if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) {
3360      assert(Base && "Base class should be set for homogeneous aggregate");
3361      // Base can be a floating-point or a vector.
3362      if (Base->isVectorType()) {
3363        // ElementSize is in number of floats.
3364        unsigned ElementSize = getContext().getTypeSize(Base) == 64 ? 2 : 4;
3365        markAllocatedVFPs(VFPRegs, AllocatedVFP, ElementSize,
3366                          Members * ElementSize);
3367      } else if (Base->isSpecificBuiltinType(BuiltinType::Float))
3368        markAllocatedVFPs(VFPRegs, AllocatedVFP, 1, Members);
3369      else {
3370        assert(Base->isSpecificBuiltinType(BuiltinType::Double) ||
3371               Base->isSpecificBuiltinType(BuiltinType::LongDouble));
3372        markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, Members * 2);
3373      }
3374      IsHA = true;
3375      return ABIArgInfo::getExpand();
3376    }
3377  }
3378
3379  // Support byval for ARM.
3380  // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
3381  // most 8-byte. We realign the indirect argument if type alignment is bigger
3382  // than ABI alignment.
3383  uint64_t ABIAlign = 4;
3384  uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
3385  if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
3386      getABIKind() == ARMABIInfo::AAPCS)
3387    ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
3388  if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
3389    return ABIArgInfo::getIndirect(0, /*ByVal=*/true,
3390           /*Realign=*/TyAlign > ABIAlign);
3391  }
3392
3393  // Otherwise, pass by coercing to a structure of the appropriate size.
3394  llvm::Type* ElemTy;
3395  unsigned SizeRegs;
3396  // FIXME: Try to match the types of the arguments more accurately where
3397  // we can.
3398  if (getContext().getTypeAlign(Ty) <= 32) {
3399    ElemTy = llvm::Type::getInt32Ty(getVMContext());
3400    SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
3401  } else {
3402    ElemTy = llvm::Type::getInt64Ty(getVMContext());
3403    SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
3404  }
3405
3406  llvm::Type *STy =
3407    llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL);
3408  return ABIArgInfo::getDirect(STy);
3409}
3410
3411static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
3412                              llvm::LLVMContext &VMContext) {
3413  // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
3414  // is called integer-like if its size is less than or equal to one word, and
3415  // the offset of each of its addressable sub-fields is zero.
3416
3417  uint64_t Size = Context.getTypeSize(Ty);
3418
3419  // Check that the type fits in a word.
3420  if (Size > 32)
3421    return false;
3422
3423  // FIXME: Handle vector types!
3424  if (Ty->isVectorType())
3425    return false;
3426
3427  // Float types are never treated as "integer like".
3428  if (Ty->isRealFloatingType())
3429    return false;
3430
3431  // If this is a builtin or pointer type then it is ok.
3432  if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
3433    return true;
3434
3435  // Small complex integer types are "integer like".
3436  if (const ComplexType *CT = Ty->getAs<ComplexType>())
3437    return isIntegerLikeType(CT->getElementType(), Context, VMContext);
3438
3439  // Single element and zero sized arrays should be allowed, by the definition
3440  // above, but they are not.
3441
3442  // Otherwise, it must be a record type.
3443  const RecordType *RT = Ty->getAs<RecordType>();
3444  if (!RT) return false;
3445
3446  // Ignore records with flexible arrays.
3447  const RecordDecl *RD = RT->getDecl();
3448  if (RD->hasFlexibleArrayMember())
3449    return false;
3450
3451  // Check that all sub-fields are at offset 0, and are themselves "integer
3452  // like".
3453  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3454
3455  bool HadField = false;
3456  unsigned idx = 0;
3457  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3458       i != e; ++i, ++idx) {
3459    const FieldDecl *FD = *i;
3460
3461    // Bit-fields are not addressable, we only need to verify they are "integer
3462    // like". We still have to disallow a subsequent non-bitfield, for example:
3463    //   struct { int : 0; int x }
3464    // is non-integer like according to gcc.
3465    if (FD->isBitField()) {
3466      if (!RD->isUnion())
3467        HadField = true;
3468
3469      if (!isIntegerLikeType(FD->getType(), Context, VMContext))
3470        return false;
3471
3472      continue;
3473    }
3474
3475    // Check if this field is at offset 0.
3476    if (Layout.getFieldOffset(idx) != 0)
3477      return false;
3478
3479    if (!isIntegerLikeType(FD->getType(), Context, VMContext))
3480      return false;
3481
3482    // Only allow at most one field in a structure. This doesn't match the
3483    // wording above, but follows gcc in situations with a field following an
3484    // empty structure.
3485    if (!RD->isUnion()) {
3486      if (HadField)
3487        return false;
3488
3489      HadField = true;
3490    }
3491  }
3492
3493  return true;
3494}
3495
3496ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
3497  if (RetTy->isVoidType())
3498    return ABIArgInfo::getIgnore();
3499
3500  // Large vector types should be returned via memory.
3501  if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
3502    return ABIArgInfo::getIndirect(0);
3503
3504  if (!isAggregateTypeForABI(RetTy)) {
3505    // Treat an enum type as its underlying type.
3506    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3507      RetTy = EnumTy->getDecl()->getIntegerType();
3508
3509    return (RetTy->isPromotableIntegerType() ?
3510            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3511  }
3512
3513  // Structures with either a non-trivial destructor or a non-trivial
3514  // copy constructor are always indirect.
3515  if (isRecordReturnIndirect(RetTy, CGT))
3516    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3517
3518  // Are we following APCS?
3519  if (getABIKind() == APCS) {
3520    if (isEmptyRecord(getContext(), RetTy, false))
3521      return ABIArgInfo::getIgnore();
3522
3523    // Complex types are all returned as packed integers.
3524    //
3525    // FIXME: Consider using 2 x vector types if the back end handles them
3526    // correctly.
3527    if (RetTy->isAnyComplexType())
3528      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3529                                              getContext().getTypeSize(RetTy)));
3530
3531    // Integer like structures are returned in r0.
3532    if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
3533      // Return in the smallest viable integer type.
3534      uint64_t Size = getContext().getTypeSize(RetTy);
3535      if (Size <= 8)
3536        return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3537      if (Size <= 16)
3538        return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3539      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3540    }
3541
3542    // Otherwise return in memory.
3543    return ABIArgInfo::getIndirect(0);
3544  }
3545
3546  // Otherwise this is an AAPCS variant.
3547
3548  if (isEmptyRecord(getContext(), RetTy, true))
3549    return ABIArgInfo::getIgnore();
3550
3551  // Check for homogeneous aggregates with AAPCS-VFP.
3552  if (getABIKind() == AAPCS_VFP) {
3553    const Type *Base = 0;
3554    if (isHomogeneousAggregate(RetTy, Base, getContext())) {
3555      assert(Base && "Base class should be set for homogeneous aggregate");
3556      // Homogeneous Aggregates are returned directly.
3557      return ABIArgInfo::getDirect();
3558    }
3559  }
3560
3561  // Aggregates <= 4 bytes are returned in r0; other aggregates
3562  // are returned indirectly.
3563  uint64_t Size = getContext().getTypeSize(RetTy);
3564  if (Size <= 32) {
3565    // Return in the smallest viable integer type.
3566    if (Size <= 8)
3567      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3568    if (Size <= 16)
3569      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3570    return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3571  }
3572
3573  return ABIArgInfo::getIndirect(0);
3574}
3575
3576/// isIllegalVector - check whether Ty is an illegal vector type.
3577bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
3578  if (const VectorType *VT = Ty->getAs<VectorType>()) {
3579    // Check whether VT is legal.
3580    unsigned NumElements = VT->getNumElements();
3581    uint64_t Size = getContext().getTypeSize(VT);
3582    // NumElements should be power of 2.
3583    if ((NumElements & (NumElements - 1)) != 0)
3584      return true;
3585    // Size should be greater than 32 bits.
3586    return Size <= 32;
3587  }
3588  return false;
3589}
3590
3591llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3592                                   CodeGenFunction &CGF) const {
3593  llvm::Type *BP = CGF.Int8PtrTy;
3594  llvm::Type *BPP = CGF.Int8PtrPtrTy;
3595
3596  CGBuilderTy &Builder = CGF.Builder;
3597  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3598  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3599
3600  if (isEmptyRecord(getContext(), Ty, true)) {
3601    // These are ignored for parameter passing purposes.
3602    llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3603    return Builder.CreateBitCast(Addr, PTy);
3604  }
3605
3606  uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
3607  uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
3608  bool IsIndirect = false;
3609
3610  // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
3611  // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
3612  if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
3613      getABIKind() == ARMABIInfo::AAPCS)
3614    TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
3615  else
3616    TyAlign = 4;
3617  // Use indirect if size of the illegal vector is bigger than 16 bytes.
3618  if (isIllegalVectorType(Ty) && Size > 16) {
3619    IsIndirect = true;
3620    Size = 4;
3621    TyAlign = 4;
3622  }
3623
3624  // Handle address alignment for ABI alignment > 4 bytes.
3625  if (TyAlign > 4) {
3626    assert((TyAlign & (TyAlign - 1)) == 0 &&
3627           "Alignment is not power of 2!");
3628    llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
3629    AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
3630    AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
3631    Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
3632  }
3633
3634  uint64_t Offset =
3635    llvm::RoundUpToAlignment(Size, 4);
3636  llvm::Value *NextAddr =
3637    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
3638                      "ap.next");
3639  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3640
3641  if (IsIndirect)
3642    Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
3643  else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) {
3644    // We can't directly cast ap.cur to pointer to a vector type, since ap.cur
3645    // may not be correctly aligned for the vector type. We create an aligned
3646    // temporary space and copy the content over from ap.cur to the temporary
3647    // space. This is necessary if the natural alignment of the type is greater
3648    // than the ABI alignment.
3649    llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
3650    CharUnits CharSize = getContext().getTypeSizeInChars(Ty);
3651    llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty),
3652                                                    "var.align");
3653    llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
3654    llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy);
3655    Builder.CreateMemCpy(Dst, Src,
3656        llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()),
3657        TyAlign, false);
3658    Addr = AlignedTemp; //The content is in aligned location.
3659  }
3660  llvm::Type *PTy =
3661    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3662  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
3663
3664  return AddrTyped;
3665}
3666
3667namespace {
3668
3669class NaClARMABIInfo : public ABIInfo {
3670 public:
3671  NaClARMABIInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
3672      : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, Kind) {}
3673  virtual void computeInfo(CGFunctionInfo &FI) const;
3674  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3675                                 CodeGenFunction &CGF) const;
3676 private:
3677  PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv.
3678  ARMABIInfo NInfo; // Used for everything else.
3679};
3680
3681class NaClARMTargetCodeGenInfo : public TargetCodeGenInfo  {
3682 public:
3683  NaClARMTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
3684      : TargetCodeGenInfo(new NaClARMABIInfo(CGT, Kind)) {}
3685};
3686
3687}
3688
3689void NaClARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
3690  if (FI.getASTCallingConvention() == CC_PnaclCall)
3691    PInfo.computeInfo(FI);
3692  else
3693    static_cast<const ABIInfo&>(NInfo).computeInfo(FI);
3694}
3695
3696llvm::Value *NaClARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3697                                       CodeGenFunction &CGF) const {
3698  // Always use the native convention; calling pnacl-style varargs functions
3699  // is unsupported.
3700  return static_cast<const ABIInfo&>(NInfo).EmitVAArg(VAListAddr, Ty, CGF);
3701}
3702
3703//===----------------------------------------------------------------------===//
3704// AArch64 ABI Implementation
3705//===----------------------------------------------------------------------===//
3706
3707namespace {
3708
3709class AArch64ABIInfo : public ABIInfo {
3710public:
3711  AArch64ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
3712
3713private:
3714  // The AArch64 PCS is explicit about return types and argument types being
3715  // handled identically, so we don't need to draw a distinction between
3716  // Argument and Return classification.
3717  ABIArgInfo classifyGenericType(QualType Ty, int &FreeIntRegs,
3718                                 int &FreeVFPRegs) const;
3719
3720  ABIArgInfo tryUseRegs(QualType Ty, int &FreeRegs, int RegsNeeded, bool IsInt,
3721                        llvm::Type *DirectTy = 0) const;
3722
3723  virtual void computeInfo(CGFunctionInfo &FI) const;
3724
3725  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3726                                 CodeGenFunction &CGF) const;
3727};
3728
3729class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
3730public:
3731  AArch64TargetCodeGenInfo(CodeGenTypes &CGT)
3732    :TargetCodeGenInfo(new AArch64ABIInfo(CGT)) {}
3733
3734  const AArch64ABIInfo &getABIInfo() const {
3735    return static_cast<const AArch64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
3736  }
3737
3738  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
3739    return 31;
3740  }
3741
3742  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3743                               llvm::Value *Address) const {
3744    // 0-31 are x0-x30 and sp: 8 bytes each
3745    llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
3746    AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 31);
3747
3748    // 64-95 are v0-v31: 16 bytes each
3749    llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
3750    AssignToArrayRange(CGF.Builder, Address, Sixteen8, 64, 95);
3751
3752    return false;
3753  }
3754
3755};
3756
3757}
3758
3759void AArch64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3760  int FreeIntRegs = 8, FreeVFPRegs = 8;
3761
3762  FI.getReturnInfo() = classifyGenericType(FI.getReturnType(),
3763                                           FreeIntRegs, FreeVFPRegs);
3764
3765  FreeIntRegs = FreeVFPRegs = 8;
3766  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3767       it != ie; ++it) {
3768    it->info = classifyGenericType(it->type, FreeIntRegs, FreeVFPRegs);
3769
3770  }
3771}
3772
3773ABIArgInfo
3774AArch64ABIInfo::tryUseRegs(QualType Ty, int &FreeRegs, int RegsNeeded,
3775                           bool IsInt, llvm::Type *DirectTy) const {
3776  if (FreeRegs >= RegsNeeded) {
3777    FreeRegs -= RegsNeeded;
3778    return ABIArgInfo::getDirect(DirectTy);
3779  }
3780
3781  llvm::Type *Padding = 0;
3782
3783  // We need padding so that later arguments don't get filled in anyway. That
3784  // wouldn't happen if only ByVal arguments followed in the same category, but
3785  // a large structure will simply seem to be a pointer as far as LLVM is
3786  // concerned.
3787  if (FreeRegs > 0) {
3788    if (IsInt)
3789      Padding = llvm::Type::getInt64Ty(getVMContext());
3790    else
3791      Padding = llvm::Type::getFloatTy(getVMContext());
3792
3793    // Either [N x i64] or [N x float].
3794    Padding = llvm::ArrayType::get(Padding, FreeRegs);
3795    FreeRegs = 0;
3796  }
3797
3798  return ABIArgInfo::getIndirect(getContext().getTypeAlign(Ty) / 8,
3799                                 /*IsByVal=*/ true, /*Realign=*/ false,
3800                                 Padding);
3801}
3802
3803
3804ABIArgInfo AArch64ABIInfo::classifyGenericType(QualType Ty,
3805                                               int &FreeIntRegs,
3806                                               int &FreeVFPRegs) const {
3807  // Can only occurs for return, but harmless otherwise.
3808  if (Ty->isVoidType())
3809    return ABIArgInfo::getIgnore();
3810
3811  // Large vector types should be returned via memory. There's no such concept
3812  // in the ABI, but they'd be over 16 bytes anyway so no matter how they're
3813  // classified they'd go into memory (see B.3).
3814  if (Ty->isVectorType() && getContext().getTypeSize(Ty) > 128) {
3815    if (FreeIntRegs > 0)
3816      --FreeIntRegs;
3817    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3818  }
3819
3820  // All non-aggregate LLVM types have a concrete ABI representation so they can
3821  // be passed directly. After this block we're guaranteed to be in a
3822  // complicated case.
3823  if (!isAggregateTypeForABI(Ty)) {
3824    // Treat an enum type as its underlying type.
3825    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3826      Ty = EnumTy->getDecl()->getIntegerType();
3827
3828    if (Ty->isFloatingType() || Ty->isVectorType())
3829      return tryUseRegs(Ty, FreeVFPRegs, /*RegsNeeded=*/ 1, /*IsInt=*/ false);
3830
3831    assert(getContext().getTypeSize(Ty) <= 128 &&
3832           "unexpectedly large scalar type");
3833
3834    int RegsNeeded = getContext().getTypeSize(Ty) > 64 ? 2 : 1;
3835
3836    // If the type may need padding registers to ensure "alignment", we must be
3837    // careful when this is accounted for. Increasing the effective size covers
3838    // all cases.
3839    if (getContext().getTypeAlign(Ty) == 128)
3840      RegsNeeded += FreeIntRegs % 2 != 0;
3841
3842    return tryUseRegs(Ty, FreeIntRegs, RegsNeeded, /*IsInt=*/ true);
3843  }
3844
3845  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, CGT)) {
3846    if (FreeIntRegs > 0 && RAA == CGCXXABI::RAA_Indirect)
3847      --FreeIntRegs;
3848    return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
3849  }
3850
3851  if (isEmptyRecord(getContext(), Ty, true)) {
3852    if (!getContext().getLangOpts().CPlusPlus) {
3853      // Empty structs outside C++ mode are a GNU extension, so no ABI can
3854      // possibly tell us what to do. It turns out (I believe) that GCC ignores
3855      // the object for parameter-passsing purposes.
3856      return ABIArgInfo::getIgnore();
3857    }
3858
3859    // The combination of C++98 9p5 (sizeof(struct) != 0) and the pseudocode
3860    // description of va_arg in the PCS require that an empty struct does
3861    // actually occupy space for parameter-passing. I'm hoping for a
3862    // clarification giving an explicit paragraph to point to in future.
3863    return tryUseRegs(Ty, FreeIntRegs, /*RegsNeeded=*/ 1, /*IsInt=*/ true,
3864                      llvm::Type::getInt8Ty(getVMContext()));
3865  }
3866
3867  // Homogeneous vector aggregates get passed in registers or on the stack.
3868  const Type *Base = 0;
3869  uint64_t NumMembers = 0;
3870  if (isHomogeneousAggregate(Ty, Base, getContext(), &NumMembers)) {
3871    assert(Base && "Base class should be set for homogeneous aggregate");
3872    // Homogeneous aggregates are passed and returned directly.
3873    return tryUseRegs(Ty, FreeVFPRegs, /*RegsNeeded=*/ NumMembers,
3874                      /*IsInt=*/ false);
3875  }
3876
3877  uint64_t Size = getContext().getTypeSize(Ty);
3878  if (Size <= 128) {
3879    // Small structs can use the same direct type whether they're in registers
3880    // or on the stack.
3881    llvm::Type *BaseTy;
3882    unsigned NumBases;
3883    int SizeInRegs = (Size + 63) / 64;
3884
3885    if (getContext().getTypeAlign(Ty) == 128) {
3886      BaseTy = llvm::Type::getIntNTy(getVMContext(), 128);
3887      NumBases = 1;
3888
3889      // If the type may need padding registers to ensure "alignment", we must
3890      // be careful when this is accounted for. Increasing the effective size
3891      // covers all cases.
3892      SizeInRegs += FreeIntRegs % 2 != 0;
3893    } else {
3894      BaseTy = llvm::Type::getInt64Ty(getVMContext());
3895      NumBases = SizeInRegs;
3896    }
3897    llvm::Type *DirectTy = llvm::ArrayType::get(BaseTy, NumBases);
3898
3899    return tryUseRegs(Ty, FreeIntRegs, /*RegsNeeded=*/ SizeInRegs,
3900                      /*IsInt=*/ true, DirectTy);
3901  }
3902
3903  // If the aggregate is > 16 bytes, it's passed and returned indirectly. In
3904  // LLVM terms the return uses an "sret" pointer, but that's handled elsewhere.
3905  --FreeIntRegs;
3906  return ABIArgInfo::getIndirect(0, /* byVal = */ false);
3907}
3908
3909llvm::Value *AArch64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3910                                       CodeGenFunction &CGF) const {
3911  // The AArch64 va_list type and handling is specified in the Procedure Call
3912  // Standard, section B.4:
3913  //
3914  // struct {
3915  //   void *__stack;
3916  //   void *__gr_top;
3917  //   void *__vr_top;
3918  //   int __gr_offs;
3919  //   int __vr_offs;
3920  // };
3921
3922  assert(!CGF.CGM.getDataLayout().isBigEndian()
3923         && "va_arg not implemented for big-endian AArch64");
3924
3925  int FreeIntRegs = 8, FreeVFPRegs = 8;
3926  Ty = CGF.getContext().getCanonicalType(Ty);
3927  ABIArgInfo AI = classifyGenericType(Ty, FreeIntRegs, FreeVFPRegs);
3928
3929  llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
3930  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3931  llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
3932  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3933
3934  llvm::Value *reg_offs_p = 0, *reg_offs = 0;
3935  int reg_top_index;
3936  int RegSize;
3937  if (FreeIntRegs < 8) {
3938    assert(FreeVFPRegs == 8 && "Arguments never split between int & VFP regs");
3939    // 3 is the field number of __gr_offs
3940    reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
3941    reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
3942    reg_top_index = 1; // field number for __gr_top
3943    RegSize = 8 * (8 - FreeIntRegs);
3944  } else {
3945    assert(FreeVFPRegs < 8 && "Argument must go in VFP or int regs");
3946    // 4 is the field number of __vr_offs.
3947    reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
3948    reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
3949    reg_top_index = 2; // field number for __vr_top
3950    RegSize = 16 * (8 - FreeVFPRegs);
3951  }
3952
3953  //=======================================
3954  // Find out where argument was passed
3955  //=======================================
3956
3957  // If reg_offs >= 0 we're already using the stack for this type of
3958  // argument. We don't want to keep updating reg_offs (in case it overflows,
3959  // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
3960  // whatever they get).
3961  llvm::Value *UsingStack = 0;
3962  UsingStack = CGF.Builder.CreateICmpSGE(reg_offs,
3963                                         llvm::ConstantInt::get(CGF.Int32Ty, 0));
3964
3965  CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
3966
3967  // Otherwise, at least some kind of argument could go in these registers, the
3968  // quesiton is whether this particular type is too big.
3969  CGF.EmitBlock(MaybeRegBlock);
3970
3971  // Integer arguments may need to correct register alignment (for example a
3972  // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
3973  // align __gr_offs to calculate the potential address.
3974  if (FreeIntRegs < 8 && AI.isDirect() && getContext().getTypeAlign(Ty) > 64) {
3975    int Align = getContext().getTypeAlign(Ty) / 8;
3976
3977    reg_offs = CGF.Builder.CreateAdd(reg_offs,
3978                                 llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
3979                                 "align_regoffs");
3980    reg_offs = CGF.Builder.CreateAnd(reg_offs,
3981                                    llvm::ConstantInt::get(CGF.Int32Ty, -Align),
3982                                    "aligned_regoffs");
3983  }
3984
3985  // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
3986  llvm::Value *NewOffset = 0;
3987  NewOffset = CGF.Builder.CreateAdd(reg_offs,
3988                                    llvm::ConstantInt::get(CGF.Int32Ty, RegSize),
3989                                    "new_reg_offs");
3990  CGF.Builder.CreateStore(NewOffset, reg_offs_p);
3991
3992  // Now we're in a position to decide whether this argument really was in
3993  // registers or not.
3994  llvm::Value *InRegs = 0;
3995  InRegs = CGF.Builder.CreateICmpSLE(NewOffset,
3996                                     llvm::ConstantInt::get(CGF.Int32Ty, 0),
3997                                     "inreg");
3998
3999  CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
4000
4001  //=======================================
4002  // Argument was in registers
4003  //=======================================
4004
4005  // Now we emit the code for if the argument was originally passed in
4006  // registers. First start the appropriate block:
4007  CGF.EmitBlock(InRegBlock);
4008
4009  llvm::Value *reg_top_p = 0, *reg_top = 0;
4010  reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
4011  reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
4012  llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs);
4013  llvm::Value *RegAddr = 0;
4014  llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
4015
4016  if (!AI.isDirect()) {
4017    // If it's been passed indirectly (actually a struct), whatever we find from
4018    // stored registers or on the stack will actually be a struct **.
4019    MemTy = llvm::PointerType::getUnqual(MemTy);
4020  }
4021
4022  const Type *Base = 0;
4023  uint64_t NumMembers;
4024  if (isHomogeneousAggregate(Ty, Base, getContext(), &NumMembers)
4025      && NumMembers > 1) {
4026    // Homogeneous aggregates passed in registers will have their elements split
4027    // and stored 16-bytes apart regardless of size (they're notionally in qN,
4028    // qN+1, ...). We reload and store into a temporary local variable
4029    // contiguously.
4030    assert(AI.isDirect() && "Homogeneous aggregates should be passed directly");
4031    llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
4032    llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
4033    llvm::Value *Tmp = CGF.CreateTempAlloca(HFATy);
4034
4035    for (unsigned i = 0; i < NumMembers; ++i) {
4036      llvm::Value *BaseOffset = llvm::ConstantInt::get(CGF.Int32Ty, 16 * i);
4037      llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset);
4038      LoadAddr = CGF.Builder.CreateBitCast(LoadAddr,
4039                                           llvm::PointerType::getUnqual(BaseTy));
4040      llvm::Value *StoreAddr = CGF.Builder.CreateStructGEP(Tmp, i);
4041
4042      llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
4043      CGF.Builder.CreateStore(Elem, StoreAddr);
4044    }
4045
4046    RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy);
4047  } else {
4048    // Otherwise the object is contiguous in memory
4049    RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy);
4050  }
4051
4052  CGF.EmitBranch(ContBlock);
4053
4054  //=======================================
4055  // Argument was on the stack
4056  //=======================================
4057  CGF.EmitBlock(OnStackBlock);
4058
4059  llvm::Value *stack_p = 0, *OnStackAddr = 0;
4060  stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
4061  OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack");
4062
4063  // Again, stack arguments may need realigmnent. In this case both integer and
4064  // floating-point ones might be affected.
4065  if (AI.isDirect() && getContext().getTypeAlign(Ty) > 64) {
4066    int Align = getContext().getTypeAlign(Ty) / 8;
4067
4068    OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
4069
4070    OnStackAddr = CGF.Builder.CreateAdd(OnStackAddr,
4071                                 llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
4072                                 "align_stack");
4073    OnStackAddr = CGF.Builder.CreateAnd(OnStackAddr,
4074                                    llvm::ConstantInt::get(CGF.Int64Ty, -Align),
4075                                    "align_stack");
4076
4077    OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
4078  }
4079
4080  uint64_t StackSize;
4081  if (AI.isDirect())
4082    StackSize = getContext().getTypeSize(Ty) / 8;
4083  else
4084    StackSize = 8;
4085
4086  // All stack slots are 8 bytes
4087  StackSize = llvm::RoundUpToAlignment(StackSize, 8);
4088
4089  llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize);
4090  llvm::Value *NewStack = CGF.Builder.CreateGEP(OnStackAddr, StackSizeC,
4091                                                "new_stack");
4092
4093  // Write the new value of __stack for the next call to va_arg
4094  CGF.Builder.CreateStore(NewStack, stack_p);
4095
4096  OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy);
4097
4098  CGF.EmitBranch(ContBlock);
4099
4100  //=======================================
4101  // Tidy up
4102  //=======================================
4103  CGF.EmitBlock(ContBlock);
4104
4105  llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr");
4106  ResAddr->addIncoming(RegAddr, InRegBlock);
4107  ResAddr->addIncoming(OnStackAddr, OnStackBlock);
4108
4109  if (AI.isDirect())
4110    return ResAddr;
4111
4112  return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr");
4113}
4114
4115//===----------------------------------------------------------------------===//
4116// NVPTX ABI Implementation
4117//===----------------------------------------------------------------------===//
4118
4119namespace {
4120
4121class NVPTXABIInfo : public ABIInfo {
4122public:
4123  NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
4124
4125  ABIArgInfo classifyReturnType(QualType RetTy) const;
4126  ABIArgInfo classifyArgumentType(QualType Ty) const;
4127
4128  virtual void computeInfo(CGFunctionInfo &FI) const;
4129  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4130                                 CodeGenFunction &CFG) const;
4131};
4132
4133class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
4134public:
4135  NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
4136    : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
4137
4138  virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4139                                   CodeGen::CodeGenModule &M) const;
4140private:
4141  static void addKernelMetadata(llvm::Function *F);
4142};
4143
4144ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
4145  if (RetTy->isVoidType())
4146    return ABIArgInfo::getIgnore();
4147  if (isAggregateTypeForABI(RetTy))
4148    return ABIArgInfo::getIndirect(0);
4149  return ABIArgInfo::getDirect();
4150}
4151
4152ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
4153  if (isAggregateTypeForABI(Ty))
4154    return ABIArgInfo::getIndirect(0);
4155
4156  return ABIArgInfo::getDirect();
4157}
4158
4159void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
4160  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4161  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
4162       it != ie; ++it)
4163    it->info = classifyArgumentType(it->type);
4164
4165  // Always honor user-specified calling convention.
4166  if (FI.getCallingConvention() != llvm::CallingConv::C)
4167    return;
4168
4169  FI.setEffectiveCallingConvention(getRuntimeCC());
4170}
4171
4172llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4173                                     CodeGenFunction &CFG) const {
4174  llvm_unreachable("NVPTX does not support varargs");
4175}
4176
4177void NVPTXTargetCodeGenInfo::
4178SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4179                    CodeGen::CodeGenModule &M) const{
4180  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4181  if (!FD) return;
4182
4183  llvm::Function *F = cast<llvm::Function>(GV);
4184
4185  // Perform special handling in OpenCL mode
4186  if (M.getLangOpts().OpenCL) {
4187    // Use OpenCL function attributes to check for kernel functions
4188    // By default, all functions are device functions
4189    if (FD->hasAttr<OpenCLKernelAttr>()) {
4190      // OpenCL __kernel functions get kernel metadata
4191      addKernelMetadata(F);
4192      // And kernel functions are not subject to inlining
4193      F->addFnAttr(llvm::Attribute::NoInline);
4194    }
4195  }
4196
4197  // Perform special handling in CUDA mode.
4198  if (M.getLangOpts().CUDA) {
4199    // CUDA __global__ functions get a kernel metadata entry.  Since
4200    // __global__ functions cannot be called from the device, we do not
4201    // need to set the noinline attribute.
4202    if (FD->getAttr<CUDAGlobalAttr>())
4203      addKernelMetadata(F);
4204  }
4205}
4206
4207void NVPTXTargetCodeGenInfo::addKernelMetadata(llvm::Function *F) {
4208  llvm::Module *M = F->getParent();
4209  llvm::LLVMContext &Ctx = M->getContext();
4210
4211  // Get "nvvm.annotations" metadata node
4212  llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
4213
4214  // Create !{<func-ref>, metadata !"kernel", i32 1} node
4215  llvm::SmallVector<llvm::Value *, 3> MDVals;
4216  MDVals.push_back(F);
4217  MDVals.push_back(llvm::MDString::get(Ctx, "kernel"));
4218  MDVals.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1));
4219
4220  // Append metadata to nvvm.annotations
4221  MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
4222}
4223
4224}
4225
4226//===----------------------------------------------------------------------===//
4227// SystemZ ABI Implementation
4228//===----------------------------------------------------------------------===//
4229
4230namespace {
4231
4232class SystemZABIInfo : public ABIInfo {
4233public:
4234  SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
4235
4236  bool isPromotableIntegerType(QualType Ty) const;
4237  bool isCompoundType(QualType Ty) const;
4238  bool isFPArgumentType(QualType Ty) const;
4239
4240  ABIArgInfo classifyReturnType(QualType RetTy) const;
4241  ABIArgInfo classifyArgumentType(QualType ArgTy) const;
4242
4243  virtual void computeInfo(CGFunctionInfo &FI) const {
4244    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4245    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
4246         it != ie; ++it)
4247      it->info = classifyArgumentType(it->type);
4248  }
4249
4250  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4251                                 CodeGenFunction &CGF) const;
4252};
4253
4254class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
4255public:
4256  SystemZTargetCodeGenInfo(CodeGenTypes &CGT)
4257    : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {}
4258};
4259
4260}
4261
4262bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
4263  // Treat an enum type as its underlying type.
4264  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4265    Ty = EnumTy->getDecl()->getIntegerType();
4266
4267  // Promotable integer types are required to be promoted by the ABI.
4268  if (Ty->isPromotableIntegerType())
4269    return true;
4270
4271  // 32-bit values must also be promoted.
4272  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4273    switch (BT->getKind()) {
4274    case BuiltinType::Int:
4275    case BuiltinType::UInt:
4276      return true;
4277    default:
4278      return false;
4279    }
4280  return false;
4281}
4282
4283bool SystemZABIInfo::isCompoundType(QualType Ty) const {
4284  return Ty->isAnyComplexType() || isAggregateTypeForABI(Ty);
4285}
4286
4287bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
4288  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4289    switch (BT->getKind()) {
4290    case BuiltinType::Float:
4291    case BuiltinType::Double:
4292      return true;
4293    default:
4294      return false;
4295    }
4296
4297  if (const RecordType *RT = Ty->getAsStructureType()) {
4298    const RecordDecl *RD = RT->getDecl();
4299    bool Found = false;
4300
4301    // If this is a C++ record, check the bases first.
4302    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
4303      for (CXXRecordDecl::base_class_const_iterator I = CXXRD->bases_begin(),
4304             E = CXXRD->bases_end(); I != E; ++I) {
4305        QualType Base = I->getType();
4306
4307        // Empty bases don't affect things either way.
4308        if (isEmptyRecord(getContext(), Base, true))
4309          continue;
4310
4311        if (Found)
4312          return false;
4313        Found = isFPArgumentType(Base);
4314        if (!Found)
4315          return false;
4316      }
4317
4318    // Check the fields.
4319    for (RecordDecl::field_iterator I = RD->field_begin(),
4320           E = RD->field_end(); I != E; ++I) {
4321      const FieldDecl *FD = *I;
4322
4323      // Empty bitfields don't affect things either way.
4324      // Unlike isSingleElementStruct(), empty structure and array fields
4325      // do count.  So do anonymous bitfields that aren't zero-sized.
4326      if (FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
4327        return true;
4328
4329      // Unlike isSingleElementStruct(), arrays do not count.
4330      // Nested isFPArgumentType structures still do though.
4331      if (Found)
4332        return false;
4333      Found = isFPArgumentType(FD->getType());
4334      if (!Found)
4335        return false;
4336    }
4337
4338    // Unlike isSingleElementStruct(), trailing padding is allowed.
4339    // An 8-byte aligned struct s { float f; } is passed as a double.
4340    return Found;
4341  }
4342
4343  return false;
4344}
4345
4346llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4347                                       CodeGenFunction &CGF) const {
4348  // Assume that va_list type is correct; should be pointer to LLVM type:
4349  // struct {
4350  //   i64 __gpr;
4351  //   i64 __fpr;
4352  //   i8 *__overflow_arg_area;
4353  //   i8 *__reg_save_area;
4354  // };
4355
4356  // Every argument occupies 8 bytes and is passed by preference in either
4357  // GPRs or FPRs.
4358  Ty = CGF.getContext().getCanonicalType(Ty);
4359  ABIArgInfo AI = classifyArgumentType(Ty);
4360  bool InFPRs = isFPArgumentType(Ty);
4361
4362  llvm::Type *APTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
4363  bool IsIndirect = AI.isIndirect();
4364  unsigned UnpaddedBitSize;
4365  if (IsIndirect) {
4366    APTy = llvm::PointerType::getUnqual(APTy);
4367    UnpaddedBitSize = 64;
4368  } else
4369    UnpaddedBitSize = getContext().getTypeSize(Ty);
4370  unsigned PaddedBitSize = 64;
4371  assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size.");
4372
4373  unsigned PaddedSize = PaddedBitSize / 8;
4374  unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8;
4375
4376  unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding;
4377  if (InFPRs) {
4378    MaxRegs = 4; // Maximum of 4 FPR arguments
4379    RegCountField = 1; // __fpr
4380    RegSaveIndex = 16; // save offset for f0
4381    RegPadding = 0; // floats are passed in the high bits of an FPR
4382  } else {
4383    MaxRegs = 5; // Maximum of 5 GPR arguments
4384    RegCountField = 0; // __gpr
4385    RegSaveIndex = 2; // save offset for r2
4386    RegPadding = Padding; // values are passed in the low bits of a GPR
4387  }
4388
4389  llvm::Value *RegCountPtr =
4390    CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
4391  llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
4392  llvm::Type *IndexTy = RegCount->getType();
4393  llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
4394  llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
4395						  "fits_in_regs");
4396
4397  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4398  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
4399  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4400  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
4401
4402  // Emit code to load the value if it was passed in registers.
4403  CGF.EmitBlock(InRegBlock);
4404
4405  // Work out the address of an argument register.
4406  llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize);
4407  llvm::Value *ScaledRegCount =
4408    CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
4409  llvm::Value *RegBase =
4410    llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding);
4411  llvm::Value *RegOffset =
4412    CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
4413  llvm::Value *RegSaveAreaPtr =
4414    CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
4415  llvm::Value *RegSaveArea =
4416    CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
4417  llvm::Value *RawRegAddr =
4418    CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr");
4419  llvm::Value *RegAddr =
4420    CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr");
4421
4422  // Update the register count
4423  llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
4424  llvm::Value *NewRegCount =
4425    CGF.Builder.CreateAdd(RegCount, One, "reg_count");
4426  CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
4427  CGF.EmitBranch(ContBlock);
4428
4429  // Emit code to load the value if it was passed in memory.
4430  CGF.EmitBlock(InMemBlock);
4431
4432  // Work out the address of a stack argument.
4433  llvm::Value *OverflowArgAreaPtr =
4434    CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
4435  llvm::Value *OverflowArgArea =
4436    CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area");
4437  llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding);
4438  llvm::Value *RawMemAddr =
4439    CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr");
4440  llvm::Value *MemAddr =
4441    CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr");
4442
4443  // Update overflow_arg_area_ptr pointer
4444  llvm::Value *NewOverflowArgArea =
4445    CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area");
4446  CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
4447  CGF.EmitBranch(ContBlock);
4448
4449  // Return the appropriate result.
4450  CGF.EmitBlock(ContBlock);
4451  llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr");
4452  ResAddr->addIncoming(RegAddr, InRegBlock);
4453  ResAddr->addIncoming(MemAddr, InMemBlock);
4454
4455  if (IsIndirect)
4456    return CGF.Builder.CreateLoad(ResAddr, "indirect_arg");
4457
4458  return ResAddr;
4459}
4460
4461bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
4462    const llvm::Triple &Triple, const CodeGenOptions &Opts) {
4463  assert(Triple.getArch() == llvm::Triple::x86);
4464
4465  switch (Opts.getStructReturnConvention()) {
4466  case CodeGenOptions::SRCK_Default:
4467    break;
4468  case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
4469    return false;
4470  case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
4471    return true;
4472  }
4473
4474  if (Triple.isOSDarwin())
4475    return true;
4476
4477  switch (Triple.getOS()) {
4478  case llvm::Triple::Cygwin:
4479  case llvm::Triple::MinGW32:
4480  case llvm::Triple::AuroraUX:
4481  case llvm::Triple::DragonFly:
4482  case llvm::Triple::FreeBSD:
4483  case llvm::Triple::OpenBSD:
4484  case llvm::Triple::Bitrig:
4485  case llvm::Triple::Win32:
4486    return true;
4487  default:
4488    return false;
4489  }
4490}
4491
4492ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
4493  if (RetTy->isVoidType())
4494    return ABIArgInfo::getIgnore();
4495  if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
4496    return ABIArgInfo::getIndirect(0);
4497  return (isPromotableIntegerType(RetTy) ?
4498          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4499}
4500
4501ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
4502  // Handle the generic C++ ABI.
4503  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, CGT))
4504    return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
4505
4506  // Integers and enums are extended to full register width.
4507  if (isPromotableIntegerType(Ty))
4508    return ABIArgInfo::getExtend();
4509
4510  // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
4511  uint64_t Size = getContext().getTypeSize(Ty);
4512  if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
4513    return ABIArgInfo::getIndirect(0);
4514
4515  // Handle small structures.
4516  if (const RecordType *RT = Ty->getAs<RecordType>()) {
4517    // Structures with flexible arrays have variable length, so really
4518    // fail the size test above.
4519    const RecordDecl *RD = RT->getDecl();
4520    if (RD->hasFlexibleArrayMember())
4521      return ABIArgInfo::getIndirect(0);
4522
4523    // The structure is passed as an unextended integer, a float, or a double.
4524    llvm::Type *PassTy;
4525    if (isFPArgumentType(Ty)) {
4526      assert(Size == 32 || Size == 64);
4527      if (Size == 32)
4528        PassTy = llvm::Type::getFloatTy(getVMContext());
4529      else
4530        PassTy = llvm::Type::getDoubleTy(getVMContext());
4531    } else
4532      PassTy = llvm::IntegerType::get(getVMContext(), Size);
4533    return ABIArgInfo::getDirect(PassTy);
4534  }
4535
4536  // Non-structure compounds are passed indirectly.
4537  if (isCompoundType(Ty))
4538    return ABIArgInfo::getIndirect(0);
4539
4540  return ABIArgInfo::getDirect(0);
4541}
4542
4543//===----------------------------------------------------------------------===//
4544// MBlaze ABI Implementation
4545//===----------------------------------------------------------------------===//
4546
4547namespace {
4548
4549class MBlazeABIInfo : public ABIInfo {
4550public:
4551  MBlazeABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
4552
4553  bool isPromotableIntegerType(QualType Ty) const;
4554
4555  ABIArgInfo classifyReturnType(QualType RetTy) const;
4556  ABIArgInfo classifyArgumentType(QualType RetTy) const;
4557
4558  virtual void computeInfo(CGFunctionInfo &FI) const {
4559    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4560    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
4561         it != ie; ++it)
4562      it->info = classifyArgumentType(it->type);
4563  }
4564
4565  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4566                                 CodeGenFunction &CGF) const;
4567};
4568
4569class MBlazeTargetCodeGenInfo : public TargetCodeGenInfo {
4570public:
4571  MBlazeTargetCodeGenInfo(CodeGenTypes &CGT)
4572    : TargetCodeGenInfo(new MBlazeABIInfo(CGT)) {}
4573  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4574                           CodeGen::CodeGenModule &M) const;
4575};
4576
4577}
4578
4579bool MBlazeABIInfo::isPromotableIntegerType(QualType Ty) const {
4580  // MBlaze ABI requires all 8 and 16 bit quantities to be extended.
4581  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4582    switch (BT->getKind()) {
4583    case BuiltinType::Bool:
4584    case BuiltinType::Char_S:
4585    case BuiltinType::Char_U:
4586    case BuiltinType::SChar:
4587    case BuiltinType::UChar:
4588    case BuiltinType::Short:
4589    case BuiltinType::UShort:
4590      return true;
4591    default:
4592      return false;
4593    }
4594  return false;
4595}
4596
4597llvm::Value *MBlazeABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4598                                      CodeGenFunction &CGF) const {
4599  // FIXME: Implement
4600  return 0;
4601}
4602
4603
4604ABIArgInfo MBlazeABIInfo::classifyReturnType(QualType RetTy) const {
4605  if (RetTy->isVoidType())
4606    return ABIArgInfo::getIgnore();
4607  if (isAggregateTypeForABI(RetTy))
4608    return ABIArgInfo::getIndirect(0);
4609
4610  return (isPromotableIntegerType(RetTy) ?
4611          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4612}
4613
4614ABIArgInfo MBlazeABIInfo::classifyArgumentType(QualType Ty) const {
4615  if (isAggregateTypeForABI(Ty))
4616    return ABIArgInfo::getIndirect(0);
4617
4618  return (isPromotableIntegerType(Ty) ?
4619          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4620}
4621
4622void MBlazeTargetCodeGenInfo::SetTargetAttributes(const Decl *D,
4623                                                  llvm::GlobalValue *GV,
4624                                                  CodeGen::CodeGenModule &M)
4625                                                  const {
4626  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4627  if (!FD) return;
4628
4629  llvm::CallingConv::ID CC = llvm::CallingConv::C;
4630  if (FD->hasAttr<MBlazeInterruptHandlerAttr>())
4631    CC = llvm::CallingConv::MBLAZE_INTR;
4632  else if (FD->hasAttr<MBlazeSaveVolatilesAttr>())
4633    CC = llvm::CallingConv::MBLAZE_SVOL;
4634
4635  if (CC != llvm::CallingConv::C) {
4636      // Handle 'interrupt_handler' attribute:
4637      llvm::Function *F = cast<llvm::Function>(GV);
4638
4639      // Step 1: Set ISR calling convention.
4640      F->setCallingConv(CC);
4641
4642      // Step 2: Add attributes goodness.
4643      F->addFnAttr(llvm::Attribute::NoInline);
4644  }
4645
4646  // Step 3: Emit _interrupt_handler alias.
4647  if (CC == llvm::CallingConv::MBLAZE_INTR)
4648    new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
4649                          "_interrupt_handler", GV, &M.getModule());
4650}
4651
4652
4653//===----------------------------------------------------------------------===//
4654// MSP430 ABI Implementation
4655//===----------------------------------------------------------------------===//
4656
4657namespace {
4658
4659class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
4660public:
4661  MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
4662    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
4663  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4664                           CodeGen::CodeGenModule &M) const;
4665};
4666
4667}
4668
4669void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
4670                                                  llvm::GlobalValue *GV,
4671                                             CodeGen::CodeGenModule &M) const {
4672  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4673    if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
4674      // Handle 'interrupt' attribute:
4675      llvm::Function *F = cast<llvm::Function>(GV);
4676
4677      // Step 1: Set ISR calling convention.
4678      F->setCallingConv(llvm::CallingConv::MSP430_INTR);
4679
4680      // Step 2: Add attributes goodness.
4681      F->addFnAttr(llvm::Attribute::NoInline);
4682
4683      // Step 3: Emit ISR vector alias.
4684      unsigned Num = attr->getNumber() / 2;
4685      new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
4686                            "__isr_" + Twine(Num),
4687                            GV, &M.getModule());
4688    }
4689  }
4690}
4691
4692//===----------------------------------------------------------------------===//
4693// MIPS ABI Implementation.  This works for both little-endian and
4694// big-endian variants.
4695//===----------------------------------------------------------------------===//
4696
4697namespace {
4698class MipsABIInfo : public ABIInfo {
4699  bool IsO32;
4700  unsigned MinABIStackAlignInBytes, StackAlignInBytes;
4701  void CoerceToIntArgs(uint64_t TySize,
4702                       SmallVectorImpl<llvm::Type *> &ArgList) const;
4703  llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
4704  llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
4705  llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
4706public:
4707  MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
4708    ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
4709    StackAlignInBytes(IsO32 ? 8 : 16) {}
4710
4711  ABIArgInfo classifyReturnType(QualType RetTy) const;
4712  ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
4713  virtual void computeInfo(CGFunctionInfo &FI) const;
4714  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4715                                 CodeGenFunction &CGF) const;
4716};
4717
4718class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
4719  unsigned SizeOfUnwindException;
4720public:
4721  MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
4722    : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
4723      SizeOfUnwindException(IsO32 ? 24 : 32) {}
4724
4725  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
4726    return 29;
4727  }
4728
4729  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4730                           CodeGen::CodeGenModule &CGM) const {
4731    const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4732    if (!FD) return;
4733    llvm::Function *Fn = cast<llvm::Function>(GV);
4734    if (FD->hasAttr<Mips16Attr>()) {
4735      Fn->addFnAttr("mips16");
4736    }
4737    else if (FD->hasAttr<NoMips16Attr>()) {
4738      Fn->addFnAttr("nomips16");
4739    }
4740  }
4741
4742  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4743                               llvm::Value *Address) const;
4744
4745  unsigned getSizeOfUnwindException() const {
4746    return SizeOfUnwindException;
4747  }
4748};
4749}
4750
4751void MipsABIInfo::CoerceToIntArgs(uint64_t TySize,
4752                                  SmallVectorImpl<llvm::Type *> &ArgList) const {
4753  llvm::IntegerType *IntTy =
4754    llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
4755
4756  // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
4757  for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
4758    ArgList.push_back(IntTy);
4759
4760  // If necessary, add one more integer type to ArgList.
4761  unsigned R = TySize % (MinABIStackAlignInBytes * 8);
4762
4763  if (R)
4764    ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
4765}
4766
4767// In N32/64, an aligned double precision floating point field is passed in
4768// a register.
4769llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
4770  SmallVector<llvm::Type*, 8> ArgList, IntArgList;
4771
4772  if (IsO32) {
4773    CoerceToIntArgs(TySize, ArgList);
4774    return llvm::StructType::get(getVMContext(), ArgList);
4775  }
4776
4777  if (Ty->isComplexType())
4778    return CGT.ConvertType(Ty);
4779
4780  const RecordType *RT = Ty->getAs<RecordType>();
4781
4782  // Unions/vectors are passed in integer registers.
4783  if (!RT || !RT->isStructureOrClassType()) {
4784    CoerceToIntArgs(TySize, ArgList);
4785    return llvm::StructType::get(getVMContext(), ArgList);
4786  }
4787
4788  const RecordDecl *RD = RT->getDecl();
4789  const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
4790  assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
4791
4792  uint64_t LastOffset = 0;
4793  unsigned idx = 0;
4794  llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
4795
4796  // Iterate over fields in the struct/class and check if there are any aligned
4797  // double fields.
4798  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
4799       i != e; ++i, ++idx) {
4800    const QualType Ty = i->getType();
4801    const BuiltinType *BT = Ty->getAs<BuiltinType>();
4802
4803    if (!BT || BT->getKind() != BuiltinType::Double)
4804      continue;
4805
4806    uint64_t Offset = Layout.getFieldOffset(idx);
4807    if (Offset % 64) // Ignore doubles that are not aligned.
4808      continue;
4809
4810    // Add ((Offset - LastOffset) / 64) args of type i64.
4811    for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
4812      ArgList.push_back(I64);
4813
4814    // Add double type.
4815    ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
4816    LastOffset = Offset + 64;
4817  }
4818
4819  CoerceToIntArgs(TySize - LastOffset, IntArgList);
4820  ArgList.append(IntArgList.begin(), IntArgList.end());
4821
4822  return llvm::StructType::get(getVMContext(), ArgList);
4823}
4824
4825llvm::Type *MipsABIInfo::getPaddingType(uint64_t Align, uint64_t Offset) const {
4826  assert((Offset % MinABIStackAlignInBytes) == 0);
4827
4828  if ((Align - 1) & Offset)
4829    return llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
4830
4831  return 0;
4832}
4833
4834ABIArgInfo
4835MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
4836  uint64_t OrigOffset = Offset;
4837  uint64_t TySize = getContext().getTypeSize(Ty);
4838  uint64_t Align = getContext().getTypeAlign(Ty) / 8;
4839
4840  Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
4841                   (uint64_t)StackAlignInBytes);
4842  Offset = llvm::RoundUpToAlignment(Offset, Align);
4843  Offset += llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
4844
4845  if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
4846    // Ignore empty aggregates.
4847    if (TySize == 0)
4848      return ABIArgInfo::getIgnore();
4849
4850    if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, CGT)) {
4851      Offset = OrigOffset + MinABIStackAlignInBytes;
4852      return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
4853    }
4854
4855    // If we have reached here, aggregates are passed directly by coercing to
4856    // another structure type. Padding is inserted if the offset of the
4857    // aggregate is unaligned.
4858    return ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
4859                                 getPaddingType(Align, OrigOffset));
4860  }
4861
4862  // Treat an enum type as its underlying type.
4863  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4864    Ty = EnumTy->getDecl()->getIntegerType();
4865
4866  if (Ty->isPromotableIntegerType())
4867    return ABIArgInfo::getExtend();
4868
4869  return ABIArgInfo::getDirect(0, 0,
4870                               IsO32 ? 0 : getPaddingType(Align, OrigOffset));
4871}
4872
4873llvm::Type*
4874MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
4875  const RecordType *RT = RetTy->getAs<RecordType>();
4876  SmallVector<llvm::Type*, 8> RTList;
4877
4878  if (RT && RT->isStructureOrClassType()) {
4879    const RecordDecl *RD = RT->getDecl();
4880    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
4881    unsigned FieldCnt = Layout.getFieldCount();
4882
4883    // N32/64 returns struct/classes in floating point registers if the
4884    // following conditions are met:
4885    // 1. The size of the struct/class is no larger than 128-bit.
4886    // 2. The struct/class has one or two fields all of which are floating
4887    //    point types.
4888    // 3. The offset of the first field is zero (this follows what gcc does).
4889    //
4890    // Any other composite results are returned in integer registers.
4891    //
4892    if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
4893      RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
4894      for (; b != e; ++b) {
4895        const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
4896
4897        if (!BT || !BT->isFloatingPoint())
4898          break;
4899
4900        RTList.push_back(CGT.ConvertType(b->getType()));
4901      }
4902
4903      if (b == e)
4904        return llvm::StructType::get(getVMContext(), RTList,
4905                                     RD->hasAttr<PackedAttr>());
4906
4907      RTList.clear();
4908    }
4909  }
4910
4911  CoerceToIntArgs(Size, RTList);
4912  return llvm::StructType::get(getVMContext(), RTList);
4913}
4914
4915ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
4916  uint64_t Size = getContext().getTypeSize(RetTy);
4917
4918  if (RetTy->isVoidType() || Size == 0)
4919    return ABIArgInfo::getIgnore();
4920
4921  if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
4922    if (isRecordReturnIndirect(RetTy, CGT))
4923      return ABIArgInfo::getIndirect(0);
4924
4925    if (Size <= 128) {
4926      if (RetTy->isAnyComplexType())
4927        return ABIArgInfo::getDirect();
4928
4929      // O32 returns integer vectors in registers.
4930      if (IsO32 && RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())
4931        return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
4932
4933      if (!IsO32)
4934        return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
4935    }
4936
4937    return ABIArgInfo::getIndirect(0);
4938  }
4939
4940  // Treat an enum type as its underlying type.
4941  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4942    RetTy = EnumTy->getDecl()->getIntegerType();
4943
4944  return (RetTy->isPromotableIntegerType() ?
4945          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4946}
4947
4948void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
4949  ABIArgInfo &RetInfo = FI.getReturnInfo();
4950  RetInfo = classifyReturnType(FI.getReturnType());
4951
4952  // Check if a pointer to an aggregate is passed as a hidden argument.
4953  uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
4954
4955  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
4956       it != ie; ++it)
4957    it->info = classifyArgumentType(it->type, Offset);
4958}
4959
4960llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4961                                    CodeGenFunction &CGF) const {
4962  llvm::Type *BP = CGF.Int8PtrTy;
4963  llvm::Type *BPP = CGF.Int8PtrPtrTy;
4964
4965  CGBuilderTy &Builder = CGF.Builder;
4966  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
4967  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
4968  int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8;
4969  llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4970  llvm::Value *AddrTyped;
4971  unsigned PtrWidth = getTarget().getPointerWidth(0);
4972  llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
4973
4974  if (TypeAlign > MinABIStackAlignInBytes) {
4975    llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
4976    llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
4977    llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
4978    llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
4979    llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
4980    AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
4981  }
4982  else
4983    AddrTyped = Builder.CreateBitCast(Addr, PTy);
4984
4985  llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
4986  TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
4987  uint64_t Offset =
4988    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign);
4989  llvm::Value *NextAddr =
4990    Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
4991                      "ap.next");
4992  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
4993
4994  return AddrTyped;
4995}
4996
4997bool
4998MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4999                                               llvm::Value *Address) const {
5000  // This information comes from gcc's implementation, which seems to
5001  // as canonical as it gets.
5002
5003  // Everything on MIPS is 4 bytes.  Double-precision FP registers
5004  // are aliased to pairs of single-precision FP registers.
5005  llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5006
5007  // 0-31 are the general purpose registers, $0 - $31.
5008  // 32-63 are the floating-point registers, $f0 - $f31.
5009  // 64 and 65 are the multiply/divide registers, $hi and $lo.
5010  // 66 is the (notional, I think) register for signal-handler return.
5011  AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
5012
5013  // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
5014  // They are one bit wide and ignored here.
5015
5016  // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
5017  // (coprocessor 1 is the FP unit)
5018  // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
5019  // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
5020  // 176-181 are the DSP accumulator registers.
5021  AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
5022  return false;
5023}
5024
5025//===----------------------------------------------------------------------===//
5026// TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
5027// Currently subclassed only to implement custom OpenCL C function attribute
5028// handling.
5029//===----------------------------------------------------------------------===//
5030
5031namespace {
5032
5033class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
5034public:
5035  TCETargetCodeGenInfo(CodeGenTypes &CGT)
5036    : DefaultTargetCodeGenInfo(CGT) {}
5037
5038  virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5039                                   CodeGen::CodeGenModule &M) const;
5040};
5041
5042void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
5043                                               llvm::GlobalValue *GV,
5044                                               CodeGen::CodeGenModule &M) const {
5045  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5046  if (!FD) return;
5047
5048  llvm::Function *F = cast<llvm::Function>(GV);
5049
5050  if (M.getLangOpts().OpenCL) {
5051    if (FD->hasAttr<OpenCLKernelAttr>()) {
5052      // OpenCL C Kernel functions are not subject to inlining
5053      F->addFnAttr(llvm::Attribute::NoInline);
5054
5055      if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
5056
5057        // Convert the reqd_work_group_size() attributes to metadata.
5058        llvm::LLVMContext &Context = F->getContext();
5059        llvm::NamedMDNode *OpenCLMetadata =
5060            M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
5061
5062        SmallVector<llvm::Value*, 5> Operands;
5063        Operands.push_back(F);
5064
5065        Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
5066                             llvm::APInt(32,
5067                             FD->getAttr<ReqdWorkGroupSizeAttr>()->getXDim())));
5068        Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
5069                             llvm::APInt(32,
5070                               FD->getAttr<ReqdWorkGroupSizeAttr>()->getYDim())));
5071        Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
5072                             llvm::APInt(32,
5073                               FD->getAttr<ReqdWorkGroupSizeAttr>()->getZDim())));
5074
5075        // Add a boolean constant operand for "required" (true) or "hint" (false)
5076        // for implementing the work_group_size_hint attr later. Currently
5077        // always true as the hint is not yet implemented.
5078        Operands.push_back(llvm::ConstantInt::getTrue(Context));
5079        OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
5080      }
5081    }
5082  }
5083}
5084
5085}
5086
5087//===----------------------------------------------------------------------===//
5088// Hexagon ABI Implementation
5089//===----------------------------------------------------------------------===//
5090
5091namespace {
5092
5093class HexagonABIInfo : public ABIInfo {
5094
5095
5096public:
5097  HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5098
5099private:
5100
5101  ABIArgInfo classifyReturnType(QualType RetTy) const;
5102  ABIArgInfo classifyArgumentType(QualType RetTy) const;
5103
5104  virtual void computeInfo(CGFunctionInfo &FI) const;
5105
5106  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5107                                 CodeGenFunction &CGF) const;
5108};
5109
5110class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
5111public:
5112  HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
5113    :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
5114
5115  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
5116    return 29;
5117  }
5118};
5119
5120}
5121
5122void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
5123  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5124  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
5125       it != ie; ++it)
5126    it->info = classifyArgumentType(it->type);
5127}
5128
5129ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
5130  if (!isAggregateTypeForABI(Ty)) {
5131    // Treat an enum type as its underlying type.
5132    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5133      Ty = EnumTy->getDecl()->getIntegerType();
5134
5135    return (Ty->isPromotableIntegerType() ?
5136            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5137  }
5138
5139  // Ignore empty records.
5140  if (isEmptyRecord(getContext(), Ty, true))
5141    return ABIArgInfo::getIgnore();
5142
5143  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, CGT))
5144    return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5145
5146  uint64_t Size = getContext().getTypeSize(Ty);
5147  if (Size > 64)
5148    return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
5149    // Pass in the smallest viable integer type.
5150  else if (Size > 32)
5151      return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
5152  else if (Size > 16)
5153      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5154  else if (Size > 8)
5155      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5156  else
5157      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5158}
5159
5160ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
5161  if (RetTy->isVoidType())
5162    return ABIArgInfo::getIgnore();
5163
5164  // Large vector types should be returned via memory.
5165  if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
5166    return ABIArgInfo::getIndirect(0);
5167
5168  if (!isAggregateTypeForABI(RetTy)) {
5169    // Treat an enum type as its underlying type.
5170    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5171      RetTy = EnumTy->getDecl()->getIntegerType();
5172
5173    return (RetTy->isPromotableIntegerType() ?
5174            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5175  }
5176
5177  // Structures with either a non-trivial destructor or a non-trivial
5178  // copy constructor are always indirect.
5179  if (isRecordReturnIndirect(RetTy, CGT))
5180    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5181
5182  if (isEmptyRecord(getContext(), RetTy, true))
5183    return ABIArgInfo::getIgnore();
5184
5185  // Aggregates <= 8 bytes are returned in r0; other aggregates
5186  // are returned indirectly.
5187  uint64_t Size = getContext().getTypeSize(RetTy);
5188  if (Size <= 64) {
5189    // Return in the smallest viable integer type.
5190    if (Size <= 8)
5191      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5192    if (Size <= 16)
5193      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5194    if (Size <= 32)
5195      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5196    return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
5197  }
5198
5199  return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
5200}
5201
5202llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5203                                       CodeGenFunction &CGF) const {
5204  // FIXME: Need to handle alignment
5205  llvm::Type *BPP = CGF.Int8PtrPtrTy;
5206
5207  CGBuilderTy &Builder = CGF.Builder;
5208  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
5209                                                       "ap");
5210  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5211  llvm::Type *PTy =
5212    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
5213  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
5214
5215  uint64_t Offset =
5216    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
5217  llvm::Value *NextAddr =
5218    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
5219                      "ap.next");
5220  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
5221
5222  return AddrTyped;
5223}
5224
5225
5226//===----------------------------------------------------------------------===//
5227// SPARC v9 ABI Implementation.
5228// Based on the SPARC Compliance Definition version 2.4.1.
5229//
5230// Function arguments a mapped to a nominal "parameter array" and promoted to
5231// registers depending on their type. Each argument occupies 8 or 16 bytes in
5232// the array, structs larger than 16 bytes are passed indirectly.
5233//
5234// One case requires special care:
5235//
5236//   struct mixed {
5237//     int i;
5238//     float f;
5239//   };
5240//
5241// When a struct mixed is passed by value, it only occupies 8 bytes in the
5242// parameter array, but the int is passed in an integer register, and the float
5243// is passed in a floating point register. This is represented as two arguments
5244// with the LLVM IR inreg attribute:
5245//
5246//   declare void f(i32 inreg %i, float inreg %f)
5247//
5248// The code generator will only allocate 4 bytes from the parameter array for
5249// the inreg arguments. All other arguments are allocated a multiple of 8
5250// bytes.
5251//
5252namespace {
5253class SparcV9ABIInfo : public ABIInfo {
5254public:
5255  SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5256
5257private:
5258  ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
5259  virtual void computeInfo(CGFunctionInfo &FI) const;
5260  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5261                                 CodeGenFunction &CGF) const;
5262
5263  // Coercion type builder for structs passed in registers. The coercion type
5264  // serves two purposes:
5265  //
5266  // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
5267  //    in registers.
5268  // 2. Expose aligned floating point elements as first-level elements, so the
5269  //    code generator knows to pass them in floating point registers.
5270  //
5271  // We also compute the InReg flag which indicates that the struct contains
5272  // aligned 32-bit floats.
5273  //
5274  struct CoerceBuilder {
5275    llvm::LLVMContext &Context;
5276    const llvm::DataLayout &DL;
5277    SmallVector<llvm::Type*, 8> Elems;
5278    uint64_t Size;
5279    bool InReg;
5280
5281    CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
5282      : Context(c), DL(dl), Size(0), InReg(false) {}
5283
5284    // Pad Elems with integers until Size is ToSize.
5285    void pad(uint64_t ToSize) {
5286      assert(ToSize >= Size && "Cannot remove elements");
5287      if (ToSize == Size)
5288        return;
5289
5290      // Finish the current 64-bit word.
5291      uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64);
5292      if (Aligned > Size && Aligned <= ToSize) {
5293        Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
5294        Size = Aligned;
5295      }
5296
5297      // Add whole 64-bit words.
5298      while (Size + 64 <= ToSize) {
5299        Elems.push_back(llvm::Type::getInt64Ty(Context));
5300        Size += 64;
5301      }
5302
5303      // Final in-word padding.
5304      if (Size < ToSize) {
5305        Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
5306        Size = ToSize;
5307      }
5308    }
5309
5310    // Add a floating point element at Offset.
5311    void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
5312      // Unaligned floats are treated as integers.
5313      if (Offset % Bits)
5314        return;
5315      // The InReg flag is only required if there are any floats < 64 bits.
5316      if (Bits < 64)
5317        InReg = true;
5318      pad(Offset);
5319      Elems.push_back(Ty);
5320      Size = Offset + Bits;
5321    }
5322
5323    // Add a struct type to the coercion type, starting at Offset (in bits).
5324    void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
5325      const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
5326      for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
5327        llvm::Type *ElemTy = StrTy->getElementType(i);
5328        uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
5329        switch (ElemTy->getTypeID()) {
5330        case llvm::Type::StructTyID:
5331          addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
5332          break;
5333        case llvm::Type::FloatTyID:
5334          addFloat(ElemOffset, ElemTy, 32);
5335          break;
5336        case llvm::Type::DoubleTyID:
5337          addFloat(ElemOffset, ElemTy, 64);
5338          break;
5339        case llvm::Type::FP128TyID:
5340          addFloat(ElemOffset, ElemTy, 128);
5341          break;
5342        case llvm::Type::PointerTyID:
5343          if (ElemOffset % 64 == 0) {
5344            pad(ElemOffset);
5345            Elems.push_back(ElemTy);
5346            Size += 64;
5347          }
5348          break;
5349        default:
5350          break;
5351        }
5352      }
5353    }
5354
5355    // Check if Ty is a usable substitute for the coercion type.
5356    bool isUsableType(llvm::StructType *Ty) const {
5357      if (Ty->getNumElements() != Elems.size())
5358        return false;
5359      for (unsigned i = 0, e = Elems.size(); i != e; ++i)
5360        if (Elems[i] != Ty->getElementType(i))
5361          return false;
5362      return true;
5363    }
5364
5365    // Get the coercion type as a literal struct type.
5366    llvm::Type *getType() const {
5367      if (Elems.size() == 1)
5368        return Elems.front();
5369      else
5370        return llvm::StructType::get(Context, Elems);
5371    }
5372  };
5373};
5374} // end anonymous namespace
5375
5376ABIArgInfo
5377SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
5378  if (Ty->isVoidType())
5379    return ABIArgInfo::getIgnore();
5380
5381  uint64_t Size = getContext().getTypeSize(Ty);
5382
5383  // Anything too big to fit in registers is passed with an explicit indirect
5384  // pointer / sret pointer.
5385  if (Size > SizeLimit)
5386    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5387
5388  // Treat an enum type as its underlying type.
5389  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5390    Ty = EnumTy->getDecl()->getIntegerType();
5391
5392  // Integer types smaller than a register are extended.
5393  if (Size < 64 && Ty->isIntegerType())
5394    return ABIArgInfo::getExtend();
5395
5396  // Other non-aggregates go in registers.
5397  if (!isAggregateTypeForABI(Ty))
5398    return ABIArgInfo::getDirect();
5399
5400  // This is a small aggregate type that should be passed in registers.
5401  // Build a coercion type from the LLVM struct type.
5402  llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
5403  if (!StrTy)
5404    return ABIArgInfo::getDirect();
5405
5406  CoerceBuilder CB(getVMContext(), getDataLayout());
5407  CB.addStruct(0, StrTy);
5408  CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64));
5409
5410  // Try to use the original type for coercion.
5411  llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
5412
5413  if (CB.InReg)
5414    return ABIArgInfo::getDirectInReg(CoerceTy);
5415  else
5416    return ABIArgInfo::getDirect(CoerceTy);
5417}
5418
5419llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5420                                       CodeGenFunction &CGF) const {
5421  ABIArgInfo AI = classifyType(Ty, 16 * 8);
5422  llvm::Type *ArgTy = CGT.ConvertType(Ty);
5423  if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
5424    AI.setCoerceToType(ArgTy);
5425
5426  llvm::Type *BPP = CGF.Int8PtrPtrTy;
5427  CGBuilderTy &Builder = CGF.Builder;
5428  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
5429  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5430  llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
5431  llvm::Value *ArgAddr;
5432  unsigned Stride;
5433
5434  switch (AI.getKind()) {
5435  case ABIArgInfo::Expand:
5436    llvm_unreachable("Unsupported ABI kind for va_arg");
5437
5438  case ABIArgInfo::Extend:
5439    Stride = 8;
5440    ArgAddr = Builder
5441      .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy),
5442                          "extend");
5443    break;
5444
5445  case ABIArgInfo::Direct:
5446    Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
5447    ArgAddr = Addr;
5448    break;
5449
5450  case ABIArgInfo::Indirect:
5451    Stride = 8;
5452    ArgAddr = Builder.CreateBitCast(Addr,
5453                                    llvm::PointerType::getUnqual(ArgPtrTy),
5454                                    "indirect");
5455    ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg");
5456    break;
5457
5458  case ABIArgInfo::Ignore:
5459    return llvm::UndefValue::get(ArgPtrTy);
5460  }
5461
5462  // Update VAList.
5463  Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next");
5464  Builder.CreateStore(Addr, VAListAddrAsBPP);
5465
5466  return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr");
5467}
5468
5469void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
5470  FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
5471  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
5472       it != ie; ++it)
5473    it->info = classifyType(it->type, 16 * 8);
5474}
5475
5476namespace {
5477class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
5478public:
5479  SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
5480    : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
5481};
5482} // end anonymous namespace
5483
5484
5485const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
5486  if (TheTargetCodeGenInfo)
5487    return *TheTargetCodeGenInfo;
5488
5489  const llvm::Triple &Triple = getTarget().getTriple();
5490  switch (Triple.getArch()) {
5491  default:
5492    return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
5493
5494  case llvm::Triple::le32:
5495    return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
5496  case llvm::Triple::mips:
5497  case llvm::Triple::mipsel:
5498    return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
5499
5500  case llvm::Triple::mips64:
5501  case llvm::Triple::mips64el:
5502    return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
5503
5504  case llvm::Triple::aarch64:
5505    return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types));
5506
5507  case llvm::Triple::arm:
5508  case llvm::Triple::thumb:
5509    {
5510      ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
5511      if (strcmp(getTarget().getABI(), "apcs-gnu") == 0)
5512        Kind = ARMABIInfo::APCS;
5513      else if (CodeGenOpts.FloatABI == "hard" ||
5514               (CodeGenOpts.FloatABI != "soft" &&
5515                Triple.getEnvironment() == llvm::Triple::GNUEABIHF))
5516        Kind = ARMABIInfo::AAPCS_VFP;
5517
5518      switch (Triple.getOS()) {
5519        case llvm::Triple::NaCl:
5520          return *(TheTargetCodeGenInfo =
5521                   new NaClARMTargetCodeGenInfo(Types, Kind));
5522        default:
5523          return *(TheTargetCodeGenInfo =
5524                   new ARMTargetCodeGenInfo(Types, Kind));
5525      }
5526    }
5527
5528  case llvm::Triple::ppc:
5529    return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
5530  case llvm::Triple::ppc64:
5531    if (Triple.isOSBinFormatELF())
5532      return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types));
5533    else
5534      return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
5535
5536  case llvm::Triple::nvptx:
5537  case llvm::Triple::nvptx64:
5538    return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
5539
5540  case llvm::Triple::mblaze:
5541    return *(TheTargetCodeGenInfo = new MBlazeTargetCodeGenInfo(Types));
5542
5543  case llvm::Triple::msp430:
5544    return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
5545
5546  case llvm::Triple::systemz:
5547    return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types));
5548
5549  case llvm::Triple::tce:
5550    return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
5551
5552  case llvm::Triple::x86: {
5553    bool IsDarwinVectorABI = Triple.isOSDarwin();
5554    bool IsSmallStructInRegABI =
5555        X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
5556    bool IsWin32FloatStructABI = (Triple.getOS() == llvm::Triple::Win32);
5557
5558    if (Triple.getOS() == llvm::Triple::Win32) {
5559      return *(TheTargetCodeGenInfo =
5560               new WinX86_32TargetCodeGenInfo(Types,
5561                                              IsDarwinVectorABI, IsSmallStructInRegABI,
5562                                              IsWin32FloatStructABI,
5563                                              CodeGenOpts.NumRegisterParameters));
5564    } else {
5565      return *(TheTargetCodeGenInfo =
5566               new X86_32TargetCodeGenInfo(Types,
5567                                           IsDarwinVectorABI, IsSmallStructInRegABI,
5568                                           IsWin32FloatStructABI,
5569                                           CodeGenOpts.NumRegisterParameters));
5570    }
5571  }
5572
5573  case llvm::Triple::x86_64: {
5574    bool HasAVX = strcmp(getTarget().getABI(), "avx") == 0;
5575
5576    switch (Triple.getOS()) {
5577    case llvm::Triple::Win32:
5578    case llvm::Triple::MinGW32:
5579    case llvm::Triple::Cygwin:
5580      return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
5581    case llvm::Triple::NaCl:
5582      return *(TheTargetCodeGenInfo = new NaClX86_64TargetCodeGenInfo(Types,
5583                                                                      HasAVX));
5584    default:
5585      return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types,
5586                                                                  HasAVX));
5587    }
5588  }
5589  case llvm::Triple::hexagon:
5590    return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
5591  case llvm::Triple::sparcv9:
5592    return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types));
5593  }
5594}
5595