TargetInfo.cpp revision 96b1d4b4eb6b18dd6df7a2c0833332b45840580f
1//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// These classes wrap the information about a call or function
11// definition used to handle ABI compliancy.
12//
13//===----------------------------------------------------------------------===//
14
15#include "TargetInfo.h"
16#include "ABIInfo.h"
17#include "CodeGenFunction.h"
18#include "clang/AST/RecordLayout.h"
19#include "llvm/Type.h"
20#include "llvm/Target/TargetData.h"
21#include "llvm/ADT/Triple.h"
22#include "llvm/Support/raw_ostream.h"
23using namespace clang;
24using namespace CodeGen;
25
26static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
27                               llvm::Value *Array,
28                               llvm::Value *Value,
29                               unsigned FirstIndex,
30                               unsigned LastIndex) {
31  // Alternatively, we could emit this as a loop in the source.
32  for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
33    llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
34    Builder.CreateStore(Value, Cell);
35  }
36}
37
38static bool isAggregateTypeForABI(QualType T) {
39  return CodeGenFunction::hasAggregateLLVMType(T) ||
40         T->isMemberFunctionPointerType();
41}
42
43ABIInfo::~ABIInfo() {}
44
45ASTContext &ABIInfo::getContext() const {
46  return CGT.getContext();
47}
48
49llvm::LLVMContext &ABIInfo::getVMContext() const {
50  return CGT.getLLVMContext();
51}
52
53const llvm::TargetData &ABIInfo::getTargetData() const {
54  return CGT.getTargetData();
55}
56
57
58void ABIArgInfo::dump() const {
59  llvm::raw_ostream &OS = llvm::errs();
60  OS << "(ABIArgInfo Kind=";
61  switch (TheKind) {
62  case Direct:
63    OS << "Direct Type=";
64    if (const llvm::Type *Ty = getCoerceToType())
65      Ty->print(OS);
66    else
67      OS << "null";
68    break;
69  case Extend:
70    OS << "Extend";
71    break;
72  case Ignore:
73    OS << "Ignore";
74    break;
75  case Indirect:
76    OS << "Indirect Align=" << getIndirectAlign()
77       << " Byal=" << getIndirectByVal()
78       << " Realign=" << getIndirectRealign();
79    break;
80  case Expand:
81    OS << "Expand";
82    break;
83  }
84  OS << ")\n";
85}
86
87TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
88
89static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
90
91/// isEmptyField - Return true iff a the field is "empty", that is it
92/// is an unnamed bit-field or an (array of) empty record(s).
93static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
94                         bool AllowArrays) {
95  if (FD->isUnnamedBitfield())
96    return true;
97
98  QualType FT = FD->getType();
99
100    // Constant arrays of empty records count as empty, strip them off.
101  if (AllowArrays)
102    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT))
103      FT = AT->getElementType();
104
105  const RecordType *RT = FT->getAs<RecordType>();
106  if (!RT)
107    return false;
108
109  // C++ record fields are never empty, at least in the Itanium ABI.
110  //
111  // FIXME: We should use a predicate for whether this behavior is true in the
112  // current ABI.
113  if (isa<CXXRecordDecl>(RT->getDecl()))
114    return false;
115
116  return isEmptyRecord(Context, FT, AllowArrays);
117}
118
119/// isEmptyRecord - Return true iff a structure contains only empty
120/// fields. Note that a structure with a flexible array member is not
121/// considered empty.
122static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
123  const RecordType *RT = T->getAs<RecordType>();
124  if (!RT)
125    return 0;
126  const RecordDecl *RD = RT->getDecl();
127  if (RD->hasFlexibleArrayMember())
128    return false;
129
130  // If this is a C++ record, check the bases first.
131  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
132    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
133           e = CXXRD->bases_end(); i != e; ++i)
134      if (!isEmptyRecord(Context, i->getType(), true))
135        return false;
136
137  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
138         i != e; ++i)
139    if (!isEmptyField(Context, *i, AllowArrays))
140      return false;
141  return true;
142}
143
144/// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
145/// a non-trivial destructor or a non-trivial copy constructor.
146static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
147  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
148  if (!RD)
149    return false;
150
151  return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
152}
153
154/// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
155/// a record type with either a non-trivial destructor or a non-trivial copy
156/// constructor.
157static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
158  const RecordType *RT = T->getAs<RecordType>();
159  if (!RT)
160    return false;
161
162  return hasNonTrivialDestructorOrCopyConstructor(RT);
163}
164
165/// isSingleElementStruct - Determine if a structure is a "single
166/// element struct", i.e. it has exactly one non-empty field or
167/// exactly one field which is itself a single element
168/// struct. Structures with flexible array members are never
169/// considered single element structs.
170///
171/// \return The field declaration for the single non-empty field, if
172/// it exists.
173static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
174  const RecordType *RT = T->getAsStructureType();
175  if (!RT)
176    return 0;
177
178  const RecordDecl *RD = RT->getDecl();
179  if (RD->hasFlexibleArrayMember())
180    return 0;
181
182  const Type *Found = 0;
183
184  // If this is a C++ record, check the bases first.
185  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
186    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
187           e = CXXRD->bases_end(); i != e; ++i) {
188      // Ignore empty records.
189      if (isEmptyRecord(Context, i->getType(), true))
190        continue;
191
192      // If we already found an element then this isn't a single-element struct.
193      if (Found)
194        return 0;
195
196      // If this is non-empty and not a single element struct, the composite
197      // cannot be a single element struct.
198      Found = isSingleElementStruct(i->getType(), Context);
199      if (!Found)
200        return 0;
201    }
202  }
203
204  // Check for single element.
205  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
206         i != e; ++i) {
207    const FieldDecl *FD = *i;
208    QualType FT = FD->getType();
209
210    // Ignore empty fields.
211    if (isEmptyField(Context, FD, true))
212      continue;
213
214    // If we already found an element then this isn't a single-element
215    // struct.
216    if (Found)
217      return 0;
218
219    // Treat single element arrays as the element.
220    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
221      if (AT->getSize().getZExtValue() != 1)
222        break;
223      FT = AT->getElementType();
224    }
225
226    if (!isAggregateTypeForABI(FT)) {
227      Found = FT.getTypePtr();
228    } else {
229      Found = isSingleElementStruct(FT, Context);
230      if (!Found)
231        return 0;
232    }
233  }
234
235  return Found;
236}
237
238static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
239  if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
240      !Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
241      !Ty->isBlockPointerType())
242    return false;
243
244  uint64_t Size = Context.getTypeSize(Ty);
245  return Size == 32 || Size == 64;
246}
247
248/// canExpandIndirectArgument - Test whether an argument type which is to be
249/// passed indirectly (on the stack) would have the equivalent layout if it was
250/// expanded into separate arguments. If so, we prefer to do the latter to avoid
251/// inhibiting optimizations.
252///
253// FIXME: This predicate is missing many cases, currently it just follows
254// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
255// should probably make this smarter, or better yet make the LLVM backend
256// capable of handling it.
257static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
258  // We can only expand structure types.
259  const RecordType *RT = Ty->getAs<RecordType>();
260  if (!RT)
261    return false;
262
263  // We can only expand (C) structures.
264  //
265  // FIXME: This needs to be generalized to handle classes as well.
266  const RecordDecl *RD = RT->getDecl();
267  if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
268    return false;
269
270  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
271         i != e; ++i) {
272    const FieldDecl *FD = *i;
273
274    if (!is32Or64BitBasicType(FD->getType(), Context))
275      return false;
276
277    // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
278    // how to expand them yet, and the predicate for telling if a bitfield still
279    // counts as "basic" is more complicated than what we were doing previously.
280    if (FD->isBitField())
281      return false;
282  }
283
284  return true;
285}
286
287namespace {
288/// DefaultABIInfo - The default implementation for ABI specific
289/// details. This implementation provides information which results in
290/// self-consistent and sensible LLVM IR generation, but does not
291/// conform to any particular ABI.
292class DefaultABIInfo : public ABIInfo {
293public:
294  DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
295
296  ABIArgInfo classifyReturnType(QualType RetTy) const;
297  ABIArgInfo classifyArgumentType(QualType RetTy) const;
298
299  virtual void computeInfo(CGFunctionInfo &FI) const {
300    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
301    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
302         it != ie; ++it)
303      it->info = classifyArgumentType(it->type);
304  }
305
306  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
307                                 CodeGenFunction &CGF) const;
308};
309
310class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
311public:
312  DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
313    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
314};
315
316llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
317                                       CodeGenFunction &CGF) const {
318  return 0;
319}
320
321ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
322  if (isAggregateTypeForABI(Ty))
323    return ABIArgInfo::getIndirect(0);
324
325  // Treat an enum type as its underlying type.
326  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
327    Ty = EnumTy->getDecl()->getIntegerType();
328
329  return (Ty->isPromotableIntegerType() ?
330          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
331}
332
333ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
334  if (RetTy->isVoidType())
335    return ABIArgInfo::getIgnore();
336
337  if (isAggregateTypeForABI(RetTy))
338    return ABIArgInfo::getIndirect(0);
339
340  // Treat an enum type as its underlying type.
341  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
342    RetTy = EnumTy->getDecl()->getIntegerType();
343
344  return (RetTy->isPromotableIntegerType() ?
345          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
346}
347
348/// UseX86_MMXType - Return true if this is an MMX type that should use the special
349/// x86_mmx type.
350bool UseX86_MMXType(const llvm::Type *IRType) {
351  // If the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>, use the
352  // special x86_mmx type.
353  return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
354    cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
355    IRType->getScalarSizeInBits() != 64;
356}
357
358//===----------------------------------------------------------------------===//
359// X86-32 ABI Implementation
360//===----------------------------------------------------------------------===//
361
362/// X86_32ABIInfo - The X86-32 ABI information.
363class X86_32ABIInfo : public ABIInfo {
364  static const unsigned MinABIStackAlignInBytes = 4;
365
366  bool IsDarwinVectorABI;
367  bool IsSmallStructInRegABI;
368
369  static bool isRegisterSize(unsigned Size) {
370    return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
371  }
372
373  static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);
374
375  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
376  /// such that the argument will be passed in memory.
377  ABIArgInfo getIndirectResult(QualType Ty, bool ByVal = true) const;
378
379  /// \brief Return the alignment to use for the given type on the stack.
380  unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
381
382public:
383
384  ABIArgInfo classifyReturnType(QualType RetTy) const;
385  ABIArgInfo classifyArgumentType(QualType RetTy) const;
386
387  virtual void computeInfo(CGFunctionInfo &FI) const {
388    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
389    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
390         it != ie; ++it)
391      it->info = classifyArgumentType(it->type);
392  }
393
394  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
395                                 CodeGenFunction &CGF) const;
396
397  X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p)
398    : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p) {}
399};
400
401class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
402public:
403  X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p)
404    :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p)) {}
405
406  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
407                           CodeGen::CodeGenModule &CGM) const;
408
409  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
410    // Darwin uses different dwarf register numbers for EH.
411    if (CGM.isTargetDarwin()) return 5;
412
413    return 4;
414  }
415
416  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
417                               llvm::Value *Address) const;
418};
419
420}
421
422/// shouldReturnTypeInRegister - Determine if the given type should be
423/// passed in a register (for the Darwin ABI).
424bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
425                                               ASTContext &Context) {
426  uint64_t Size = Context.getTypeSize(Ty);
427
428  // Type must be register sized.
429  if (!isRegisterSize(Size))
430    return false;
431
432  if (Ty->isVectorType()) {
433    // 64- and 128- bit vectors inside structures are not returned in
434    // registers.
435    if (Size == 64 || Size == 128)
436      return false;
437
438    return true;
439  }
440
441  // If this is a builtin, pointer, enum, complex type, member pointer, or
442  // member function pointer it is ok.
443  if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
444      Ty->isAnyComplexType() || Ty->isEnumeralType() ||
445      Ty->isBlockPointerType() || Ty->isMemberPointerType())
446    return true;
447
448  // Arrays are treated like records.
449  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
450    return shouldReturnTypeInRegister(AT->getElementType(), Context);
451
452  // Otherwise, it must be a record type.
453  const RecordType *RT = Ty->getAs<RecordType>();
454  if (!RT) return false;
455
456  // FIXME: Traverse bases here too.
457
458  // Structure types are passed in register if all fields would be
459  // passed in a register.
460  for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
461         e = RT->getDecl()->field_end(); i != e; ++i) {
462    const FieldDecl *FD = *i;
463
464    // Empty fields are ignored.
465    if (isEmptyField(Context, FD, true))
466      continue;
467
468    // Check fields recursively.
469    if (!shouldReturnTypeInRegister(FD->getType(), Context))
470      return false;
471  }
472
473  return true;
474}
475
476ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy) const {
477  if (RetTy->isVoidType())
478    return ABIArgInfo::getIgnore();
479
480  if (const VectorType *VT = RetTy->getAs<VectorType>()) {
481    // On Darwin, some vectors are returned in registers.
482    if (IsDarwinVectorABI) {
483      uint64_t Size = getContext().getTypeSize(RetTy);
484
485      // 128-bit vectors are a special case; they are returned in
486      // registers and we need to make sure to pick a type the LLVM
487      // backend will like.
488      if (Size == 128)
489        return ABIArgInfo::getDirect(llvm::VectorType::get(
490                  llvm::Type::getInt64Ty(getVMContext()), 2));
491
492      // Always return in register if it fits in a general purpose
493      // register, or if it is 64 bits and has a single element.
494      if ((Size == 8 || Size == 16 || Size == 32) ||
495          (Size == 64 && VT->getNumElements() == 1))
496        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
497                                                            Size));
498
499      return ABIArgInfo::getIndirect(0);
500    }
501
502    return ABIArgInfo::getDirect();
503  }
504
505  if (isAggregateTypeForABI(RetTy)) {
506    if (const RecordType *RT = RetTy->getAs<RecordType>()) {
507      // Structures with either a non-trivial destructor or a non-trivial
508      // copy constructor are always indirect.
509      if (hasNonTrivialDestructorOrCopyConstructor(RT))
510        return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
511
512      // Structures with flexible arrays are always indirect.
513      if (RT->getDecl()->hasFlexibleArrayMember())
514        return ABIArgInfo::getIndirect(0);
515    }
516
517    // If specified, structs and unions are always indirect.
518    if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
519      return ABIArgInfo::getIndirect(0);
520
521    // Classify "single element" structs as their element type.
522    if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) {
523      if (const BuiltinType *BT = SeltTy->getAs<BuiltinType>()) {
524        if (BT->isIntegerType()) {
525          // We need to use the size of the structure, padding
526          // bit-fields can adjust that to be larger than the single
527          // element type.
528          uint64_t Size = getContext().getTypeSize(RetTy);
529          return ABIArgInfo::getDirect(
530            llvm::IntegerType::get(getVMContext(), (unsigned)Size));
531        }
532
533        if (BT->getKind() == BuiltinType::Float) {
534          assert(getContext().getTypeSize(RetTy) ==
535                 getContext().getTypeSize(SeltTy) &&
536                 "Unexpect single element structure size!");
537          return ABIArgInfo::getDirect(llvm::Type::getFloatTy(getVMContext()));
538        }
539
540        if (BT->getKind() == BuiltinType::Double) {
541          assert(getContext().getTypeSize(RetTy) ==
542                 getContext().getTypeSize(SeltTy) &&
543                 "Unexpect single element structure size!");
544          return ABIArgInfo::getDirect(llvm::Type::getDoubleTy(getVMContext()));
545        }
546      } else if (SeltTy->isPointerType()) {
547        // FIXME: It would be really nice if this could come out as the proper
548        // pointer type.
549        const llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(getVMContext());
550        return ABIArgInfo::getDirect(PtrTy);
551      } else if (SeltTy->isVectorType()) {
552        // 64- and 128-bit vectors are never returned in a
553        // register when inside a structure.
554        uint64_t Size = getContext().getTypeSize(RetTy);
555        if (Size == 64 || Size == 128)
556          return ABIArgInfo::getIndirect(0);
557
558        return classifyReturnType(QualType(SeltTy, 0));
559      }
560    }
561
562    // Small structures which are register sized are generally returned
563    // in a register.
564    if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext())) {
565      uint64_t Size = getContext().getTypeSize(RetTy);
566      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
567    }
568
569    return ABIArgInfo::getIndirect(0);
570  }
571
572  // Treat an enum type as its underlying type.
573  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
574    RetTy = EnumTy->getDecl()->getIntegerType();
575
576  return (RetTy->isPromotableIntegerType() ?
577          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
578}
579
580static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
581  const RecordType *RT = Ty->getAs<RecordType>();
582  if (!RT)
583    return 0;
584  const RecordDecl *RD = RT->getDecl();
585
586  // If this is a C++ record, check the bases first.
587  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
588    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
589           e = CXXRD->bases_end(); i != e; ++i)
590      if (!isRecordWithSSEVectorType(Context, i->getType()))
591        return false;
592
593  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
594       i != e; ++i) {
595    QualType FT = i->getType();
596
597    if (FT->getAs<VectorType>() && Context.getTypeSize(Ty) == 128)
598      return true;
599
600    if (isRecordWithSSEVectorType(Context, FT))
601      return true;
602  }
603
604  return false;
605}
606
607unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
608                                                 unsigned Align) const {
609  // Otherwise, if the alignment is less than or equal to the minimum ABI
610  // alignment, just use the default; the backend will handle this.
611  if (Align <= MinABIStackAlignInBytes)
612    return 0; // Use default alignment.
613
614  // On non-Darwin, the stack type alignment is always 4.
615  if (!IsDarwinVectorABI) {
616    // Set explicit alignment, since we may need to realign the top.
617    return MinABIStackAlignInBytes;
618  }
619
620  // Otherwise, if the type contains an SSE vector type, the alignment is 16.
621  if (isRecordWithSSEVectorType(getContext(), Ty))
622    return 16;
623
624  return MinABIStackAlignInBytes;
625}
626
627ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal) const {
628  if (!ByVal)
629    return ABIArgInfo::getIndirect(0, false);
630
631  // Compute the byval alignment.
632  unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
633  unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
634  if (StackAlign == 0)
635    return ABIArgInfo::getIndirect(0);
636
637  // If the stack alignment is less than the type alignment, realign the
638  // argument.
639  if (StackAlign < TypeAlign)
640    return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true,
641                                   /*Realign=*/true);
642
643  return ABIArgInfo::getIndirect(StackAlign);
644}
645
646ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty) const {
647  // FIXME: Set alignment on indirect arguments.
648  if (isAggregateTypeForABI(Ty)) {
649    // Structures with flexible arrays are always indirect.
650    if (const RecordType *RT = Ty->getAs<RecordType>()) {
651      // Structures with either a non-trivial destructor or a non-trivial
652      // copy constructor are always indirect.
653      if (hasNonTrivialDestructorOrCopyConstructor(RT))
654        return getIndirectResult(Ty, /*ByVal=*/false);
655
656      if (RT->getDecl()->hasFlexibleArrayMember())
657        return getIndirectResult(Ty);
658    }
659
660    // Ignore empty structs.
661    if (Ty->isStructureType() && getContext().getTypeSize(Ty) == 0)
662      return ABIArgInfo::getIgnore();
663
664    // Expand small (<= 128-bit) record types when we know that the stack layout
665    // of those arguments will match the struct. This is important because the
666    // LLVM backend isn't smart enough to remove byval, which inhibits many
667    // optimizations.
668    if (getContext().getTypeSize(Ty) <= 4*32 &&
669        canExpandIndirectArgument(Ty, getContext()))
670      return ABIArgInfo::getExpand();
671
672    return getIndirectResult(Ty);
673  }
674
675  if (const VectorType *VT = Ty->getAs<VectorType>()) {
676    // On Darwin, some vectors are passed in memory, we handle this by passing
677    // it as an i8/i16/i32/i64.
678    if (IsDarwinVectorABI) {
679      uint64_t Size = getContext().getTypeSize(Ty);
680      if ((Size == 8 || Size == 16 || Size == 32) ||
681          (Size == 64 && VT->getNumElements() == 1))
682        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
683                                                            Size));
684    }
685
686    const llvm::Type *IRType = CGT.ConvertTypeRecursive(Ty);
687    if (UseX86_MMXType(IRType)) {
688      ABIArgInfo AAI = ABIArgInfo::getDirect(IRType);
689      AAI.setCoerceToType(llvm::Type::getX86_MMXTy(getVMContext()));
690      return AAI;
691    }
692
693    return ABIArgInfo::getDirect();
694  }
695
696
697  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
698    Ty = EnumTy->getDecl()->getIntegerType();
699
700  return (Ty->isPromotableIntegerType() ?
701          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
702}
703
704llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
705                                      CodeGenFunction &CGF) const {
706  const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
707  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
708
709  CGBuilderTy &Builder = CGF.Builder;
710  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
711                                                       "ap");
712  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
713  llvm::Type *PTy =
714    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
715  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
716
717  uint64_t Offset =
718    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
719  llvm::Value *NextAddr =
720    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
721                      "ap.next");
722  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
723
724  return AddrTyped;
725}
726
727void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
728                                                  llvm::GlobalValue *GV,
729                                            CodeGen::CodeGenModule &CGM) const {
730  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
731    if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
732      // Get the LLVM function.
733      llvm::Function *Fn = cast<llvm::Function>(GV);
734
735      // Now add the 'alignstack' attribute with a value of 16.
736      Fn->addFnAttr(llvm::Attribute::constructStackAlignmentFromInt(16));
737    }
738  }
739}
740
741bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
742                                               CodeGen::CodeGenFunction &CGF,
743                                               llvm::Value *Address) const {
744  CodeGen::CGBuilderTy &Builder = CGF.Builder;
745  llvm::LLVMContext &Context = CGF.getLLVMContext();
746
747  const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
748  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
749
750  // 0-7 are the eight integer registers;  the order is different
751  //   on Darwin (for EH), but the range is the same.
752  // 8 is %eip.
753  AssignToArrayRange(Builder, Address, Four8, 0, 8);
754
755  if (CGF.CGM.isTargetDarwin()) {
756    // 12-16 are st(0..4).  Not sure why we stop at 4.
757    // These have size 16, which is sizeof(long double) on
758    // platforms with 8-byte alignment for that type.
759    llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
760    AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
761
762  } else {
763    // 9 is %eflags, which doesn't get a size on Darwin for some
764    // reason.
765    Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
766
767    // 11-16 are st(0..5).  Not sure why we stop at 5.
768    // These have size 12, which is sizeof(long double) on
769    // platforms with 4-byte alignment for that type.
770    llvm::Value *Twelve8 = llvm::ConstantInt::get(i8, 12);
771    AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
772  }
773
774  return false;
775}
776
777//===----------------------------------------------------------------------===//
778// X86-64 ABI Implementation
779//===----------------------------------------------------------------------===//
780
781
782namespace {
783/// X86_64ABIInfo - The X86_64 ABI information.
784class X86_64ABIInfo : public ABIInfo {
785  enum Class {
786    Integer = 0,
787    SSE,
788    SSEUp,
789    X87,
790    X87Up,
791    ComplexX87,
792    NoClass,
793    Memory
794  };
795
796  /// merge - Implement the X86_64 ABI merging algorithm.
797  ///
798  /// Merge an accumulating classification \arg Accum with a field
799  /// classification \arg Field.
800  ///
801  /// \param Accum - The accumulating classification. This should
802  /// always be either NoClass or the result of a previous merge
803  /// call. In addition, this should never be Memory (the caller
804  /// should just return Memory for the aggregate).
805  static Class merge(Class Accum, Class Field);
806
807  /// classify - Determine the x86_64 register classes in which the
808  /// given type T should be passed.
809  ///
810  /// \param Lo - The classification for the parts of the type
811  /// residing in the low word of the containing object.
812  ///
813  /// \param Hi - The classification for the parts of the type
814  /// residing in the high word of the containing object.
815  ///
816  /// \param OffsetBase - The bit offset of this type in the
817  /// containing object.  Some parameters are classified different
818  /// depending on whether they straddle an eightbyte boundary.
819  ///
820  /// If a word is unused its result will be NoClass; if a type should
821  /// be passed in Memory then at least the classification of \arg Lo
822  /// will be Memory.
823  ///
824  /// The \arg Lo class will be NoClass iff the argument is ignored.
825  ///
826  /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
827  /// also be ComplexX87.
828  void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi) const;
829
830  const llvm::Type *Get16ByteVectorType(QualType Ty) const;
831  const llvm::Type *GetSSETypeAtOffset(const llvm::Type *IRType,
832                                       unsigned IROffset, QualType SourceTy,
833                                       unsigned SourceOffset) const;
834  const llvm::Type *GetINTEGERTypeAtOffset(const llvm::Type *IRType,
835                                           unsigned IROffset, QualType SourceTy,
836                                           unsigned SourceOffset) const;
837
838  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
839  /// such that the argument will be returned in memory.
840  ABIArgInfo getIndirectReturnResult(QualType Ty) const;
841
842  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
843  /// such that the argument will be passed in memory.
844  ABIArgInfo getIndirectResult(QualType Ty) const;
845
846  ABIArgInfo classifyReturnType(QualType RetTy) const;
847
848  ABIArgInfo classifyArgumentType(QualType Ty,
849                                  unsigned &neededInt,
850                                  unsigned &neededSSE) const;
851
852public:
853  X86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
854
855  virtual void computeInfo(CGFunctionInfo &FI) const;
856
857  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
858                                 CodeGenFunction &CGF) const;
859};
860
861/// WinX86_64ABIInfo - The Windows X86_64 ABI information.
862class WinX86_64ABIInfo : public ABIInfo {
863
864  ABIArgInfo classify(QualType Ty) const;
865
866public:
867  WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
868
869  virtual void computeInfo(CGFunctionInfo &FI) const;
870
871  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
872                                 CodeGenFunction &CGF) const;
873};
874
875class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
876public:
877  X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
878    : TargetCodeGenInfo(new X86_64ABIInfo(CGT)) {}
879
880  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
881    return 7;
882  }
883
884  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
885                               llvm::Value *Address) const {
886    CodeGen::CGBuilderTy &Builder = CGF.Builder;
887    llvm::LLVMContext &Context = CGF.getLLVMContext();
888
889    const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
890    llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
891
892    // 0-15 are the 16 integer registers.
893    // 16 is %rip.
894    AssignToArrayRange(Builder, Address, Eight8, 0, 16);
895
896    return false;
897  }
898};
899
900class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
901public:
902  WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
903    : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
904
905  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
906    return 7;
907  }
908
909  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
910                               llvm::Value *Address) const {
911    CodeGen::CGBuilderTy &Builder = CGF.Builder;
912    llvm::LLVMContext &Context = CGF.getLLVMContext();
913
914    const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
915    llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
916
917    // 0-15 are the 16 integer registers.
918    // 16 is %rip.
919    AssignToArrayRange(Builder, Address, Eight8, 0, 16);
920
921    return false;
922  }
923};
924
925}
926
927X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
928  // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
929  // classified recursively so that always two fields are
930  // considered. The resulting class is calculated according to
931  // the classes of the fields in the eightbyte:
932  //
933  // (a) If both classes are equal, this is the resulting class.
934  //
935  // (b) If one of the classes is NO_CLASS, the resulting class is
936  // the other class.
937  //
938  // (c) If one of the classes is MEMORY, the result is the MEMORY
939  // class.
940  //
941  // (d) If one of the classes is INTEGER, the result is the
942  // INTEGER.
943  //
944  // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
945  // MEMORY is used as class.
946  //
947  // (f) Otherwise class SSE is used.
948
949  // Accum should never be memory (we should have returned) or
950  // ComplexX87 (because this cannot be passed in a structure).
951  assert((Accum != Memory && Accum != ComplexX87) &&
952         "Invalid accumulated classification during merge.");
953  if (Accum == Field || Field == NoClass)
954    return Accum;
955  if (Field == Memory)
956    return Memory;
957  if (Accum == NoClass)
958    return Field;
959  if (Accum == Integer || Field == Integer)
960    return Integer;
961  if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
962      Accum == X87 || Accum == X87Up)
963    return Memory;
964  return SSE;
965}
966
967void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
968                             Class &Lo, Class &Hi) const {
969  // FIXME: This code can be simplified by introducing a simple value class for
970  // Class pairs with appropriate constructor methods for the various
971  // situations.
972
973  // FIXME: Some of the split computations are wrong; unaligned vectors
974  // shouldn't be passed in registers for example, so there is no chance they
975  // can straddle an eightbyte. Verify & simplify.
976
977  Lo = Hi = NoClass;
978
979  Class &Current = OffsetBase < 64 ? Lo : Hi;
980  Current = Memory;
981
982  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
983    BuiltinType::Kind k = BT->getKind();
984
985    if (k == BuiltinType::Void) {
986      Current = NoClass;
987    } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
988      Lo = Integer;
989      Hi = Integer;
990    } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
991      Current = Integer;
992    } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
993      Current = SSE;
994    } else if (k == BuiltinType::LongDouble) {
995      Lo = X87;
996      Hi = X87Up;
997    }
998    // FIXME: _Decimal32 and _Decimal64 are SSE.
999    // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1000    return;
1001  }
1002
1003  if (const EnumType *ET = Ty->getAs<EnumType>()) {
1004    // Classify the underlying integer type.
1005    classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi);
1006    return;
1007  }
1008
1009  if (Ty->hasPointerRepresentation()) {
1010    Current = Integer;
1011    return;
1012  }
1013
1014  if (Ty->isMemberPointerType()) {
1015    if (Ty->isMemberFunctionPointerType())
1016      Lo = Hi = Integer;
1017    else
1018      Current = Integer;
1019    return;
1020  }
1021
1022  if (const VectorType *VT = Ty->getAs<VectorType>()) {
1023    uint64_t Size = getContext().getTypeSize(VT);
1024    if (Size == 32) {
1025      // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1026      // float> as integer.
1027      Current = Integer;
1028
1029      // If this type crosses an eightbyte boundary, it should be
1030      // split.
1031      uint64_t EB_Real = (OffsetBase) / 64;
1032      uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1033      if (EB_Real != EB_Imag)
1034        Hi = Lo;
1035    } else if (Size == 64) {
1036      // gcc passes <1 x double> in memory. :(
1037      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1038        return;
1039
1040      // gcc passes <1 x long long> as INTEGER.
1041      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1042          VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1043          VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1044          VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1045        Current = Integer;
1046      else
1047        Current = SSE;
1048
1049      // If this type crosses an eightbyte boundary, it should be
1050      // split.
1051      if (OffsetBase && OffsetBase != 64)
1052        Hi = Lo;
1053    } else if (Size == 128) {
1054      Lo = SSE;
1055      Hi = SSEUp;
1056    }
1057    return;
1058  }
1059
1060  if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1061    QualType ET = getContext().getCanonicalType(CT->getElementType());
1062
1063    uint64_t Size = getContext().getTypeSize(Ty);
1064    if (ET->isIntegralOrEnumerationType()) {
1065      if (Size <= 64)
1066        Current = Integer;
1067      else if (Size <= 128)
1068        Lo = Hi = Integer;
1069    } else if (ET == getContext().FloatTy)
1070      Current = SSE;
1071    else if (ET == getContext().DoubleTy)
1072      Lo = Hi = SSE;
1073    else if (ET == getContext().LongDoubleTy)
1074      Current = ComplexX87;
1075
1076    // If this complex type crosses an eightbyte boundary then it
1077    // should be split.
1078    uint64_t EB_Real = (OffsetBase) / 64;
1079    uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1080    if (Hi == NoClass && EB_Real != EB_Imag)
1081      Hi = Lo;
1082
1083    return;
1084  }
1085
1086  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1087    // Arrays are treated like structures.
1088
1089    uint64_t Size = getContext().getTypeSize(Ty);
1090
1091    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1092    // than two eightbytes, ..., it has class MEMORY.
1093    if (Size > 128)
1094      return;
1095
1096    // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1097    // fields, it has class MEMORY.
1098    //
1099    // Only need to check alignment of array base.
1100    if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1101      return;
1102
1103    // Otherwise implement simplified merge. We could be smarter about
1104    // this, but it isn't worth it and would be harder to verify.
1105    Current = NoClass;
1106    uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1107    uint64_t ArraySize = AT->getSize().getZExtValue();
1108    for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1109      Class FieldLo, FieldHi;
1110      classify(AT->getElementType(), Offset, FieldLo, FieldHi);
1111      Lo = merge(Lo, FieldLo);
1112      Hi = merge(Hi, FieldHi);
1113      if (Lo == Memory || Hi == Memory)
1114        break;
1115    }
1116
1117    // Do post merger cleanup (see below). Only case we worry about is Memory.
1118    if (Hi == Memory)
1119      Lo = Memory;
1120    assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1121    return;
1122  }
1123
1124  if (const RecordType *RT = Ty->getAs<RecordType>()) {
1125    uint64_t Size = getContext().getTypeSize(Ty);
1126
1127    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1128    // than two eightbytes, ..., it has class MEMORY.
1129    if (Size > 128)
1130      return;
1131
1132    // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1133    // copy constructor or a non-trivial destructor, it is passed by invisible
1134    // reference.
1135    if (hasNonTrivialDestructorOrCopyConstructor(RT))
1136      return;
1137
1138    const RecordDecl *RD = RT->getDecl();
1139
1140    // Assume variable sized types are passed in memory.
1141    if (RD->hasFlexibleArrayMember())
1142      return;
1143
1144    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1145
1146    // Reset Lo class, this will be recomputed.
1147    Current = NoClass;
1148
1149    // If this is a C++ record, classify the bases first.
1150    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1151      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1152             e = CXXRD->bases_end(); i != e; ++i) {
1153        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1154               "Unexpected base class!");
1155        const CXXRecordDecl *Base =
1156          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1157
1158        // Classify this field.
1159        //
1160        // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1161        // single eightbyte, each is classified separately. Each eightbyte gets
1162        // initialized to class NO_CLASS.
1163        Class FieldLo, FieldHi;
1164        uint64_t Offset = OffsetBase + Layout.getBaseClassOffsetInBits(Base);
1165        classify(i->getType(), Offset, FieldLo, FieldHi);
1166        Lo = merge(Lo, FieldLo);
1167        Hi = merge(Hi, FieldHi);
1168        if (Lo == Memory || Hi == Memory)
1169          break;
1170      }
1171    }
1172
1173    // Classify the fields one at a time, merging the results.
1174    unsigned idx = 0;
1175    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1176           i != e; ++i, ++idx) {
1177      uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1178      bool BitField = i->isBitField();
1179
1180      // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1181      // fields, it has class MEMORY.
1182      //
1183      // Note, skip this test for bit-fields, see below.
1184      if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1185        Lo = Memory;
1186        return;
1187      }
1188
1189      // Classify this field.
1190      //
1191      // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1192      // exceeds a single eightbyte, each is classified
1193      // separately. Each eightbyte gets initialized to class
1194      // NO_CLASS.
1195      Class FieldLo, FieldHi;
1196
1197      // Bit-fields require special handling, they do not force the
1198      // structure to be passed in memory even if unaligned, and
1199      // therefore they can straddle an eightbyte.
1200      if (BitField) {
1201        // Ignore padding bit-fields.
1202        if (i->isUnnamedBitfield())
1203          continue;
1204
1205        uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1206        uint64_t Size =
1207          i->getBitWidth()->EvaluateAsInt(getContext()).getZExtValue();
1208
1209        uint64_t EB_Lo = Offset / 64;
1210        uint64_t EB_Hi = (Offset + Size - 1) / 64;
1211        FieldLo = FieldHi = NoClass;
1212        if (EB_Lo) {
1213          assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1214          FieldLo = NoClass;
1215          FieldHi = Integer;
1216        } else {
1217          FieldLo = Integer;
1218          FieldHi = EB_Hi ? Integer : NoClass;
1219        }
1220      } else
1221        classify(i->getType(), Offset, FieldLo, FieldHi);
1222      Lo = merge(Lo, FieldLo);
1223      Hi = merge(Hi, FieldHi);
1224      if (Lo == Memory || Hi == Memory)
1225        break;
1226    }
1227
1228    // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1229    //
1230    // (a) If one of the classes is MEMORY, the whole argument is
1231    // passed in memory.
1232    //
1233    // (b) If SSEUP is not preceeded by SSE, it is converted to SSE.
1234
1235    // The first of these conditions is guaranteed by how we implement
1236    // the merge (just bail).
1237    //
1238    // The second condition occurs in the case of unions; for example
1239    // union { _Complex double; unsigned; }.
1240    if (Hi == Memory)
1241      Lo = Memory;
1242    if (Hi == SSEUp && Lo != SSE)
1243      Hi = SSE;
1244  }
1245}
1246
1247ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1248  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1249  // place naturally.
1250  if (!isAggregateTypeForABI(Ty)) {
1251    // Treat an enum type as its underlying type.
1252    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1253      Ty = EnumTy->getDecl()->getIntegerType();
1254
1255    return (Ty->isPromotableIntegerType() ?
1256            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1257  }
1258
1259  return ABIArgInfo::getIndirect(0);
1260}
1261
1262ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty) const {
1263  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1264  // place naturally.
1265  if (!isAggregateTypeForABI(Ty)) {
1266    // Treat an enum type as its underlying type.
1267    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1268      Ty = EnumTy->getDecl()->getIntegerType();
1269
1270    return (Ty->isPromotableIntegerType() ?
1271            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1272  }
1273
1274  if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1275    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
1276
1277  // Compute the byval alignment. We trust the back-end to honor the
1278  // minimum ABI alignment for byval, to make cleaner IR.
1279  const unsigned MinABIAlign = 8;
1280  unsigned Align = getContext().getTypeAlign(Ty) / 8;
1281  if (Align > MinABIAlign)
1282    return ABIArgInfo::getIndirect(Align);
1283  return ABIArgInfo::getIndirect(0);
1284}
1285
1286/// Get16ByteVectorType - The ABI specifies that a value should be passed in an
1287/// full vector XMM register.  Pick an LLVM IR type that will be passed as a
1288/// vector register.
1289const llvm::Type *X86_64ABIInfo::Get16ByteVectorType(QualType Ty) const {
1290  const llvm::Type *IRType = CGT.ConvertTypeRecursive(Ty);
1291
1292  // Wrapper structs that just contain vectors are passed just like vectors,
1293  // strip them off if present.
1294  const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1295  while (STy && STy->getNumElements() == 1) {
1296    IRType = STy->getElementType(0);
1297    STy = dyn_cast<llvm::StructType>(IRType);
1298  }
1299
1300  // If the preferred type is a 16-byte vector, prefer to pass it.
1301  if (const llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
1302    const llvm::Type *EltTy = VT->getElementType();
1303    if (VT->getBitWidth() == 128 &&
1304        (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1305         EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1306         EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1307         EltTy->isIntegerTy(128)))
1308      return VT;
1309  }
1310
1311  return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1312}
1313
1314/// BitsContainNoUserData - Return true if the specified [start,end) bit range
1315/// is known to either be off the end of the specified type or being in
1316/// alignment padding.  The user type specified is known to be at most 128 bits
1317/// in size, and have passed through X86_64ABIInfo::classify with a successful
1318/// classification that put one of the two halves in the INTEGER class.
1319///
1320/// It is conservatively correct to return false.
1321static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1322                                  unsigned EndBit, ASTContext &Context) {
1323  // If the bytes being queried are off the end of the type, there is no user
1324  // data hiding here.  This handles analysis of builtins, vectors and other
1325  // types that don't contain interesting padding.
1326  unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1327  if (TySize <= StartBit)
1328    return true;
1329
1330  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1331    unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1332    unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1333
1334    // Check each element to see if the element overlaps with the queried range.
1335    for (unsigned i = 0; i != NumElts; ++i) {
1336      // If the element is after the span we care about, then we're done..
1337      unsigned EltOffset = i*EltSize;
1338      if (EltOffset >= EndBit) break;
1339
1340      unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1341      if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1342                                 EndBit-EltOffset, Context))
1343        return false;
1344    }
1345    // If it overlaps no elements, then it is safe to process as padding.
1346    return true;
1347  }
1348
1349  if (const RecordType *RT = Ty->getAs<RecordType>()) {
1350    const RecordDecl *RD = RT->getDecl();
1351    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1352
1353    // If this is a C++ record, check the bases first.
1354    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1355      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1356           e = CXXRD->bases_end(); i != e; ++i) {
1357        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1358               "Unexpected base class!");
1359        const CXXRecordDecl *Base =
1360          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1361
1362        // If the base is after the span we care about, ignore it.
1363        unsigned BaseOffset = (unsigned)Layout.getBaseClassOffsetInBits(Base);
1364        if (BaseOffset >= EndBit) continue;
1365
1366        unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1367        if (!BitsContainNoUserData(i->getType(), BaseStart,
1368                                   EndBit-BaseOffset, Context))
1369          return false;
1370      }
1371    }
1372
1373    // Verify that no field has data that overlaps the region of interest.  Yes
1374    // this could be sped up a lot by being smarter about queried fields,
1375    // however we're only looking at structs up to 16 bytes, so we don't care
1376    // much.
1377    unsigned idx = 0;
1378    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1379         i != e; ++i, ++idx) {
1380      unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
1381
1382      // If we found a field after the region we care about, then we're done.
1383      if (FieldOffset >= EndBit) break;
1384
1385      unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
1386      if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
1387                                 Context))
1388        return false;
1389    }
1390
1391    // If nothing in this record overlapped the area of interest, then we're
1392    // clean.
1393    return true;
1394  }
1395
1396  return false;
1397}
1398
1399/// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
1400/// float member at the specified offset.  For example, {int,{float}} has a
1401/// float at offset 4.  It is conservatively correct for this routine to return
1402/// false.
1403static bool ContainsFloatAtOffset(const llvm::Type *IRType, unsigned IROffset,
1404                                  const llvm::TargetData &TD) {
1405  // Base case if we find a float.
1406  if (IROffset == 0 && IRType->isFloatTy())
1407    return true;
1408
1409  // If this is a struct, recurse into the field at the specified offset.
1410  if (const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1411    const llvm::StructLayout *SL = TD.getStructLayout(STy);
1412    unsigned Elt = SL->getElementContainingOffset(IROffset);
1413    IROffset -= SL->getElementOffset(Elt);
1414    return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
1415  }
1416
1417  // If this is an array, recurse into the field at the specified offset.
1418  if (const llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1419    const llvm::Type *EltTy = ATy->getElementType();
1420    unsigned EltSize = TD.getTypeAllocSize(EltTy);
1421    IROffset -= IROffset/EltSize*EltSize;
1422    return ContainsFloatAtOffset(EltTy, IROffset, TD);
1423  }
1424
1425  return false;
1426}
1427
1428
1429/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
1430/// low 8 bytes of an XMM register, corresponding to the SSE class.
1431const llvm::Type *X86_64ABIInfo::
1432GetSSETypeAtOffset(const llvm::Type *IRType, unsigned IROffset,
1433                   QualType SourceTy, unsigned SourceOffset) const {
1434  // The only three choices we have are either double, <2 x float>, or float. We
1435  // pass as float if the last 4 bytes is just padding.  This happens for
1436  // structs that contain 3 floats.
1437  if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
1438                            SourceOffset*8+64, getContext()))
1439    return llvm::Type::getFloatTy(getVMContext());
1440
1441  // We want to pass as <2 x float> if the LLVM IR type contains a float at
1442  // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
1443  // case.
1444  if (ContainsFloatAtOffset(IRType, IROffset, getTargetData()) &&
1445      ContainsFloatAtOffset(IRType, IROffset+4, getTargetData()))
1446    return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
1447
1448  return llvm::Type::getDoubleTy(getVMContext());
1449}
1450
1451
1452/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
1453/// an 8-byte GPR.  This means that we either have a scalar or we are talking
1454/// about the high or low part of an up-to-16-byte struct.  This routine picks
1455/// the best LLVM IR type to represent this, which may be i64 or may be anything
1456/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
1457/// etc).
1458///
1459/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
1460/// the source type.  IROffset is an offset in bytes into the LLVM IR type that
1461/// the 8-byte value references.  PrefType may be null.
1462///
1463/// SourceTy is the source level type for the entire argument.  SourceOffset is
1464/// an offset into this that we're processing (which is always either 0 or 8).
1465///
1466const llvm::Type *X86_64ABIInfo::
1467GetINTEGERTypeAtOffset(const llvm::Type *IRType, unsigned IROffset,
1468                       QualType SourceTy, unsigned SourceOffset) const {
1469  // If we're dealing with an un-offset LLVM IR type, then it means that we're
1470  // returning an 8-byte unit starting with it.  See if we can safely use it.
1471  if (IROffset == 0) {
1472    // Pointers and int64's always fill the 8-byte unit.
1473    if (isa<llvm::PointerType>(IRType) || IRType->isIntegerTy(64))
1474      return IRType;
1475
1476    // If we have a 1/2/4-byte integer, we can use it only if the rest of the
1477    // goodness in the source type is just tail padding.  This is allowed to
1478    // kick in for struct {double,int} on the int, but not on
1479    // struct{double,int,int} because we wouldn't return the second int.  We
1480    // have to do this analysis on the source type because we can't depend on
1481    // unions being lowered a specific way etc.
1482    if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
1483        IRType->isIntegerTy(32)) {
1484      unsigned BitWidth = cast<llvm::IntegerType>(IRType)->getBitWidth();
1485
1486      if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
1487                                SourceOffset*8+64, getContext()))
1488        return IRType;
1489    }
1490  }
1491
1492  if (const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1493    // If this is a struct, recurse into the field at the specified offset.
1494    const llvm::StructLayout *SL = getTargetData().getStructLayout(STy);
1495    if (IROffset < SL->getSizeInBytes()) {
1496      unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
1497      IROffset -= SL->getElementOffset(FieldIdx);
1498
1499      return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
1500                                    SourceTy, SourceOffset);
1501    }
1502  }
1503
1504  if (const llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1505    const llvm::Type *EltTy = ATy->getElementType();
1506    unsigned EltSize = getTargetData().getTypeAllocSize(EltTy);
1507    unsigned EltOffset = IROffset/EltSize*EltSize;
1508    return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
1509                                  SourceOffset);
1510  }
1511
1512  // Okay, we don't have any better idea of what to pass, so we pass this in an
1513  // integer register that isn't too big to fit the rest of the struct.
1514  unsigned TySizeInBytes =
1515    (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
1516
1517  assert(TySizeInBytes != SourceOffset && "Empty field?");
1518
1519  // It is always safe to classify this as an integer type up to i64 that
1520  // isn't larger than the structure.
1521  return llvm::IntegerType::get(getVMContext(),
1522                                std::min(TySizeInBytes-SourceOffset, 8U)*8);
1523}
1524
1525
1526/// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
1527/// be used as elements of a two register pair to pass or return, return a
1528/// first class aggregate to represent them.  For example, if the low part of
1529/// a by-value argument should be passed as i32* and the high part as float,
1530/// return {i32*, float}.
1531static const llvm::Type *
1532GetX86_64ByValArgumentPair(const llvm::Type *Lo, const llvm::Type *Hi,
1533                           const llvm::TargetData &TD) {
1534  // In order to correctly satisfy the ABI, we need to the high part to start
1535  // at offset 8.  If the high and low parts we inferred are both 4-byte types
1536  // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
1537  // the second element at offset 8.  Check for this:
1538  unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
1539  unsigned HiAlign = TD.getABITypeAlignment(Hi);
1540  unsigned HiStart = llvm::TargetData::RoundUpAlignment(LoSize, HiAlign);
1541  assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
1542
1543  // To handle this, we have to increase the size of the low part so that the
1544  // second element will start at an 8 byte offset.  We can't increase the size
1545  // of the second element because it might make us access off the end of the
1546  // struct.
1547  if (HiStart != 8) {
1548    // There are only two sorts of types the ABI generation code can produce for
1549    // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
1550    // Promote these to a larger type.
1551    if (Lo->isFloatTy())
1552      Lo = llvm::Type::getDoubleTy(Lo->getContext());
1553    else {
1554      assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
1555      Lo = llvm::Type::getInt64Ty(Lo->getContext());
1556    }
1557  }
1558
1559  const llvm::StructType *Result =
1560    llvm::StructType::get(Lo->getContext(), Lo, Hi, NULL);
1561
1562
1563  // Verify that the second element is at an 8-byte offset.
1564  assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
1565         "Invalid x86-64 argument pair!");
1566  return Result;
1567}
1568
1569ABIArgInfo X86_64ABIInfo::
1570classifyReturnType(QualType RetTy) const {
1571  // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
1572  // classification algorithm.
1573  X86_64ABIInfo::Class Lo, Hi;
1574  classify(RetTy, 0, Lo, Hi);
1575
1576  // Check some invariants.
1577  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1578  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1579
1580  const llvm::Type *ResType = 0;
1581  switch (Lo) {
1582  case NoClass:
1583    if (Hi == NoClass)
1584      return ABIArgInfo::getIgnore();
1585    // If the low part is just padding, it takes no register, leave ResType
1586    // null.
1587    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1588           "Unknown missing lo part");
1589    break;
1590
1591  case SSEUp:
1592  case X87Up:
1593    assert(0 && "Invalid classification for lo word.");
1594
1595    // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
1596    // hidden argument.
1597  case Memory:
1598    return getIndirectReturnResult(RetTy);
1599
1600    // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
1601    // available register of the sequence %rax, %rdx is used.
1602  case Integer:
1603    ResType = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 0,
1604                                     RetTy, 0);
1605
1606    // If we have a sign or zero extended integer, make sure to return Extend
1607    // so that the parameter gets the right LLVM IR attributes.
1608    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
1609      // Treat an enum type as its underlying type.
1610      if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1611        RetTy = EnumTy->getDecl()->getIntegerType();
1612
1613      if (RetTy->isIntegralOrEnumerationType() &&
1614          RetTy->isPromotableIntegerType())
1615        return ABIArgInfo::getExtend();
1616    }
1617    break;
1618
1619    // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
1620    // available SSE register of the sequence %xmm0, %xmm1 is used.
1621  case SSE:
1622    ResType = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 0, RetTy, 0);
1623    break;
1624
1625    // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
1626    // returned on the X87 stack in %st0 as 80-bit x87 number.
1627  case X87:
1628    ResType = llvm::Type::getX86_FP80Ty(getVMContext());
1629    break;
1630
1631    // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
1632    // part of the value is returned in %st0 and the imaginary part in
1633    // %st1.
1634  case ComplexX87:
1635    assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
1636    ResType = llvm::StructType::get(getVMContext(),
1637                                    llvm::Type::getX86_FP80Ty(getVMContext()),
1638                                    llvm::Type::getX86_FP80Ty(getVMContext()),
1639                                    NULL);
1640    break;
1641  }
1642
1643  const llvm::Type *HighPart = 0;
1644  switch (Hi) {
1645    // Memory was handled previously and X87 should
1646    // never occur as a hi class.
1647  case Memory:
1648  case X87:
1649    assert(0 && "Invalid classification for hi word.");
1650
1651  case ComplexX87: // Previously handled.
1652  case NoClass:
1653    break;
1654
1655  case Integer:
1656    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(RetTy),
1657                                      8, RetTy, 8);
1658    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1659      return ABIArgInfo::getDirect(HighPart, 8);
1660    break;
1661  case SSE:
1662    HighPart = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 8, RetTy, 8);
1663    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1664      return ABIArgInfo::getDirect(HighPart, 8);
1665    break;
1666
1667    // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
1668    // is passed in the upper half of the last used SSE register.
1669    //
1670    // SSEUP should always be preceeded by SSE, just widen.
1671  case SSEUp:
1672    assert(Lo == SSE && "Unexpected SSEUp classification.");
1673    ResType = Get16ByteVectorType(RetTy);
1674    break;
1675
1676    // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
1677    // returned together with the previous X87 value in %st0.
1678  case X87Up:
1679    // If X87Up is preceeded by X87, we don't need to do
1680    // anything. However, in some cases with unions it may not be
1681    // preceeded by X87. In such situations we follow gcc and pass the
1682    // extra bits in an SSE reg.
1683    if (Lo != X87) {
1684      HighPart = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy),
1685                                    8, RetTy, 8);
1686      if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1687        return ABIArgInfo::getDirect(HighPart, 8);
1688    }
1689    break;
1690  }
1691
1692  // If a high part was specified, merge it together with the low part.  It is
1693  // known to pass in the high eightbyte of the result.  We do this by forming a
1694  // first class struct aggregate with the high and low part: {low, high}
1695  if (HighPart)
1696    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
1697
1698  return ABIArgInfo::getDirect(ResType);
1699}
1700
1701ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned &neededInt,
1702                                               unsigned &neededSSE) const {
1703  X86_64ABIInfo::Class Lo, Hi;
1704  classify(Ty, 0, Lo, Hi);
1705
1706  // Check some invariants.
1707  // FIXME: Enforce these by construction.
1708  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1709  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1710
1711  neededInt = 0;
1712  neededSSE = 0;
1713  const llvm::Type *ResType = 0;
1714  switch (Lo) {
1715  case NoClass:
1716    if (Hi == NoClass)
1717      return ABIArgInfo::getIgnore();
1718    // If the low part is just padding, it takes no register, leave ResType
1719    // null.
1720    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1721           "Unknown missing lo part");
1722    break;
1723
1724    // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
1725    // on the stack.
1726  case Memory:
1727
1728    // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
1729    // COMPLEX_X87, it is passed in memory.
1730  case X87:
1731  case ComplexX87:
1732    return getIndirectResult(Ty);
1733
1734  case SSEUp:
1735  case X87Up:
1736    assert(0 && "Invalid classification for lo word.");
1737
1738    // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
1739    // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
1740    // and %r9 is used.
1741  case Integer:
1742    ++neededInt;
1743
1744    // Pick an 8-byte type based on the preferred type.
1745    ResType = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(Ty), 0, Ty, 0);
1746
1747    // If we have a sign or zero extended integer, make sure to return Extend
1748    // so that the parameter gets the right LLVM IR attributes.
1749    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
1750      // Treat an enum type as its underlying type.
1751      if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1752        Ty = EnumTy->getDecl()->getIntegerType();
1753
1754      if (Ty->isIntegralOrEnumerationType() &&
1755          Ty->isPromotableIntegerType())
1756        return ABIArgInfo::getExtend();
1757    }
1758
1759    break;
1760
1761    // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
1762    // available SSE register is used, the registers are taken in the
1763    // order from %xmm0 to %xmm7.
1764  case SSE: {
1765    const llvm::Type *IRType = CGT.ConvertTypeRecursive(Ty);
1766    if (Hi != NoClass || !UseX86_MMXType(IRType))
1767      ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
1768    else
1769      // This is an MMX type. Treat it as such.
1770      ResType = llvm::Type::getX86_MMXTy(getVMContext());
1771
1772    ++neededSSE;
1773    break;
1774  }
1775  }
1776
1777  const llvm::Type *HighPart = 0;
1778  switch (Hi) {
1779    // Memory was handled previously, ComplexX87 and X87 should
1780    // never occur as hi classes, and X87Up must be preceed by X87,
1781    // which is passed in memory.
1782  case Memory:
1783  case X87:
1784  case ComplexX87:
1785    assert(0 && "Invalid classification for hi word.");
1786    break;
1787
1788  case NoClass: break;
1789
1790  case Integer:
1791    ++neededInt;
1792    // Pick an 8-byte type based on the preferred type.
1793    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(Ty), 8, Ty, 8);
1794
1795    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
1796      return ABIArgInfo::getDirect(HighPart, 8);
1797    break;
1798
1799    // X87Up generally doesn't occur here (long double is passed in
1800    // memory), except in situations involving unions.
1801  case X87Up:
1802  case SSE:
1803    HighPart = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(Ty), 8, Ty, 8);
1804
1805    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
1806      return ABIArgInfo::getDirect(HighPart, 8);
1807
1808    ++neededSSE;
1809    break;
1810
1811    // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
1812    // eightbyte is passed in the upper half of the last used SSE
1813    // register.  This only happens when 128-bit vectors are passed.
1814  case SSEUp:
1815    assert(Lo == SSE && "Unexpected SSEUp classification");
1816    ResType = Get16ByteVectorType(Ty);
1817    break;
1818  }
1819
1820  // If a high part was specified, merge it together with the low part.  It is
1821  // known to pass in the high eightbyte of the result.  We do this by forming a
1822  // first class struct aggregate with the high and low part: {low, high}
1823  if (HighPart)
1824    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
1825
1826  return ABIArgInfo::getDirect(ResType);
1827}
1828
1829void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1830
1831  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
1832
1833  // Keep track of the number of assigned registers.
1834  unsigned freeIntRegs = 6, freeSSERegs = 8;
1835
1836  // If the return value is indirect, then the hidden argument is consuming one
1837  // integer register.
1838  if (FI.getReturnInfo().isIndirect())
1839    --freeIntRegs;
1840
1841  // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
1842  // get assigned (in left-to-right order) for passing as follows...
1843  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1844       it != ie; ++it) {
1845    unsigned neededInt, neededSSE;
1846    it->info = classifyArgumentType(it->type, neededInt, neededSSE);
1847
1848    // AMD64-ABI 3.2.3p3: If there are no registers available for any
1849    // eightbyte of an argument, the whole argument is passed on the
1850    // stack. If registers have already been assigned for some
1851    // eightbytes of such an argument, the assignments get reverted.
1852    if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
1853      freeIntRegs -= neededInt;
1854      freeSSERegs -= neededSSE;
1855    } else {
1856      it->info = getIndirectResult(it->type);
1857    }
1858  }
1859}
1860
1861static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
1862                                        QualType Ty,
1863                                        CodeGenFunction &CGF) {
1864  llvm::Value *overflow_arg_area_p =
1865    CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
1866  llvm::Value *overflow_arg_area =
1867    CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
1868
1869  // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
1870  // byte boundary if alignment needed by type exceeds 8 byte boundary.
1871  uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
1872  if (Align > 8) {
1873    // Note that we follow the ABI & gcc here, even though the type
1874    // could in theory have an alignment greater than 16. This case
1875    // shouldn't ever matter in practice.
1876
1877    // overflow_arg_area = (overflow_arg_area + 15) & ~15;
1878    llvm::Value *Offset =
1879      llvm::ConstantInt::get(CGF.Int32Ty, 15);
1880    overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
1881    llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
1882                                                    CGF.Int64Ty);
1883    llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~15LL);
1884    overflow_arg_area =
1885      CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1886                                 overflow_arg_area->getType(),
1887                                 "overflow_arg_area.align");
1888  }
1889
1890  // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
1891  const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
1892  llvm::Value *Res =
1893    CGF.Builder.CreateBitCast(overflow_arg_area,
1894                              llvm::PointerType::getUnqual(LTy));
1895
1896  // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
1897  // l->overflow_arg_area + sizeof(type).
1898  // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
1899  // an 8 byte boundary.
1900
1901  uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
1902  llvm::Value *Offset =
1903      llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
1904  overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
1905                                            "overflow_arg_area.next");
1906  CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
1907
1908  // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
1909  return Res;
1910}
1911
1912llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1913                                      CodeGenFunction &CGF) const {
1914  llvm::LLVMContext &VMContext = CGF.getLLVMContext();
1915
1916  // Assume that va_list type is correct; should be pointer to LLVM type:
1917  // struct {
1918  //   i32 gp_offset;
1919  //   i32 fp_offset;
1920  //   i8* overflow_arg_area;
1921  //   i8* reg_save_area;
1922  // };
1923  unsigned neededInt, neededSSE;
1924
1925  Ty = CGF.getContext().getCanonicalType(Ty);
1926  ABIArgInfo AI = classifyArgumentType(Ty, neededInt, neededSSE);
1927
1928  // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
1929  // in the registers. If not go to step 7.
1930  if (!neededInt && !neededSSE)
1931    return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
1932
1933  // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
1934  // general purpose registers needed to pass type and num_fp to hold
1935  // the number of floating point registers needed.
1936
1937  // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
1938  // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
1939  // l->fp_offset > 304 - num_fp * 16 go to step 7.
1940  //
1941  // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
1942  // register save space).
1943
1944  llvm::Value *InRegs = 0;
1945  llvm::Value *gp_offset_p = 0, *gp_offset = 0;
1946  llvm::Value *fp_offset_p = 0, *fp_offset = 0;
1947  if (neededInt) {
1948    gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
1949    gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
1950    InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
1951    InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
1952  }
1953
1954  if (neededSSE) {
1955    fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
1956    fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
1957    llvm::Value *FitsInFP =
1958      llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
1959    FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
1960    InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
1961  }
1962
1963  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
1964  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
1965  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
1966  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
1967
1968  // Emit code to load the value if it was passed in registers.
1969
1970  CGF.EmitBlock(InRegBlock);
1971
1972  // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
1973  // an offset of l->gp_offset and/or l->fp_offset. This may require
1974  // copying to a temporary location in case the parameter is passed
1975  // in different register classes or requires an alignment greater
1976  // than 8 for general purpose registers and 16 for XMM registers.
1977  //
1978  // FIXME: This really results in shameful code when we end up needing to
1979  // collect arguments from different places; often what should result in a
1980  // simple assembling of a structure from scattered addresses has many more
1981  // loads than necessary. Can we clean this up?
1982  const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
1983  llvm::Value *RegAddr =
1984    CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
1985                           "reg_save_area");
1986  if (neededInt && neededSSE) {
1987    // FIXME: Cleanup.
1988    assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
1989    const llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
1990    llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
1991    assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
1992    const llvm::Type *TyLo = ST->getElementType(0);
1993    const llvm::Type *TyHi = ST->getElementType(1);
1994    assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
1995           "Unexpected ABI info for mixed regs");
1996    const llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
1997    const llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
1998    llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
1999    llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2000    llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
2001    llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
2002    llvm::Value *V =
2003      CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2004    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2005    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2006    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2007
2008    RegAddr = CGF.Builder.CreateBitCast(Tmp,
2009                                        llvm::PointerType::getUnqual(LTy));
2010  } else if (neededInt) {
2011    RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2012    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2013                                        llvm::PointerType::getUnqual(LTy));
2014  } else if (neededSSE == 1) {
2015    RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2016    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2017                                        llvm::PointerType::getUnqual(LTy));
2018  } else {
2019    assert(neededSSE == 2 && "Invalid number of needed registers!");
2020    // SSE registers are spaced 16 bytes apart in the register save
2021    // area, we need to collect the two eightbytes together.
2022    llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2023    llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2024    const llvm::Type *DoubleTy = llvm::Type::getDoubleTy(VMContext);
2025    const llvm::Type *DblPtrTy =
2026      llvm::PointerType::getUnqual(DoubleTy);
2027    const llvm::StructType *ST = llvm::StructType::get(VMContext, DoubleTy,
2028                                                       DoubleTy, NULL);
2029    llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
2030    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2031                                                         DblPtrTy));
2032    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2033    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2034                                                         DblPtrTy));
2035    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2036    RegAddr = CGF.Builder.CreateBitCast(Tmp,
2037                                        llvm::PointerType::getUnqual(LTy));
2038  }
2039
2040  // AMD64-ABI 3.5.7p5: Step 5. Set:
2041  // l->gp_offset = l->gp_offset + num_gp * 8
2042  // l->fp_offset = l->fp_offset + num_fp * 16.
2043  if (neededInt) {
2044    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2045    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2046                            gp_offset_p);
2047  }
2048  if (neededSSE) {
2049    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2050    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2051                            fp_offset_p);
2052  }
2053  CGF.EmitBranch(ContBlock);
2054
2055  // Emit code to load the value if it was passed in memory.
2056
2057  CGF.EmitBlock(InMemBlock);
2058  llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2059
2060  // Return the appropriate result.
2061
2062  CGF.EmitBlock(ContBlock);
2063  llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(),
2064                                                 "vaarg.addr");
2065  ResAddr->reserveOperandSpace(2);
2066  ResAddr->addIncoming(RegAddr, InRegBlock);
2067  ResAddr->addIncoming(MemAddr, InMemBlock);
2068  return ResAddr;
2069}
2070
2071ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty) const {
2072
2073  if (Ty->isVoidType())
2074    return ABIArgInfo::getIgnore();
2075
2076  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2077    Ty = EnumTy->getDecl()->getIntegerType();
2078
2079  uint64_t Size = getContext().getTypeSize(Ty);
2080
2081  if (const RecordType *RT = Ty->getAs<RecordType>()) {
2082    if (hasNonTrivialDestructorOrCopyConstructor(RT) ||
2083        RT->getDecl()->hasFlexibleArrayMember())
2084      return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2085
2086    // FIXME: mingw64-gcc emits 128-bit struct as i128
2087    if (Size <= 128 &&
2088        (Size & (Size - 1)) == 0)
2089      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2090                                                          Size));
2091
2092    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2093  }
2094
2095  if (Ty->isPromotableIntegerType())
2096    return ABIArgInfo::getExtend();
2097
2098  return ABIArgInfo::getDirect();
2099}
2100
2101void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2102
2103  QualType RetTy = FI.getReturnType();
2104  FI.getReturnInfo() = classify(RetTy);
2105
2106  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2107       it != ie; ++it)
2108    it->info = classify(it->type);
2109}
2110
2111llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2112                                      CodeGenFunction &CGF) const {
2113  const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
2114  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
2115
2116  CGBuilderTy &Builder = CGF.Builder;
2117  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2118                                                       "ap");
2119  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2120  llvm::Type *PTy =
2121    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2122  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2123
2124  uint64_t Offset =
2125    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
2126  llvm::Value *NextAddr =
2127    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2128                      "ap.next");
2129  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2130
2131  return AddrTyped;
2132}
2133
2134// PowerPC-32
2135
2136namespace {
2137class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2138public:
2139  PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2140
2141  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2142    // This is recovered from gcc output.
2143    return 1; // r1 is the dedicated stack pointer
2144  }
2145
2146  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2147                               llvm::Value *Address) const;
2148};
2149
2150}
2151
2152bool
2153PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2154                                                llvm::Value *Address) const {
2155  // This is calculated from the LLVM and GCC tables and verified
2156  // against gcc output.  AFAIK all ABIs use the same encoding.
2157
2158  CodeGen::CGBuilderTy &Builder = CGF.Builder;
2159  llvm::LLVMContext &Context = CGF.getLLVMContext();
2160
2161  const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
2162  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2163  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2164  llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2165
2166  // 0-31: r0-31, the 4-byte general-purpose registers
2167  AssignToArrayRange(Builder, Address, Four8, 0, 31);
2168
2169  // 32-63: fp0-31, the 8-byte floating-point registers
2170  AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2171
2172  // 64-76 are various 4-byte special-purpose registers:
2173  // 64: mq
2174  // 65: lr
2175  // 66: ctr
2176  // 67: ap
2177  // 68-75 cr0-7
2178  // 76: xer
2179  AssignToArrayRange(Builder, Address, Four8, 64, 76);
2180
2181  // 77-108: v0-31, the 16-byte vector registers
2182  AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2183
2184  // 109: vrsave
2185  // 110: vscr
2186  // 111: spe_acc
2187  // 112: spefscr
2188  // 113: sfp
2189  AssignToArrayRange(Builder, Address, Four8, 109, 113);
2190
2191  return false;
2192}
2193
2194
2195//===----------------------------------------------------------------------===//
2196// ARM ABI Implementation
2197//===----------------------------------------------------------------------===//
2198
2199namespace {
2200
2201class ARMABIInfo : public ABIInfo {
2202public:
2203  enum ABIKind {
2204    APCS = 0,
2205    AAPCS = 1,
2206    AAPCS_VFP
2207  };
2208
2209private:
2210  ABIKind Kind;
2211
2212public:
2213  ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {}
2214
2215private:
2216  ABIKind getABIKind() const { return Kind; }
2217
2218  ABIArgInfo classifyReturnType(QualType RetTy) const;
2219  ABIArgInfo classifyArgumentType(QualType RetTy) const;
2220
2221  virtual void computeInfo(CGFunctionInfo &FI) const;
2222
2223  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2224                                 CodeGenFunction &CGF) const;
2225};
2226
2227class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
2228public:
2229  ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
2230    :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
2231
2232  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2233    return 13;
2234  }
2235};
2236
2237}
2238
2239void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
2240  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2241  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2242       it != ie; ++it)
2243    it->info = classifyArgumentType(it->type);
2244
2245  const llvm::Triple &Triple(getContext().Target.getTriple());
2246  llvm::CallingConv::ID DefaultCC;
2247  if (Triple.getEnvironmentName() == "gnueabi" ||
2248      Triple.getEnvironmentName() == "eabi")
2249    DefaultCC = llvm::CallingConv::ARM_AAPCS;
2250  else
2251    DefaultCC = llvm::CallingConv::ARM_APCS;
2252
2253  switch (getABIKind()) {
2254  case APCS:
2255    if (DefaultCC != llvm::CallingConv::ARM_APCS)
2256      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
2257    break;
2258
2259  case AAPCS:
2260    if (DefaultCC != llvm::CallingConv::ARM_AAPCS)
2261      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
2262    break;
2263
2264  case AAPCS_VFP:
2265    FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
2266    break;
2267  }
2268}
2269
2270ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty) const {
2271  if (!isAggregateTypeForABI(Ty)) {
2272    // Treat an enum type as its underlying type.
2273    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2274      Ty = EnumTy->getDecl()->getIntegerType();
2275
2276    return (Ty->isPromotableIntegerType() ?
2277            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2278  }
2279
2280  // Ignore empty records.
2281  if (isEmptyRecord(getContext(), Ty, true))
2282    return ABIArgInfo::getIgnore();
2283
2284  // Structures with either a non-trivial destructor or a non-trivial
2285  // copy constructor are always indirect.
2286  if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
2287    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2288
2289  // Otherwise, pass by coercing to a structure of the appropriate size.
2290  //
2291  // FIXME: This is kind of nasty... but there isn't much choice because the ARM
2292  // backend doesn't support byval.
2293  // FIXME: This doesn't handle alignment > 64 bits.
2294  const llvm::Type* ElemTy;
2295  unsigned SizeRegs;
2296  if (getContext().getTypeAlign(Ty) > 32) {
2297    ElemTy = llvm::Type::getInt64Ty(getVMContext());
2298    SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
2299  } else {
2300    ElemTy = llvm::Type::getInt32Ty(getVMContext());
2301    SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
2302  }
2303  std::vector<const llvm::Type*> LLVMFields;
2304  LLVMFields.push_back(llvm::ArrayType::get(ElemTy, SizeRegs));
2305  const llvm::Type* STy = llvm::StructType::get(getVMContext(), LLVMFields,
2306                                                true);
2307  return ABIArgInfo::getDirect(STy);
2308}
2309
2310static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
2311                              llvm::LLVMContext &VMContext) {
2312  // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
2313  // is called integer-like if its size is less than or equal to one word, and
2314  // the offset of each of its addressable sub-fields is zero.
2315
2316  uint64_t Size = Context.getTypeSize(Ty);
2317
2318  // Check that the type fits in a word.
2319  if (Size > 32)
2320    return false;
2321
2322  // FIXME: Handle vector types!
2323  if (Ty->isVectorType())
2324    return false;
2325
2326  // Float types are never treated as "integer like".
2327  if (Ty->isRealFloatingType())
2328    return false;
2329
2330  // If this is a builtin or pointer type then it is ok.
2331  if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
2332    return true;
2333
2334  // Small complex integer types are "integer like".
2335  if (const ComplexType *CT = Ty->getAs<ComplexType>())
2336    return isIntegerLikeType(CT->getElementType(), Context, VMContext);
2337
2338  // Single element and zero sized arrays should be allowed, by the definition
2339  // above, but they are not.
2340
2341  // Otherwise, it must be a record type.
2342  const RecordType *RT = Ty->getAs<RecordType>();
2343  if (!RT) return false;
2344
2345  // Ignore records with flexible arrays.
2346  const RecordDecl *RD = RT->getDecl();
2347  if (RD->hasFlexibleArrayMember())
2348    return false;
2349
2350  // Check that all sub-fields are at offset 0, and are themselves "integer
2351  // like".
2352  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2353
2354  bool HadField = false;
2355  unsigned idx = 0;
2356  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2357       i != e; ++i, ++idx) {
2358    const FieldDecl *FD = *i;
2359
2360    // Bit-fields are not addressable, we only need to verify they are "integer
2361    // like". We still have to disallow a subsequent non-bitfield, for example:
2362    //   struct { int : 0; int x }
2363    // is non-integer like according to gcc.
2364    if (FD->isBitField()) {
2365      if (!RD->isUnion())
2366        HadField = true;
2367
2368      if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2369        return false;
2370
2371      continue;
2372    }
2373
2374    // Check if this field is at offset 0.
2375    if (Layout.getFieldOffset(idx) != 0)
2376      return false;
2377
2378    if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2379      return false;
2380
2381    // Only allow at most one field in a structure. This doesn't match the
2382    // wording above, but follows gcc in situations with a field following an
2383    // empty structure.
2384    if (!RD->isUnion()) {
2385      if (HadField)
2386        return false;
2387
2388      HadField = true;
2389    }
2390  }
2391
2392  return true;
2393}
2394
2395ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
2396  if (RetTy->isVoidType())
2397    return ABIArgInfo::getIgnore();
2398
2399  // Large vector types should be returned via memory.
2400  if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
2401    return ABIArgInfo::getIndirect(0);
2402
2403  if (!isAggregateTypeForABI(RetTy)) {
2404    // Treat an enum type as its underlying type.
2405    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2406      RetTy = EnumTy->getDecl()->getIntegerType();
2407
2408    return (RetTy->isPromotableIntegerType() ?
2409            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2410  }
2411
2412  // Structures with either a non-trivial destructor or a non-trivial
2413  // copy constructor are always indirect.
2414  if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
2415    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2416
2417  // Are we following APCS?
2418  if (getABIKind() == APCS) {
2419    if (isEmptyRecord(getContext(), RetTy, false))
2420      return ABIArgInfo::getIgnore();
2421
2422    // Complex types are all returned as packed integers.
2423    //
2424    // FIXME: Consider using 2 x vector types if the back end handles them
2425    // correctly.
2426    if (RetTy->isAnyComplexType())
2427      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2428                                              getContext().getTypeSize(RetTy)));
2429
2430    // Integer like structures are returned in r0.
2431    if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
2432      // Return in the smallest viable integer type.
2433      uint64_t Size = getContext().getTypeSize(RetTy);
2434      if (Size <= 8)
2435        return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2436      if (Size <= 16)
2437        return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2438      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2439    }
2440
2441    // Otherwise return in memory.
2442    return ABIArgInfo::getIndirect(0);
2443  }
2444
2445  // Otherwise this is an AAPCS variant.
2446
2447  if (isEmptyRecord(getContext(), RetTy, true))
2448    return ABIArgInfo::getIgnore();
2449
2450  // Aggregates <= 4 bytes are returned in r0; other aggregates
2451  // are returned indirectly.
2452  uint64_t Size = getContext().getTypeSize(RetTy);
2453  if (Size <= 32) {
2454    // Return in the smallest viable integer type.
2455    if (Size <= 8)
2456      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2457    if (Size <= 16)
2458      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2459    return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2460  }
2461
2462  return ABIArgInfo::getIndirect(0);
2463}
2464
2465llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2466                                   CodeGenFunction &CGF) const {
2467  // FIXME: Need to handle alignment
2468  const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
2469  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
2470
2471  CGBuilderTy &Builder = CGF.Builder;
2472  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2473                                                       "ap");
2474  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2475  llvm::Type *PTy =
2476    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2477  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2478
2479  uint64_t Offset =
2480    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
2481  llvm::Value *NextAddr =
2482    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2483                      "ap.next");
2484  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2485
2486  return AddrTyped;
2487}
2488
2489//===----------------------------------------------------------------------===//
2490// SystemZ ABI Implementation
2491//===----------------------------------------------------------------------===//
2492
2493namespace {
2494
2495class SystemZABIInfo : public ABIInfo {
2496public:
2497  SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
2498
2499  bool isPromotableIntegerType(QualType Ty) const;
2500
2501  ABIArgInfo classifyReturnType(QualType RetTy) const;
2502  ABIArgInfo classifyArgumentType(QualType RetTy) const;
2503
2504  virtual void computeInfo(CGFunctionInfo &FI) const {
2505    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2506    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2507         it != ie; ++it)
2508      it->info = classifyArgumentType(it->type);
2509  }
2510
2511  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2512                                 CodeGenFunction &CGF) const;
2513};
2514
2515class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
2516public:
2517  SystemZTargetCodeGenInfo(CodeGenTypes &CGT)
2518    : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {}
2519};
2520
2521}
2522
2523bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
2524  // SystemZ ABI requires all 8, 16 and 32 bit quantities to be extended.
2525  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2526    switch (BT->getKind()) {
2527    case BuiltinType::Bool:
2528    case BuiltinType::Char_S:
2529    case BuiltinType::Char_U:
2530    case BuiltinType::SChar:
2531    case BuiltinType::UChar:
2532    case BuiltinType::Short:
2533    case BuiltinType::UShort:
2534    case BuiltinType::Int:
2535    case BuiltinType::UInt:
2536      return true;
2537    default:
2538      return false;
2539    }
2540  return false;
2541}
2542
2543llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2544                                       CodeGenFunction &CGF) const {
2545  // FIXME: Implement
2546  return 0;
2547}
2548
2549
2550ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
2551  if (RetTy->isVoidType())
2552    return ABIArgInfo::getIgnore();
2553  if (isAggregateTypeForABI(RetTy))
2554    return ABIArgInfo::getIndirect(0);
2555
2556  return (isPromotableIntegerType(RetTy) ?
2557          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2558}
2559
2560ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
2561  if (isAggregateTypeForABI(Ty))
2562    return ABIArgInfo::getIndirect(0);
2563
2564  return (isPromotableIntegerType(Ty) ?
2565          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2566}
2567
2568//===----------------------------------------------------------------------===//
2569// MBlaze ABI Implementation
2570//===----------------------------------------------------------------------===//
2571
2572namespace {
2573
2574class MBlazeABIInfo : public ABIInfo {
2575public:
2576  MBlazeABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
2577
2578  bool isPromotableIntegerType(QualType Ty) const;
2579
2580  ABIArgInfo classifyReturnType(QualType RetTy) const;
2581  ABIArgInfo classifyArgumentType(QualType RetTy) const;
2582
2583  virtual void computeInfo(CGFunctionInfo &FI) const {
2584    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2585    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2586         it != ie; ++it)
2587      it->info = classifyArgumentType(it->type);
2588  }
2589
2590  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2591                                 CodeGenFunction &CGF) const;
2592};
2593
2594class MBlazeTargetCodeGenInfo : public TargetCodeGenInfo {
2595public:
2596  MBlazeTargetCodeGenInfo(CodeGenTypes &CGT)
2597    : TargetCodeGenInfo(new MBlazeABIInfo(CGT)) {}
2598  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2599                           CodeGen::CodeGenModule &M) const;
2600};
2601
2602}
2603
2604bool MBlazeABIInfo::isPromotableIntegerType(QualType Ty) const {
2605  // MBlaze ABI requires all 8 and 16 bit quantities to be extended.
2606  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2607    switch (BT->getKind()) {
2608    case BuiltinType::Bool:
2609    case BuiltinType::Char_S:
2610    case BuiltinType::Char_U:
2611    case BuiltinType::SChar:
2612    case BuiltinType::UChar:
2613    case BuiltinType::Short:
2614    case BuiltinType::UShort:
2615      return true;
2616    default:
2617      return false;
2618    }
2619  return false;
2620}
2621
2622llvm::Value *MBlazeABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2623                                      CodeGenFunction &CGF) const {
2624  // FIXME: Implement
2625  return 0;
2626}
2627
2628
2629ABIArgInfo MBlazeABIInfo::classifyReturnType(QualType RetTy) const {
2630  if (RetTy->isVoidType())
2631    return ABIArgInfo::getIgnore();
2632  if (isAggregateTypeForABI(RetTy))
2633    return ABIArgInfo::getIndirect(0);
2634
2635  return (isPromotableIntegerType(RetTy) ?
2636          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2637}
2638
2639ABIArgInfo MBlazeABIInfo::classifyArgumentType(QualType Ty) const {
2640  if (isAggregateTypeForABI(Ty))
2641    return ABIArgInfo::getIndirect(0);
2642
2643  return (isPromotableIntegerType(Ty) ?
2644          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2645}
2646
2647void MBlazeTargetCodeGenInfo::SetTargetAttributes(const Decl *D,
2648                                                  llvm::GlobalValue *GV,
2649                                                  CodeGen::CodeGenModule &M)
2650                                                  const {
2651  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
2652  if (!FD) return;
2653
2654  llvm::CallingConv::ID CC = llvm::CallingConv::C;
2655  if (FD->hasAttr<MBlazeInterruptHandlerAttr>())
2656    CC = llvm::CallingConv::MBLAZE_INTR;
2657  else if (FD->hasAttr<MBlazeSaveVolatilesAttr>())
2658    CC = llvm::CallingConv::MBLAZE_SVOL;
2659
2660  if (CC != llvm::CallingConv::C) {
2661      // Handle 'interrupt_handler' attribute:
2662      llvm::Function *F = cast<llvm::Function>(GV);
2663
2664      // Step 1: Set ISR calling convention.
2665      F->setCallingConv(CC);
2666
2667      // Step 2: Add attributes goodness.
2668      F->addFnAttr(llvm::Attribute::NoInline);
2669  }
2670
2671  // Step 3: Emit _interrupt_handler alias.
2672  if (CC == llvm::CallingConv::MBLAZE_INTR)
2673    new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
2674                          "_interrupt_handler", GV, &M.getModule());
2675}
2676
2677
2678//===----------------------------------------------------------------------===//
2679// MSP430 ABI Implementation
2680//===----------------------------------------------------------------------===//
2681
2682namespace {
2683
2684class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
2685public:
2686  MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
2687    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
2688  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2689                           CodeGen::CodeGenModule &M) const;
2690};
2691
2692}
2693
2694void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
2695                                                  llvm::GlobalValue *GV,
2696                                             CodeGen::CodeGenModule &M) const {
2697  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2698    if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
2699      // Handle 'interrupt' attribute:
2700      llvm::Function *F = cast<llvm::Function>(GV);
2701
2702      // Step 1: Set ISR calling convention.
2703      F->setCallingConv(llvm::CallingConv::MSP430_INTR);
2704
2705      // Step 2: Add attributes goodness.
2706      F->addFnAttr(llvm::Attribute::NoInline);
2707
2708      // Step 3: Emit ISR vector alias.
2709      unsigned Num = attr->getNumber() + 0xffe0;
2710      new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
2711                            "vector_" + llvm::Twine::utohexstr(Num),
2712                            GV, &M.getModule());
2713    }
2714  }
2715}
2716
2717//===----------------------------------------------------------------------===//
2718// MIPS ABI Implementation.  This works for both little-endian and
2719// big-endian variants.
2720//===----------------------------------------------------------------------===//
2721
2722namespace {
2723class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
2724public:
2725  MIPSTargetCodeGenInfo(CodeGenTypes &CGT)
2726    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
2727
2728  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
2729    return 29;
2730  }
2731
2732  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2733                               llvm::Value *Address) const;
2734};
2735}
2736
2737bool
2738MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2739                                               llvm::Value *Address) const {
2740  // This information comes from gcc's implementation, which seems to
2741  // as canonical as it gets.
2742
2743  CodeGen::CGBuilderTy &Builder = CGF.Builder;
2744  llvm::LLVMContext &Context = CGF.getLLVMContext();
2745
2746  // Everything on MIPS is 4 bytes.  Double-precision FP registers
2747  // are aliased to pairs of single-precision FP registers.
2748  const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
2749  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2750
2751  // 0-31 are the general purpose registers, $0 - $31.
2752  // 32-63 are the floating-point registers, $f0 - $f31.
2753  // 64 and 65 are the multiply/divide registers, $hi and $lo.
2754  // 66 is the (notional, I think) register for signal-handler return.
2755  AssignToArrayRange(Builder, Address, Four8, 0, 65);
2756
2757  // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
2758  // They are one bit wide and ignored here.
2759
2760  // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
2761  // (coprocessor 1 is the FP unit)
2762  // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
2763  // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
2764  // 176-181 are the DSP accumulator registers.
2765  AssignToArrayRange(Builder, Address, Four8, 80, 181);
2766
2767  return false;
2768}
2769
2770
2771const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
2772  if (TheTargetCodeGenInfo)
2773    return *TheTargetCodeGenInfo;
2774
2775  // For now we just cache the TargetCodeGenInfo in CodeGenModule and don't
2776  // free it.
2777
2778  const llvm::Triple &Triple = getContext().Target.getTriple();
2779  switch (Triple.getArch()) {
2780  default:
2781    return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
2782
2783  case llvm::Triple::mips:
2784  case llvm::Triple::mipsel:
2785    return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types));
2786
2787  case llvm::Triple::arm:
2788  case llvm::Triple::thumb:
2789    // FIXME: We want to know the float calling convention as well.
2790    if (strcmp(getContext().Target.getABI(), "apcs-gnu") == 0)
2791      return *(TheTargetCodeGenInfo =
2792               new ARMTargetCodeGenInfo(Types, ARMABIInfo::APCS));
2793
2794    return *(TheTargetCodeGenInfo =
2795             new ARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS));
2796
2797  case llvm::Triple::ppc:
2798    return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
2799
2800  case llvm::Triple::systemz:
2801    return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types));
2802
2803  case llvm::Triple::mblaze:
2804    return *(TheTargetCodeGenInfo = new MBlazeTargetCodeGenInfo(Types));
2805
2806  case llvm::Triple::msp430:
2807    return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
2808
2809  case llvm::Triple::x86:
2810    switch (Triple.getOS()) {
2811    case llvm::Triple::Darwin:
2812      return *(TheTargetCodeGenInfo =
2813               new X86_32TargetCodeGenInfo(Types, true, true));
2814    case llvm::Triple::Cygwin:
2815    case llvm::Triple::MinGW32:
2816    case llvm::Triple::AuroraUX:
2817    case llvm::Triple::DragonFly:
2818    case llvm::Triple::FreeBSD:
2819    case llvm::Triple::OpenBSD:
2820    case llvm::Triple::NetBSD:
2821      return *(TheTargetCodeGenInfo =
2822               new X86_32TargetCodeGenInfo(Types, false, true));
2823
2824    default:
2825      return *(TheTargetCodeGenInfo =
2826               new X86_32TargetCodeGenInfo(Types, false, false));
2827    }
2828
2829  case llvm::Triple::x86_64:
2830    switch (Triple.getOS()) {
2831    case llvm::Triple::Win32:
2832    case llvm::Triple::MinGW32:
2833    case llvm::Triple::Cygwin:
2834      return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
2835    default:
2836      return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types));
2837    }
2838  }
2839}
2840