TargetInfo.cpp revision b6932692234eba2472ef85a38434496e9342fd38
1//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// These classes wrap the information about a call or function
11// definition used to handle ABI compliancy.
12//
13//===----------------------------------------------------------------------===//
14
15#include "TargetInfo.h"
16#include "ABIInfo.h"
17#include "CodeGenFunction.h"
18#include "clang/AST/RecordLayout.h"
19#include "clang/Frontend/CodeGenOptions.h"
20#include "llvm/Type.h"
21#include "llvm/DataLayout.h"
22#include "llvm/ADT/Triple.h"
23#include "llvm/Support/raw_ostream.h"
24using namespace clang;
25using namespace CodeGen;
26
27static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
28                               llvm::Value *Array,
29                               llvm::Value *Value,
30                               unsigned FirstIndex,
31                               unsigned LastIndex) {
32  // Alternatively, we could emit this as a loop in the source.
33  for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
34    llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
35    Builder.CreateStore(Value, Cell);
36  }
37}
38
39static bool isAggregateTypeForABI(QualType T) {
40  return CodeGenFunction::hasAggregateLLVMType(T) ||
41         T->isMemberFunctionPointerType();
42}
43
44ABIInfo::~ABIInfo() {}
45
46ASTContext &ABIInfo::getContext() const {
47  return CGT.getContext();
48}
49
50llvm::LLVMContext &ABIInfo::getVMContext() const {
51  return CGT.getLLVMContext();
52}
53
54const llvm::DataLayout &ABIInfo::getDataLayout() const {
55  return CGT.getDataLayout();
56}
57
58
59void ABIArgInfo::dump() const {
60  raw_ostream &OS = llvm::errs();
61  OS << "(ABIArgInfo Kind=";
62  switch (TheKind) {
63  case Direct:
64    OS << "Direct Type=";
65    if (llvm::Type *Ty = getCoerceToType())
66      Ty->print(OS);
67    else
68      OS << "null";
69    break;
70  case Extend:
71    OS << "Extend";
72    break;
73  case Ignore:
74    OS << "Ignore";
75    break;
76  case Indirect:
77    OS << "Indirect Align=" << getIndirectAlign()
78       << " ByVal=" << getIndirectByVal()
79       << " Realign=" << getIndirectRealign();
80    break;
81  case Expand:
82    OS << "Expand";
83    break;
84  }
85  OS << ")\n";
86}
87
88TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
89
90// If someone can figure out a general rule for this, that would be great.
91// It's probably just doomed to be platform-dependent, though.
92unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
93  // Verified for:
94  //   x86-64     FreeBSD, Linux, Darwin
95  //   x86-32     FreeBSD, Linux, Darwin
96  //   PowerPC    Linux, Darwin
97  //   ARM        Darwin (*not* EABI)
98  return 32;
99}
100
101bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
102                                     const FunctionNoProtoType *fnType) const {
103  // The following conventions are known to require this to be false:
104  //   x86_stdcall
105  //   MIPS
106  // For everything else, we just prefer false unless we opt out.
107  return false;
108}
109
110static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
111
112/// isEmptyField - Return true iff a the field is "empty", that is it
113/// is an unnamed bit-field or an (array of) empty record(s).
114static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
115                         bool AllowArrays) {
116  if (FD->isUnnamedBitfield())
117    return true;
118
119  QualType FT = FD->getType();
120
121  // Constant arrays of empty records count as empty, strip them off.
122  // Constant arrays of zero length always count as empty.
123  if (AllowArrays)
124    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
125      if (AT->getSize() == 0)
126        return true;
127      FT = AT->getElementType();
128    }
129
130  const RecordType *RT = FT->getAs<RecordType>();
131  if (!RT)
132    return false;
133
134  // C++ record fields are never empty, at least in the Itanium ABI.
135  //
136  // FIXME: We should use a predicate for whether this behavior is true in the
137  // current ABI.
138  if (isa<CXXRecordDecl>(RT->getDecl()))
139    return false;
140
141  return isEmptyRecord(Context, FT, AllowArrays);
142}
143
144/// isEmptyRecord - Return true iff a structure contains only empty
145/// fields. Note that a structure with a flexible array member is not
146/// considered empty.
147static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
148  const RecordType *RT = T->getAs<RecordType>();
149  if (!RT)
150    return 0;
151  const RecordDecl *RD = RT->getDecl();
152  if (RD->hasFlexibleArrayMember())
153    return false;
154
155  // If this is a C++ record, check the bases first.
156  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
157    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
158           e = CXXRD->bases_end(); i != e; ++i)
159      if (!isEmptyRecord(Context, i->getType(), true))
160        return false;
161
162  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
163         i != e; ++i)
164    if (!isEmptyField(Context, *i, AllowArrays))
165      return false;
166  return true;
167}
168
169/// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
170/// a non-trivial destructor or a non-trivial copy constructor.
171static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
172  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
173  if (!RD)
174    return false;
175
176  return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
177}
178
179/// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
180/// a record type with either a non-trivial destructor or a non-trivial copy
181/// constructor.
182static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
183  const RecordType *RT = T->getAs<RecordType>();
184  if (!RT)
185    return false;
186
187  return hasNonTrivialDestructorOrCopyConstructor(RT);
188}
189
190/// isSingleElementStruct - Determine if a structure is a "single
191/// element struct", i.e. it has exactly one non-empty field or
192/// exactly one field which is itself a single element
193/// struct. Structures with flexible array members are never
194/// considered single element structs.
195///
196/// \return The field declaration for the single non-empty field, if
197/// it exists.
198static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
199  const RecordType *RT = T->getAsStructureType();
200  if (!RT)
201    return 0;
202
203  const RecordDecl *RD = RT->getDecl();
204  if (RD->hasFlexibleArrayMember())
205    return 0;
206
207  const Type *Found = 0;
208
209  // If this is a C++ record, check the bases first.
210  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
211    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
212           e = CXXRD->bases_end(); i != e; ++i) {
213      // Ignore empty records.
214      if (isEmptyRecord(Context, i->getType(), true))
215        continue;
216
217      // If we already found an element then this isn't a single-element struct.
218      if (Found)
219        return 0;
220
221      // If this is non-empty and not a single element struct, the composite
222      // cannot be a single element struct.
223      Found = isSingleElementStruct(i->getType(), Context);
224      if (!Found)
225        return 0;
226    }
227  }
228
229  // Check for single element.
230  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
231         i != e; ++i) {
232    const FieldDecl *FD = *i;
233    QualType FT = FD->getType();
234
235    // Ignore empty fields.
236    if (isEmptyField(Context, FD, true))
237      continue;
238
239    // If we already found an element then this isn't a single-element
240    // struct.
241    if (Found)
242      return 0;
243
244    // Treat single element arrays as the element.
245    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
246      if (AT->getSize().getZExtValue() != 1)
247        break;
248      FT = AT->getElementType();
249    }
250
251    if (!isAggregateTypeForABI(FT)) {
252      Found = FT.getTypePtr();
253    } else {
254      Found = isSingleElementStruct(FT, Context);
255      if (!Found)
256        return 0;
257    }
258  }
259
260  // We don't consider a struct a single-element struct if it has
261  // padding beyond the element type.
262  if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
263    return 0;
264
265  return Found;
266}
267
268static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
269  if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
270      !Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
271      !Ty->isBlockPointerType())
272    return false;
273
274  uint64_t Size = Context.getTypeSize(Ty);
275  return Size == 32 || Size == 64;
276}
277
278/// canExpandIndirectArgument - Test whether an argument type which is to be
279/// passed indirectly (on the stack) would have the equivalent layout if it was
280/// expanded into separate arguments. If so, we prefer to do the latter to avoid
281/// inhibiting optimizations.
282///
283// FIXME: This predicate is missing many cases, currently it just follows
284// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
285// should probably make this smarter, or better yet make the LLVM backend
286// capable of handling it.
287static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
288  // We can only expand structure types.
289  const RecordType *RT = Ty->getAs<RecordType>();
290  if (!RT)
291    return false;
292
293  // We can only expand (C) structures.
294  //
295  // FIXME: This needs to be generalized to handle classes as well.
296  const RecordDecl *RD = RT->getDecl();
297  if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
298    return false;
299
300  uint64_t Size = 0;
301
302  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
303         i != e; ++i) {
304    const FieldDecl *FD = *i;
305
306    if (!is32Or64BitBasicType(FD->getType(), Context))
307      return false;
308
309    // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
310    // how to expand them yet, and the predicate for telling if a bitfield still
311    // counts as "basic" is more complicated than what we were doing previously.
312    if (FD->isBitField())
313      return false;
314
315    Size += Context.getTypeSize(FD->getType());
316  }
317
318  // Make sure there are not any holes in the struct.
319  if (Size != Context.getTypeSize(Ty))
320    return false;
321
322  return true;
323}
324
325namespace {
326/// DefaultABIInfo - The default implementation for ABI specific
327/// details. This implementation provides information which results in
328/// self-consistent and sensible LLVM IR generation, but does not
329/// conform to any particular ABI.
330class DefaultABIInfo : public ABIInfo {
331public:
332  DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
333
334  ABIArgInfo classifyReturnType(QualType RetTy) const;
335  ABIArgInfo classifyArgumentType(QualType RetTy) const;
336
337  virtual void computeInfo(CGFunctionInfo &FI) const {
338    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
339    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
340         it != ie; ++it)
341      it->info = classifyArgumentType(it->type);
342  }
343
344  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
345                                 CodeGenFunction &CGF) const;
346};
347
348class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
349public:
350  DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
351    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
352};
353
354llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
355                                       CodeGenFunction &CGF) const {
356  return 0;
357}
358
359ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
360  if (isAggregateTypeForABI(Ty)) {
361    // Records with non trivial destructors/constructors should not be passed
362    // by value.
363    if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
364      return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
365
366    return ABIArgInfo::getIndirect(0);
367  }
368
369  // Treat an enum type as its underlying type.
370  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
371    Ty = EnumTy->getDecl()->getIntegerType();
372
373  return (Ty->isPromotableIntegerType() ?
374          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
375}
376
377ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
378  if (RetTy->isVoidType())
379    return ABIArgInfo::getIgnore();
380
381  if (isAggregateTypeForABI(RetTy))
382    return ABIArgInfo::getIndirect(0);
383
384  // Treat an enum type as its underlying type.
385  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
386    RetTy = EnumTy->getDecl()->getIntegerType();
387
388  return (RetTy->isPromotableIntegerType() ?
389          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
390}
391
392//===----------------------------------------------------------------------===//
393// le32/PNaCl bitcode ABI Implementation
394//===----------------------------------------------------------------------===//
395
396class PNaClABIInfo : public ABIInfo {
397 public:
398  PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
399
400  ABIArgInfo classifyReturnType(QualType RetTy) const;
401  ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &FreeRegs) const;
402
403  virtual void computeInfo(CGFunctionInfo &FI) const;
404  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
405                                 CodeGenFunction &CGF) const;
406};
407
408class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
409 public:
410  PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
411    : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
412};
413
414void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
415    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
416
417    unsigned FreeRegs = FI.getHasRegParm() ? FI.getRegParm() : 0;
418
419    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
420         it != ie; ++it)
421      it->info = classifyArgumentType(it->type, FreeRegs);
422  }
423
424llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
425                                       CodeGenFunction &CGF) const {
426  return 0;
427}
428
429ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty,
430                                              unsigned &FreeRegs) const {
431  if (isAggregateTypeForABI(Ty)) {
432    // Records with non trivial destructors/constructors should not be passed
433    // by value.
434    FreeRegs = 0;
435    if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
436      return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
437
438    return ABIArgInfo::getIndirect(0);
439  }
440
441  // Treat an enum type as its underlying type.
442  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
443    Ty = EnumTy->getDecl()->getIntegerType();
444
445  ABIArgInfo BaseInfo = (Ty->isPromotableIntegerType() ?
446          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
447
448  // Regparm regs hold 32 bits.
449  unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
450  if (SizeInRegs == 0) return BaseInfo;
451  if (SizeInRegs > FreeRegs) {
452    FreeRegs = 0;
453    return BaseInfo;
454  }
455  FreeRegs -= SizeInRegs;
456  return BaseInfo.isDirect() ?
457      ABIArgInfo::getDirectInReg(BaseInfo.getCoerceToType()) :
458      ABIArgInfo::getExtendInReg(BaseInfo.getCoerceToType());
459}
460
461ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
462  if (RetTy->isVoidType())
463    return ABIArgInfo::getIgnore();
464
465  if (isAggregateTypeForABI(RetTy))
466    return ABIArgInfo::getIndirect(0);
467
468  // Treat an enum type as its underlying type.
469  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
470    RetTy = EnumTy->getDecl()->getIntegerType();
471
472  return (RetTy->isPromotableIntegerType() ?
473          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
474}
475
476/// UseX86_MMXType - Return true if this is an MMX type that should use the
477/// special x86_mmx type.
478bool UseX86_MMXType(llvm::Type *IRType) {
479  // If the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>, use the
480  // special x86_mmx type.
481  return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
482    cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
483    IRType->getScalarSizeInBits() != 64;
484}
485
486static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
487                                          StringRef Constraint,
488                                          llvm::Type* Ty) {
489  if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy())
490    return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
491  return Ty;
492}
493
494//===----------------------------------------------------------------------===//
495// X86-32 ABI Implementation
496//===----------------------------------------------------------------------===//
497
498/// X86_32ABIInfo - The X86-32 ABI information.
499class X86_32ABIInfo : public ABIInfo {
500  enum Class {
501    Integer,
502    Float
503  };
504
505  static const unsigned MinABIStackAlignInBytes = 4;
506
507  bool IsDarwinVectorABI;
508  bool IsSmallStructInRegABI;
509  bool IsMMXDisabled;
510  bool IsWin32FloatStructABI;
511  unsigned DefaultNumRegisterParameters;
512
513  static bool isRegisterSize(unsigned Size) {
514    return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
515  }
516
517  static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context,
518                                          unsigned callingConvention);
519
520  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
521  /// such that the argument will be passed in memory.
522  ABIArgInfo getIndirectResult(QualType Ty, bool ByVal,
523                               unsigned &FreeRegs) const;
524
525  /// \brief Return the alignment to use for the given type on the stack.
526  unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
527
528  Class classify(QualType Ty) const;
529  ABIArgInfo classifyReturnType(QualType RetTy,
530                                unsigned callingConvention) const;
531  ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &FreeRegs,
532                                  bool IsFastCall) const;
533  bool shouldUseInReg(QualType Ty, unsigned &FreeRegs,
534                      bool IsFastCall) const;
535
536public:
537
538  virtual void computeInfo(CGFunctionInfo &FI) const;
539  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
540                                 CodeGenFunction &CGF) const;
541
542  X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool m, bool w,
543                unsigned r)
544    : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
545      IsMMXDisabled(m), IsWin32FloatStructABI(w),
546      DefaultNumRegisterParameters(r) {}
547};
548
549class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
550public:
551  X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
552      bool d, bool p, bool m, bool w, unsigned r)
553    :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, m, w, r)) {}
554
555  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
556                           CodeGen::CodeGenModule &CGM) const;
557
558  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
559    // Darwin uses different dwarf register numbers for EH.
560    if (CGM.isTargetDarwin()) return 5;
561
562    return 4;
563  }
564
565  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
566                               llvm::Value *Address) const;
567
568  llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
569                                  StringRef Constraint,
570                                  llvm::Type* Ty) const {
571    return X86AdjustInlineAsmType(CGF, Constraint, Ty);
572  }
573
574};
575
576}
577
578/// shouldReturnTypeInRegister - Determine if the given type should be
579/// passed in a register (for the Darwin ABI).
580bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
581                                               ASTContext &Context,
582                                               unsigned callingConvention) {
583  uint64_t Size = Context.getTypeSize(Ty);
584
585  // Type must be register sized.
586  if (!isRegisterSize(Size))
587    return false;
588
589  if (Ty->isVectorType()) {
590    // 64- and 128- bit vectors inside structures are not returned in
591    // registers.
592    if (Size == 64 || Size == 128)
593      return false;
594
595    return true;
596  }
597
598  // If this is a builtin, pointer, enum, complex type, member pointer, or
599  // member function pointer it is ok.
600  if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
601      Ty->isAnyComplexType() || Ty->isEnumeralType() ||
602      Ty->isBlockPointerType() || Ty->isMemberPointerType())
603    return true;
604
605  // Arrays are treated like records.
606  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
607    return shouldReturnTypeInRegister(AT->getElementType(), Context,
608                                      callingConvention);
609
610  // Otherwise, it must be a record type.
611  const RecordType *RT = Ty->getAs<RecordType>();
612  if (!RT) return false;
613
614  // FIXME: Traverse bases here too.
615
616  // For thiscall conventions, structures will never be returned in
617  // a register.  This is for compatibility with the MSVC ABI
618  if (callingConvention == llvm::CallingConv::X86_ThisCall &&
619      RT->isStructureType()) {
620    return false;
621  }
622
623  // Structure types are passed in register if all fields would be
624  // passed in a register.
625  for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
626         e = RT->getDecl()->field_end(); i != e; ++i) {
627    const FieldDecl *FD = *i;
628
629    // Empty fields are ignored.
630    if (isEmptyField(Context, FD, true))
631      continue;
632
633    // Check fields recursively.
634    if (!shouldReturnTypeInRegister(FD->getType(), Context,
635                                    callingConvention))
636      return false;
637  }
638  return true;
639}
640
641ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
642                                            unsigned callingConvention) const {
643  if (RetTy->isVoidType())
644    return ABIArgInfo::getIgnore();
645
646  if (const VectorType *VT = RetTy->getAs<VectorType>()) {
647    // On Darwin, some vectors are returned in registers.
648    if (IsDarwinVectorABI) {
649      uint64_t Size = getContext().getTypeSize(RetTy);
650
651      // 128-bit vectors are a special case; they are returned in
652      // registers and we need to make sure to pick a type the LLVM
653      // backend will like.
654      if (Size == 128)
655        return ABIArgInfo::getDirect(llvm::VectorType::get(
656                  llvm::Type::getInt64Ty(getVMContext()), 2));
657
658      // Always return in register if it fits in a general purpose
659      // register, or if it is 64 bits and has a single element.
660      if ((Size == 8 || Size == 16 || Size == 32) ||
661          (Size == 64 && VT->getNumElements() == 1))
662        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
663                                                            Size));
664
665      return ABIArgInfo::getIndirect(0);
666    }
667
668    return ABIArgInfo::getDirect();
669  }
670
671  if (isAggregateTypeForABI(RetTy)) {
672    if (const RecordType *RT = RetTy->getAs<RecordType>()) {
673      // Structures with either a non-trivial destructor or a non-trivial
674      // copy constructor are always indirect.
675      if (hasNonTrivialDestructorOrCopyConstructor(RT))
676        return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
677
678      // Structures with flexible arrays are always indirect.
679      if (RT->getDecl()->hasFlexibleArrayMember())
680        return ABIArgInfo::getIndirect(0);
681    }
682
683    // If specified, structs and unions are always indirect.
684    if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
685      return ABIArgInfo::getIndirect(0);
686
687    // Small structures which are register sized are generally returned
688    // in a register.
689    if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext(),
690                                                  callingConvention)) {
691      uint64_t Size = getContext().getTypeSize(RetTy);
692
693      // As a special-case, if the struct is a "single-element" struct, and
694      // the field is of type "float" or "double", return it in a
695      // floating-point register. (MSVC does not apply this special case.)
696      // We apply a similar transformation for pointer types to improve the
697      // quality of the generated IR.
698      if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
699        if ((!IsWin32FloatStructABI && SeltTy->isRealFloatingType())
700            || SeltTy->hasPointerRepresentation())
701          return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
702
703      // FIXME: We should be able to narrow this integer in cases with dead
704      // padding.
705      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
706    }
707
708    return ABIArgInfo::getIndirect(0);
709  }
710
711  // Treat an enum type as its underlying type.
712  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
713    RetTy = EnumTy->getDecl()->getIntegerType();
714
715  return (RetTy->isPromotableIntegerType() ?
716          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
717}
718
719static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
720  return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
721}
722
723static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
724  const RecordType *RT = Ty->getAs<RecordType>();
725  if (!RT)
726    return 0;
727  const RecordDecl *RD = RT->getDecl();
728
729  // If this is a C++ record, check the bases first.
730  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
731    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
732           e = CXXRD->bases_end(); i != e; ++i)
733      if (!isRecordWithSSEVectorType(Context, i->getType()))
734        return false;
735
736  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
737       i != e; ++i) {
738    QualType FT = i->getType();
739
740    if (isSSEVectorType(Context, FT))
741      return true;
742
743    if (isRecordWithSSEVectorType(Context, FT))
744      return true;
745  }
746
747  return false;
748}
749
750unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
751                                                 unsigned Align) const {
752  // Otherwise, if the alignment is less than or equal to the minimum ABI
753  // alignment, just use the default; the backend will handle this.
754  if (Align <= MinABIStackAlignInBytes)
755    return 0; // Use default alignment.
756
757  // On non-Darwin, the stack type alignment is always 4.
758  if (!IsDarwinVectorABI) {
759    // Set explicit alignment, since we may need to realign the top.
760    return MinABIStackAlignInBytes;
761  }
762
763  // Otherwise, if the type contains an SSE vector type, the alignment is 16.
764  if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
765                      isRecordWithSSEVectorType(getContext(), Ty)))
766    return 16;
767
768  return MinABIStackAlignInBytes;
769}
770
771ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
772                                            unsigned &FreeRegs) const {
773  if (!ByVal) {
774    if (FreeRegs) {
775      --FreeRegs; // Non byval indirects just use one pointer.
776      return ABIArgInfo::getIndirectInReg(0, false);
777    }
778    return ABIArgInfo::getIndirect(0, false);
779  }
780
781  // Compute the byval alignment.
782  unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
783  unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
784  if (StackAlign == 0)
785    return ABIArgInfo::getIndirect(4);
786
787  // If the stack alignment is less than the type alignment, realign the
788  // argument.
789  if (StackAlign < TypeAlign)
790    return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true,
791                                   /*Realign=*/true);
792
793  return ABIArgInfo::getIndirect(StackAlign);
794}
795
796X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
797  const Type *T = isSingleElementStruct(Ty, getContext());
798  if (!T)
799    T = Ty.getTypePtr();
800
801  if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
802    BuiltinType::Kind K = BT->getKind();
803    if (K == BuiltinType::Float || K == BuiltinType::Double)
804      return Float;
805  }
806  return Integer;
807}
808
809bool X86_32ABIInfo::shouldUseInReg(QualType Ty, unsigned &FreeRegs,
810                                   bool IsFastCall) const {
811  Class C = classify(Ty);
812  if (C == Float)
813    return false;
814
815  unsigned Size = getContext().getTypeSize(Ty);
816  unsigned SizeInRegs = (Size + 31) / 32;
817
818  if (SizeInRegs == 0)
819    return false;
820
821  if (SizeInRegs > FreeRegs) {
822    FreeRegs = 0;
823    return false;
824  }
825
826  FreeRegs -= SizeInRegs;
827
828  if (IsFastCall) {
829    if (Size > 32)
830      return false;
831
832    if (Ty->isIntegralOrEnumerationType())
833      return true;
834
835    if (Ty->isPointerType())
836      return true;
837
838    if (Ty->isReferenceType())
839      return true;
840
841    return false;
842  }
843
844  return true;
845}
846
847ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
848                                               unsigned &FreeRegs,
849                                               bool IsFastCall) const {
850  // FIXME: Set alignment on indirect arguments.
851  if (isAggregateTypeForABI(Ty)) {
852    // Structures with flexible arrays are always indirect.
853    if (const RecordType *RT = Ty->getAs<RecordType>()) {
854      // Structures with either a non-trivial destructor or a non-trivial
855      // copy constructor are always indirect.
856      if (hasNonTrivialDestructorOrCopyConstructor(RT))
857        return getIndirectResult(Ty, false, FreeRegs);
858
859      if (RT->getDecl()->hasFlexibleArrayMember())
860        return getIndirectResult(Ty, true, FreeRegs);
861    }
862
863    // Ignore empty structs/unions.
864    if (isEmptyRecord(getContext(), Ty, true))
865      return ABIArgInfo::getIgnore();
866
867    if (shouldUseInReg(Ty, FreeRegs, IsFastCall)) {
868      unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
869      llvm::LLVMContext &LLVMContext = getVMContext();
870      llvm::Type *Int32 = llvm::Type::getInt32Ty(LLVMContext);
871      SmallVector<llvm::Type*, 3> Elements;
872      for (unsigned I = 0; I < SizeInRegs; ++I)
873        Elements.push_back(Int32);
874      llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
875      return ABIArgInfo::getDirectInReg(Result);
876    }
877
878    // Expand small (<= 128-bit) record types when we know that the stack layout
879    // of those arguments will match the struct. This is important because the
880    // LLVM backend isn't smart enough to remove byval, which inhibits many
881    // optimizations.
882    if (getContext().getTypeSize(Ty) <= 4*32 &&
883        canExpandIndirectArgument(Ty, getContext()))
884      return ABIArgInfo::getExpand();
885
886    return getIndirectResult(Ty, true, FreeRegs);
887  }
888
889  if (const VectorType *VT = Ty->getAs<VectorType>()) {
890    // On Darwin, some vectors are passed in memory, we handle this by passing
891    // it as an i8/i16/i32/i64.
892    if (IsDarwinVectorABI) {
893      uint64_t Size = getContext().getTypeSize(Ty);
894      if ((Size == 8 || Size == 16 || Size == 32) ||
895          (Size == 64 && VT->getNumElements() == 1))
896        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
897                                                            Size));
898    }
899
900    llvm::Type *IRType = CGT.ConvertType(Ty);
901    if (UseX86_MMXType(IRType)) {
902      if (IsMMXDisabled)
903        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
904                                                            64));
905      ABIArgInfo AAI = ABIArgInfo::getDirect(IRType);
906      AAI.setCoerceToType(llvm::Type::getX86_MMXTy(getVMContext()));
907      return AAI;
908    }
909
910    return ABIArgInfo::getDirect();
911  }
912
913
914  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
915    Ty = EnumTy->getDecl()->getIntegerType();
916
917  bool InReg = shouldUseInReg(Ty, FreeRegs, IsFastCall);
918
919  if (Ty->isPromotableIntegerType()) {
920    if (InReg)
921      return ABIArgInfo::getExtendInReg();
922    return ABIArgInfo::getExtend();
923  }
924  if (InReg)
925    return ABIArgInfo::getDirectInReg();
926  return ABIArgInfo::getDirect();
927}
928
929void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
930  FI.getReturnInfo() = classifyReturnType(FI.getReturnType(),
931                                          FI.getCallingConvention());
932
933  unsigned CC = FI.getCallingConvention();
934  bool IsFastCall = CC == llvm::CallingConv::X86_FastCall;
935  unsigned FreeRegs;
936  if (IsFastCall)
937    FreeRegs = 2;
938  else if (FI.getHasRegParm())
939    FreeRegs = FI.getRegParm();
940  else
941    FreeRegs = DefaultNumRegisterParameters;
942
943  // If the return value is indirect, then the hidden argument is consuming one
944  // integer register.
945  if (FI.getReturnInfo().isIndirect() && FreeRegs) {
946    --FreeRegs;
947    ABIArgInfo &Old = FI.getReturnInfo();
948    Old = ABIArgInfo::getIndirectInReg(Old.getIndirectAlign(),
949                                       Old.getIndirectByVal(),
950                                       Old.getIndirectRealign());
951  }
952
953  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
954       it != ie; ++it)
955    it->info = classifyArgumentType(it->type, FreeRegs, IsFastCall);
956}
957
958llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
959                                      CodeGenFunction &CGF) const {
960  llvm::Type *BPP = CGF.Int8PtrPtrTy;
961
962  CGBuilderTy &Builder = CGF.Builder;
963  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
964                                                       "ap");
965  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
966
967  // Compute if the address needs to be aligned
968  unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
969  Align = getTypeStackAlignInBytes(Ty, Align);
970  Align = std::max(Align, 4U);
971  if (Align > 4) {
972    // addr = (addr + align - 1) & -align;
973    llvm::Value *Offset =
974      llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
975    Addr = CGF.Builder.CreateGEP(Addr, Offset);
976    llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
977                                                    CGF.Int32Ty);
978    llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
979    Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
980                                      Addr->getType(),
981                                      "ap.cur.aligned");
982  }
983
984  llvm::Type *PTy =
985    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
986  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
987
988  uint64_t Offset =
989    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
990  llvm::Value *NextAddr =
991    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
992                      "ap.next");
993  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
994
995  return AddrTyped;
996}
997
998void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
999                                                  llvm::GlobalValue *GV,
1000                                            CodeGen::CodeGenModule &CGM) const {
1001  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1002    if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1003      // Get the LLVM function.
1004      llvm::Function *Fn = cast<llvm::Function>(GV);
1005
1006      // Now add the 'alignstack' attribute with a value of 16.
1007      llvm::AttrBuilder B;
1008      B.addStackAlignmentAttr(16);
1009      Fn->addAttribute(llvm::AttrListPtr::FunctionIndex,
1010                       llvm::Attributes::get(CGM.getLLVMContext(), B));
1011    }
1012  }
1013}
1014
1015bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1016                                               CodeGen::CodeGenFunction &CGF,
1017                                               llvm::Value *Address) const {
1018  CodeGen::CGBuilderTy &Builder = CGF.Builder;
1019
1020  llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1021
1022  // 0-7 are the eight integer registers;  the order is different
1023  //   on Darwin (for EH), but the range is the same.
1024  // 8 is %eip.
1025  AssignToArrayRange(Builder, Address, Four8, 0, 8);
1026
1027  if (CGF.CGM.isTargetDarwin()) {
1028    // 12-16 are st(0..4).  Not sure why we stop at 4.
1029    // These have size 16, which is sizeof(long double) on
1030    // platforms with 8-byte alignment for that type.
1031    llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1032    AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1033
1034  } else {
1035    // 9 is %eflags, which doesn't get a size on Darwin for some
1036    // reason.
1037    Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
1038
1039    // 11-16 are st(0..5).  Not sure why we stop at 5.
1040    // These have size 12, which is sizeof(long double) on
1041    // platforms with 4-byte alignment for that type.
1042    llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1043    AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1044  }
1045
1046  return false;
1047}
1048
1049//===----------------------------------------------------------------------===//
1050// X86-64 ABI Implementation
1051//===----------------------------------------------------------------------===//
1052
1053
1054namespace {
1055/// X86_64ABIInfo - The X86_64 ABI information.
1056class X86_64ABIInfo : public ABIInfo {
1057  enum Class {
1058    Integer = 0,
1059    SSE,
1060    SSEUp,
1061    X87,
1062    X87Up,
1063    ComplexX87,
1064    NoClass,
1065    Memory
1066  };
1067
1068  /// merge - Implement the X86_64 ABI merging algorithm.
1069  ///
1070  /// Merge an accumulating classification \arg Accum with a field
1071  /// classification \arg Field.
1072  ///
1073  /// \param Accum - The accumulating classification. This should
1074  /// always be either NoClass or the result of a previous merge
1075  /// call. In addition, this should never be Memory (the caller
1076  /// should just return Memory for the aggregate).
1077  static Class merge(Class Accum, Class Field);
1078
1079  /// postMerge - Implement the X86_64 ABI post merging algorithm.
1080  ///
1081  /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1082  /// final MEMORY or SSE classes when necessary.
1083  ///
1084  /// \param AggregateSize - The size of the current aggregate in
1085  /// the classification process.
1086  ///
1087  /// \param Lo - The classification for the parts of the type
1088  /// residing in the low word of the containing object.
1089  ///
1090  /// \param Hi - The classification for the parts of the type
1091  /// residing in the higher words of the containing object.
1092  ///
1093  void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1094
1095  /// classify - Determine the x86_64 register classes in which the
1096  /// given type T should be passed.
1097  ///
1098  /// \param Lo - The classification for the parts of the type
1099  /// residing in the low word of the containing object.
1100  ///
1101  /// \param Hi - The classification for the parts of the type
1102  /// residing in the high word of the containing object.
1103  ///
1104  /// \param OffsetBase - The bit offset of this type in the
1105  /// containing object.  Some parameters are classified different
1106  /// depending on whether they straddle an eightbyte boundary.
1107  ///
1108  /// If a word is unused its result will be NoClass; if a type should
1109  /// be passed in Memory then at least the classification of \arg Lo
1110  /// will be Memory.
1111  ///
1112  /// The \arg Lo class will be NoClass iff the argument is ignored.
1113  ///
1114  /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1115  /// also be ComplexX87.
1116  void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi) const;
1117
1118  llvm::Type *GetByteVectorType(QualType Ty) const;
1119  llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1120                                 unsigned IROffset, QualType SourceTy,
1121                                 unsigned SourceOffset) const;
1122  llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1123                                     unsigned IROffset, QualType SourceTy,
1124                                     unsigned SourceOffset) const;
1125
1126  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1127  /// such that the argument will be returned in memory.
1128  ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1129
1130  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1131  /// such that the argument will be passed in memory.
1132  ///
1133  /// \param freeIntRegs - The number of free integer registers remaining
1134  /// available.
1135  ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1136
1137  ABIArgInfo classifyReturnType(QualType RetTy) const;
1138
1139  ABIArgInfo classifyArgumentType(QualType Ty,
1140                                  unsigned freeIntRegs,
1141                                  unsigned &neededInt,
1142                                  unsigned &neededSSE) const;
1143
1144  bool IsIllegalVectorType(QualType Ty) const;
1145
1146  /// The 0.98 ABI revision clarified a lot of ambiguities,
1147  /// unfortunately in ways that were not always consistent with
1148  /// certain previous compilers.  In particular, platforms which
1149  /// required strict binary compatibility with older versions of GCC
1150  /// may need to exempt themselves.
1151  bool honorsRevision0_98() const {
1152    return !getContext().getTargetInfo().getTriple().isOSDarwin();
1153  }
1154
1155  bool HasAVX;
1156  // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1157  // 64-bit hardware.
1158  bool Has64BitPointers;
1159
1160public:
1161  X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) :
1162      ABIInfo(CGT), HasAVX(hasavx),
1163      Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1164  }
1165
1166  bool isPassedUsingAVXType(QualType type) const {
1167    unsigned neededInt, neededSSE;
1168    // The freeIntRegs argument doesn't matter here.
1169    ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE);
1170    if (info.isDirect()) {
1171      llvm::Type *ty = info.getCoerceToType();
1172      if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1173        return (vectorTy->getBitWidth() > 128);
1174    }
1175    return false;
1176  }
1177
1178  virtual void computeInfo(CGFunctionInfo &FI) const;
1179
1180  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1181                                 CodeGenFunction &CGF) const;
1182};
1183
1184/// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1185class WinX86_64ABIInfo : public ABIInfo {
1186
1187  ABIArgInfo classify(QualType Ty) const;
1188
1189public:
1190  WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
1191
1192  virtual void computeInfo(CGFunctionInfo &FI) const;
1193
1194  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1195                                 CodeGenFunction &CGF) const;
1196};
1197
1198class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1199public:
1200  X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1201      : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {}
1202
1203  const X86_64ABIInfo &getABIInfo() const {
1204    return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
1205  }
1206
1207  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1208    return 7;
1209  }
1210
1211  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1212                               llvm::Value *Address) const {
1213    llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1214
1215    // 0-15 are the 16 integer registers.
1216    // 16 is %rip.
1217    AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1218    return false;
1219  }
1220
1221  llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1222                                  StringRef Constraint,
1223                                  llvm::Type* Ty) const {
1224    return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1225  }
1226
1227  bool isNoProtoCallVariadic(const CallArgList &args,
1228                             const FunctionNoProtoType *fnType) const {
1229    // The default CC on x86-64 sets %al to the number of SSA
1230    // registers used, and GCC sets this when calling an unprototyped
1231    // function, so we override the default behavior.  However, don't do
1232    // that when AVX types are involved: the ABI explicitly states it is
1233    // undefined, and it doesn't work in practice because of how the ABI
1234    // defines varargs anyway.
1235    if (fnType->getCallConv() == CC_Default || fnType->getCallConv() == CC_C) {
1236      bool HasAVXType = false;
1237      for (CallArgList::const_iterator
1238             it = args.begin(), ie = args.end(); it != ie; ++it) {
1239        if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1240          HasAVXType = true;
1241          break;
1242        }
1243      }
1244
1245      if (!HasAVXType)
1246        return true;
1247    }
1248
1249    return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1250  }
1251
1252};
1253
1254class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1255public:
1256  WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
1257    : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
1258
1259  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1260    return 7;
1261  }
1262
1263  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1264                               llvm::Value *Address) const {
1265    llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1266
1267    // 0-15 are the 16 integer registers.
1268    // 16 is %rip.
1269    AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1270    return false;
1271  }
1272};
1273
1274}
1275
1276void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1277                              Class &Hi) const {
1278  // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1279  //
1280  // (a) If one of the classes is Memory, the whole argument is passed in
1281  //     memory.
1282  //
1283  // (b) If X87UP is not preceded by X87, the whole argument is passed in
1284  //     memory.
1285  //
1286  // (c) If the size of the aggregate exceeds two eightbytes and the first
1287  //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1288  //     argument is passed in memory. NOTE: This is necessary to keep the
1289  //     ABI working for processors that don't support the __m256 type.
1290  //
1291  // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1292  //
1293  // Some of these are enforced by the merging logic.  Others can arise
1294  // only with unions; for example:
1295  //   union { _Complex double; unsigned; }
1296  //
1297  // Note that clauses (b) and (c) were added in 0.98.
1298  //
1299  if (Hi == Memory)
1300    Lo = Memory;
1301  if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1302    Lo = Memory;
1303  if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1304    Lo = Memory;
1305  if (Hi == SSEUp && Lo != SSE)
1306    Hi = SSE;
1307}
1308
1309X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1310  // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1311  // classified recursively so that always two fields are
1312  // considered. The resulting class is calculated according to
1313  // the classes of the fields in the eightbyte:
1314  //
1315  // (a) If both classes are equal, this is the resulting class.
1316  //
1317  // (b) If one of the classes is NO_CLASS, the resulting class is
1318  // the other class.
1319  //
1320  // (c) If one of the classes is MEMORY, the result is the MEMORY
1321  // class.
1322  //
1323  // (d) If one of the classes is INTEGER, the result is the
1324  // INTEGER.
1325  //
1326  // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1327  // MEMORY is used as class.
1328  //
1329  // (f) Otherwise class SSE is used.
1330
1331  // Accum should never be memory (we should have returned) or
1332  // ComplexX87 (because this cannot be passed in a structure).
1333  assert((Accum != Memory && Accum != ComplexX87) &&
1334         "Invalid accumulated classification during merge.");
1335  if (Accum == Field || Field == NoClass)
1336    return Accum;
1337  if (Field == Memory)
1338    return Memory;
1339  if (Accum == NoClass)
1340    return Field;
1341  if (Accum == Integer || Field == Integer)
1342    return Integer;
1343  if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1344      Accum == X87 || Accum == X87Up)
1345    return Memory;
1346  return SSE;
1347}
1348
1349void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1350                             Class &Lo, Class &Hi) const {
1351  // FIXME: This code can be simplified by introducing a simple value class for
1352  // Class pairs with appropriate constructor methods for the various
1353  // situations.
1354
1355  // FIXME: Some of the split computations are wrong; unaligned vectors
1356  // shouldn't be passed in registers for example, so there is no chance they
1357  // can straddle an eightbyte. Verify & simplify.
1358
1359  Lo = Hi = NoClass;
1360
1361  Class &Current = OffsetBase < 64 ? Lo : Hi;
1362  Current = Memory;
1363
1364  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1365    BuiltinType::Kind k = BT->getKind();
1366
1367    if (k == BuiltinType::Void) {
1368      Current = NoClass;
1369    } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1370      Lo = Integer;
1371      Hi = Integer;
1372    } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1373      Current = Integer;
1374    } else if ((k == BuiltinType::Float || k == BuiltinType::Double) ||
1375               (k == BuiltinType::LongDouble &&
1376                getContext().getTargetInfo().getTriple().getOS() ==
1377                llvm::Triple::NativeClient)) {
1378      Current = SSE;
1379    } else if (k == BuiltinType::LongDouble) {
1380      Lo = X87;
1381      Hi = X87Up;
1382    }
1383    // FIXME: _Decimal32 and _Decimal64 are SSE.
1384    // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1385    return;
1386  }
1387
1388  if (const EnumType *ET = Ty->getAs<EnumType>()) {
1389    // Classify the underlying integer type.
1390    classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi);
1391    return;
1392  }
1393
1394  if (Ty->hasPointerRepresentation()) {
1395    Current = Integer;
1396    return;
1397  }
1398
1399  if (Ty->isMemberPointerType()) {
1400    if (Ty->isMemberFunctionPointerType() && Has64BitPointers)
1401      Lo = Hi = Integer;
1402    else
1403      Current = Integer;
1404    return;
1405  }
1406
1407  if (const VectorType *VT = Ty->getAs<VectorType>()) {
1408    uint64_t Size = getContext().getTypeSize(VT);
1409    if (Size == 32) {
1410      // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1411      // float> as integer.
1412      Current = Integer;
1413
1414      // If this type crosses an eightbyte boundary, it should be
1415      // split.
1416      uint64_t EB_Real = (OffsetBase) / 64;
1417      uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1418      if (EB_Real != EB_Imag)
1419        Hi = Lo;
1420    } else if (Size == 64) {
1421      // gcc passes <1 x double> in memory. :(
1422      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1423        return;
1424
1425      // gcc passes <1 x long long> as INTEGER.
1426      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1427          VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1428          VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1429          VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1430        Current = Integer;
1431      else
1432        Current = SSE;
1433
1434      // If this type crosses an eightbyte boundary, it should be
1435      // split.
1436      if (OffsetBase && OffsetBase != 64)
1437        Hi = Lo;
1438    } else if (Size == 128 || (HasAVX && Size == 256)) {
1439      // Arguments of 256-bits are split into four eightbyte chunks. The
1440      // least significant one belongs to class SSE and all the others to class
1441      // SSEUP. The original Lo and Hi design considers that types can't be
1442      // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1443      // This design isn't correct for 256-bits, but since there're no cases
1444      // where the upper parts would need to be inspected, avoid adding
1445      // complexity and just consider Hi to match the 64-256 part.
1446      Lo = SSE;
1447      Hi = SSEUp;
1448    }
1449    return;
1450  }
1451
1452  if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1453    QualType ET = getContext().getCanonicalType(CT->getElementType());
1454
1455    uint64_t Size = getContext().getTypeSize(Ty);
1456    if (ET->isIntegralOrEnumerationType()) {
1457      if (Size <= 64)
1458        Current = Integer;
1459      else if (Size <= 128)
1460        Lo = Hi = Integer;
1461    } else if (ET == getContext().FloatTy)
1462      Current = SSE;
1463    else if (ET == getContext().DoubleTy ||
1464             (ET == getContext().LongDoubleTy &&
1465              getContext().getTargetInfo().getTriple().getOS() ==
1466              llvm::Triple::NativeClient))
1467      Lo = Hi = SSE;
1468    else if (ET == getContext().LongDoubleTy)
1469      Current = ComplexX87;
1470
1471    // If this complex type crosses an eightbyte boundary then it
1472    // should be split.
1473    uint64_t EB_Real = (OffsetBase) / 64;
1474    uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1475    if (Hi == NoClass && EB_Real != EB_Imag)
1476      Hi = Lo;
1477
1478    return;
1479  }
1480
1481  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1482    // Arrays are treated like structures.
1483
1484    uint64_t Size = getContext().getTypeSize(Ty);
1485
1486    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1487    // than four eightbytes, ..., it has class MEMORY.
1488    if (Size > 256)
1489      return;
1490
1491    // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1492    // fields, it has class MEMORY.
1493    //
1494    // Only need to check alignment of array base.
1495    if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1496      return;
1497
1498    // Otherwise implement simplified merge. We could be smarter about
1499    // this, but it isn't worth it and would be harder to verify.
1500    Current = NoClass;
1501    uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1502    uint64_t ArraySize = AT->getSize().getZExtValue();
1503
1504    // The only case a 256-bit wide vector could be used is when the array
1505    // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1506    // to work for sizes wider than 128, early check and fallback to memory.
1507    if (Size > 128 && EltSize != 256)
1508      return;
1509
1510    for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1511      Class FieldLo, FieldHi;
1512      classify(AT->getElementType(), Offset, FieldLo, FieldHi);
1513      Lo = merge(Lo, FieldLo);
1514      Hi = merge(Hi, FieldHi);
1515      if (Lo == Memory || Hi == Memory)
1516        break;
1517    }
1518
1519    postMerge(Size, Lo, Hi);
1520    assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1521    return;
1522  }
1523
1524  if (const RecordType *RT = Ty->getAs<RecordType>()) {
1525    uint64_t Size = getContext().getTypeSize(Ty);
1526
1527    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1528    // than four eightbytes, ..., it has class MEMORY.
1529    if (Size > 256)
1530      return;
1531
1532    // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1533    // copy constructor or a non-trivial destructor, it is passed by invisible
1534    // reference.
1535    if (hasNonTrivialDestructorOrCopyConstructor(RT))
1536      return;
1537
1538    const RecordDecl *RD = RT->getDecl();
1539
1540    // Assume variable sized types are passed in memory.
1541    if (RD->hasFlexibleArrayMember())
1542      return;
1543
1544    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1545
1546    // Reset Lo class, this will be recomputed.
1547    Current = NoClass;
1548
1549    // If this is a C++ record, classify the bases first.
1550    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1551      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1552             e = CXXRD->bases_end(); i != e; ++i) {
1553        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1554               "Unexpected base class!");
1555        const CXXRecordDecl *Base =
1556          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1557
1558        // Classify this field.
1559        //
1560        // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1561        // single eightbyte, each is classified separately. Each eightbyte gets
1562        // initialized to class NO_CLASS.
1563        Class FieldLo, FieldHi;
1564        uint64_t Offset =
1565          OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
1566        classify(i->getType(), Offset, FieldLo, FieldHi);
1567        Lo = merge(Lo, FieldLo);
1568        Hi = merge(Hi, FieldHi);
1569        if (Lo == Memory || Hi == Memory)
1570          break;
1571      }
1572    }
1573
1574    // Classify the fields one at a time, merging the results.
1575    unsigned idx = 0;
1576    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1577           i != e; ++i, ++idx) {
1578      uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1579      bool BitField = i->isBitField();
1580
1581      // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
1582      // four eightbytes, or it contains unaligned fields, it has class MEMORY.
1583      //
1584      // The only case a 256-bit wide vector could be used is when the struct
1585      // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1586      // to work for sizes wider than 128, early check and fallback to memory.
1587      //
1588      if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
1589        Lo = Memory;
1590        return;
1591      }
1592      // Note, skip this test for bit-fields, see below.
1593      if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1594        Lo = Memory;
1595        return;
1596      }
1597
1598      // Classify this field.
1599      //
1600      // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1601      // exceeds a single eightbyte, each is classified
1602      // separately. Each eightbyte gets initialized to class
1603      // NO_CLASS.
1604      Class FieldLo, FieldHi;
1605
1606      // Bit-fields require special handling, they do not force the
1607      // structure to be passed in memory even if unaligned, and
1608      // therefore they can straddle an eightbyte.
1609      if (BitField) {
1610        // Ignore padding bit-fields.
1611        if (i->isUnnamedBitfield())
1612          continue;
1613
1614        uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1615        uint64_t Size = i->getBitWidthValue(getContext());
1616
1617        uint64_t EB_Lo = Offset / 64;
1618        uint64_t EB_Hi = (Offset + Size - 1) / 64;
1619        FieldLo = FieldHi = NoClass;
1620        if (EB_Lo) {
1621          assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1622          FieldLo = NoClass;
1623          FieldHi = Integer;
1624        } else {
1625          FieldLo = Integer;
1626          FieldHi = EB_Hi ? Integer : NoClass;
1627        }
1628      } else
1629        classify(i->getType(), Offset, FieldLo, FieldHi);
1630      Lo = merge(Lo, FieldLo);
1631      Hi = merge(Hi, FieldHi);
1632      if (Lo == Memory || Hi == Memory)
1633        break;
1634    }
1635
1636    postMerge(Size, Lo, Hi);
1637  }
1638}
1639
1640ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1641  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1642  // place naturally.
1643  if (!isAggregateTypeForABI(Ty)) {
1644    // Treat an enum type as its underlying type.
1645    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1646      Ty = EnumTy->getDecl()->getIntegerType();
1647
1648    return (Ty->isPromotableIntegerType() ?
1649            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1650  }
1651
1652  return ABIArgInfo::getIndirect(0);
1653}
1654
1655bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
1656  if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
1657    uint64_t Size = getContext().getTypeSize(VecTy);
1658    unsigned LargestVector = HasAVX ? 256 : 128;
1659    if (Size <= 64 || Size > LargestVector)
1660      return true;
1661  }
1662
1663  return false;
1664}
1665
1666ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
1667                                            unsigned freeIntRegs) const {
1668  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1669  // place naturally.
1670  //
1671  // This assumption is optimistic, as there could be free registers available
1672  // when we need to pass this argument in memory, and LLVM could try to pass
1673  // the argument in the free register. This does not seem to happen currently,
1674  // but this code would be much safer if we could mark the argument with
1675  // 'onstack'. See PR12193.
1676  if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
1677    // Treat an enum type as its underlying type.
1678    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1679      Ty = EnumTy->getDecl()->getIntegerType();
1680
1681    return (Ty->isPromotableIntegerType() ?
1682            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1683  }
1684
1685  if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1686    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
1687
1688  // Compute the byval alignment. We specify the alignment of the byval in all
1689  // cases so that the mid-level optimizer knows the alignment of the byval.
1690  unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
1691
1692  // Attempt to avoid passing indirect results using byval when possible. This
1693  // is important for good codegen.
1694  //
1695  // We do this by coercing the value into a scalar type which the backend can
1696  // handle naturally (i.e., without using byval).
1697  //
1698  // For simplicity, we currently only do this when we have exhausted all of the
1699  // free integer registers. Doing this when there are free integer registers
1700  // would require more care, as we would have to ensure that the coerced value
1701  // did not claim the unused register. That would require either reording the
1702  // arguments to the function (so that any subsequent inreg values came first),
1703  // or only doing this optimization when there were no following arguments that
1704  // might be inreg.
1705  //
1706  // We currently expect it to be rare (particularly in well written code) for
1707  // arguments to be passed on the stack when there are still free integer
1708  // registers available (this would typically imply large structs being passed
1709  // by value), so this seems like a fair tradeoff for now.
1710  //
1711  // We can revisit this if the backend grows support for 'onstack' parameter
1712  // attributes. See PR12193.
1713  if (freeIntRegs == 0) {
1714    uint64_t Size = getContext().getTypeSize(Ty);
1715
1716    // If this type fits in an eightbyte, coerce it into the matching integral
1717    // type, which will end up on the stack (with alignment 8).
1718    if (Align == 8 && Size <= 64)
1719      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1720                                                          Size));
1721  }
1722
1723  return ABIArgInfo::getIndirect(Align);
1724}
1725
1726/// GetByteVectorType - The ABI specifies that a value should be passed in an
1727/// full vector XMM/YMM register.  Pick an LLVM IR type that will be passed as a
1728/// vector register.
1729llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
1730  llvm::Type *IRType = CGT.ConvertType(Ty);
1731
1732  // Wrapper structs that just contain vectors are passed just like vectors,
1733  // strip them off if present.
1734  llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1735  while (STy && STy->getNumElements() == 1) {
1736    IRType = STy->getElementType(0);
1737    STy = dyn_cast<llvm::StructType>(IRType);
1738  }
1739
1740  // If the preferred type is a 16-byte vector, prefer to pass it.
1741  if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
1742    llvm::Type *EltTy = VT->getElementType();
1743    unsigned BitWidth = VT->getBitWidth();
1744    if ((BitWidth >= 128 && BitWidth <= 256) &&
1745        (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1746         EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1747         EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1748         EltTy->isIntegerTy(128)))
1749      return VT;
1750  }
1751
1752  return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1753}
1754
1755/// BitsContainNoUserData - Return true if the specified [start,end) bit range
1756/// is known to either be off the end of the specified type or being in
1757/// alignment padding.  The user type specified is known to be at most 128 bits
1758/// in size, and have passed through X86_64ABIInfo::classify with a successful
1759/// classification that put one of the two halves in the INTEGER class.
1760///
1761/// It is conservatively correct to return false.
1762static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1763                                  unsigned EndBit, ASTContext &Context) {
1764  // If the bytes being queried are off the end of the type, there is no user
1765  // data hiding here.  This handles analysis of builtins, vectors and other
1766  // types that don't contain interesting padding.
1767  unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1768  if (TySize <= StartBit)
1769    return true;
1770
1771  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1772    unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1773    unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1774
1775    // Check each element to see if the element overlaps with the queried range.
1776    for (unsigned i = 0; i != NumElts; ++i) {
1777      // If the element is after the span we care about, then we're done..
1778      unsigned EltOffset = i*EltSize;
1779      if (EltOffset >= EndBit) break;
1780
1781      unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1782      if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1783                                 EndBit-EltOffset, Context))
1784        return false;
1785    }
1786    // If it overlaps no elements, then it is safe to process as padding.
1787    return true;
1788  }
1789
1790  if (const RecordType *RT = Ty->getAs<RecordType>()) {
1791    const RecordDecl *RD = RT->getDecl();
1792    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1793
1794    // If this is a C++ record, check the bases first.
1795    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1796      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1797           e = CXXRD->bases_end(); i != e; ++i) {
1798        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1799               "Unexpected base class!");
1800        const CXXRecordDecl *Base =
1801          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1802
1803        // If the base is after the span we care about, ignore it.
1804        unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
1805        if (BaseOffset >= EndBit) continue;
1806
1807        unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1808        if (!BitsContainNoUserData(i->getType(), BaseStart,
1809                                   EndBit-BaseOffset, Context))
1810          return false;
1811      }
1812    }
1813
1814    // Verify that no field has data that overlaps the region of interest.  Yes
1815    // this could be sped up a lot by being smarter about queried fields,
1816    // however we're only looking at structs up to 16 bytes, so we don't care
1817    // much.
1818    unsigned idx = 0;
1819    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1820         i != e; ++i, ++idx) {
1821      unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
1822
1823      // If we found a field after the region we care about, then we're done.
1824      if (FieldOffset >= EndBit) break;
1825
1826      unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
1827      if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
1828                                 Context))
1829        return false;
1830    }
1831
1832    // If nothing in this record overlapped the area of interest, then we're
1833    // clean.
1834    return true;
1835  }
1836
1837  return false;
1838}
1839
1840/// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
1841/// float member at the specified offset.  For example, {int,{float}} has a
1842/// float at offset 4.  It is conservatively correct for this routine to return
1843/// false.
1844static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
1845                                  const llvm::DataLayout &TD) {
1846  // Base case if we find a float.
1847  if (IROffset == 0 && IRType->isFloatTy())
1848    return true;
1849
1850  // If this is a struct, recurse into the field at the specified offset.
1851  if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1852    const llvm::StructLayout *SL = TD.getStructLayout(STy);
1853    unsigned Elt = SL->getElementContainingOffset(IROffset);
1854    IROffset -= SL->getElementOffset(Elt);
1855    return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
1856  }
1857
1858  // If this is an array, recurse into the field at the specified offset.
1859  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1860    llvm::Type *EltTy = ATy->getElementType();
1861    unsigned EltSize = TD.getTypeAllocSize(EltTy);
1862    IROffset -= IROffset/EltSize*EltSize;
1863    return ContainsFloatAtOffset(EltTy, IROffset, TD);
1864  }
1865
1866  return false;
1867}
1868
1869
1870/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
1871/// low 8 bytes of an XMM register, corresponding to the SSE class.
1872llvm::Type *X86_64ABIInfo::
1873GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1874                   QualType SourceTy, unsigned SourceOffset) const {
1875  // The only three choices we have are either double, <2 x float>, or float. We
1876  // pass as float if the last 4 bytes is just padding.  This happens for
1877  // structs that contain 3 floats.
1878  if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
1879                            SourceOffset*8+64, getContext()))
1880    return llvm::Type::getFloatTy(getVMContext());
1881
1882  // We want to pass as <2 x float> if the LLVM IR type contains a float at
1883  // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
1884  // case.
1885  if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
1886      ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
1887    return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
1888
1889  return llvm::Type::getDoubleTy(getVMContext());
1890}
1891
1892
1893/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
1894/// an 8-byte GPR.  This means that we either have a scalar or we are talking
1895/// about the high or low part of an up-to-16-byte struct.  This routine picks
1896/// the best LLVM IR type to represent this, which may be i64 or may be anything
1897/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
1898/// etc).
1899///
1900/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
1901/// the source type.  IROffset is an offset in bytes into the LLVM IR type that
1902/// the 8-byte value references.  PrefType may be null.
1903///
1904/// SourceTy is the source level type for the entire argument.  SourceOffset is
1905/// an offset into this that we're processing (which is always either 0 or 8).
1906///
1907llvm::Type *X86_64ABIInfo::
1908GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1909                       QualType SourceTy, unsigned SourceOffset) const {
1910  // If we're dealing with an un-offset LLVM IR type, then it means that we're
1911  // returning an 8-byte unit starting with it.  See if we can safely use it.
1912  if (IROffset == 0) {
1913    // Pointers and int64's always fill the 8-byte unit.
1914    if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
1915        IRType->isIntegerTy(64))
1916      return IRType;
1917
1918    // If we have a 1/2/4-byte integer, we can use it only if the rest of the
1919    // goodness in the source type is just tail padding.  This is allowed to
1920    // kick in for struct {double,int} on the int, but not on
1921    // struct{double,int,int} because we wouldn't return the second int.  We
1922    // have to do this analysis on the source type because we can't depend on
1923    // unions being lowered a specific way etc.
1924    if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
1925        IRType->isIntegerTy(32) ||
1926        (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
1927      unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
1928          cast<llvm::IntegerType>(IRType)->getBitWidth();
1929
1930      if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
1931                                SourceOffset*8+64, getContext()))
1932        return IRType;
1933    }
1934  }
1935
1936  if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1937    // If this is a struct, recurse into the field at the specified offset.
1938    const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
1939    if (IROffset < SL->getSizeInBytes()) {
1940      unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
1941      IROffset -= SL->getElementOffset(FieldIdx);
1942
1943      return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
1944                                    SourceTy, SourceOffset);
1945    }
1946  }
1947
1948  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1949    llvm::Type *EltTy = ATy->getElementType();
1950    unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
1951    unsigned EltOffset = IROffset/EltSize*EltSize;
1952    return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
1953                                  SourceOffset);
1954  }
1955
1956  // Okay, we don't have any better idea of what to pass, so we pass this in an
1957  // integer register that isn't too big to fit the rest of the struct.
1958  unsigned TySizeInBytes =
1959    (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
1960
1961  assert(TySizeInBytes != SourceOffset && "Empty field?");
1962
1963  // It is always safe to classify this as an integer type up to i64 that
1964  // isn't larger than the structure.
1965  return llvm::IntegerType::get(getVMContext(),
1966                                std::min(TySizeInBytes-SourceOffset, 8U)*8);
1967}
1968
1969
1970/// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
1971/// be used as elements of a two register pair to pass or return, return a
1972/// first class aggregate to represent them.  For example, if the low part of
1973/// a by-value argument should be passed as i32* and the high part as float,
1974/// return {i32*, float}.
1975static llvm::Type *
1976GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
1977                           const llvm::DataLayout &TD) {
1978  // In order to correctly satisfy the ABI, we need to the high part to start
1979  // at offset 8.  If the high and low parts we inferred are both 4-byte types
1980  // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
1981  // the second element at offset 8.  Check for this:
1982  unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
1983  unsigned HiAlign = TD.getABITypeAlignment(Hi);
1984  unsigned HiStart = llvm::DataLayout::RoundUpAlignment(LoSize, HiAlign);
1985  assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
1986
1987  // To handle this, we have to increase the size of the low part so that the
1988  // second element will start at an 8 byte offset.  We can't increase the size
1989  // of the second element because it might make us access off the end of the
1990  // struct.
1991  if (HiStart != 8) {
1992    // There are only two sorts of types the ABI generation code can produce for
1993    // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
1994    // Promote these to a larger type.
1995    if (Lo->isFloatTy())
1996      Lo = llvm::Type::getDoubleTy(Lo->getContext());
1997    else {
1998      assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
1999      Lo = llvm::Type::getInt64Ty(Lo->getContext());
2000    }
2001  }
2002
2003  llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL);
2004
2005
2006  // Verify that the second element is at an 8-byte offset.
2007  assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2008         "Invalid x86-64 argument pair!");
2009  return Result;
2010}
2011
2012ABIArgInfo X86_64ABIInfo::
2013classifyReturnType(QualType RetTy) const {
2014  // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2015  // classification algorithm.
2016  X86_64ABIInfo::Class Lo, Hi;
2017  classify(RetTy, 0, Lo, Hi);
2018
2019  // Check some invariants.
2020  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2021  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2022
2023  llvm::Type *ResType = 0;
2024  switch (Lo) {
2025  case NoClass:
2026    if (Hi == NoClass)
2027      return ABIArgInfo::getIgnore();
2028    // If the low part is just padding, it takes no register, leave ResType
2029    // null.
2030    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2031           "Unknown missing lo part");
2032    break;
2033
2034  case SSEUp:
2035  case X87Up:
2036    llvm_unreachable("Invalid classification for lo word.");
2037
2038    // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2039    // hidden argument.
2040  case Memory:
2041    return getIndirectReturnResult(RetTy);
2042
2043    // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2044    // available register of the sequence %rax, %rdx is used.
2045  case Integer:
2046    ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2047
2048    // If we have a sign or zero extended integer, make sure to return Extend
2049    // so that the parameter gets the right LLVM IR attributes.
2050    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2051      // Treat an enum type as its underlying type.
2052      if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2053        RetTy = EnumTy->getDecl()->getIntegerType();
2054
2055      if (RetTy->isIntegralOrEnumerationType() &&
2056          RetTy->isPromotableIntegerType())
2057        return ABIArgInfo::getExtend();
2058    }
2059    break;
2060
2061    // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2062    // available SSE register of the sequence %xmm0, %xmm1 is used.
2063  case SSE:
2064    ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2065    break;
2066
2067    // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2068    // returned on the X87 stack in %st0 as 80-bit x87 number.
2069  case X87:
2070    ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2071    break;
2072
2073    // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2074    // part of the value is returned in %st0 and the imaginary part in
2075    // %st1.
2076  case ComplexX87:
2077    assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2078    ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2079                                    llvm::Type::getX86_FP80Ty(getVMContext()),
2080                                    NULL);
2081    break;
2082  }
2083
2084  llvm::Type *HighPart = 0;
2085  switch (Hi) {
2086    // Memory was handled previously and X87 should
2087    // never occur as a hi class.
2088  case Memory:
2089  case X87:
2090    llvm_unreachable("Invalid classification for hi word.");
2091
2092  case ComplexX87: // Previously handled.
2093  case NoClass:
2094    break;
2095
2096  case Integer:
2097    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2098    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2099      return ABIArgInfo::getDirect(HighPart, 8);
2100    break;
2101  case SSE:
2102    HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2103    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2104      return ABIArgInfo::getDirect(HighPart, 8);
2105    break;
2106
2107    // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2108    // is passed in the next available eightbyte chunk if the last used
2109    // vector register.
2110    //
2111    // SSEUP should always be preceded by SSE, just widen.
2112  case SSEUp:
2113    assert(Lo == SSE && "Unexpected SSEUp classification.");
2114    ResType = GetByteVectorType(RetTy);
2115    break;
2116
2117    // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2118    // returned together with the previous X87 value in %st0.
2119  case X87Up:
2120    // If X87Up is preceded by X87, we don't need to do
2121    // anything. However, in some cases with unions it may not be
2122    // preceded by X87. In such situations we follow gcc and pass the
2123    // extra bits in an SSE reg.
2124    if (Lo != X87) {
2125      HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2126      if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2127        return ABIArgInfo::getDirect(HighPart, 8);
2128    }
2129    break;
2130  }
2131
2132  // If a high part was specified, merge it together with the low part.  It is
2133  // known to pass in the high eightbyte of the result.  We do this by forming a
2134  // first class struct aggregate with the high and low part: {low, high}
2135  if (HighPart)
2136    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2137
2138  return ABIArgInfo::getDirect(ResType);
2139}
2140
2141ABIArgInfo X86_64ABIInfo::classifyArgumentType(
2142  QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE)
2143  const
2144{
2145  X86_64ABIInfo::Class Lo, Hi;
2146  classify(Ty, 0, Lo, Hi);
2147
2148  // Check some invariants.
2149  // FIXME: Enforce these by construction.
2150  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2151  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2152
2153  neededInt = 0;
2154  neededSSE = 0;
2155  llvm::Type *ResType = 0;
2156  switch (Lo) {
2157  case NoClass:
2158    if (Hi == NoClass)
2159      return ABIArgInfo::getIgnore();
2160    // If the low part is just padding, it takes no register, leave ResType
2161    // null.
2162    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2163           "Unknown missing lo part");
2164    break;
2165
2166    // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2167    // on the stack.
2168  case Memory:
2169
2170    // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2171    // COMPLEX_X87, it is passed in memory.
2172  case X87:
2173  case ComplexX87:
2174    if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
2175      ++neededInt;
2176    return getIndirectResult(Ty, freeIntRegs);
2177
2178  case SSEUp:
2179  case X87Up:
2180    llvm_unreachable("Invalid classification for lo word.");
2181
2182    // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2183    // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2184    // and %r9 is used.
2185  case Integer:
2186    ++neededInt;
2187
2188    // Pick an 8-byte type based on the preferred type.
2189    ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2190
2191    // If we have a sign or zero extended integer, make sure to return Extend
2192    // so that the parameter gets the right LLVM IR attributes.
2193    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2194      // Treat an enum type as its underlying type.
2195      if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2196        Ty = EnumTy->getDecl()->getIntegerType();
2197
2198      if (Ty->isIntegralOrEnumerationType() &&
2199          Ty->isPromotableIntegerType())
2200        return ABIArgInfo::getExtend();
2201    }
2202
2203    break;
2204
2205    // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2206    // available SSE register is used, the registers are taken in the
2207    // order from %xmm0 to %xmm7.
2208  case SSE: {
2209    llvm::Type *IRType = CGT.ConvertType(Ty);
2210    ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2211    ++neededSSE;
2212    break;
2213  }
2214  }
2215
2216  llvm::Type *HighPart = 0;
2217  switch (Hi) {
2218    // Memory was handled previously, ComplexX87 and X87 should
2219    // never occur as hi classes, and X87Up must be preceded by X87,
2220    // which is passed in memory.
2221  case Memory:
2222  case X87:
2223  case ComplexX87:
2224    llvm_unreachable("Invalid classification for hi word.");
2225
2226  case NoClass: break;
2227
2228  case Integer:
2229    ++neededInt;
2230    // Pick an 8-byte type based on the preferred type.
2231    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2232
2233    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2234      return ABIArgInfo::getDirect(HighPart, 8);
2235    break;
2236
2237    // X87Up generally doesn't occur here (long double is passed in
2238    // memory), except in situations involving unions.
2239  case X87Up:
2240  case SSE:
2241    HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2242
2243    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2244      return ABIArgInfo::getDirect(HighPart, 8);
2245
2246    ++neededSSE;
2247    break;
2248
2249    // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2250    // eightbyte is passed in the upper half of the last used SSE
2251    // register.  This only happens when 128-bit vectors are passed.
2252  case SSEUp:
2253    assert(Lo == SSE && "Unexpected SSEUp classification");
2254    ResType = GetByteVectorType(Ty);
2255    break;
2256  }
2257
2258  // If a high part was specified, merge it together with the low part.  It is
2259  // known to pass in the high eightbyte of the result.  We do this by forming a
2260  // first class struct aggregate with the high and low part: {low, high}
2261  if (HighPart)
2262    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2263
2264  return ABIArgInfo::getDirect(ResType);
2265}
2266
2267void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2268
2269  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2270
2271  // Keep track of the number of assigned registers.
2272  unsigned freeIntRegs = 6, freeSSERegs = 8;
2273
2274  // If the return value is indirect, then the hidden argument is consuming one
2275  // integer register.
2276  if (FI.getReturnInfo().isIndirect())
2277    --freeIntRegs;
2278
2279  // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2280  // get assigned (in left-to-right order) for passing as follows...
2281  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2282       it != ie; ++it) {
2283    unsigned neededInt, neededSSE;
2284    it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
2285                                    neededSSE);
2286
2287    // AMD64-ABI 3.2.3p3: If there are no registers available for any
2288    // eightbyte of an argument, the whole argument is passed on the
2289    // stack. If registers have already been assigned for some
2290    // eightbytes of such an argument, the assignments get reverted.
2291    if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
2292      freeIntRegs -= neededInt;
2293      freeSSERegs -= neededSSE;
2294    } else {
2295      it->info = getIndirectResult(it->type, freeIntRegs);
2296    }
2297  }
2298}
2299
2300static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
2301                                        QualType Ty,
2302                                        CodeGenFunction &CGF) {
2303  llvm::Value *overflow_arg_area_p =
2304    CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
2305  llvm::Value *overflow_arg_area =
2306    CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2307
2308  // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2309  // byte boundary if alignment needed by type exceeds 8 byte boundary.
2310  // It isn't stated explicitly in the standard, but in practice we use
2311  // alignment greater than 16 where necessary.
2312  uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
2313  if (Align > 8) {
2314    // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
2315    llvm::Value *Offset =
2316      llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
2317    overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
2318    llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
2319                                                    CGF.Int64Ty);
2320    llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
2321    overflow_arg_area =
2322      CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
2323                                 overflow_arg_area->getType(),
2324                                 "overflow_arg_area.align");
2325  }
2326
2327  // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2328  llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2329  llvm::Value *Res =
2330    CGF.Builder.CreateBitCast(overflow_arg_area,
2331                              llvm::PointerType::getUnqual(LTy));
2332
2333  // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
2334  // l->overflow_arg_area + sizeof(type).
2335  // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
2336  // an 8 byte boundary.
2337
2338  uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
2339  llvm::Value *Offset =
2340      llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
2341  overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
2342                                            "overflow_arg_area.next");
2343  CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2344
2345  // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2346  return Res;
2347}
2348
2349llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2350                                      CodeGenFunction &CGF) const {
2351  // Assume that va_list type is correct; should be pointer to LLVM type:
2352  // struct {
2353  //   i32 gp_offset;
2354  //   i32 fp_offset;
2355  //   i8* overflow_arg_area;
2356  //   i8* reg_save_area;
2357  // };
2358  unsigned neededInt, neededSSE;
2359
2360  Ty = CGF.getContext().getCanonicalType(Ty);
2361  ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE);
2362
2363  // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2364  // in the registers. If not go to step 7.
2365  if (!neededInt && !neededSSE)
2366    return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2367
2368  // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2369  // general purpose registers needed to pass type and num_fp to hold
2370  // the number of floating point registers needed.
2371
2372  // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2373  // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2374  // l->fp_offset > 304 - num_fp * 16 go to step 7.
2375  //
2376  // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
2377  // register save space).
2378
2379  llvm::Value *InRegs = 0;
2380  llvm::Value *gp_offset_p = 0, *gp_offset = 0;
2381  llvm::Value *fp_offset_p = 0, *fp_offset = 0;
2382  if (neededInt) {
2383    gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
2384    gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
2385    InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
2386    InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
2387  }
2388
2389  if (neededSSE) {
2390    fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
2391    fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
2392    llvm::Value *FitsInFP =
2393      llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2394    FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2395    InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2396  }
2397
2398  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2399  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2400  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2401  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2402
2403  // Emit code to load the value if it was passed in registers.
2404
2405  CGF.EmitBlock(InRegBlock);
2406
2407  // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2408  // an offset of l->gp_offset and/or l->fp_offset. This may require
2409  // copying to a temporary location in case the parameter is passed
2410  // in different register classes or requires an alignment greater
2411  // than 8 for general purpose registers and 16 for XMM registers.
2412  //
2413  // FIXME: This really results in shameful code when we end up needing to
2414  // collect arguments from different places; often what should result in a
2415  // simple assembling of a structure from scattered addresses has many more
2416  // loads than necessary. Can we clean this up?
2417  llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2418  llvm::Value *RegAddr =
2419    CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
2420                           "reg_save_area");
2421  if (neededInt && neededSSE) {
2422    // FIXME: Cleanup.
2423    assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2424    llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2425    llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
2426    assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2427    llvm::Type *TyLo = ST->getElementType(0);
2428    llvm::Type *TyHi = ST->getElementType(1);
2429    assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2430           "Unexpected ABI info for mixed regs");
2431    llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2432    llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2433    llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2434    llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2435    llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
2436    llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
2437    llvm::Value *V =
2438      CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2439    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2440    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2441    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2442
2443    RegAddr = CGF.Builder.CreateBitCast(Tmp,
2444                                        llvm::PointerType::getUnqual(LTy));
2445  } else if (neededInt) {
2446    RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2447    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2448                                        llvm::PointerType::getUnqual(LTy));
2449  } else if (neededSSE == 1) {
2450    RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2451    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2452                                        llvm::PointerType::getUnqual(LTy));
2453  } else {
2454    assert(neededSSE == 2 && "Invalid number of needed registers!");
2455    // SSE registers are spaced 16 bytes apart in the register save
2456    // area, we need to collect the two eightbytes together.
2457    llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2458    llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2459    llvm::Type *DoubleTy = CGF.DoubleTy;
2460    llvm::Type *DblPtrTy =
2461      llvm::PointerType::getUnqual(DoubleTy);
2462    llvm::StructType *ST = llvm::StructType::get(DoubleTy,
2463                                                       DoubleTy, NULL);
2464    llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
2465    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2466                                                         DblPtrTy));
2467    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2468    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2469                                                         DblPtrTy));
2470    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2471    RegAddr = CGF.Builder.CreateBitCast(Tmp,
2472                                        llvm::PointerType::getUnqual(LTy));
2473  }
2474
2475  // AMD64-ABI 3.5.7p5: Step 5. Set:
2476  // l->gp_offset = l->gp_offset + num_gp * 8
2477  // l->fp_offset = l->fp_offset + num_fp * 16.
2478  if (neededInt) {
2479    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2480    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2481                            gp_offset_p);
2482  }
2483  if (neededSSE) {
2484    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2485    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2486                            fp_offset_p);
2487  }
2488  CGF.EmitBranch(ContBlock);
2489
2490  // Emit code to load the value if it was passed in memory.
2491
2492  CGF.EmitBlock(InMemBlock);
2493  llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2494
2495  // Return the appropriate result.
2496
2497  CGF.EmitBlock(ContBlock);
2498  llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2499                                                 "vaarg.addr");
2500  ResAddr->addIncoming(RegAddr, InRegBlock);
2501  ResAddr->addIncoming(MemAddr, InMemBlock);
2502  return ResAddr;
2503}
2504
2505ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty) const {
2506
2507  if (Ty->isVoidType())
2508    return ABIArgInfo::getIgnore();
2509
2510  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2511    Ty = EnumTy->getDecl()->getIntegerType();
2512
2513  uint64_t Size = getContext().getTypeSize(Ty);
2514
2515  if (const RecordType *RT = Ty->getAs<RecordType>()) {
2516    if (hasNonTrivialDestructorOrCopyConstructor(RT) ||
2517        RT->getDecl()->hasFlexibleArrayMember())
2518      return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2519
2520    // FIXME: mingw-w64-gcc emits 128-bit struct as i128
2521    if (Size == 128 &&
2522        getContext().getTargetInfo().getTriple().getOS()
2523          == llvm::Triple::MinGW32)
2524      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2525                                                          Size));
2526
2527    // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
2528    // not 1, 2, 4, or 8 bytes, must be passed by reference."
2529    if (Size <= 64 &&
2530        (Size & (Size - 1)) == 0)
2531      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2532                                                          Size));
2533
2534    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2535  }
2536
2537  if (Ty->isPromotableIntegerType())
2538    return ABIArgInfo::getExtend();
2539
2540  return ABIArgInfo::getDirect();
2541}
2542
2543void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2544
2545  QualType RetTy = FI.getReturnType();
2546  FI.getReturnInfo() = classify(RetTy);
2547
2548  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2549       it != ie; ++it)
2550    it->info = classify(it->type);
2551}
2552
2553llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2554                                      CodeGenFunction &CGF) const {
2555  llvm::Type *BPP = CGF.Int8PtrPtrTy;
2556
2557  CGBuilderTy &Builder = CGF.Builder;
2558  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2559                                                       "ap");
2560  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2561  llvm::Type *PTy =
2562    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2563  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2564
2565  uint64_t Offset =
2566    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
2567  llvm::Value *NextAddr =
2568    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2569                      "ap.next");
2570  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2571
2572  return AddrTyped;
2573}
2574
2575namespace {
2576
2577class NaClX86_64ABIInfo : public ABIInfo {
2578 public:
2579  NaClX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
2580      : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, HasAVX) {}
2581  virtual void computeInfo(CGFunctionInfo &FI) const;
2582  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2583                                 CodeGenFunction &CGF) const;
2584 private:
2585  PNaClABIInfo PInfo;  // Used for generating calls with pnaclcall callingconv.
2586  X86_64ABIInfo NInfo; // Used for everything else.
2587};
2588
2589class NaClX86_64TargetCodeGenInfo : public TargetCodeGenInfo  {
2590 public:
2591  NaClX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
2592      : TargetCodeGenInfo(new NaClX86_64ABIInfo(CGT, HasAVX)) {}
2593};
2594
2595}
2596
2597void NaClX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2598  if (FI.getASTCallingConvention() == CC_PnaclCall)
2599    PInfo.computeInfo(FI);
2600  else
2601    NInfo.computeInfo(FI);
2602}
2603
2604llvm::Value *NaClX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2605                                          CodeGenFunction &CGF) const {
2606  // Always use the native convention; calling pnacl-style varargs functions
2607  // is unuspported.
2608  return NInfo.EmitVAArg(VAListAddr, Ty, CGF);
2609}
2610
2611
2612// PowerPC-32
2613
2614namespace {
2615class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2616public:
2617  PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2618
2619  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2620    // This is recovered from gcc output.
2621    return 1; // r1 is the dedicated stack pointer
2622  }
2623
2624  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2625                               llvm::Value *Address) const;
2626};
2627
2628}
2629
2630bool
2631PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2632                                                llvm::Value *Address) const {
2633  // This is calculated from the LLVM and GCC tables and verified
2634  // against gcc output.  AFAIK all ABIs use the same encoding.
2635
2636  CodeGen::CGBuilderTy &Builder = CGF.Builder;
2637
2638  llvm::IntegerType *i8 = CGF.Int8Ty;
2639  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2640  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2641  llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2642
2643  // 0-31: r0-31, the 4-byte general-purpose registers
2644  AssignToArrayRange(Builder, Address, Four8, 0, 31);
2645
2646  // 32-63: fp0-31, the 8-byte floating-point registers
2647  AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2648
2649  // 64-76 are various 4-byte special-purpose registers:
2650  // 64: mq
2651  // 65: lr
2652  // 66: ctr
2653  // 67: ap
2654  // 68-75 cr0-7
2655  // 76: xer
2656  AssignToArrayRange(Builder, Address, Four8, 64, 76);
2657
2658  // 77-108: v0-31, the 16-byte vector registers
2659  AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2660
2661  // 109: vrsave
2662  // 110: vscr
2663  // 111: spe_acc
2664  // 112: spefscr
2665  // 113: sfp
2666  AssignToArrayRange(Builder, Address, Four8, 109, 113);
2667
2668  return false;
2669}
2670
2671// PowerPC-64
2672
2673namespace {
2674/// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
2675class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
2676
2677public:
2678  PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
2679
2680  // TODO: We can add more logic to computeInfo to improve performance.
2681  // Example: For aggregate arguments that fit in a register, we could
2682  // use getDirectInReg (as is done below for structs containing a single
2683  // floating-point value) to avoid pushing them to memory on function
2684  // entry.  This would require changing the logic in PPCISelLowering
2685  // when lowering the parameters in the caller and args in the callee.
2686  virtual void computeInfo(CGFunctionInfo &FI) const {
2687    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2688    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2689         it != ie; ++it) {
2690      // We rely on the default argument classification for the most part.
2691      // One exception:  An aggregate containing a single floating-point
2692      // item must be passed in a register if one is available.
2693      const Type *T = isSingleElementStruct(it->type, getContext());
2694      if (T) {
2695        const BuiltinType *BT = T->getAs<BuiltinType>();
2696        if (BT && BT->isFloatingPoint()) {
2697          QualType QT(T, 0);
2698          it->info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
2699          continue;
2700        }
2701      }
2702      it->info = classifyArgumentType(it->type);
2703    }
2704  }
2705
2706  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr,
2707                                 QualType Ty,
2708                                 CodeGenFunction &CGF) const;
2709};
2710
2711class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
2712public:
2713  PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT)
2714    : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT)) {}
2715
2716  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2717    // This is recovered from gcc output.
2718    return 1; // r1 is the dedicated stack pointer
2719  }
2720
2721  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2722                               llvm::Value *Address) const;
2723};
2724
2725class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2726public:
2727  PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2728
2729  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2730    // This is recovered from gcc output.
2731    return 1; // r1 is the dedicated stack pointer
2732  }
2733
2734  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2735                               llvm::Value *Address) const;
2736};
2737
2738}
2739
2740// Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
2741llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
2742                                           QualType Ty,
2743                                           CodeGenFunction &CGF) const {
2744  llvm::Type *BP = CGF.Int8PtrTy;
2745  llvm::Type *BPP = CGF.Int8PtrPtrTy;
2746
2747  CGBuilderTy &Builder = CGF.Builder;
2748  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
2749  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2750
2751  // Handle address alignment for type alignment > 64 bits.  Although
2752  // long double normally requires 16-byte alignment, this is not the
2753  // case when it is passed as an argument; so handle that special case.
2754  const BuiltinType *BT = Ty->getAs<BuiltinType>();
2755  unsigned TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
2756
2757  if (TyAlign > 8 && (!BT || !BT->isFloatingPoint())) {
2758    assert((TyAlign & (TyAlign - 1)) == 0 &&
2759           "Alignment is not power of 2!");
2760    llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
2761    AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(TyAlign - 1));
2762    AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt64(~(TyAlign - 1)));
2763    Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
2764  }
2765
2766  // Update the va_list pointer.
2767  unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8;
2768  unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8);
2769  llvm::Value *NextAddr =
2770    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset),
2771                      "ap.next");
2772  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2773
2774  // If the argument is smaller than 8 bytes, it is right-adjusted in
2775  // its doubleword slot.  Adjust the pointer to pick it up from the
2776  // correct offset.
2777  if (SizeInBytes < 8) {
2778    llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
2779    AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes));
2780    Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
2781  }
2782
2783  llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2784  return Builder.CreateBitCast(Addr, PTy);
2785}
2786
2787static bool
2788PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2789                              llvm::Value *Address) {
2790  // This is calculated from the LLVM and GCC tables and verified
2791  // against gcc output.  AFAIK all ABIs use the same encoding.
2792
2793  CodeGen::CGBuilderTy &Builder = CGF.Builder;
2794
2795  llvm::IntegerType *i8 = CGF.Int8Ty;
2796  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2797  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2798  llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2799
2800  // 0-31: r0-31, the 8-byte general-purpose registers
2801  AssignToArrayRange(Builder, Address, Eight8, 0, 31);
2802
2803  // 32-63: fp0-31, the 8-byte floating-point registers
2804  AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2805
2806  // 64-76 are various 4-byte special-purpose registers:
2807  // 64: mq
2808  // 65: lr
2809  // 66: ctr
2810  // 67: ap
2811  // 68-75 cr0-7
2812  // 76: xer
2813  AssignToArrayRange(Builder, Address, Four8, 64, 76);
2814
2815  // 77-108: v0-31, the 16-byte vector registers
2816  AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2817
2818  // 109: vrsave
2819  // 110: vscr
2820  // 111: spe_acc
2821  // 112: spefscr
2822  // 113: sfp
2823  AssignToArrayRange(Builder, Address, Four8, 109, 113);
2824
2825  return false;
2826}
2827
2828bool
2829PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
2830  CodeGen::CodeGenFunction &CGF,
2831  llvm::Value *Address) const {
2832
2833  return PPC64_initDwarfEHRegSizeTable(CGF, Address);
2834}
2835
2836bool
2837PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2838                                                llvm::Value *Address) const {
2839
2840  return PPC64_initDwarfEHRegSizeTable(CGF, Address);
2841}
2842
2843//===----------------------------------------------------------------------===//
2844// ARM ABI Implementation
2845//===----------------------------------------------------------------------===//
2846
2847namespace {
2848
2849class ARMABIInfo : public ABIInfo {
2850public:
2851  enum ABIKind {
2852    APCS = 0,
2853    AAPCS = 1,
2854    AAPCS_VFP
2855  };
2856
2857private:
2858  ABIKind Kind;
2859
2860public:
2861  ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {}
2862
2863  bool isEABI() const {
2864    StringRef Env =
2865      getContext().getTargetInfo().getTriple().getEnvironmentName();
2866    return (Env == "gnueabi" || Env == "eabi" ||
2867            Env == "android" || Env == "androideabi");
2868  }
2869
2870private:
2871  ABIKind getABIKind() const { return Kind; }
2872
2873  ABIArgInfo classifyReturnType(QualType RetTy) const;
2874  ABIArgInfo classifyArgumentType(QualType RetTy) const;
2875  bool isIllegalVectorType(QualType Ty) const;
2876
2877  virtual void computeInfo(CGFunctionInfo &FI) const;
2878
2879  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2880                                 CodeGenFunction &CGF) const;
2881};
2882
2883class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
2884public:
2885  ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
2886    :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
2887
2888  const ARMABIInfo &getABIInfo() const {
2889    return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
2890  }
2891
2892  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2893    return 13;
2894  }
2895
2896  StringRef getARCRetainAutoreleasedReturnValueMarker() const {
2897    return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
2898  }
2899
2900  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2901                               llvm::Value *Address) const {
2902    llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
2903
2904    // 0-15 are the 16 integer registers.
2905    AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
2906    return false;
2907  }
2908
2909  unsigned getSizeOfUnwindException() const {
2910    if (getABIInfo().isEABI()) return 88;
2911    return TargetCodeGenInfo::getSizeOfUnwindException();
2912  }
2913};
2914
2915}
2916
2917void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
2918  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2919  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2920       it != ie; ++it)
2921    it->info = classifyArgumentType(it->type);
2922
2923  // Always honor user-specified calling convention.
2924  if (FI.getCallingConvention() != llvm::CallingConv::C)
2925    return;
2926
2927  // Calling convention as default by an ABI.
2928  llvm::CallingConv::ID DefaultCC;
2929  if (isEABI())
2930    DefaultCC = llvm::CallingConv::ARM_AAPCS;
2931  else
2932    DefaultCC = llvm::CallingConv::ARM_APCS;
2933
2934  // If user did not ask for specific calling convention explicitly (e.g. via
2935  // pcs attribute), set effective calling convention if it's different than ABI
2936  // default.
2937  switch (getABIKind()) {
2938  case APCS:
2939    if (DefaultCC != llvm::CallingConv::ARM_APCS)
2940      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
2941    break;
2942  case AAPCS:
2943    if (DefaultCC != llvm::CallingConv::ARM_AAPCS)
2944      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
2945    break;
2946  case AAPCS_VFP:
2947    if (DefaultCC != llvm::CallingConv::ARM_AAPCS_VFP)
2948      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
2949    break;
2950  }
2951}
2952
2953/// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous
2954/// aggregate.  If HAMembers is non-null, the number of base elements
2955/// contained in the type is returned through it; this is used for the
2956/// recursive calls that check aggregate component types.
2957static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
2958                                   ASTContext &Context,
2959                                   uint64_t *HAMembers = 0) {
2960  uint64_t Members = 0;
2961  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2962    if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members))
2963      return false;
2964    Members *= AT->getSize().getZExtValue();
2965  } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
2966    const RecordDecl *RD = RT->getDecl();
2967    if (RD->hasFlexibleArrayMember())
2968      return false;
2969
2970    Members = 0;
2971    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2972         i != e; ++i) {
2973      const FieldDecl *FD = *i;
2974      uint64_t FldMembers;
2975      if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers))
2976        return false;
2977
2978      Members = (RD->isUnion() ?
2979                 std::max(Members, FldMembers) : Members + FldMembers);
2980    }
2981  } else {
2982    Members = 1;
2983    if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2984      Members = 2;
2985      Ty = CT->getElementType();
2986    }
2987
2988    // Homogeneous aggregates for AAPCS-VFP must have base types of float,
2989    // double, or 64-bit or 128-bit vectors.
2990    if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2991      if (BT->getKind() != BuiltinType::Float &&
2992          BT->getKind() != BuiltinType::Double &&
2993          BT->getKind() != BuiltinType::LongDouble)
2994        return false;
2995    } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
2996      unsigned VecSize = Context.getTypeSize(VT);
2997      if (VecSize != 64 && VecSize != 128)
2998        return false;
2999    } else {
3000      return false;
3001    }
3002
3003    // The base type must be the same for all members.  Vector types of the
3004    // same total size are treated as being equivalent here.
3005    const Type *TyPtr = Ty.getTypePtr();
3006    if (!Base)
3007      Base = TyPtr;
3008    if (Base != TyPtr &&
3009        (!Base->isVectorType() || !TyPtr->isVectorType() ||
3010         Context.getTypeSize(Base) != Context.getTypeSize(TyPtr)))
3011      return false;
3012  }
3013
3014  // Homogeneous Aggregates can have at most 4 members of the base type.
3015  if (HAMembers)
3016    *HAMembers = Members;
3017
3018  return (Members > 0 && Members <= 4);
3019}
3020
3021ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty) const {
3022  // Handle illegal vector types here.
3023  if (isIllegalVectorType(Ty)) {
3024    uint64_t Size = getContext().getTypeSize(Ty);
3025    if (Size <= 32) {
3026      llvm::Type *ResType =
3027          llvm::Type::getInt32Ty(getVMContext());
3028      return ABIArgInfo::getDirect(ResType);
3029    }
3030    if (Size == 64) {
3031      llvm::Type *ResType = llvm::VectorType::get(
3032          llvm::Type::getInt32Ty(getVMContext()), 2);
3033      return ABIArgInfo::getDirect(ResType);
3034    }
3035    if (Size == 128) {
3036      llvm::Type *ResType = llvm::VectorType::get(
3037          llvm::Type::getInt32Ty(getVMContext()), 4);
3038      return ABIArgInfo::getDirect(ResType);
3039    }
3040    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3041  }
3042
3043  if (!isAggregateTypeForABI(Ty)) {
3044    // Treat an enum type as its underlying type.
3045    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3046      Ty = EnumTy->getDecl()->getIntegerType();
3047
3048    return (Ty->isPromotableIntegerType() ?
3049            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3050  }
3051
3052  // Ignore empty records.
3053  if (isEmptyRecord(getContext(), Ty, true))
3054    return ABIArgInfo::getIgnore();
3055
3056  // Structures with either a non-trivial destructor or a non-trivial
3057  // copy constructor are always indirect.
3058  if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
3059    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3060
3061  if (getABIKind() == ARMABIInfo::AAPCS_VFP) {
3062    // Homogeneous Aggregates need to be expanded.
3063    const Type *Base = 0;
3064    if (isHomogeneousAggregate(Ty, Base, getContext())) {
3065      assert(Base && "Base class should be set for homogeneous aggregate");
3066      return ABIArgInfo::getExpand();
3067    }
3068  }
3069
3070  // Support byval for ARM.
3071  if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64) ||
3072      getContext().getTypeAlign(Ty) > 64) {
3073    return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
3074  }
3075
3076  // Otherwise, pass by coercing to a structure of the appropriate size.
3077  llvm::Type* ElemTy;
3078  unsigned SizeRegs;
3079  // FIXME: Try to match the types of the arguments more accurately where
3080  // we can.
3081  if (getContext().getTypeAlign(Ty) <= 32) {
3082    ElemTy = llvm::Type::getInt32Ty(getVMContext());
3083    SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
3084  } else {
3085    ElemTy = llvm::Type::getInt64Ty(getVMContext());
3086    SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
3087  }
3088
3089  llvm::Type *STy =
3090    llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL);
3091  return ABIArgInfo::getDirect(STy);
3092}
3093
3094static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
3095                              llvm::LLVMContext &VMContext) {
3096  // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
3097  // is called integer-like if its size is less than or equal to one word, and
3098  // the offset of each of its addressable sub-fields is zero.
3099
3100  uint64_t Size = Context.getTypeSize(Ty);
3101
3102  // Check that the type fits in a word.
3103  if (Size > 32)
3104    return false;
3105
3106  // FIXME: Handle vector types!
3107  if (Ty->isVectorType())
3108    return false;
3109
3110  // Float types are never treated as "integer like".
3111  if (Ty->isRealFloatingType())
3112    return false;
3113
3114  // If this is a builtin or pointer type then it is ok.
3115  if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
3116    return true;
3117
3118  // Small complex integer types are "integer like".
3119  if (const ComplexType *CT = Ty->getAs<ComplexType>())
3120    return isIntegerLikeType(CT->getElementType(), Context, VMContext);
3121
3122  // Single element and zero sized arrays should be allowed, by the definition
3123  // above, but they are not.
3124
3125  // Otherwise, it must be a record type.
3126  const RecordType *RT = Ty->getAs<RecordType>();
3127  if (!RT) return false;
3128
3129  // Ignore records with flexible arrays.
3130  const RecordDecl *RD = RT->getDecl();
3131  if (RD->hasFlexibleArrayMember())
3132    return false;
3133
3134  // Check that all sub-fields are at offset 0, and are themselves "integer
3135  // like".
3136  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3137
3138  bool HadField = false;
3139  unsigned idx = 0;
3140  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3141       i != e; ++i, ++idx) {
3142    const FieldDecl *FD = *i;
3143
3144    // Bit-fields are not addressable, we only need to verify they are "integer
3145    // like". We still have to disallow a subsequent non-bitfield, for example:
3146    //   struct { int : 0; int x }
3147    // is non-integer like according to gcc.
3148    if (FD->isBitField()) {
3149      if (!RD->isUnion())
3150        HadField = true;
3151
3152      if (!isIntegerLikeType(FD->getType(), Context, VMContext))
3153        return false;
3154
3155      continue;
3156    }
3157
3158    // Check if this field is at offset 0.
3159    if (Layout.getFieldOffset(idx) != 0)
3160      return false;
3161
3162    if (!isIntegerLikeType(FD->getType(), Context, VMContext))
3163      return false;
3164
3165    // Only allow at most one field in a structure. This doesn't match the
3166    // wording above, but follows gcc in situations with a field following an
3167    // empty structure.
3168    if (!RD->isUnion()) {
3169      if (HadField)
3170        return false;
3171
3172      HadField = true;
3173    }
3174  }
3175
3176  return true;
3177}
3178
3179ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
3180  if (RetTy->isVoidType())
3181    return ABIArgInfo::getIgnore();
3182
3183  // Large vector types should be returned via memory.
3184  if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
3185    return ABIArgInfo::getIndirect(0);
3186
3187  if (!isAggregateTypeForABI(RetTy)) {
3188    // Treat an enum type as its underlying type.
3189    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3190      RetTy = EnumTy->getDecl()->getIntegerType();
3191
3192    return (RetTy->isPromotableIntegerType() ?
3193            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3194  }
3195
3196  // Structures with either a non-trivial destructor or a non-trivial
3197  // copy constructor are always indirect.
3198  if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
3199    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3200
3201  // Are we following APCS?
3202  if (getABIKind() == APCS) {
3203    if (isEmptyRecord(getContext(), RetTy, false))
3204      return ABIArgInfo::getIgnore();
3205
3206    // Complex types are all returned as packed integers.
3207    //
3208    // FIXME: Consider using 2 x vector types if the back end handles them
3209    // correctly.
3210    if (RetTy->isAnyComplexType())
3211      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3212                                              getContext().getTypeSize(RetTy)));
3213
3214    // Integer like structures are returned in r0.
3215    if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
3216      // Return in the smallest viable integer type.
3217      uint64_t Size = getContext().getTypeSize(RetTy);
3218      if (Size <= 8)
3219        return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3220      if (Size <= 16)
3221        return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3222      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3223    }
3224
3225    // Otherwise return in memory.
3226    return ABIArgInfo::getIndirect(0);
3227  }
3228
3229  // Otherwise this is an AAPCS variant.
3230
3231  if (isEmptyRecord(getContext(), RetTy, true))
3232    return ABIArgInfo::getIgnore();
3233
3234  // Check for homogeneous aggregates with AAPCS-VFP.
3235  if (getABIKind() == AAPCS_VFP) {
3236    const Type *Base = 0;
3237    if (isHomogeneousAggregate(RetTy, Base, getContext())) {
3238      assert(Base && "Base class should be set for homogeneous aggregate");
3239      // Homogeneous Aggregates are returned directly.
3240      return ABIArgInfo::getDirect();
3241    }
3242  }
3243
3244  // Aggregates <= 4 bytes are returned in r0; other aggregates
3245  // are returned indirectly.
3246  uint64_t Size = getContext().getTypeSize(RetTy);
3247  if (Size <= 32) {
3248    // Return in the smallest viable integer type.
3249    if (Size <= 8)
3250      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3251    if (Size <= 16)
3252      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3253    return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3254  }
3255
3256  return ABIArgInfo::getIndirect(0);
3257}
3258
3259/// isIllegalVector - check whether Ty is an illegal vector type.
3260bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
3261  if (const VectorType *VT = Ty->getAs<VectorType>()) {
3262    // Check whether VT is legal.
3263    unsigned NumElements = VT->getNumElements();
3264    uint64_t Size = getContext().getTypeSize(VT);
3265    // NumElements should be power of 2.
3266    if ((NumElements & (NumElements - 1)) != 0)
3267      return true;
3268    // Size should be greater than 32 bits.
3269    return Size <= 32;
3270  }
3271  return false;
3272}
3273
3274llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3275                                   CodeGenFunction &CGF) const {
3276  llvm::Type *BP = CGF.Int8PtrTy;
3277  llvm::Type *BPP = CGF.Int8PtrPtrTy;
3278
3279  CGBuilderTy &Builder = CGF.Builder;
3280  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3281  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3282
3283  uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
3284  uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
3285  bool IsIndirect = false;
3286
3287  // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
3288  // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
3289  if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
3290      getABIKind() == ARMABIInfo::AAPCS)
3291    TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
3292  else
3293    TyAlign = 4;
3294  // Use indirect if size of the illegal vector is bigger than 16 bytes.
3295  if (isIllegalVectorType(Ty) && Size > 16) {
3296    IsIndirect = true;
3297    Size = 4;
3298    TyAlign = 4;
3299  }
3300
3301  // Handle address alignment for ABI alignment > 4 bytes.
3302  if (TyAlign > 4) {
3303    assert((TyAlign & (TyAlign - 1)) == 0 &&
3304           "Alignment is not power of 2!");
3305    llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
3306    AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
3307    AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
3308    Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
3309  }
3310
3311  uint64_t Offset =
3312    llvm::RoundUpToAlignment(Size, 4);
3313  llvm::Value *NextAddr =
3314    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
3315                      "ap.next");
3316  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3317
3318  if (IsIndirect)
3319    Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
3320  else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) {
3321    // We can't directly cast ap.cur to pointer to a vector type, since ap.cur
3322    // may not be correctly aligned for the vector type. We create an aligned
3323    // temporary space and copy the content over from ap.cur to the temporary
3324    // space. This is necessary if the natural alignment of the type is greater
3325    // than the ABI alignment.
3326    llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
3327    CharUnits CharSize = getContext().getTypeSizeInChars(Ty);
3328    llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty),
3329                                                    "var.align");
3330    llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
3331    llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy);
3332    Builder.CreateMemCpy(Dst, Src,
3333        llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()),
3334        TyAlign, false);
3335    Addr = AlignedTemp; //The content is in aligned location.
3336  }
3337  llvm::Type *PTy =
3338    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3339  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
3340
3341  return AddrTyped;
3342}
3343
3344namespace {
3345
3346class NaClARMABIInfo : public ABIInfo {
3347 public:
3348  NaClARMABIInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
3349      : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, Kind) {}
3350  virtual void computeInfo(CGFunctionInfo &FI) const;
3351  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3352                                 CodeGenFunction &CGF) const;
3353 private:
3354  PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv.
3355  ARMABIInfo NInfo; // Used for everything else.
3356};
3357
3358class NaClARMTargetCodeGenInfo : public TargetCodeGenInfo  {
3359 public:
3360  NaClARMTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
3361      : TargetCodeGenInfo(new NaClARMABIInfo(CGT, Kind)) {}
3362};
3363
3364}
3365
3366void NaClARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
3367  if (FI.getASTCallingConvention() == CC_PnaclCall)
3368    PInfo.computeInfo(FI);
3369  else
3370    static_cast<const ABIInfo&>(NInfo).computeInfo(FI);
3371}
3372
3373llvm::Value *NaClARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3374                                       CodeGenFunction &CGF) const {
3375  // Always use the native convention; calling pnacl-style varargs functions
3376  // is unsupported.
3377  return static_cast<const ABIInfo&>(NInfo).EmitVAArg(VAListAddr, Ty, CGF);
3378}
3379
3380//===----------------------------------------------------------------------===//
3381// NVPTX ABI Implementation
3382//===----------------------------------------------------------------------===//
3383
3384namespace {
3385
3386class NVPTXABIInfo : public ABIInfo {
3387public:
3388  NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
3389
3390  ABIArgInfo classifyReturnType(QualType RetTy) const;
3391  ABIArgInfo classifyArgumentType(QualType Ty) const;
3392
3393  virtual void computeInfo(CGFunctionInfo &FI) const;
3394  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3395                                 CodeGenFunction &CFG) const;
3396};
3397
3398class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
3399public:
3400  NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
3401    : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
3402
3403  virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3404                                   CodeGen::CodeGenModule &M) const;
3405};
3406
3407ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
3408  if (RetTy->isVoidType())
3409    return ABIArgInfo::getIgnore();
3410  if (isAggregateTypeForABI(RetTy))
3411    return ABIArgInfo::getIndirect(0);
3412  return ABIArgInfo::getDirect();
3413}
3414
3415ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
3416  if (isAggregateTypeForABI(Ty))
3417    return ABIArgInfo::getIndirect(0);
3418
3419  return ABIArgInfo::getDirect();
3420}
3421
3422void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
3423  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3424  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3425       it != ie; ++it)
3426    it->info = classifyArgumentType(it->type);
3427
3428  // Always honor user-specified calling convention.
3429  if (FI.getCallingConvention() != llvm::CallingConv::C)
3430    return;
3431
3432  // Calling convention as default by an ABI.
3433  // We're still using the PTX_Kernel/PTX_Device calling conventions here,
3434  // but we should switch to NVVM metadata later on.
3435  llvm::CallingConv::ID DefaultCC;
3436  const LangOptions &LangOpts = getContext().getLangOpts();
3437  if (LangOpts.OpenCL || LangOpts.CUDA) {
3438    // If we are in OpenCL or CUDA mode, then default to device functions
3439    DefaultCC = llvm::CallingConv::PTX_Device;
3440  } else {
3441    // If we are in standard C/C++ mode, use the triple to decide on the default
3442    StringRef Env =
3443      getContext().getTargetInfo().getTriple().getEnvironmentName();
3444    if (Env == "device")
3445      DefaultCC = llvm::CallingConv::PTX_Device;
3446    else
3447      DefaultCC = llvm::CallingConv::PTX_Kernel;
3448  }
3449  FI.setEffectiveCallingConvention(DefaultCC);
3450
3451}
3452
3453llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3454                                     CodeGenFunction &CFG) const {
3455  llvm_unreachable("NVPTX does not support varargs");
3456}
3457
3458void NVPTXTargetCodeGenInfo::
3459SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3460                    CodeGen::CodeGenModule &M) const{
3461  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3462  if (!FD) return;
3463
3464  llvm::Function *F = cast<llvm::Function>(GV);
3465
3466  // Perform special handling in OpenCL mode
3467  if (M.getLangOpts().OpenCL) {
3468    // Use OpenCL function attributes to set proper calling conventions
3469    // By default, all functions are device functions
3470    if (FD->hasAttr<OpenCLKernelAttr>()) {
3471      // OpenCL __kernel functions get a kernel calling convention
3472      F->setCallingConv(llvm::CallingConv::PTX_Kernel);
3473      // And kernel functions are not subject to inlining
3474      F->addFnAttr(llvm::Attributes::NoInline);
3475    }
3476  }
3477
3478  // Perform special handling in CUDA mode.
3479  if (M.getLangOpts().CUDA) {
3480    // CUDA __global__ functions get a kernel calling convention.  Since
3481    // __global__ functions cannot be called from the device, we do not
3482    // need to set the noinline attribute.
3483    if (FD->getAttr<CUDAGlobalAttr>())
3484      F->setCallingConv(llvm::CallingConv::PTX_Kernel);
3485  }
3486}
3487
3488}
3489
3490//===----------------------------------------------------------------------===//
3491// MBlaze ABI Implementation
3492//===----------------------------------------------------------------------===//
3493
3494namespace {
3495
3496class MBlazeABIInfo : public ABIInfo {
3497public:
3498  MBlazeABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
3499
3500  bool isPromotableIntegerType(QualType Ty) const;
3501
3502  ABIArgInfo classifyReturnType(QualType RetTy) const;
3503  ABIArgInfo classifyArgumentType(QualType RetTy) const;
3504
3505  virtual void computeInfo(CGFunctionInfo &FI) const {
3506    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3507    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3508         it != ie; ++it)
3509      it->info = classifyArgumentType(it->type);
3510  }
3511
3512  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3513                                 CodeGenFunction &CGF) const;
3514};
3515
3516class MBlazeTargetCodeGenInfo : public TargetCodeGenInfo {
3517public:
3518  MBlazeTargetCodeGenInfo(CodeGenTypes &CGT)
3519    : TargetCodeGenInfo(new MBlazeABIInfo(CGT)) {}
3520  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3521                           CodeGen::CodeGenModule &M) const;
3522};
3523
3524}
3525
3526bool MBlazeABIInfo::isPromotableIntegerType(QualType Ty) const {
3527  // MBlaze ABI requires all 8 and 16 bit quantities to be extended.
3528  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
3529    switch (BT->getKind()) {
3530    case BuiltinType::Bool:
3531    case BuiltinType::Char_S:
3532    case BuiltinType::Char_U:
3533    case BuiltinType::SChar:
3534    case BuiltinType::UChar:
3535    case BuiltinType::Short:
3536    case BuiltinType::UShort:
3537      return true;
3538    default:
3539      return false;
3540    }
3541  return false;
3542}
3543
3544llvm::Value *MBlazeABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3545                                      CodeGenFunction &CGF) const {
3546  // FIXME: Implement
3547  return 0;
3548}
3549
3550
3551ABIArgInfo MBlazeABIInfo::classifyReturnType(QualType RetTy) const {
3552  if (RetTy->isVoidType())
3553    return ABIArgInfo::getIgnore();
3554  if (isAggregateTypeForABI(RetTy))
3555    return ABIArgInfo::getIndirect(0);
3556
3557  return (isPromotableIntegerType(RetTy) ?
3558          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3559}
3560
3561ABIArgInfo MBlazeABIInfo::classifyArgumentType(QualType Ty) const {
3562  if (isAggregateTypeForABI(Ty))
3563    return ABIArgInfo::getIndirect(0);
3564
3565  return (isPromotableIntegerType(Ty) ?
3566          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3567}
3568
3569void MBlazeTargetCodeGenInfo::SetTargetAttributes(const Decl *D,
3570                                                  llvm::GlobalValue *GV,
3571                                                  CodeGen::CodeGenModule &M)
3572                                                  const {
3573  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3574  if (!FD) return;
3575
3576  llvm::CallingConv::ID CC = llvm::CallingConv::C;
3577  if (FD->hasAttr<MBlazeInterruptHandlerAttr>())
3578    CC = llvm::CallingConv::MBLAZE_INTR;
3579  else if (FD->hasAttr<MBlazeSaveVolatilesAttr>())
3580    CC = llvm::CallingConv::MBLAZE_SVOL;
3581
3582  if (CC != llvm::CallingConv::C) {
3583      // Handle 'interrupt_handler' attribute:
3584      llvm::Function *F = cast<llvm::Function>(GV);
3585
3586      // Step 1: Set ISR calling convention.
3587      F->setCallingConv(CC);
3588
3589      // Step 2: Add attributes goodness.
3590      F->addFnAttr(llvm::Attributes::NoInline);
3591  }
3592
3593  // Step 3: Emit _interrupt_handler alias.
3594  if (CC == llvm::CallingConv::MBLAZE_INTR)
3595    new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
3596                          "_interrupt_handler", GV, &M.getModule());
3597}
3598
3599
3600//===----------------------------------------------------------------------===//
3601// MSP430 ABI Implementation
3602//===----------------------------------------------------------------------===//
3603
3604namespace {
3605
3606class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
3607public:
3608  MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
3609    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
3610  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3611                           CodeGen::CodeGenModule &M) const;
3612};
3613
3614}
3615
3616void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
3617                                                  llvm::GlobalValue *GV,
3618                                             CodeGen::CodeGenModule &M) const {
3619  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3620    if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
3621      // Handle 'interrupt' attribute:
3622      llvm::Function *F = cast<llvm::Function>(GV);
3623
3624      // Step 1: Set ISR calling convention.
3625      F->setCallingConv(llvm::CallingConv::MSP430_INTR);
3626
3627      // Step 2: Add attributes goodness.
3628      F->addFnAttr(llvm::Attributes::NoInline);
3629
3630      // Step 3: Emit ISR vector alias.
3631      unsigned Num = attr->getNumber() + 0xffe0;
3632      new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
3633                            "vector_" + Twine::utohexstr(Num),
3634                            GV, &M.getModule());
3635    }
3636  }
3637}
3638
3639//===----------------------------------------------------------------------===//
3640// MIPS ABI Implementation.  This works for both little-endian and
3641// big-endian variants.
3642//===----------------------------------------------------------------------===//
3643
3644namespace {
3645class MipsABIInfo : public ABIInfo {
3646  bool IsO32;
3647  unsigned MinABIStackAlignInBytes, StackAlignInBytes;
3648  void CoerceToIntArgs(uint64_t TySize,
3649                       SmallVector<llvm::Type*, 8> &ArgList) const;
3650  llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
3651  llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
3652  llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
3653public:
3654  MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
3655    ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
3656    StackAlignInBytes(IsO32 ? 8 : 16) {}
3657
3658  ABIArgInfo classifyReturnType(QualType RetTy) const;
3659  ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
3660  virtual void computeInfo(CGFunctionInfo &FI) const;
3661  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3662                                 CodeGenFunction &CGF) const;
3663};
3664
3665class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
3666  unsigned SizeOfUnwindException;
3667public:
3668  MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
3669    : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
3670      SizeOfUnwindException(IsO32 ? 24 : 32) {}
3671
3672  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
3673    return 29;
3674  }
3675
3676  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3677                               llvm::Value *Address) const;
3678
3679  unsigned getSizeOfUnwindException() const {
3680    return SizeOfUnwindException;
3681  }
3682};
3683}
3684
3685void MipsABIInfo::CoerceToIntArgs(uint64_t TySize,
3686                                  SmallVector<llvm::Type*, 8> &ArgList) const {
3687  llvm::IntegerType *IntTy =
3688    llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
3689
3690  // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
3691  for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
3692    ArgList.push_back(IntTy);
3693
3694  // If necessary, add one more integer type to ArgList.
3695  unsigned R = TySize % (MinABIStackAlignInBytes * 8);
3696
3697  if (R)
3698    ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
3699}
3700
3701// In N32/64, an aligned double precision floating point field is passed in
3702// a register.
3703llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
3704  SmallVector<llvm::Type*, 8> ArgList, IntArgList;
3705
3706  if (IsO32) {
3707    CoerceToIntArgs(TySize, ArgList);
3708    return llvm::StructType::get(getVMContext(), ArgList);
3709  }
3710
3711  if (Ty->isComplexType())
3712    return CGT.ConvertType(Ty);
3713
3714  const RecordType *RT = Ty->getAs<RecordType>();
3715
3716  // Unions/vectors are passed in integer registers.
3717  if (!RT || !RT->isStructureOrClassType()) {
3718    CoerceToIntArgs(TySize, ArgList);
3719    return llvm::StructType::get(getVMContext(), ArgList);
3720  }
3721
3722  const RecordDecl *RD = RT->getDecl();
3723  const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3724  assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
3725
3726  uint64_t LastOffset = 0;
3727  unsigned idx = 0;
3728  llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
3729
3730  // Iterate over fields in the struct/class and check if there are any aligned
3731  // double fields.
3732  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3733       i != e; ++i, ++idx) {
3734    const QualType Ty = i->getType();
3735    const BuiltinType *BT = Ty->getAs<BuiltinType>();
3736
3737    if (!BT || BT->getKind() != BuiltinType::Double)
3738      continue;
3739
3740    uint64_t Offset = Layout.getFieldOffset(idx);
3741    if (Offset % 64) // Ignore doubles that are not aligned.
3742      continue;
3743
3744    // Add ((Offset - LastOffset) / 64) args of type i64.
3745    for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
3746      ArgList.push_back(I64);
3747
3748    // Add double type.
3749    ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
3750    LastOffset = Offset + 64;
3751  }
3752
3753  CoerceToIntArgs(TySize - LastOffset, IntArgList);
3754  ArgList.append(IntArgList.begin(), IntArgList.end());
3755
3756  return llvm::StructType::get(getVMContext(), ArgList);
3757}
3758
3759llvm::Type *MipsABIInfo::getPaddingType(uint64_t Align, uint64_t Offset) const {
3760  assert((Offset % MinABIStackAlignInBytes) == 0);
3761
3762  if ((Align - 1) & Offset)
3763    return llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
3764
3765  return 0;
3766}
3767
3768ABIArgInfo
3769MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
3770  uint64_t OrigOffset = Offset;
3771  uint64_t TySize = getContext().getTypeSize(Ty);
3772  uint64_t Align = getContext().getTypeAlign(Ty) / 8;
3773
3774  Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
3775                   (uint64_t)StackAlignInBytes);
3776  Offset = llvm::RoundUpToAlignment(Offset, Align);
3777  Offset += llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
3778
3779  if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
3780    // Ignore empty aggregates.
3781    if (TySize == 0)
3782      return ABIArgInfo::getIgnore();
3783
3784    // Records with non trivial destructors/constructors should not be passed
3785    // by value.
3786    if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty)) {
3787      Offset = OrigOffset + MinABIStackAlignInBytes;
3788      return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3789    }
3790
3791    // If we have reached here, aggregates are passed directly by coercing to
3792    // another structure type. Padding is inserted if the offset of the
3793    // aggregate is unaligned.
3794    return ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
3795                                 getPaddingType(Align, OrigOffset));
3796  }
3797
3798  // Treat an enum type as its underlying type.
3799  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3800    Ty = EnumTy->getDecl()->getIntegerType();
3801
3802  if (Ty->isPromotableIntegerType())
3803    return ABIArgInfo::getExtend();
3804
3805  return ABIArgInfo::getDirect(0, 0, getPaddingType(Align, OrigOffset));
3806}
3807
3808llvm::Type*
3809MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
3810  const RecordType *RT = RetTy->getAs<RecordType>();
3811  SmallVector<llvm::Type*, 8> RTList;
3812
3813  if (RT && RT->isStructureOrClassType()) {
3814    const RecordDecl *RD = RT->getDecl();
3815    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3816    unsigned FieldCnt = Layout.getFieldCount();
3817
3818    // N32/64 returns struct/classes in floating point registers if the
3819    // following conditions are met:
3820    // 1. The size of the struct/class is no larger than 128-bit.
3821    // 2. The struct/class has one or two fields all of which are floating
3822    //    point types.
3823    // 3. The offset of the first field is zero (this follows what gcc does).
3824    //
3825    // Any other composite results are returned in integer registers.
3826    //
3827    if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
3828      RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
3829      for (; b != e; ++b) {
3830        const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
3831
3832        if (!BT || !BT->isFloatingPoint())
3833          break;
3834
3835        RTList.push_back(CGT.ConvertType(b->getType()));
3836      }
3837
3838      if (b == e)
3839        return llvm::StructType::get(getVMContext(), RTList,
3840                                     RD->hasAttr<PackedAttr>());
3841
3842      RTList.clear();
3843    }
3844  }
3845
3846  CoerceToIntArgs(Size, RTList);
3847  return llvm::StructType::get(getVMContext(), RTList);
3848}
3849
3850ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
3851  uint64_t Size = getContext().getTypeSize(RetTy);
3852
3853  if (RetTy->isVoidType() || Size == 0)
3854    return ABIArgInfo::getIgnore();
3855
3856  if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
3857    if (Size <= 128) {
3858      if (RetTy->isAnyComplexType())
3859        return ABIArgInfo::getDirect();
3860
3861      // O32 returns integer vectors in registers.
3862      if (IsO32 && RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())
3863        return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
3864
3865      if (!IsO32 && !isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
3866        return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
3867    }
3868
3869    return ABIArgInfo::getIndirect(0);
3870  }
3871
3872  // Treat an enum type as its underlying type.
3873  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3874    RetTy = EnumTy->getDecl()->getIntegerType();
3875
3876  return (RetTy->isPromotableIntegerType() ?
3877          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3878}
3879
3880void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
3881  ABIArgInfo &RetInfo = FI.getReturnInfo();
3882  RetInfo = classifyReturnType(FI.getReturnType());
3883
3884  // Check if a pointer to an aggregate is passed as a hidden argument.
3885  uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
3886
3887  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3888       it != ie; ++it)
3889    it->info = classifyArgumentType(it->type, Offset);
3890}
3891
3892llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3893                                    CodeGenFunction &CGF) const {
3894  llvm::Type *BP = CGF.Int8PtrTy;
3895  llvm::Type *BPP = CGF.Int8PtrPtrTy;
3896
3897  CGBuilderTy &Builder = CGF.Builder;
3898  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3899  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3900  int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8;
3901  llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3902  llvm::Value *AddrTyped;
3903  unsigned PtrWidth = getContext().getTargetInfo().getPointerWidth(0);
3904  llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
3905
3906  if (TypeAlign > MinABIStackAlignInBytes) {
3907    llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
3908    llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
3909    llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
3910    llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
3911    llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
3912    AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
3913  }
3914  else
3915    AddrTyped = Builder.CreateBitCast(Addr, PTy);
3916
3917  llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
3918  TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
3919  uint64_t Offset =
3920    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign);
3921  llvm::Value *NextAddr =
3922    Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
3923                      "ap.next");
3924  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3925
3926  return AddrTyped;
3927}
3928
3929bool
3930MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3931                                               llvm::Value *Address) const {
3932  // This information comes from gcc's implementation, which seems to
3933  // as canonical as it gets.
3934
3935  // Everything on MIPS is 4 bytes.  Double-precision FP registers
3936  // are aliased to pairs of single-precision FP registers.
3937  llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
3938
3939  // 0-31 are the general purpose registers, $0 - $31.
3940  // 32-63 are the floating-point registers, $f0 - $f31.
3941  // 64 and 65 are the multiply/divide registers, $hi and $lo.
3942  // 66 is the (notional, I think) register for signal-handler return.
3943  AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
3944
3945  // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
3946  // They are one bit wide and ignored here.
3947
3948  // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
3949  // (coprocessor 1 is the FP unit)
3950  // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
3951  // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
3952  // 176-181 are the DSP accumulator registers.
3953  AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
3954  return false;
3955}
3956
3957//===----------------------------------------------------------------------===//
3958// TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
3959// Currently subclassed only to implement custom OpenCL C function attribute
3960// handling.
3961//===----------------------------------------------------------------------===//
3962
3963namespace {
3964
3965class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
3966public:
3967  TCETargetCodeGenInfo(CodeGenTypes &CGT)
3968    : DefaultTargetCodeGenInfo(CGT) {}
3969
3970  virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3971                                   CodeGen::CodeGenModule &M) const;
3972};
3973
3974void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
3975                                               llvm::GlobalValue *GV,
3976                                               CodeGen::CodeGenModule &M) const {
3977  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3978  if (!FD) return;
3979
3980  llvm::Function *F = cast<llvm::Function>(GV);
3981
3982  if (M.getLangOpts().OpenCL) {
3983    if (FD->hasAttr<OpenCLKernelAttr>()) {
3984      // OpenCL C Kernel functions are not subject to inlining
3985      F->addFnAttr(llvm::Attributes::NoInline);
3986
3987      if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
3988
3989        // Convert the reqd_work_group_size() attributes to metadata.
3990        llvm::LLVMContext &Context = F->getContext();
3991        llvm::NamedMDNode *OpenCLMetadata =
3992            M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
3993
3994        SmallVector<llvm::Value*, 5> Operands;
3995        Operands.push_back(F);
3996
3997        Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
3998                             llvm::APInt(32,
3999                             FD->getAttr<ReqdWorkGroupSizeAttr>()->getXDim())));
4000        Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
4001                             llvm::APInt(32,
4002                               FD->getAttr<ReqdWorkGroupSizeAttr>()->getYDim())));
4003        Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
4004                             llvm::APInt(32,
4005                               FD->getAttr<ReqdWorkGroupSizeAttr>()->getZDim())));
4006
4007        // Add a boolean constant operand for "required" (true) or "hint" (false)
4008        // for implementing the work_group_size_hint attr later. Currently
4009        // always true as the hint is not yet implemented.
4010        Operands.push_back(llvm::ConstantInt::getTrue(Context));
4011        OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
4012      }
4013    }
4014  }
4015}
4016
4017}
4018
4019//===----------------------------------------------------------------------===//
4020// Hexagon ABI Implementation
4021//===----------------------------------------------------------------------===//
4022
4023namespace {
4024
4025class HexagonABIInfo : public ABIInfo {
4026
4027
4028public:
4029  HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
4030
4031private:
4032
4033  ABIArgInfo classifyReturnType(QualType RetTy) const;
4034  ABIArgInfo classifyArgumentType(QualType RetTy) const;
4035
4036  virtual void computeInfo(CGFunctionInfo &FI) const;
4037
4038  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4039                                 CodeGenFunction &CGF) const;
4040};
4041
4042class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
4043public:
4044  HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
4045    :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
4046
4047  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
4048    return 29;
4049  }
4050};
4051
4052}
4053
4054void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
4055  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4056  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
4057       it != ie; ++it)
4058    it->info = classifyArgumentType(it->type);
4059}
4060
4061ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
4062  if (!isAggregateTypeForABI(Ty)) {
4063    // Treat an enum type as its underlying type.
4064    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4065      Ty = EnumTy->getDecl()->getIntegerType();
4066
4067    return (Ty->isPromotableIntegerType() ?
4068            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4069  }
4070
4071  // Ignore empty records.
4072  if (isEmptyRecord(getContext(), Ty, true))
4073    return ABIArgInfo::getIgnore();
4074
4075  // Structures with either a non-trivial destructor or a non-trivial
4076  // copy constructor are always indirect.
4077  if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
4078    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4079
4080  uint64_t Size = getContext().getTypeSize(Ty);
4081  if (Size > 64)
4082    return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
4083    // Pass in the smallest viable integer type.
4084  else if (Size > 32)
4085      return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
4086  else if (Size > 16)
4087      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4088  else if (Size > 8)
4089      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
4090  else
4091      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4092}
4093
4094ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
4095  if (RetTy->isVoidType())
4096    return ABIArgInfo::getIgnore();
4097
4098  // Large vector types should be returned via memory.
4099  if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
4100    return ABIArgInfo::getIndirect(0);
4101
4102  if (!isAggregateTypeForABI(RetTy)) {
4103    // Treat an enum type as its underlying type.
4104    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4105      RetTy = EnumTy->getDecl()->getIntegerType();
4106
4107    return (RetTy->isPromotableIntegerType() ?
4108            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4109  }
4110
4111  // Structures with either a non-trivial destructor or a non-trivial
4112  // copy constructor are always indirect.
4113  if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
4114    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4115
4116  if (isEmptyRecord(getContext(), RetTy, true))
4117    return ABIArgInfo::getIgnore();
4118
4119  // Aggregates <= 8 bytes are returned in r0; other aggregates
4120  // are returned indirectly.
4121  uint64_t Size = getContext().getTypeSize(RetTy);
4122  if (Size <= 64) {
4123    // Return in the smallest viable integer type.
4124    if (Size <= 8)
4125      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4126    if (Size <= 16)
4127      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
4128    if (Size <= 32)
4129      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4130    return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
4131  }
4132
4133  return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
4134}
4135
4136llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4137                                       CodeGenFunction &CGF) const {
4138  // FIXME: Need to handle alignment
4139  llvm::Type *BPP = CGF.Int8PtrPtrTy;
4140
4141  CGBuilderTy &Builder = CGF.Builder;
4142  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
4143                                                       "ap");
4144  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
4145  llvm::Type *PTy =
4146    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4147  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
4148
4149  uint64_t Offset =
4150    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
4151  llvm::Value *NextAddr =
4152    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
4153                      "ap.next");
4154  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
4155
4156  return AddrTyped;
4157}
4158
4159
4160const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
4161  if (TheTargetCodeGenInfo)
4162    return *TheTargetCodeGenInfo;
4163
4164  const llvm::Triple &Triple = getContext().getTargetInfo().getTriple();
4165  switch (Triple.getArch()) {
4166  default:
4167    return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
4168
4169  case llvm::Triple::le32:
4170    return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
4171  case llvm::Triple::mips:
4172  case llvm::Triple::mipsel:
4173    return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
4174
4175  case llvm::Triple::mips64:
4176  case llvm::Triple::mips64el:
4177    return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
4178
4179  case llvm::Triple::arm:
4180  case llvm::Triple::thumb:
4181    {
4182      ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
4183
4184      if (strcmp(getContext().getTargetInfo().getABI(), "apcs-gnu") == 0)
4185        Kind = ARMABIInfo::APCS;
4186      else if (CodeGenOpts.FloatABI == "hard")
4187        Kind = ARMABIInfo::AAPCS_VFP;
4188
4189      switch (Triple.getOS()) {
4190        case llvm::Triple::NativeClient:
4191          return *(TheTargetCodeGenInfo =
4192                   new NaClARMTargetCodeGenInfo(Types, Kind));
4193        default:
4194          return *(TheTargetCodeGenInfo =
4195                   new ARMTargetCodeGenInfo(Types, Kind));
4196      }
4197    }
4198
4199  case llvm::Triple::ppc:
4200    return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
4201  case llvm::Triple::ppc64:
4202    if (Triple.isOSBinFormatELF())
4203      return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types));
4204    else
4205      return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
4206
4207  case llvm::Triple::nvptx:
4208  case llvm::Triple::nvptx64:
4209    return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
4210
4211  case llvm::Triple::mblaze:
4212    return *(TheTargetCodeGenInfo = new MBlazeTargetCodeGenInfo(Types));
4213
4214  case llvm::Triple::msp430:
4215    return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
4216
4217  case llvm::Triple::tce:
4218    return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
4219
4220  case llvm::Triple::x86: {
4221    bool DisableMMX = strcmp(getContext().getTargetInfo().getABI(), "no-mmx") == 0;
4222
4223    if (Triple.isOSDarwin())
4224      return *(TheTargetCodeGenInfo =
4225               new X86_32TargetCodeGenInfo(Types, true, true, DisableMMX, false,
4226                                           CodeGenOpts.NumRegisterParameters));
4227
4228    switch (Triple.getOS()) {
4229    case llvm::Triple::Cygwin:
4230    case llvm::Triple::MinGW32:
4231    case llvm::Triple::AuroraUX:
4232    case llvm::Triple::DragonFly:
4233    case llvm::Triple::FreeBSD:
4234    case llvm::Triple::OpenBSD:
4235    case llvm::Triple::Bitrig:
4236      return *(TheTargetCodeGenInfo =
4237               new X86_32TargetCodeGenInfo(Types, false, true, DisableMMX,
4238                                           false,
4239                                           CodeGenOpts.NumRegisterParameters));
4240
4241    case llvm::Triple::Win32:
4242      return *(TheTargetCodeGenInfo =
4243               new X86_32TargetCodeGenInfo(Types, false, true, DisableMMX, true,
4244                                           CodeGenOpts.NumRegisterParameters));
4245
4246    default:
4247      return *(TheTargetCodeGenInfo =
4248               new X86_32TargetCodeGenInfo(Types, false, false, DisableMMX,
4249                                           false,
4250                                           CodeGenOpts.NumRegisterParameters));
4251    }
4252  }
4253
4254  case llvm::Triple::x86_64: {
4255    bool HasAVX = strcmp(getContext().getTargetInfo().getABI(), "avx") == 0;
4256
4257    switch (Triple.getOS()) {
4258    case llvm::Triple::Win32:
4259    case llvm::Triple::MinGW32:
4260    case llvm::Triple::Cygwin:
4261      return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
4262    case llvm::Triple::NativeClient:
4263      return *(TheTargetCodeGenInfo = new NaClX86_64TargetCodeGenInfo(Types, HasAVX));
4264    default:
4265      return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types,
4266                                                                  HasAVX));
4267    }
4268  }
4269  case llvm::Triple::hexagon:
4270    return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
4271  }
4272}
4273