SemaChecking.cpp revision cd9c51433c06705645d1ee5a13da3c9a72d7d025
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "Sema.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/Lex/LiteralSupport.h"
21#include "clang/Lex/Preprocessor.h"
22using namespace clang;
23
24/// getLocationOfStringLiteralByte - Return a source location that points to the
25/// specified byte of the specified string literal.
26///
27/// Strings are amazingly complex.  They can be formed from multiple tokens and
28/// can have escape sequences in them in addition to the usual trigraph and
29/// escaped newline business.  This routine handles this complexity.
30///
31SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
32                                                    unsigned ByteNo) const {
33  assert(!SL->isWide() && "This doesn't work for wide strings yet");
34
35  // Loop over all of the tokens in this string until we find the one that
36  // contains the byte we're looking for.
37  unsigned TokNo = 0;
38  while (1) {
39    assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
40    SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
41
42    // Get the spelling of the string so that we can get the data that makes up
43    // the string literal, not the identifier for the macro it is potentially
44    // expanded through.
45    SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);
46
47    // Re-lex the token to get its length and original spelling.
48    std::pair<FileID, unsigned> LocInfo =
49      SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
50    std::pair<const char *,const char *> Buffer =
51      SourceMgr.getBufferData(LocInfo.first);
52    const char *StrData = Buffer.first+LocInfo.second;
53
54    // Create a langops struct and enable trigraphs.  This is sufficient for
55    // relexing tokens.
56    LangOptions LangOpts;
57    LangOpts.Trigraphs = true;
58
59    // Create a lexer starting at the beginning of this token.
60    Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.first, StrData,
61                   Buffer.second);
62    Token TheTok;
63    TheLexer.LexFromRawLexer(TheTok);
64
65    // Use the StringLiteralParser to compute the length of the string in bytes.
66    StringLiteralParser SLP(&TheTok, 1, PP);
67    unsigned TokNumBytes = SLP.GetStringLength();
68
69    // If the byte is in this token, return the location of the byte.
70    if (ByteNo < TokNumBytes ||
71        (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
72      unsigned Offset =
73        StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP);
74
75      // Now that we know the offset of the token in the spelling, use the
76      // preprocessor to get the offset in the original source.
77      return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
78    }
79
80    // Move to the next string token.
81    ++TokNo;
82    ByteNo -= TokNumBytes;
83  }
84}
85
86
87/// CheckFunctionCall - Check a direct function call for various correctness
88/// and safety properties not strictly enforced by the C type system.
89Action::OwningExprResult
90Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
91  OwningExprResult TheCallResult(Owned(TheCall));
92  // Get the IdentifierInfo* for the called function.
93  IdentifierInfo *FnInfo = FDecl->getIdentifier();
94
95  // None of the checks below are needed for functions that don't have
96  // simple names (e.g., C++ conversion functions).
97  if (!FnInfo)
98    return move(TheCallResult);
99
100  switch (FDecl->getBuiltinID(Context)) {
101  case Builtin::BI__builtin___CFStringMakeConstantString:
102    assert(TheCall->getNumArgs() == 1 &&
103           "Wrong # arguments to builtin CFStringMakeConstantString");
104    if (CheckObjCString(TheCall->getArg(0)))
105      return ExprError();
106    return move(TheCallResult);
107  case Builtin::BI__builtin_stdarg_start:
108  case Builtin::BI__builtin_va_start:
109    if (SemaBuiltinVAStart(TheCall))
110      return ExprError();
111    return move(TheCallResult);
112  case Builtin::BI__builtin_isgreater:
113  case Builtin::BI__builtin_isgreaterequal:
114  case Builtin::BI__builtin_isless:
115  case Builtin::BI__builtin_islessequal:
116  case Builtin::BI__builtin_islessgreater:
117  case Builtin::BI__builtin_isunordered:
118    if (SemaBuiltinUnorderedCompare(TheCall))
119      return ExprError();
120    return move(TheCallResult);
121  case Builtin::BI__builtin_return_address:
122  case Builtin::BI__builtin_frame_address:
123    if (SemaBuiltinStackAddress(TheCall))
124      return ExprError();
125    return move(TheCallResult);
126  case Builtin::BI__builtin_shufflevector:
127    return SemaBuiltinShuffleVector(TheCall);
128    // TheCall will be freed by the smart pointer here, but that's fine, since
129    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
130  case Builtin::BI__builtin_prefetch:
131    if (SemaBuiltinPrefetch(TheCall))
132      return ExprError();
133    return move(TheCallResult);
134  case Builtin::BI__builtin_object_size:
135    if (SemaBuiltinObjectSize(TheCall))
136      return ExprError();
137  }
138
139  // FIXME: This mechanism should be abstracted to be less fragile and
140  // more efficient. For example, just map function ids to custom
141  // handlers.
142
143  // Printf checking.
144  if (const FormatAttr *Format = FDecl->getAttr<FormatAttr>()) {
145    if (Format->getType() == "printf") {
146      bool HasVAListArg = Format->getFirstArg() == 0;
147      if (!HasVAListArg) {
148        if (const FunctionProtoType *Proto
149            = FDecl->getType()->getAsFunctionProtoType())
150        HasVAListArg = !Proto->isVariadic();
151      }
152      CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
153                           HasVAListArg ? 0 : Format->getFirstArg() - 1);
154    }
155  }
156
157  return move(TheCallResult);
158}
159
160/// CheckObjCString - Checks that the argument to the builtin
161/// CFString constructor is correct
162/// FIXME: GCC currently emits the following warning:
163/// "warning: input conversion stopped due to an input byte that does not
164///           belong to the input codeset UTF-8"
165/// Note: It might also make sense to do the UTF-16 conversion here (would
166/// simplify the backend).
167bool Sema::CheckObjCString(Expr *Arg) {
168  Arg = Arg->IgnoreParenCasts();
169  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
170
171  if (!Literal || Literal->isWide()) {
172    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
173      << Arg->getSourceRange();
174    return true;
175  }
176
177  const char *Data = Literal->getStrData();
178  unsigned Length = Literal->getByteLength();
179
180  for (unsigned i = 0; i < Length; ++i) {
181    if (!Data[i]) {
182      Diag(getLocationOfStringLiteralByte(Literal, i),
183           diag::warn_cfstring_literal_contains_nul_character)
184        << Arg->getSourceRange();
185      break;
186    }
187  }
188
189  return false;
190}
191
192/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
193/// Emit an error and return true on failure, return false on success.
194bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
195  Expr *Fn = TheCall->getCallee();
196  if (TheCall->getNumArgs() > 2) {
197    Diag(TheCall->getArg(2)->getLocStart(),
198         diag::err_typecheck_call_too_many_args)
199      << 0 /*function call*/ << Fn->getSourceRange()
200      << SourceRange(TheCall->getArg(2)->getLocStart(),
201                     (*(TheCall->arg_end()-1))->getLocEnd());
202    return true;
203  }
204
205  if (TheCall->getNumArgs() < 2) {
206    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
207      << 0 /*function call*/;
208  }
209
210  // Determine whether the current function is variadic or not.
211  bool isVariadic;
212  if (CurBlock)
213    isVariadic = CurBlock->isVariadic;
214  else if (getCurFunctionDecl()) {
215    if (FunctionProtoType* FTP =
216            dyn_cast<FunctionProtoType>(getCurFunctionDecl()->getType()))
217      isVariadic = FTP->isVariadic();
218    else
219      isVariadic = false;
220  } else {
221    isVariadic = getCurMethodDecl()->isVariadic();
222  }
223
224  if (!isVariadic) {
225    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
226    return true;
227  }
228
229  // Verify that the second argument to the builtin is the last argument of the
230  // current function or method.
231  bool SecondArgIsLastNamedArgument = false;
232  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
233
234  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
235    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
236      // FIXME: This isn't correct for methods (results in bogus warning).
237      // Get the last formal in the current function.
238      const ParmVarDecl *LastArg;
239      if (CurBlock)
240        LastArg = *(CurBlock->TheDecl->param_end()-1);
241      else if (FunctionDecl *FD = getCurFunctionDecl())
242        LastArg = *(FD->param_end()-1);
243      else
244        LastArg = *(getCurMethodDecl()->param_end()-1);
245      SecondArgIsLastNamedArgument = PV == LastArg;
246    }
247  }
248
249  if (!SecondArgIsLastNamedArgument)
250    Diag(TheCall->getArg(1)->getLocStart(),
251         diag::warn_second_parameter_of_va_start_not_last_named_argument);
252  return false;
253}
254
255/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
256/// friends.  This is declared to take (...), so we have to check everything.
257bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
258  if (TheCall->getNumArgs() < 2)
259    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
260      << 0 /*function call*/;
261  if (TheCall->getNumArgs() > 2)
262    return Diag(TheCall->getArg(2)->getLocStart(),
263                diag::err_typecheck_call_too_many_args)
264      << 0 /*function call*/
265      << SourceRange(TheCall->getArg(2)->getLocStart(),
266                     (*(TheCall->arg_end()-1))->getLocEnd());
267
268  Expr *OrigArg0 = TheCall->getArg(0);
269  Expr *OrigArg1 = TheCall->getArg(1);
270
271  // Do standard promotions between the two arguments, returning their common
272  // type.
273  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
274
275  // Make sure any conversions are pushed back into the call; this is
276  // type safe since unordered compare builtins are declared as "_Bool
277  // foo(...)".
278  TheCall->setArg(0, OrigArg0);
279  TheCall->setArg(1, OrigArg1);
280
281  // If the common type isn't a real floating type, then the arguments were
282  // invalid for this operation.
283  if (!Res->isRealFloatingType())
284    return Diag(OrigArg0->getLocStart(),
285                diag::err_typecheck_call_invalid_ordered_compare)
286      << OrigArg0->getType() << OrigArg1->getType()
287      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
288
289  return false;
290}
291
292bool Sema::SemaBuiltinStackAddress(CallExpr *TheCall) {
293  // The signature for these builtins is exact; the only thing we need
294  // to check is that the argument is a constant.
295  SourceLocation Loc;
296  if (!TheCall->getArg(0)->isIntegerConstantExpr(Context, &Loc))
297    return Diag(Loc, diag::err_stack_const_level) << TheCall->getSourceRange();
298
299  return false;
300}
301
302/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
303// This is declared to take (...), so we have to check everything.
304Action::OwningExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
305  if (TheCall->getNumArgs() < 3)
306    return ExprError(Diag(TheCall->getLocEnd(),
307                          diag::err_typecheck_call_too_few_args)
308      << 0 /*function call*/ << TheCall->getSourceRange());
309
310  QualType FAType = TheCall->getArg(0)->getType();
311  QualType SAType = TheCall->getArg(1)->getType();
312
313  if (!FAType->isVectorType() || !SAType->isVectorType()) {
314    Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
315      << SourceRange(TheCall->getArg(0)->getLocStart(),
316                     TheCall->getArg(1)->getLocEnd());
317    return ExprError();
318  }
319
320  if (Context.getCanonicalType(FAType).getUnqualifiedType() !=
321      Context.getCanonicalType(SAType).getUnqualifiedType()) {
322    Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
323      << SourceRange(TheCall->getArg(0)->getLocStart(),
324                     TheCall->getArg(1)->getLocEnd());
325    return ExprError();
326  }
327
328  unsigned numElements = FAType->getAsVectorType()->getNumElements();
329  if (TheCall->getNumArgs() != numElements+2) {
330    if (TheCall->getNumArgs() < numElements+2)
331      return ExprError(Diag(TheCall->getLocEnd(),
332                            diag::err_typecheck_call_too_few_args)
333               << 0 /*function call*/ << TheCall->getSourceRange());
334    return ExprError(Diag(TheCall->getLocEnd(),
335                          diag::err_typecheck_call_too_many_args)
336             << 0 /*function call*/ << TheCall->getSourceRange());
337  }
338
339  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
340    llvm::APSInt Result(32);
341    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
342      return ExprError(Diag(TheCall->getLocStart(),
343                  diag::err_shufflevector_nonconstant_argument)
344                << TheCall->getArg(i)->getSourceRange());
345
346    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
347      return ExprError(Diag(TheCall->getLocStart(),
348                  diag::err_shufflevector_argument_too_large)
349               << TheCall->getArg(i)->getSourceRange());
350  }
351
352  llvm::SmallVector<Expr*, 32> exprs;
353
354  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
355    exprs.push_back(TheCall->getArg(i));
356    TheCall->setArg(i, 0);
357  }
358
359  return Owned(new (Context) ShuffleVectorExpr(exprs.begin(), numElements+2,
360                                            FAType,
361                                            TheCall->getCallee()->getLocStart(),
362                                            TheCall->getRParenLoc()));
363}
364
365/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
366// This is declared to take (const void*, ...) and can take two
367// optional constant int args.
368bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
369  unsigned NumArgs = TheCall->getNumArgs();
370
371  if (NumArgs > 3)
372    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args)
373             << 0 /*function call*/ << TheCall->getSourceRange();
374
375  // Argument 0 is checked for us and the remaining arguments must be
376  // constant integers.
377  for (unsigned i = 1; i != NumArgs; ++i) {
378    Expr *Arg = TheCall->getArg(i);
379    QualType RWType = Arg->getType();
380
381    const BuiltinType *BT = RWType->getAsBuiltinType();
382    llvm::APSInt Result;
383    if (!BT || BT->getKind() != BuiltinType::Int ||
384        !Arg->isIntegerConstantExpr(Result, Context))
385      return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_argument)
386              << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
387
388    // FIXME: gcc issues a warning and rewrites these to 0. These
389    // seems especially odd for the third argument since the default
390    // is 3.
391    if (i == 1) {
392      if (Result.getSExtValue() < 0 || Result.getSExtValue() > 1)
393        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
394             << "0" << "1" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
395    } else {
396      if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3)
397        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
398            << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
399    }
400  }
401
402  return false;
403}
404
405/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
406/// int type). This simply type checks that type is one of the defined
407/// constants (0-3).
408bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
409  Expr *Arg = TheCall->getArg(1);
410  QualType ArgType = Arg->getType();
411  const BuiltinType *BT = ArgType->getAsBuiltinType();
412  llvm::APSInt Result(32);
413  if (!BT || BT->getKind() != BuiltinType::Int ||
414      !Arg->isIntegerConstantExpr(Result, Context)) {
415    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
416             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
417  }
418
419  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
420    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
421             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
422  }
423
424  return false;
425}
426
427// Handle i > 1 ? "x" : "y", recursivelly
428bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
429                                  bool HasVAListArg,
430                                  unsigned format_idx, unsigned firstDataArg) {
431
432  switch (E->getStmtClass()) {
433  case Stmt::ConditionalOperatorClass: {
434    const ConditionalOperator *C = cast<ConditionalOperator>(E);
435    return SemaCheckStringLiteral(C->getLHS(), TheCall,
436                                  HasVAListArg, format_idx, firstDataArg)
437        && SemaCheckStringLiteral(C->getRHS(), TheCall,
438                                  HasVAListArg, format_idx, firstDataArg);
439  }
440
441  case Stmt::ImplicitCastExprClass: {
442    const ImplicitCastExpr *Expr = cast<ImplicitCastExpr>(E);
443    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
444                                  format_idx, firstDataArg);
445  }
446
447  case Stmt::ParenExprClass: {
448    const ParenExpr *Expr = cast<ParenExpr>(E);
449    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
450                                  format_idx, firstDataArg);
451  }
452
453  case Stmt::DeclRefExprClass: {
454    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
455
456    // As an exception, do not flag errors for variables binding to
457    // const string literals.
458    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
459      bool isConstant = false;
460      QualType T = DR->getType();
461
462      if (const ArrayType *AT = Context.getAsArrayType(T)) {
463        isConstant = AT->getElementType().isConstant(Context);
464      }
465      else if (const PointerType *PT = T->getAsPointerType()) {
466        isConstant = T.isConstant(Context) &&
467                     PT->getPointeeType().isConstant(Context);
468      }
469
470      if (isConstant) {
471        const VarDecl *Def = 0;
472        if (const Expr *Init = VD->getDefinition(Def))
473          return SemaCheckStringLiteral(Init, TheCall,
474                                        HasVAListArg, format_idx, firstDataArg);
475      }
476    }
477
478    return false;
479  }
480
481  case Stmt::ObjCStringLiteralClass:
482  case Stmt::StringLiteralClass: {
483    const StringLiteral *StrE = NULL;
484
485    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
486      StrE = ObjCFExpr->getString();
487    else
488      StrE = cast<StringLiteral>(E);
489
490    if (StrE) {
491      CheckPrintfString(StrE, E, TheCall, HasVAListArg, format_idx,
492                        firstDataArg);
493      return true;
494    }
495
496    return false;
497  }
498
499  default:
500    return false;
501  }
502}
503
504
505/// CheckPrintfArguments - Check calls to printf (and similar functions) for
506/// correct use of format strings.
507///
508///  HasVAListArg - A predicate indicating whether the printf-like
509///    function is passed an explicit va_arg argument (e.g., vprintf)
510///
511///  format_idx - The index into Args for the format string.
512///
513/// Improper format strings to functions in the printf family can be
514/// the source of bizarre bugs and very serious security holes.  A
515/// good source of information is available in the following paper
516/// (which includes additional references):
517///
518///  FormatGuard: Automatic Protection From printf Format String
519///  Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
520///
521/// Functionality implemented:
522///
523///  We can statically check the following properties for string
524///  literal format strings for non v.*printf functions (where the
525///  arguments are passed directly):
526//
527///  (1) Are the number of format conversions equal to the number of
528///      data arguments?
529///
530///  (2) Does each format conversion correctly match the type of the
531///      corresponding data argument?  (TODO)
532///
533/// Moreover, for all printf functions we can:
534///
535///  (3) Check for a missing format string (when not caught by type checking).
536///
537///  (4) Check for no-operation flags; e.g. using "#" with format
538///      conversion 'c'  (TODO)
539///
540///  (5) Check the use of '%n', a major source of security holes.
541///
542///  (6) Check for malformed format conversions that don't specify anything.
543///
544///  (7) Check for empty format strings.  e.g: printf("");
545///
546///  (8) Check that the format string is a wide literal.
547///
548///  (9) Also check the arguments of functions with the __format__ attribute.
549///      (TODO).
550///
551/// All of these checks can be done by parsing the format string.
552///
553/// For now, we ONLY do (1), (3), (5), (6), (7), and (8).
554void
555Sema::CheckPrintfArguments(const CallExpr *TheCall, bool HasVAListArg,
556                           unsigned format_idx, unsigned firstDataArg) {
557  const Expr *Fn = TheCall->getCallee();
558
559  // CHECK: printf-like function is called with no format string.
560  if (format_idx >= TheCall->getNumArgs()) {
561    Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string)
562      << Fn->getSourceRange();
563    return;
564  }
565
566  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
567
568  // CHECK: format string is not a string literal.
569  //
570  // Dynamically generated format strings are difficult to
571  // automatically vet at compile time.  Requiring that format strings
572  // are string literals: (1) permits the checking of format strings by
573  // the compiler and thereby (2) can practically remove the source of
574  // many format string exploits.
575
576  // Format string can be either ObjC string (e.g. @"%d") or
577  // C string (e.g. "%d")
578  // ObjC string uses the same format specifiers as C string, so we can use
579  // the same format string checking logic for both ObjC and C strings.
580  bool isFExpr = SemaCheckStringLiteral(OrigFormatExpr, TheCall,
581                                        HasVAListArg, format_idx,
582                                        firstDataArg);
583
584  if (!isFExpr) {
585    // For vprintf* functions (i.e., HasVAListArg==true), we add a
586    // special check to see if the format string is a function parameter
587    // of the function calling the printf function.  If the function
588    // has an attribute indicating it is a printf-like function, then we
589    // should suppress warnings concerning non-literals being used in a call
590    // to a vprintf function.  For example:
591    //
592    // void
593    // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...) {
594    //      va_list ap;
595    //      va_start(ap, fmt);
596    //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
597    //      ...
598    //
599    //
600    //  FIXME: We don't have full attribute support yet, so just check to see
601    //    if the argument is a DeclRefExpr that references a parameter.  We'll
602    //    add proper support for checking the attribute later.
603    if (HasVAListArg)
604      if (const DeclRefExpr* DR = dyn_cast<DeclRefExpr>(OrigFormatExpr))
605        if (isa<ParmVarDecl>(DR->getDecl()))
606          return;
607
608    Diag(TheCall->getArg(format_idx)->getLocStart(),
609         diag::warn_printf_not_string_constant)
610         << OrigFormatExpr->getSourceRange();
611    return;
612  }
613}
614
615void Sema::CheckPrintfString(const StringLiteral *FExpr,
616                             const Expr *OrigFormatExpr,
617                             const CallExpr *TheCall, bool HasVAListArg,
618                             unsigned format_idx, unsigned firstDataArg) {
619
620  const ObjCStringLiteral *ObjCFExpr =
621    dyn_cast<ObjCStringLiteral>(OrigFormatExpr);
622
623  // CHECK: is the format string a wide literal?
624  if (FExpr->isWide()) {
625    Diag(FExpr->getLocStart(),
626         diag::warn_printf_format_string_is_wide_literal)
627      << OrigFormatExpr->getSourceRange();
628    return;
629  }
630
631  // Str - The format string.  NOTE: this is NOT null-terminated!
632  const char * const Str = FExpr->getStrData();
633
634  // CHECK: empty format string?
635  const unsigned StrLen = FExpr->getByteLength();
636
637  if (StrLen == 0) {
638    Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string)
639      << OrigFormatExpr->getSourceRange();
640    return;
641  }
642
643  // We process the format string using a binary state machine.  The
644  // current state is stored in CurrentState.
645  enum {
646    state_OrdChr,
647    state_Conversion
648  } CurrentState = state_OrdChr;
649
650  // numConversions - The number of conversions seen so far.  This is
651  //  incremented as we traverse the format string.
652  unsigned numConversions = 0;
653
654  // numDataArgs - The number of data arguments after the format
655  //  string.  This can only be determined for non vprintf-like
656  //  functions.  For those functions, this value is 1 (the sole
657  //  va_arg argument).
658  unsigned numDataArgs = TheCall->getNumArgs()-firstDataArg;
659
660  // Inspect the format string.
661  unsigned StrIdx = 0;
662
663  // LastConversionIdx - Index within the format string where we last saw
664  //  a '%' character that starts a new format conversion.
665  unsigned LastConversionIdx = 0;
666
667  for (; StrIdx < StrLen; ++StrIdx) {
668
669    // Is the number of detected conversion conversions greater than
670    // the number of matching data arguments?  If so, stop.
671    if (!HasVAListArg && numConversions > numDataArgs) break;
672
673    // Handle "\0"
674    if (Str[StrIdx] == '\0') {
675      // The string returned by getStrData() is not null-terminated,
676      // so the presence of a null character is likely an error.
677      Diag(getLocationOfStringLiteralByte(FExpr, StrIdx),
678           diag::warn_printf_format_string_contains_null_char)
679        <<  OrigFormatExpr->getSourceRange();
680      return;
681    }
682
683    // Ordinary characters (not processing a format conversion).
684    if (CurrentState == state_OrdChr) {
685      if (Str[StrIdx] == '%') {
686        CurrentState = state_Conversion;
687        LastConversionIdx = StrIdx;
688      }
689      continue;
690    }
691
692    // Seen '%'.  Now processing a format conversion.
693    switch (Str[StrIdx]) {
694    // Handle dynamic precision or width specifier.
695    case '*': {
696      ++numConversions;
697
698      if (!HasVAListArg && numConversions > numDataArgs) {
699        SourceLocation Loc = getLocationOfStringLiteralByte(FExpr, StrIdx);
700
701        if (Str[StrIdx-1] == '.')
702          Diag(Loc, diag::warn_printf_asterisk_precision_missing_arg)
703            << OrigFormatExpr->getSourceRange();
704        else
705          Diag(Loc, diag::warn_printf_asterisk_width_missing_arg)
706            << OrigFormatExpr->getSourceRange();
707
708        // Don't do any more checking.  We'll just emit spurious errors.
709        return;
710      }
711
712      // Perform type checking on width/precision specifier.
713      const Expr *E = TheCall->getArg(format_idx+numConversions);
714      if (const BuiltinType *BT = E->getType()->getAsBuiltinType())
715        if (BT->getKind() == BuiltinType::Int)
716          break;
717
718      SourceLocation Loc = getLocationOfStringLiteralByte(FExpr, StrIdx);
719
720      if (Str[StrIdx-1] == '.')
721        Diag(Loc, diag::warn_printf_asterisk_precision_wrong_type)
722          << E->getType() << E->getSourceRange();
723      else
724        Diag(Loc, diag::warn_printf_asterisk_width_wrong_type)
725          << E->getType() << E->getSourceRange();
726
727      break;
728    }
729
730    // Characters which can terminate a format conversion
731    // (e.g. "%d").  Characters that specify length modifiers or
732    // other flags are handled by the default case below.
733    //
734    // FIXME: additional checks will go into the following cases.
735    case 'i':
736    case 'd':
737    case 'o':
738    case 'u':
739    case 'x':
740    case 'X':
741    case 'D':
742    case 'O':
743    case 'U':
744    case 'e':
745    case 'E':
746    case 'f':
747    case 'F':
748    case 'g':
749    case 'G':
750    case 'a':
751    case 'A':
752    case 'c':
753    case 'C':
754    case 'S':
755    case 's':
756    case 'p':
757      ++numConversions;
758      CurrentState = state_OrdChr;
759      break;
760
761    // CHECK: Are we using "%n"?  Issue a warning.
762    case 'n': {
763      ++numConversions;
764      CurrentState = state_OrdChr;
765      SourceLocation Loc = getLocationOfStringLiteralByte(FExpr,
766                                                          LastConversionIdx);
767
768      Diag(Loc, diag::warn_printf_write_back)<<OrigFormatExpr->getSourceRange();
769      break;
770    }
771
772    // Handle "%@"
773    case '@':
774      // %@ is allowed in ObjC format strings only.
775      if(ObjCFExpr != NULL)
776        CurrentState = state_OrdChr;
777      else {
778        // Issue a warning: invalid format conversion.
779        SourceLocation Loc =
780          getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
781
782        Diag(Loc, diag::warn_printf_invalid_conversion)
783          <<  std::string(Str+LastConversionIdx,
784                          Str+std::min(LastConversionIdx+2, StrLen))
785          << OrigFormatExpr->getSourceRange();
786      }
787      ++numConversions;
788      break;
789
790    // Handle "%%"
791    case '%':
792      // Sanity check: Was the first "%" character the previous one?
793      // If not, we will assume that we have a malformed format
794      // conversion, and that the current "%" character is the start
795      // of a new conversion.
796      if (StrIdx - LastConversionIdx == 1)
797        CurrentState = state_OrdChr;
798      else {
799        // Issue a warning: invalid format conversion.
800        SourceLocation Loc =
801          getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
802
803        Diag(Loc, diag::warn_printf_invalid_conversion)
804          << std::string(Str+LastConversionIdx, Str+StrIdx)
805          << OrigFormatExpr->getSourceRange();
806
807        // This conversion is broken.  Advance to the next format
808        // conversion.
809        LastConversionIdx = StrIdx;
810        ++numConversions;
811      }
812      break;
813
814    default:
815      // This case catches all other characters: flags, widths, etc.
816      // We should eventually process those as well.
817      break;
818    }
819  }
820
821  if (CurrentState == state_Conversion) {
822    // Issue a warning: invalid format conversion.
823    SourceLocation Loc =
824      getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
825
826    Diag(Loc, diag::warn_printf_invalid_conversion)
827      << std::string(Str+LastConversionIdx,
828                     Str+std::min(LastConversionIdx+2, StrLen))
829      << OrigFormatExpr->getSourceRange();
830    return;
831  }
832
833  if (!HasVAListArg) {
834    // CHECK: Does the number of format conversions exceed the number
835    //        of data arguments?
836    if (numConversions > numDataArgs) {
837      SourceLocation Loc =
838        getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
839
840      Diag(Loc, diag::warn_printf_insufficient_data_args)
841        << OrigFormatExpr->getSourceRange();
842    }
843    // CHECK: Does the number of data arguments exceed the number of
844    //        format conversions in the format string?
845    else if (numConversions < numDataArgs)
846      Diag(TheCall->getArg(format_idx+numConversions+1)->getLocStart(),
847           diag::warn_printf_too_many_data_args)
848        << OrigFormatExpr->getSourceRange();
849  }
850}
851
852//===--- CHECK: Return Address of Stack Variable --------------------------===//
853
854static DeclRefExpr* EvalVal(Expr *E);
855static DeclRefExpr* EvalAddr(Expr* E);
856
857/// CheckReturnStackAddr - Check if a return statement returns the address
858///   of a stack variable.
859void
860Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
861                           SourceLocation ReturnLoc) {
862
863  // Perform checking for returned stack addresses.
864  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
865    if (DeclRefExpr *DR = EvalAddr(RetValExp))
866      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
867       << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
868
869    // Skip over implicit cast expressions when checking for block expressions.
870    if (ImplicitCastExpr *IcExpr =
871          dyn_cast_or_null<ImplicitCastExpr>(RetValExp))
872      RetValExp = IcExpr->getSubExpr();
873
874    if (BlockExpr *C = dyn_cast_or_null<BlockExpr>(RetValExp))
875      Diag(C->getLocStart(), diag::err_ret_local_block)
876        << C->getSourceRange();
877  }
878  // Perform checking for stack values returned by reference.
879  else if (lhsType->isReferenceType()) {
880    // Check for a reference to the stack
881    if (DeclRefExpr *DR = EvalVal(RetValExp))
882      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
883        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
884  }
885}
886
887/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
888///  check if the expression in a return statement evaluates to an address
889///  to a location on the stack.  The recursion is used to traverse the
890///  AST of the return expression, with recursion backtracking when we
891///  encounter a subexpression that (1) clearly does not lead to the address
892///  of a stack variable or (2) is something we cannot determine leads to
893///  the address of a stack variable based on such local checking.
894///
895///  EvalAddr processes expressions that are pointers that are used as
896///  references (and not L-values).  EvalVal handles all other values.
897///  At the base case of the recursion is a check for a DeclRefExpr* in
898///  the refers to a stack variable.
899///
900///  This implementation handles:
901///
902///   * pointer-to-pointer casts
903///   * implicit conversions from array references to pointers
904///   * taking the address of fields
905///   * arbitrary interplay between "&" and "*" operators
906///   * pointer arithmetic from an address of a stack variable
907///   * taking the address of an array element where the array is on the stack
908static DeclRefExpr* EvalAddr(Expr *E) {
909  // We should only be called for evaluating pointer expressions.
910  assert((E->getType()->isPointerType() ||
911          E->getType()->isBlockPointerType() ||
912          E->getType()->isObjCQualifiedIdType()) &&
913         "EvalAddr only works on pointers");
914
915  // Our "symbolic interpreter" is just a dispatch off the currently
916  // viewed AST node.  We then recursively traverse the AST by calling
917  // EvalAddr and EvalVal appropriately.
918  switch (E->getStmtClass()) {
919  case Stmt::ParenExprClass:
920    // Ignore parentheses.
921    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
922
923  case Stmt::UnaryOperatorClass: {
924    // The only unary operator that make sense to handle here
925    // is AddrOf.  All others don't make sense as pointers.
926    UnaryOperator *U = cast<UnaryOperator>(E);
927
928    if (U->getOpcode() == UnaryOperator::AddrOf)
929      return EvalVal(U->getSubExpr());
930    else
931      return NULL;
932  }
933
934  case Stmt::BinaryOperatorClass: {
935    // Handle pointer arithmetic.  All other binary operators are not valid
936    // in this context.
937    BinaryOperator *B = cast<BinaryOperator>(E);
938    BinaryOperator::Opcode op = B->getOpcode();
939
940    if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
941      return NULL;
942
943    Expr *Base = B->getLHS();
944
945    // Determine which argument is the real pointer base.  It could be
946    // the RHS argument instead of the LHS.
947    if (!Base->getType()->isPointerType()) Base = B->getRHS();
948
949    assert (Base->getType()->isPointerType());
950    return EvalAddr(Base);
951  }
952
953  // For conditional operators we need to see if either the LHS or RHS are
954  // valid DeclRefExpr*s.  If one of them is valid, we return it.
955  case Stmt::ConditionalOperatorClass: {
956    ConditionalOperator *C = cast<ConditionalOperator>(E);
957
958    // Handle the GNU extension for missing LHS.
959    if (Expr *lhsExpr = C->getLHS())
960      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
961        return LHS;
962
963     return EvalAddr(C->getRHS());
964  }
965
966  // For casts, we need to handle conversions from arrays to
967  // pointer values, and pointer-to-pointer conversions.
968  case Stmt::ImplicitCastExprClass:
969  case Stmt::CStyleCastExprClass:
970  case Stmt::CXXFunctionalCastExprClass: {
971    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
972    QualType T = SubExpr->getType();
973
974    if (SubExpr->getType()->isPointerType() ||
975        SubExpr->getType()->isBlockPointerType() ||
976        SubExpr->getType()->isObjCQualifiedIdType())
977      return EvalAddr(SubExpr);
978    else if (T->isArrayType())
979      return EvalVal(SubExpr);
980    else
981      return 0;
982  }
983
984  // C++ casts.  For dynamic casts, static casts, and const casts, we
985  // are always converting from a pointer-to-pointer, so we just blow
986  // through the cast.  In the case the dynamic cast doesn't fail (and
987  // return NULL), we take the conservative route and report cases
988  // where we return the address of a stack variable.  For Reinterpre
989  // FIXME: The comment about is wrong; we're not always converting
990  // from pointer to pointer. I'm guessing that this code should also
991  // handle references to objects.
992  case Stmt::CXXStaticCastExprClass:
993  case Stmt::CXXDynamicCastExprClass:
994  case Stmt::CXXConstCastExprClass:
995  case Stmt::CXXReinterpretCastExprClass: {
996      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
997      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
998        return EvalAddr(S);
999      else
1000        return NULL;
1001  }
1002
1003  // Everything else: we simply don't reason about them.
1004  default:
1005    return NULL;
1006  }
1007}
1008
1009
1010///  EvalVal - This function is complements EvalAddr in the mutual recursion.
1011///   See the comments for EvalAddr for more details.
1012static DeclRefExpr* EvalVal(Expr *E) {
1013
1014  // We should only be called for evaluating non-pointer expressions, or
1015  // expressions with a pointer type that are not used as references but instead
1016  // are l-values (e.g., DeclRefExpr with a pointer type).
1017
1018  // Our "symbolic interpreter" is just a dispatch off the currently
1019  // viewed AST node.  We then recursively traverse the AST by calling
1020  // EvalAddr and EvalVal appropriately.
1021  switch (E->getStmtClass()) {
1022  case Stmt::DeclRefExprClass:
1023  case Stmt::QualifiedDeclRefExprClass: {
1024    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
1025    //  at code that refers to a variable's name.  We check if it has local
1026    //  storage within the function, and if so, return the expression.
1027    DeclRefExpr *DR = cast<DeclRefExpr>(E);
1028
1029    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
1030      if(V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
1031
1032    return NULL;
1033  }
1034
1035  case Stmt::ParenExprClass:
1036    // Ignore parentheses.
1037    return EvalVal(cast<ParenExpr>(E)->getSubExpr());
1038
1039  case Stmt::UnaryOperatorClass: {
1040    // The only unary operator that make sense to handle here
1041    // is Deref.  All others don't resolve to a "name."  This includes
1042    // handling all sorts of rvalues passed to a unary operator.
1043    UnaryOperator *U = cast<UnaryOperator>(E);
1044
1045    if (U->getOpcode() == UnaryOperator::Deref)
1046      return EvalAddr(U->getSubExpr());
1047
1048    return NULL;
1049  }
1050
1051  case Stmt::ArraySubscriptExprClass: {
1052    // Array subscripts are potential references to data on the stack.  We
1053    // retrieve the DeclRefExpr* for the array variable if it indeed
1054    // has local storage.
1055    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
1056  }
1057
1058  case Stmt::ConditionalOperatorClass: {
1059    // For conditional operators we need to see if either the LHS or RHS are
1060    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
1061    ConditionalOperator *C = cast<ConditionalOperator>(E);
1062
1063    // Handle the GNU extension for missing LHS.
1064    if (Expr *lhsExpr = C->getLHS())
1065      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
1066        return LHS;
1067
1068    return EvalVal(C->getRHS());
1069  }
1070
1071  // Accesses to members are potential references to data on the stack.
1072  case Stmt::MemberExprClass: {
1073    MemberExpr *M = cast<MemberExpr>(E);
1074
1075    // Check for indirect access.  We only want direct field accesses.
1076    if (!M->isArrow())
1077      return EvalVal(M->getBase());
1078    else
1079      return NULL;
1080  }
1081
1082  // Everything else: we simply don't reason about them.
1083  default:
1084    return NULL;
1085  }
1086}
1087
1088//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
1089
1090/// Check for comparisons of floating point operands using != and ==.
1091/// Issue a warning if these are no self-comparisons, as they are not likely
1092/// to do what the programmer intended.
1093void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
1094  bool EmitWarning = true;
1095
1096  Expr* LeftExprSansParen = lex->IgnoreParens();
1097  Expr* RightExprSansParen = rex->IgnoreParens();
1098
1099  // Special case: check for x == x (which is OK).
1100  // Do not emit warnings for such cases.
1101  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
1102    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
1103      if (DRL->getDecl() == DRR->getDecl())
1104        EmitWarning = false;
1105
1106
1107  // Special case: check for comparisons against literals that can be exactly
1108  //  represented by APFloat.  In such cases, do not emit a warning.  This
1109  //  is a heuristic: often comparison against such literals are used to
1110  //  detect if a value in a variable has not changed.  This clearly can
1111  //  lead to false negatives.
1112  if (EmitWarning) {
1113    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
1114      if (FLL->isExact())
1115        EmitWarning = false;
1116    }
1117    else
1118      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
1119        if (FLR->isExact())
1120          EmitWarning = false;
1121    }
1122  }
1123
1124  // Check for comparisons with builtin types.
1125  if (EmitWarning)
1126    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
1127      if (CL->isBuiltinCall(Context))
1128        EmitWarning = false;
1129
1130  if (EmitWarning)
1131    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
1132      if (CR->isBuiltinCall(Context))
1133        EmitWarning = false;
1134
1135  // Emit the diagnostic.
1136  if (EmitWarning)
1137    Diag(loc, diag::warn_floatingpoint_eq)
1138      << lex->getSourceRange() << rex->getSourceRange();
1139}
1140