1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "TreeTransform.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/ASTLambda.h"
19#include "clang/AST/ASTMutationListener.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/EvaluatedExprVisitor.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprObjC.h"
27#include "clang/AST/ExprOpenMP.h"
28#include "clang/AST/RecursiveASTVisitor.h"
29#include "clang/AST/TypeLoc.h"
30#include "clang/Basic/PartialDiagnostic.h"
31#include "clang/Basic/SourceManager.h"
32#include "clang/Basic/TargetInfo.h"
33#include "clang/Lex/LiteralSupport.h"
34#include "clang/Lex/Preprocessor.h"
35#include "clang/Sema/AnalysisBasedWarnings.h"
36#include "clang/Sema/DeclSpec.h"
37#include "clang/Sema/DelayedDiagnostic.h"
38#include "clang/Sema/Designator.h"
39#include "clang/Sema/Initialization.h"
40#include "clang/Sema/Lookup.h"
41#include "clang/Sema/ParsedTemplate.h"
42#include "clang/Sema/Scope.h"
43#include "clang/Sema/ScopeInfo.h"
44#include "clang/Sema/SemaFixItUtils.h"
45#include "clang/Sema/Template.h"
46#include "llvm/Support/ConvertUTF.h"
47using namespace clang;
48using namespace sema;
49
50/// \brief Determine whether the use of this declaration is valid, without
51/// emitting diagnostics.
52bool Sema::CanUseDecl(NamedDecl *D) {
53  // See if this is an auto-typed variable whose initializer we are parsing.
54  if (ParsingInitForAutoVars.count(D))
55    return false;
56
57  // See if this is a deleted function.
58  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
59    if (FD->isDeleted())
60      return false;
61
62    // If the function has a deduced return type, and we can't deduce it,
63    // then we can't use it either.
64    if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
65        DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
66      return false;
67  }
68
69  // See if this function is unavailable.
70  if (D->getAvailability() == AR_Unavailable &&
71      cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
72    return false;
73
74  return true;
75}
76
77static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
78  // Warn if this is used but marked unused.
79  if (D->hasAttr<UnusedAttr>()) {
80    const Decl *DC = cast_or_null<Decl>(S.getCurObjCLexicalContext());
81    if (DC && !DC->hasAttr<UnusedAttr>())
82      S.Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
83  }
84}
85
86static bool HasRedeclarationWithoutAvailabilityInCategory(const Decl *D) {
87  const auto *OMD = dyn_cast<ObjCMethodDecl>(D);
88  if (!OMD)
89    return false;
90  const ObjCInterfaceDecl *OID = OMD->getClassInterface();
91  if (!OID)
92    return false;
93
94  for (const ObjCCategoryDecl *Cat : OID->visible_categories())
95    if (ObjCMethodDecl *CatMeth =
96            Cat->getMethod(OMD->getSelector(), OMD->isInstanceMethod()))
97      if (!CatMeth->hasAttr<AvailabilityAttr>())
98        return true;
99  return false;
100}
101
102static AvailabilityResult
103DiagnoseAvailabilityOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc,
104                           const ObjCInterfaceDecl *UnknownObjCClass,
105                           bool ObjCPropertyAccess) {
106  // See if this declaration is unavailable or deprecated.
107  std::string Message;
108  AvailabilityResult Result = D->getAvailability(&Message);
109
110  // For typedefs, if the typedef declaration appears available look
111  // to the underlying type to see if it is more restrictive.
112  while (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
113    if (Result == AR_Available) {
114      if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
115        D = TT->getDecl();
116        Result = D->getAvailability(&Message);
117        continue;
118      }
119    }
120    break;
121  }
122
123  // Forward class declarations get their attributes from their definition.
124  if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(D)) {
125    if (IDecl->getDefinition()) {
126      D = IDecl->getDefinition();
127      Result = D->getAvailability(&Message);
128    }
129  }
130
131  if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D))
132    if (Result == AR_Available) {
133      const DeclContext *DC = ECD->getDeclContext();
134      if (const EnumDecl *TheEnumDecl = dyn_cast<EnumDecl>(DC))
135        Result = TheEnumDecl->getAvailability(&Message);
136    }
137
138  const ObjCPropertyDecl *ObjCPDecl = nullptr;
139  if (Result == AR_Deprecated || Result == AR_Unavailable ||
140      AR_NotYetIntroduced) {
141    if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
142      if (const ObjCPropertyDecl *PD = MD->findPropertyDecl()) {
143        AvailabilityResult PDeclResult = PD->getAvailability(nullptr);
144        if (PDeclResult == Result)
145          ObjCPDecl = PD;
146      }
147    }
148  }
149
150  switch (Result) {
151    case AR_Available:
152      break;
153
154    case AR_Deprecated:
155      if (S.getCurContextAvailability() != AR_Deprecated)
156        S.EmitAvailabilityWarning(Sema::AD_Deprecation,
157                                  D, Message, Loc, UnknownObjCClass, ObjCPDecl,
158                                  ObjCPropertyAccess);
159      break;
160
161    case AR_NotYetIntroduced: {
162      // Don't do this for enums, they can't be redeclared.
163      if (isa<EnumConstantDecl>(D) || isa<EnumDecl>(D))
164        break;
165
166      bool Warn = !D->getAttr<AvailabilityAttr>()->isInherited();
167      // Objective-C method declarations in categories are not modelled as
168      // redeclarations, so manually look for a redeclaration in a category
169      // if necessary.
170      if (Warn && HasRedeclarationWithoutAvailabilityInCategory(D))
171        Warn = false;
172      // In general, D will point to the most recent redeclaration. However,
173      // for `@class A;` decls, this isn't true -- manually go through the
174      // redecl chain in that case.
175      if (Warn && isa<ObjCInterfaceDecl>(D))
176        for (Decl *Redecl = D->getMostRecentDecl(); Redecl && Warn;
177             Redecl = Redecl->getPreviousDecl())
178          if (!Redecl->hasAttr<AvailabilityAttr>() ||
179              Redecl->getAttr<AvailabilityAttr>()->isInherited())
180            Warn = false;
181
182      if (Warn)
183        S.EmitAvailabilityWarning(Sema::AD_Partial, D, Message, Loc,
184                                  UnknownObjCClass, ObjCPDecl,
185                                  ObjCPropertyAccess);
186      break;
187    }
188
189    case AR_Unavailable:
190      if (S.getCurContextAvailability() != AR_Unavailable)
191        S.EmitAvailabilityWarning(Sema::AD_Unavailable,
192                                  D, Message, Loc, UnknownObjCClass, ObjCPDecl,
193                                  ObjCPropertyAccess);
194      break;
195
196    }
197    return Result;
198}
199
200/// \brief Emit a note explaining that this function is deleted.
201void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
202  assert(Decl->isDeleted());
203
204  CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Decl);
205
206  if (Method && Method->isDeleted() && Method->isDefaulted()) {
207    // If the method was explicitly defaulted, point at that declaration.
208    if (!Method->isImplicit())
209      Diag(Decl->getLocation(), diag::note_implicitly_deleted);
210
211    // Try to diagnose why this special member function was implicitly
212    // deleted. This might fail, if that reason no longer applies.
213    CXXSpecialMember CSM = getSpecialMember(Method);
214    if (CSM != CXXInvalid)
215      ShouldDeleteSpecialMember(Method, CSM, /*Diagnose=*/true);
216
217    return;
218  }
219
220  if (CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Decl)) {
221    if (CXXConstructorDecl *BaseCD =
222            const_cast<CXXConstructorDecl*>(CD->getInheritedConstructor())) {
223      Diag(Decl->getLocation(), diag::note_inherited_deleted_here);
224      if (BaseCD->isDeleted()) {
225        NoteDeletedFunction(BaseCD);
226      } else {
227        // FIXME: An explanation of why exactly it can't be inherited
228        // would be nice.
229        Diag(BaseCD->getLocation(), diag::note_cannot_inherit);
230      }
231      return;
232    }
233  }
234
235  Diag(Decl->getLocation(), diag::note_availability_specified_here)
236    << Decl << true;
237}
238
239/// \brief Determine whether a FunctionDecl was ever declared with an
240/// explicit storage class.
241static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
242  for (auto I : D->redecls()) {
243    if (I->getStorageClass() != SC_None)
244      return true;
245  }
246  return false;
247}
248
249/// \brief Check whether we're in an extern inline function and referring to a
250/// variable or function with internal linkage (C11 6.7.4p3).
251///
252/// This is only a warning because we used to silently accept this code, but
253/// in many cases it will not behave correctly. This is not enabled in C++ mode
254/// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
255/// and so while there may still be user mistakes, most of the time we can't
256/// prove that there are errors.
257static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
258                                                      const NamedDecl *D,
259                                                      SourceLocation Loc) {
260  // This is disabled under C++; there are too many ways for this to fire in
261  // contexts where the warning is a false positive, or where it is technically
262  // correct but benign.
263  if (S.getLangOpts().CPlusPlus)
264    return;
265
266  // Check if this is an inlined function or method.
267  FunctionDecl *Current = S.getCurFunctionDecl();
268  if (!Current)
269    return;
270  if (!Current->isInlined())
271    return;
272  if (!Current->isExternallyVisible())
273    return;
274
275  // Check if the decl has internal linkage.
276  if (D->getFormalLinkage() != InternalLinkage)
277    return;
278
279  // Downgrade from ExtWarn to Extension if
280  //  (1) the supposedly external inline function is in the main file,
281  //      and probably won't be included anywhere else.
282  //  (2) the thing we're referencing is a pure function.
283  //  (3) the thing we're referencing is another inline function.
284  // This last can give us false negatives, but it's better than warning on
285  // wrappers for simple C library functions.
286  const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
287  bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
288  if (!DowngradeWarning && UsedFn)
289    DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
290
291  S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
292                               : diag::ext_internal_in_extern_inline)
293    << /*IsVar=*/!UsedFn << D;
294
295  S.MaybeSuggestAddingStaticToDecl(Current);
296
297  S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
298      << D;
299}
300
301void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
302  const FunctionDecl *First = Cur->getFirstDecl();
303
304  // Suggest "static" on the function, if possible.
305  if (!hasAnyExplicitStorageClass(First)) {
306    SourceLocation DeclBegin = First->getSourceRange().getBegin();
307    Diag(DeclBegin, diag::note_convert_inline_to_static)
308      << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
309  }
310}
311
312/// \brief Determine whether the use of this declaration is valid, and
313/// emit any corresponding diagnostics.
314///
315/// This routine diagnoses various problems with referencing
316/// declarations that can occur when using a declaration. For example,
317/// it might warn if a deprecated or unavailable declaration is being
318/// used, or produce an error (and return true) if a C++0x deleted
319/// function is being used.
320///
321/// \returns true if there was an error (this declaration cannot be
322/// referenced), false otherwise.
323///
324bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
325                             const ObjCInterfaceDecl *UnknownObjCClass,
326                             bool ObjCPropertyAccess) {
327  if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
328    // If there were any diagnostics suppressed by template argument deduction,
329    // emit them now.
330    auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
331    if (Pos != SuppressedDiagnostics.end()) {
332      for (const PartialDiagnosticAt &Suppressed : Pos->second)
333        Diag(Suppressed.first, Suppressed.second);
334
335      // Clear out the list of suppressed diagnostics, so that we don't emit
336      // them again for this specialization. However, we don't obsolete this
337      // entry from the table, because we want to avoid ever emitting these
338      // diagnostics again.
339      Pos->second.clear();
340    }
341
342    // C++ [basic.start.main]p3:
343    //   The function 'main' shall not be used within a program.
344    if (cast<FunctionDecl>(D)->isMain())
345      Diag(Loc, diag::ext_main_used);
346  }
347
348  // See if this is an auto-typed variable whose initializer we are parsing.
349  if (ParsingInitForAutoVars.count(D)) {
350    const AutoType *AT = cast<VarDecl>(D)->getType()->getContainedAutoType();
351
352    Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
353      << D->getDeclName() << (unsigned)AT->getKeyword();
354    return true;
355  }
356
357  // See if this is a deleted function.
358  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
359    if (FD->isDeleted()) {
360      Diag(Loc, diag::err_deleted_function_use);
361      NoteDeletedFunction(FD);
362      return true;
363    }
364
365    // If the function has a deduced return type, and we can't deduce it,
366    // then we can't use it either.
367    if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
368        DeduceReturnType(FD, Loc))
369      return true;
370  }
371  DiagnoseAvailabilityOfDecl(*this, D, Loc, UnknownObjCClass,
372                             ObjCPropertyAccess);
373
374  DiagnoseUnusedOfDecl(*this, D, Loc);
375
376  diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
377
378  return false;
379}
380
381/// \brief Retrieve the message suffix that should be added to a
382/// diagnostic complaining about the given function being deleted or
383/// unavailable.
384std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
385  std::string Message;
386  if (FD->getAvailability(&Message))
387    return ": " + Message;
388
389  return std::string();
390}
391
392/// DiagnoseSentinelCalls - This routine checks whether a call or
393/// message-send is to a declaration with the sentinel attribute, and
394/// if so, it checks that the requirements of the sentinel are
395/// satisfied.
396void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
397                                 ArrayRef<Expr *> Args) {
398  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
399  if (!attr)
400    return;
401
402  // The number of formal parameters of the declaration.
403  unsigned numFormalParams;
404
405  // The kind of declaration.  This is also an index into a %select in
406  // the diagnostic.
407  enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
408
409  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
410    numFormalParams = MD->param_size();
411    calleeType = CT_Method;
412  } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
413    numFormalParams = FD->param_size();
414    calleeType = CT_Function;
415  } else if (isa<VarDecl>(D)) {
416    QualType type = cast<ValueDecl>(D)->getType();
417    const FunctionType *fn = nullptr;
418    if (const PointerType *ptr = type->getAs<PointerType>()) {
419      fn = ptr->getPointeeType()->getAs<FunctionType>();
420      if (!fn) return;
421      calleeType = CT_Function;
422    } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
423      fn = ptr->getPointeeType()->castAs<FunctionType>();
424      calleeType = CT_Block;
425    } else {
426      return;
427    }
428
429    if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
430      numFormalParams = proto->getNumParams();
431    } else {
432      numFormalParams = 0;
433    }
434  } else {
435    return;
436  }
437
438  // "nullPos" is the number of formal parameters at the end which
439  // effectively count as part of the variadic arguments.  This is
440  // useful if you would prefer to not have *any* formal parameters,
441  // but the language forces you to have at least one.
442  unsigned nullPos = attr->getNullPos();
443  assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
444  numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
445
446  // The number of arguments which should follow the sentinel.
447  unsigned numArgsAfterSentinel = attr->getSentinel();
448
449  // If there aren't enough arguments for all the formal parameters,
450  // the sentinel, and the args after the sentinel, complain.
451  if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) {
452    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
453    Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
454    return;
455  }
456
457  // Otherwise, find the sentinel expression.
458  Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1];
459  if (!sentinelExpr) return;
460  if (sentinelExpr->isValueDependent()) return;
461  if (Context.isSentinelNullExpr(sentinelExpr)) return;
462
463  // Pick a reasonable string to insert.  Optimistically use 'nil', 'nullptr',
464  // or 'NULL' if those are actually defined in the context.  Only use
465  // 'nil' for ObjC methods, where it's much more likely that the
466  // variadic arguments form a list of object pointers.
467  SourceLocation MissingNilLoc
468    = getLocForEndOfToken(sentinelExpr->getLocEnd());
469  std::string NullValue;
470  if (calleeType == CT_Method && PP.isMacroDefined("nil"))
471    NullValue = "nil";
472  else if (getLangOpts().CPlusPlus11)
473    NullValue = "nullptr";
474  else if (PP.isMacroDefined("NULL"))
475    NullValue = "NULL";
476  else
477    NullValue = "(void*) 0";
478
479  if (MissingNilLoc.isInvalid())
480    Diag(Loc, diag::warn_missing_sentinel) << int(calleeType);
481  else
482    Diag(MissingNilLoc, diag::warn_missing_sentinel)
483      << int(calleeType)
484      << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
485  Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
486}
487
488SourceRange Sema::getExprRange(Expr *E) const {
489  return E ? E->getSourceRange() : SourceRange();
490}
491
492//===----------------------------------------------------------------------===//
493//  Standard Promotions and Conversions
494//===----------------------------------------------------------------------===//
495
496/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
497ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) {
498  // Handle any placeholder expressions which made it here.
499  if (E->getType()->isPlaceholderType()) {
500    ExprResult result = CheckPlaceholderExpr(E);
501    if (result.isInvalid()) return ExprError();
502    E = result.get();
503  }
504
505  QualType Ty = E->getType();
506  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
507
508  if (Ty->isFunctionType()) {
509    // If we are here, we are not calling a function but taking
510    // its address (which is not allowed in OpenCL v1.0 s6.8.a.3).
511    if (getLangOpts().OpenCL) {
512      if (Diagnose)
513        Diag(E->getExprLoc(), diag::err_opencl_taking_function_address);
514      return ExprError();
515    }
516
517    if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
518      if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
519        if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc()))
520          return ExprError();
521
522    E = ImpCastExprToType(E, Context.getPointerType(Ty),
523                          CK_FunctionToPointerDecay).get();
524  } else if (Ty->isArrayType()) {
525    // In C90 mode, arrays only promote to pointers if the array expression is
526    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
527    // type 'array of type' is converted to an expression that has type 'pointer
528    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
529    // that has type 'array of type' ...".  The relevant change is "an lvalue"
530    // (C90) to "an expression" (C99).
531    //
532    // C++ 4.2p1:
533    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
534    // T" can be converted to an rvalue of type "pointer to T".
535    //
536    if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
537      E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
538                            CK_ArrayToPointerDecay).get();
539  }
540  return E;
541}
542
543static void CheckForNullPointerDereference(Sema &S, Expr *E) {
544  // Check to see if we are dereferencing a null pointer.  If so,
545  // and if not volatile-qualified, this is undefined behavior that the
546  // optimizer will delete, so warn about it.  People sometimes try to use this
547  // to get a deterministic trap and are surprised by clang's behavior.  This
548  // only handles the pattern "*null", which is a very syntactic check.
549  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
550    if (UO->getOpcode() == UO_Deref &&
551        UO->getSubExpr()->IgnoreParenCasts()->
552          isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
553        !UO->getType().isVolatileQualified()) {
554    S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
555                          S.PDiag(diag::warn_indirection_through_null)
556                            << UO->getSubExpr()->getSourceRange());
557    S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
558                        S.PDiag(diag::note_indirection_through_null));
559  }
560}
561
562static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
563                                    SourceLocation AssignLoc,
564                                    const Expr* RHS) {
565  const ObjCIvarDecl *IV = OIRE->getDecl();
566  if (!IV)
567    return;
568
569  DeclarationName MemberName = IV->getDeclName();
570  IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
571  if (!Member || !Member->isStr("isa"))
572    return;
573
574  const Expr *Base = OIRE->getBase();
575  QualType BaseType = Base->getType();
576  if (OIRE->isArrow())
577    BaseType = BaseType->getPointeeType();
578  if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
579    if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
580      ObjCInterfaceDecl *ClassDeclared = nullptr;
581      ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
582      if (!ClassDeclared->getSuperClass()
583          && (*ClassDeclared->ivar_begin()) == IV) {
584        if (RHS) {
585          NamedDecl *ObjectSetClass =
586            S.LookupSingleName(S.TUScope,
587                               &S.Context.Idents.get("object_setClass"),
588                               SourceLocation(), S.LookupOrdinaryName);
589          if (ObjectSetClass) {
590            SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getLocEnd());
591            S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign) <<
592            FixItHint::CreateInsertion(OIRE->getLocStart(), "object_setClass(") <<
593            FixItHint::CreateReplacement(SourceRange(OIRE->getOpLoc(),
594                                                     AssignLoc), ",") <<
595            FixItHint::CreateInsertion(RHSLocEnd, ")");
596          }
597          else
598            S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
599        } else {
600          NamedDecl *ObjectGetClass =
601            S.LookupSingleName(S.TUScope,
602                               &S.Context.Idents.get("object_getClass"),
603                               SourceLocation(), S.LookupOrdinaryName);
604          if (ObjectGetClass)
605            S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use) <<
606            FixItHint::CreateInsertion(OIRE->getLocStart(), "object_getClass(") <<
607            FixItHint::CreateReplacement(
608                                         SourceRange(OIRE->getOpLoc(),
609                                                     OIRE->getLocEnd()), ")");
610          else
611            S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
612        }
613        S.Diag(IV->getLocation(), diag::note_ivar_decl);
614      }
615    }
616}
617
618ExprResult Sema::DefaultLvalueConversion(Expr *E) {
619  // Handle any placeholder expressions which made it here.
620  if (E->getType()->isPlaceholderType()) {
621    ExprResult result = CheckPlaceholderExpr(E);
622    if (result.isInvalid()) return ExprError();
623    E = result.get();
624  }
625
626  // C++ [conv.lval]p1:
627  //   A glvalue of a non-function, non-array type T can be
628  //   converted to a prvalue.
629  if (!E->isGLValue()) return E;
630
631  QualType T = E->getType();
632  assert(!T.isNull() && "r-value conversion on typeless expression?");
633
634  // We don't want to throw lvalue-to-rvalue casts on top of
635  // expressions of certain types in C++.
636  if (getLangOpts().CPlusPlus &&
637      (E->getType() == Context.OverloadTy ||
638       T->isDependentType() ||
639       T->isRecordType()))
640    return E;
641
642  // The C standard is actually really unclear on this point, and
643  // DR106 tells us what the result should be but not why.  It's
644  // generally best to say that void types just doesn't undergo
645  // lvalue-to-rvalue at all.  Note that expressions of unqualified
646  // 'void' type are never l-values, but qualified void can be.
647  if (T->isVoidType())
648    return E;
649
650  // OpenCL usually rejects direct accesses to values of 'half' type.
651  if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16 &&
652      T->isHalfType()) {
653    Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
654      << 0 << T;
655    return ExprError();
656  }
657
658  CheckForNullPointerDereference(*this, E);
659  if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
660    NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
661                                     &Context.Idents.get("object_getClass"),
662                                     SourceLocation(), LookupOrdinaryName);
663    if (ObjectGetClass)
664      Diag(E->getExprLoc(), diag::warn_objc_isa_use) <<
665        FixItHint::CreateInsertion(OISA->getLocStart(), "object_getClass(") <<
666        FixItHint::CreateReplacement(
667                    SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
668    else
669      Diag(E->getExprLoc(), diag::warn_objc_isa_use);
670  }
671  else if (const ObjCIvarRefExpr *OIRE =
672            dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
673    DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);
674
675  // C++ [conv.lval]p1:
676  //   [...] If T is a non-class type, the type of the prvalue is the
677  //   cv-unqualified version of T. Otherwise, the type of the
678  //   rvalue is T.
679  //
680  // C99 6.3.2.1p2:
681  //   If the lvalue has qualified type, the value has the unqualified
682  //   version of the type of the lvalue; otherwise, the value has the
683  //   type of the lvalue.
684  if (T.hasQualifiers())
685    T = T.getUnqualifiedType();
686
687  // Under the MS ABI, lock down the inheritance model now.
688  if (T->isMemberPointerType() &&
689      Context.getTargetInfo().getCXXABI().isMicrosoft())
690    (void)isCompleteType(E->getExprLoc(), T);
691
692  UpdateMarkingForLValueToRValue(E);
693
694  // Loading a __weak object implicitly retains the value, so we need a cleanup to
695  // balance that.
696  if (getLangOpts().ObjCAutoRefCount &&
697      E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
698    ExprNeedsCleanups = true;
699
700  ExprResult Res = ImplicitCastExpr::Create(Context, T, CK_LValueToRValue, E,
701                                            nullptr, VK_RValue);
702
703  // C11 6.3.2.1p2:
704  //   ... if the lvalue has atomic type, the value has the non-atomic version
705  //   of the type of the lvalue ...
706  if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
707    T = Atomic->getValueType().getUnqualifiedType();
708    Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
709                                   nullptr, VK_RValue);
710  }
711
712  return Res;
713}
714
715ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) {
716  ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose);
717  if (Res.isInvalid())
718    return ExprError();
719  Res = DefaultLvalueConversion(Res.get());
720  if (Res.isInvalid())
721    return ExprError();
722  return Res;
723}
724
725/// CallExprUnaryConversions - a special case of an unary conversion
726/// performed on a function designator of a call expression.
727ExprResult Sema::CallExprUnaryConversions(Expr *E) {
728  QualType Ty = E->getType();
729  ExprResult Res = E;
730  // Only do implicit cast for a function type, but not for a pointer
731  // to function type.
732  if (Ty->isFunctionType()) {
733    Res = ImpCastExprToType(E, Context.getPointerType(Ty),
734                            CK_FunctionToPointerDecay).get();
735    if (Res.isInvalid())
736      return ExprError();
737  }
738  Res = DefaultLvalueConversion(Res.get());
739  if (Res.isInvalid())
740    return ExprError();
741  return Res.get();
742}
743
744/// UsualUnaryConversions - Performs various conversions that are common to most
745/// operators (C99 6.3). The conversions of array and function types are
746/// sometimes suppressed. For example, the array->pointer conversion doesn't
747/// apply if the array is an argument to the sizeof or address (&) operators.
748/// In these instances, this routine should *not* be called.
749ExprResult Sema::UsualUnaryConversions(Expr *E) {
750  // First, convert to an r-value.
751  ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
752  if (Res.isInvalid())
753    return ExprError();
754  E = Res.get();
755
756  QualType Ty = E->getType();
757  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
758
759  // Half FP have to be promoted to float unless it is natively supported
760  if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
761    return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast);
762
763  // Try to perform integral promotions if the object has a theoretically
764  // promotable type.
765  if (Ty->isIntegralOrUnscopedEnumerationType()) {
766    // C99 6.3.1.1p2:
767    //
768    //   The following may be used in an expression wherever an int or
769    //   unsigned int may be used:
770    //     - an object or expression with an integer type whose integer
771    //       conversion rank is less than or equal to the rank of int
772    //       and unsigned int.
773    //     - A bit-field of type _Bool, int, signed int, or unsigned int.
774    //
775    //   If an int can represent all values of the original type, the
776    //   value is converted to an int; otherwise, it is converted to an
777    //   unsigned int. These are called the integer promotions. All
778    //   other types are unchanged by the integer promotions.
779
780    QualType PTy = Context.isPromotableBitField(E);
781    if (!PTy.isNull()) {
782      E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
783      return E;
784    }
785    if (Ty->isPromotableIntegerType()) {
786      QualType PT = Context.getPromotedIntegerType(Ty);
787      E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
788      return E;
789    }
790  }
791  return E;
792}
793
794/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
795/// do not have a prototype. Arguments that have type float or __fp16
796/// are promoted to double. All other argument types are converted by
797/// UsualUnaryConversions().
798ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
799  QualType Ty = E->getType();
800  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
801
802  ExprResult Res = UsualUnaryConversions(E);
803  if (Res.isInvalid())
804    return ExprError();
805  E = Res.get();
806
807  // If this is a 'float' or '__fp16' (CVR qualified or typedef) promote to
808  // double.
809  const BuiltinType *BTy = Ty->getAs<BuiltinType>();
810  if (BTy && (BTy->getKind() == BuiltinType::Half ||
811              BTy->getKind() == BuiltinType::Float))
812    E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
813
814  // C++ performs lvalue-to-rvalue conversion as a default argument
815  // promotion, even on class types, but note:
816  //   C++11 [conv.lval]p2:
817  //     When an lvalue-to-rvalue conversion occurs in an unevaluated
818  //     operand or a subexpression thereof the value contained in the
819  //     referenced object is not accessed. Otherwise, if the glvalue
820  //     has a class type, the conversion copy-initializes a temporary
821  //     of type T from the glvalue and the result of the conversion
822  //     is a prvalue for the temporary.
823  // FIXME: add some way to gate this entire thing for correctness in
824  // potentially potentially evaluated contexts.
825  if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
826    ExprResult Temp = PerformCopyInitialization(
827                       InitializedEntity::InitializeTemporary(E->getType()),
828                                                E->getExprLoc(), E);
829    if (Temp.isInvalid())
830      return ExprError();
831    E = Temp.get();
832  }
833
834  return E;
835}
836
837/// Determine the degree of POD-ness for an expression.
838/// Incomplete types are considered POD, since this check can be performed
839/// when we're in an unevaluated context.
840Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
841  if (Ty->isIncompleteType()) {
842    // C++11 [expr.call]p7:
843    //   After these conversions, if the argument does not have arithmetic,
844    //   enumeration, pointer, pointer to member, or class type, the program
845    //   is ill-formed.
846    //
847    // Since we've already performed array-to-pointer and function-to-pointer
848    // decay, the only such type in C++ is cv void. This also handles
849    // initializer lists as variadic arguments.
850    if (Ty->isVoidType())
851      return VAK_Invalid;
852
853    if (Ty->isObjCObjectType())
854      return VAK_Invalid;
855    return VAK_Valid;
856  }
857
858  if (Ty.isCXX98PODType(Context))
859    return VAK_Valid;
860
861  // C++11 [expr.call]p7:
862  //   Passing a potentially-evaluated argument of class type (Clause 9)
863  //   having a non-trivial copy constructor, a non-trivial move constructor,
864  //   or a non-trivial destructor, with no corresponding parameter,
865  //   is conditionally-supported with implementation-defined semantics.
866  if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
867    if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
868      if (!Record->hasNonTrivialCopyConstructor() &&
869          !Record->hasNonTrivialMoveConstructor() &&
870          !Record->hasNonTrivialDestructor())
871        return VAK_ValidInCXX11;
872
873  if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
874    return VAK_Valid;
875
876  if (Ty->isObjCObjectType())
877    return VAK_Invalid;
878
879  if (getLangOpts().MSVCCompat)
880    return VAK_MSVCUndefined;
881
882  // FIXME: In C++11, these cases are conditionally-supported, meaning we're
883  // permitted to reject them. We should consider doing so.
884  return VAK_Undefined;
885}
886
887void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
888  // Don't allow one to pass an Objective-C interface to a vararg.
889  const QualType &Ty = E->getType();
890  VarArgKind VAK = isValidVarArgType(Ty);
891
892  // Complain about passing non-POD types through varargs.
893  switch (VAK) {
894  case VAK_ValidInCXX11:
895    DiagRuntimeBehavior(
896        E->getLocStart(), nullptr,
897        PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg)
898          << Ty << CT);
899    // Fall through.
900  case VAK_Valid:
901    if (Ty->isRecordType()) {
902      // This is unlikely to be what the user intended. If the class has a
903      // 'c_str' member function, the user probably meant to call that.
904      DiagRuntimeBehavior(E->getLocStart(), nullptr,
905                          PDiag(diag::warn_pass_class_arg_to_vararg)
906                            << Ty << CT << hasCStrMethod(E) << ".c_str()");
907    }
908    break;
909
910  case VAK_Undefined:
911  case VAK_MSVCUndefined:
912    DiagRuntimeBehavior(
913        E->getLocStart(), nullptr,
914        PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
915          << getLangOpts().CPlusPlus11 << Ty << CT);
916    break;
917
918  case VAK_Invalid:
919    if (Ty->isObjCObjectType())
920      DiagRuntimeBehavior(
921          E->getLocStart(), nullptr,
922          PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
923            << Ty << CT);
924    else
925      Diag(E->getLocStart(), diag::err_cannot_pass_to_vararg)
926        << isa<InitListExpr>(E) << Ty << CT;
927    break;
928  }
929}
930
931/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
932/// will create a trap if the resulting type is not a POD type.
933ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
934                                                  FunctionDecl *FDecl) {
935  if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
936    // Strip the unbridged-cast placeholder expression off, if applicable.
937    if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
938        (CT == VariadicMethod ||
939         (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
940      E = stripARCUnbridgedCast(E);
941
942    // Otherwise, do normal placeholder checking.
943    } else {
944      ExprResult ExprRes = CheckPlaceholderExpr(E);
945      if (ExprRes.isInvalid())
946        return ExprError();
947      E = ExprRes.get();
948    }
949  }
950
951  ExprResult ExprRes = DefaultArgumentPromotion(E);
952  if (ExprRes.isInvalid())
953    return ExprError();
954  E = ExprRes.get();
955
956  // Diagnostics regarding non-POD argument types are
957  // emitted along with format string checking in Sema::CheckFunctionCall().
958  if (isValidVarArgType(E->getType()) == VAK_Undefined) {
959    // Turn this into a trap.
960    CXXScopeSpec SS;
961    SourceLocation TemplateKWLoc;
962    UnqualifiedId Name;
963    Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
964                       E->getLocStart());
965    ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc,
966                                          Name, true, false);
967    if (TrapFn.isInvalid())
968      return ExprError();
969
970    ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(),
971                                    E->getLocStart(), None,
972                                    E->getLocEnd());
973    if (Call.isInvalid())
974      return ExprError();
975
976    ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma,
977                                  Call.get(), E);
978    if (Comma.isInvalid())
979      return ExprError();
980    return Comma.get();
981  }
982
983  if (!getLangOpts().CPlusPlus &&
984      RequireCompleteType(E->getExprLoc(), E->getType(),
985                          diag::err_call_incomplete_argument))
986    return ExprError();
987
988  return E;
989}
990
991/// \brief Converts an integer to complex float type.  Helper function of
992/// UsualArithmeticConversions()
993///
994/// \return false if the integer expression is an integer type and is
995/// successfully converted to the complex type.
996static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
997                                                  ExprResult &ComplexExpr,
998                                                  QualType IntTy,
999                                                  QualType ComplexTy,
1000                                                  bool SkipCast) {
1001  if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
1002  if (SkipCast) return false;
1003  if (IntTy->isIntegerType()) {
1004    QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
1005    IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
1006    IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1007                                  CK_FloatingRealToComplex);
1008  } else {
1009    assert(IntTy->isComplexIntegerType());
1010    IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1011                                  CK_IntegralComplexToFloatingComplex);
1012  }
1013  return false;
1014}
1015
1016/// \brief Handle arithmetic conversion with complex types.  Helper function of
1017/// UsualArithmeticConversions()
1018static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
1019                                             ExprResult &RHS, QualType LHSType,
1020                                             QualType RHSType,
1021                                             bool IsCompAssign) {
1022  // if we have an integer operand, the result is the complex type.
1023  if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
1024                                             /*skipCast*/false))
1025    return LHSType;
1026  if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
1027                                             /*skipCast*/IsCompAssign))
1028    return RHSType;
1029
1030  // This handles complex/complex, complex/float, or float/complex.
1031  // When both operands are complex, the shorter operand is converted to the
1032  // type of the longer, and that is the type of the result. This corresponds
1033  // to what is done when combining two real floating-point operands.
1034  // The fun begins when size promotion occur across type domains.
1035  // From H&S 6.3.4: When one operand is complex and the other is a real
1036  // floating-point type, the less precise type is converted, within it's
1037  // real or complex domain, to the precision of the other type. For example,
1038  // when combining a "long double" with a "double _Complex", the
1039  // "double _Complex" is promoted to "long double _Complex".
1040
1041  // Compute the rank of the two types, regardless of whether they are complex.
1042  int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1043
1044  auto *LHSComplexType = dyn_cast<ComplexType>(LHSType);
1045  auto *RHSComplexType = dyn_cast<ComplexType>(RHSType);
1046  QualType LHSElementType =
1047      LHSComplexType ? LHSComplexType->getElementType() : LHSType;
1048  QualType RHSElementType =
1049      RHSComplexType ? RHSComplexType->getElementType() : RHSType;
1050
1051  QualType ResultType = S.Context.getComplexType(LHSElementType);
1052  if (Order < 0) {
1053    // Promote the precision of the LHS if not an assignment.
1054    ResultType = S.Context.getComplexType(RHSElementType);
1055    if (!IsCompAssign) {
1056      if (LHSComplexType)
1057        LHS =
1058            S.ImpCastExprToType(LHS.get(), ResultType, CK_FloatingComplexCast);
1059      else
1060        LHS = S.ImpCastExprToType(LHS.get(), RHSElementType, CK_FloatingCast);
1061    }
1062  } else if (Order > 0) {
1063    // Promote the precision of the RHS.
1064    if (RHSComplexType)
1065      RHS = S.ImpCastExprToType(RHS.get(), ResultType, CK_FloatingComplexCast);
1066    else
1067      RHS = S.ImpCastExprToType(RHS.get(), LHSElementType, CK_FloatingCast);
1068  }
1069  return ResultType;
1070}
1071
1072/// \brief Hande arithmetic conversion from integer to float.  Helper function
1073/// of UsualArithmeticConversions()
1074static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
1075                                           ExprResult &IntExpr,
1076                                           QualType FloatTy, QualType IntTy,
1077                                           bool ConvertFloat, bool ConvertInt) {
1078  if (IntTy->isIntegerType()) {
1079    if (ConvertInt)
1080      // Convert intExpr to the lhs floating point type.
1081      IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
1082                                    CK_IntegralToFloating);
1083    return FloatTy;
1084  }
1085
1086  // Convert both sides to the appropriate complex float.
1087  assert(IntTy->isComplexIntegerType());
1088  QualType result = S.Context.getComplexType(FloatTy);
1089
1090  // _Complex int -> _Complex float
1091  if (ConvertInt)
1092    IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
1093                                  CK_IntegralComplexToFloatingComplex);
1094
1095  // float -> _Complex float
1096  if (ConvertFloat)
1097    FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
1098                                    CK_FloatingRealToComplex);
1099
1100  return result;
1101}
1102
1103/// \brief Handle arithmethic conversion with floating point types.  Helper
1104/// function of UsualArithmeticConversions()
1105static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
1106                                      ExprResult &RHS, QualType LHSType,
1107                                      QualType RHSType, bool IsCompAssign) {
1108  bool LHSFloat = LHSType->isRealFloatingType();
1109  bool RHSFloat = RHSType->isRealFloatingType();
1110
1111  // If we have two real floating types, convert the smaller operand
1112  // to the bigger result.
1113  if (LHSFloat && RHSFloat) {
1114    int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1115    if (order > 0) {
1116      RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
1117      return LHSType;
1118    }
1119
1120    assert(order < 0 && "illegal float comparison");
1121    if (!IsCompAssign)
1122      LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
1123    return RHSType;
1124  }
1125
1126  if (LHSFloat) {
1127    // Half FP has to be promoted to float unless it is natively supported
1128    if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType)
1129      LHSType = S.Context.FloatTy;
1130
1131    return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
1132                                      /*convertFloat=*/!IsCompAssign,
1133                                      /*convertInt=*/ true);
1134  }
1135  assert(RHSFloat);
1136  return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
1137                                    /*convertInt=*/ true,
1138                                    /*convertFloat=*/!IsCompAssign);
1139}
1140
1141typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
1142
1143namespace {
1144/// These helper callbacks are placed in an anonymous namespace to
1145/// permit their use as function template parameters.
1146ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
1147  return S.ImpCastExprToType(op, toType, CK_IntegralCast);
1148}
1149
1150ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
1151  return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
1152                             CK_IntegralComplexCast);
1153}
1154}
1155
1156/// \brief Handle integer arithmetic conversions.  Helper function of
1157/// UsualArithmeticConversions()
1158template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
1159static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
1160                                        ExprResult &RHS, QualType LHSType,
1161                                        QualType RHSType, bool IsCompAssign) {
1162  // The rules for this case are in C99 6.3.1.8
1163  int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
1164  bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
1165  bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
1166  if (LHSSigned == RHSSigned) {
1167    // Same signedness; use the higher-ranked type
1168    if (order >= 0) {
1169      RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1170      return LHSType;
1171    } else if (!IsCompAssign)
1172      LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1173    return RHSType;
1174  } else if (order != (LHSSigned ? 1 : -1)) {
1175    // The unsigned type has greater than or equal rank to the
1176    // signed type, so use the unsigned type
1177    if (RHSSigned) {
1178      RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1179      return LHSType;
1180    } else if (!IsCompAssign)
1181      LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1182    return RHSType;
1183  } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
1184    // The two types are different widths; if we are here, that
1185    // means the signed type is larger than the unsigned type, so
1186    // use the signed type.
1187    if (LHSSigned) {
1188      RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1189      return LHSType;
1190    } else if (!IsCompAssign)
1191      LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1192    return RHSType;
1193  } else {
1194    // The signed type is higher-ranked than the unsigned type,
1195    // but isn't actually any bigger (like unsigned int and long
1196    // on most 32-bit systems).  Use the unsigned type corresponding
1197    // to the signed type.
1198    QualType result =
1199      S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
1200    RHS = (*doRHSCast)(S, RHS.get(), result);
1201    if (!IsCompAssign)
1202      LHS = (*doLHSCast)(S, LHS.get(), result);
1203    return result;
1204  }
1205}
1206
1207/// \brief Handle conversions with GCC complex int extension.  Helper function
1208/// of UsualArithmeticConversions()
1209static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
1210                                           ExprResult &RHS, QualType LHSType,
1211                                           QualType RHSType,
1212                                           bool IsCompAssign) {
1213  const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
1214  const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
1215
1216  if (LHSComplexInt && RHSComplexInt) {
1217    QualType LHSEltType = LHSComplexInt->getElementType();
1218    QualType RHSEltType = RHSComplexInt->getElementType();
1219    QualType ScalarType =
1220      handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
1221        (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
1222
1223    return S.Context.getComplexType(ScalarType);
1224  }
1225
1226  if (LHSComplexInt) {
1227    QualType LHSEltType = LHSComplexInt->getElementType();
1228    QualType ScalarType =
1229      handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
1230        (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
1231    QualType ComplexType = S.Context.getComplexType(ScalarType);
1232    RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
1233                              CK_IntegralRealToComplex);
1234
1235    return ComplexType;
1236  }
1237
1238  assert(RHSComplexInt);
1239
1240  QualType RHSEltType = RHSComplexInt->getElementType();
1241  QualType ScalarType =
1242    handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
1243      (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
1244  QualType ComplexType = S.Context.getComplexType(ScalarType);
1245
1246  if (!IsCompAssign)
1247    LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
1248                              CK_IntegralRealToComplex);
1249  return ComplexType;
1250}
1251
1252/// UsualArithmeticConversions - Performs various conversions that are common to
1253/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1254/// routine returns the first non-arithmetic type found. The client is
1255/// responsible for emitting appropriate error diagnostics.
1256QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1257                                          bool IsCompAssign) {
1258  if (!IsCompAssign) {
1259    LHS = UsualUnaryConversions(LHS.get());
1260    if (LHS.isInvalid())
1261      return QualType();
1262  }
1263
1264  RHS = UsualUnaryConversions(RHS.get());
1265  if (RHS.isInvalid())
1266    return QualType();
1267
1268  // For conversion purposes, we ignore any qualifiers.
1269  // For example, "const float" and "float" are equivalent.
1270  QualType LHSType =
1271    Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
1272  QualType RHSType =
1273    Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
1274
1275  // For conversion purposes, we ignore any atomic qualifier on the LHS.
1276  if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1277    LHSType = AtomicLHS->getValueType();
1278
1279  // If both types are identical, no conversion is needed.
1280  if (LHSType == RHSType)
1281    return LHSType;
1282
1283  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1284  // The caller can deal with this (e.g. pointer + int).
1285  if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1286    return QualType();
1287
1288  // Apply unary and bitfield promotions to the LHS's type.
1289  QualType LHSUnpromotedType = LHSType;
1290  if (LHSType->isPromotableIntegerType())
1291    LHSType = Context.getPromotedIntegerType(LHSType);
1292  QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
1293  if (!LHSBitfieldPromoteTy.isNull())
1294    LHSType = LHSBitfieldPromoteTy;
1295  if (LHSType != LHSUnpromotedType && !IsCompAssign)
1296    LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);
1297
1298  // If both types are identical, no conversion is needed.
1299  if (LHSType == RHSType)
1300    return LHSType;
1301
1302  // At this point, we have two different arithmetic types.
1303
1304  // Handle complex types first (C99 6.3.1.8p1).
1305  if (LHSType->isComplexType() || RHSType->isComplexType())
1306    return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1307                                        IsCompAssign);
1308
1309  // Now handle "real" floating types (i.e. float, double, long double).
1310  if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1311    return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1312                                 IsCompAssign);
1313
1314  // Handle GCC complex int extension.
1315  if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1316    return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
1317                                      IsCompAssign);
1318
1319  // Finally, we have two differing integer types.
1320  return handleIntegerConversion<doIntegralCast, doIntegralCast>
1321           (*this, LHS, RHS, LHSType, RHSType, IsCompAssign);
1322}
1323
1324
1325//===----------------------------------------------------------------------===//
1326//  Semantic Analysis for various Expression Types
1327//===----------------------------------------------------------------------===//
1328
1329
1330ExprResult
1331Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
1332                                SourceLocation DefaultLoc,
1333                                SourceLocation RParenLoc,
1334                                Expr *ControllingExpr,
1335                                ArrayRef<ParsedType> ArgTypes,
1336                                ArrayRef<Expr *> ArgExprs) {
1337  unsigned NumAssocs = ArgTypes.size();
1338  assert(NumAssocs == ArgExprs.size());
1339
1340  TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1341  for (unsigned i = 0; i < NumAssocs; ++i) {
1342    if (ArgTypes[i])
1343      (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
1344    else
1345      Types[i] = nullptr;
1346  }
1347
1348  ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
1349                                             ControllingExpr,
1350                                             llvm::makeArrayRef(Types, NumAssocs),
1351                                             ArgExprs);
1352  delete [] Types;
1353  return ER;
1354}
1355
1356ExprResult
1357Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
1358                                 SourceLocation DefaultLoc,
1359                                 SourceLocation RParenLoc,
1360                                 Expr *ControllingExpr,
1361                                 ArrayRef<TypeSourceInfo *> Types,
1362                                 ArrayRef<Expr *> Exprs) {
1363  unsigned NumAssocs = Types.size();
1364  assert(NumAssocs == Exprs.size());
1365
1366  // Decay and strip qualifiers for the controlling expression type, and handle
1367  // placeholder type replacement. See committee discussion from WG14 DR423.
1368  ExprResult R = DefaultFunctionArrayLvalueConversion(ControllingExpr);
1369  if (R.isInvalid())
1370    return ExprError();
1371  ControllingExpr = R.get();
1372
1373  // The controlling expression is an unevaluated operand, so side effects are
1374  // likely unintended.
1375  if (ActiveTemplateInstantiations.empty() &&
1376      ControllingExpr->HasSideEffects(Context, false))
1377    Diag(ControllingExpr->getExprLoc(),
1378         diag::warn_side_effects_unevaluated_context);
1379
1380  bool TypeErrorFound = false,
1381       IsResultDependent = ControllingExpr->isTypeDependent(),
1382       ContainsUnexpandedParameterPack
1383         = ControllingExpr->containsUnexpandedParameterPack();
1384
1385  for (unsigned i = 0; i < NumAssocs; ++i) {
1386    if (Exprs[i]->containsUnexpandedParameterPack())
1387      ContainsUnexpandedParameterPack = true;
1388
1389    if (Types[i]) {
1390      if (Types[i]->getType()->containsUnexpandedParameterPack())
1391        ContainsUnexpandedParameterPack = true;
1392
1393      if (Types[i]->getType()->isDependentType()) {
1394        IsResultDependent = true;
1395      } else {
1396        // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1397        // complete object type other than a variably modified type."
1398        unsigned D = 0;
1399        if (Types[i]->getType()->isIncompleteType())
1400          D = diag::err_assoc_type_incomplete;
1401        else if (!Types[i]->getType()->isObjectType())
1402          D = diag::err_assoc_type_nonobject;
1403        else if (Types[i]->getType()->isVariablyModifiedType())
1404          D = diag::err_assoc_type_variably_modified;
1405
1406        if (D != 0) {
1407          Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1408            << Types[i]->getTypeLoc().getSourceRange()
1409            << Types[i]->getType();
1410          TypeErrorFound = true;
1411        }
1412
1413        // C11 6.5.1.1p2 "No two generic associations in the same generic
1414        // selection shall specify compatible types."
1415        for (unsigned j = i+1; j < NumAssocs; ++j)
1416          if (Types[j] && !Types[j]->getType()->isDependentType() &&
1417              Context.typesAreCompatible(Types[i]->getType(),
1418                                         Types[j]->getType())) {
1419            Diag(Types[j]->getTypeLoc().getBeginLoc(),
1420                 diag::err_assoc_compatible_types)
1421              << Types[j]->getTypeLoc().getSourceRange()
1422              << Types[j]->getType()
1423              << Types[i]->getType();
1424            Diag(Types[i]->getTypeLoc().getBeginLoc(),
1425                 diag::note_compat_assoc)
1426              << Types[i]->getTypeLoc().getSourceRange()
1427              << Types[i]->getType();
1428            TypeErrorFound = true;
1429          }
1430      }
1431    }
1432  }
1433  if (TypeErrorFound)
1434    return ExprError();
1435
1436  // If we determined that the generic selection is result-dependent, don't
1437  // try to compute the result expression.
1438  if (IsResultDependent)
1439    return new (Context) GenericSelectionExpr(
1440        Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
1441        ContainsUnexpandedParameterPack);
1442
1443  SmallVector<unsigned, 1> CompatIndices;
1444  unsigned DefaultIndex = -1U;
1445  for (unsigned i = 0; i < NumAssocs; ++i) {
1446    if (!Types[i])
1447      DefaultIndex = i;
1448    else if (Context.typesAreCompatible(ControllingExpr->getType(),
1449                                        Types[i]->getType()))
1450      CompatIndices.push_back(i);
1451  }
1452
1453  // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1454  // type compatible with at most one of the types named in its generic
1455  // association list."
1456  if (CompatIndices.size() > 1) {
1457    // We strip parens here because the controlling expression is typically
1458    // parenthesized in macro definitions.
1459    ControllingExpr = ControllingExpr->IgnoreParens();
1460    Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
1461      << ControllingExpr->getSourceRange() << ControllingExpr->getType()
1462      << (unsigned) CompatIndices.size();
1463    for (unsigned I : CompatIndices) {
1464      Diag(Types[I]->getTypeLoc().getBeginLoc(),
1465           diag::note_compat_assoc)
1466        << Types[I]->getTypeLoc().getSourceRange()
1467        << Types[I]->getType();
1468    }
1469    return ExprError();
1470  }
1471
1472  // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1473  // its controlling expression shall have type compatible with exactly one of
1474  // the types named in its generic association list."
1475  if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1476    // We strip parens here because the controlling expression is typically
1477    // parenthesized in macro definitions.
1478    ControllingExpr = ControllingExpr->IgnoreParens();
1479    Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match)
1480      << ControllingExpr->getSourceRange() << ControllingExpr->getType();
1481    return ExprError();
1482  }
1483
1484  // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1485  // type name that is compatible with the type of the controlling expression,
1486  // then the result expression of the generic selection is the expression
1487  // in that generic association. Otherwise, the result expression of the
1488  // generic selection is the expression in the default generic association."
1489  unsigned ResultIndex =
1490    CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1491
1492  return new (Context) GenericSelectionExpr(
1493      Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
1494      ContainsUnexpandedParameterPack, ResultIndex);
1495}
1496
1497/// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1498/// location of the token and the offset of the ud-suffix within it.
1499static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1500                                     unsigned Offset) {
1501  return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1502                                        S.getLangOpts());
1503}
1504
1505/// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1506/// the corresponding cooked (non-raw) literal operator, and build a call to it.
1507static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1508                                                 IdentifierInfo *UDSuffix,
1509                                                 SourceLocation UDSuffixLoc,
1510                                                 ArrayRef<Expr*> Args,
1511                                                 SourceLocation LitEndLoc) {
1512  assert(Args.size() <= 2 && "too many arguments for literal operator");
1513
1514  QualType ArgTy[2];
1515  for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1516    ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1517    if (ArgTy[ArgIdx]->isArrayType())
1518      ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1519  }
1520
1521  DeclarationName OpName =
1522    S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1523  DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1524  OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1525
1526  LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1527  if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
1528                              /*AllowRaw*/false, /*AllowTemplate*/false,
1529                              /*AllowStringTemplate*/false) == Sema::LOLR_Error)
1530    return ExprError();
1531
1532  return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1533}
1534
1535/// ActOnStringLiteral - The specified tokens were lexed as pasted string
1536/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
1537/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
1538/// multiple tokens.  However, the common case is that StringToks points to one
1539/// string.
1540///
1541ExprResult
1542Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
1543  assert(!StringToks.empty() && "Must have at least one string!");
1544
1545  StringLiteralParser Literal(StringToks, PP);
1546  if (Literal.hadError)
1547    return ExprError();
1548
1549  SmallVector<SourceLocation, 4> StringTokLocs;
1550  for (const Token &Tok : StringToks)
1551    StringTokLocs.push_back(Tok.getLocation());
1552
1553  QualType CharTy = Context.CharTy;
1554  StringLiteral::StringKind Kind = StringLiteral::Ascii;
1555  if (Literal.isWide()) {
1556    CharTy = Context.getWideCharType();
1557    Kind = StringLiteral::Wide;
1558  } else if (Literal.isUTF8()) {
1559    Kind = StringLiteral::UTF8;
1560  } else if (Literal.isUTF16()) {
1561    CharTy = Context.Char16Ty;
1562    Kind = StringLiteral::UTF16;
1563  } else if (Literal.isUTF32()) {
1564    CharTy = Context.Char32Ty;
1565    Kind = StringLiteral::UTF32;
1566  } else if (Literal.isPascal()) {
1567    CharTy = Context.UnsignedCharTy;
1568  }
1569
1570  QualType CharTyConst = CharTy;
1571  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
1572  if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
1573    CharTyConst.addConst();
1574
1575  // Get an array type for the string, according to C99 6.4.5.  This includes
1576  // the nul terminator character as well as the string length for pascal
1577  // strings.
1578  QualType StrTy = Context.getConstantArrayType(CharTyConst,
1579                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
1580                                 ArrayType::Normal, 0);
1581
1582  // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
1583  if (getLangOpts().OpenCL) {
1584    StrTy = Context.getAddrSpaceQualType(StrTy, LangAS::opencl_constant);
1585  }
1586
1587  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
1588  StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
1589                                             Kind, Literal.Pascal, StrTy,
1590                                             &StringTokLocs[0],
1591                                             StringTokLocs.size());
1592  if (Literal.getUDSuffix().empty())
1593    return Lit;
1594
1595  // We're building a user-defined literal.
1596  IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
1597  SourceLocation UDSuffixLoc =
1598    getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1599                   Literal.getUDSuffixOffset());
1600
1601  // Make sure we're allowed user-defined literals here.
1602  if (!UDLScope)
1603    return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1604
1605  // C++11 [lex.ext]p5: The literal L is treated as a call of the form
1606  //   operator "" X (str, len)
1607  QualType SizeType = Context.getSizeType();
1608
1609  DeclarationName OpName =
1610    Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1611  DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1612  OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1613
1614  QualType ArgTy[] = {
1615    Context.getArrayDecayedType(StrTy), SizeType
1616  };
1617
1618  LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
1619  switch (LookupLiteralOperator(UDLScope, R, ArgTy,
1620                                /*AllowRaw*/false, /*AllowTemplate*/false,
1621                                /*AllowStringTemplate*/true)) {
1622
1623  case LOLR_Cooked: {
1624    llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
1625    IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
1626                                                    StringTokLocs[0]);
1627    Expr *Args[] = { Lit, LenArg };
1628
1629    return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
1630  }
1631
1632  case LOLR_StringTemplate: {
1633    TemplateArgumentListInfo ExplicitArgs;
1634
1635    unsigned CharBits = Context.getIntWidth(CharTy);
1636    bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
1637    llvm::APSInt Value(CharBits, CharIsUnsigned);
1638
1639    TemplateArgument TypeArg(CharTy);
1640    TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
1641    ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
1642
1643    for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
1644      Value = Lit->getCodeUnit(I);
1645      TemplateArgument Arg(Context, Value, CharTy);
1646      TemplateArgumentLocInfo ArgInfo;
1647      ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
1648    }
1649    return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
1650                                    &ExplicitArgs);
1651  }
1652  case LOLR_Raw:
1653  case LOLR_Template:
1654    llvm_unreachable("unexpected literal operator lookup result");
1655  case LOLR_Error:
1656    return ExprError();
1657  }
1658  llvm_unreachable("unexpected literal operator lookup result");
1659}
1660
1661ExprResult
1662Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1663                       SourceLocation Loc,
1664                       const CXXScopeSpec *SS) {
1665  DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
1666  return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
1667}
1668
1669/// BuildDeclRefExpr - Build an expression that references a
1670/// declaration that does not require a closure capture.
1671ExprResult
1672Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1673                       const DeclarationNameInfo &NameInfo,
1674                       const CXXScopeSpec *SS, NamedDecl *FoundD,
1675                       const TemplateArgumentListInfo *TemplateArgs) {
1676  if (getLangOpts().CUDA)
1677    if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
1678      if (const FunctionDecl *Callee = dyn_cast<FunctionDecl>(D)) {
1679        if (CheckCUDATarget(Caller, Callee)) {
1680          Diag(NameInfo.getLoc(), diag::err_ref_bad_target)
1681            << IdentifyCUDATarget(Callee) << D->getIdentifier()
1682            << IdentifyCUDATarget(Caller);
1683          Diag(D->getLocation(), diag::note_previous_decl)
1684            << D->getIdentifier();
1685          return ExprError();
1686        }
1687      }
1688
1689  bool RefersToCapturedVariable =
1690      isa<VarDecl>(D) &&
1691      NeedToCaptureVariable(cast<VarDecl>(D), NameInfo.getLoc());
1692
1693  DeclRefExpr *E;
1694  if (isa<VarTemplateSpecializationDecl>(D)) {
1695    VarTemplateSpecializationDecl *VarSpec =
1696        cast<VarTemplateSpecializationDecl>(D);
1697
1698    E = DeclRefExpr::Create(Context, SS ? SS->getWithLocInContext(Context)
1699                                        : NestedNameSpecifierLoc(),
1700                            VarSpec->getTemplateKeywordLoc(), D,
1701                            RefersToCapturedVariable, NameInfo.getLoc(), Ty, VK,
1702                            FoundD, TemplateArgs);
1703  } else {
1704    assert(!TemplateArgs && "No template arguments for non-variable"
1705                            " template specialization references");
1706    E = DeclRefExpr::Create(Context, SS ? SS->getWithLocInContext(Context)
1707                                        : NestedNameSpecifierLoc(),
1708                            SourceLocation(), D, RefersToCapturedVariable,
1709                            NameInfo, Ty, VK, FoundD);
1710  }
1711
1712  MarkDeclRefReferenced(E);
1713
1714  if (getLangOpts().ObjCWeak && isa<VarDecl>(D) &&
1715      Ty.getObjCLifetime() == Qualifiers::OCL_Weak &&
1716      !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getLocStart()))
1717      recordUseOfEvaluatedWeak(E);
1718
1719  // Just in case we're building an illegal pointer-to-member.
1720  FieldDecl *FD = dyn_cast<FieldDecl>(D);
1721  if (FD && FD->isBitField())
1722    E->setObjectKind(OK_BitField);
1723
1724  return E;
1725}
1726
1727/// Decomposes the given name into a DeclarationNameInfo, its location, and
1728/// possibly a list of template arguments.
1729///
1730/// If this produces template arguments, it is permitted to call
1731/// DecomposeTemplateName.
1732///
1733/// This actually loses a lot of source location information for
1734/// non-standard name kinds; we should consider preserving that in
1735/// some way.
1736void
1737Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
1738                             TemplateArgumentListInfo &Buffer,
1739                             DeclarationNameInfo &NameInfo,
1740                             const TemplateArgumentListInfo *&TemplateArgs) {
1741  if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
1742    Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
1743    Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
1744
1745    ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
1746                                       Id.TemplateId->NumArgs);
1747    translateTemplateArguments(TemplateArgsPtr, Buffer);
1748
1749    TemplateName TName = Id.TemplateId->Template.get();
1750    SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
1751    NameInfo = Context.getNameForTemplate(TName, TNameLoc);
1752    TemplateArgs = &Buffer;
1753  } else {
1754    NameInfo = GetNameFromUnqualifiedId(Id);
1755    TemplateArgs = nullptr;
1756  }
1757}
1758
1759static void emitEmptyLookupTypoDiagnostic(
1760    const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS,
1761    DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args,
1762    unsigned DiagnosticID, unsigned DiagnosticSuggestID) {
1763  DeclContext *Ctx =
1764      SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false);
1765  if (!TC) {
1766    // Emit a special diagnostic for failed member lookups.
1767    // FIXME: computing the declaration context might fail here (?)
1768    if (Ctx)
1769      SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx
1770                                                 << SS.getRange();
1771    else
1772      SemaRef.Diag(TypoLoc, DiagnosticID) << Typo;
1773    return;
1774  }
1775
1776  std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts());
1777  bool DroppedSpecifier =
1778      TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
1779  unsigned NoteID =
1780      (TC.getCorrectionDecl() && isa<ImplicitParamDecl>(TC.getCorrectionDecl()))
1781          ? diag::note_implicit_param_decl
1782          : diag::note_previous_decl;
1783  if (!Ctx)
1784    SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo,
1785                         SemaRef.PDiag(NoteID));
1786  else
1787    SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
1788                                 << Typo << Ctx << DroppedSpecifier
1789                                 << SS.getRange(),
1790                         SemaRef.PDiag(NoteID));
1791}
1792
1793/// Diagnose an empty lookup.
1794///
1795/// \return false if new lookup candidates were found
1796bool
1797Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
1798                          std::unique_ptr<CorrectionCandidateCallback> CCC,
1799                          TemplateArgumentListInfo *ExplicitTemplateArgs,
1800                          ArrayRef<Expr *> Args, TypoExpr **Out) {
1801  DeclarationName Name = R.getLookupName();
1802
1803  unsigned diagnostic = diag::err_undeclared_var_use;
1804  unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
1805  if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
1806      Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
1807      Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
1808    diagnostic = diag::err_undeclared_use;
1809    diagnostic_suggest = diag::err_undeclared_use_suggest;
1810  }
1811
1812  // If the original lookup was an unqualified lookup, fake an
1813  // unqualified lookup.  This is useful when (for example) the
1814  // original lookup would not have found something because it was a
1815  // dependent name.
1816  DeclContext *DC = SS.isEmpty() ? CurContext : nullptr;
1817  while (DC) {
1818    if (isa<CXXRecordDecl>(DC)) {
1819      LookupQualifiedName(R, DC);
1820
1821      if (!R.empty()) {
1822        // Don't give errors about ambiguities in this lookup.
1823        R.suppressDiagnostics();
1824
1825        // During a default argument instantiation the CurContext points
1826        // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
1827        // function parameter list, hence add an explicit check.
1828        bool isDefaultArgument = !ActiveTemplateInstantiations.empty() &&
1829                              ActiveTemplateInstantiations.back().Kind ==
1830            ActiveTemplateInstantiation::DefaultFunctionArgumentInstantiation;
1831        CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
1832        bool isInstance = CurMethod &&
1833                          CurMethod->isInstance() &&
1834                          DC == CurMethod->getParent() && !isDefaultArgument;
1835
1836        // Give a code modification hint to insert 'this->'.
1837        // TODO: fixit for inserting 'Base<T>::' in the other cases.
1838        // Actually quite difficult!
1839        if (getLangOpts().MSVCCompat)
1840          diagnostic = diag::ext_found_via_dependent_bases_lookup;
1841        if (isInstance) {
1842          Diag(R.getNameLoc(), diagnostic) << Name
1843            << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
1844          CheckCXXThisCapture(R.getNameLoc());
1845        } else {
1846          Diag(R.getNameLoc(), diagnostic) << Name;
1847        }
1848
1849        // Do we really want to note all of these?
1850        for (NamedDecl *D : R)
1851          Diag(D->getLocation(), diag::note_dependent_var_use);
1852
1853        // Return true if we are inside a default argument instantiation
1854        // and the found name refers to an instance member function, otherwise
1855        // the function calling DiagnoseEmptyLookup will try to create an
1856        // implicit member call and this is wrong for default argument.
1857        if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
1858          Diag(R.getNameLoc(), diag::err_member_call_without_object);
1859          return true;
1860        }
1861
1862        // Tell the callee to try to recover.
1863        return false;
1864      }
1865
1866      R.clear();
1867    }
1868
1869    // In Microsoft mode, if we are performing lookup from within a friend
1870    // function definition declared at class scope then we must set
1871    // DC to the lexical parent to be able to search into the parent
1872    // class.
1873    if (getLangOpts().MSVCCompat && isa<FunctionDecl>(DC) &&
1874        cast<FunctionDecl>(DC)->getFriendObjectKind() &&
1875        DC->getLexicalParent()->isRecord())
1876      DC = DC->getLexicalParent();
1877    else
1878      DC = DC->getParent();
1879  }
1880
1881  // We didn't find anything, so try to correct for a typo.
1882  TypoCorrection Corrected;
1883  if (S && Out) {
1884    SourceLocation TypoLoc = R.getNameLoc();
1885    assert(!ExplicitTemplateArgs &&
1886           "Diagnosing an empty lookup with explicit template args!");
1887    *Out = CorrectTypoDelayed(
1888        R.getLookupNameInfo(), R.getLookupKind(), S, &SS, std::move(CCC),
1889        [=](const TypoCorrection &TC) {
1890          emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args,
1891                                        diagnostic, diagnostic_suggest);
1892        },
1893        nullptr, CTK_ErrorRecovery);
1894    if (*Out)
1895      return true;
1896  } else if (S && (Corrected =
1897                       CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S,
1898                                   &SS, std::move(CCC), CTK_ErrorRecovery))) {
1899    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
1900    bool DroppedSpecifier =
1901        Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
1902    R.setLookupName(Corrected.getCorrection());
1903
1904    bool AcceptableWithRecovery = false;
1905    bool AcceptableWithoutRecovery = false;
1906    NamedDecl *ND = Corrected.getCorrectionDecl();
1907    if (ND) {
1908      if (Corrected.isOverloaded()) {
1909        OverloadCandidateSet OCS(R.getNameLoc(),
1910                                 OverloadCandidateSet::CSK_Normal);
1911        OverloadCandidateSet::iterator Best;
1912        for (NamedDecl *CD : Corrected) {
1913          if (FunctionTemplateDecl *FTD =
1914                   dyn_cast<FunctionTemplateDecl>(CD))
1915            AddTemplateOverloadCandidate(
1916                FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
1917                Args, OCS);
1918          else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
1919            if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
1920              AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
1921                                   Args, OCS);
1922        }
1923        switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
1924        case OR_Success:
1925          ND = Best->Function;
1926          Corrected.setCorrectionDecl(ND);
1927          break;
1928        default:
1929          // FIXME: Arbitrarily pick the first declaration for the note.
1930          Corrected.setCorrectionDecl(ND);
1931          break;
1932        }
1933      }
1934      R.addDecl(ND);
1935      if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
1936        CXXRecordDecl *Record = nullptr;
1937        if (Corrected.getCorrectionSpecifier()) {
1938          const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
1939          Record = Ty->getAsCXXRecordDecl();
1940        }
1941        if (!Record)
1942          Record = cast<CXXRecordDecl>(
1943              ND->getDeclContext()->getRedeclContext());
1944        R.setNamingClass(Record);
1945      }
1946
1947      AcceptableWithRecovery =
1948          isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND);
1949      // FIXME: If we ended up with a typo for a type name or
1950      // Objective-C class name, we're in trouble because the parser
1951      // is in the wrong place to recover. Suggest the typo
1952      // correction, but don't make it a fix-it since we're not going
1953      // to recover well anyway.
1954      AcceptableWithoutRecovery =
1955          isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
1956    } else {
1957      // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
1958      // because we aren't able to recover.
1959      AcceptableWithoutRecovery = true;
1960    }
1961
1962    if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
1963      unsigned NoteID = (Corrected.getCorrectionDecl() &&
1964                         isa<ImplicitParamDecl>(Corrected.getCorrectionDecl()))
1965                            ? diag::note_implicit_param_decl
1966                            : diag::note_previous_decl;
1967      if (SS.isEmpty())
1968        diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
1969                     PDiag(NoteID), AcceptableWithRecovery);
1970      else
1971        diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
1972                                  << Name << computeDeclContext(SS, false)
1973                                  << DroppedSpecifier << SS.getRange(),
1974                     PDiag(NoteID), AcceptableWithRecovery);
1975
1976      // Tell the callee whether to try to recover.
1977      return !AcceptableWithRecovery;
1978    }
1979  }
1980  R.clear();
1981
1982  // Emit a special diagnostic for failed member lookups.
1983  // FIXME: computing the declaration context might fail here (?)
1984  if (!SS.isEmpty()) {
1985    Diag(R.getNameLoc(), diag::err_no_member)
1986      << Name << computeDeclContext(SS, false)
1987      << SS.getRange();
1988    return true;
1989  }
1990
1991  // Give up, we can't recover.
1992  Diag(R.getNameLoc(), diagnostic) << Name;
1993  return true;
1994}
1995
1996/// In Microsoft mode, if we are inside a template class whose parent class has
1997/// dependent base classes, and we can't resolve an unqualified identifier, then
1998/// assume the identifier is a member of a dependent base class.  We can only
1999/// recover successfully in static methods, instance methods, and other contexts
2000/// where 'this' is available.  This doesn't precisely match MSVC's
2001/// instantiation model, but it's close enough.
2002static Expr *
2003recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
2004                               DeclarationNameInfo &NameInfo,
2005                               SourceLocation TemplateKWLoc,
2006                               const TemplateArgumentListInfo *TemplateArgs) {
2007  // Only try to recover from lookup into dependent bases in static methods or
2008  // contexts where 'this' is available.
2009  QualType ThisType = S.getCurrentThisType();
2010  const CXXRecordDecl *RD = nullptr;
2011  if (!ThisType.isNull())
2012    RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
2013  else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
2014    RD = MD->getParent();
2015  if (!RD || !RD->hasAnyDependentBases())
2016    return nullptr;
2017
2018  // Diagnose this as unqualified lookup into a dependent base class.  If 'this'
2019  // is available, suggest inserting 'this->' as a fixit.
2020  SourceLocation Loc = NameInfo.getLoc();
2021  auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
2022  DB << NameInfo.getName() << RD;
2023
2024  if (!ThisType.isNull()) {
2025    DB << FixItHint::CreateInsertion(Loc, "this->");
2026    return CXXDependentScopeMemberExpr::Create(
2027        Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
2028        /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
2029        /*FirstQualifierInScope=*/nullptr, NameInfo, TemplateArgs);
2030  }
2031
2032  // Synthesize a fake NNS that points to the derived class.  This will
2033  // perform name lookup during template instantiation.
2034  CXXScopeSpec SS;
2035  auto *NNS =
2036      NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
2037  SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
2038  return DependentScopeDeclRefExpr::Create(
2039      Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
2040      TemplateArgs);
2041}
2042
2043ExprResult
2044Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
2045                        SourceLocation TemplateKWLoc, UnqualifiedId &Id,
2046                        bool HasTrailingLParen, bool IsAddressOfOperand,
2047                        std::unique_ptr<CorrectionCandidateCallback> CCC,
2048                        bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
2049  assert(!(IsAddressOfOperand && HasTrailingLParen) &&
2050         "cannot be direct & operand and have a trailing lparen");
2051  if (SS.isInvalid())
2052    return ExprError();
2053
2054  TemplateArgumentListInfo TemplateArgsBuffer;
2055
2056  // Decompose the UnqualifiedId into the following data.
2057  DeclarationNameInfo NameInfo;
2058  const TemplateArgumentListInfo *TemplateArgs;
2059  DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
2060
2061  DeclarationName Name = NameInfo.getName();
2062  IdentifierInfo *II = Name.getAsIdentifierInfo();
2063  SourceLocation NameLoc = NameInfo.getLoc();
2064
2065  // C++ [temp.dep.expr]p3:
2066  //   An id-expression is type-dependent if it contains:
2067  //     -- an identifier that was declared with a dependent type,
2068  //        (note: handled after lookup)
2069  //     -- a template-id that is dependent,
2070  //        (note: handled in BuildTemplateIdExpr)
2071  //     -- a conversion-function-id that specifies a dependent type,
2072  //     -- a nested-name-specifier that contains a class-name that
2073  //        names a dependent type.
2074  // Determine whether this is a member of an unknown specialization;
2075  // we need to handle these differently.
2076  bool DependentID = false;
2077  if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
2078      Name.getCXXNameType()->isDependentType()) {
2079    DependentID = true;
2080  } else if (SS.isSet()) {
2081    if (DeclContext *DC = computeDeclContext(SS, false)) {
2082      if (RequireCompleteDeclContext(SS, DC))
2083        return ExprError();
2084    } else {
2085      DependentID = true;
2086    }
2087  }
2088
2089  if (DependentID)
2090    return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2091                                      IsAddressOfOperand, TemplateArgs);
2092
2093  // Perform the required lookup.
2094  LookupResult R(*this, NameInfo,
2095                 (Id.getKind() == UnqualifiedId::IK_ImplicitSelfParam)
2096                  ? LookupObjCImplicitSelfParam : LookupOrdinaryName);
2097  if (TemplateArgs) {
2098    // Lookup the template name again to correctly establish the context in
2099    // which it was found. This is really unfortunate as we already did the
2100    // lookup to determine that it was a template name in the first place. If
2101    // this becomes a performance hit, we can work harder to preserve those
2102    // results until we get here but it's likely not worth it.
2103    bool MemberOfUnknownSpecialization;
2104    LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
2105                       MemberOfUnknownSpecialization);
2106
2107    if (MemberOfUnknownSpecialization ||
2108        (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
2109      return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2110                                        IsAddressOfOperand, TemplateArgs);
2111  } else {
2112    bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
2113    LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
2114
2115    // If the result might be in a dependent base class, this is a dependent
2116    // id-expression.
2117    if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2118      return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2119                                        IsAddressOfOperand, TemplateArgs);
2120
2121    // If this reference is in an Objective-C method, then we need to do
2122    // some special Objective-C lookup, too.
2123    if (IvarLookupFollowUp) {
2124      ExprResult E(LookupInObjCMethod(R, S, II, true));
2125      if (E.isInvalid())
2126        return ExprError();
2127
2128      if (Expr *Ex = E.getAs<Expr>())
2129        return Ex;
2130    }
2131  }
2132
2133  if (R.isAmbiguous())
2134    return ExprError();
2135
2136  // This could be an implicitly declared function reference (legal in C90,
2137  // extension in C99, forbidden in C++).
2138  if (R.empty() && HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
2139    NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
2140    if (D) R.addDecl(D);
2141  }
2142
2143  // Determine whether this name might be a candidate for
2144  // argument-dependent lookup.
2145  bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
2146
2147  if (R.empty() && !ADL) {
2148    if (SS.isEmpty() && getLangOpts().MSVCCompat) {
2149      if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
2150                                                   TemplateKWLoc, TemplateArgs))
2151        return E;
2152    }
2153
2154    // Don't diagnose an empty lookup for inline assembly.
2155    if (IsInlineAsmIdentifier)
2156      return ExprError();
2157
2158    // If this name wasn't predeclared and if this is not a function
2159    // call, diagnose the problem.
2160    TypoExpr *TE = nullptr;
2161    auto DefaultValidator = llvm::make_unique<CorrectionCandidateCallback>(
2162        II, SS.isValid() ? SS.getScopeRep() : nullptr);
2163    DefaultValidator->IsAddressOfOperand = IsAddressOfOperand;
2164    assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
2165           "Typo correction callback misconfigured");
2166    if (CCC) {
2167      // Make sure the callback knows what the typo being diagnosed is.
2168      CCC->setTypoName(II);
2169      if (SS.isValid())
2170        CCC->setTypoNNS(SS.getScopeRep());
2171    }
2172    if (DiagnoseEmptyLookup(S, SS, R,
2173                            CCC ? std::move(CCC) : std::move(DefaultValidator),
2174                            nullptr, None, &TE)) {
2175      if (TE && KeywordReplacement) {
2176        auto &State = getTypoExprState(TE);
2177        auto BestTC = State.Consumer->getNextCorrection();
2178        if (BestTC.isKeyword()) {
2179          auto *II = BestTC.getCorrectionAsIdentifierInfo();
2180          if (State.DiagHandler)
2181            State.DiagHandler(BestTC);
2182          KeywordReplacement->startToken();
2183          KeywordReplacement->setKind(II->getTokenID());
2184          KeywordReplacement->setIdentifierInfo(II);
2185          KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
2186          // Clean up the state associated with the TypoExpr, since it has
2187          // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
2188          clearDelayedTypo(TE);
2189          // Signal that a correction to a keyword was performed by returning a
2190          // valid-but-null ExprResult.
2191          return (Expr*)nullptr;
2192        }
2193        State.Consumer->resetCorrectionStream();
2194      }
2195      return TE ? TE : ExprError();
2196    }
2197
2198    assert(!R.empty() &&
2199           "DiagnoseEmptyLookup returned false but added no results");
2200
2201    // If we found an Objective-C instance variable, let
2202    // LookupInObjCMethod build the appropriate expression to
2203    // reference the ivar.
2204    if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
2205      R.clear();
2206      ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
2207      // In a hopelessly buggy code, Objective-C instance variable
2208      // lookup fails and no expression will be built to reference it.
2209      if (!E.isInvalid() && !E.get())
2210        return ExprError();
2211      return E;
2212    }
2213  }
2214
2215  // This is guaranteed from this point on.
2216  assert(!R.empty() || ADL);
2217
2218  // Check whether this might be a C++ implicit instance member access.
2219  // C++ [class.mfct.non-static]p3:
2220  //   When an id-expression that is not part of a class member access
2221  //   syntax and not used to form a pointer to member is used in the
2222  //   body of a non-static member function of class X, if name lookup
2223  //   resolves the name in the id-expression to a non-static non-type
2224  //   member of some class C, the id-expression is transformed into a
2225  //   class member access expression using (*this) as the
2226  //   postfix-expression to the left of the . operator.
2227  //
2228  // But we don't actually need to do this for '&' operands if R
2229  // resolved to a function or overloaded function set, because the
2230  // expression is ill-formed if it actually works out to be a
2231  // non-static member function:
2232  //
2233  // C++ [expr.ref]p4:
2234  //   Otherwise, if E1.E2 refers to a non-static member function. . .
2235  //   [t]he expression can be used only as the left-hand operand of a
2236  //   member function call.
2237  //
2238  // There are other safeguards against such uses, but it's important
2239  // to get this right here so that we don't end up making a
2240  // spuriously dependent expression if we're inside a dependent
2241  // instance method.
2242  if (!R.empty() && (*R.begin())->isCXXClassMember()) {
2243    bool MightBeImplicitMember;
2244    if (!IsAddressOfOperand)
2245      MightBeImplicitMember = true;
2246    else if (!SS.isEmpty())
2247      MightBeImplicitMember = false;
2248    else if (R.isOverloadedResult())
2249      MightBeImplicitMember = false;
2250    else if (R.isUnresolvableResult())
2251      MightBeImplicitMember = true;
2252    else
2253      MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
2254                              isa<IndirectFieldDecl>(R.getFoundDecl()) ||
2255                              isa<MSPropertyDecl>(R.getFoundDecl());
2256
2257    if (MightBeImplicitMember)
2258      return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
2259                                             R, TemplateArgs, S);
2260  }
2261
2262  if (TemplateArgs || TemplateKWLoc.isValid()) {
2263
2264    // In C++1y, if this is a variable template id, then check it
2265    // in BuildTemplateIdExpr().
2266    // The single lookup result must be a variable template declaration.
2267    if (Id.getKind() == UnqualifiedId::IK_TemplateId && Id.TemplateId &&
2268        Id.TemplateId->Kind == TNK_Var_template) {
2269      assert(R.getAsSingle<VarTemplateDecl>() &&
2270             "There should only be one declaration found.");
2271    }
2272
2273    return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
2274  }
2275
2276  return BuildDeclarationNameExpr(SS, R, ADL);
2277}
2278
2279/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
2280/// declaration name, generally during template instantiation.
2281/// There's a large number of things which don't need to be done along
2282/// this path.
2283ExprResult Sema::BuildQualifiedDeclarationNameExpr(
2284    CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
2285    bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI) {
2286  DeclContext *DC = computeDeclContext(SS, false);
2287  if (!DC)
2288    return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2289                                     NameInfo, /*TemplateArgs=*/nullptr);
2290
2291  if (RequireCompleteDeclContext(SS, DC))
2292    return ExprError();
2293
2294  LookupResult R(*this, NameInfo, LookupOrdinaryName);
2295  LookupQualifiedName(R, DC);
2296
2297  if (R.isAmbiguous())
2298    return ExprError();
2299
2300  if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2301    return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2302                                     NameInfo, /*TemplateArgs=*/nullptr);
2303
2304  if (R.empty()) {
2305    Diag(NameInfo.getLoc(), diag::err_no_member)
2306      << NameInfo.getName() << DC << SS.getRange();
2307    return ExprError();
2308  }
2309
2310  if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
2311    // Diagnose a missing typename if this resolved unambiguously to a type in
2312    // a dependent context.  If we can recover with a type, downgrade this to
2313    // a warning in Microsoft compatibility mode.
2314    unsigned DiagID = diag::err_typename_missing;
2315    if (RecoveryTSI && getLangOpts().MSVCCompat)
2316      DiagID = diag::ext_typename_missing;
2317    SourceLocation Loc = SS.getBeginLoc();
2318    auto D = Diag(Loc, DiagID);
2319    D << SS.getScopeRep() << NameInfo.getName().getAsString()
2320      << SourceRange(Loc, NameInfo.getEndLoc());
2321
2322    // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
2323    // context.
2324    if (!RecoveryTSI)
2325      return ExprError();
2326
2327    // Only issue the fixit if we're prepared to recover.
2328    D << FixItHint::CreateInsertion(Loc, "typename ");
2329
2330    // Recover by pretending this was an elaborated type.
2331    QualType Ty = Context.getTypeDeclType(TD);
2332    TypeLocBuilder TLB;
2333    TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());
2334
2335    QualType ET = getElaboratedType(ETK_None, SS, Ty);
2336    ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
2337    QTL.setElaboratedKeywordLoc(SourceLocation());
2338    QTL.setQualifierLoc(SS.getWithLocInContext(Context));
2339
2340    *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);
2341
2342    return ExprEmpty();
2343  }
2344
2345  // Defend against this resolving to an implicit member access. We usually
2346  // won't get here if this might be a legitimate a class member (we end up in
2347  // BuildMemberReferenceExpr instead), but this can be valid if we're forming
2348  // a pointer-to-member or in an unevaluated context in C++11.
2349  if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
2350    return BuildPossibleImplicitMemberExpr(SS,
2351                                           /*TemplateKWLoc=*/SourceLocation(),
2352                                           R, /*TemplateArgs=*/nullptr, S);
2353
2354  return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
2355}
2356
2357/// LookupInObjCMethod - The parser has read a name in, and Sema has
2358/// detected that we're currently inside an ObjC method.  Perform some
2359/// additional lookup.
2360///
2361/// Ideally, most of this would be done by lookup, but there's
2362/// actually quite a lot of extra work involved.
2363///
2364/// Returns a null sentinel to indicate trivial success.
2365ExprResult
2366Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
2367                         IdentifierInfo *II, bool AllowBuiltinCreation) {
2368  SourceLocation Loc = Lookup.getNameLoc();
2369  ObjCMethodDecl *CurMethod = getCurMethodDecl();
2370
2371  // Check for error condition which is already reported.
2372  if (!CurMethod)
2373    return ExprError();
2374
2375  // There are two cases to handle here.  1) scoped lookup could have failed,
2376  // in which case we should look for an ivar.  2) scoped lookup could have
2377  // found a decl, but that decl is outside the current instance method (i.e.
2378  // a global variable).  In these two cases, we do a lookup for an ivar with
2379  // this name, if the lookup sucedes, we replace it our current decl.
2380
2381  // If we're in a class method, we don't normally want to look for
2382  // ivars.  But if we don't find anything else, and there's an
2383  // ivar, that's an error.
2384  bool IsClassMethod = CurMethod->isClassMethod();
2385
2386  bool LookForIvars;
2387  if (Lookup.empty())
2388    LookForIvars = true;
2389  else if (IsClassMethod)
2390    LookForIvars = false;
2391  else
2392    LookForIvars = (Lookup.isSingleResult() &&
2393                    Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
2394  ObjCInterfaceDecl *IFace = nullptr;
2395  if (LookForIvars) {
2396    IFace = CurMethod->getClassInterface();
2397    ObjCInterfaceDecl *ClassDeclared;
2398    ObjCIvarDecl *IV = nullptr;
2399    if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
2400      // Diagnose using an ivar in a class method.
2401      if (IsClassMethod)
2402        return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
2403                         << IV->getDeclName());
2404
2405      // If we're referencing an invalid decl, just return this as a silent
2406      // error node.  The error diagnostic was already emitted on the decl.
2407      if (IV->isInvalidDecl())
2408        return ExprError();
2409
2410      // Check if referencing a field with __attribute__((deprecated)).
2411      if (DiagnoseUseOfDecl(IV, Loc))
2412        return ExprError();
2413
2414      // Diagnose the use of an ivar outside of the declaring class.
2415      if (IV->getAccessControl() == ObjCIvarDecl::Private &&
2416          !declaresSameEntity(ClassDeclared, IFace) &&
2417          !getLangOpts().DebuggerSupport)
2418        Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
2419
2420      // FIXME: This should use a new expr for a direct reference, don't
2421      // turn this into Self->ivar, just return a BareIVarExpr or something.
2422      IdentifierInfo &II = Context.Idents.get("self");
2423      UnqualifiedId SelfName;
2424      SelfName.setIdentifier(&II, SourceLocation());
2425      SelfName.setKind(UnqualifiedId::IK_ImplicitSelfParam);
2426      CXXScopeSpec SelfScopeSpec;
2427      SourceLocation TemplateKWLoc;
2428      ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc,
2429                                              SelfName, false, false);
2430      if (SelfExpr.isInvalid())
2431        return ExprError();
2432
2433      SelfExpr = DefaultLvalueConversion(SelfExpr.get());
2434      if (SelfExpr.isInvalid())
2435        return ExprError();
2436
2437      MarkAnyDeclReferenced(Loc, IV, true);
2438
2439      ObjCMethodFamily MF = CurMethod->getMethodFamily();
2440      if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
2441          !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
2442        Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
2443
2444      ObjCIvarRefExpr *Result = new (Context)
2445          ObjCIvarRefExpr(IV, IV->getUsageType(SelfExpr.get()->getType()), Loc,
2446                          IV->getLocation(), SelfExpr.get(), true, true);
2447
2448      if (getLangOpts().ObjCAutoRefCount) {
2449        if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
2450          if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
2451            recordUseOfEvaluatedWeak(Result);
2452        }
2453        if (CurContext->isClosure())
2454          Diag(Loc, diag::warn_implicitly_retains_self)
2455            << FixItHint::CreateInsertion(Loc, "self->");
2456      }
2457
2458      return Result;
2459    }
2460  } else if (CurMethod->isInstanceMethod()) {
2461    // We should warn if a local variable hides an ivar.
2462    if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
2463      ObjCInterfaceDecl *ClassDeclared;
2464      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
2465        if (IV->getAccessControl() != ObjCIvarDecl::Private ||
2466            declaresSameEntity(IFace, ClassDeclared))
2467          Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
2468      }
2469    }
2470  } else if (Lookup.isSingleResult() &&
2471             Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
2472    // If accessing a stand-alone ivar in a class method, this is an error.
2473    if (const ObjCIvarDecl *IV = dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl()))
2474      return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
2475                       << IV->getDeclName());
2476  }
2477
2478  if (Lookup.empty() && II && AllowBuiltinCreation) {
2479    // FIXME. Consolidate this with similar code in LookupName.
2480    if (unsigned BuiltinID = II->getBuiltinID()) {
2481      if (!(getLangOpts().CPlusPlus &&
2482            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
2483        NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
2484                                           S, Lookup.isForRedeclaration(),
2485                                           Lookup.getNameLoc());
2486        if (D) Lookup.addDecl(D);
2487      }
2488    }
2489  }
2490  // Sentinel value saying that we didn't do anything special.
2491  return ExprResult((Expr *)nullptr);
2492}
2493
2494/// \brief Cast a base object to a member's actual type.
2495///
2496/// Logically this happens in three phases:
2497///
2498/// * First we cast from the base type to the naming class.
2499///   The naming class is the class into which we were looking
2500///   when we found the member;  it's the qualifier type if a
2501///   qualifier was provided, and otherwise it's the base type.
2502///
2503/// * Next we cast from the naming class to the declaring class.
2504///   If the member we found was brought into a class's scope by
2505///   a using declaration, this is that class;  otherwise it's
2506///   the class declaring the member.
2507///
2508/// * Finally we cast from the declaring class to the "true"
2509///   declaring class of the member.  This conversion does not
2510///   obey access control.
2511ExprResult
2512Sema::PerformObjectMemberConversion(Expr *From,
2513                                    NestedNameSpecifier *Qualifier,
2514                                    NamedDecl *FoundDecl,
2515                                    NamedDecl *Member) {
2516  CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
2517  if (!RD)
2518    return From;
2519
2520  QualType DestRecordType;
2521  QualType DestType;
2522  QualType FromRecordType;
2523  QualType FromType = From->getType();
2524  bool PointerConversions = false;
2525  if (isa<FieldDecl>(Member)) {
2526    DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
2527
2528    if (FromType->getAs<PointerType>()) {
2529      DestType = Context.getPointerType(DestRecordType);
2530      FromRecordType = FromType->getPointeeType();
2531      PointerConversions = true;
2532    } else {
2533      DestType = DestRecordType;
2534      FromRecordType = FromType;
2535    }
2536  } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
2537    if (Method->isStatic())
2538      return From;
2539
2540    DestType = Method->getThisType(Context);
2541    DestRecordType = DestType->getPointeeType();
2542
2543    if (FromType->getAs<PointerType>()) {
2544      FromRecordType = FromType->getPointeeType();
2545      PointerConversions = true;
2546    } else {
2547      FromRecordType = FromType;
2548      DestType = DestRecordType;
2549    }
2550  } else {
2551    // No conversion necessary.
2552    return From;
2553  }
2554
2555  if (DestType->isDependentType() || FromType->isDependentType())
2556    return From;
2557
2558  // If the unqualified types are the same, no conversion is necessary.
2559  if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2560    return From;
2561
2562  SourceRange FromRange = From->getSourceRange();
2563  SourceLocation FromLoc = FromRange.getBegin();
2564
2565  ExprValueKind VK = From->getValueKind();
2566
2567  // C++ [class.member.lookup]p8:
2568  //   [...] Ambiguities can often be resolved by qualifying a name with its
2569  //   class name.
2570  //
2571  // If the member was a qualified name and the qualified referred to a
2572  // specific base subobject type, we'll cast to that intermediate type
2573  // first and then to the object in which the member is declared. That allows
2574  // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
2575  //
2576  //   class Base { public: int x; };
2577  //   class Derived1 : public Base { };
2578  //   class Derived2 : public Base { };
2579  //   class VeryDerived : public Derived1, public Derived2 { void f(); };
2580  //
2581  //   void VeryDerived::f() {
2582  //     x = 17; // error: ambiguous base subobjects
2583  //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
2584  //   }
2585  if (Qualifier && Qualifier->getAsType()) {
2586    QualType QType = QualType(Qualifier->getAsType(), 0);
2587    assert(QType->isRecordType() && "lookup done with non-record type");
2588
2589    QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
2590
2591    // In C++98, the qualifier type doesn't actually have to be a base
2592    // type of the object type, in which case we just ignore it.
2593    // Otherwise build the appropriate casts.
2594    if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) {
2595      CXXCastPath BasePath;
2596      if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
2597                                       FromLoc, FromRange, &BasePath))
2598        return ExprError();
2599
2600      if (PointerConversions)
2601        QType = Context.getPointerType(QType);
2602      From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
2603                               VK, &BasePath).get();
2604
2605      FromType = QType;
2606      FromRecordType = QRecordType;
2607
2608      // If the qualifier type was the same as the destination type,
2609      // we're done.
2610      if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2611        return From;
2612    }
2613  }
2614
2615  bool IgnoreAccess = false;
2616
2617  // If we actually found the member through a using declaration, cast
2618  // down to the using declaration's type.
2619  //
2620  // Pointer equality is fine here because only one declaration of a
2621  // class ever has member declarations.
2622  if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
2623    assert(isa<UsingShadowDecl>(FoundDecl));
2624    QualType URecordType = Context.getTypeDeclType(
2625                           cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
2626
2627    // We only need to do this if the naming-class to declaring-class
2628    // conversion is non-trivial.
2629    if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
2630      assert(IsDerivedFrom(FromLoc, FromRecordType, URecordType));
2631      CXXCastPath BasePath;
2632      if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
2633                                       FromLoc, FromRange, &BasePath))
2634        return ExprError();
2635
2636      QualType UType = URecordType;
2637      if (PointerConversions)
2638        UType = Context.getPointerType(UType);
2639      From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
2640                               VK, &BasePath).get();
2641      FromType = UType;
2642      FromRecordType = URecordType;
2643    }
2644
2645    // We don't do access control for the conversion from the
2646    // declaring class to the true declaring class.
2647    IgnoreAccess = true;
2648  }
2649
2650  CXXCastPath BasePath;
2651  if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
2652                                   FromLoc, FromRange, &BasePath,
2653                                   IgnoreAccess))
2654    return ExprError();
2655
2656  return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
2657                           VK, &BasePath);
2658}
2659
2660bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
2661                                      const LookupResult &R,
2662                                      bool HasTrailingLParen) {
2663  // Only when used directly as the postfix-expression of a call.
2664  if (!HasTrailingLParen)
2665    return false;
2666
2667  // Never if a scope specifier was provided.
2668  if (SS.isSet())
2669    return false;
2670
2671  // Only in C++ or ObjC++.
2672  if (!getLangOpts().CPlusPlus)
2673    return false;
2674
2675  // Turn off ADL when we find certain kinds of declarations during
2676  // normal lookup:
2677  for (NamedDecl *D : R) {
2678    // C++0x [basic.lookup.argdep]p3:
2679    //     -- a declaration of a class member
2680    // Since using decls preserve this property, we check this on the
2681    // original decl.
2682    if (D->isCXXClassMember())
2683      return false;
2684
2685    // C++0x [basic.lookup.argdep]p3:
2686    //     -- a block-scope function declaration that is not a
2687    //        using-declaration
2688    // NOTE: we also trigger this for function templates (in fact, we
2689    // don't check the decl type at all, since all other decl types
2690    // turn off ADL anyway).
2691    if (isa<UsingShadowDecl>(D))
2692      D = cast<UsingShadowDecl>(D)->getTargetDecl();
2693    else if (D->getLexicalDeclContext()->isFunctionOrMethod())
2694      return false;
2695
2696    // C++0x [basic.lookup.argdep]p3:
2697    //     -- a declaration that is neither a function or a function
2698    //        template
2699    // And also for builtin functions.
2700    if (isa<FunctionDecl>(D)) {
2701      FunctionDecl *FDecl = cast<FunctionDecl>(D);
2702
2703      // But also builtin functions.
2704      if (FDecl->getBuiltinID() && FDecl->isImplicit())
2705        return false;
2706    } else if (!isa<FunctionTemplateDecl>(D))
2707      return false;
2708  }
2709
2710  return true;
2711}
2712
2713
2714/// Diagnoses obvious problems with the use of the given declaration
2715/// as an expression.  This is only actually called for lookups that
2716/// were not overloaded, and it doesn't promise that the declaration
2717/// will in fact be used.
2718static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
2719  if (isa<TypedefNameDecl>(D)) {
2720    S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
2721    return true;
2722  }
2723
2724  if (isa<ObjCInterfaceDecl>(D)) {
2725    S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
2726    return true;
2727  }
2728
2729  if (isa<NamespaceDecl>(D)) {
2730    S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
2731    return true;
2732  }
2733
2734  return false;
2735}
2736
2737ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2738                                          LookupResult &R, bool NeedsADL,
2739                                          bool AcceptInvalidDecl) {
2740  // If this is a single, fully-resolved result and we don't need ADL,
2741  // just build an ordinary singleton decl ref.
2742  if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
2743    return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
2744                                    R.getRepresentativeDecl(), nullptr,
2745                                    AcceptInvalidDecl);
2746
2747  // We only need to check the declaration if there's exactly one
2748  // result, because in the overloaded case the results can only be
2749  // functions and function templates.
2750  if (R.isSingleResult() &&
2751      CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
2752    return ExprError();
2753
2754  // Otherwise, just build an unresolved lookup expression.  Suppress
2755  // any lookup-related diagnostics; we'll hash these out later, when
2756  // we've picked a target.
2757  R.suppressDiagnostics();
2758
2759  UnresolvedLookupExpr *ULE
2760    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2761                                   SS.getWithLocInContext(Context),
2762                                   R.getLookupNameInfo(),
2763                                   NeedsADL, R.isOverloadedResult(),
2764                                   R.begin(), R.end());
2765
2766  return ULE;
2767}
2768
2769/// \brief Complete semantic analysis for a reference to the given declaration.
2770ExprResult Sema::BuildDeclarationNameExpr(
2771    const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
2772    NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
2773    bool AcceptInvalidDecl) {
2774  assert(D && "Cannot refer to a NULL declaration");
2775  assert(!isa<FunctionTemplateDecl>(D) &&
2776         "Cannot refer unambiguously to a function template");
2777
2778  SourceLocation Loc = NameInfo.getLoc();
2779  if (CheckDeclInExpr(*this, Loc, D))
2780    return ExprError();
2781
2782  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
2783    // Specifically diagnose references to class templates that are missing
2784    // a template argument list.
2785    Diag(Loc, diag::err_template_decl_ref) << (isa<VarTemplateDecl>(D) ? 1 : 0)
2786                                           << Template << SS.getRange();
2787    Diag(Template->getLocation(), diag::note_template_decl_here);
2788    return ExprError();
2789  }
2790
2791  // Make sure that we're referring to a value.
2792  ValueDecl *VD = dyn_cast<ValueDecl>(D);
2793  if (!VD) {
2794    Diag(Loc, diag::err_ref_non_value)
2795      << D << SS.getRange();
2796    Diag(D->getLocation(), diag::note_declared_at);
2797    return ExprError();
2798  }
2799
2800  // Check whether this declaration can be used. Note that we suppress
2801  // this check when we're going to perform argument-dependent lookup
2802  // on this function name, because this might not be the function
2803  // that overload resolution actually selects.
2804  if (DiagnoseUseOfDecl(VD, Loc))
2805    return ExprError();
2806
2807  // Only create DeclRefExpr's for valid Decl's.
2808  if (VD->isInvalidDecl() && !AcceptInvalidDecl)
2809    return ExprError();
2810
2811  // Handle members of anonymous structs and unions.  If we got here,
2812  // and the reference is to a class member indirect field, then this
2813  // must be the subject of a pointer-to-member expression.
2814  if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
2815    if (!indirectField->isCXXClassMember())
2816      return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
2817                                                      indirectField);
2818
2819  {
2820    QualType type = VD->getType();
2821    ExprValueKind valueKind = VK_RValue;
2822
2823    switch (D->getKind()) {
2824    // Ignore all the non-ValueDecl kinds.
2825#define ABSTRACT_DECL(kind)
2826#define VALUE(type, base)
2827#define DECL(type, base) \
2828    case Decl::type:
2829#include "clang/AST/DeclNodes.inc"
2830      llvm_unreachable("invalid value decl kind");
2831
2832    // These shouldn't make it here.
2833    case Decl::ObjCAtDefsField:
2834    case Decl::ObjCIvar:
2835      llvm_unreachable("forming non-member reference to ivar?");
2836
2837    // Enum constants are always r-values and never references.
2838    // Unresolved using declarations are dependent.
2839    case Decl::EnumConstant:
2840    case Decl::UnresolvedUsingValue:
2841      valueKind = VK_RValue;
2842      break;
2843
2844    // Fields and indirect fields that got here must be for
2845    // pointer-to-member expressions; we just call them l-values for
2846    // internal consistency, because this subexpression doesn't really
2847    // exist in the high-level semantics.
2848    case Decl::Field:
2849    case Decl::IndirectField:
2850      assert(getLangOpts().CPlusPlus &&
2851             "building reference to field in C?");
2852
2853      // These can't have reference type in well-formed programs, but
2854      // for internal consistency we do this anyway.
2855      type = type.getNonReferenceType();
2856      valueKind = VK_LValue;
2857      break;
2858
2859    // Non-type template parameters are either l-values or r-values
2860    // depending on the type.
2861    case Decl::NonTypeTemplateParm: {
2862      if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
2863        type = reftype->getPointeeType();
2864        valueKind = VK_LValue; // even if the parameter is an r-value reference
2865        break;
2866      }
2867
2868      // For non-references, we need to strip qualifiers just in case
2869      // the template parameter was declared as 'const int' or whatever.
2870      valueKind = VK_RValue;
2871      type = type.getUnqualifiedType();
2872      break;
2873    }
2874
2875    case Decl::Var:
2876    case Decl::VarTemplateSpecialization:
2877    case Decl::VarTemplatePartialSpecialization:
2878      // In C, "extern void blah;" is valid and is an r-value.
2879      if (!getLangOpts().CPlusPlus &&
2880          !type.hasQualifiers() &&
2881          type->isVoidType()) {
2882        valueKind = VK_RValue;
2883        break;
2884      }
2885      // fallthrough
2886
2887    case Decl::ImplicitParam:
2888    case Decl::ParmVar: {
2889      // These are always l-values.
2890      valueKind = VK_LValue;
2891      type = type.getNonReferenceType();
2892
2893      // FIXME: Does the addition of const really only apply in
2894      // potentially-evaluated contexts? Since the variable isn't actually
2895      // captured in an unevaluated context, it seems that the answer is no.
2896      if (!isUnevaluatedContext()) {
2897        QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
2898        if (!CapturedType.isNull())
2899          type = CapturedType;
2900      }
2901
2902      break;
2903    }
2904
2905    case Decl::Function: {
2906      if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
2907        if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
2908          type = Context.BuiltinFnTy;
2909          valueKind = VK_RValue;
2910          break;
2911        }
2912      }
2913
2914      const FunctionType *fty = type->castAs<FunctionType>();
2915
2916      // If we're referring to a function with an __unknown_anytype
2917      // result type, make the entire expression __unknown_anytype.
2918      if (fty->getReturnType() == Context.UnknownAnyTy) {
2919        type = Context.UnknownAnyTy;
2920        valueKind = VK_RValue;
2921        break;
2922      }
2923
2924      // Functions are l-values in C++.
2925      if (getLangOpts().CPlusPlus) {
2926        valueKind = VK_LValue;
2927        break;
2928      }
2929
2930      // C99 DR 316 says that, if a function type comes from a
2931      // function definition (without a prototype), that type is only
2932      // used for checking compatibility. Therefore, when referencing
2933      // the function, we pretend that we don't have the full function
2934      // type.
2935      if (!cast<FunctionDecl>(VD)->hasPrototype() &&
2936          isa<FunctionProtoType>(fty))
2937        type = Context.getFunctionNoProtoType(fty->getReturnType(),
2938                                              fty->getExtInfo());
2939
2940      // Functions are r-values in C.
2941      valueKind = VK_RValue;
2942      break;
2943    }
2944
2945    case Decl::MSProperty:
2946      valueKind = VK_LValue;
2947      break;
2948
2949    case Decl::CXXMethod:
2950      // If we're referring to a method with an __unknown_anytype
2951      // result type, make the entire expression __unknown_anytype.
2952      // This should only be possible with a type written directly.
2953      if (const FunctionProtoType *proto
2954            = dyn_cast<FunctionProtoType>(VD->getType()))
2955        if (proto->getReturnType() == Context.UnknownAnyTy) {
2956          type = Context.UnknownAnyTy;
2957          valueKind = VK_RValue;
2958          break;
2959        }
2960
2961      // C++ methods are l-values if static, r-values if non-static.
2962      if (cast<CXXMethodDecl>(VD)->isStatic()) {
2963        valueKind = VK_LValue;
2964        break;
2965      }
2966      // fallthrough
2967
2968    case Decl::CXXConversion:
2969    case Decl::CXXDestructor:
2970    case Decl::CXXConstructor:
2971      valueKind = VK_RValue;
2972      break;
2973    }
2974
2975    return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
2976                            TemplateArgs);
2977  }
2978}
2979
2980static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
2981                                    SmallString<32> &Target) {
2982  Target.resize(CharByteWidth * (Source.size() + 1));
2983  char *ResultPtr = &Target[0];
2984  const UTF8 *ErrorPtr;
2985  bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
2986  (void)success;
2987  assert(success);
2988  Target.resize(ResultPtr - &Target[0]);
2989}
2990
2991ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
2992                                     PredefinedExpr::IdentType IT) {
2993  // Pick the current block, lambda, captured statement or function.
2994  Decl *currentDecl = nullptr;
2995  if (const BlockScopeInfo *BSI = getCurBlock())
2996    currentDecl = BSI->TheDecl;
2997  else if (const LambdaScopeInfo *LSI = getCurLambda())
2998    currentDecl = LSI->CallOperator;
2999  else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion())
3000    currentDecl = CSI->TheCapturedDecl;
3001  else
3002    currentDecl = getCurFunctionOrMethodDecl();
3003
3004  if (!currentDecl) {
3005    Diag(Loc, diag::ext_predef_outside_function);
3006    currentDecl = Context.getTranslationUnitDecl();
3007  }
3008
3009  QualType ResTy;
3010  StringLiteral *SL = nullptr;
3011  if (cast<DeclContext>(currentDecl)->isDependentContext())
3012    ResTy = Context.DependentTy;
3013  else {
3014    // Pre-defined identifiers are of type char[x], where x is the length of
3015    // the string.
3016    auto Str = PredefinedExpr::ComputeName(IT, currentDecl);
3017    unsigned Length = Str.length();
3018
3019    llvm::APInt LengthI(32, Length + 1);
3020    if (IT == PredefinedExpr::LFunction) {
3021      ResTy = Context.WideCharTy.withConst();
3022      SmallString<32> RawChars;
3023      ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(),
3024                              Str, RawChars);
3025      ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal,
3026                                           /*IndexTypeQuals*/ 0);
3027      SL = StringLiteral::Create(Context, RawChars, StringLiteral::Wide,
3028                                 /*Pascal*/ false, ResTy, Loc);
3029    } else {
3030      ResTy = Context.CharTy.withConst();
3031      ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal,
3032                                           /*IndexTypeQuals*/ 0);
3033      SL = StringLiteral::Create(Context, Str, StringLiteral::Ascii,
3034                                 /*Pascal*/ false, ResTy, Loc);
3035    }
3036  }
3037
3038  return new (Context) PredefinedExpr(Loc, ResTy, IT, SL);
3039}
3040
3041ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
3042  PredefinedExpr::IdentType IT;
3043
3044  switch (Kind) {
3045  default: llvm_unreachable("Unknown simple primary expr!");
3046  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
3047  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
3048  case tok::kw___FUNCDNAME__: IT = PredefinedExpr::FuncDName; break; // [MS]
3049  case tok::kw___FUNCSIG__: IT = PredefinedExpr::FuncSig; break; // [MS]
3050  case tok::kw_L__FUNCTION__: IT = PredefinedExpr::LFunction; break;
3051  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
3052  }
3053
3054  return BuildPredefinedExpr(Loc, IT);
3055}
3056
3057ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
3058  SmallString<16> CharBuffer;
3059  bool Invalid = false;
3060  StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
3061  if (Invalid)
3062    return ExprError();
3063
3064  CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
3065                            PP, Tok.getKind());
3066  if (Literal.hadError())
3067    return ExprError();
3068
3069  QualType Ty;
3070  if (Literal.isWide())
3071    Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
3072  else if (Literal.isUTF16())
3073    Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
3074  else if (Literal.isUTF32())
3075    Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
3076  else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
3077    Ty = Context.IntTy;   // 'x' -> int in C, 'wxyz' -> int in C++.
3078  else
3079    Ty = Context.CharTy;  // 'x' -> char in C++
3080
3081  CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
3082  if (Literal.isWide())
3083    Kind = CharacterLiteral::Wide;
3084  else if (Literal.isUTF16())
3085    Kind = CharacterLiteral::UTF16;
3086  else if (Literal.isUTF32())
3087    Kind = CharacterLiteral::UTF32;
3088
3089  Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
3090                                             Tok.getLocation());
3091
3092  if (Literal.getUDSuffix().empty())
3093    return Lit;
3094
3095  // We're building a user-defined literal.
3096  IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3097  SourceLocation UDSuffixLoc =
3098    getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3099
3100  // Make sure we're allowed user-defined literals here.
3101  if (!UDLScope)
3102    return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
3103
3104  // C++11 [lex.ext]p6: The literal L is treated as a call of the form
3105  //   operator "" X (ch)
3106  return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
3107                                        Lit, Tok.getLocation());
3108}
3109
3110ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
3111  unsigned IntSize = Context.getTargetInfo().getIntWidth();
3112  return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
3113                                Context.IntTy, Loc);
3114}
3115
3116static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
3117                                  QualType Ty, SourceLocation Loc) {
3118  const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
3119
3120  using llvm::APFloat;
3121  APFloat Val(Format);
3122
3123  APFloat::opStatus result = Literal.GetFloatValue(Val);
3124
3125  // Overflow is always an error, but underflow is only an error if
3126  // we underflowed to zero (APFloat reports denormals as underflow).
3127  if ((result & APFloat::opOverflow) ||
3128      ((result & APFloat::opUnderflow) && Val.isZero())) {
3129    unsigned diagnostic;
3130    SmallString<20> buffer;
3131    if (result & APFloat::opOverflow) {
3132      diagnostic = diag::warn_float_overflow;
3133      APFloat::getLargest(Format).toString(buffer);
3134    } else {
3135      diagnostic = diag::warn_float_underflow;
3136      APFloat::getSmallest(Format).toString(buffer);
3137    }
3138
3139    S.Diag(Loc, diagnostic)
3140      << Ty
3141      << StringRef(buffer.data(), buffer.size());
3142  }
3143
3144  bool isExact = (result == APFloat::opOK);
3145  return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
3146}
3147
3148bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) {
3149  assert(E && "Invalid expression");
3150
3151  if (E->isValueDependent())
3152    return false;
3153
3154  QualType QT = E->getType();
3155  if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
3156    Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT;
3157    return true;
3158  }
3159
3160  llvm::APSInt ValueAPS;
3161  ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS);
3162
3163  if (R.isInvalid())
3164    return true;
3165
3166  bool ValueIsPositive = ValueAPS.isStrictlyPositive();
3167  if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
3168    Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value)
3169        << ValueAPS.toString(10) << ValueIsPositive;
3170    return true;
3171  }
3172
3173  return false;
3174}
3175
3176ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
3177  // Fast path for a single digit (which is quite common).  A single digit
3178  // cannot have a trigraph, escaped newline, radix prefix, or suffix.
3179  if (Tok.getLength() == 1) {
3180    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
3181    return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
3182  }
3183
3184  SmallString<128> SpellingBuffer;
3185  // NumericLiteralParser wants to overread by one character.  Add padding to
3186  // the buffer in case the token is copied to the buffer.  If getSpelling()
3187  // returns a StringRef to the memory buffer, it should have a null char at
3188  // the EOF, so it is also safe.
3189  SpellingBuffer.resize(Tok.getLength() + 1);
3190
3191  // Get the spelling of the token, which eliminates trigraphs, etc.
3192  bool Invalid = false;
3193  StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
3194  if (Invalid)
3195    return ExprError();
3196
3197  NumericLiteralParser Literal(TokSpelling, Tok.getLocation(), PP);
3198  if (Literal.hadError)
3199    return ExprError();
3200
3201  if (Literal.hasUDSuffix()) {
3202    // We're building a user-defined literal.
3203    IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3204    SourceLocation UDSuffixLoc =
3205      getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3206
3207    // Make sure we're allowed user-defined literals here.
3208    if (!UDLScope)
3209      return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
3210
3211    QualType CookedTy;
3212    if (Literal.isFloatingLiteral()) {
3213      // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
3214      // long double, the literal is treated as a call of the form
3215      //   operator "" X (f L)
3216      CookedTy = Context.LongDoubleTy;
3217    } else {
3218      // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
3219      // unsigned long long, the literal is treated as a call of the form
3220      //   operator "" X (n ULL)
3221      CookedTy = Context.UnsignedLongLongTy;
3222    }
3223
3224    DeclarationName OpName =
3225      Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
3226    DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
3227    OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
3228
3229    SourceLocation TokLoc = Tok.getLocation();
3230
3231    // Perform literal operator lookup to determine if we're building a raw
3232    // literal or a cooked one.
3233    LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
3234    switch (LookupLiteralOperator(UDLScope, R, CookedTy,
3235                                  /*AllowRaw*/true, /*AllowTemplate*/true,
3236                                  /*AllowStringTemplate*/false)) {
3237    case LOLR_Error:
3238      return ExprError();
3239
3240    case LOLR_Cooked: {
3241      Expr *Lit;
3242      if (Literal.isFloatingLiteral()) {
3243        Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
3244      } else {
3245        llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
3246        if (Literal.GetIntegerValue(ResultVal))
3247          Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3248              << /* Unsigned */ 1;
3249        Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
3250                                     Tok.getLocation());
3251      }
3252      return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3253    }
3254
3255    case LOLR_Raw: {
3256      // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
3257      // literal is treated as a call of the form
3258      //   operator "" X ("n")
3259      unsigned Length = Literal.getUDSuffixOffset();
3260      QualType StrTy = Context.getConstantArrayType(
3261          Context.CharTy.withConst(), llvm::APInt(32, Length + 1),
3262          ArrayType::Normal, 0);
3263      Expr *Lit = StringLiteral::Create(
3264          Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ascii,
3265          /*Pascal*/false, StrTy, &TokLoc, 1);
3266      return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3267    }
3268
3269    case LOLR_Template: {
3270      // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
3271      // template), L is treated as a call fo the form
3272      //   operator "" X <'c1', 'c2', ... 'ck'>()
3273      // where n is the source character sequence c1 c2 ... ck.
3274      TemplateArgumentListInfo ExplicitArgs;
3275      unsigned CharBits = Context.getIntWidth(Context.CharTy);
3276      bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
3277      llvm::APSInt Value(CharBits, CharIsUnsigned);
3278      for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
3279        Value = TokSpelling[I];
3280        TemplateArgument Arg(Context, Value, Context.CharTy);
3281        TemplateArgumentLocInfo ArgInfo;
3282        ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
3283      }
3284      return BuildLiteralOperatorCall(R, OpNameInfo, None, TokLoc,
3285                                      &ExplicitArgs);
3286    }
3287    case LOLR_StringTemplate:
3288      llvm_unreachable("unexpected literal operator lookup result");
3289    }
3290  }
3291
3292  Expr *Res;
3293
3294  if (Literal.isFloatingLiteral()) {
3295    QualType Ty;
3296    if (Literal.isFloat)
3297      Ty = Context.FloatTy;
3298    else if (!Literal.isLong)
3299      Ty = Context.DoubleTy;
3300    else
3301      Ty = Context.LongDoubleTy;
3302
3303    Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
3304
3305    if (Ty == Context.DoubleTy) {
3306      if (getLangOpts().SinglePrecisionConstants) {
3307        Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3308      } else if (getLangOpts().OpenCL &&
3309                 !((getLangOpts().OpenCLVersion >= 120) ||
3310                   getOpenCLOptions().cl_khr_fp64)) {
3311        Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
3312        Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3313      }
3314    }
3315  } else if (!Literal.isIntegerLiteral()) {
3316    return ExprError();
3317  } else {
3318    QualType Ty;
3319
3320    // 'long long' is a C99 or C++11 feature.
3321    if (!getLangOpts().C99 && Literal.isLongLong) {
3322      if (getLangOpts().CPlusPlus)
3323        Diag(Tok.getLocation(),
3324             getLangOpts().CPlusPlus11 ?
3325             diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
3326      else
3327        Diag(Tok.getLocation(), diag::ext_c99_longlong);
3328    }
3329
3330    // Get the value in the widest-possible width.
3331    unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
3332    llvm::APInt ResultVal(MaxWidth, 0);
3333
3334    if (Literal.GetIntegerValue(ResultVal)) {
3335      // If this value didn't fit into uintmax_t, error and force to ull.
3336      Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3337          << /* Unsigned */ 1;
3338      Ty = Context.UnsignedLongLongTy;
3339      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
3340             "long long is not intmax_t?");
3341    } else {
3342      // If this value fits into a ULL, try to figure out what else it fits into
3343      // according to the rules of C99 6.4.4.1p5.
3344
3345      // Octal, Hexadecimal, and integers with a U suffix are allowed to
3346      // be an unsigned int.
3347      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
3348
3349      // Check from smallest to largest, picking the smallest type we can.
3350      unsigned Width = 0;
3351
3352      // Microsoft specific integer suffixes are explicitly sized.
3353      if (Literal.MicrosoftInteger) {
3354        if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) {
3355          Width = 8;
3356          Ty = Context.CharTy;
3357        } else {
3358          Width = Literal.MicrosoftInteger;
3359          Ty = Context.getIntTypeForBitwidth(Width,
3360                                             /*Signed=*/!Literal.isUnsigned);
3361        }
3362      }
3363
3364      if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong) {
3365        // Are int/unsigned possibilities?
3366        unsigned IntSize = Context.getTargetInfo().getIntWidth();
3367
3368        // Does it fit in a unsigned int?
3369        if (ResultVal.isIntN(IntSize)) {
3370          // Does it fit in a signed int?
3371          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
3372            Ty = Context.IntTy;
3373          else if (AllowUnsigned)
3374            Ty = Context.UnsignedIntTy;
3375          Width = IntSize;
3376        }
3377      }
3378
3379      // Are long/unsigned long possibilities?
3380      if (Ty.isNull() && !Literal.isLongLong) {
3381        unsigned LongSize = Context.getTargetInfo().getLongWidth();
3382
3383        // Does it fit in a unsigned long?
3384        if (ResultVal.isIntN(LongSize)) {
3385          // Does it fit in a signed long?
3386          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
3387            Ty = Context.LongTy;
3388          else if (AllowUnsigned)
3389            Ty = Context.UnsignedLongTy;
3390          // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2
3391          // is compatible.
3392          else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) {
3393            const unsigned LongLongSize =
3394                Context.getTargetInfo().getLongLongWidth();
3395            Diag(Tok.getLocation(),
3396                 getLangOpts().CPlusPlus
3397                     ? Literal.isLong
3398                           ? diag::warn_old_implicitly_unsigned_long_cxx
3399                           : /*C++98 UB*/ diag::
3400                                 ext_old_implicitly_unsigned_long_cxx
3401                     : diag::warn_old_implicitly_unsigned_long)
3402                << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0
3403                                            : /*will be ill-formed*/ 1);
3404            Ty = Context.UnsignedLongTy;
3405          }
3406          Width = LongSize;
3407        }
3408      }
3409
3410      // Check long long if needed.
3411      if (Ty.isNull()) {
3412        unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
3413
3414        // Does it fit in a unsigned long long?
3415        if (ResultVal.isIntN(LongLongSize)) {
3416          // Does it fit in a signed long long?
3417          // To be compatible with MSVC, hex integer literals ending with the
3418          // LL or i64 suffix are always signed in Microsoft mode.
3419          if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
3420              (getLangOpts().MicrosoftExt && Literal.isLongLong)))
3421            Ty = Context.LongLongTy;
3422          else if (AllowUnsigned)
3423            Ty = Context.UnsignedLongLongTy;
3424          Width = LongLongSize;
3425        }
3426      }
3427
3428      // If we still couldn't decide a type, we probably have something that
3429      // does not fit in a signed long long, but has no U suffix.
3430      if (Ty.isNull()) {
3431        Diag(Tok.getLocation(), diag::ext_integer_literal_too_large_for_signed);
3432        Ty = Context.UnsignedLongLongTy;
3433        Width = Context.getTargetInfo().getLongLongWidth();
3434      }
3435
3436      if (ResultVal.getBitWidth() != Width)
3437        ResultVal = ResultVal.trunc(Width);
3438    }
3439    Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
3440  }
3441
3442  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
3443  if (Literal.isImaginary)
3444    Res = new (Context) ImaginaryLiteral(Res,
3445                                        Context.getComplexType(Res->getType()));
3446
3447  return Res;
3448}
3449
3450ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
3451  assert(E && "ActOnParenExpr() missing expr");
3452  return new (Context) ParenExpr(L, R, E);
3453}
3454
3455static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
3456                                         SourceLocation Loc,
3457                                         SourceRange ArgRange) {
3458  // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
3459  // scalar or vector data type argument..."
3460  // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
3461  // type (C99 6.2.5p18) or void.
3462  if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
3463    S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
3464      << T << ArgRange;
3465    return true;
3466  }
3467
3468  assert((T->isVoidType() || !T->isIncompleteType()) &&
3469         "Scalar types should always be complete");
3470  return false;
3471}
3472
3473static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
3474                                           SourceLocation Loc,
3475                                           SourceRange ArgRange,
3476                                           UnaryExprOrTypeTrait TraitKind) {
3477  // Invalid types must be hard errors for SFINAE in C++.
3478  if (S.LangOpts.CPlusPlus)
3479    return true;
3480
3481  // C99 6.5.3.4p1:
3482  if (T->isFunctionType() &&
3483      (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf)) {
3484    // sizeof(function)/alignof(function) is allowed as an extension.
3485    S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
3486      << TraitKind << ArgRange;
3487    return false;
3488  }
3489
3490  // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
3491  // this is an error (OpenCL v1.1 s6.3.k)
3492  if (T->isVoidType()) {
3493    unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
3494                                        : diag::ext_sizeof_alignof_void_type;
3495    S.Diag(Loc, DiagID) << TraitKind << ArgRange;
3496    return false;
3497  }
3498
3499  return true;
3500}
3501
3502static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
3503                                             SourceLocation Loc,
3504                                             SourceRange ArgRange,
3505                                             UnaryExprOrTypeTrait TraitKind) {
3506  // Reject sizeof(interface) and sizeof(interface<proto>) if the
3507  // runtime doesn't allow it.
3508  if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
3509    S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
3510      << T << (TraitKind == UETT_SizeOf)
3511      << ArgRange;
3512    return true;
3513  }
3514
3515  return false;
3516}
3517
3518/// \brief Check whether E is a pointer from a decayed array type (the decayed
3519/// pointer type is equal to T) and emit a warning if it is.
3520static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
3521                                     Expr *E) {
3522  // Don't warn if the operation changed the type.
3523  if (T != E->getType())
3524    return;
3525
3526  // Now look for array decays.
3527  ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E);
3528  if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
3529    return;
3530
3531  S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
3532                                             << ICE->getType()
3533                                             << ICE->getSubExpr()->getType();
3534}
3535
3536/// \brief Check the constraints on expression operands to unary type expression
3537/// and type traits.
3538///
3539/// Completes any types necessary and validates the constraints on the operand
3540/// expression. The logic mostly mirrors the type-based overload, but may modify
3541/// the expression as it completes the type for that expression through template
3542/// instantiation, etc.
3543bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
3544                                            UnaryExprOrTypeTrait ExprKind) {
3545  QualType ExprTy = E->getType();
3546  assert(!ExprTy->isReferenceType());
3547
3548  if (ExprKind == UETT_VecStep)
3549    return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
3550                                        E->getSourceRange());
3551
3552  // Whitelist some types as extensions
3553  if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
3554                                      E->getSourceRange(), ExprKind))
3555    return false;
3556
3557  // 'alignof' applied to an expression only requires the base element type of
3558  // the expression to be complete. 'sizeof' requires the expression's type to
3559  // be complete (and will attempt to complete it if it's an array of unknown
3560  // bound).
3561  if (ExprKind == UETT_AlignOf) {
3562    if (RequireCompleteType(E->getExprLoc(),
3563                            Context.getBaseElementType(E->getType()),
3564                            diag::err_sizeof_alignof_incomplete_type, ExprKind,
3565                            E->getSourceRange()))
3566      return true;
3567  } else {
3568    if (RequireCompleteExprType(E, diag::err_sizeof_alignof_incomplete_type,
3569                                ExprKind, E->getSourceRange()))
3570      return true;
3571  }
3572
3573  // Completing the expression's type may have changed it.
3574  ExprTy = E->getType();
3575  assert(!ExprTy->isReferenceType());
3576
3577  if (ExprTy->isFunctionType()) {
3578    Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
3579      << ExprKind << E->getSourceRange();
3580    return true;
3581  }
3582
3583  // The operand for sizeof and alignof is in an unevaluated expression context,
3584  // so side effects could result in unintended consequences.
3585  if ((ExprKind == UETT_SizeOf || ExprKind == UETT_AlignOf) &&
3586      ActiveTemplateInstantiations.empty() && E->HasSideEffects(Context, false))
3587    Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
3588
3589  if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
3590                                       E->getSourceRange(), ExprKind))
3591    return true;
3592
3593  if (ExprKind == UETT_SizeOf) {
3594    if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
3595      if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
3596        QualType OType = PVD->getOriginalType();
3597        QualType Type = PVD->getType();
3598        if (Type->isPointerType() && OType->isArrayType()) {
3599          Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
3600            << Type << OType;
3601          Diag(PVD->getLocation(), diag::note_declared_at);
3602        }
3603      }
3604    }
3605
3606    // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
3607    // decays into a pointer and returns an unintended result. This is most
3608    // likely a typo for "sizeof(array) op x".
3609    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
3610      warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
3611                               BO->getLHS());
3612      warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
3613                               BO->getRHS());
3614    }
3615  }
3616
3617  return false;
3618}
3619
3620/// \brief Check the constraints on operands to unary expression and type
3621/// traits.
3622///
3623/// This will complete any types necessary, and validate the various constraints
3624/// on those operands.
3625///
3626/// The UsualUnaryConversions() function is *not* called by this routine.
3627/// C99 6.3.2.1p[2-4] all state:
3628///   Except when it is the operand of the sizeof operator ...
3629///
3630/// C++ [expr.sizeof]p4
3631///   The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
3632///   standard conversions are not applied to the operand of sizeof.
3633///
3634/// This policy is followed for all of the unary trait expressions.
3635bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
3636                                            SourceLocation OpLoc,
3637                                            SourceRange ExprRange,
3638                                            UnaryExprOrTypeTrait ExprKind) {
3639  if (ExprType->isDependentType())
3640    return false;
3641
3642  // C++ [expr.sizeof]p2:
3643  //     When applied to a reference or a reference type, the result
3644  //     is the size of the referenced type.
3645  // C++11 [expr.alignof]p3:
3646  //     When alignof is applied to a reference type, the result
3647  //     shall be the alignment of the referenced type.
3648  if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
3649    ExprType = Ref->getPointeeType();
3650
3651  // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
3652  //   When alignof or _Alignof is applied to an array type, the result
3653  //   is the alignment of the element type.
3654  if (ExprKind == UETT_AlignOf || ExprKind == UETT_OpenMPRequiredSimdAlign)
3655    ExprType = Context.getBaseElementType(ExprType);
3656
3657  if (ExprKind == UETT_VecStep)
3658    return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
3659
3660  // Whitelist some types as extensions
3661  if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
3662                                      ExprKind))
3663    return false;
3664
3665  if (RequireCompleteType(OpLoc, ExprType,
3666                          diag::err_sizeof_alignof_incomplete_type,
3667                          ExprKind, ExprRange))
3668    return true;
3669
3670  if (ExprType->isFunctionType()) {
3671    Diag(OpLoc, diag::err_sizeof_alignof_function_type)
3672      << ExprKind << ExprRange;
3673    return true;
3674  }
3675
3676  if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
3677                                       ExprKind))
3678    return true;
3679
3680  return false;
3681}
3682
3683static bool CheckAlignOfExpr(Sema &S, Expr *E) {
3684  E = E->IgnoreParens();
3685
3686  // Cannot know anything else if the expression is dependent.
3687  if (E->isTypeDependent())
3688    return false;
3689
3690  if (E->getObjectKind() == OK_BitField) {
3691    S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
3692       << 1 << E->getSourceRange();
3693    return true;
3694  }
3695
3696  ValueDecl *D = nullptr;
3697  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
3698    D = DRE->getDecl();
3699  } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
3700    D = ME->getMemberDecl();
3701  }
3702
3703  // If it's a field, require the containing struct to have a
3704  // complete definition so that we can compute the layout.
3705  //
3706  // This can happen in C++11 onwards, either by naming the member
3707  // in a way that is not transformed into a member access expression
3708  // (in an unevaluated operand, for instance), or by naming the member
3709  // in a trailing-return-type.
3710  //
3711  // For the record, since __alignof__ on expressions is a GCC
3712  // extension, GCC seems to permit this but always gives the
3713  // nonsensical answer 0.
3714  //
3715  // We don't really need the layout here --- we could instead just
3716  // directly check for all the appropriate alignment-lowing
3717  // attributes --- but that would require duplicating a lot of
3718  // logic that just isn't worth duplicating for such a marginal
3719  // use-case.
3720  if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
3721    // Fast path this check, since we at least know the record has a
3722    // definition if we can find a member of it.
3723    if (!FD->getParent()->isCompleteDefinition()) {
3724      S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
3725        << E->getSourceRange();
3726      return true;
3727    }
3728
3729    // Otherwise, if it's a field, and the field doesn't have
3730    // reference type, then it must have a complete type (or be a
3731    // flexible array member, which we explicitly want to
3732    // white-list anyway), which makes the following checks trivial.
3733    if (!FD->getType()->isReferenceType())
3734      return false;
3735  }
3736
3737  return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf);
3738}
3739
3740bool Sema::CheckVecStepExpr(Expr *E) {
3741  E = E->IgnoreParens();
3742
3743  // Cannot know anything else if the expression is dependent.
3744  if (E->isTypeDependent())
3745    return false;
3746
3747  return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
3748}
3749
3750/// \brief Build a sizeof or alignof expression given a type operand.
3751ExprResult
3752Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
3753                                     SourceLocation OpLoc,
3754                                     UnaryExprOrTypeTrait ExprKind,
3755                                     SourceRange R) {
3756  if (!TInfo)
3757    return ExprError();
3758
3759  QualType T = TInfo->getType();
3760
3761  if (!T->isDependentType() &&
3762      CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
3763    return ExprError();
3764
3765  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
3766  return new (Context) UnaryExprOrTypeTraitExpr(
3767      ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
3768}
3769
3770/// \brief Build a sizeof or alignof expression given an expression
3771/// operand.
3772ExprResult
3773Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
3774                                     UnaryExprOrTypeTrait ExprKind) {
3775  ExprResult PE = CheckPlaceholderExpr(E);
3776  if (PE.isInvalid())
3777    return ExprError();
3778
3779  E = PE.get();
3780
3781  // Verify that the operand is valid.
3782  bool isInvalid = false;
3783  if (E->isTypeDependent()) {
3784    // Delay type-checking for type-dependent expressions.
3785  } else if (ExprKind == UETT_AlignOf) {
3786    isInvalid = CheckAlignOfExpr(*this, E);
3787  } else if (ExprKind == UETT_VecStep) {
3788    isInvalid = CheckVecStepExpr(E);
3789  } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) {
3790      Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr);
3791      isInvalid = true;
3792  } else if (E->refersToBitField()) {  // C99 6.5.3.4p1.
3793    Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0;
3794    isInvalid = true;
3795  } else {
3796    isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
3797  }
3798
3799  if (isInvalid)
3800    return ExprError();
3801
3802  if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
3803    PE = TransformToPotentiallyEvaluated(E);
3804    if (PE.isInvalid()) return ExprError();
3805    E = PE.get();
3806  }
3807
3808  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
3809  return new (Context) UnaryExprOrTypeTraitExpr(
3810      ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
3811}
3812
3813/// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
3814/// expr and the same for @c alignof and @c __alignof
3815/// Note that the ArgRange is invalid if isType is false.
3816ExprResult
3817Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
3818                                    UnaryExprOrTypeTrait ExprKind, bool IsType,
3819                                    void *TyOrEx, SourceRange ArgRange) {
3820  // If error parsing type, ignore.
3821  if (!TyOrEx) return ExprError();
3822
3823  if (IsType) {
3824    TypeSourceInfo *TInfo;
3825    (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
3826    return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
3827  }
3828
3829  Expr *ArgEx = (Expr *)TyOrEx;
3830  ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
3831  return Result;
3832}
3833
3834static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
3835                                     bool IsReal) {
3836  if (V.get()->isTypeDependent())
3837    return S.Context.DependentTy;
3838
3839  // _Real and _Imag are only l-values for normal l-values.
3840  if (V.get()->getObjectKind() != OK_Ordinary) {
3841    V = S.DefaultLvalueConversion(V.get());
3842    if (V.isInvalid())
3843      return QualType();
3844  }
3845
3846  // These operators return the element type of a complex type.
3847  if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
3848    return CT->getElementType();
3849
3850  // Otherwise they pass through real integer and floating point types here.
3851  if (V.get()->getType()->isArithmeticType())
3852    return V.get()->getType();
3853
3854  // Test for placeholders.
3855  ExprResult PR = S.CheckPlaceholderExpr(V.get());
3856  if (PR.isInvalid()) return QualType();
3857  if (PR.get() != V.get()) {
3858    V = PR;
3859    return CheckRealImagOperand(S, V, Loc, IsReal);
3860  }
3861
3862  // Reject anything else.
3863  S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
3864    << (IsReal ? "__real" : "__imag");
3865  return QualType();
3866}
3867
3868
3869
3870ExprResult
3871Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
3872                          tok::TokenKind Kind, Expr *Input) {
3873  UnaryOperatorKind Opc;
3874  switch (Kind) {
3875  default: llvm_unreachable("Unknown unary op!");
3876  case tok::plusplus:   Opc = UO_PostInc; break;
3877  case tok::minusminus: Opc = UO_PostDec; break;
3878  }
3879
3880  // Since this might is a postfix expression, get rid of ParenListExprs.
3881  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
3882  if (Result.isInvalid()) return ExprError();
3883  Input = Result.get();
3884
3885  return BuildUnaryOp(S, OpLoc, Opc, Input);
3886}
3887
3888/// \brief Diagnose if arithmetic on the given ObjC pointer is illegal.
3889///
3890/// \return true on error
3891static bool checkArithmeticOnObjCPointer(Sema &S,
3892                                         SourceLocation opLoc,
3893                                         Expr *op) {
3894  assert(op->getType()->isObjCObjectPointerType());
3895  if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
3896      !S.LangOpts.ObjCSubscriptingLegacyRuntime)
3897    return false;
3898
3899  S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
3900    << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
3901    << op->getSourceRange();
3902  return true;
3903}
3904
3905static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) {
3906  auto *BaseNoParens = Base->IgnoreParens();
3907  if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens))
3908    return MSProp->getPropertyDecl()->getType()->isArrayType();
3909  return isa<MSPropertySubscriptExpr>(BaseNoParens);
3910}
3911
3912ExprResult
3913Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, SourceLocation lbLoc,
3914                              Expr *idx, SourceLocation rbLoc) {
3915  if (base && !base->getType().isNull() &&
3916      base->getType()->isSpecificPlaceholderType(BuiltinType::OMPArraySection))
3917    return ActOnOMPArraySectionExpr(base, lbLoc, idx, SourceLocation(),
3918                                    /*Length=*/nullptr, rbLoc);
3919
3920  // Since this might be a postfix expression, get rid of ParenListExprs.
3921  if (isa<ParenListExpr>(base)) {
3922    ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
3923    if (result.isInvalid()) return ExprError();
3924    base = result.get();
3925  }
3926
3927  // Handle any non-overload placeholder types in the base and index
3928  // expressions.  We can't handle overloads here because the other
3929  // operand might be an overloadable type, in which case the overload
3930  // resolution for the operator overload should get the first crack
3931  // at the overload.
3932  bool IsMSPropertySubscript = false;
3933  if (base->getType()->isNonOverloadPlaceholderType()) {
3934    IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base);
3935    if (!IsMSPropertySubscript) {
3936      ExprResult result = CheckPlaceholderExpr(base);
3937      if (result.isInvalid())
3938        return ExprError();
3939      base = result.get();
3940    }
3941  }
3942  if (idx->getType()->isNonOverloadPlaceholderType()) {
3943    ExprResult result = CheckPlaceholderExpr(idx);
3944    if (result.isInvalid()) return ExprError();
3945    idx = result.get();
3946  }
3947
3948  // Build an unanalyzed expression if either operand is type-dependent.
3949  if (getLangOpts().CPlusPlus &&
3950      (base->isTypeDependent() || idx->isTypeDependent())) {
3951    return new (Context) ArraySubscriptExpr(base, idx, Context.DependentTy,
3952                                            VK_LValue, OK_Ordinary, rbLoc);
3953  }
3954
3955  // MSDN, property (C++)
3956  // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx
3957  // This attribute can also be used in the declaration of an empty array in a
3958  // class or structure definition. For example:
3959  // __declspec(property(get=GetX, put=PutX)) int x[];
3960  // The above statement indicates that x[] can be used with one or more array
3961  // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b),
3962  // and p->x[a][b] = i will be turned into p->PutX(a, b, i);
3963  if (IsMSPropertySubscript) {
3964    // Build MS property subscript expression if base is MS property reference
3965    // or MS property subscript.
3966    return new (Context) MSPropertySubscriptExpr(
3967        base, idx, Context.PseudoObjectTy, VK_LValue, OK_Ordinary, rbLoc);
3968  }
3969
3970  // Use C++ overloaded-operator rules if either operand has record
3971  // type.  The spec says to do this if either type is *overloadable*,
3972  // but enum types can't declare subscript operators or conversion
3973  // operators, so there's nothing interesting for overload resolution
3974  // to do if there aren't any record types involved.
3975  //
3976  // ObjC pointers have their own subscripting logic that is not tied
3977  // to overload resolution and so should not take this path.
3978  if (getLangOpts().CPlusPlus &&
3979      (base->getType()->isRecordType() ||
3980       (!base->getType()->isObjCObjectPointerType() &&
3981        idx->getType()->isRecordType()))) {
3982    return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, idx);
3983  }
3984
3985  return CreateBuiltinArraySubscriptExpr(base, lbLoc, idx, rbLoc);
3986}
3987
3988ExprResult Sema::ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
3989                                          Expr *LowerBound,
3990                                          SourceLocation ColonLoc, Expr *Length,
3991                                          SourceLocation RBLoc) {
3992  if (Base->getType()->isPlaceholderType() &&
3993      !Base->getType()->isSpecificPlaceholderType(
3994          BuiltinType::OMPArraySection)) {
3995    ExprResult Result = CheckPlaceholderExpr(Base);
3996    if (Result.isInvalid())
3997      return ExprError();
3998    Base = Result.get();
3999  }
4000  if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) {
4001    ExprResult Result = CheckPlaceholderExpr(LowerBound);
4002    if (Result.isInvalid())
4003      return ExprError();
4004    LowerBound = Result.get();
4005  }
4006  if (Length && Length->getType()->isNonOverloadPlaceholderType()) {
4007    ExprResult Result = CheckPlaceholderExpr(Length);
4008    if (Result.isInvalid())
4009      return ExprError();
4010    Length = Result.get();
4011  }
4012
4013  // Build an unanalyzed expression if either operand is type-dependent.
4014  if (Base->isTypeDependent() ||
4015      (LowerBound &&
4016       (LowerBound->isTypeDependent() || LowerBound->isValueDependent())) ||
4017      (Length && (Length->isTypeDependent() || Length->isValueDependent()))) {
4018    return new (Context)
4019        OMPArraySectionExpr(Base, LowerBound, Length, Context.DependentTy,
4020                            VK_LValue, OK_Ordinary, ColonLoc, RBLoc);
4021  }
4022
4023  // Perform default conversions.
4024  QualType OriginalTy = OMPArraySectionExpr::getBaseOriginalType(Base);
4025  QualType ResultTy;
4026  if (OriginalTy->isAnyPointerType()) {
4027    ResultTy = OriginalTy->getPointeeType();
4028  } else if (OriginalTy->isArrayType()) {
4029    ResultTy = OriginalTy->getAsArrayTypeUnsafe()->getElementType();
4030  } else {
4031    return ExprError(
4032        Diag(Base->getExprLoc(), diag::err_omp_typecheck_section_value)
4033        << Base->getSourceRange());
4034  }
4035  // C99 6.5.2.1p1
4036  if (LowerBound) {
4037    auto Res = PerformOpenMPImplicitIntegerConversion(LowerBound->getExprLoc(),
4038                                                      LowerBound);
4039    if (Res.isInvalid())
4040      return ExprError(Diag(LowerBound->getExprLoc(),
4041                            diag::err_omp_typecheck_section_not_integer)
4042                       << 0 << LowerBound->getSourceRange());
4043    LowerBound = Res.get();
4044
4045    if (LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
4046        LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
4047      Diag(LowerBound->getExprLoc(), diag::warn_omp_section_is_char)
4048          << 0 << LowerBound->getSourceRange();
4049  }
4050  if (Length) {
4051    auto Res =
4052        PerformOpenMPImplicitIntegerConversion(Length->getExprLoc(), Length);
4053    if (Res.isInvalid())
4054      return ExprError(Diag(Length->getExprLoc(),
4055                            diag::err_omp_typecheck_section_not_integer)
4056                       << 1 << Length->getSourceRange());
4057    Length = Res.get();
4058
4059    if (Length->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
4060        Length->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
4061      Diag(Length->getExprLoc(), diag::warn_omp_section_is_char)
4062          << 1 << Length->getSourceRange();
4063  }
4064
4065  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
4066  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
4067  // type. Note that functions are not objects, and that (in C99 parlance)
4068  // incomplete types are not object types.
4069  if (ResultTy->isFunctionType()) {
4070    Diag(Base->getExprLoc(), diag::err_omp_section_function_type)
4071        << ResultTy << Base->getSourceRange();
4072    return ExprError();
4073  }
4074
4075  if (RequireCompleteType(Base->getExprLoc(), ResultTy,
4076                          diag::err_omp_section_incomplete_type, Base))
4077    return ExprError();
4078
4079  if (LowerBound) {
4080    llvm::APSInt LowerBoundValue;
4081    if (LowerBound->EvaluateAsInt(LowerBoundValue, Context)) {
4082      // OpenMP 4.0, [2.4 Array Sections]
4083      // The lower-bound and length must evaluate to non-negative integers.
4084      if (LowerBoundValue.isNegative()) {
4085        Diag(LowerBound->getExprLoc(), diag::err_omp_section_negative)
4086            << 0 << LowerBoundValue.toString(/*Radix=*/10, /*Signed=*/true)
4087            << LowerBound->getSourceRange();
4088        return ExprError();
4089      }
4090    }
4091  }
4092
4093  if (Length) {
4094    llvm::APSInt LengthValue;
4095    if (Length->EvaluateAsInt(LengthValue, Context)) {
4096      // OpenMP 4.0, [2.4 Array Sections]
4097      // The lower-bound and length must evaluate to non-negative integers.
4098      if (LengthValue.isNegative()) {
4099        Diag(Length->getExprLoc(), diag::err_omp_section_negative)
4100            << 1 << LengthValue.toString(/*Radix=*/10, /*Signed=*/true)
4101            << Length->getSourceRange();
4102        return ExprError();
4103      }
4104    }
4105  } else if (ColonLoc.isValid() &&
4106             (OriginalTy.isNull() || (!OriginalTy->isConstantArrayType() &&
4107                                      !OriginalTy->isVariableArrayType()))) {
4108    // OpenMP 4.0, [2.4 Array Sections]
4109    // When the size of the array dimension is not known, the length must be
4110    // specified explicitly.
4111    Diag(ColonLoc, diag::err_omp_section_length_undefined)
4112        << (!OriginalTy.isNull() && OriginalTy->isArrayType());
4113    return ExprError();
4114  }
4115
4116  return new (Context)
4117      OMPArraySectionExpr(Base, LowerBound, Length, Context.OMPArraySectionTy,
4118                          VK_LValue, OK_Ordinary, ColonLoc, RBLoc);
4119}
4120
4121ExprResult
4122Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
4123                                      Expr *Idx, SourceLocation RLoc) {
4124  Expr *LHSExp = Base;
4125  Expr *RHSExp = Idx;
4126
4127  // Perform default conversions.
4128  if (!LHSExp->getType()->getAs<VectorType>()) {
4129    ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
4130    if (Result.isInvalid())
4131      return ExprError();
4132    LHSExp = Result.get();
4133  }
4134  ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
4135  if (Result.isInvalid())
4136    return ExprError();
4137  RHSExp = Result.get();
4138
4139  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
4140  ExprValueKind VK = VK_LValue;
4141  ExprObjectKind OK = OK_Ordinary;
4142
4143  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
4144  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
4145  // in the subscript position. As a result, we need to derive the array base
4146  // and index from the expression types.
4147  Expr *BaseExpr, *IndexExpr;
4148  QualType ResultType;
4149  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
4150    BaseExpr = LHSExp;
4151    IndexExpr = RHSExp;
4152    ResultType = Context.DependentTy;
4153  } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
4154    BaseExpr = LHSExp;
4155    IndexExpr = RHSExp;
4156    ResultType = PTy->getPointeeType();
4157  } else if (const ObjCObjectPointerType *PTy =
4158               LHSTy->getAs<ObjCObjectPointerType>()) {
4159    BaseExpr = LHSExp;
4160    IndexExpr = RHSExp;
4161
4162    // Use custom logic if this should be the pseudo-object subscript
4163    // expression.
4164    if (!LangOpts.isSubscriptPointerArithmetic())
4165      return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr,
4166                                          nullptr);
4167
4168    ResultType = PTy->getPointeeType();
4169  } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
4170     // Handle the uncommon case of "123[Ptr]".
4171    BaseExpr = RHSExp;
4172    IndexExpr = LHSExp;
4173    ResultType = PTy->getPointeeType();
4174  } else if (const ObjCObjectPointerType *PTy =
4175               RHSTy->getAs<ObjCObjectPointerType>()) {
4176     // Handle the uncommon case of "123[Ptr]".
4177    BaseExpr = RHSExp;
4178    IndexExpr = LHSExp;
4179    ResultType = PTy->getPointeeType();
4180    if (!LangOpts.isSubscriptPointerArithmetic()) {
4181      Diag(LLoc, diag::err_subscript_nonfragile_interface)
4182        << ResultType << BaseExpr->getSourceRange();
4183      return ExprError();
4184    }
4185  } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
4186    BaseExpr = LHSExp;    // vectors: V[123]
4187    IndexExpr = RHSExp;
4188    VK = LHSExp->getValueKind();
4189    if (VK != VK_RValue)
4190      OK = OK_VectorComponent;
4191
4192    // FIXME: need to deal with const...
4193    ResultType = VTy->getElementType();
4194  } else if (LHSTy->isArrayType()) {
4195    // If we see an array that wasn't promoted by
4196    // DefaultFunctionArrayLvalueConversion, it must be an array that
4197    // wasn't promoted because of the C90 rule that doesn't
4198    // allow promoting non-lvalue arrays.  Warn, then
4199    // force the promotion here.
4200    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
4201        LHSExp->getSourceRange();
4202    LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
4203                               CK_ArrayToPointerDecay).get();
4204    LHSTy = LHSExp->getType();
4205
4206    BaseExpr = LHSExp;
4207    IndexExpr = RHSExp;
4208    ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
4209  } else if (RHSTy->isArrayType()) {
4210    // Same as previous, except for 123[f().a] case
4211    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
4212        RHSExp->getSourceRange();
4213    RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
4214                               CK_ArrayToPointerDecay).get();
4215    RHSTy = RHSExp->getType();
4216
4217    BaseExpr = RHSExp;
4218    IndexExpr = LHSExp;
4219    ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
4220  } else {
4221    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
4222       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
4223  }
4224  // C99 6.5.2.1p1
4225  if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
4226    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
4227                     << IndexExpr->getSourceRange());
4228
4229  if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
4230       IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
4231         && !IndexExpr->isTypeDependent())
4232    Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
4233
4234  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
4235  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
4236  // type. Note that Functions are not objects, and that (in C99 parlance)
4237  // incomplete types are not object types.
4238  if (ResultType->isFunctionType()) {
4239    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
4240      << ResultType << BaseExpr->getSourceRange();
4241    return ExprError();
4242  }
4243
4244  if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
4245    // GNU extension: subscripting on pointer to void
4246    Diag(LLoc, diag::ext_gnu_subscript_void_type)
4247      << BaseExpr->getSourceRange();
4248
4249    // C forbids expressions of unqualified void type from being l-values.
4250    // See IsCForbiddenLValueType.
4251    if (!ResultType.hasQualifiers()) VK = VK_RValue;
4252  } else if (!ResultType->isDependentType() &&
4253      RequireCompleteType(LLoc, ResultType,
4254                          diag::err_subscript_incomplete_type, BaseExpr))
4255    return ExprError();
4256
4257  assert(VK == VK_RValue || LangOpts.CPlusPlus ||
4258         !ResultType.isCForbiddenLValueType());
4259
4260  return new (Context)
4261      ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
4262}
4263
4264ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
4265                                        FunctionDecl *FD,
4266                                        ParmVarDecl *Param) {
4267  if (Param->hasUnparsedDefaultArg()) {
4268    Diag(CallLoc,
4269         diag::err_use_of_default_argument_to_function_declared_later) <<
4270      FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
4271    Diag(UnparsedDefaultArgLocs[Param],
4272         diag::note_default_argument_declared_here);
4273    return ExprError();
4274  }
4275
4276  if (Param->hasUninstantiatedDefaultArg()) {
4277    Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
4278
4279    EnterExpressionEvaluationContext EvalContext(*this, PotentiallyEvaluated,
4280                                                 Param);
4281
4282    // Instantiate the expression.
4283    MultiLevelTemplateArgumentList MutiLevelArgList
4284      = getTemplateInstantiationArgs(FD, nullptr, /*RelativeToPrimary=*/true);
4285
4286    InstantiatingTemplate Inst(*this, CallLoc, Param,
4287                               MutiLevelArgList.getInnermost());
4288    if (Inst.isInvalid())
4289      return ExprError();
4290
4291    ExprResult Result;
4292    {
4293      // C++ [dcl.fct.default]p5:
4294      //   The names in the [default argument] expression are bound, and
4295      //   the semantic constraints are checked, at the point where the
4296      //   default argument expression appears.
4297      ContextRAII SavedContext(*this, FD);
4298      LocalInstantiationScope Local(*this);
4299      Result = SubstExpr(UninstExpr, MutiLevelArgList);
4300    }
4301    if (Result.isInvalid())
4302      return ExprError();
4303
4304    // Check the expression as an initializer for the parameter.
4305    InitializedEntity Entity
4306      = InitializedEntity::InitializeParameter(Context, Param);
4307    InitializationKind Kind
4308      = InitializationKind::CreateCopy(Param->getLocation(),
4309             /*FIXME:EqualLoc*/UninstExpr->getLocStart());
4310    Expr *ResultE = Result.getAs<Expr>();
4311
4312    InitializationSequence InitSeq(*this, Entity, Kind, ResultE);
4313    Result = InitSeq.Perform(*this, Entity, Kind, ResultE);
4314    if (Result.isInvalid())
4315      return ExprError();
4316
4317    Expr *Arg = Result.getAs<Expr>();
4318    CheckCompletedExpr(Arg, Param->getOuterLocStart());
4319    // Build the default argument expression.
4320    return CXXDefaultArgExpr::Create(Context, CallLoc, Param, Arg);
4321  }
4322
4323  // If the default expression creates temporaries, we need to
4324  // push them to the current stack of expression temporaries so they'll
4325  // be properly destroyed.
4326  // FIXME: We should really be rebuilding the default argument with new
4327  // bound temporaries; see the comment in PR5810.
4328  // We don't need to do that with block decls, though, because
4329  // blocks in default argument expression can never capture anything.
4330  if (isa<ExprWithCleanups>(Param->getInit())) {
4331    // Set the "needs cleanups" bit regardless of whether there are
4332    // any explicit objects.
4333    ExprNeedsCleanups = true;
4334
4335    // Append all the objects to the cleanup list.  Right now, this
4336    // should always be a no-op, because blocks in default argument
4337    // expressions should never be able to capture anything.
4338    assert(!cast<ExprWithCleanups>(Param->getInit())->getNumObjects() &&
4339           "default argument expression has capturing blocks?");
4340  }
4341
4342  // We already type-checked the argument, so we know it works.
4343  // Just mark all of the declarations in this potentially-evaluated expression
4344  // as being "referenced".
4345  MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
4346                                   /*SkipLocalVariables=*/true);
4347  return CXXDefaultArgExpr::Create(Context, CallLoc, Param);
4348}
4349
4350
4351Sema::VariadicCallType
4352Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
4353                          Expr *Fn) {
4354  if (Proto && Proto->isVariadic()) {
4355    if (dyn_cast_or_null<CXXConstructorDecl>(FDecl))
4356      return VariadicConstructor;
4357    else if (Fn && Fn->getType()->isBlockPointerType())
4358      return VariadicBlock;
4359    else if (FDecl) {
4360      if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
4361        if (Method->isInstance())
4362          return VariadicMethod;
4363    } else if (Fn && Fn->getType() == Context.BoundMemberTy)
4364      return VariadicMethod;
4365    return VariadicFunction;
4366  }
4367  return VariadicDoesNotApply;
4368}
4369
4370namespace {
4371class FunctionCallCCC : public FunctionCallFilterCCC {
4372public:
4373  FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
4374                  unsigned NumArgs, MemberExpr *ME)
4375      : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
4376        FunctionName(FuncName) {}
4377
4378  bool ValidateCandidate(const TypoCorrection &candidate) override {
4379    if (!candidate.getCorrectionSpecifier() ||
4380        candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
4381      return false;
4382    }
4383
4384    return FunctionCallFilterCCC::ValidateCandidate(candidate);
4385  }
4386
4387private:
4388  const IdentifierInfo *const FunctionName;
4389};
4390}
4391
4392static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
4393                                               FunctionDecl *FDecl,
4394                                               ArrayRef<Expr *> Args) {
4395  MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
4396  DeclarationName FuncName = FDecl->getDeclName();
4397  SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getLocStart();
4398
4399  if (TypoCorrection Corrected = S.CorrectTypo(
4400          DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
4401          S.getScopeForContext(S.CurContext), nullptr,
4402          llvm::make_unique<FunctionCallCCC>(S, FuncName.getAsIdentifierInfo(),
4403                                             Args.size(), ME),
4404          Sema::CTK_ErrorRecovery)) {
4405    if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
4406      if (Corrected.isOverloaded()) {
4407        OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
4408        OverloadCandidateSet::iterator Best;
4409        for (NamedDecl *CD : Corrected) {
4410          if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
4411            S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
4412                                   OCS);
4413        }
4414        switch (OCS.BestViableFunction(S, NameLoc, Best)) {
4415        case OR_Success:
4416          ND = Best->Function;
4417          Corrected.setCorrectionDecl(ND);
4418          break;
4419        default:
4420          break;
4421        }
4422      }
4423      if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) {
4424        return Corrected;
4425      }
4426    }
4427  }
4428  return TypoCorrection();
4429}
4430
4431/// ConvertArgumentsForCall - Converts the arguments specified in
4432/// Args/NumArgs to the parameter types of the function FDecl with
4433/// function prototype Proto. Call is the call expression itself, and
4434/// Fn is the function expression. For a C++ member function, this
4435/// routine does not attempt to convert the object argument. Returns
4436/// true if the call is ill-formed.
4437bool
4438Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
4439                              FunctionDecl *FDecl,
4440                              const FunctionProtoType *Proto,
4441                              ArrayRef<Expr *> Args,
4442                              SourceLocation RParenLoc,
4443                              bool IsExecConfig) {
4444  // Bail out early if calling a builtin with custom typechecking.
4445  if (FDecl)
4446    if (unsigned ID = FDecl->getBuiltinID())
4447      if (Context.BuiltinInfo.hasCustomTypechecking(ID))
4448        return false;
4449
4450  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
4451  // assignment, to the types of the corresponding parameter, ...
4452  unsigned NumParams = Proto->getNumParams();
4453  bool Invalid = false;
4454  unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
4455  unsigned FnKind = Fn->getType()->isBlockPointerType()
4456                       ? 1 /* block */
4457                       : (IsExecConfig ? 3 /* kernel function (exec config) */
4458                                       : 0 /* function */);
4459
4460  // If too few arguments are available (and we don't have default
4461  // arguments for the remaining parameters), don't make the call.
4462  if (Args.size() < NumParams) {
4463    if (Args.size() < MinArgs) {
4464      TypoCorrection TC;
4465      if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
4466        unsigned diag_id =
4467            MinArgs == NumParams && !Proto->isVariadic()
4468                ? diag::err_typecheck_call_too_few_args_suggest
4469                : diag::err_typecheck_call_too_few_args_at_least_suggest;
4470        diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs
4471                                        << static_cast<unsigned>(Args.size())
4472                                        << TC.getCorrectionRange());
4473      } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
4474        Diag(RParenLoc,
4475             MinArgs == NumParams && !Proto->isVariadic()
4476                 ? diag::err_typecheck_call_too_few_args_one
4477                 : diag::err_typecheck_call_too_few_args_at_least_one)
4478            << FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange();
4479      else
4480        Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
4481                            ? diag::err_typecheck_call_too_few_args
4482                            : diag::err_typecheck_call_too_few_args_at_least)
4483            << FnKind << MinArgs << static_cast<unsigned>(Args.size())
4484            << Fn->getSourceRange();
4485
4486      // Emit the location of the prototype.
4487      if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
4488        Diag(FDecl->getLocStart(), diag::note_callee_decl)
4489          << FDecl;
4490
4491      return true;
4492    }
4493    Call->setNumArgs(Context, NumParams);
4494  }
4495
4496  // If too many are passed and not variadic, error on the extras and drop
4497  // them.
4498  if (Args.size() > NumParams) {
4499    if (!Proto->isVariadic()) {
4500      TypoCorrection TC;
4501      if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
4502        unsigned diag_id =
4503            MinArgs == NumParams && !Proto->isVariadic()
4504                ? diag::err_typecheck_call_too_many_args_suggest
4505                : diag::err_typecheck_call_too_many_args_at_most_suggest;
4506        diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams
4507                                        << static_cast<unsigned>(Args.size())
4508                                        << TC.getCorrectionRange());
4509      } else if (NumParams == 1 && FDecl &&
4510                 FDecl->getParamDecl(0)->getDeclName())
4511        Diag(Args[NumParams]->getLocStart(),
4512             MinArgs == NumParams
4513                 ? diag::err_typecheck_call_too_many_args_one
4514                 : diag::err_typecheck_call_too_many_args_at_most_one)
4515            << FnKind << FDecl->getParamDecl(0)
4516            << static_cast<unsigned>(Args.size()) << Fn->getSourceRange()
4517            << SourceRange(Args[NumParams]->getLocStart(),
4518                           Args.back()->getLocEnd());
4519      else
4520        Diag(Args[NumParams]->getLocStart(),
4521             MinArgs == NumParams
4522                 ? diag::err_typecheck_call_too_many_args
4523                 : diag::err_typecheck_call_too_many_args_at_most)
4524            << FnKind << NumParams << static_cast<unsigned>(Args.size())
4525            << Fn->getSourceRange()
4526            << SourceRange(Args[NumParams]->getLocStart(),
4527                           Args.back()->getLocEnd());
4528
4529      // Emit the location of the prototype.
4530      if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
4531        Diag(FDecl->getLocStart(), diag::note_callee_decl)
4532          << FDecl;
4533
4534      // This deletes the extra arguments.
4535      Call->setNumArgs(Context, NumParams);
4536      return true;
4537    }
4538  }
4539  SmallVector<Expr *, 8> AllArgs;
4540  VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
4541
4542  Invalid = GatherArgumentsForCall(Call->getLocStart(), FDecl,
4543                                   Proto, 0, Args, AllArgs, CallType);
4544  if (Invalid)
4545    return true;
4546  unsigned TotalNumArgs = AllArgs.size();
4547  for (unsigned i = 0; i < TotalNumArgs; ++i)
4548    Call->setArg(i, AllArgs[i]);
4549
4550  return false;
4551}
4552
4553bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
4554                                  const FunctionProtoType *Proto,
4555                                  unsigned FirstParam, ArrayRef<Expr *> Args,
4556                                  SmallVectorImpl<Expr *> &AllArgs,
4557                                  VariadicCallType CallType, bool AllowExplicit,
4558                                  bool IsListInitialization) {
4559  unsigned NumParams = Proto->getNumParams();
4560  bool Invalid = false;
4561  size_t ArgIx = 0;
4562  // Continue to check argument types (even if we have too few/many args).
4563  for (unsigned i = FirstParam; i < NumParams; i++) {
4564    QualType ProtoArgType = Proto->getParamType(i);
4565
4566    Expr *Arg;
4567    ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
4568    if (ArgIx < Args.size()) {
4569      Arg = Args[ArgIx++];
4570
4571      if (RequireCompleteType(Arg->getLocStart(),
4572                              ProtoArgType,
4573                              diag::err_call_incomplete_argument, Arg))
4574        return true;
4575
4576      // Strip the unbridged-cast placeholder expression off, if applicable.
4577      bool CFAudited = false;
4578      if (Arg->getType() == Context.ARCUnbridgedCastTy &&
4579          FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
4580          (!Param || !Param->hasAttr<CFConsumedAttr>()))
4581        Arg = stripARCUnbridgedCast(Arg);
4582      else if (getLangOpts().ObjCAutoRefCount &&
4583               FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
4584               (!Param || !Param->hasAttr<CFConsumedAttr>()))
4585        CFAudited = true;
4586
4587      InitializedEntity Entity =
4588          Param ? InitializedEntity::InitializeParameter(Context, Param,
4589                                                         ProtoArgType)
4590                : InitializedEntity::InitializeParameter(
4591                      Context, ProtoArgType, Proto->isParamConsumed(i));
4592
4593      // Remember that parameter belongs to a CF audited API.
4594      if (CFAudited)
4595        Entity.setParameterCFAudited();
4596
4597      ExprResult ArgE = PerformCopyInitialization(
4598          Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
4599      if (ArgE.isInvalid())
4600        return true;
4601
4602      Arg = ArgE.getAs<Expr>();
4603    } else {
4604      assert(Param && "can't use default arguments without a known callee");
4605
4606      ExprResult ArgExpr =
4607        BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
4608      if (ArgExpr.isInvalid())
4609        return true;
4610
4611      Arg = ArgExpr.getAs<Expr>();
4612    }
4613
4614    // Check for array bounds violations for each argument to the call. This
4615    // check only triggers warnings when the argument isn't a more complex Expr
4616    // with its own checking, such as a BinaryOperator.
4617    CheckArrayAccess(Arg);
4618
4619    // Check for violations of C99 static array rules (C99 6.7.5.3p7).
4620    CheckStaticArrayArgument(CallLoc, Param, Arg);
4621
4622    AllArgs.push_back(Arg);
4623  }
4624
4625  // If this is a variadic call, handle args passed through "...".
4626  if (CallType != VariadicDoesNotApply) {
4627    // Assume that extern "C" functions with variadic arguments that
4628    // return __unknown_anytype aren't *really* variadic.
4629    if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
4630        FDecl->isExternC()) {
4631      for (Expr *A : Args.slice(ArgIx)) {
4632        QualType paramType; // ignored
4633        ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType);
4634        Invalid |= arg.isInvalid();
4635        AllArgs.push_back(arg.get());
4636      }
4637
4638    // Otherwise do argument promotion, (C99 6.5.2.2p7).
4639    } else {
4640      for (Expr *A : Args.slice(ArgIx)) {
4641        ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl);
4642        Invalid |= Arg.isInvalid();
4643        AllArgs.push_back(Arg.get());
4644      }
4645    }
4646
4647    // Check for array bounds violations.
4648    for (Expr *A : Args.slice(ArgIx))
4649      CheckArrayAccess(A);
4650  }
4651  return Invalid;
4652}
4653
4654static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
4655  TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
4656  if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
4657    TL = DTL.getOriginalLoc();
4658  if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
4659    S.Diag(PVD->getLocation(), diag::note_callee_static_array)
4660      << ATL.getLocalSourceRange();
4661}
4662
4663/// CheckStaticArrayArgument - If the given argument corresponds to a static
4664/// array parameter, check that it is non-null, and that if it is formed by
4665/// array-to-pointer decay, the underlying array is sufficiently large.
4666///
4667/// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
4668/// array type derivation, then for each call to the function, the value of the
4669/// corresponding actual argument shall provide access to the first element of
4670/// an array with at least as many elements as specified by the size expression.
4671void
4672Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
4673                               ParmVarDecl *Param,
4674                               const Expr *ArgExpr) {
4675  // Static array parameters are not supported in C++.
4676  if (!Param || getLangOpts().CPlusPlus)
4677    return;
4678
4679  QualType OrigTy = Param->getOriginalType();
4680
4681  const ArrayType *AT = Context.getAsArrayType(OrigTy);
4682  if (!AT || AT->getSizeModifier() != ArrayType::Static)
4683    return;
4684
4685  if (ArgExpr->isNullPointerConstant(Context,
4686                                     Expr::NPC_NeverValueDependent)) {
4687    Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
4688    DiagnoseCalleeStaticArrayParam(*this, Param);
4689    return;
4690  }
4691
4692  const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
4693  if (!CAT)
4694    return;
4695
4696  const ConstantArrayType *ArgCAT =
4697    Context.getAsConstantArrayType(ArgExpr->IgnoreParenImpCasts()->getType());
4698  if (!ArgCAT)
4699    return;
4700
4701  if (ArgCAT->getSize().ult(CAT->getSize())) {
4702    Diag(CallLoc, diag::warn_static_array_too_small)
4703      << ArgExpr->getSourceRange()
4704      << (unsigned) ArgCAT->getSize().getZExtValue()
4705      << (unsigned) CAT->getSize().getZExtValue();
4706    DiagnoseCalleeStaticArrayParam(*this, Param);
4707  }
4708}
4709
4710/// Given a function expression of unknown-any type, try to rebuild it
4711/// to have a function type.
4712static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
4713
4714/// Is the given type a placeholder that we need to lower out
4715/// immediately during argument processing?
4716static bool isPlaceholderToRemoveAsArg(QualType type) {
4717  // Placeholders are never sugared.
4718  const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
4719  if (!placeholder) return false;
4720
4721  switch (placeholder->getKind()) {
4722  // Ignore all the non-placeholder types.
4723#define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
4724#define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
4725#include "clang/AST/BuiltinTypes.def"
4726    return false;
4727
4728  // We cannot lower out overload sets; they might validly be resolved
4729  // by the call machinery.
4730  case BuiltinType::Overload:
4731    return false;
4732
4733  // Unbridged casts in ARC can be handled in some call positions and
4734  // should be left in place.
4735  case BuiltinType::ARCUnbridgedCast:
4736    return false;
4737
4738  // Pseudo-objects should be converted as soon as possible.
4739  case BuiltinType::PseudoObject:
4740    return true;
4741
4742  // The debugger mode could theoretically but currently does not try
4743  // to resolve unknown-typed arguments based on known parameter types.
4744  case BuiltinType::UnknownAny:
4745    return true;
4746
4747  // These are always invalid as call arguments and should be reported.
4748  case BuiltinType::BoundMember:
4749  case BuiltinType::BuiltinFn:
4750  case BuiltinType::OMPArraySection:
4751    return true;
4752
4753  }
4754  llvm_unreachable("bad builtin type kind");
4755}
4756
4757/// Check an argument list for placeholders that we won't try to
4758/// handle later.
4759static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) {
4760  // Apply this processing to all the arguments at once instead of
4761  // dying at the first failure.
4762  bool hasInvalid = false;
4763  for (size_t i = 0, e = args.size(); i != e; i++) {
4764    if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
4765      ExprResult result = S.CheckPlaceholderExpr(args[i]);
4766      if (result.isInvalid()) hasInvalid = true;
4767      else args[i] = result.get();
4768    } else if (hasInvalid) {
4769      (void)S.CorrectDelayedTyposInExpr(args[i]);
4770    }
4771  }
4772  return hasInvalid;
4773}
4774
4775/// If a builtin function has a pointer argument with no explicit address
4776/// space, than it should be able to accept a pointer to any address
4777/// space as input.  In order to do this, we need to replace the
4778/// standard builtin declaration with one that uses the same address space
4779/// as the call.
4780///
4781/// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
4782///                  it does not contain any pointer arguments without
4783///                  an address space qualifer.  Otherwise the rewritten
4784///                  FunctionDecl is returned.
4785/// TODO: Handle pointer return types.
4786static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context,
4787                                                const FunctionDecl *FDecl,
4788                                                MultiExprArg ArgExprs) {
4789
4790  QualType DeclType = FDecl->getType();
4791  const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType);
4792
4793  if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) ||
4794      !FT || FT->isVariadic() || ArgExprs.size() != FT->getNumParams())
4795    return nullptr;
4796
4797  bool NeedsNewDecl = false;
4798  unsigned i = 0;
4799  SmallVector<QualType, 8> OverloadParams;
4800
4801  for (QualType ParamType : FT->param_types()) {
4802
4803    // Convert array arguments to pointer to simplify type lookup.
4804    Expr *Arg = Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]).get();
4805    QualType ArgType = Arg->getType();
4806    if (!ParamType->isPointerType() ||
4807        ParamType.getQualifiers().hasAddressSpace() ||
4808        !ArgType->isPointerType() ||
4809        !ArgType->getPointeeType().getQualifiers().hasAddressSpace()) {
4810      OverloadParams.push_back(ParamType);
4811      continue;
4812    }
4813
4814    NeedsNewDecl = true;
4815    unsigned AS = ArgType->getPointeeType().getQualifiers().getAddressSpace();
4816
4817    QualType PointeeType = ParamType->getPointeeType();
4818    PointeeType = Context.getAddrSpaceQualType(PointeeType, AS);
4819    OverloadParams.push_back(Context.getPointerType(PointeeType));
4820  }
4821
4822  if (!NeedsNewDecl)
4823    return nullptr;
4824
4825  FunctionProtoType::ExtProtoInfo EPI;
4826  QualType OverloadTy = Context.getFunctionType(FT->getReturnType(),
4827                                                OverloadParams, EPI);
4828  DeclContext *Parent = Context.getTranslationUnitDecl();
4829  FunctionDecl *OverloadDecl = FunctionDecl::Create(Context, Parent,
4830                                                    FDecl->getLocation(),
4831                                                    FDecl->getLocation(),
4832                                                    FDecl->getIdentifier(),
4833                                                    OverloadTy,
4834                                                    /*TInfo=*/nullptr,
4835                                                    SC_Extern, false,
4836                                                    /*hasPrototype=*/true);
4837  SmallVector<ParmVarDecl*, 16> Params;
4838  FT = cast<FunctionProtoType>(OverloadTy);
4839  for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
4840    QualType ParamType = FT->getParamType(i);
4841    ParmVarDecl *Parm =
4842        ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(),
4843                                SourceLocation(), nullptr, ParamType,
4844                                /*TInfo=*/nullptr, SC_None, nullptr);
4845    Parm->setScopeInfo(0, i);
4846    Params.push_back(Parm);
4847  }
4848  OverloadDecl->setParams(Params);
4849  return OverloadDecl;
4850}
4851
4852/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
4853/// This provides the location of the left/right parens and a list of comma
4854/// locations.
4855ExprResult
4856Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
4857                    MultiExprArg ArgExprs, SourceLocation RParenLoc,
4858                    Expr *ExecConfig, bool IsExecConfig) {
4859  // Since this might be a postfix expression, get rid of ParenListExprs.
4860  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
4861  if (Result.isInvalid()) return ExprError();
4862  Fn = Result.get();
4863
4864  if (checkArgsForPlaceholders(*this, ArgExprs))
4865    return ExprError();
4866
4867  if (getLangOpts().CPlusPlus) {
4868    // If this is a pseudo-destructor expression, build the call immediately.
4869    if (isa<CXXPseudoDestructorExpr>(Fn)) {
4870      if (!ArgExprs.empty()) {
4871        // Pseudo-destructor calls should not have any arguments.
4872        Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
4873          << FixItHint::CreateRemoval(
4874                                    SourceRange(ArgExprs.front()->getLocStart(),
4875                                                ArgExprs.back()->getLocEnd()));
4876      }
4877
4878      return new (Context)
4879          CallExpr(Context, Fn, None, Context.VoidTy, VK_RValue, RParenLoc);
4880    }
4881    if (Fn->getType() == Context.PseudoObjectTy) {
4882      ExprResult result = CheckPlaceholderExpr(Fn);
4883      if (result.isInvalid()) return ExprError();
4884      Fn = result.get();
4885    }
4886
4887    // Determine whether this is a dependent call inside a C++ template,
4888    // in which case we won't do any semantic analysis now.
4889    // FIXME: Will need to cache the results of name lookup (including ADL) in
4890    // Fn.
4891    bool Dependent = false;
4892    if (Fn->isTypeDependent())
4893      Dependent = true;
4894    else if (Expr::hasAnyTypeDependentArguments(ArgExprs))
4895      Dependent = true;
4896
4897    if (Dependent) {
4898      if (ExecConfig) {
4899        return new (Context) CUDAKernelCallExpr(
4900            Context, Fn, cast<CallExpr>(ExecConfig), ArgExprs,
4901            Context.DependentTy, VK_RValue, RParenLoc);
4902      } else {
4903        return new (Context) CallExpr(
4904            Context, Fn, ArgExprs, Context.DependentTy, VK_RValue, RParenLoc);
4905      }
4906    }
4907
4908    // Determine whether this is a call to an object (C++ [over.call.object]).
4909    if (Fn->getType()->isRecordType())
4910      return BuildCallToObjectOfClassType(S, Fn, LParenLoc, ArgExprs,
4911                                          RParenLoc);
4912
4913    if (Fn->getType() == Context.UnknownAnyTy) {
4914      ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
4915      if (result.isInvalid()) return ExprError();
4916      Fn = result.get();
4917    }
4918
4919    if (Fn->getType() == Context.BoundMemberTy) {
4920      return BuildCallToMemberFunction(S, Fn, LParenLoc, ArgExprs, RParenLoc);
4921    }
4922  }
4923
4924  // Check for overloaded calls.  This can happen even in C due to extensions.
4925  if (Fn->getType() == Context.OverloadTy) {
4926    OverloadExpr::FindResult find = OverloadExpr::find(Fn);
4927
4928    // We aren't supposed to apply this logic for if there's an '&' involved.
4929    if (!find.HasFormOfMemberPointer) {
4930      OverloadExpr *ovl = find.Expression;
4931      if (isa<UnresolvedLookupExpr>(ovl)) {
4932        UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(ovl);
4933        return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, ArgExprs,
4934                                       RParenLoc, ExecConfig);
4935      } else {
4936        return BuildCallToMemberFunction(S, Fn, LParenLoc, ArgExprs,
4937                                         RParenLoc);
4938      }
4939    }
4940  }
4941
4942  // If we're directly calling a function, get the appropriate declaration.
4943  if (Fn->getType() == Context.UnknownAnyTy) {
4944    ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
4945    if (result.isInvalid()) return ExprError();
4946    Fn = result.get();
4947  }
4948
4949  Expr *NakedFn = Fn->IgnoreParens();
4950
4951  NamedDecl *NDecl = nullptr;
4952  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn))
4953    if (UnOp->getOpcode() == UO_AddrOf)
4954      NakedFn = UnOp->getSubExpr()->IgnoreParens();
4955
4956  if (isa<DeclRefExpr>(NakedFn)) {
4957    NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
4958
4959    FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl);
4960    if (FDecl && FDecl->getBuiltinID()) {
4961      // Rewrite the function decl for this builtin by replacing paramaters
4962      // with no explicit address space with the address space of the arguments
4963      // in ArgExprs.
4964      if ((FDecl = rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) {
4965        NDecl = FDecl;
4966        Fn = DeclRefExpr::Create(Context, FDecl->getQualifierLoc(),
4967                           SourceLocation(), FDecl, false,
4968                           SourceLocation(), FDecl->getType(),
4969                           Fn->getValueKind(), FDecl);
4970      }
4971    }
4972  } else if (isa<MemberExpr>(NakedFn))
4973    NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
4974
4975  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) {
4976    if (FD->hasAttr<EnableIfAttr>()) {
4977      if (const EnableIfAttr *Attr = CheckEnableIf(FD, ArgExprs, true)) {
4978        Diag(Fn->getLocStart(),
4979             isa<CXXMethodDecl>(FD) ?
4980                 diag::err_ovl_no_viable_member_function_in_call :
4981                 diag::err_ovl_no_viable_function_in_call)
4982          << FD << FD->getSourceRange();
4983        Diag(FD->getLocation(),
4984             diag::note_ovl_candidate_disabled_by_enable_if_attr)
4985            << Attr->getCond()->getSourceRange() << Attr->getMessage();
4986      }
4987    }
4988  }
4989
4990  return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
4991                               ExecConfig, IsExecConfig);
4992}
4993
4994/// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
4995///
4996/// __builtin_astype( value, dst type )
4997///
4998ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
4999                                 SourceLocation BuiltinLoc,
5000                                 SourceLocation RParenLoc) {
5001  ExprValueKind VK = VK_RValue;
5002  ExprObjectKind OK = OK_Ordinary;
5003  QualType DstTy = GetTypeFromParser(ParsedDestTy);
5004  QualType SrcTy = E->getType();
5005  if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
5006    return ExprError(Diag(BuiltinLoc,
5007                          diag::err_invalid_astype_of_different_size)
5008                     << DstTy
5009                     << SrcTy
5010                     << E->getSourceRange());
5011  return new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc, RParenLoc);
5012}
5013
5014/// ActOnConvertVectorExpr - create a new convert-vector expression from the
5015/// provided arguments.
5016///
5017/// __builtin_convertvector( value, dst type )
5018///
5019ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
5020                                        SourceLocation BuiltinLoc,
5021                                        SourceLocation RParenLoc) {
5022  TypeSourceInfo *TInfo;
5023  GetTypeFromParser(ParsedDestTy, &TInfo);
5024  return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
5025}
5026
5027/// BuildResolvedCallExpr - Build a call to a resolved expression,
5028/// i.e. an expression not of \p OverloadTy.  The expression should
5029/// unary-convert to an expression of function-pointer or
5030/// block-pointer type.
5031///
5032/// \param NDecl the declaration being called, if available
5033ExprResult
5034Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
5035                            SourceLocation LParenLoc,
5036                            ArrayRef<Expr *> Args,
5037                            SourceLocation RParenLoc,
5038                            Expr *Config, bool IsExecConfig) {
5039  FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
5040  unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
5041
5042  // Promote the function operand.
5043  // We special-case function promotion here because we only allow promoting
5044  // builtin functions to function pointers in the callee of a call.
5045  ExprResult Result;
5046  if (BuiltinID &&
5047      Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
5048    Result = ImpCastExprToType(Fn, Context.getPointerType(FDecl->getType()),
5049                               CK_BuiltinFnToFnPtr).get();
5050  } else {
5051    Result = CallExprUnaryConversions(Fn);
5052  }
5053  if (Result.isInvalid())
5054    return ExprError();
5055  Fn = Result.get();
5056
5057  // Make the call expr early, before semantic checks.  This guarantees cleanup
5058  // of arguments and function on error.
5059  CallExpr *TheCall;
5060  if (Config)
5061    TheCall = new (Context) CUDAKernelCallExpr(Context, Fn,
5062                                               cast<CallExpr>(Config), Args,
5063                                               Context.BoolTy, VK_RValue,
5064                                               RParenLoc);
5065  else
5066    TheCall = new (Context) CallExpr(Context, Fn, Args, Context.BoolTy,
5067                                     VK_RValue, RParenLoc);
5068
5069  if (!getLangOpts().CPlusPlus) {
5070    // C cannot always handle TypoExpr nodes in builtin calls and direct
5071    // function calls as their argument checking don't necessarily handle
5072    // dependent types properly, so make sure any TypoExprs have been
5073    // dealt with.
5074    ExprResult Result = CorrectDelayedTyposInExpr(TheCall);
5075    if (!Result.isUsable()) return ExprError();
5076    TheCall = dyn_cast<CallExpr>(Result.get());
5077    if (!TheCall) return Result;
5078    Args = llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs());
5079  }
5080
5081  // Bail out early if calling a builtin with custom typechecking.
5082  if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
5083    return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
5084
5085 retry:
5086  const FunctionType *FuncT;
5087  if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
5088    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
5089    // have type pointer to function".
5090    FuncT = PT->getPointeeType()->getAs<FunctionType>();
5091    if (!FuncT)
5092      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
5093                         << Fn->getType() << Fn->getSourceRange());
5094  } else if (const BlockPointerType *BPT =
5095               Fn->getType()->getAs<BlockPointerType>()) {
5096    FuncT = BPT->getPointeeType()->castAs<FunctionType>();
5097  } else {
5098    // Handle calls to expressions of unknown-any type.
5099    if (Fn->getType() == Context.UnknownAnyTy) {
5100      ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
5101      if (rewrite.isInvalid()) return ExprError();
5102      Fn = rewrite.get();
5103      TheCall->setCallee(Fn);
5104      goto retry;
5105    }
5106
5107    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
5108      << Fn->getType() << Fn->getSourceRange());
5109  }
5110
5111  if (getLangOpts().CUDA) {
5112    if (Config) {
5113      // CUDA: Kernel calls must be to global functions
5114      if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
5115        return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
5116            << FDecl->getName() << Fn->getSourceRange());
5117
5118      // CUDA: Kernel function must have 'void' return type
5119      if (!FuncT->getReturnType()->isVoidType())
5120        return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
5121            << Fn->getType() << Fn->getSourceRange());
5122    } else {
5123      // CUDA: Calls to global functions must be configured
5124      if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
5125        return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
5126            << FDecl->getName() << Fn->getSourceRange());
5127    }
5128  }
5129
5130  // Check for a valid return type
5131  if (CheckCallReturnType(FuncT->getReturnType(), Fn->getLocStart(), TheCall,
5132                          FDecl))
5133    return ExprError();
5134
5135  // We know the result type of the call, set it.
5136  TheCall->setType(FuncT->getCallResultType(Context));
5137  TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType()));
5138
5139  const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT);
5140  if (Proto) {
5141    if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
5142                                IsExecConfig))
5143      return ExprError();
5144  } else {
5145    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
5146
5147    if (FDecl) {
5148      // Check if we have too few/too many template arguments, based
5149      // on our knowledge of the function definition.
5150      const FunctionDecl *Def = nullptr;
5151      if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
5152        Proto = Def->getType()->getAs<FunctionProtoType>();
5153       if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
5154          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
5155          << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
5156      }
5157
5158      // If the function we're calling isn't a function prototype, but we have
5159      // a function prototype from a prior declaratiom, use that prototype.
5160      if (!FDecl->hasPrototype())
5161        Proto = FDecl->getType()->getAs<FunctionProtoType>();
5162    }
5163
5164    // Promote the arguments (C99 6.5.2.2p6).
5165    for (unsigned i = 0, e = Args.size(); i != e; i++) {
5166      Expr *Arg = Args[i];
5167
5168      if (Proto && i < Proto->getNumParams()) {
5169        InitializedEntity Entity = InitializedEntity::InitializeParameter(
5170            Context, Proto->getParamType(i), Proto->isParamConsumed(i));
5171        ExprResult ArgE =
5172            PerformCopyInitialization(Entity, SourceLocation(), Arg);
5173        if (ArgE.isInvalid())
5174          return true;
5175
5176        Arg = ArgE.getAs<Expr>();
5177
5178      } else {
5179        ExprResult ArgE = DefaultArgumentPromotion(Arg);
5180
5181        if (ArgE.isInvalid())
5182          return true;
5183
5184        Arg = ArgE.getAs<Expr>();
5185      }
5186
5187      if (RequireCompleteType(Arg->getLocStart(),
5188                              Arg->getType(),
5189                              diag::err_call_incomplete_argument, Arg))
5190        return ExprError();
5191
5192      TheCall->setArg(i, Arg);
5193    }
5194  }
5195
5196  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
5197    if (!Method->isStatic())
5198      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
5199        << Fn->getSourceRange());
5200
5201  // Check for sentinels
5202  if (NDecl)
5203    DiagnoseSentinelCalls(NDecl, LParenLoc, Args);
5204
5205  // Do special checking on direct calls to functions.
5206  if (FDecl) {
5207    if (CheckFunctionCall(FDecl, TheCall, Proto))
5208      return ExprError();
5209
5210    if (BuiltinID)
5211      return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
5212  } else if (NDecl) {
5213    if (CheckPointerCall(NDecl, TheCall, Proto))
5214      return ExprError();
5215  } else {
5216    if (CheckOtherCall(TheCall, Proto))
5217      return ExprError();
5218  }
5219
5220  return MaybeBindToTemporary(TheCall);
5221}
5222
5223ExprResult
5224Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
5225                           SourceLocation RParenLoc, Expr *InitExpr) {
5226  assert(Ty && "ActOnCompoundLiteral(): missing type");
5227  assert(InitExpr && "ActOnCompoundLiteral(): missing expression");
5228
5229  TypeSourceInfo *TInfo;
5230  QualType literalType = GetTypeFromParser(Ty, &TInfo);
5231  if (!TInfo)
5232    TInfo = Context.getTrivialTypeSourceInfo(literalType);
5233
5234  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
5235}
5236
5237ExprResult
5238Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
5239                               SourceLocation RParenLoc, Expr *LiteralExpr) {
5240  QualType literalType = TInfo->getType();
5241
5242  if (literalType->isArrayType()) {
5243    if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
5244          diag::err_illegal_decl_array_incomplete_type,
5245          SourceRange(LParenLoc,
5246                      LiteralExpr->getSourceRange().getEnd())))
5247      return ExprError();
5248    if (literalType->isVariableArrayType())
5249      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
5250        << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()));
5251  } else if (!literalType->isDependentType() &&
5252             RequireCompleteType(LParenLoc, literalType,
5253               diag::err_typecheck_decl_incomplete_type,
5254               SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
5255    return ExprError();
5256
5257  InitializedEntity Entity
5258    = InitializedEntity::InitializeCompoundLiteralInit(TInfo);
5259  InitializationKind Kind
5260    = InitializationKind::CreateCStyleCast(LParenLoc,
5261                                           SourceRange(LParenLoc, RParenLoc),
5262                                           /*InitList=*/true);
5263  InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
5264  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
5265                                      &literalType);
5266  if (Result.isInvalid())
5267    return ExprError();
5268  LiteralExpr = Result.get();
5269
5270  bool isFileScope = getCurFunctionOrMethodDecl() == nullptr;
5271  if (isFileScope &&
5272      !LiteralExpr->isTypeDependent() &&
5273      !LiteralExpr->isValueDependent() &&
5274      !literalType->isDependentType()) { // 6.5.2.5p3
5275    if (CheckForConstantInitializer(LiteralExpr, literalType))
5276      return ExprError();
5277  }
5278
5279  // In C, compound literals are l-values for some reason.
5280  ExprValueKind VK = getLangOpts().CPlusPlus ? VK_RValue : VK_LValue;
5281
5282  return MaybeBindToTemporary(
5283           new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
5284                                             VK, LiteralExpr, isFileScope));
5285}
5286
5287ExprResult
5288Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
5289                    SourceLocation RBraceLoc) {
5290  // Immediately handle non-overload placeholders.  Overloads can be
5291  // resolved contextually, but everything else here can't.
5292  for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
5293    if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
5294      ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
5295
5296      // Ignore failures; dropping the entire initializer list because
5297      // of one failure would be terrible for indexing/etc.
5298      if (result.isInvalid()) continue;
5299
5300      InitArgList[I] = result.get();
5301    }
5302  }
5303
5304  // Semantic analysis for initializers is done by ActOnDeclarator() and
5305  // CheckInitializer() - it requires knowledge of the object being intialized.
5306
5307  InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
5308                                               RBraceLoc);
5309  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
5310  return E;
5311}
5312
5313/// Do an explicit extend of the given block pointer if we're in ARC.
5314void Sema::maybeExtendBlockObject(ExprResult &E) {
5315  assert(E.get()->getType()->isBlockPointerType());
5316  assert(E.get()->isRValue());
5317
5318  // Only do this in an r-value context.
5319  if (!getLangOpts().ObjCAutoRefCount) return;
5320
5321  E = ImplicitCastExpr::Create(Context, E.get()->getType(),
5322                               CK_ARCExtendBlockObject, E.get(),
5323                               /*base path*/ nullptr, VK_RValue);
5324  ExprNeedsCleanups = true;
5325}
5326
5327/// Prepare a conversion of the given expression to an ObjC object
5328/// pointer type.
5329CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
5330  QualType type = E.get()->getType();
5331  if (type->isObjCObjectPointerType()) {
5332    return CK_BitCast;
5333  } else if (type->isBlockPointerType()) {
5334    maybeExtendBlockObject(E);
5335    return CK_BlockPointerToObjCPointerCast;
5336  } else {
5337    assert(type->isPointerType());
5338    return CK_CPointerToObjCPointerCast;
5339  }
5340}
5341
5342/// Prepares for a scalar cast, performing all the necessary stages
5343/// except the final cast and returning the kind required.
5344CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
5345  // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
5346  // Also, callers should have filtered out the invalid cases with
5347  // pointers.  Everything else should be possible.
5348
5349  QualType SrcTy = Src.get()->getType();
5350  if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
5351    return CK_NoOp;
5352
5353  switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
5354  case Type::STK_MemberPointer:
5355    llvm_unreachable("member pointer type in C");
5356
5357  case Type::STK_CPointer:
5358  case Type::STK_BlockPointer:
5359  case Type::STK_ObjCObjectPointer:
5360    switch (DestTy->getScalarTypeKind()) {
5361    case Type::STK_CPointer: {
5362      unsigned SrcAS = SrcTy->getPointeeType().getAddressSpace();
5363      unsigned DestAS = DestTy->getPointeeType().getAddressSpace();
5364      if (SrcAS != DestAS)
5365        return CK_AddressSpaceConversion;
5366      return CK_BitCast;
5367    }
5368    case Type::STK_BlockPointer:
5369      return (SrcKind == Type::STK_BlockPointer
5370                ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
5371    case Type::STK_ObjCObjectPointer:
5372      if (SrcKind == Type::STK_ObjCObjectPointer)
5373        return CK_BitCast;
5374      if (SrcKind == Type::STK_CPointer)
5375        return CK_CPointerToObjCPointerCast;
5376      maybeExtendBlockObject(Src);
5377      return CK_BlockPointerToObjCPointerCast;
5378    case Type::STK_Bool:
5379      return CK_PointerToBoolean;
5380    case Type::STK_Integral:
5381      return CK_PointerToIntegral;
5382    case Type::STK_Floating:
5383    case Type::STK_FloatingComplex:
5384    case Type::STK_IntegralComplex:
5385    case Type::STK_MemberPointer:
5386      llvm_unreachable("illegal cast from pointer");
5387    }
5388    llvm_unreachable("Should have returned before this");
5389
5390  case Type::STK_Bool: // casting from bool is like casting from an integer
5391  case Type::STK_Integral:
5392    switch (DestTy->getScalarTypeKind()) {
5393    case Type::STK_CPointer:
5394    case Type::STK_ObjCObjectPointer:
5395    case Type::STK_BlockPointer:
5396      if (Src.get()->isNullPointerConstant(Context,
5397                                           Expr::NPC_ValueDependentIsNull))
5398        return CK_NullToPointer;
5399      return CK_IntegralToPointer;
5400    case Type::STK_Bool:
5401      return CK_IntegralToBoolean;
5402    case Type::STK_Integral:
5403      return CK_IntegralCast;
5404    case Type::STK_Floating:
5405      return CK_IntegralToFloating;
5406    case Type::STK_IntegralComplex:
5407      Src = ImpCastExprToType(Src.get(),
5408                      DestTy->castAs<ComplexType>()->getElementType(),
5409                      CK_IntegralCast);
5410      return CK_IntegralRealToComplex;
5411    case Type::STK_FloatingComplex:
5412      Src = ImpCastExprToType(Src.get(),
5413                      DestTy->castAs<ComplexType>()->getElementType(),
5414                      CK_IntegralToFloating);
5415      return CK_FloatingRealToComplex;
5416    case Type::STK_MemberPointer:
5417      llvm_unreachable("member pointer type in C");
5418    }
5419    llvm_unreachable("Should have returned before this");
5420
5421  case Type::STK_Floating:
5422    switch (DestTy->getScalarTypeKind()) {
5423    case Type::STK_Floating:
5424      return CK_FloatingCast;
5425    case Type::STK_Bool:
5426      return CK_FloatingToBoolean;
5427    case Type::STK_Integral:
5428      return CK_FloatingToIntegral;
5429    case Type::STK_FloatingComplex:
5430      Src = ImpCastExprToType(Src.get(),
5431                              DestTy->castAs<ComplexType>()->getElementType(),
5432                              CK_FloatingCast);
5433      return CK_FloatingRealToComplex;
5434    case Type::STK_IntegralComplex:
5435      Src = ImpCastExprToType(Src.get(),
5436                              DestTy->castAs<ComplexType>()->getElementType(),
5437                              CK_FloatingToIntegral);
5438      return CK_IntegralRealToComplex;
5439    case Type::STK_CPointer:
5440    case Type::STK_ObjCObjectPointer:
5441    case Type::STK_BlockPointer:
5442      llvm_unreachable("valid float->pointer cast?");
5443    case Type::STK_MemberPointer:
5444      llvm_unreachable("member pointer type in C");
5445    }
5446    llvm_unreachable("Should have returned before this");
5447
5448  case Type::STK_FloatingComplex:
5449    switch (DestTy->getScalarTypeKind()) {
5450    case Type::STK_FloatingComplex:
5451      return CK_FloatingComplexCast;
5452    case Type::STK_IntegralComplex:
5453      return CK_FloatingComplexToIntegralComplex;
5454    case Type::STK_Floating: {
5455      QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
5456      if (Context.hasSameType(ET, DestTy))
5457        return CK_FloatingComplexToReal;
5458      Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal);
5459      return CK_FloatingCast;
5460    }
5461    case Type::STK_Bool:
5462      return CK_FloatingComplexToBoolean;
5463    case Type::STK_Integral:
5464      Src = ImpCastExprToType(Src.get(),
5465                              SrcTy->castAs<ComplexType>()->getElementType(),
5466                              CK_FloatingComplexToReal);
5467      return CK_FloatingToIntegral;
5468    case Type::STK_CPointer:
5469    case Type::STK_ObjCObjectPointer:
5470    case Type::STK_BlockPointer:
5471      llvm_unreachable("valid complex float->pointer cast?");
5472    case Type::STK_MemberPointer:
5473      llvm_unreachable("member pointer type in C");
5474    }
5475    llvm_unreachable("Should have returned before this");
5476
5477  case Type::STK_IntegralComplex:
5478    switch (DestTy->getScalarTypeKind()) {
5479    case Type::STK_FloatingComplex:
5480      return CK_IntegralComplexToFloatingComplex;
5481    case Type::STK_IntegralComplex:
5482      return CK_IntegralComplexCast;
5483    case Type::STK_Integral: {
5484      QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
5485      if (Context.hasSameType(ET, DestTy))
5486        return CK_IntegralComplexToReal;
5487      Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal);
5488      return CK_IntegralCast;
5489    }
5490    case Type::STK_Bool:
5491      return CK_IntegralComplexToBoolean;
5492    case Type::STK_Floating:
5493      Src = ImpCastExprToType(Src.get(),
5494                              SrcTy->castAs<ComplexType>()->getElementType(),
5495                              CK_IntegralComplexToReal);
5496      return CK_IntegralToFloating;
5497    case Type::STK_CPointer:
5498    case Type::STK_ObjCObjectPointer:
5499    case Type::STK_BlockPointer:
5500      llvm_unreachable("valid complex int->pointer cast?");
5501    case Type::STK_MemberPointer:
5502      llvm_unreachable("member pointer type in C");
5503    }
5504    llvm_unreachable("Should have returned before this");
5505  }
5506
5507  llvm_unreachable("Unhandled scalar cast");
5508}
5509
5510static bool breakDownVectorType(QualType type, uint64_t &len,
5511                                QualType &eltType) {
5512  // Vectors are simple.
5513  if (const VectorType *vecType = type->getAs<VectorType>()) {
5514    len = vecType->getNumElements();
5515    eltType = vecType->getElementType();
5516    assert(eltType->isScalarType());
5517    return true;
5518  }
5519
5520  // We allow lax conversion to and from non-vector types, but only if
5521  // they're real types (i.e. non-complex, non-pointer scalar types).
5522  if (!type->isRealType()) return false;
5523
5524  len = 1;
5525  eltType = type;
5526  return true;
5527}
5528
5529/// Are the two types lax-compatible vector types?  That is, given
5530/// that one of them is a vector, do they have equal storage sizes,
5531/// where the storage size is the number of elements times the element
5532/// size?
5533///
5534/// This will also return false if either of the types is neither a
5535/// vector nor a real type.
5536bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) {
5537  assert(destTy->isVectorType() || srcTy->isVectorType());
5538
5539  // Disallow lax conversions between scalars and ExtVectors (these
5540  // conversions are allowed for other vector types because common headers
5541  // depend on them).  Most scalar OP ExtVector cases are handled by the
5542  // splat path anyway, which does what we want (convert, not bitcast).
5543  // What this rules out for ExtVectors is crazy things like char4*float.
5544  if (srcTy->isScalarType() && destTy->isExtVectorType()) return false;
5545  if (destTy->isScalarType() && srcTy->isExtVectorType()) return false;
5546
5547  uint64_t srcLen, destLen;
5548  QualType srcEltTy, destEltTy;
5549  if (!breakDownVectorType(srcTy, srcLen, srcEltTy)) return false;
5550  if (!breakDownVectorType(destTy, destLen, destEltTy)) return false;
5551
5552  // ASTContext::getTypeSize will return the size rounded up to a
5553  // power of 2, so instead of using that, we need to use the raw
5554  // element size multiplied by the element count.
5555  uint64_t srcEltSize = Context.getTypeSize(srcEltTy);
5556  uint64_t destEltSize = Context.getTypeSize(destEltTy);
5557
5558  return (srcLen * srcEltSize == destLen * destEltSize);
5559}
5560
5561/// Is this a legal conversion between two types, one of which is
5562/// known to be a vector type?
5563bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
5564  assert(destTy->isVectorType() || srcTy->isVectorType());
5565
5566  if (!Context.getLangOpts().LaxVectorConversions)
5567    return false;
5568  return areLaxCompatibleVectorTypes(srcTy, destTy);
5569}
5570
5571bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
5572                           CastKind &Kind) {
5573  assert(VectorTy->isVectorType() && "Not a vector type!");
5574
5575  if (Ty->isVectorType() || Ty->isIntegralType(Context)) {
5576    if (!areLaxCompatibleVectorTypes(Ty, VectorTy))
5577      return Diag(R.getBegin(),
5578                  Ty->isVectorType() ?
5579                  diag::err_invalid_conversion_between_vectors :
5580                  diag::err_invalid_conversion_between_vector_and_integer)
5581        << VectorTy << Ty << R;
5582  } else
5583    return Diag(R.getBegin(),
5584                diag::err_invalid_conversion_between_vector_and_scalar)
5585      << VectorTy << Ty << R;
5586
5587  Kind = CK_BitCast;
5588  return false;
5589}
5590
5591ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
5592                                    Expr *CastExpr, CastKind &Kind) {
5593  assert(DestTy->isExtVectorType() && "Not an extended vector type!");
5594
5595  QualType SrcTy = CastExpr->getType();
5596
5597  // If SrcTy is a VectorType, the total size must match to explicitly cast to
5598  // an ExtVectorType.
5599  // In OpenCL, casts between vectors of different types are not allowed.
5600  // (See OpenCL 6.2).
5601  if (SrcTy->isVectorType()) {
5602    if (!areLaxCompatibleVectorTypes(SrcTy, DestTy)
5603        || (getLangOpts().OpenCL &&
5604            (DestTy.getCanonicalType() != SrcTy.getCanonicalType()))) {
5605      Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
5606        << DestTy << SrcTy << R;
5607      return ExprError();
5608    }
5609    Kind = CK_BitCast;
5610    return CastExpr;
5611  }
5612
5613  // All non-pointer scalars can be cast to ExtVector type.  The appropriate
5614  // conversion will take place first from scalar to elt type, and then
5615  // splat from elt type to vector.
5616  if (SrcTy->isPointerType())
5617    return Diag(R.getBegin(),
5618                diag::err_invalid_conversion_between_vector_and_scalar)
5619      << DestTy << SrcTy << R;
5620
5621  QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
5622  ExprResult CastExprRes = CastExpr;
5623  CastKind CK = PrepareScalarCast(CastExprRes, DestElemTy);
5624  if (CastExprRes.isInvalid())
5625    return ExprError();
5626  CastExpr = ImpCastExprToType(CastExprRes.get(), DestElemTy, CK).get();
5627
5628  Kind = CK_VectorSplat;
5629  return CastExpr;
5630}
5631
5632ExprResult
5633Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
5634                    Declarator &D, ParsedType &Ty,
5635                    SourceLocation RParenLoc, Expr *CastExpr) {
5636  assert(!D.isInvalidType() && (CastExpr != nullptr) &&
5637         "ActOnCastExpr(): missing type or expr");
5638
5639  TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
5640  if (D.isInvalidType())
5641    return ExprError();
5642
5643  if (getLangOpts().CPlusPlus) {
5644    // Check that there are no default arguments (C++ only).
5645    CheckExtraCXXDefaultArguments(D);
5646  } else {
5647    // Make sure any TypoExprs have been dealt with.
5648    ExprResult Res = CorrectDelayedTyposInExpr(CastExpr);
5649    if (!Res.isUsable())
5650      return ExprError();
5651    CastExpr = Res.get();
5652  }
5653
5654  checkUnusedDeclAttributes(D);
5655
5656  QualType castType = castTInfo->getType();
5657  Ty = CreateParsedType(castType, castTInfo);
5658
5659  bool isVectorLiteral = false;
5660
5661  // Check for an altivec or OpenCL literal,
5662  // i.e. all the elements are integer constants.
5663  ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
5664  ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
5665  if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL)
5666       && castType->isVectorType() && (PE || PLE)) {
5667    if (PLE && PLE->getNumExprs() == 0) {
5668      Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
5669      return ExprError();
5670    }
5671    if (PE || PLE->getNumExprs() == 1) {
5672      Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
5673      if (!E->getType()->isVectorType())
5674        isVectorLiteral = true;
5675    }
5676    else
5677      isVectorLiteral = true;
5678  }
5679
5680  // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
5681  // then handle it as such.
5682  if (isVectorLiteral)
5683    return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
5684
5685  // If the Expr being casted is a ParenListExpr, handle it specially.
5686  // This is not an AltiVec-style cast, so turn the ParenListExpr into a
5687  // sequence of BinOp comma operators.
5688  if (isa<ParenListExpr>(CastExpr)) {
5689    ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
5690    if (Result.isInvalid()) return ExprError();
5691    CastExpr = Result.get();
5692  }
5693
5694  if (getLangOpts().CPlusPlus && !castType->isVoidType() &&
5695      !getSourceManager().isInSystemMacro(LParenLoc))
5696    Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange();
5697
5698  CheckTollFreeBridgeCast(castType, CastExpr);
5699
5700  CheckObjCBridgeRelatedCast(castType, CastExpr);
5701
5702  return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
5703}
5704
5705ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
5706                                    SourceLocation RParenLoc, Expr *E,
5707                                    TypeSourceInfo *TInfo) {
5708  assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
5709         "Expected paren or paren list expression");
5710
5711  Expr **exprs;
5712  unsigned numExprs;
5713  Expr *subExpr;
5714  SourceLocation LiteralLParenLoc, LiteralRParenLoc;
5715  if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
5716    LiteralLParenLoc = PE->getLParenLoc();
5717    LiteralRParenLoc = PE->getRParenLoc();
5718    exprs = PE->getExprs();
5719    numExprs = PE->getNumExprs();
5720  } else { // isa<ParenExpr> by assertion at function entrance
5721    LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
5722    LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
5723    subExpr = cast<ParenExpr>(E)->getSubExpr();
5724    exprs = &subExpr;
5725    numExprs = 1;
5726  }
5727
5728  QualType Ty = TInfo->getType();
5729  assert(Ty->isVectorType() && "Expected vector type");
5730
5731  SmallVector<Expr *, 8> initExprs;
5732  const VectorType *VTy = Ty->getAs<VectorType>();
5733  unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
5734
5735  // '(...)' form of vector initialization in AltiVec: the number of
5736  // initializers must be one or must match the size of the vector.
5737  // If a single value is specified in the initializer then it will be
5738  // replicated to all the components of the vector
5739  if (VTy->getVectorKind() == VectorType::AltiVecVector) {
5740    // The number of initializers must be one or must match the size of the
5741    // vector. If a single value is specified in the initializer then it will
5742    // be replicated to all the components of the vector
5743    if (numExprs == 1) {
5744      QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
5745      ExprResult Literal = DefaultLvalueConversion(exprs[0]);
5746      if (Literal.isInvalid())
5747        return ExprError();
5748      Literal = ImpCastExprToType(Literal.get(), ElemTy,
5749                                  PrepareScalarCast(Literal, ElemTy));
5750      return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
5751    }
5752    else if (numExprs < numElems) {
5753      Diag(E->getExprLoc(),
5754           diag::err_incorrect_number_of_vector_initializers);
5755      return ExprError();
5756    }
5757    else
5758      initExprs.append(exprs, exprs + numExprs);
5759  }
5760  else {
5761    // For OpenCL, when the number of initializers is a single value,
5762    // it will be replicated to all components of the vector.
5763    if (getLangOpts().OpenCL &&
5764        VTy->getVectorKind() == VectorType::GenericVector &&
5765        numExprs == 1) {
5766        QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
5767        ExprResult Literal = DefaultLvalueConversion(exprs[0]);
5768        if (Literal.isInvalid())
5769          return ExprError();
5770        Literal = ImpCastExprToType(Literal.get(), ElemTy,
5771                                    PrepareScalarCast(Literal, ElemTy));
5772        return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
5773    }
5774
5775    initExprs.append(exprs, exprs + numExprs);
5776  }
5777  // FIXME: This means that pretty-printing the final AST will produce curly
5778  // braces instead of the original commas.
5779  InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
5780                                                   initExprs, LiteralRParenLoc);
5781  initE->setType(Ty);
5782  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
5783}
5784
5785/// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
5786/// the ParenListExpr into a sequence of comma binary operators.
5787ExprResult
5788Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
5789  ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
5790  if (!E)
5791    return OrigExpr;
5792
5793  ExprResult Result(E->getExpr(0));
5794
5795  for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
5796    Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
5797                        E->getExpr(i));
5798
5799  if (Result.isInvalid()) return ExprError();
5800
5801  return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
5802}
5803
5804ExprResult Sema::ActOnParenListExpr(SourceLocation L,
5805                                    SourceLocation R,
5806                                    MultiExprArg Val) {
5807  Expr *expr = new (Context) ParenListExpr(Context, L, Val, R);
5808  return expr;
5809}
5810
5811/// \brief Emit a specialized diagnostic when one expression is a null pointer
5812/// constant and the other is not a pointer.  Returns true if a diagnostic is
5813/// emitted.
5814bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
5815                                      SourceLocation QuestionLoc) {
5816  Expr *NullExpr = LHSExpr;
5817  Expr *NonPointerExpr = RHSExpr;
5818  Expr::NullPointerConstantKind NullKind =
5819      NullExpr->isNullPointerConstant(Context,
5820                                      Expr::NPC_ValueDependentIsNotNull);
5821
5822  if (NullKind == Expr::NPCK_NotNull) {
5823    NullExpr = RHSExpr;
5824    NonPointerExpr = LHSExpr;
5825    NullKind =
5826        NullExpr->isNullPointerConstant(Context,
5827                                        Expr::NPC_ValueDependentIsNotNull);
5828  }
5829
5830  if (NullKind == Expr::NPCK_NotNull)
5831    return false;
5832
5833  if (NullKind == Expr::NPCK_ZeroExpression)
5834    return false;
5835
5836  if (NullKind == Expr::NPCK_ZeroLiteral) {
5837    // In this case, check to make sure that we got here from a "NULL"
5838    // string in the source code.
5839    NullExpr = NullExpr->IgnoreParenImpCasts();
5840    SourceLocation loc = NullExpr->getExprLoc();
5841    if (!findMacroSpelling(loc, "NULL"))
5842      return false;
5843  }
5844
5845  int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
5846  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
5847      << NonPointerExpr->getType() << DiagType
5848      << NonPointerExpr->getSourceRange();
5849  return true;
5850}
5851
5852/// \brief Return false if the condition expression is valid, true otherwise.
5853static bool checkCondition(Sema &S, Expr *Cond, SourceLocation QuestionLoc) {
5854  QualType CondTy = Cond->getType();
5855
5856  // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type.
5857  if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) {
5858    S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
5859      << CondTy << Cond->getSourceRange();
5860    return true;
5861  }
5862
5863  // C99 6.5.15p2
5864  if (CondTy->isScalarType()) return false;
5865
5866  S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar)
5867    << CondTy << Cond->getSourceRange();
5868  return true;
5869}
5870
5871/// \brief Handle when one or both operands are void type.
5872static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
5873                                         ExprResult &RHS) {
5874    Expr *LHSExpr = LHS.get();
5875    Expr *RHSExpr = RHS.get();
5876
5877    if (!LHSExpr->getType()->isVoidType())
5878      S.Diag(RHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
5879        << RHSExpr->getSourceRange();
5880    if (!RHSExpr->getType()->isVoidType())
5881      S.Diag(LHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
5882        << LHSExpr->getSourceRange();
5883    LHS = S.ImpCastExprToType(LHS.get(), S.Context.VoidTy, CK_ToVoid);
5884    RHS = S.ImpCastExprToType(RHS.get(), S.Context.VoidTy, CK_ToVoid);
5885    return S.Context.VoidTy;
5886}
5887
5888/// \brief Return false if the NullExpr can be promoted to PointerTy,
5889/// true otherwise.
5890static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
5891                                        QualType PointerTy) {
5892  if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
5893      !NullExpr.get()->isNullPointerConstant(S.Context,
5894                                            Expr::NPC_ValueDependentIsNull))
5895    return true;
5896
5897  NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer);
5898  return false;
5899}
5900
5901/// \brief Checks compatibility between two pointers and return the resulting
5902/// type.
5903static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
5904                                                     ExprResult &RHS,
5905                                                     SourceLocation Loc) {
5906  QualType LHSTy = LHS.get()->getType();
5907  QualType RHSTy = RHS.get()->getType();
5908
5909  if (S.Context.hasSameType(LHSTy, RHSTy)) {
5910    // Two identical pointers types are always compatible.
5911    return LHSTy;
5912  }
5913
5914  QualType lhptee, rhptee;
5915
5916  // Get the pointee types.
5917  bool IsBlockPointer = false;
5918  if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
5919    lhptee = LHSBTy->getPointeeType();
5920    rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
5921    IsBlockPointer = true;
5922  } else {
5923    lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
5924    rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
5925  }
5926
5927  // C99 6.5.15p6: If both operands are pointers to compatible types or to
5928  // differently qualified versions of compatible types, the result type is
5929  // a pointer to an appropriately qualified version of the composite
5930  // type.
5931
5932  // Only CVR-qualifiers exist in the standard, and the differently-qualified
5933  // clause doesn't make sense for our extensions. E.g. address space 2 should
5934  // be incompatible with address space 3: they may live on different devices or
5935  // anything.
5936  Qualifiers lhQual = lhptee.getQualifiers();
5937  Qualifiers rhQual = rhptee.getQualifiers();
5938
5939  unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
5940  lhQual.removeCVRQualifiers();
5941  rhQual.removeCVRQualifiers();
5942
5943  lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
5944  rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
5945
5946  QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
5947
5948  if (CompositeTy.isNull()) {
5949    S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers)
5950      << LHSTy << RHSTy << LHS.get()->getSourceRange()
5951      << RHS.get()->getSourceRange();
5952    // In this situation, we assume void* type. No especially good
5953    // reason, but this is what gcc does, and we do have to pick
5954    // to get a consistent AST.
5955    QualType incompatTy = S.Context.getPointerType(S.Context.VoidTy);
5956    LHS = S.ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
5957    RHS = S.ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
5958    return incompatTy;
5959  }
5960
5961  // The pointer types are compatible.
5962  QualType ResultTy = CompositeTy.withCVRQualifiers(MergedCVRQual);
5963  if (IsBlockPointer)
5964    ResultTy = S.Context.getBlockPointerType(ResultTy);
5965  else
5966    ResultTy = S.Context.getPointerType(ResultTy);
5967
5968  LHS = S.ImpCastExprToType(LHS.get(), ResultTy, CK_BitCast);
5969  RHS = S.ImpCastExprToType(RHS.get(), ResultTy, CK_BitCast);
5970  return ResultTy;
5971}
5972
5973/// \brief Return the resulting type when the operands are both block pointers.
5974static QualType checkConditionalBlockPointerCompatibility(Sema &S,
5975                                                          ExprResult &LHS,
5976                                                          ExprResult &RHS,
5977                                                          SourceLocation Loc) {
5978  QualType LHSTy = LHS.get()->getType();
5979  QualType RHSTy = RHS.get()->getType();
5980
5981  if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
5982    if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
5983      QualType destType = S.Context.getPointerType(S.Context.VoidTy);
5984      LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
5985      RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
5986      return destType;
5987    }
5988    S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
5989      << LHSTy << RHSTy << LHS.get()->getSourceRange()
5990      << RHS.get()->getSourceRange();
5991    return QualType();
5992  }
5993
5994  // We have 2 block pointer types.
5995  return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
5996}
5997
5998/// \brief Return the resulting type when the operands are both pointers.
5999static QualType
6000checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
6001                                            ExprResult &RHS,
6002                                            SourceLocation Loc) {
6003  // get the pointer types
6004  QualType LHSTy = LHS.get()->getType();
6005  QualType RHSTy = RHS.get()->getType();
6006
6007  // get the "pointed to" types
6008  QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
6009  QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
6010
6011  // ignore qualifiers on void (C99 6.5.15p3, clause 6)
6012  if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
6013    // Figure out necessary qualifiers (C99 6.5.15p6)
6014    QualType destPointee
6015      = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
6016    QualType destType = S.Context.getPointerType(destPointee);
6017    // Add qualifiers if necessary.
6018    LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp);
6019    // Promote to void*.
6020    RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
6021    return destType;
6022  }
6023  if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
6024    QualType destPointee
6025      = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
6026    QualType destType = S.Context.getPointerType(destPointee);
6027    // Add qualifiers if necessary.
6028    RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp);
6029    // Promote to void*.
6030    LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
6031    return destType;
6032  }
6033
6034  return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
6035}
6036
6037/// \brief Return false if the first expression is not an integer and the second
6038/// expression is not a pointer, true otherwise.
6039static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
6040                                        Expr* PointerExpr, SourceLocation Loc,
6041                                        bool IsIntFirstExpr) {
6042  if (!PointerExpr->getType()->isPointerType() ||
6043      !Int.get()->getType()->isIntegerType())
6044    return false;
6045
6046  Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
6047  Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
6048
6049  S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch)
6050    << Expr1->getType() << Expr2->getType()
6051    << Expr1->getSourceRange() << Expr2->getSourceRange();
6052  Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(),
6053                            CK_IntegralToPointer);
6054  return true;
6055}
6056
6057/// \brief Simple conversion between integer and floating point types.
6058///
6059/// Used when handling the OpenCL conditional operator where the
6060/// condition is a vector while the other operands are scalar.
6061///
6062/// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar
6063/// types are either integer or floating type. Between the two
6064/// operands, the type with the higher rank is defined as the "result
6065/// type". The other operand needs to be promoted to the same type. No
6066/// other type promotion is allowed. We cannot use
6067/// UsualArithmeticConversions() for this purpose, since it always
6068/// promotes promotable types.
6069static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS,
6070                                            ExprResult &RHS,
6071                                            SourceLocation QuestionLoc) {
6072  LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get());
6073  if (LHS.isInvalid())
6074    return QualType();
6075  RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
6076  if (RHS.isInvalid())
6077    return QualType();
6078
6079  // For conversion purposes, we ignore any qualifiers.
6080  // For example, "const float" and "float" are equivalent.
6081  QualType LHSType =
6082    S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
6083  QualType RHSType =
6084    S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
6085
6086  if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) {
6087    S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
6088      << LHSType << LHS.get()->getSourceRange();
6089    return QualType();
6090  }
6091
6092  if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) {
6093    S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
6094      << RHSType << RHS.get()->getSourceRange();
6095    return QualType();
6096  }
6097
6098  // If both types are identical, no conversion is needed.
6099  if (LHSType == RHSType)
6100    return LHSType;
6101
6102  // Now handle "real" floating types (i.e. float, double, long double).
6103  if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
6104    return handleFloatConversion(S, LHS, RHS, LHSType, RHSType,
6105                                 /*IsCompAssign = */ false);
6106
6107  // Finally, we have two differing integer types.
6108  return handleIntegerConversion<doIntegralCast, doIntegralCast>
6109  (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false);
6110}
6111
6112/// \brief Convert scalar operands to a vector that matches the
6113///        condition in length.
6114///
6115/// Used when handling the OpenCL conditional operator where the
6116/// condition is a vector while the other operands are scalar.
6117///
6118/// We first compute the "result type" for the scalar operands
6119/// according to OpenCL v1.1 s6.3.i. Both operands are then converted
6120/// into a vector of that type where the length matches the condition
6121/// vector type. s6.11.6 requires that the element types of the result
6122/// and the condition must have the same number of bits.
6123static QualType
6124OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS,
6125                              QualType CondTy, SourceLocation QuestionLoc) {
6126  QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc);
6127  if (ResTy.isNull()) return QualType();
6128
6129  const VectorType *CV = CondTy->getAs<VectorType>();
6130  assert(CV);
6131
6132  // Determine the vector result type
6133  unsigned NumElements = CV->getNumElements();
6134  QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements);
6135
6136  // Ensure that all types have the same number of bits
6137  if (S.Context.getTypeSize(CV->getElementType())
6138      != S.Context.getTypeSize(ResTy)) {
6139    // Since VectorTy is created internally, it does not pretty print
6140    // with an OpenCL name. Instead, we just print a description.
6141    std::string EleTyName = ResTy.getUnqualifiedType().getAsString();
6142    SmallString<64> Str;
6143    llvm::raw_svector_ostream OS(Str);
6144    OS << "(vector of " << NumElements << " '" << EleTyName << "' values)";
6145    S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
6146      << CondTy << OS.str();
6147    return QualType();
6148  }
6149
6150  // Convert operands to the vector result type
6151  LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat);
6152  RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat);
6153
6154  return VectorTy;
6155}
6156
6157/// \brief Return false if this is a valid OpenCL condition vector
6158static bool checkOpenCLConditionVector(Sema &S, Expr *Cond,
6159                                       SourceLocation QuestionLoc) {
6160  // OpenCL v1.1 s6.11.6 says the elements of the vector must be of
6161  // integral type.
6162  const VectorType *CondTy = Cond->getType()->getAs<VectorType>();
6163  assert(CondTy);
6164  QualType EleTy = CondTy->getElementType();
6165  if (EleTy->isIntegerType()) return false;
6166
6167  S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
6168    << Cond->getType() << Cond->getSourceRange();
6169  return true;
6170}
6171
6172/// \brief Return false if the vector condition type and the vector
6173///        result type are compatible.
6174///
6175/// OpenCL v1.1 s6.11.6 requires that both vector types have the same
6176/// number of elements, and their element types have the same number
6177/// of bits.
6178static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy,
6179                              SourceLocation QuestionLoc) {
6180  const VectorType *CV = CondTy->getAs<VectorType>();
6181  const VectorType *RV = VecResTy->getAs<VectorType>();
6182  assert(CV && RV);
6183
6184  if (CV->getNumElements() != RV->getNumElements()) {
6185    S.Diag(QuestionLoc, diag::err_conditional_vector_size)
6186      << CondTy << VecResTy;
6187    return true;
6188  }
6189
6190  QualType CVE = CV->getElementType();
6191  QualType RVE = RV->getElementType();
6192
6193  if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) {
6194    S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
6195      << CondTy << VecResTy;
6196    return true;
6197  }
6198
6199  return false;
6200}
6201
6202/// \brief Return the resulting type for the conditional operator in
6203///        OpenCL (aka "ternary selection operator", OpenCL v1.1
6204///        s6.3.i) when the condition is a vector type.
6205static QualType
6206OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond,
6207                             ExprResult &LHS, ExprResult &RHS,
6208                             SourceLocation QuestionLoc) {
6209  Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get());
6210  if (Cond.isInvalid())
6211    return QualType();
6212  QualType CondTy = Cond.get()->getType();
6213
6214  if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc))
6215    return QualType();
6216
6217  // If either operand is a vector then find the vector type of the
6218  // result as specified in OpenCL v1.1 s6.3.i.
6219  if (LHS.get()->getType()->isVectorType() ||
6220      RHS.get()->getType()->isVectorType()) {
6221    QualType VecResTy = S.CheckVectorOperands(LHS, RHS, QuestionLoc,
6222                                              /*isCompAssign*/false,
6223                                              /*AllowBothBool*/true,
6224                                              /*AllowBoolConversions*/false);
6225    if (VecResTy.isNull()) return QualType();
6226    // The result type must match the condition type as specified in
6227    // OpenCL v1.1 s6.11.6.
6228    if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc))
6229      return QualType();
6230    return VecResTy;
6231  }
6232
6233  // Both operands are scalar.
6234  return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc);
6235}
6236
6237/// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
6238/// In that case, LHS = cond.
6239/// C99 6.5.15
6240QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
6241                                        ExprResult &RHS, ExprValueKind &VK,
6242                                        ExprObjectKind &OK,
6243                                        SourceLocation QuestionLoc) {
6244
6245  ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
6246  if (!LHSResult.isUsable()) return QualType();
6247  LHS = LHSResult;
6248
6249  ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
6250  if (!RHSResult.isUsable()) return QualType();
6251  RHS = RHSResult;
6252
6253  // C++ is sufficiently different to merit its own checker.
6254  if (getLangOpts().CPlusPlus)
6255    return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
6256
6257  VK = VK_RValue;
6258  OK = OK_Ordinary;
6259
6260  // The OpenCL operator with a vector condition is sufficiently
6261  // different to merit its own checker.
6262  if (getLangOpts().OpenCL && Cond.get()->getType()->isVectorType())
6263    return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc);
6264
6265  // First, check the condition.
6266  Cond = UsualUnaryConversions(Cond.get());
6267  if (Cond.isInvalid())
6268    return QualType();
6269  if (checkCondition(*this, Cond.get(), QuestionLoc))
6270    return QualType();
6271
6272  // Now check the two expressions.
6273  if (LHS.get()->getType()->isVectorType() ||
6274      RHS.get()->getType()->isVectorType())
6275    return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false,
6276                               /*AllowBothBool*/true,
6277                               /*AllowBoolConversions*/false);
6278
6279  QualType ResTy = UsualArithmeticConversions(LHS, RHS);
6280  if (LHS.isInvalid() || RHS.isInvalid())
6281    return QualType();
6282
6283  QualType LHSTy = LHS.get()->getType();
6284  QualType RHSTy = RHS.get()->getType();
6285
6286  // If both operands have arithmetic type, do the usual arithmetic conversions
6287  // to find a common type: C99 6.5.15p3,5.
6288  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
6289    LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
6290    RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
6291
6292    return ResTy;
6293  }
6294
6295  // If both operands are the same structure or union type, the result is that
6296  // type.
6297  if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
6298    if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
6299      if (LHSRT->getDecl() == RHSRT->getDecl())
6300        // "If both the operands have structure or union type, the result has
6301        // that type."  This implies that CV qualifiers are dropped.
6302        return LHSTy.getUnqualifiedType();
6303    // FIXME: Type of conditional expression must be complete in C mode.
6304  }
6305
6306  // C99 6.5.15p5: "If both operands have void type, the result has void type."
6307  // The following || allows only one side to be void (a GCC-ism).
6308  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
6309    return checkConditionalVoidType(*this, LHS, RHS);
6310  }
6311
6312  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
6313  // the type of the other operand."
6314  if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
6315  if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
6316
6317  // All objective-c pointer type analysis is done here.
6318  QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
6319                                                        QuestionLoc);
6320  if (LHS.isInvalid() || RHS.isInvalid())
6321    return QualType();
6322  if (!compositeType.isNull())
6323    return compositeType;
6324
6325
6326  // Handle block pointer types.
6327  if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
6328    return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
6329                                                     QuestionLoc);
6330
6331  // Check constraints for C object pointers types (C99 6.5.15p3,6).
6332  if (LHSTy->isPointerType() && RHSTy->isPointerType())
6333    return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
6334                                                       QuestionLoc);
6335
6336  // GCC compatibility: soften pointer/integer mismatch.  Note that
6337  // null pointers have been filtered out by this point.
6338  if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
6339      /*isIntFirstExpr=*/true))
6340    return RHSTy;
6341  if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
6342      /*isIntFirstExpr=*/false))
6343    return LHSTy;
6344
6345  // Emit a better diagnostic if one of the expressions is a null pointer
6346  // constant and the other is not a pointer type. In this case, the user most
6347  // likely forgot to take the address of the other expression.
6348  if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
6349    return QualType();
6350
6351  // Otherwise, the operands are not compatible.
6352  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
6353    << LHSTy << RHSTy << LHS.get()->getSourceRange()
6354    << RHS.get()->getSourceRange();
6355  return QualType();
6356}
6357
6358/// FindCompositeObjCPointerType - Helper method to find composite type of
6359/// two objective-c pointer types of the two input expressions.
6360QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
6361                                            SourceLocation QuestionLoc) {
6362  QualType LHSTy = LHS.get()->getType();
6363  QualType RHSTy = RHS.get()->getType();
6364
6365  // Handle things like Class and struct objc_class*.  Here we case the result
6366  // to the pseudo-builtin, because that will be implicitly cast back to the
6367  // redefinition type if an attempt is made to access its fields.
6368  if (LHSTy->isObjCClassType() &&
6369      (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
6370    RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
6371    return LHSTy;
6372  }
6373  if (RHSTy->isObjCClassType() &&
6374      (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
6375    LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
6376    return RHSTy;
6377  }
6378  // And the same for struct objc_object* / id
6379  if (LHSTy->isObjCIdType() &&
6380      (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
6381    RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
6382    return LHSTy;
6383  }
6384  if (RHSTy->isObjCIdType() &&
6385      (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
6386    LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
6387    return RHSTy;
6388  }
6389  // And the same for struct objc_selector* / SEL
6390  if (Context.isObjCSelType(LHSTy) &&
6391      (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
6392    RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_BitCast);
6393    return LHSTy;
6394  }
6395  if (Context.isObjCSelType(RHSTy) &&
6396      (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
6397    LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_BitCast);
6398    return RHSTy;
6399  }
6400  // Check constraints for Objective-C object pointers types.
6401  if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
6402
6403    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
6404      // Two identical object pointer types are always compatible.
6405      return LHSTy;
6406    }
6407    const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
6408    const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
6409    QualType compositeType = LHSTy;
6410
6411    // If both operands are interfaces and either operand can be
6412    // assigned to the other, use that type as the composite
6413    // type. This allows
6414    //   xxx ? (A*) a : (B*) b
6415    // where B is a subclass of A.
6416    //
6417    // Additionally, as for assignment, if either type is 'id'
6418    // allow silent coercion. Finally, if the types are
6419    // incompatible then make sure to use 'id' as the composite
6420    // type so the result is acceptable for sending messages to.
6421
6422    // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
6423    // It could return the composite type.
6424    if (!(compositeType =
6425          Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) {
6426      // Nothing more to do.
6427    } else if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
6428      compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
6429    } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
6430      compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
6431    } else if ((LHSTy->isObjCQualifiedIdType() ||
6432                RHSTy->isObjCQualifiedIdType()) &&
6433               Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
6434      // Need to handle "id<xx>" explicitly.
6435      // GCC allows qualified id and any Objective-C type to devolve to
6436      // id. Currently localizing to here until clear this should be
6437      // part of ObjCQualifiedIdTypesAreCompatible.
6438      compositeType = Context.getObjCIdType();
6439    } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
6440      compositeType = Context.getObjCIdType();
6441    } else {
6442      Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
6443      << LHSTy << RHSTy
6444      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6445      QualType incompatTy = Context.getObjCIdType();
6446      LHS = ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
6447      RHS = ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
6448      return incompatTy;
6449    }
6450    // The object pointer types are compatible.
6451    LHS = ImpCastExprToType(LHS.get(), compositeType, CK_BitCast);
6452    RHS = ImpCastExprToType(RHS.get(), compositeType, CK_BitCast);
6453    return compositeType;
6454  }
6455  // Check Objective-C object pointer types and 'void *'
6456  if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
6457    if (getLangOpts().ObjCAutoRefCount) {
6458      // ARC forbids the implicit conversion of object pointers to 'void *',
6459      // so these types are not compatible.
6460      Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
6461          << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6462      LHS = RHS = true;
6463      return QualType();
6464    }
6465    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
6466    QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
6467    QualType destPointee
6468    = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
6469    QualType destType = Context.getPointerType(destPointee);
6470    // Add qualifiers if necessary.
6471    LHS = ImpCastExprToType(LHS.get(), destType, CK_NoOp);
6472    // Promote to void*.
6473    RHS = ImpCastExprToType(RHS.get(), destType, CK_BitCast);
6474    return destType;
6475  }
6476  if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
6477    if (getLangOpts().ObjCAutoRefCount) {
6478      // ARC forbids the implicit conversion of object pointers to 'void *',
6479      // so these types are not compatible.
6480      Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
6481          << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6482      LHS = RHS = true;
6483      return QualType();
6484    }
6485    QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
6486    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
6487    QualType destPointee
6488    = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
6489    QualType destType = Context.getPointerType(destPointee);
6490    // Add qualifiers if necessary.
6491    RHS = ImpCastExprToType(RHS.get(), destType, CK_NoOp);
6492    // Promote to void*.
6493    LHS = ImpCastExprToType(LHS.get(), destType, CK_BitCast);
6494    return destType;
6495  }
6496  return QualType();
6497}
6498
6499/// SuggestParentheses - Emit a note with a fixit hint that wraps
6500/// ParenRange in parentheses.
6501static void SuggestParentheses(Sema &Self, SourceLocation Loc,
6502                               const PartialDiagnostic &Note,
6503                               SourceRange ParenRange) {
6504  SourceLocation EndLoc = Self.getLocForEndOfToken(ParenRange.getEnd());
6505  if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
6506      EndLoc.isValid()) {
6507    Self.Diag(Loc, Note)
6508      << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
6509      << FixItHint::CreateInsertion(EndLoc, ")");
6510  } else {
6511    // We can't display the parentheses, so just show the bare note.
6512    Self.Diag(Loc, Note) << ParenRange;
6513  }
6514}
6515
6516static bool IsArithmeticOp(BinaryOperatorKind Opc) {
6517  return BinaryOperator::isAdditiveOp(Opc) ||
6518         BinaryOperator::isMultiplicativeOp(Opc) ||
6519         BinaryOperator::isShiftOp(Opc);
6520}
6521
6522/// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
6523/// expression, either using a built-in or overloaded operator,
6524/// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
6525/// expression.
6526static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
6527                                   Expr **RHSExprs) {
6528  // Don't strip parenthesis: we should not warn if E is in parenthesis.
6529  E = E->IgnoreImpCasts();
6530  E = E->IgnoreConversionOperator();
6531  E = E->IgnoreImpCasts();
6532
6533  // Built-in binary operator.
6534  if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
6535    if (IsArithmeticOp(OP->getOpcode())) {
6536      *Opcode = OP->getOpcode();
6537      *RHSExprs = OP->getRHS();
6538      return true;
6539    }
6540  }
6541
6542  // Overloaded operator.
6543  if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
6544    if (Call->getNumArgs() != 2)
6545      return false;
6546
6547    // Make sure this is really a binary operator that is safe to pass into
6548    // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
6549    OverloadedOperatorKind OO = Call->getOperator();
6550    if (OO < OO_Plus || OO > OO_Arrow ||
6551        OO == OO_PlusPlus || OO == OO_MinusMinus)
6552      return false;
6553
6554    BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
6555    if (IsArithmeticOp(OpKind)) {
6556      *Opcode = OpKind;
6557      *RHSExprs = Call->getArg(1);
6558      return true;
6559    }
6560  }
6561
6562  return false;
6563}
6564
6565/// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
6566/// or is a logical expression such as (x==y) which has int type, but is
6567/// commonly interpreted as boolean.
6568static bool ExprLooksBoolean(Expr *E) {
6569  E = E->IgnoreParenImpCasts();
6570
6571  if (E->getType()->isBooleanType())
6572    return true;
6573  if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
6574    return OP->isComparisonOp() || OP->isLogicalOp();
6575  if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
6576    return OP->getOpcode() == UO_LNot;
6577  if (E->getType()->isPointerType())
6578    return true;
6579
6580  return false;
6581}
6582
6583/// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
6584/// and binary operator are mixed in a way that suggests the programmer assumed
6585/// the conditional operator has higher precedence, for example:
6586/// "int x = a + someBinaryCondition ? 1 : 2".
6587static void DiagnoseConditionalPrecedence(Sema &Self,
6588                                          SourceLocation OpLoc,
6589                                          Expr *Condition,
6590                                          Expr *LHSExpr,
6591                                          Expr *RHSExpr) {
6592  BinaryOperatorKind CondOpcode;
6593  Expr *CondRHS;
6594
6595  if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
6596    return;
6597  if (!ExprLooksBoolean(CondRHS))
6598    return;
6599
6600  // The condition is an arithmetic binary expression, with a right-
6601  // hand side that looks boolean, so warn.
6602
6603  Self.Diag(OpLoc, diag::warn_precedence_conditional)
6604      << Condition->getSourceRange()
6605      << BinaryOperator::getOpcodeStr(CondOpcode);
6606
6607  SuggestParentheses(Self, OpLoc,
6608    Self.PDiag(diag::note_precedence_silence)
6609      << BinaryOperator::getOpcodeStr(CondOpcode),
6610    SourceRange(Condition->getLocStart(), Condition->getLocEnd()));
6611
6612  SuggestParentheses(Self, OpLoc,
6613    Self.PDiag(diag::note_precedence_conditional_first),
6614    SourceRange(CondRHS->getLocStart(), RHSExpr->getLocEnd()));
6615}
6616
6617/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
6618/// in the case of a the GNU conditional expr extension.
6619ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
6620                                    SourceLocation ColonLoc,
6621                                    Expr *CondExpr, Expr *LHSExpr,
6622                                    Expr *RHSExpr) {
6623  if (!getLangOpts().CPlusPlus) {
6624    // C cannot handle TypoExpr nodes in the condition because it
6625    // doesn't handle dependent types properly, so make sure any TypoExprs have
6626    // been dealt with before checking the operands.
6627    ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr);
6628    if (!CondResult.isUsable()) return ExprError();
6629    CondExpr = CondResult.get();
6630  }
6631
6632  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
6633  // was the condition.
6634  OpaqueValueExpr *opaqueValue = nullptr;
6635  Expr *commonExpr = nullptr;
6636  if (!LHSExpr) {
6637    commonExpr = CondExpr;
6638    // Lower out placeholder types first.  This is important so that we don't
6639    // try to capture a placeholder. This happens in few cases in C++; such
6640    // as Objective-C++'s dictionary subscripting syntax.
6641    if (commonExpr->hasPlaceholderType()) {
6642      ExprResult result = CheckPlaceholderExpr(commonExpr);
6643      if (!result.isUsable()) return ExprError();
6644      commonExpr = result.get();
6645    }
6646    // We usually want to apply unary conversions *before* saving, except
6647    // in the special case of a C++ l-value conditional.
6648    if (!(getLangOpts().CPlusPlus
6649          && !commonExpr->isTypeDependent()
6650          && commonExpr->getValueKind() == RHSExpr->getValueKind()
6651          && commonExpr->isGLValue()
6652          && commonExpr->isOrdinaryOrBitFieldObject()
6653          && RHSExpr->isOrdinaryOrBitFieldObject()
6654          && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
6655      ExprResult commonRes = UsualUnaryConversions(commonExpr);
6656      if (commonRes.isInvalid())
6657        return ExprError();
6658      commonExpr = commonRes.get();
6659    }
6660
6661    opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
6662                                                commonExpr->getType(),
6663                                                commonExpr->getValueKind(),
6664                                                commonExpr->getObjectKind(),
6665                                                commonExpr);
6666    LHSExpr = CondExpr = opaqueValue;
6667  }
6668
6669  ExprValueKind VK = VK_RValue;
6670  ExprObjectKind OK = OK_Ordinary;
6671  ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr;
6672  QualType result = CheckConditionalOperands(Cond, LHS, RHS,
6673                                             VK, OK, QuestionLoc);
6674  if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
6675      RHS.isInvalid())
6676    return ExprError();
6677
6678  DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
6679                                RHS.get());
6680
6681  CheckBoolLikeConversion(Cond.get(), QuestionLoc);
6682
6683  if (!commonExpr)
6684    return new (Context)
6685        ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc,
6686                            RHS.get(), result, VK, OK);
6687
6688  return new (Context) BinaryConditionalOperator(
6689      commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc,
6690      ColonLoc, result, VK, OK);
6691}
6692
6693// checkPointerTypesForAssignment - This is a very tricky routine (despite
6694// being closely modeled after the C99 spec:-). The odd characteristic of this
6695// routine is it effectively iqnores the qualifiers on the top level pointee.
6696// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
6697// FIXME: add a couple examples in this comment.
6698static Sema::AssignConvertType
6699checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
6700  assert(LHSType.isCanonical() && "LHS not canonicalized!");
6701  assert(RHSType.isCanonical() && "RHS not canonicalized!");
6702
6703  // get the "pointed to" type (ignoring qualifiers at the top level)
6704  const Type *lhptee, *rhptee;
6705  Qualifiers lhq, rhq;
6706  std::tie(lhptee, lhq) =
6707      cast<PointerType>(LHSType)->getPointeeType().split().asPair();
6708  std::tie(rhptee, rhq) =
6709      cast<PointerType>(RHSType)->getPointeeType().split().asPair();
6710
6711  Sema::AssignConvertType ConvTy = Sema::Compatible;
6712
6713  // C99 6.5.16.1p1: This following citation is common to constraints
6714  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
6715  // qualifiers of the type *pointed to* by the right;
6716
6717  // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
6718  if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
6719      lhq.compatiblyIncludesObjCLifetime(rhq)) {
6720    // Ignore lifetime for further calculation.
6721    lhq.removeObjCLifetime();
6722    rhq.removeObjCLifetime();
6723  }
6724
6725  if (!lhq.compatiblyIncludes(rhq)) {
6726    // Treat address-space mismatches as fatal.  TODO: address subspaces
6727    if (!lhq.isAddressSpaceSupersetOf(rhq))
6728      ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
6729
6730    // It's okay to add or remove GC or lifetime qualifiers when converting to
6731    // and from void*.
6732    else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
6733                        .compatiblyIncludes(
6734                                rhq.withoutObjCGCAttr().withoutObjCLifetime())
6735             && (lhptee->isVoidType() || rhptee->isVoidType()))
6736      ; // keep old
6737
6738    // Treat lifetime mismatches as fatal.
6739    else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
6740      ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
6741
6742    // For GCC compatibility, other qualifier mismatches are treated
6743    // as still compatible in C.
6744    else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
6745  }
6746
6747  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
6748  // incomplete type and the other is a pointer to a qualified or unqualified
6749  // version of void...
6750  if (lhptee->isVoidType()) {
6751    if (rhptee->isIncompleteOrObjectType())
6752      return ConvTy;
6753
6754    // As an extension, we allow cast to/from void* to function pointer.
6755    assert(rhptee->isFunctionType());
6756    return Sema::FunctionVoidPointer;
6757  }
6758
6759  if (rhptee->isVoidType()) {
6760    if (lhptee->isIncompleteOrObjectType())
6761      return ConvTy;
6762
6763    // As an extension, we allow cast to/from void* to function pointer.
6764    assert(lhptee->isFunctionType());
6765    return Sema::FunctionVoidPointer;
6766  }
6767
6768  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
6769  // unqualified versions of compatible types, ...
6770  QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
6771  if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
6772    // Check if the pointee types are compatible ignoring the sign.
6773    // We explicitly check for char so that we catch "char" vs
6774    // "unsigned char" on systems where "char" is unsigned.
6775    if (lhptee->isCharType())
6776      ltrans = S.Context.UnsignedCharTy;
6777    else if (lhptee->hasSignedIntegerRepresentation())
6778      ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
6779
6780    if (rhptee->isCharType())
6781      rtrans = S.Context.UnsignedCharTy;
6782    else if (rhptee->hasSignedIntegerRepresentation())
6783      rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
6784
6785    if (ltrans == rtrans) {
6786      // Types are compatible ignoring the sign. Qualifier incompatibility
6787      // takes priority over sign incompatibility because the sign
6788      // warning can be disabled.
6789      if (ConvTy != Sema::Compatible)
6790        return ConvTy;
6791
6792      return Sema::IncompatiblePointerSign;
6793    }
6794
6795    // If we are a multi-level pointer, it's possible that our issue is simply
6796    // one of qualification - e.g. char ** -> const char ** is not allowed. If
6797    // the eventual target type is the same and the pointers have the same
6798    // level of indirection, this must be the issue.
6799    if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
6800      do {
6801        lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr();
6802        rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr();
6803      } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
6804
6805      if (lhptee == rhptee)
6806        return Sema::IncompatibleNestedPointerQualifiers;
6807    }
6808
6809    // General pointer incompatibility takes priority over qualifiers.
6810    return Sema::IncompatiblePointer;
6811  }
6812  if (!S.getLangOpts().CPlusPlus &&
6813      S.IsNoReturnConversion(ltrans, rtrans, ltrans))
6814    return Sema::IncompatiblePointer;
6815  return ConvTy;
6816}
6817
6818/// checkBlockPointerTypesForAssignment - This routine determines whether two
6819/// block pointer types are compatible or whether a block and normal pointer
6820/// are compatible. It is more restrict than comparing two function pointer
6821// types.
6822static Sema::AssignConvertType
6823checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
6824                                    QualType RHSType) {
6825  assert(LHSType.isCanonical() && "LHS not canonicalized!");
6826  assert(RHSType.isCanonical() && "RHS not canonicalized!");
6827
6828  QualType lhptee, rhptee;
6829
6830  // get the "pointed to" type (ignoring qualifiers at the top level)
6831  lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
6832  rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
6833
6834  // In C++, the types have to match exactly.
6835  if (S.getLangOpts().CPlusPlus)
6836    return Sema::IncompatibleBlockPointer;
6837
6838  Sema::AssignConvertType ConvTy = Sema::Compatible;
6839
6840  // For blocks we enforce that qualifiers are identical.
6841  if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers())
6842    ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
6843
6844  if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
6845    return Sema::IncompatibleBlockPointer;
6846
6847  return ConvTy;
6848}
6849
6850/// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
6851/// for assignment compatibility.
6852static Sema::AssignConvertType
6853checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
6854                                   QualType RHSType) {
6855  assert(LHSType.isCanonical() && "LHS was not canonicalized!");
6856  assert(RHSType.isCanonical() && "RHS was not canonicalized!");
6857
6858  if (LHSType->isObjCBuiltinType()) {
6859    // Class is not compatible with ObjC object pointers.
6860    if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
6861        !RHSType->isObjCQualifiedClassType())
6862      return Sema::IncompatiblePointer;
6863    return Sema::Compatible;
6864  }
6865  if (RHSType->isObjCBuiltinType()) {
6866    if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
6867        !LHSType->isObjCQualifiedClassType())
6868      return Sema::IncompatiblePointer;
6869    return Sema::Compatible;
6870  }
6871  QualType lhptee = LHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
6872  QualType rhptee = RHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
6873
6874  if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
6875      // make an exception for id<P>
6876      !LHSType->isObjCQualifiedIdType())
6877    return Sema::CompatiblePointerDiscardsQualifiers;
6878
6879  if (S.Context.typesAreCompatible(LHSType, RHSType))
6880    return Sema::Compatible;
6881  if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
6882    return Sema::IncompatibleObjCQualifiedId;
6883  return Sema::IncompatiblePointer;
6884}
6885
6886Sema::AssignConvertType
6887Sema::CheckAssignmentConstraints(SourceLocation Loc,
6888                                 QualType LHSType, QualType RHSType) {
6889  // Fake up an opaque expression.  We don't actually care about what
6890  // cast operations are required, so if CheckAssignmentConstraints
6891  // adds casts to this they'll be wasted, but fortunately that doesn't
6892  // usually happen on valid code.
6893  OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
6894  ExprResult RHSPtr = &RHSExpr;
6895  CastKind K = CK_Invalid;
6896
6897  return CheckAssignmentConstraints(LHSType, RHSPtr, K, /*ConvertRHS=*/false);
6898}
6899
6900/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
6901/// has code to accommodate several GCC extensions when type checking
6902/// pointers. Here are some objectionable examples that GCC considers warnings:
6903///
6904///  int a, *pint;
6905///  short *pshort;
6906///  struct foo *pfoo;
6907///
6908///  pint = pshort; // warning: assignment from incompatible pointer type
6909///  a = pint; // warning: assignment makes integer from pointer without a cast
6910///  pint = a; // warning: assignment makes pointer from integer without a cast
6911///  pint = pfoo; // warning: assignment from incompatible pointer type
6912///
6913/// As a result, the code for dealing with pointers is more complex than the
6914/// C99 spec dictates.
6915///
6916/// Sets 'Kind' for any result kind except Incompatible.
6917Sema::AssignConvertType
6918Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
6919                                 CastKind &Kind, bool ConvertRHS) {
6920  QualType RHSType = RHS.get()->getType();
6921  QualType OrigLHSType = LHSType;
6922
6923  // Get canonical types.  We're not formatting these types, just comparing
6924  // them.
6925  LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
6926  RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
6927
6928  // Common case: no conversion required.
6929  if (LHSType == RHSType) {
6930    Kind = CK_NoOp;
6931    return Compatible;
6932  }
6933
6934  // If we have an atomic type, try a non-atomic assignment, then just add an
6935  // atomic qualification step.
6936  if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
6937    Sema::AssignConvertType result =
6938      CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
6939    if (result != Compatible)
6940      return result;
6941    if (Kind != CK_NoOp && ConvertRHS)
6942      RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind);
6943    Kind = CK_NonAtomicToAtomic;
6944    return Compatible;
6945  }
6946
6947  // If the left-hand side is a reference type, then we are in a
6948  // (rare!) case where we've allowed the use of references in C,
6949  // e.g., as a parameter type in a built-in function. In this case,
6950  // just make sure that the type referenced is compatible with the
6951  // right-hand side type. The caller is responsible for adjusting
6952  // LHSType so that the resulting expression does not have reference
6953  // type.
6954  if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
6955    if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
6956      Kind = CK_LValueBitCast;
6957      return Compatible;
6958    }
6959    return Incompatible;
6960  }
6961
6962  // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
6963  // to the same ExtVector type.
6964  if (LHSType->isExtVectorType()) {
6965    if (RHSType->isExtVectorType())
6966      return Incompatible;
6967    if (RHSType->isArithmeticType()) {
6968      // CK_VectorSplat does T -> vector T, so first cast to the
6969      // element type.
6970      QualType elType = cast<ExtVectorType>(LHSType)->getElementType();
6971      if (elType != RHSType && ConvertRHS) {
6972        Kind = PrepareScalarCast(RHS, elType);
6973        RHS = ImpCastExprToType(RHS.get(), elType, Kind);
6974      }
6975      Kind = CK_VectorSplat;
6976      return Compatible;
6977    }
6978  }
6979
6980  // Conversions to or from vector type.
6981  if (LHSType->isVectorType() || RHSType->isVectorType()) {
6982    if (LHSType->isVectorType() && RHSType->isVectorType()) {
6983      // Allow assignments of an AltiVec vector type to an equivalent GCC
6984      // vector type and vice versa
6985      if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
6986        Kind = CK_BitCast;
6987        return Compatible;
6988      }
6989
6990      // If we are allowing lax vector conversions, and LHS and RHS are both
6991      // vectors, the total size only needs to be the same. This is a bitcast;
6992      // no bits are changed but the result type is different.
6993      if (isLaxVectorConversion(RHSType, LHSType)) {
6994        Kind = CK_BitCast;
6995        return IncompatibleVectors;
6996      }
6997    }
6998    return Incompatible;
6999  }
7000
7001  // Arithmetic conversions.
7002  if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
7003      !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
7004    if (ConvertRHS)
7005      Kind = PrepareScalarCast(RHS, LHSType);
7006    return Compatible;
7007  }
7008
7009  // Conversions to normal pointers.
7010  if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
7011    // U* -> T*
7012    if (isa<PointerType>(RHSType)) {
7013      unsigned AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
7014      unsigned AddrSpaceR = RHSType->getPointeeType().getAddressSpace();
7015      Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
7016      return checkPointerTypesForAssignment(*this, LHSType, RHSType);
7017    }
7018
7019    // int -> T*
7020    if (RHSType->isIntegerType()) {
7021      Kind = CK_IntegralToPointer; // FIXME: null?
7022      return IntToPointer;
7023    }
7024
7025    // C pointers are not compatible with ObjC object pointers,
7026    // with two exceptions:
7027    if (isa<ObjCObjectPointerType>(RHSType)) {
7028      //  - conversions to void*
7029      if (LHSPointer->getPointeeType()->isVoidType()) {
7030        Kind = CK_BitCast;
7031        return Compatible;
7032      }
7033
7034      //  - conversions from 'Class' to the redefinition type
7035      if (RHSType->isObjCClassType() &&
7036          Context.hasSameType(LHSType,
7037                              Context.getObjCClassRedefinitionType())) {
7038        Kind = CK_BitCast;
7039        return Compatible;
7040      }
7041
7042      Kind = CK_BitCast;
7043      return IncompatiblePointer;
7044    }
7045
7046    // U^ -> void*
7047    if (RHSType->getAs<BlockPointerType>()) {
7048      if (LHSPointer->getPointeeType()->isVoidType()) {
7049        Kind = CK_BitCast;
7050        return Compatible;
7051      }
7052    }
7053
7054    return Incompatible;
7055  }
7056
7057  // Conversions to block pointers.
7058  if (isa<BlockPointerType>(LHSType)) {
7059    // U^ -> T^
7060    if (RHSType->isBlockPointerType()) {
7061      Kind = CK_BitCast;
7062      return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
7063    }
7064
7065    // int or null -> T^
7066    if (RHSType->isIntegerType()) {
7067      Kind = CK_IntegralToPointer; // FIXME: null
7068      return IntToBlockPointer;
7069    }
7070
7071    // id -> T^
7072    if (getLangOpts().ObjC1 && RHSType->isObjCIdType()) {
7073      Kind = CK_AnyPointerToBlockPointerCast;
7074      return Compatible;
7075    }
7076
7077    // void* -> T^
7078    if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
7079      if (RHSPT->getPointeeType()->isVoidType()) {
7080        Kind = CK_AnyPointerToBlockPointerCast;
7081        return Compatible;
7082      }
7083
7084    return Incompatible;
7085  }
7086
7087  // Conversions to Objective-C pointers.
7088  if (isa<ObjCObjectPointerType>(LHSType)) {
7089    // A* -> B*
7090    if (RHSType->isObjCObjectPointerType()) {
7091      Kind = CK_BitCast;
7092      Sema::AssignConvertType result =
7093        checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
7094      if (getLangOpts().ObjCAutoRefCount &&
7095          result == Compatible &&
7096          !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
7097        result = IncompatibleObjCWeakRef;
7098      return result;
7099    }
7100
7101    // int or null -> A*
7102    if (RHSType->isIntegerType()) {
7103      Kind = CK_IntegralToPointer; // FIXME: null
7104      return IntToPointer;
7105    }
7106
7107    // In general, C pointers are not compatible with ObjC object pointers,
7108    // with two exceptions:
7109    if (isa<PointerType>(RHSType)) {
7110      Kind = CK_CPointerToObjCPointerCast;
7111
7112      //  - conversions from 'void*'
7113      if (RHSType->isVoidPointerType()) {
7114        return Compatible;
7115      }
7116
7117      //  - conversions to 'Class' from its redefinition type
7118      if (LHSType->isObjCClassType() &&
7119          Context.hasSameType(RHSType,
7120                              Context.getObjCClassRedefinitionType())) {
7121        return Compatible;
7122      }
7123
7124      return IncompatiblePointer;
7125    }
7126
7127    // Only under strict condition T^ is compatible with an Objective-C pointer.
7128    if (RHSType->isBlockPointerType() &&
7129        LHSType->isBlockCompatibleObjCPointerType(Context)) {
7130      if (ConvertRHS)
7131        maybeExtendBlockObject(RHS);
7132      Kind = CK_BlockPointerToObjCPointerCast;
7133      return Compatible;
7134    }
7135
7136    return Incompatible;
7137  }
7138
7139  // Conversions from pointers that are not covered by the above.
7140  if (isa<PointerType>(RHSType)) {
7141    // T* -> _Bool
7142    if (LHSType == Context.BoolTy) {
7143      Kind = CK_PointerToBoolean;
7144      return Compatible;
7145    }
7146
7147    // T* -> int
7148    if (LHSType->isIntegerType()) {
7149      Kind = CK_PointerToIntegral;
7150      return PointerToInt;
7151    }
7152
7153    return Incompatible;
7154  }
7155
7156  // Conversions from Objective-C pointers that are not covered by the above.
7157  if (isa<ObjCObjectPointerType>(RHSType)) {
7158    // T* -> _Bool
7159    if (LHSType == Context.BoolTy) {
7160      Kind = CK_PointerToBoolean;
7161      return Compatible;
7162    }
7163
7164    // T* -> int
7165    if (LHSType->isIntegerType()) {
7166      Kind = CK_PointerToIntegral;
7167      return PointerToInt;
7168    }
7169
7170    return Incompatible;
7171  }
7172
7173  // struct A -> struct B
7174  if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
7175    if (Context.typesAreCompatible(LHSType, RHSType)) {
7176      Kind = CK_NoOp;
7177      return Compatible;
7178    }
7179  }
7180
7181  return Incompatible;
7182}
7183
7184/// \brief Constructs a transparent union from an expression that is
7185/// used to initialize the transparent union.
7186static void ConstructTransparentUnion(Sema &S, ASTContext &C,
7187                                      ExprResult &EResult, QualType UnionType,
7188                                      FieldDecl *Field) {
7189  // Build an initializer list that designates the appropriate member
7190  // of the transparent union.
7191  Expr *E = EResult.get();
7192  InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
7193                                                   E, SourceLocation());
7194  Initializer->setType(UnionType);
7195  Initializer->setInitializedFieldInUnion(Field);
7196
7197  // Build a compound literal constructing a value of the transparent
7198  // union type from this initializer list.
7199  TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
7200  EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
7201                                        VK_RValue, Initializer, false);
7202}
7203
7204Sema::AssignConvertType
7205Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
7206                                               ExprResult &RHS) {
7207  QualType RHSType = RHS.get()->getType();
7208
7209  // If the ArgType is a Union type, we want to handle a potential
7210  // transparent_union GCC extension.
7211  const RecordType *UT = ArgType->getAsUnionType();
7212  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
7213    return Incompatible;
7214
7215  // The field to initialize within the transparent union.
7216  RecordDecl *UD = UT->getDecl();
7217  FieldDecl *InitField = nullptr;
7218  // It's compatible if the expression matches any of the fields.
7219  for (auto *it : UD->fields()) {
7220    if (it->getType()->isPointerType()) {
7221      // If the transparent union contains a pointer type, we allow:
7222      // 1) void pointer
7223      // 2) null pointer constant
7224      if (RHSType->isPointerType())
7225        if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
7226          RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast);
7227          InitField = it;
7228          break;
7229        }
7230
7231      if (RHS.get()->isNullPointerConstant(Context,
7232                                           Expr::NPC_ValueDependentIsNull)) {
7233        RHS = ImpCastExprToType(RHS.get(), it->getType(),
7234                                CK_NullToPointer);
7235        InitField = it;
7236        break;
7237      }
7238    }
7239
7240    CastKind Kind = CK_Invalid;
7241    if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
7242          == Compatible) {
7243      RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind);
7244      InitField = it;
7245      break;
7246    }
7247  }
7248
7249  if (!InitField)
7250    return Incompatible;
7251
7252  ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
7253  return Compatible;
7254}
7255
7256Sema::AssignConvertType
7257Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &CallerRHS,
7258                                       bool Diagnose,
7259                                       bool DiagnoseCFAudited,
7260                                       bool ConvertRHS) {
7261  // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly,
7262  // we can't avoid *all* modifications at the moment, so we need some somewhere
7263  // to put the updated value.
7264  ExprResult LocalRHS = CallerRHS;
7265  ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS;
7266
7267  if (getLangOpts().CPlusPlus) {
7268    if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
7269      // C++ 5.17p3: If the left operand is not of class type, the
7270      // expression is implicitly converted (C++ 4) to the
7271      // cv-unqualified type of the left operand.
7272      ExprResult Res;
7273      if (Diagnose) {
7274        Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
7275                                        AA_Assigning);
7276      } else {
7277        ImplicitConversionSequence ICS =
7278            TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
7279                                  /*SuppressUserConversions=*/false,
7280                                  /*AllowExplicit=*/false,
7281                                  /*InOverloadResolution=*/false,
7282                                  /*CStyle=*/false,
7283                                  /*AllowObjCWritebackConversion=*/false);
7284        if (ICS.isFailure())
7285          return Incompatible;
7286        Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
7287                                        ICS, AA_Assigning);
7288      }
7289      if (Res.isInvalid())
7290        return Incompatible;
7291      Sema::AssignConvertType result = Compatible;
7292      if (getLangOpts().ObjCAutoRefCount &&
7293          !CheckObjCARCUnavailableWeakConversion(LHSType,
7294                                                 RHS.get()->getType()))
7295        result = IncompatibleObjCWeakRef;
7296      RHS = Res;
7297      return result;
7298    }
7299
7300    // FIXME: Currently, we fall through and treat C++ classes like C
7301    // structures.
7302    // FIXME: We also fall through for atomics; not sure what should
7303    // happen there, though.
7304  } else if (RHS.get()->getType() == Context.OverloadTy) {
7305    // As a set of extensions to C, we support overloading on functions. These
7306    // functions need to be resolved here.
7307    DeclAccessPair DAP;
7308    if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction(
7309            RHS.get(), LHSType, /*Complain=*/false, DAP))
7310      RHS = FixOverloadedFunctionReference(RHS.get(), DAP, FD);
7311    else
7312      return Incompatible;
7313  }
7314
7315  // C99 6.5.16.1p1: the left operand is a pointer and the right is
7316  // a null pointer constant.
7317  if ((LHSType->isPointerType() || LHSType->isObjCObjectPointerType() ||
7318       LHSType->isBlockPointerType()) &&
7319      RHS.get()->isNullPointerConstant(Context,
7320                                       Expr::NPC_ValueDependentIsNull)) {
7321    CastKind Kind;
7322    CXXCastPath Path;
7323    CheckPointerConversion(RHS.get(), LHSType, Kind, Path, false);
7324    if (ConvertRHS)
7325      RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_RValue, &Path);
7326    return Compatible;
7327  }
7328
7329  // This check seems unnatural, however it is necessary to ensure the proper
7330  // conversion of functions/arrays. If the conversion were done for all
7331  // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
7332  // expressions that suppress this implicit conversion (&, sizeof).
7333  //
7334  // Suppress this for references: C++ 8.5.3p5.
7335  if (!LHSType->isReferenceType()) {
7336    // FIXME: We potentially allocate here even if ConvertRHS is false.
7337    RHS = DefaultFunctionArrayLvalueConversion(RHS.get(), Diagnose);
7338    if (RHS.isInvalid())
7339      return Incompatible;
7340  }
7341
7342  Expr *PRE = RHS.get()->IgnoreParenCasts();
7343  if (ObjCProtocolExpr *OPE = dyn_cast<ObjCProtocolExpr>(PRE)) {
7344    ObjCProtocolDecl *PDecl = OPE->getProtocol();
7345    if (PDecl && !PDecl->hasDefinition()) {
7346      Diag(PRE->getExprLoc(), diag::warn_atprotocol_protocol) << PDecl->getName();
7347      Diag(PDecl->getLocation(), diag::note_entity_declared_at) << PDecl;
7348    }
7349  }
7350
7351  CastKind Kind = CK_Invalid;
7352  Sema::AssignConvertType result =
7353    CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS);
7354
7355  // C99 6.5.16.1p2: The value of the right operand is converted to the
7356  // type of the assignment expression.
7357  // CheckAssignmentConstraints allows the left-hand side to be a reference,
7358  // so that we can use references in built-in functions even in C.
7359  // The getNonReferenceType() call makes sure that the resulting expression
7360  // does not have reference type.
7361  if (result != Incompatible && RHS.get()->getType() != LHSType) {
7362    QualType Ty = LHSType.getNonLValueExprType(Context);
7363    Expr *E = RHS.get();
7364    if (getLangOpts().ObjCAutoRefCount)
7365      CheckObjCARCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion,
7366                             DiagnoseCFAudited);
7367    if (getLangOpts().ObjC1 &&
7368        (CheckObjCBridgeRelatedConversions(E->getLocStart(),
7369                                          LHSType, E->getType(), E) ||
7370         ConversionToObjCStringLiteralCheck(LHSType, E))) {
7371      RHS = E;
7372      return Compatible;
7373    }
7374
7375    if (ConvertRHS)
7376      RHS = ImpCastExprToType(E, Ty, Kind);
7377  }
7378  return result;
7379}
7380
7381QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
7382                               ExprResult &RHS) {
7383  Diag(Loc, diag::err_typecheck_invalid_operands)
7384    << LHS.get()->getType() << RHS.get()->getType()
7385    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7386  return QualType();
7387}
7388
7389/// Try to convert a value of non-vector type to a vector type by converting
7390/// the type to the element type of the vector and then performing a splat.
7391/// If the language is OpenCL, we only use conversions that promote scalar
7392/// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
7393/// for float->int.
7394///
7395/// \param scalar - if non-null, actually perform the conversions
7396/// \return true if the operation fails (but without diagnosing the failure)
7397static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar,
7398                                     QualType scalarTy,
7399                                     QualType vectorEltTy,
7400                                     QualType vectorTy) {
7401  // The conversion to apply to the scalar before splatting it,
7402  // if necessary.
7403  CastKind scalarCast = CK_Invalid;
7404
7405  if (vectorEltTy->isIntegralType(S.Context)) {
7406    if (!scalarTy->isIntegralType(S.Context))
7407      return true;
7408    if (S.getLangOpts().OpenCL &&
7409        S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0)
7410      return true;
7411    scalarCast = CK_IntegralCast;
7412  } else if (vectorEltTy->isRealFloatingType()) {
7413    if (scalarTy->isRealFloatingType()) {
7414      if (S.getLangOpts().OpenCL &&
7415          S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0)
7416        return true;
7417      scalarCast = CK_FloatingCast;
7418    }
7419    else if (scalarTy->isIntegralType(S.Context))
7420      scalarCast = CK_IntegralToFloating;
7421    else
7422      return true;
7423  } else {
7424    return true;
7425  }
7426
7427  // Adjust scalar if desired.
7428  if (scalar) {
7429    if (scalarCast != CK_Invalid)
7430      *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast);
7431    *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat);
7432  }
7433  return false;
7434}
7435
7436QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
7437                                   SourceLocation Loc, bool IsCompAssign,
7438                                   bool AllowBothBool,
7439                                   bool AllowBoolConversions) {
7440  if (!IsCompAssign) {
7441    LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
7442    if (LHS.isInvalid())
7443      return QualType();
7444  }
7445  RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
7446  if (RHS.isInvalid())
7447    return QualType();
7448
7449  // For conversion purposes, we ignore any qualifiers.
7450  // For example, "const float" and "float" are equivalent.
7451  QualType LHSType = LHS.get()->getType().getUnqualifiedType();
7452  QualType RHSType = RHS.get()->getType().getUnqualifiedType();
7453
7454  const VectorType *LHSVecType = LHSType->getAs<VectorType>();
7455  const VectorType *RHSVecType = RHSType->getAs<VectorType>();
7456  assert(LHSVecType || RHSVecType);
7457
7458  // AltiVec-style "vector bool op vector bool" combinations are allowed
7459  // for some operators but not others.
7460  if (!AllowBothBool &&
7461      LHSVecType && LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
7462      RHSVecType && RHSVecType->getVectorKind() == VectorType::AltiVecBool)
7463    return InvalidOperands(Loc, LHS, RHS);
7464
7465  // If the vector types are identical, return.
7466  if (Context.hasSameType(LHSType, RHSType))
7467    return LHSType;
7468
7469  // If we have compatible AltiVec and GCC vector types, use the AltiVec type.
7470  if (LHSVecType && RHSVecType &&
7471      Context.areCompatibleVectorTypes(LHSType, RHSType)) {
7472    if (isa<ExtVectorType>(LHSVecType)) {
7473      RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
7474      return LHSType;
7475    }
7476
7477    if (!IsCompAssign)
7478      LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
7479    return RHSType;
7480  }
7481
7482  // AllowBoolConversions says that bool and non-bool AltiVec vectors
7483  // can be mixed, with the result being the non-bool type.  The non-bool
7484  // operand must have integer element type.
7485  if (AllowBoolConversions && LHSVecType && RHSVecType &&
7486      LHSVecType->getNumElements() == RHSVecType->getNumElements() &&
7487      (Context.getTypeSize(LHSVecType->getElementType()) ==
7488       Context.getTypeSize(RHSVecType->getElementType()))) {
7489    if (LHSVecType->getVectorKind() == VectorType::AltiVecVector &&
7490        LHSVecType->getElementType()->isIntegerType() &&
7491        RHSVecType->getVectorKind() == VectorType::AltiVecBool) {
7492      RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
7493      return LHSType;
7494    }
7495    if (!IsCompAssign &&
7496        LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
7497        RHSVecType->getVectorKind() == VectorType::AltiVecVector &&
7498        RHSVecType->getElementType()->isIntegerType()) {
7499      LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
7500      return RHSType;
7501    }
7502  }
7503
7504  // If there's an ext-vector type and a scalar, try to convert the scalar to
7505  // the vector element type and splat.
7506  if (!RHSVecType && isa<ExtVectorType>(LHSVecType)) {
7507    if (!tryVectorConvertAndSplat(*this, &RHS, RHSType,
7508                                  LHSVecType->getElementType(), LHSType))
7509      return LHSType;
7510  }
7511  if (!LHSVecType && isa<ExtVectorType>(RHSVecType)) {
7512    if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS),
7513                                  LHSType, RHSVecType->getElementType(),
7514                                  RHSType))
7515      return RHSType;
7516  }
7517
7518  // If we're allowing lax vector conversions, only the total (data) size
7519  // needs to be the same.
7520  // FIXME: Should we really be allowing this?
7521  // FIXME: We really just pick the LHS type arbitrarily?
7522  if (isLaxVectorConversion(RHSType, LHSType)) {
7523    QualType resultType = LHSType;
7524    RHS = ImpCastExprToType(RHS.get(), resultType, CK_BitCast);
7525    return resultType;
7526  }
7527
7528  // Okay, the expression is invalid.
7529
7530  // If there's a non-vector, non-real operand, diagnose that.
7531  if ((!RHSVecType && !RHSType->isRealType()) ||
7532      (!LHSVecType && !LHSType->isRealType())) {
7533    Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
7534      << LHSType << RHSType
7535      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7536    return QualType();
7537  }
7538
7539  // OpenCL V1.1 6.2.6.p1:
7540  // If the operands are of more than one vector type, then an error shall
7541  // occur. Implicit conversions between vector types are not permitted, per
7542  // section 6.2.1.
7543  if (getLangOpts().OpenCL &&
7544      RHSVecType && isa<ExtVectorType>(RHSVecType) &&
7545      LHSVecType && isa<ExtVectorType>(LHSVecType)) {
7546    Diag(Loc, diag::err_opencl_implicit_vector_conversion) << LHSType
7547                                                           << RHSType;
7548    return QualType();
7549  }
7550
7551  // Otherwise, use the generic diagnostic.
7552  Diag(Loc, diag::err_typecheck_vector_not_convertable)
7553    << LHSType << RHSType
7554    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7555  return QualType();
7556}
7557
7558// checkArithmeticNull - Detect when a NULL constant is used improperly in an
7559// expression.  These are mainly cases where the null pointer is used as an
7560// integer instead of a pointer.
7561static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
7562                                SourceLocation Loc, bool IsCompare) {
7563  // The canonical way to check for a GNU null is with isNullPointerConstant,
7564  // but we use a bit of a hack here for speed; this is a relatively
7565  // hot path, and isNullPointerConstant is slow.
7566  bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
7567  bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
7568
7569  QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
7570
7571  // Avoid analyzing cases where the result will either be invalid (and
7572  // diagnosed as such) or entirely valid and not something to warn about.
7573  if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
7574      NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
7575    return;
7576
7577  // Comparison operations would not make sense with a null pointer no matter
7578  // what the other expression is.
7579  if (!IsCompare) {
7580    S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
7581        << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
7582        << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
7583    return;
7584  }
7585
7586  // The rest of the operations only make sense with a null pointer
7587  // if the other expression is a pointer.
7588  if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
7589      NonNullType->canDecayToPointerType())
7590    return;
7591
7592  S.Diag(Loc, diag::warn_null_in_comparison_operation)
7593      << LHSNull /* LHS is NULL */ << NonNullType
7594      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7595}
7596
7597static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS,
7598                                               ExprResult &RHS,
7599                                               SourceLocation Loc, bool IsDiv) {
7600  // Check for division/remainder by zero.
7601  llvm::APSInt RHSValue;
7602  if (!RHS.get()->isValueDependent() &&
7603      RHS.get()->EvaluateAsInt(RHSValue, S.Context) && RHSValue == 0)
7604    S.DiagRuntimeBehavior(Loc, RHS.get(),
7605                          S.PDiag(diag::warn_remainder_division_by_zero)
7606                            << IsDiv << RHS.get()->getSourceRange());
7607}
7608
7609QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
7610                                           SourceLocation Loc,
7611                                           bool IsCompAssign, bool IsDiv) {
7612  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
7613
7614  if (LHS.get()->getType()->isVectorType() ||
7615      RHS.get()->getType()->isVectorType())
7616    return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
7617                               /*AllowBothBool*/getLangOpts().AltiVec,
7618                               /*AllowBoolConversions*/false);
7619
7620  QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
7621  if (LHS.isInvalid() || RHS.isInvalid())
7622    return QualType();
7623
7624
7625  if (compType.isNull() || !compType->isArithmeticType())
7626    return InvalidOperands(Loc, LHS, RHS);
7627  if (IsDiv)
7628    DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, IsDiv);
7629  return compType;
7630}
7631
7632QualType Sema::CheckRemainderOperands(
7633  ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
7634  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
7635
7636  if (LHS.get()->getType()->isVectorType() ||
7637      RHS.get()->getType()->isVectorType()) {
7638    if (LHS.get()->getType()->hasIntegerRepresentation() &&
7639        RHS.get()->getType()->hasIntegerRepresentation())
7640      return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
7641                                 /*AllowBothBool*/getLangOpts().AltiVec,
7642                                 /*AllowBoolConversions*/false);
7643    return InvalidOperands(Loc, LHS, RHS);
7644  }
7645
7646  QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
7647  if (LHS.isInvalid() || RHS.isInvalid())
7648    return QualType();
7649
7650  if (compType.isNull() || !compType->isIntegerType())
7651    return InvalidOperands(Loc, LHS, RHS);
7652  DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, false /* IsDiv */);
7653  return compType;
7654}
7655
7656/// \brief Diagnose invalid arithmetic on two void pointers.
7657static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
7658                                                Expr *LHSExpr, Expr *RHSExpr) {
7659  S.Diag(Loc, S.getLangOpts().CPlusPlus
7660                ? diag::err_typecheck_pointer_arith_void_type
7661                : diag::ext_gnu_void_ptr)
7662    << 1 /* two pointers */ << LHSExpr->getSourceRange()
7663                            << RHSExpr->getSourceRange();
7664}
7665
7666/// \brief Diagnose invalid arithmetic on a void pointer.
7667static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
7668                                            Expr *Pointer) {
7669  S.Diag(Loc, S.getLangOpts().CPlusPlus
7670                ? diag::err_typecheck_pointer_arith_void_type
7671                : diag::ext_gnu_void_ptr)
7672    << 0 /* one pointer */ << Pointer->getSourceRange();
7673}
7674
7675/// \brief Diagnose invalid arithmetic on two function pointers.
7676static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
7677                                                    Expr *LHS, Expr *RHS) {
7678  assert(LHS->getType()->isAnyPointerType());
7679  assert(RHS->getType()->isAnyPointerType());
7680  S.Diag(Loc, S.getLangOpts().CPlusPlus
7681                ? diag::err_typecheck_pointer_arith_function_type
7682                : diag::ext_gnu_ptr_func_arith)
7683    << 1 /* two pointers */ << LHS->getType()->getPointeeType()
7684    // We only show the second type if it differs from the first.
7685    << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
7686                                                   RHS->getType())
7687    << RHS->getType()->getPointeeType()
7688    << LHS->getSourceRange() << RHS->getSourceRange();
7689}
7690
7691/// \brief Diagnose invalid arithmetic on a function pointer.
7692static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
7693                                                Expr *Pointer) {
7694  assert(Pointer->getType()->isAnyPointerType());
7695  S.Diag(Loc, S.getLangOpts().CPlusPlus
7696                ? diag::err_typecheck_pointer_arith_function_type
7697                : diag::ext_gnu_ptr_func_arith)
7698    << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
7699    << 0 /* one pointer, so only one type */
7700    << Pointer->getSourceRange();
7701}
7702
7703/// \brief Emit error if Operand is incomplete pointer type
7704///
7705/// \returns True if pointer has incomplete type
7706static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
7707                                                 Expr *Operand) {
7708  QualType ResType = Operand->getType();
7709  if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
7710    ResType = ResAtomicType->getValueType();
7711
7712  assert(ResType->isAnyPointerType() && !ResType->isDependentType());
7713  QualType PointeeTy = ResType->getPointeeType();
7714  return S.RequireCompleteType(Loc, PointeeTy,
7715                               diag::err_typecheck_arithmetic_incomplete_type,
7716                               PointeeTy, Operand->getSourceRange());
7717}
7718
7719/// \brief Check the validity of an arithmetic pointer operand.
7720///
7721/// If the operand has pointer type, this code will check for pointer types
7722/// which are invalid in arithmetic operations. These will be diagnosed
7723/// appropriately, including whether or not the use is supported as an
7724/// extension.
7725///
7726/// \returns True when the operand is valid to use (even if as an extension).
7727static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
7728                                            Expr *Operand) {
7729  QualType ResType = Operand->getType();
7730  if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
7731    ResType = ResAtomicType->getValueType();
7732
7733  if (!ResType->isAnyPointerType()) return true;
7734
7735  QualType PointeeTy = ResType->getPointeeType();
7736  if (PointeeTy->isVoidType()) {
7737    diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
7738    return !S.getLangOpts().CPlusPlus;
7739  }
7740  if (PointeeTy->isFunctionType()) {
7741    diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
7742    return !S.getLangOpts().CPlusPlus;
7743  }
7744
7745  if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
7746
7747  return true;
7748}
7749
7750/// \brief Check the validity of a binary arithmetic operation w.r.t. pointer
7751/// operands.
7752///
7753/// This routine will diagnose any invalid arithmetic on pointer operands much
7754/// like \see checkArithmeticOpPointerOperand. However, it has special logic
7755/// for emitting a single diagnostic even for operations where both LHS and RHS
7756/// are (potentially problematic) pointers.
7757///
7758/// \returns True when the operand is valid to use (even if as an extension).
7759static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
7760                                                Expr *LHSExpr, Expr *RHSExpr) {
7761  bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
7762  bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
7763  if (!isLHSPointer && !isRHSPointer) return true;
7764
7765  QualType LHSPointeeTy, RHSPointeeTy;
7766  if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
7767  if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
7768
7769  // if both are pointers check if operation is valid wrt address spaces
7770  if (S.getLangOpts().OpenCL && isLHSPointer && isRHSPointer) {
7771    const PointerType *lhsPtr = LHSExpr->getType()->getAs<PointerType>();
7772    const PointerType *rhsPtr = RHSExpr->getType()->getAs<PointerType>();
7773    if (!lhsPtr->isAddressSpaceOverlapping(*rhsPtr)) {
7774      S.Diag(Loc,
7775             diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
7776          << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/
7777          << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
7778      return false;
7779    }
7780  }
7781
7782  // Check for arithmetic on pointers to incomplete types.
7783  bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
7784  bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
7785  if (isLHSVoidPtr || isRHSVoidPtr) {
7786    if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
7787    else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
7788    else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
7789
7790    return !S.getLangOpts().CPlusPlus;
7791  }
7792
7793  bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
7794  bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
7795  if (isLHSFuncPtr || isRHSFuncPtr) {
7796    if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
7797    else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
7798                                                                RHSExpr);
7799    else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
7800
7801    return !S.getLangOpts().CPlusPlus;
7802  }
7803
7804  if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
7805    return false;
7806  if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
7807    return false;
7808
7809  return true;
7810}
7811
7812/// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
7813/// literal.
7814static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
7815                                  Expr *LHSExpr, Expr *RHSExpr) {
7816  StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
7817  Expr* IndexExpr = RHSExpr;
7818  if (!StrExpr) {
7819    StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
7820    IndexExpr = LHSExpr;
7821  }
7822
7823  bool IsStringPlusInt = StrExpr &&
7824      IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
7825  if (!IsStringPlusInt || IndexExpr->isValueDependent())
7826    return;
7827
7828  llvm::APSInt index;
7829  if (IndexExpr->EvaluateAsInt(index, Self.getASTContext())) {
7830    unsigned StrLenWithNull = StrExpr->getLength() + 1;
7831    if (index.isNonNegative() &&
7832        index <= llvm::APSInt(llvm::APInt(index.getBitWidth(), StrLenWithNull),
7833                              index.isUnsigned()))
7834      return;
7835  }
7836
7837  SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
7838  Self.Diag(OpLoc, diag::warn_string_plus_int)
7839      << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
7840
7841  // Only print a fixit for "str" + int, not for int + "str".
7842  if (IndexExpr == RHSExpr) {
7843    SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getLocEnd());
7844    Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
7845        << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&")
7846        << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
7847        << FixItHint::CreateInsertion(EndLoc, "]");
7848  } else
7849    Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
7850}
7851
7852/// \brief Emit a warning when adding a char literal to a string.
7853static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
7854                                   Expr *LHSExpr, Expr *RHSExpr) {
7855  const Expr *StringRefExpr = LHSExpr;
7856  const CharacterLiteral *CharExpr =
7857      dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts());
7858
7859  if (!CharExpr) {
7860    CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts());
7861    StringRefExpr = RHSExpr;
7862  }
7863
7864  if (!CharExpr || !StringRefExpr)
7865    return;
7866
7867  const QualType StringType = StringRefExpr->getType();
7868
7869  // Return if not a PointerType.
7870  if (!StringType->isAnyPointerType())
7871    return;
7872
7873  // Return if not a CharacterType.
7874  if (!StringType->getPointeeType()->isAnyCharacterType())
7875    return;
7876
7877  ASTContext &Ctx = Self.getASTContext();
7878  SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
7879
7880  const QualType CharType = CharExpr->getType();
7881  if (!CharType->isAnyCharacterType() &&
7882      CharType->isIntegerType() &&
7883      llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) {
7884    Self.Diag(OpLoc, diag::warn_string_plus_char)
7885        << DiagRange << Ctx.CharTy;
7886  } else {
7887    Self.Diag(OpLoc, diag::warn_string_plus_char)
7888        << DiagRange << CharExpr->getType();
7889  }
7890
7891  // Only print a fixit for str + char, not for char + str.
7892  if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) {
7893    SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getLocEnd());
7894    Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
7895        << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&")
7896        << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
7897        << FixItHint::CreateInsertion(EndLoc, "]");
7898  } else {
7899    Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
7900  }
7901}
7902
7903/// \brief Emit error when two pointers are incompatible.
7904static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
7905                                           Expr *LHSExpr, Expr *RHSExpr) {
7906  assert(LHSExpr->getType()->isAnyPointerType());
7907  assert(RHSExpr->getType()->isAnyPointerType());
7908  S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
7909    << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
7910    << RHSExpr->getSourceRange();
7911}
7912
7913// C99 6.5.6
7914QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS,
7915                                     SourceLocation Loc, BinaryOperatorKind Opc,
7916                                     QualType* CompLHSTy) {
7917  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
7918
7919  if (LHS.get()->getType()->isVectorType() ||
7920      RHS.get()->getType()->isVectorType()) {
7921    QualType compType = CheckVectorOperands(
7922        LHS, RHS, Loc, CompLHSTy,
7923        /*AllowBothBool*/getLangOpts().AltiVec,
7924        /*AllowBoolConversions*/getLangOpts().ZVector);
7925    if (CompLHSTy) *CompLHSTy = compType;
7926    return compType;
7927  }
7928
7929  QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
7930  if (LHS.isInvalid() || RHS.isInvalid())
7931    return QualType();
7932
7933  // Diagnose "string literal" '+' int and string '+' "char literal".
7934  if (Opc == BO_Add) {
7935    diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
7936    diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get());
7937  }
7938
7939  // handle the common case first (both operands are arithmetic).
7940  if (!compType.isNull() && compType->isArithmeticType()) {
7941    if (CompLHSTy) *CompLHSTy = compType;
7942    return compType;
7943  }
7944
7945  // Type-checking.  Ultimately the pointer's going to be in PExp;
7946  // note that we bias towards the LHS being the pointer.
7947  Expr *PExp = LHS.get(), *IExp = RHS.get();
7948
7949  bool isObjCPointer;
7950  if (PExp->getType()->isPointerType()) {
7951    isObjCPointer = false;
7952  } else if (PExp->getType()->isObjCObjectPointerType()) {
7953    isObjCPointer = true;
7954  } else {
7955    std::swap(PExp, IExp);
7956    if (PExp->getType()->isPointerType()) {
7957      isObjCPointer = false;
7958    } else if (PExp->getType()->isObjCObjectPointerType()) {
7959      isObjCPointer = true;
7960    } else {
7961      return InvalidOperands(Loc, LHS, RHS);
7962    }
7963  }
7964  assert(PExp->getType()->isAnyPointerType());
7965
7966  if (!IExp->getType()->isIntegerType())
7967    return InvalidOperands(Loc, LHS, RHS);
7968
7969  if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
7970    return QualType();
7971
7972  if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
7973    return QualType();
7974
7975  // Check array bounds for pointer arithemtic
7976  CheckArrayAccess(PExp, IExp);
7977
7978  if (CompLHSTy) {
7979    QualType LHSTy = Context.isPromotableBitField(LHS.get());
7980    if (LHSTy.isNull()) {
7981      LHSTy = LHS.get()->getType();
7982      if (LHSTy->isPromotableIntegerType())
7983        LHSTy = Context.getPromotedIntegerType(LHSTy);
7984    }
7985    *CompLHSTy = LHSTy;
7986  }
7987
7988  return PExp->getType();
7989}
7990
7991// C99 6.5.6
7992QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
7993                                        SourceLocation Loc,
7994                                        QualType* CompLHSTy) {
7995  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
7996
7997  if (LHS.get()->getType()->isVectorType() ||
7998      RHS.get()->getType()->isVectorType()) {
7999    QualType compType = CheckVectorOperands(
8000        LHS, RHS, Loc, CompLHSTy,
8001        /*AllowBothBool*/getLangOpts().AltiVec,
8002        /*AllowBoolConversions*/getLangOpts().ZVector);
8003    if (CompLHSTy) *CompLHSTy = compType;
8004    return compType;
8005  }
8006
8007  QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
8008  if (LHS.isInvalid() || RHS.isInvalid())
8009    return QualType();
8010
8011  // Enforce type constraints: C99 6.5.6p3.
8012
8013  // Handle the common case first (both operands are arithmetic).
8014  if (!compType.isNull() && compType->isArithmeticType()) {
8015    if (CompLHSTy) *CompLHSTy = compType;
8016    return compType;
8017  }
8018
8019  // Either ptr - int   or   ptr - ptr.
8020  if (LHS.get()->getType()->isAnyPointerType()) {
8021    QualType lpointee = LHS.get()->getType()->getPointeeType();
8022
8023    // Diagnose bad cases where we step over interface counts.
8024    if (LHS.get()->getType()->isObjCObjectPointerType() &&
8025        checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
8026      return QualType();
8027
8028    // The result type of a pointer-int computation is the pointer type.
8029    if (RHS.get()->getType()->isIntegerType()) {
8030      if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
8031        return QualType();
8032
8033      // Check array bounds for pointer arithemtic
8034      CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr,
8035                       /*AllowOnePastEnd*/true, /*IndexNegated*/true);
8036
8037      if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
8038      return LHS.get()->getType();
8039    }
8040
8041    // Handle pointer-pointer subtractions.
8042    if (const PointerType *RHSPTy
8043          = RHS.get()->getType()->getAs<PointerType>()) {
8044      QualType rpointee = RHSPTy->getPointeeType();
8045
8046      if (getLangOpts().CPlusPlus) {
8047        // Pointee types must be the same: C++ [expr.add]
8048        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
8049          diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
8050        }
8051      } else {
8052        // Pointee types must be compatible C99 6.5.6p3
8053        if (!Context.typesAreCompatible(
8054                Context.getCanonicalType(lpointee).getUnqualifiedType(),
8055                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
8056          diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
8057          return QualType();
8058        }
8059      }
8060
8061      if (!checkArithmeticBinOpPointerOperands(*this, Loc,
8062                                               LHS.get(), RHS.get()))
8063        return QualType();
8064
8065      // The pointee type may have zero size.  As an extension, a structure or
8066      // union may have zero size or an array may have zero length.  In this
8067      // case subtraction does not make sense.
8068      if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
8069        CharUnits ElementSize = Context.getTypeSizeInChars(rpointee);
8070        if (ElementSize.isZero()) {
8071          Diag(Loc,diag::warn_sub_ptr_zero_size_types)
8072            << rpointee.getUnqualifiedType()
8073            << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8074        }
8075      }
8076
8077      if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
8078      return Context.getPointerDiffType();
8079    }
8080  }
8081
8082  return InvalidOperands(Loc, LHS, RHS);
8083}
8084
8085static bool isScopedEnumerationType(QualType T) {
8086  if (const EnumType *ET = T->getAs<EnumType>())
8087    return ET->getDecl()->isScoped();
8088  return false;
8089}
8090
8091static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
8092                                   SourceLocation Loc, BinaryOperatorKind Opc,
8093                                   QualType LHSType) {
8094  // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
8095  // so skip remaining warnings as we don't want to modify values within Sema.
8096  if (S.getLangOpts().OpenCL)
8097    return;
8098
8099  llvm::APSInt Right;
8100  // Check right/shifter operand
8101  if (RHS.get()->isValueDependent() ||
8102      !RHS.get()->EvaluateAsInt(Right, S.Context))
8103    return;
8104
8105  if (Right.isNegative()) {
8106    S.DiagRuntimeBehavior(Loc, RHS.get(),
8107                          S.PDiag(diag::warn_shift_negative)
8108                            << RHS.get()->getSourceRange());
8109    return;
8110  }
8111  llvm::APInt LeftBits(Right.getBitWidth(),
8112                       S.Context.getTypeSize(LHS.get()->getType()));
8113  if (Right.uge(LeftBits)) {
8114    S.DiagRuntimeBehavior(Loc, RHS.get(),
8115                          S.PDiag(diag::warn_shift_gt_typewidth)
8116                            << RHS.get()->getSourceRange());
8117    return;
8118  }
8119  if (Opc != BO_Shl)
8120    return;
8121
8122  // When left shifting an ICE which is signed, we can check for overflow which
8123  // according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned
8124  // integers have defined behavior modulo one more than the maximum value
8125  // representable in the result type, so never warn for those.
8126  llvm::APSInt Left;
8127  if (LHS.get()->isValueDependent() ||
8128      LHSType->hasUnsignedIntegerRepresentation() ||
8129      !LHS.get()->EvaluateAsInt(Left, S.Context))
8130    return;
8131
8132  // If LHS does not have a signed type and non-negative value
8133  // then, the behavior is undefined. Warn about it.
8134  if (Left.isNegative()) {
8135    S.DiagRuntimeBehavior(Loc, LHS.get(),
8136                          S.PDiag(diag::warn_shift_lhs_negative)
8137                            << LHS.get()->getSourceRange());
8138    return;
8139  }
8140
8141  llvm::APInt ResultBits =
8142      static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
8143  if (LeftBits.uge(ResultBits))
8144    return;
8145  llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
8146  Result = Result.shl(Right);
8147
8148  // Print the bit representation of the signed integer as an unsigned
8149  // hexadecimal number.
8150  SmallString<40> HexResult;
8151  Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
8152
8153  // If we are only missing a sign bit, this is less likely to result in actual
8154  // bugs -- if the result is cast back to an unsigned type, it will have the
8155  // expected value. Thus we place this behind a different warning that can be
8156  // turned off separately if needed.
8157  if (LeftBits == ResultBits - 1) {
8158    S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
8159        << HexResult << LHSType
8160        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8161    return;
8162  }
8163
8164  S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
8165    << HexResult.str() << Result.getMinSignedBits() << LHSType
8166    << Left.getBitWidth() << LHS.get()->getSourceRange()
8167    << RHS.get()->getSourceRange();
8168}
8169
8170/// \brief Return the resulting type when an OpenCL vector is shifted
8171///        by a scalar or vector shift amount.
8172static QualType checkOpenCLVectorShift(Sema &S,
8173                                       ExprResult &LHS, ExprResult &RHS,
8174                                       SourceLocation Loc, bool IsCompAssign) {
8175  // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector.
8176  if (!LHS.get()->getType()->isVectorType()) {
8177    S.Diag(Loc, diag::err_shift_rhs_only_vector)
8178      << RHS.get()->getType() << LHS.get()->getType()
8179      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8180    return QualType();
8181  }
8182
8183  if (!IsCompAssign) {
8184    LHS = S.UsualUnaryConversions(LHS.get());
8185    if (LHS.isInvalid()) return QualType();
8186  }
8187
8188  RHS = S.UsualUnaryConversions(RHS.get());
8189  if (RHS.isInvalid()) return QualType();
8190
8191  QualType LHSType = LHS.get()->getType();
8192  const VectorType *LHSVecTy = LHSType->getAs<VectorType>();
8193  QualType LHSEleType = LHSVecTy->getElementType();
8194
8195  // Note that RHS might not be a vector.
8196  QualType RHSType = RHS.get()->getType();
8197  const VectorType *RHSVecTy = RHSType->getAs<VectorType>();
8198  QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType;
8199
8200  // OpenCL v1.1 s6.3.j says that the operands need to be integers.
8201  if (!LHSEleType->isIntegerType()) {
8202    S.Diag(Loc, diag::err_typecheck_expect_int)
8203      << LHS.get()->getType() << LHS.get()->getSourceRange();
8204    return QualType();
8205  }
8206
8207  if (!RHSEleType->isIntegerType()) {
8208    S.Diag(Loc, diag::err_typecheck_expect_int)
8209      << RHS.get()->getType() << RHS.get()->getSourceRange();
8210    return QualType();
8211  }
8212
8213  if (RHSVecTy) {
8214    // OpenCL v1.1 s6.3.j says that for vector types, the operators
8215    // are applied component-wise. So if RHS is a vector, then ensure
8216    // that the number of elements is the same as LHS...
8217    if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) {
8218      S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
8219        << LHS.get()->getType() << RHS.get()->getType()
8220        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8221      return QualType();
8222    }
8223  } else {
8224    // ...else expand RHS to match the number of elements in LHS.
8225    QualType VecTy =
8226      S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements());
8227    RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
8228  }
8229
8230  return LHSType;
8231}
8232
8233// C99 6.5.7
8234QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
8235                                  SourceLocation Loc, BinaryOperatorKind Opc,
8236                                  bool IsCompAssign) {
8237  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
8238
8239  // Vector shifts promote their scalar inputs to vector type.
8240  if (LHS.get()->getType()->isVectorType() ||
8241      RHS.get()->getType()->isVectorType()) {
8242    if (LangOpts.OpenCL)
8243      return checkOpenCLVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
8244    if (LangOpts.ZVector) {
8245      // The shift operators for the z vector extensions work basically
8246      // like OpenCL shifts, except that neither the LHS nor the RHS is
8247      // allowed to be a "vector bool".
8248      if (auto LHSVecType = LHS.get()->getType()->getAs<VectorType>())
8249        if (LHSVecType->getVectorKind() == VectorType::AltiVecBool)
8250          return InvalidOperands(Loc, LHS, RHS);
8251      if (auto RHSVecType = RHS.get()->getType()->getAs<VectorType>())
8252        if (RHSVecType->getVectorKind() == VectorType::AltiVecBool)
8253          return InvalidOperands(Loc, LHS, RHS);
8254      return checkOpenCLVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
8255    }
8256    return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
8257                               /*AllowBothBool*/true,
8258                               /*AllowBoolConversions*/false);
8259  }
8260
8261  // Shifts don't perform usual arithmetic conversions, they just do integer
8262  // promotions on each operand. C99 6.5.7p3
8263
8264  // For the LHS, do usual unary conversions, but then reset them away
8265  // if this is a compound assignment.
8266  ExprResult OldLHS = LHS;
8267  LHS = UsualUnaryConversions(LHS.get());
8268  if (LHS.isInvalid())
8269    return QualType();
8270  QualType LHSType = LHS.get()->getType();
8271  if (IsCompAssign) LHS = OldLHS;
8272
8273  // The RHS is simpler.
8274  RHS = UsualUnaryConversions(RHS.get());
8275  if (RHS.isInvalid())
8276    return QualType();
8277  QualType RHSType = RHS.get()->getType();
8278
8279  // C99 6.5.7p2: Each of the operands shall have integer type.
8280  if (!LHSType->hasIntegerRepresentation() ||
8281      !RHSType->hasIntegerRepresentation())
8282    return InvalidOperands(Loc, LHS, RHS);
8283
8284  // C++0x: Don't allow scoped enums. FIXME: Use something better than
8285  // hasIntegerRepresentation() above instead of this.
8286  if (isScopedEnumerationType(LHSType) ||
8287      isScopedEnumerationType(RHSType)) {
8288    return InvalidOperands(Loc, LHS, RHS);
8289  }
8290  // Sanity-check shift operands
8291  DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
8292
8293  // "The type of the result is that of the promoted left operand."
8294  return LHSType;
8295}
8296
8297static bool IsWithinTemplateSpecialization(Decl *D) {
8298  if (DeclContext *DC = D->getDeclContext()) {
8299    if (isa<ClassTemplateSpecializationDecl>(DC))
8300      return true;
8301    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
8302      return FD->isFunctionTemplateSpecialization();
8303  }
8304  return false;
8305}
8306
8307/// If two different enums are compared, raise a warning.
8308static void checkEnumComparison(Sema &S, SourceLocation Loc, Expr *LHS,
8309                                Expr *RHS) {
8310  QualType LHSStrippedType = LHS->IgnoreParenImpCasts()->getType();
8311  QualType RHSStrippedType = RHS->IgnoreParenImpCasts()->getType();
8312
8313  const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>();
8314  if (!LHSEnumType)
8315    return;
8316  const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>();
8317  if (!RHSEnumType)
8318    return;
8319
8320  // Ignore anonymous enums.
8321  if (!LHSEnumType->getDecl()->getIdentifier())
8322    return;
8323  if (!RHSEnumType->getDecl()->getIdentifier())
8324    return;
8325
8326  if (S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType))
8327    return;
8328
8329  S.Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
8330      << LHSStrippedType << RHSStrippedType
8331      << LHS->getSourceRange() << RHS->getSourceRange();
8332}
8333
8334/// \brief Diagnose bad pointer comparisons.
8335static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
8336                                              ExprResult &LHS, ExprResult &RHS,
8337                                              bool IsError) {
8338  S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
8339                      : diag::ext_typecheck_comparison_of_distinct_pointers)
8340    << LHS.get()->getType() << RHS.get()->getType()
8341    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8342}
8343
8344/// \brief Returns false if the pointers are converted to a composite type,
8345/// true otherwise.
8346static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
8347                                           ExprResult &LHS, ExprResult &RHS) {
8348  // C++ [expr.rel]p2:
8349  //   [...] Pointer conversions (4.10) and qualification
8350  //   conversions (4.4) are performed on pointer operands (or on
8351  //   a pointer operand and a null pointer constant) to bring
8352  //   them to their composite pointer type. [...]
8353  //
8354  // C++ [expr.eq]p1 uses the same notion for (in)equality
8355  // comparisons of pointers.
8356
8357  // C++ [expr.eq]p2:
8358  //   In addition, pointers to members can be compared, or a pointer to
8359  //   member and a null pointer constant. Pointer to member conversions
8360  //   (4.11) and qualification conversions (4.4) are performed to bring
8361  //   them to a common type. If one operand is a null pointer constant,
8362  //   the common type is the type of the other operand. Otherwise, the
8363  //   common type is a pointer to member type similar (4.4) to the type
8364  //   of one of the operands, with a cv-qualification signature (4.4)
8365  //   that is the union of the cv-qualification signatures of the operand
8366  //   types.
8367
8368  QualType LHSType = LHS.get()->getType();
8369  QualType RHSType = RHS.get()->getType();
8370  assert((LHSType->isPointerType() && RHSType->isPointerType()) ||
8371         (LHSType->isMemberPointerType() && RHSType->isMemberPointerType()));
8372
8373  bool NonStandardCompositeType = false;
8374  bool *BoolPtr = S.isSFINAEContext() ? nullptr : &NonStandardCompositeType;
8375  QualType T = S.FindCompositePointerType(Loc, LHS, RHS, BoolPtr);
8376  if (T.isNull()) {
8377    diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
8378    return true;
8379  }
8380
8381  if (NonStandardCompositeType)
8382    S.Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
8383      << LHSType << RHSType << T << LHS.get()->getSourceRange()
8384      << RHS.get()->getSourceRange();
8385
8386  LHS = S.ImpCastExprToType(LHS.get(), T, CK_BitCast);
8387  RHS = S.ImpCastExprToType(RHS.get(), T, CK_BitCast);
8388  return false;
8389}
8390
8391static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
8392                                                    ExprResult &LHS,
8393                                                    ExprResult &RHS,
8394                                                    bool IsError) {
8395  S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
8396                      : diag::ext_typecheck_comparison_of_fptr_to_void)
8397    << LHS.get()->getType() << RHS.get()->getType()
8398    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8399}
8400
8401static bool isObjCObjectLiteral(ExprResult &E) {
8402  switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
8403  case Stmt::ObjCArrayLiteralClass:
8404  case Stmt::ObjCDictionaryLiteralClass:
8405  case Stmt::ObjCStringLiteralClass:
8406  case Stmt::ObjCBoxedExprClass:
8407    return true;
8408  default:
8409    // Note that ObjCBoolLiteral is NOT an object literal!
8410    return false;
8411  }
8412}
8413
8414static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
8415  const ObjCObjectPointerType *Type =
8416    LHS->getType()->getAs<ObjCObjectPointerType>();
8417
8418  // If this is not actually an Objective-C object, bail out.
8419  if (!Type)
8420    return false;
8421
8422  // Get the LHS object's interface type.
8423  QualType InterfaceType = Type->getPointeeType();
8424
8425  // If the RHS isn't an Objective-C object, bail out.
8426  if (!RHS->getType()->isObjCObjectPointerType())
8427    return false;
8428
8429  // Try to find the -isEqual: method.
8430  Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
8431  ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
8432                                                      InterfaceType,
8433                                                      /*instance=*/true);
8434  if (!Method) {
8435    if (Type->isObjCIdType()) {
8436      // For 'id', just check the global pool.
8437      Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
8438                                                  /*receiverId=*/true);
8439    } else {
8440      // Check protocols.
8441      Method = S.LookupMethodInQualifiedType(IsEqualSel, Type,
8442                                             /*instance=*/true);
8443    }
8444  }
8445
8446  if (!Method)
8447    return false;
8448
8449  QualType T = Method->parameters()[0]->getType();
8450  if (!T->isObjCObjectPointerType())
8451    return false;
8452
8453  QualType R = Method->getReturnType();
8454  if (!R->isScalarType())
8455    return false;
8456
8457  return true;
8458}
8459
8460Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) {
8461  FromE = FromE->IgnoreParenImpCasts();
8462  switch (FromE->getStmtClass()) {
8463    default:
8464      break;
8465    case Stmt::ObjCStringLiteralClass:
8466      // "string literal"
8467      return LK_String;
8468    case Stmt::ObjCArrayLiteralClass:
8469      // "array literal"
8470      return LK_Array;
8471    case Stmt::ObjCDictionaryLiteralClass:
8472      // "dictionary literal"
8473      return LK_Dictionary;
8474    case Stmt::BlockExprClass:
8475      return LK_Block;
8476    case Stmt::ObjCBoxedExprClass: {
8477      Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens();
8478      switch (Inner->getStmtClass()) {
8479        case Stmt::IntegerLiteralClass:
8480        case Stmt::FloatingLiteralClass:
8481        case Stmt::CharacterLiteralClass:
8482        case Stmt::ObjCBoolLiteralExprClass:
8483        case Stmt::CXXBoolLiteralExprClass:
8484          // "numeric literal"
8485          return LK_Numeric;
8486        case Stmt::ImplicitCastExprClass: {
8487          CastKind CK = cast<CastExpr>(Inner)->getCastKind();
8488          // Boolean literals can be represented by implicit casts.
8489          if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast)
8490            return LK_Numeric;
8491          break;
8492        }
8493        default:
8494          break;
8495      }
8496      return LK_Boxed;
8497    }
8498  }
8499  return LK_None;
8500}
8501
8502static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
8503                                          ExprResult &LHS, ExprResult &RHS,
8504                                          BinaryOperator::Opcode Opc){
8505  Expr *Literal;
8506  Expr *Other;
8507  if (isObjCObjectLiteral(LHS)) {
8508    Literal = LHS.get();
8509    Other = RHS.get();
8510  } else {
8511    Literal = RHS.get();
8512    Other = LHS.get();
8513  }
8514
8515  // Don't warn on comparisons against nil.
8516  Other = Other->IgnoreParenCasts();
8517  if (Other->isNullPointerConstant(S.getASTContext(),
8518                                   Expr::NPC_ValueDependentIsNotNull))
8519    return;
8520
8521  // This should be kept in sync with warn_objc_literal_comparison.
8522  // LK_String should always be after the other literals, since it has its own
8523  // warning flag.
8524  Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal);
8525  assert(LiteralKind != Sema::LK_Block);
8526  if (LiteralKind == Sema::LK_None) {
8527    llvm_unreachable("Unknown Objective-C object literal kind");
8528  }
8529
8530  if (LiteralKind == Sema::LK_String)
8531    S.Diag(Loc, diag::warn_objc_string_literal_comparison)
8532      << Literal->getSourceRange();
8533  else
8534    S.Diag(Loc, diag::warn_objc_literal_comparison)
8535      << LiteralKind << Literal->getSourceRange();
8536
8537  if (BinaryOperator::isEqualityOp(Opc) &&
8538      hasIsEqualMethod(S, LHS.get(), RHS.get())) {
8539    SourceLocation Start = LHS.get()->getLocStart();
8540    SourceLocation End = S.getLocForEndOfToken(RHS.get()->getLocEnd());
8541    CharSourceRange OpRange =
8542      CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
8543
8544    S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
8545      << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
8546      << FixItHint::CreateReplacement(OpRange, " isEqual:")
8547      << FixItHint::CreateInsertion(End, "]");
8548  }
8549}
8550
8551static void diagnoseLogicalNotOnLHSofComparison(Sema &S, ExprResult &LHS,
8552                                                ExprResult &RHS,
8553                                                SourceLocation Loc,
8554                                                BinaryOperatorKind Opc) {
8555  // Check that left hand side is !something.
8556  UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts());
8557  if (!UO || UO->getOpcode() != UO_LNot) return;
8558
8559  // Only check if the right hand side is non-bool arithmetic type.
8560  if (RHS.get()->isKnownToHaveBooleanValue()) return;
8561
8562  // Make sure that the something in !something is not bool.
8563  Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
8564  if (SubExpr->isKnownToHaveBooleanValue()) return;
8565
8566  // Emit warning.
8567  S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_comparison)
8568      << Loc;
8569
8570  // First note suggest !(x < y)
8571  SourceLocation FirstOpen = SubExpr->getLocStart();
8572  SourceLocation FirstClose = RHS.get()->getLocEnd();
8573  FirstClose = S.getLocForEndOfToken(FirstClose);
8574  if (FirstClose.isInvalid())
8575    FirstOpen = SourceLocation();
8576  S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
8577      << FixItHint::CreateInsertion(FirstOpen, "(")
8578      << FixItHint::CreateInsertion(FirstClose, ")");
8579
8580  // Second note suggests (!x) < y
8581  SourceLocation SecondOpen = LHS.get()->getLocStart();
8582  SourceLocation SecondClose = LHS.get()->getLocEnd();
8583  SecondClose = S.getLocForEndOfToken(SecondClose);
8584  if (SecondClose.isInvalid())
8585    SecondOpen = SourceLocation();
8586  S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
8587      << FixItHint::CreateInsertion(SecondOpen, "(")
8588      << FixItHint::CreateInsertion(SecondClose, ")");
8589}
8590
8591// Get the decl for a simple expression: a reference to a variable,
8592// an implicit C++ field reference, or an implicit ObjC ivar reference.
8593static ValueDecl *getCompareDecl(Expr *E) {
8594  if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(E))
8595    return DR->getDecl();
8596  if (ObjCIvarRefExpr* Ivar = dyn_cast<ObjCIvarRefExpr>(E)) {
8597    if (Ivar->isFreeIvar())
8598      return Ivar->getDecl();
8599  }
8600  if (MemberExpr* Mem = dyn_cast<MemberExpr>(E)) {
8601    if (Mem->isImplicitAccess())
8602      return Mem->getMemberDecl();
8603  }
8604  return nullptr;
8605}
8606
8607// C99 6.5.8, C++ [expr.rel]
8608QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
8609                                    SourceLocation Loc, BinaryOperatorKind Opc,
8610                                    bool IsRelational) {
8611  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/true);
8612
8613  // Handle vector comparisons separately.
8614  if (LHS.get()->getType()->isVectorType() ||
8615      RHS.get()->getType()->isVectorType())
8616    return CheckVectorCompareOperands(LHS, RHS, Loc, IsRelational);
8617
8618  QualType LHSType = LHS.get()->getType();
8619  QualType RHSType = RHS.get()->getType();
8620
8621  Expr *LHSStripped = LHS.get()->IgnoreParenImpCasts();
8622  Expr *RHSStripped = RHS.get()->IgnoreParenImpCasts();
8623
8624  checkEnumComparison(*this, Loc, LHS.get(), RHS.get());
8625  diagnoseLogicalNotOnLHSofComparison(*this, LHS, RHS, Loc, Opc);
8626
8627  if (!LHSType->hasFloatingRepresentation() &&
8628      !(LHSType->isBlockPointerType() && IsRelational) &&
8629      !LHS.get()->getLocStart().isMacroID() &&
8630      !RHS.get()->getLocStart().isMacroID() &&
8631      ActiveTemplateInstantiations.empty()) {
8632    // For non-floating point types, check for self-comparisons of the form
8633    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
8634    // often indicate logic errors in the program.
8635    //
8636    // NOTE: Don't warn about comparison expressions resulting from macro
8637    // expansion. Also don't warn about comparisons which are only self
8638    // comparisons within a template specialization. The warnings should catch
8639    // obvious cases in the definition of the template anyways. The idea is to
8640    // warn when the typed comparison operator will always evaluate to the same
8641    // result.
8642    ValueDecl *DL = getCompareDecl(LHSStripped);
8643    ValueDecl *DR = getCompareDecl(RHSStripped);
8644    if (DL && DR && DL == DR && !IsWithinTemplateSpecialization(DL)) {
8645      DiagRuntimeBehavior(Loc, nullptr, PDiag(diag::warn_comparison_always)
8646                          << 0 // self-
8647                          << (Opc == BO_EQ
8648                              || Opc == BO_LE
8649                              || Opc == BO_GE));
8650    } else if (DL && DR && LHSType->isArrayType() && RHSType->isArrayType() &&
8651               !DL->getType()->isReferenceType() &&
8652               !DR->getType()->isReferenceType()) {
8653        // what is it always going to eval to?
8654        char always_evals_to;
8655        switch(Opc) {
8656        case BO_EQ: // e.g. array1 == array2
8657          always_evals_to = 0; // false
8658          break;
8659        case BO_NE: // e.g. array1 != array2
8660          always_evals_to = 1; // true
8661          break;
8662        default:
8663          // best we can say is 'a constant'
8664          always_evals_to = 2; // e.g. array1 <= array2
8665          break;
8666        }
8667        DiagRuntimeBehavior(Loc, nullptr, PDiag(diag::warn_comparison_always)
8668                            << 1 // array
8669                            << always_evals_to);
8670    }
8671
8672    if (isa<CastExpr>(LHSStripped))
8673      LHSStripped = LHSStripped->IgnoreParenCasts();
8674    if (isa<CastExpr>(RHSStripped))
8675      RHSStripped = RHSStripped->IgnoreParenCasts();
8676
8677    // Warn about comparisons against a string constant (unless the other
8678    // operand is null), the user probably wants strcmp.
8679    Expr *literalString = nullptr;
8680    Expr *literalStringStripped = nullptr;
8681    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
8682        !RHSStripped->isNullPointerConstant(Context,
8683                                            Expr::NPC_ValueDependentIsNull)) {
8684      literalString = LHS.get();
8685      literalStringStripped = LHSStripped;
8686    } else if ((isa<StringLiteral>(RHSStripped) ||
8687                isa<ObjCEncodeExpr>(RHSStripped)) &&
8688               !LHSStripped->isNullPointerConstant(Context,
8689                                            Expr::NPC_ValueDependentIsNull)) {
8690      literalString = RHS.get();
8691      literalStringStripped = RHSStripped;
8692    }
8693
8694    if (literalString) {
8695      DiagRuntimeBehavior(Loc, nullptr,
8696        PDiag(diag::warn_stringcompare)
8697          << isa<ObjCEncodeExpr>(literalStringStripped)
8698          << literalString->getSourceRange());
8699    }
8700  }
8701
8702  // C99 6.5.8p3 / C99 6.5.9p4
8703  UsualArithmeticConversions(LHS, RHS);
8704  if (LHS.isInvalid() || RHS.isInvalid())
8705    return QualType();
8706
8707  LHSType = LHS.get()->getType();
8708  RHSType = RHS.get()->getType();
8709
8710  // The result of comparisons is 'bool' in C++, 'int' in C.
8711  QualType ResultTy = Context.getLogicalOperationType();
8712
8713  if (IsRelational) {
8714    if (LHSType->isRealType() && RHSType->isRealType())
8715      return ResultTy;
8716  } else {
8717    // Check for comparisons of floating point operands using != and ==.
8718    if (LHSType->hasFloatingRepresentation())
8719      CheckFloatComparison(Loc, LHS.get(), RHS.get());
8720
8721    if (LHSType->isArithmeticType() && RHSType->isArithmeticType())
8722      return ResultTy;
8723  }
8724
8725  const Expr::NullPointerConstantKind LHSNullKind =
8726      LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
8727  const Expr::NullPointerConstantKind RHSNullKind =
8728      RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
8729  bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull;
8730  bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull;
8731
8732  if (!IsRelational && LHSIsNull != RHSIsNull) {
8733    bool IsEquality = Opc == BO_EQ;
8734    if (RHSIsNull)
8735      DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality,
8736                                   RHS.get()->getSourceRange());
8737    else
8738      DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality,
8739                                   LHS.get()->getSourceRange());
8740  }
8741
8742  // All of the following pointer-related warnings are GCC extensions, except
8743  // when handling null pointer constants.
8744  if (LHSType->isPointerType() && RHSType->isPointerType()) { // C99 6.5.8p2
8745    QualType LCanPointeeTy =
8746      LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
8747    QualType RCanPointeeTy =
8748      RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
8749
8750    if (getLangOpts().CPlusPlus) {
8751      if (LCanPointeeTy == RCanPointeeTy)
8752        return ResultTy;
8753      if (!IsRelational &&
8754          (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
8755        // Valid unless comparison between non-null pointer and function pointer
8756        // This is a gcc extension compatibility comparison.
8757        // In a SFINAE context, we treat this as a hard error to maintain
8758        // conformance with the C++ standard.
8759        if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
8760            && !LHSIsNull && !RHSIsNull) {
8761          diagnoseFunctionPointerToVoidComparison(
8762              *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
8763
8764          if (isSFINAEContext())
8765            return QualType();
8766
8767          RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
8768          return ResultTy;
8769        }
8770      }
8771
8772      if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
8773        return QualType();
8774      else
8775        return ResultTy;
8776    }
8777    // C99 6.5.9p2 and C99 6.5.8p2
8778    if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
8779                                   RCanPointeeTy.getUnqualifiedType())) {
8780      // Valid unless a relational comparison of function pointers
8781      if (IsRelational && LCanPointeeTy->isFunctionType()) {
8782        Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
8783          << LHSType << RHSType << LHS.get()->getSourceRange()
8784          << RHS.get()->getSourceRange();
8785      }
8786    } else if (!IsRelational &&
8787               (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
8788      // Valid unless comparison between non-null pointer and function pointer
8789      if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
8790          && !LHSIsNull && !RHSIsNull)
8791        diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
8792                                                /*isError*/false);
8793    } else {
8794      // Invalid
8795      diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
8796    }
8797    if (LCanPointeeTy != RCanPointeeTy) {
8798      // Treat NULL constant as a special case in OpenCL.
8799      if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) {
8800        const PointerType *LHSPtr = LHSType->getAs<PointerType>();
8801        if (!LHSPtr->isAddressSpaceOverlapping(*RHSType->getAs<PointerType>())) {
8802          Diag(Loc,
8803               diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
8804              << LHSType << RHSType << 0 /* comparison */
8805              << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8806        }
8807      }
8808      unsigned AddrSpaceL = LCanPointeeTy.getAddressSpace();
8809      unsigned AddrSpaceR = RCanPointeeTy.getAddressSpace();
8810      CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion
8811                                               : CK_BitCast;
8812      if (LHSIsNull && !RHSIsNull)
8813        LHS = ImpCastExprToType(LHS.get(), RHSType, Kind);
8814      else
8815        RHS = ImpCastExprToType(RHS.get(), LHSType, Kind);
8816    }
8817    return ResultTy;
8818  }
8819
8820  if (getLangOpts().CPlusPlus) {
8821    // Comparison of nullptr_t with itself.
8822    if (LHSType->isNullPtrType() && RHSType->isNullPtrType())
8823      return ResultTy;
8824
8825    // Comparison of pointers with null pointer constants and equality
8826    // comparisons of member pointers to null pointer constants.
8827    if (RHSIsNull &&
8828        ((LHSType->isAnyPointerType() || LHSType->isNullPtrType()) ||
8829         (!IsRelational &&
8830          (LHSType->isMemberPointerType() || LHSType->isBlockPointerType())))) {
8831      RHS = ImpCastExprToType(RHS.get(), LHSType,
8832                        LHSType->isMemberPointerType()
8833                          ? CK_NullToMemberPointer
8834                          : CK_NullToPointer);
8835      return ResultTy;
8836    }
8837    if (LHSIsNull &&
8838        ((RHSType->isAnyPointerType() || RHSType->isNullPtrType()) ||
8839         (!IsRelational &&
8840          (RHSType->isMemberPointerType() || RHSType->isBlockPointerType())))) {
8841      LHS = ImpCastExprToType(LHS.get(), RHSType,
8842                        RHSType->isMemberPointerType()
8843                          ? CK_NullToMemberPointer
8844                          : CK_NullToPointer);
8845      return ResultTy;
8846    }
8847
8848    // Comparison of member pointers.
8849    if (!IsRelational &&
8850        LHSType->isMemberPointerType() && RHSType->isMemberPointerType()) {
8851      if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
8852        return QualType();
8853      else
8854        return ResultTy;
8855    }
8856
8857    // Handle scoped enumeration types specifically, since they don't promote
8858    // to integers.
8859    if (LHS.get()->getType()->isEnumeralType() &&
8860        Context.hasSameUnqualifiedType(LHS.get()->getType(),
8861                                       RHS.get()->getType()))
8862      return ResultTy;
8863  }
8864
8865  // Handle block pointer types.
8866  if (!IsRelational && LHSType->isBlockPointerType() &&
8867      RHSType->isBlockPointerType()) {
8868    QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
8869    QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
8870
8871    if (!LHSIsNull && !RHSIsNull &&
8872        !Context.typesAreCompatible(lpointee, rpointee)) {
8873      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
8874        << LHSType << RHSType << LHS.get()->getSourceRange()
8875        << RHS.get()->getSourceRange();
8876    }
8877    RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
8878    return ResultTy;
8879  }
8880
8881  // Allow block pointers to be compared with null pointer constants.
8882  if (!IsRelational
8883      && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
8884          || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
8885    if (!LHSIsNull && !RHSIsNull) {
8886      if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
8887             ->getPointeeType()->isVoidType())
8888            || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
8889                ->getPointeeType()->isVoidType())))
8890        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
8891          << LHSType << RHSType << LHS.get()->getSourceRange()
8892          << RHS.get()->getSourceRange();
8893    }
8894    if (LHSIsNull && !RHSIsNull)
8895      LHS = ImpCastExprToType(LHS.get(), RHSType,
8896                              RHSType->isPointerType() ? CK_BitCast
8897                                : CK_AnyPointerToBlockPointerCast);
8898    else
8899      RHS = ImpCastExprToType(RHS.get(), LHSType,
8900                              LHSType->isPointerType() ? CK_BitCast
8901                                : CK_AnyPointerToBlockPointerCast);
8902    return ResultTy;
8903  }
8904
8905  if (LHSType->isObjCObjectPointerType() ||
8906      RHSType->isObjCObjectPointerType()) {
8907    const PointerType *LPT = LHSType->getAs<PointerType>();
8908    const PointerType *RPT = RHSType->getAs<PointerType>();
8909    if (LPT || RPT) {
8910      bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
8911      bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
8912
8913      if (!LPtrToVoid && !RPtrToVoid &&
8914          !Context.typesAreCompatible(LHSType, RHSType)) {
8915        diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
8916                                          /*isError*/false);
8917      }
8918      if (LHSIsNull && !RHSIsNull) {
8919        Expr *E = LHS.get();
8920        if (getLangOpts().ObjCAutoRefCount)
8921          CheckObjCARCConversion(SourceRange(), RHSType, E, CCK_ImplicitConversion);
8922        LHS = ImpCastExprToType(E, RHSType,
8923                                RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
8924      }
8925      else {
8926        Expr *E = RHS.get();
8927        if (getLangOpts().ObjCAutoRefCount)
8928          CheckObjCARCConversion(SourceRange(), LHSType, E, CCK_ImplicitConversion, false,
8929                                 Opc);
8930        RHS = ImpCastExprToType(E, LHSType,
8931                                LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
8932      }
8933      return ResultTy;
8934    }
8935    if (LHSType->isObjCObjectPointerType() &&
8936        RHSType->isObjCObjectPointerType()) {
8937      if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
8938        diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
8939                                          /*isError*/false);
8940      if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
8941        diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
8942
8943      if (LHSIsNull && !RHSIsNull)
8944        LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
8945      else
8946        RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
8947      return ResultTy;
8948    }
8949  }
8950  if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
8951      (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
8952    unsigned DiagID = 0;
8953    bool isError = false;
8954    if (LangOpts.DebuggerSupport) {
8955      // Under a debugger, allow the comparison of pointers to integers,
8956      // since users tend to want to compare addresses.
8957    } else if ((LHSIsNull && LHSType->isIntegerType()) ||
8958        (RHSIsNull && RHSType->isIntegerType())) {
8959      if (IsRelational && !getLangOpts().CPlusPlus)
8960        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
8961    } else if (IsRelational && !getLangOpts().CPlusPlus)
8962      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
8963    else if (getLangOpts().CPlusPlus) {
8964      DiagID = diag::err_typecheck_comparison_of_pointer_integer;
8965      isError = true;
8966    } else
8967      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
8968
8969    if (DiagID) {
8970      Diag(Loc, DiagID)
8971        << LHSType << RHSType << LHS.get()->getSourceRange()
8972        << RHS.get()->getSourceRange();
8973      if (isError)
8974        return QualType();
8975    }
8976
8977    if (LHSType->isIntegerType())
8978      LHS = ImpCastExprToType(LHS.get(), RHSType,
8979                        LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
8980    else
8981      RHS = ImpCastExprToType(RHS.get(), LHSType,
8982                        RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
8983    return ResultTy;
8984  }
8985
8986  // Handle block pointers.
8987  if (!IsRelational && RHSIsNull
8988      && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
8989    RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
8990    return ResultTy;
8991  }
8992  if (!IsRelational && LHSIsNull
8993      && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
8994    LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
8995    return ResultTy;
8996  }
8997
8998  return InvalidOperands(Loc, LHS, RHS);
8999}
9000
9001
9002// Return a signed type that is of identical size and number of elements.
9003// For floating point vectors, return an integer type of identical size
9004// and number of elements.
9005QualType Sema::GetSignedVectorType(QualType V) {
9006  const VectorType *VTy = V->getAs<VectorType>();
9007  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
9008  if (TypeSize == Context.getTypeSize(Context.CharTy))
9009    return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
9010  else if (TypeSize == Context.getTypeSize(Context.ShortTy))
9011    return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
9012  else if (TypeSize == Context.getTypeSize(Context.IntTy))
9013    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
9014  else if (TypeSize == Context.getTypeSize(Context.LongTy))
9015    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
9016  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
9017         "Unhandled vector element size in vector compare");
9018  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
9019}
9020
9021/// CheckVectorCompareOperands - vector comparisons are a clang extension that
9022/// operates on extended vector types.  Instead of producing an IntTy result,
9023/// like a scalar comparison, a vector comparison produces a vector of integer
9024/// types.
9025QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
9026                                          SourceLocation Loc,
9027                                          bool IsRelational) {
9028  // Check to make sure we're operating on vectors of the same type and width,
9029  // Allowing one side to be a scalar of element type.
9030  QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false,
9031                              /*AllowBothBool*/true,
9032                              /*AllowBoolConversions*/getLangOpts().ZVector);
9033  if (vType.isNull())
9034    return vType;
9035
9036  QualType LHSType = LHS.get()->getType();
9037
9038  // If AltiVec, the comparison results in a numeric type, i.e.
9039  // bool for C++, int for C
9040  if (getLangOpts().AltiVec &&
9041      vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
9042    return Context.getLogicalOperationType();
9043
9044  // For non-floating point types, check for self-comparisons of the form
9045  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
9046  // often indicate logic errors in the program.
9047  if (!LHSType->hasFloatingRepresentation() &&
9048      ActiveTemplateInstantiations.empty()) {
9049    if (DeclRefExpr* DRL
9050          = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParenImpCasts()))
9051      if (DeclRefExpr* DRR
9052            = dyn_cast<DeclRefExpr>(RHS.get()->IgnoreParenImpCasts()))
9053        if (DRL->getDecl() == DRR->getDecl())
9054          DiagRuntimeBehavior(Loc, nullptr,
9055                              PDiag(diag::warn_comparison_always)
9056                                << 0 // self-
9057                                << 2 // "a constant"
9058                              );
9059  }
9060
9061  // Check for comparisons of floating point operands using != and ==.
9062  if (!IsRelational && LHSType->hasFloatingRepresentation()) {
9063    assert (RHS.get()->getType()->hasFloatingRepresentation());
9064    CheckFloatComparison(Loc, LHS.get(), RHS.get());
9065  }
9066
9067  // Return a signed type for the vector.
9068  return GetSignedVectorType(LHSType);
9069}
9070
9071QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
9072                                          SourceLocation Loc) {
9073  // Ensure that either both operands are of the same vector type, or
9074  // one operand is of a vector type and the other is of its element type.
9075  QualType vType = CheckVectorOperands(LHS, RHS, Loc, false,
9076                                       /*AllowBothBool*/true,
9077                                       /*AllowBoolConversions*/false);
9078  if (vType.isNull())
9079    return InvalidOperands(Loc, LHS, RHS);
9080  if (getLangOpts().OpenCL && getLangOpts().OpenCLVersion < 120 &&
9081      vType->hasFloatingRepresentation())
9082    return InvalidOperands(Loc, LHS, RHS);
9083
9084  return GetSignedVectorType(LHS.get()->getType());
9085}
9086
9087inline QualType Sema::CheckBitwiseOperands(
9088  ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
9089  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
9090
9091  if (LHS.get()->getType()->isVectorType() ||
9092      RHS.get()->getType()->isVectorType()) {
9093    if (LHS.get()->getType()->hasIntegerRepresentation() &&
9094        RHS.get()->getType()->hasIntegerRepresentation())
9095      return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
9096                        /*AllowBothBool*/true,
9097                        /*AllowBoolConversions*/getLangOpts().ZVector);
9098    return InvalidOperands(Loc, LHS, RHS);
9099  }
9100
9101  ExprResult LHSResult = LHS, RHSResult = RHS;
9102  QualType compType = UsualArithmeticConversions(LHSResult, RHSResult,
9103                                                 IsCompAssign);
9104  if (LHSResult.isInvalid() || RHSResult.isInvalid())
9105    return QualType();
9106  LHS = LHSResult.get();
9107  RHS = RHSResult.get();
9108
9109  if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
9110    return compType;
9111  return InvalidOperands(Loc, LHS, RHS);
9112}
9113
9114// C99 6.5.[13,14]
9115inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS,
9116                                           SourceLocation Loc,
9117                                           BinaryOperatorKind Opc) {
9118  // Check vector operands differently.
9119  if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
9120    return CheckVectorLogicalOperands(LHS, RHS, Loc);
9121
9122  // Diagnose cases where the user write a logical and/or but probably meant a
9123  // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
9124  // is a constant.
9125  if (LHS.get()->getType()->isIntegerType() &&
9126      !LHS.get()->getType()->isBooleanType() &&
9127      RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
9128      // Don't warn in macros or template instantiations.
9129      !Loc.isMacroID() && ActiveTemplateInstantiations.empty()) {
9130    // If the RHS can be constant folded, and if it constant folds to something
9131    // that isn't 0 or 1 (which indicate a potential logical operation that
9132    // happened to fold to true/false) then warn.
9133    // Parens on the RHS are ignored.
9134    llvm::APSInt Result;
9135    if (RHS.get()->EvaluateAsInt(Result, Context))
9136      if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType() &&
9137           !RHS.get()->getExprLoc().isMacroID()) ||
9138          (Result != 0 && Result != 1)) {
9139        Diag(Loc, diag::warn_logical_instead_of_bitwise)
9140          << RHS.get()->getSourceRange()
9141          << (Opc == BO_LAnd ? "&&" : "||");
9142        // Suggest replacing the logical operator with the bitwise version
9143        Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
9144            << (Opc == BO_LAnd ? "&" : "|")
9145            << FixItHint::CreateReplacement(SourceRange(
9146                                                 Loc, getLocForEndOfToken(Loc)),
9147                                            Opc == BO_LAnd ? "&" : "|");
9148        if (Opc == BO_LAnd)
9149          // Suggest replacing "Foo() && kNonZero" with "Foo()"
9150          Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
9151              << FixItHint::CreateRemoval(
9152                  SourceRange(getLocForEndOfToken(LHS.get()->getLocEnd()),
9153                              RHS.get()->getLocEnd()));
9154      }
9155  }
9156
9157  if (!Context.getLangOpts().CPlusPlus) {
9158    // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
9159    // not operate on the built-in scalar and vector float types.
9160    if (Context.getLangOpts().OpenCL &&
9161        Context.getLangOpts().OpenCLVersion < 120) {
9162      if (LHS.get()->getType()->isFloatingType() ||
9163          RHS.get()->getType()->isFloatingType())
9164        return InvalidOperands(Loc, LHS, RHS);
9165    }
9166
9167    LHS = UsualUnaryConversions(LHS.get());
9168    if (LHS.isInvalid())
9169      return QualType();
9170
9171    RHS = UsualUnaryConversions(RHS.get());
9172    if (RHS.isInvalid())
9173      return QualType();
9174
9175    if (!LHS.get()->getType()->isScalarType() ||
9176        !RHS.get()->getType()->isScalarType())
9177      return InvalidOperands(Loc, LHS, RHS);
9178
9179    return Context.IntTy;
9180  }
9181
9182  // The following is safe because we only use this method for
9183  // non-overloadable operands.
9184
9185  // C++ [expr.log.and]p1
9186  // C++ [expr.log.or]p1
9187  // The operands are both contextually converted to type bool.
9188  ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
9189  if (LHSRes.isInvalid())
9190    return InvalidOperands(Loc, LHS, RHS);
9191  LHS = LHSRes;
9192
9193  ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
9194  if (RHSRes.isInvalid())
9195    return InvalidOperands(Loc, LHS, RHS);
9196  RHS = RHSRes;
9197
9198  // C++ [expr.log.and]p2
9199  // C++ [expr.log.or]p2
9200  // The result is a bool.
9201  return Context.BoolTy;
9202}
9203
9204static bool IsReadonlyMessage(Expr *E, Sema &S) {
9205  const MemberExpr *ME = dyn_cast<MemberExpr>(E);
9206  if (!ME) return false;
9207  if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
9208  ObjCMessageExpr *Base =
9209    dyn_cast<ObjCMessageExpr>(ME->getBase()->IgnoreParenImpCasts());
9210  if (!Base) return false;
9211  return Base->getMethodDecl() != nullptr;
9212}
9213
9214/// Is the given expression (which must be 'const') a reference to a
9215/// variable which was originally non-const, but which has become
9216/// 'const' due to being captured within a block?
9217enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
9218static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
9219  assert(E->isLValue() && E->getType().isConstQualified());
9220  E = E->IgnoreParens();
9221
9222  // Must be a reference to a declaration from an enclosing scope.
9223  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
9224  if (!DRE) return NCCK_None;
9225  if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None;
9226
9227  // The declaration must be a variable which is not declared 'const'.
9228  VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
9229  if (!var) return NCCK_None;
9230  if (var->getType().isConstQualified()) return NCCK_None;
9231  assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
9232
9233  // Decide whether the first capture was for a block or a lambda.
9234  DeclContext *DC = S.CurContext, *Prev = nullptr;
9235  while (DC != var->getDeclContext()) {
9236    Prev = DC;
9237    DC = DC->getParent();
9238  }
9239  // Unless we have an init-capture, we've gone one step too far.
9240  if (!var->isInitCapture())
9241    DC = Prev;
9242  return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
9243}
9244
9245static bool IsTypeModifiable(QualType Ty, bool IsDereference) {
9246  Ty = Ty.getNonReferenceType();
9247  if (IsDereference && Ty->isPointerType())
9248    Ty = Ty->getPointeeType();
9249  return !Ty.isConstQualified();
9250}
9251
9252/// Emit the "read-only variable not assignable" error and print notes to give
9253/// more information about why the variable is not assignable, such as pointing
9254/// to the declaration of a const variable, showing that a method is const, or
9255/// that the function is returning a const reference.
9256static void DiagnoseConstAssignment(Sema &S, const Expr *E,
9257                                    SourceLocation Loc) {
9258  // Update err_typecheck_assign_const and note_typecheck_assign_const
9259  // when this enum is changed.
9260  enum {
9261    ConstFunction,
9262    ConstVariable,
9263    ConstMember,
9264    ConstMethod,
9265    ConstUnknown,  // Keep as last element
9266  };
9267
9268  SourceRange ExprRange = E->getSourceRange();
9269
9270  // Only emit one error on the first const found.  All other consts will emit
9271  // a note to the error.
9272  bool DiagnosticEmitted = false;
9273
9274  // Track if the current expression is the result of a derefence, and if the
9275  // next checked expression is the result of a derefence.
9276  bool IsDereference = false;
9277  bool NextIsDereference = false;
9278
9279  // Loop to process MemberExpr chains.
9280  while (true) {
9281    IsDereference = NextIsDereference;
9282    NextIsDereference = false;
9283
9284    E = E->IgnoreParenImpCasts();
9285    if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
9286      NextIsDereference = ME->isArrow();
9287      const ValueDecl *VD = ME->getMemberDecl();
9288      if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
9289        // Mutable fields can be modified even if the class is const.
9290        if (Field->isMutable()) {
9291          assert(DiagnosticEmitted && "Expected diagnostic not emitted.");
9292          break;
9293        }
9294
9295        if (!IsTypeModifiable(Field->getType(), IsDereference)) {
9296          if (!DiagnosticEmitted) {
9297            S.Diag(Loc, diag::err_typecheck_assign_const)
9298                << ExprRange << ConstMember << false /*static*/ << Field
9299                << Field->getType();
9300            DiagnosticEmitted = true;
9301          }
9302          S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
9303              << ConstMember << false /*static*/ << Field << Field->getType()
9304              << Field->getSourceRange();
9305        }
9306        E = ME->getBase();
9307        continue;
9308      } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(VD)) {
9309        if (VDecl->getType().isConstQualified()) {
9310          if (!DiagnosticEmitted) {
9311            S.Diag(Loc, diag::err_typecheck_assign_const)
9312                << ExprRange << ConstMember << true /*static*/ << VDecl
9313                << VDecl->getType();
9314            DiagnosticEmitted = true;
9315          }
9316          S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
9317              << ConstMember << true /*static*/ << VDecl << VDecl->getType()
9318              << VDecl->getSourceRange();
9319        }
9320        // Static fields do not inherit constness from parents.
9321        break;
9322      }
9323      break;
9324    } // End MemberExpr
9325    break;
9326  }
9327
9328  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
9329    // Function calls
9330    const FunctionDecl *FD = CE->getDirectCallee();
9331    if (FD && !IsTypeModifiable(FD->getReturnType(), IsDereference)) {
9332      if (!DiagnosticEmitted) {
9333        S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
9334                                                      << ConstFunction << FD;
9335        DiagnosticEmitted = true;
9336      }
9337      S.Diag(FD->getReturnTypeSourceRange().getBegin(),
9338             diag::note_typecheck_assign_const)
9339          << ConstFunction << FD << FD->getReturnType()
9340          << FD->getReturnTypeSourceRange();
9341    }
9342  } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
9343    // Point to variable declaration.
9344    if (const ValueDecl *VD = DRE->getDecl()) {
9345      if (!IsTypeModifiable(VD->getType(), IsDereference)) {
9346        if (!DiagnosticEmitted) {
9347          S.Diag(Loc, diag::err_typecheck_assign_const)
9348              << ExprRange << ConstVariable << VD << VD->getType();
9349          DiagnosticEmitted = true;
9350        }
9351        S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
9352            << ConstVariable << VD << VD->getType() << VD->getSourceRange();
9353      }
9354    }
9355  } else if (isa<CXXThisExpr>(E)) {
9356    if (const DeclContext *DC = S.getFunctionLevelDeclContext()) {
9357      if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
9358        if (MD->isConst()) {
9359          if (!DiagnosticEmitted) {
9360            S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
9361                                                          << ConstMethod << MD;
9362            DiagnosticEmitted = true;
9363          }
9364          S.Diag(MD->getLocation(), diag::note_typecheck_assign_const)
9365              << ConstMethod << MD << MD->getSourceRange();
9366        }
9367      }
9368    }
9369  }
9370
9371  if (DiagnosticEmitted)
9372    return;
9373
9374  // Can't determine a more specific message, so display the generic error.
9375  S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown;
9376}
9377
9378/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
9379/// emit an error and return true.  If so, return false.
9380static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
9381  assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
9382  SourceLocation OrigLoc = Loc;
9383  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
9384                                                              &Loc);
9385  if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
9386    IsLV = Expr::MLV_InvalidMessageExpression;
9387  if (IsLV == Expr::MLV_Valid)
9388    return false;
9389
9390  unsigned DiagID = 0;
9391  bool NeedType = false;
9392  switch (IsLV) { // C99 6.5.16p2
9393  case Expr::MLV_ConstQualified:
9394    // Use a specialized diagnostic when we're assigning to an object
9395    // from an enclosing function or block.
9396    if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
9397      if (NCCK == NCCK_Block)
9398        DiagID = diag::err_block_decl_ref_not_modifiable_lvalue;
9399      else
9400        DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue;
9401      break;
9402    }
9403
9404    // In ARC, use some specialized diagnostics for occasions where we
9405    // infer 'const'.  These are always pseudo-strong variables.
9406    if (S.getLangOpts().ObjCAutoRefCount) {
9407      DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
9408      if (declRef && isa<VarDecl>(declRef->getDecl())) {
9409        VarDecl *var = cast<VarDecl>(declRef->getDecl());
9410
9411        // Use the normal diagnostic if it's pseudo-__strong but the
9412        // user actually wrote 'const'.
9413        if (var->isARCPseudoStrong() &&
9414            (!var->getTypeSourceInfo() ||
9415             !var->getTypeSourceInfo()->getType().isConstQualified())) {
9416          // There are two pseudo-strong cases:
9417          //  - self
9418          ObjCMethodDecl *method = S.getCurMethodDecl();
9419          if (method && var == method->getSelfDecl())
9420            DiagID = method->isClassMethod()
9421              ? diag::err_typecheck_arc_assign_self_class_method
9422              : diag::err_typecheck_arc_assign_self;
9423
9424          //  - fast enumeration variables
9425          else
9426            DiagID = diag::err_typecheck_arr_assign_enumeration;
9427
9428          SourceRange Assign;
9429          if (Loc != OrigLoc)
9430            Assign = SourceRange(OrigLoc, OrigLoc);
9431          S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
9432          // We need to preserve the AST regardless, so migration tool
9433          // can do its job.
9434          return false;
9435        }
9436      }
9437    }
9438
9439    // If none of the special cases above are triggered, then this is a
9440    // simple const assignment.
9441    if (DiagID == 0) {
9442      DiagnoseConstAssignment(S, E, Loc);
9443      return true;
9444    }
9445
9446    break;
9447  case Expr::MLV_ConstAddrSpace:
9448    DiagnoseConstAssignment(S, E, Loc);
9449    return true;
9450  case Expr::MLV_ArrayType:
9451  case Expr::MLV_ArrayTemporary:
9452    DiagID = diag::err_typecheck_array_not_modifiable_lvalue;
9453    NeedType = true;
9454    break;
9455  case Expr::MLV_NotObjectType:
9456    DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue;
9457    NeedType = true;
9458    break;
9459  case Expr::MLV_LValueCast:
9460    DiagID = diag::err_typecheck_lvalue_casts_not_supported;
9461    break;
9462  case Expr::MLV_Valid:
9463    llvm_unreachable("did not take early return for MLV_Valid");
9464  case Expr::MLV_InvalidExpression:
9465  case Expr::MLV_MemberFunction:
9466  case Expr::MLV_ClassTemporary:
9467    DiagID = diag::err_typecheck_expression_not_modifiable_lvalue;
9468    break;
9469  case Expr::MLV_IncompleteType:
9470  case Expr::MLV_IncompleteVoidType:
9471    return S.RequireCompleteType(Loc, E->getType(),
9472             diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
9473  case Expr::MLV_DuplicateVectorComponents:
9474    DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
9475    break;
9476  case Expr::MLV_NoSetterProperty:
9477    llvm_unreachable("readonly properties should be processed differently");
9478  case Expr::MLV_InvalidMessageExpression:
9479    DiagID = diag::error_readonly_message_assignment;
9480    break;
9481  case Expr::MLV_SubObjCPropertySetting:
9482    DiagID = diag::error_no_subobject_property_setting;
9483    break;
9484  }
9485
9486  SourceRange Assign;
9487  if (Loc != OrigLoc)
9488    Assign = SourceRange(OrigLoc, OrigLoc);
9489  if (NeedType)
9490    S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign;
9491  else
9492    S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
9493  return true;
9494}
9495
9496static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
9497                                         SourceLocation Loc,
9498                                         Sema &Sema) {
9499  // C / C++ fields
9500  MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
9501  MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
9502  if (ML && MR && ML->getMemberDecl() == MR->getMemberDecl()) {
9503    if (isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase()))
9504      Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
9505  }
9506
9507  // Objective-C instance variables
9508  ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
9509  ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
9510  if (OL && OR && OL->getDecl() == OR->getDecl()) {
9511    DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
9512    DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
9513    if (RL && RR && RL->getDecl() == RR->getDecl())
9514      Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
9515  }
9516}
9517
9518// C99 6.5.16.1
9519QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
9520                                       SourceLocation Loc,
9521                                       QualType CompoundType) {
9522  assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
9523
9524  // Verify that LHS is a modifiable lvalue, and emit error if not.
9525  if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
9526    return QualType();
9527
9528  QualType LHSType = LHSExpr->getType();
9529  QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
9530                                             CompoundType;
9531  AssignConvertType ConvTy;
9532  if (CompoundType.isNull()) {
9533    Expr *RHSCheck = RHS.get();
9534
9535    CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
9536
9537    QualType LHSTy(LHSType);
9538    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
9539    if (RHS.isInvalid())
9540      return QualType();
9541    // Special case of NSObject attributes on c-style pointer types.
9542    if (ConvTy == IncompatiblePointer &&
9543        ((Context.isObjCNSObjectType(LHSType) &&
9544          RHSType->isObjCObjectPointerType()) ||
9545         (Context.isObjCNSObjectType(RHSType) &&
9546          LHSType->isObjCObjectPointerType())))
9547      ConvTy = Compatible;
9548
9549    if (ConvTy == Compatible &&
9550        LHSType->isObjCObjectType())
9551        Diag(Loc, diag::err_objc_object_assignment)
9552          << LHSType;
9553
9554    // If the RHS is a unary plus or minus, check to see if they = and + are
9555    // right next to each other.  If so, the user may have typo'd "x =+ 4"
9556    // instead of "x += 4".
9557    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
9558      RHSCheck = ICE->getSubExpr();
9559    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
9560      if ((UO->getOpcode() == UO_Plus ||
9561           UO->getOpcode() == UO_Minus) &&
9562          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
9563          // Only if the two operators are exactly adjacent.
9564          Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
9565          // And there is a space or other character before the subexpr of the
9566          // unary +/-.  We don't want to warn on "x=-1".
9567          Loc.getLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
9568          UO->getSubExpr()->getLocStart().isFileID()) {
9569        Diag(Loc, diag::warn_not_compound_assign)
9570          << (UO->getOpcode() == UO_Plus ? "+" : "-")
9571          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
9572      }
9573    }
9574
9575    if (ConvTy == Compatible) {
9576      if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
9577        // Warn about retain cycles where a block captures the LHS, but
9578        // not if the LHS is a simple variable into which the block is
9579        // being stored...unless that variable can be captured by reference!
9580        const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
9581        const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
9582        if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
9583          checkRetainCycles(LHSExpr, RHS.get());
9584
9585        // It is safe to assign a weak reference into a strong variable.
9586        // Although this code can still have problems:
9587        //   id x = self.weakProp;
9588        //   id y = self.weakProp;
9589        // we do not warn to warn spuriously when 'x' and 'y' are on separate
9590        // paths through the function. This should be revisited if
9591        // -Wrepeated-use-of-weak is made flow-sensitive.
9592        if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
9593                             RHS.get()->getLocStart()))
9594          getCurFunction()->markSafeWeakUse(RHS.get());
9595
9596      } else if (getLangOpts().ObjCAutoRefCount) {
9597        checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
9598      }
9599    }
9600  } else {
9601    // Compound assignment "x += y"
9602    ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
9603  }
9604
9605  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
9606                               RHS.get(), AA_Assigning))
9607    return QualType();
9608
9609  CheckForNullPointerDereference(*this, LHSExpr);
9610
9611  // C99 6.5.16p3: The type of an assignment expression is the type of the
9612  // left operand unless the left operand has qualified type, in which case
9613  // it is the unqualified version of the type of the left operand.
9614  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
9615  // is converted to the type of the assignment expression (above).
9616  // C++ 5.17p1: the type of the assignment expression is that of its left
9617  // operand.
9618  return (getLangOpts().CPlusPlus
9619          ? LHSType : LHSType.getUnqualifiedType());
9620}
9621
9622// C99 6.5.17
9623static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
9624                                   SourceLocation Loc) {
9625  LHS = S.CheckPlaceholderExpr(LHS.get());
9626  RHS = S.CheckPlaceholderExpr(RHS.get());
9627  if (LHS.isInvalid() || RHS.isInvalid())
9628    return QualType();
9629
9630  // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
9631  // operands, but not unary promotions.
9632  // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
9633
9634  // So we treat the LHS as a ignored value, and in C++ we allow the
9635  // containing site to determine what should be done with the RHS.
9636  LHS = S.IgnoredValueConversions(LHS.get());
9637  if (LHS.isInvalid())
9638    return QualType();
9639
9640  S.DiagnoseUnusedExprResult(LHS.get());
9641
9642  if (!S.getLangOpts().CPlusPlus) {
9643    RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
9644    if (RHS.isInvalid())
9645      return QualType();
9646    if (!RHS.get()->getType()->isVoidType())
9647      S.RequireCompleteType(Loc, RHS.get()->getType(),
9648                            diag::err_incomplete_type);
9649  }
9650
9651  return RHS.get()->getType();
9652}
9653
9654/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
9655/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
9656static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
9657                                               ExprValueKind &VK,
9658                                               ExprObjectKind &OK,
9659                                               SourceLocation OpLoc,
9660                                               bool IsInc, bool IsPrefix) {
9661  if (Op->isTypeDependent())
9662    return S.Context.DependentTy;
9663
9664  QualType ResType = Op->getType();
9665  // Atomic types can be used for increment / decrement where the non-atomic
9666  // versions can, so ignore the _Atomic() specifier for the purpose of
9667  // checking.
9668  if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
9669    ResType = ResAtomicType->getValueType();
9670
9671  assert(!ResType.isNull() && "no type for increment/decrement expression");
9672
9673  if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
9674    // Decrement of bool is not allowed.
9675    if (!IsInc) {
9676      S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
9677      return QualType();
9678    }
9679    // Increment of bool sets it to true, but is deprecated.
9680    S.Diag(OpLoc, S.getLangOpts().CPlusPlus1z ? diag::ext_increment_bool
9681                                              : diag::warn_increment_bool)
9682      << Op->getSourceRange();
9683  } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
9684    // Error on enum increments and decrements in C++ mode
9685    S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType;
9686    return QualType();
9687  } else if (ResType->isRealType()) {
9688    // OK!
9689  } else if (ResType->isPointerType()) {
9690    // C99 6.5.2.4p2, 6.5.6p2
9691    if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
9692      return QualType();
9693  } else if (ResType->isObjCObjectPointerType()) {
9694    // On modern runtimes, ObjC pointer arithmetic is forbidden.
9695    // Otherwise, we just need a complete type.
9696    if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
9697        checkArithmeticOnObjCPointer(S, OpLoc, Op))
9698      return QualType();
9699  } else if (ResType->isAnyComplexType()) {
9700    // C99 does not support ++/-- on complex types, we allow as an extension.
9701    S.Diag(OpLoc, diag::ext_integer_increment_complex)
9702      << ResType << Op->getSourceRange();
9703  } else if (ResType->isPlaceholderType()) {
9704    ExprResult PR = S.CheckPlaceholderExpr(Op);
9705    if (PR.isInvalid()) return QualType();
9706    return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc,
9707                                          IsInc, IsPrefix);
9708  } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
9709    // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
9710  } else if (S.getLangOpts().ZVector && ResType->isVectorType() &&
9711             (ResType->getAs<VectorType>()->getVectorKind() !=
9712              VectorType::AltiVecBool)) {
9713    // The z vector extensions allow ++ and -- for non-bool vectors.
9714  } else if(S.getLangOpts().OpenCL && ResType->isVectorType() &&
9715            ResType->getAs<VectorType>()->getElementType()->isIntegerType()) {
9716    // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
9717  } else {
9718    S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
9719      << ResType << int(IsInc) << Op->getSourceRange();
9720    return QualType();
9721  }
9722  // At this point, we know we have a real, complex or pointer type.
9723  // Now make sure the operand is a modifiable lvalue.
9724  if (CheckForModifiableLvalue(Op, OpLoc, S))
9725    return QualType();
9726  // In C++, a prefix increment is the same type as the operand. Otherwise
9727  // (in C or with postfix), the increment is the unqualified type of the
9728  // operand.
9729  if (IsPrefix && S.getLangOpts().CPlusPlus) {
9730    VK = VK_LValue;
9731    OK = Op->getObjectKind();
9732    return ResType;
9733  } else {
9734    VK = VK_RValue;
9735    return ResType.getUnqualifiedType();
9736  }
9737}
9738
9739
9740/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
9741/// This routine allows us to typecheck complex/recursive expressions
9742/// where the declaration is needed for type checking. We only need to
9743/// handle cases when the expression references a function designator
9744/// or is an lvalue. Here are some examples:
9745///  - &(x) => x
9746///  - &*****f => f for f a function designator.
9747///  - &s.xx => s
9748///  - &s.zz[1].yy -> s, if zz is an array
9749///  - *(x + 1) -> x, if x is an array
9750///  - &"123"[2] -> 0
9751///  - & __real__ x -> x
9752static ValueDecl *getPrimaryDecl(Expr *E) {
9753  switch (E->getStmtClass()) {
9754  case Stmt::DeclRefExprClass:
9755    return cast<DeclRefExpr>(E)->getDecl();
9756  case Stmt::MemberExprClass:
9757    // If this is an arrow operator, the address is an offset from
9758    // the base's value, so the object the base refers to is
9759    // irrelevant.
9760    if (cast<MemberExpr>(E)->isArrow())
9761      return nullptr;
9762    // Otherwise, the expression refers to a part of the base
9763    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
9764  case Stmt::ArraySubscriptExprClass: {
9765    // FIXME: This code shouldn't be necessary!  We should catch the implicit
9766    // promotion of register arrays earlier.
9767    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
9768    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
9769      if (ICE->getSubExpr()->getType()->isArrayType())
9770        return getPrimaryDecl(ICE->getSubExpr());
9771    }
9772    return nullptr;
9773  }
9774  case Stmt::UnaryOperatorClass: {
9775    UnaryOperator *UO = cast<UnaryOperator>(E);
9776
9777    switch(UO->getOpcode()) {
9778    case UO_Real:
9779    case UO_Imag:
9780    case UO_Extension:
9781      return getPrimaryDecl(UO->getSubExpr());
9782    default:
9783      return nullptr;
9784    }
9785  }
9786  case Stmt::ParenExprClass:
9787    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
9788  case Stmt::ImplicitCastExprClass:
9789    // If the result of an implicit cast is an l-value, we care about
9790    // the sub-expression; otherwise, the result here doesn't matter.
9791    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
9792  default:
9793    return nullptr;
9794  }
9795}
9796
9797namespace {
9798  enum {
9799    AO_Bit_Field = 0,
9800    AO_Vector_Element = 1,
9801    AO_Property_Expansion = 2,
9802    AO_Register_Variable = 3,
9803    AO_No_Error = 4
9804  };
9805}
9806/// \brief Diagnose invalid operand for address of operations.
9807///
9808/// \param Type The type of operand which cannot have its address taken.
9809static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
9810                                         Expr *E, unsigned Type) {
9811  S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
9812}
9813
9814/// CheckAddressOfOperand - The operand of & must be either a function
9815/// designator or an lvalue designating an object. If it is an lvalue, the
9816/// object cannot be declared with storage class register or be a bit field.
9817/// Note: The usual conversions are *not* applied to the operand of the &
9818/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
9819/// In C++, the operand might be an overloaded function name, in which case
9820/// we allow the '&' but retain the overloaded-function type.
9821QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
9822  if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
9823    if (PTy->getKind() == BuiltinType::Overload) {
9824      Expr *E = OrigOp.get()->IgnoreParens();
9825      if (!isa<OverloadExpr>(E)) {
9826        assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
9827        Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
9828          << OrigOp.get()->getSourceRange();
9829        return QualType();
9830      }
9831
9832      OverloadExpr *Ovl = cast<OverloadExpr>(E);
9833      if (isa<UnresolvedMemberExpr>(Ovl))
9834        if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) {
9835          Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
9836            << OrigOp.get()->getSourceRange();
9837          return QualType();
9838        }
9839
9840      return Context.OverloadTy;
9841    }
9842
9843    if (PTy->getKind() == BuiltinType::UnknownAny)
9844      return Context.UnknownAnyTy;
9845
9846    if (PTy->getKind() == BuiltinType::BoundMember) {
9847      Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
9848        << OrigOp.get()->getSourceRange();
9849      return QualType();
9850    }
9851
9852    OrigOp = CheckPlaceholderExpr(OrigOp.get());
9853    if (OrigOp.isInvalid()) return QualType();
9854  }
9855
9856  if (OrigOp.get()->isTypeDependent())
9857    return Context.DependentTy;
9858
9859  assert(!OrigOp.get()->getType()->isPlaceholderType());
9860
9861  // Make sure to ignore parentheses in subsequent checks
9862  Expr *op = OrigOp.get()->IgnoreParens();
9863
9864  // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
9865  if (LangOpts.OpenCL && op->getType()->isFunctionType()) {
9866    Diag(op->getExprLoc(), diag::err_opencl_taking_function_address);
9867    return QualType();
9868  }
9869
9870  if (getLangOpts().C99) {
9871    // Implement C99-only parts of addressof rules.
9872    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
9873      if (uOp->getOpcode() == UO_Deref)
9874        // Per C99 6.5.3.2, the address of a deref always returns a valid result
9875        // (assuming the deref expression is valid).
9876        return uOp->getSubExpr()->getType();
9877    }
9878    // Technically, there should be a check for array subscript
9879    // expressions here, but the result of one is always an lvalue anyway.
9880  }
9881  ValueDecl *dcl = getPrimaryDecl(op);
9882
9883  if (auto *FD = dyn_cast_or_null<FunctionDecl>(dcl))
9884    if (!checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
9885                                           op->getLocStart()))
9886      return QualType();
9887
9888  Expr::LValueClassification lval = op->ClassifyLValue(Context);
9889  unsigned AddressOfError = AO_No_Error;
9890
9891  if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
9892    bool sfinae = (bool)isSFINAEContext();
9893    Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
9894                                  : diag::ext_typecheck_addrof_temporary)
9895      << op->getType() << op->getSourceRange();
9896    if (sfinae)
9897      return QualType();
9898    // Materialize the temporary as an lvalue so that we can take its address.
9899    OrigOp = op = new (Context)
9900        MaterializeTemporaryExpr(op->getType(), OrigOp.get(), true);
9901  } else if (isa<ObjCSelectorExpr>(op)) {
9902    return Context.getPointerType(op->getType());
9903  } else if (lval == Expr::LV_MemberFunction) {
9904    // If it's an instance method, make a member pointer.
9905    // The expression must have exactly the form &A::foo.
9906
9907    // If the underlying expression isn't a decl ref, give up.
9908    if (!isa<DeclRefExpr>(op)) {
9909      Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
9910        << OrigOp.get()->getSourceRange();
9911      return QualType();
9912    }
9913    DeclRefExpr *DRE = cast<DeclRefExpr>(op);
9914    CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
9915
9916    // The id-expression was parenthesized.
9917    if (OrigOp.get() != DRE) {
9918      Diag(OpLoc, diag::err_parens_pointer_member_function)
9919        << OrigOp.get()->getSourceRange();
9920
9921    // The method was named without a qualifier.
9922    } else if (!DRE->getQualifier()) {
9923      if (MD->getParent()->getName().empty())
9924        Diag(OpLoc, diag::err_unqualified_pointer_member_function)
9925          << op->getSourceRange();
9926      else {
9927        SmallString<32> Str;
9928        StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
9929        Diag(OpLoc, diag::err_unqualified_pointer_member_function)
9930          << op->getSourceRange()
9931          << FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual);
9932      }
9933    }
9934
9935    // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
9936    if (isa<CXXDestructorDecl>(MD))
9937      Diag(OpLoc, diag::err_typecheck_addrof_dtor) << op->getSourceRange();
9938
9939    QualType MPTy = Context.getMemberPointerType(
9940        op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr());
9941    // Under the MS ABI, lock down the inheritance model now.
9942    if (Context.getTargetInfo().getCXXABI().isMicrosoft())
9943      (void)isCompleteType(OpLoc, MPTy);
9944    return MPTy;
9945  } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
9946    // C99 6.5.3.2p1
9947    // The operand must be either an l-value or a function designator
9948    if (!op->getType()->isFunctionType()) {
9949      // Use a special diagnostic for loads from property references.
9950      if (isa<PseudoObjectExpr>(op)) {
9951        AddressOfError = AO_Property_Expansion;
9952      } else {
9953        Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
9954          << op->getType() << op->getSourceRange();
9955        return QualType();
9956      }
9957    }
9958  } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
9959    // The operand cannot be a bit-field
9960    AddressOfError = AO_Bit_Field;
9961  } else if (op->getObjectKind() == OK_VectorComponent) {
9962    // The operand cannot be an element of a vector
9963    AddressOfError = AO_Vector_Element;
9964  } else if (dcl) { // C99 6.5.3.2p1
9965    // We have an lvalue with a decl. Make sure the decl is not declared
9966    // with the register storage-class specifier.
9967    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
9968      // in C++ it is not error to take address of a register
9969      // variable (c++03 7.1.1P3)
9970      if (vd->getStorageClass() == SC_Register &&
9971          !getLangOpts().CPlusPlus) {
9972        AddressOfError = AO_Register_Variable;
9973      }
9974    } else if (isa<MSPropertyDecl>(dcl)) {
9975      AddressOfError = AO_Property_Expansion;
9976    } else if (isa<FunctionTemplateDecl>(dcl)) {
9977      return Context.OverloadTy;
9978    } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
9979      // Okay: we can take the address of a field.
9980      // Could be a pointer to member, though, if there is an explicit
9981      // scope qualifier for the class.
9982      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
9983        DeclContext *Ctx = dcl->getDeclContext();
9984        if (Ctx && Ctx->isRecord()) {
9985          if (dcl->getType()->isReferenceType()) {
9986            Diag(OpLoc,
9987                 diag::err_cannot_form_pointer_to_member_of_reference_type)
9988              << dcl->getDeclName() << dcl->getType();
9989            return QualType();
9990          }
9991
9992          while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
9993            Ctx = Ctx->getParent();
9994
9995          QualType MPTy = Context.getMemberPointerType(
9996              op->getType(),
9997              Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
9998          // Under the MS ABI, lock down the inheritance model now.
9999          if (Context.getTargetInfo().getCXXABI().isMicrosoft())
10000            (void)isCompleteType(OpLoc, MPTy);
10001          return MPTy;
10002        }
10003      }
10004    } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl))
10005      llvm_unreachable("Unknown/unexpected decl type");
10006  }
10007
10008  if (AddressOfError != AO_No_Error) {
10009    diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError);
10010    return QualType();
10011  }
10012
10013  if (lval == Expr::LV_IncompleteVoidType) {
10014    // Taking the address of a void variable is technically illegal, but we
10015    // allow it in cases which are otherwise valid.
10016    // Example: "extern void x; void* y = &x;".
10017    Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
10018  }
10019
10020  // If the operand has type "type", the result has type "pointer to type".
10021  if (op->getType()->isObjCObjectType())
10022    return Context.getObjCObjectPointerType(op->getType());
10023  return Context.getPointerType(op->getType());
10024}
10025
10026static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) {
10027  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp);
10028  if (!DRE)
10029    return;
10030  const Decl *D = DRE->getDecl();
10031  if (!D)
10032    return;
10033  const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D);
10034  if (!Param)
10035    return;
10036  if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext()))
10037    if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>())
10038      return;
10039  if (FunctionScopeInfo *FD = S.getCurFunction())
10040    if (!FD->ModifiedNonNullParams.count(Param))
10041      FD->ModifiedNonNullParams.insert(Param);
10042}
10043
10044/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
10045static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
10046                                        SourceLocation OpLoc) {
10047  if (Op->isTypeDependent())
10048    return S.Context.DependentTy;
10049
10050  ExprResult ConvResult = S.UsualUnaryConversions(Op);
10051  if (ConvResult.isInvalid())
10052    return QualType();
10053  Op = ConvResult.get();
10054  QualType OpTy = Op->getType();
10055  QualType Result;
10056
10057  if (isa<CXXReinterpretCastExpr>(Op)) {
10058    QualType OpOrigType = Op->IgnoreParenCasts()->getType();
10059    S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
10060                                     Op->getSourceRange());
10061  }
10062
10063  if (const PointerType *PT = OpTy->getAs<PointerType>())
10064    Result = PT->getPointeeType();
10065  else if (const ObjCObjectPointerType *OPT =
10066             OpTy->getAs<ObjCObjectPointerType>())
10067    Result = OPT->getPointeeType();
10068  else {
10069    ExprResult PR = S.CheckPlaceholderExpr(Op);
10070    if (PR.isInvalid()) return QualType();
10071    if (PR.get() != Op)
10072      return CheckIndirectionOperand(S, PR.get(), VK, OpLoc);
10073  }
10074
10075  if (Result.isNull()) {
10076    S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
10077      << OpTy << Op->getSourceRange();
10078    return QualType();
10079  }
10080
10081  // Note that per both C89 and C99, indirection is always legal, even if Result
10082  // is an incomplete type or void.  It would be possible to warn about
10083  // dereferencing a void pointer, but it's completely well-defined, and such a
10084  // warning is unlikely to catch any mistakes. In C++, indirection is not valid
10085  // for pointers to 'void' but is fine for any other pointer type:
10086  //
10087  // C++ [expr.unary.op]p1:
10088  //   [...] the expression to which [the unary * operator] is applied shall
10089  //   be a pointer to an object type, or a pointer to a function type
10090  if (S.getLangOpts().CPlusPlus && Result->isVoidType())
10091    S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer)
10092      << OpTy << Op->getSourceRange();
10093
10094  // Dereferences are usually l-values...
10095  VK = VK_LValue;
10096
10097  // ...except that certain expressions are never l-values in C.
10098  if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
10099    VK = VK_RValue;
10100
10101  return Result;
10102}
10103
10104BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) {
10105  BinaryOperatorKind Opc;
10106  switch (Kind) {
10107  default: llvm_unreachable("Unknown binop!");
10108  case tok::periodstar:           Opc = BO_PtrMemD; break;
10109  case tok::arrowstar:            Opc = BO_PtrMemI; break;
10110  case tok::star:                 Opc = BO_Mul; break;
10111  case tok::slash:                Opc = BO_Div; break;
10112  case tok::percent:              Opc = BO_Rem; break;
10113  case tok::plus:                 Opc = BO_Add; break;
10114  case tok::minus:                Opc = BO_Sub; break;
10115  case tok::lessless:             Opc = BO_Shl; break;
10116  case tok::greatergreater:       Opc = BO_Shr; break;
10117  case tok::lessequal:            Opc = BO_LE; break;
10118  case tok::less:                 Opc = BO_LT; break;
10119  case tok::greaterequal:         Opc = BO_GE; break;
10120  case tok::greater:              Opc = BO_GT; break;
10121  case tok::exclaimequal:         Opc = BO_NE; break;
10122  case tok::equalequal:           Opc = BO_EQ; break;
10123  case tok::amp:                  Opc = BO_And; break;
10124  case tok::caret:                Opc = BO_Xor; break;
10125  case tok::pipe:                 Opc = BO_Or; break;
10126  case tok::ampamp:               Opc = BO_LAnd; break;
10127  case tok::pipepipe:             Opc = BO_LOr; break;
10128  case tok::equal:                Opc = BO_Assign; break;
10129  case tok::starequal:            Opc = BO_MulAssign; break;
10130  case tok::slashequal:           Opc = BO_DivAssign; break;
10131  case tok::percentequal:         Opc = BO_RemAssign; break;
10132  case tok::plusequal:            Opc = BO_AddAssign; break;
10133  case tok::minusequal:           Opc = BO_SubAssign; break;
10134  case tok::lesslessequal:        Opc = BO_ShlAssign; break;
10135  case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
10136  case tok::ampequal:             Opc = BO_AndAssign; break;
10137  case tok::caretequal:           Opc = BO_XorAssign; break;
10138  case tok::pipeequal:            Opc = BO_OrAssign; break;
10139  case tok::comma:                Opc = BO_Comma; break;
10140  }
10141  return Opc;
10142}
10143
10144static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
10145  tok::TokenKind Kind) {
10146  UnaryOperatorKind Opc;
10147  switch (Kind) {
10148  default: llvm_unreachable("Unknown unary op!");
10149  case tok::plusplus:     Opc = UO_PreInc; break;
10150  case tok::minusminus:   Opc = UO_PreDec; break;
10151  case tok::amp:          Opc = UO_AddrOf; break;
10152  case tok::star:         Opc = UO_Deref; break;
10153  case tok::plus:         Opc = UO_Plus; break;
10154  case tok::minus:        Opc = UO_Minus; break;
10155  case tok::tilde:        Opc = UO_Not; break;
10156  case tok::exclaim:      Opc = UO_LNot; break;
10157  case tok::kw___real:    Opc = UO_Real; break;
10158  case tok::kw___imag:    Opc = UO_Imag; break;
10159  case tok::kw___extension__: Opc = UO_Extension; break;
10160  }
10161  return Opc;
10162}
10163
10164/// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
10165/// This warning is only emitted for builtin assignment operations. It is also
10166/// suppressed in the event of macro expansions.
10167static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
10168                                   SourceLocation OpLoc) {
10169  if (!S.ActiveTemplateInstantiations.empty())
10170    return;
10171  if (OpLoc.isInvalid() || OpLoc.isMacroID())
10172    return;
10173  LHSExpr = LHSExpr->IgnoreParenImpCasts();
10174  RHSExpr = RHSExpr->IgnoreParenImpCasts();
10175  const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
10176  const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
10177  if (!LHSDeclRef || !RHSDeclRef ||
10178      LHSDeclRef->getLocation().isMacroID() ||
10179      RHSDeclRef->getLocation().isMacroID())
10180    return;
10181  const ValueDecl *LHSDecl =
10182    cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
10183  const ValueDecl *RHSDecl =
10184    cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
10185  if (LHSDecl != RHSDecl)
10186    return;
10187  if (LHSDecl->getType().isVolatileQualified())
10188    return;
10189  if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
10190    if (RefTy->getPointeeType().isVolatileQualified())
10191      return;
10192
10193  S.Diag(OpLoc, diag::warn_self_assignment)
10194      << LHSDeclRef->getType()
10195      << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
10196}
10197
10198/// Check if a bitwise-& is performed on an Objective-C pointer.  This
10199/// is usually indicative of introspection within the Objective-C pointer.
10200static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
10201                                          SourceLocation OpLoc) {
10202  if (!S.getLangOpts().ObjC1)
10203    return;
10204
10205  const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr;
10206  const Expr *LHS = L.get();
10207  const Expr *RHS = R.get();
10208
10209  if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
10210    ObjCPointerExpr = LHS;
10211    OtherExpr = RHS;
10212  }
10213  else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
10214    ObjCPointerExpr = RHS;
10215    OtherExpr = LHS;
10216  }
10217
10218  // This warning is deliberately made very specific to reduce false
10219  // positives with logic that uses '&' for hashing.  This logic mainly
10220  // looks for code trying to introspect into tagged pointers, which
10221  // code should generally never do.
10222  if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) {
10223    unsigned Diag = diag::warn_objc_pointer_masking;
10224    // Determine if we are introspecting the result of performSelectorXXX.
10225    const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
10226    // Special case messages to -performSelector and friends, which
10227    // can return non-pointer values boxed in a pointer value.
10228    // Some clients may wish to silence warnings in this subcase.
10229    if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) {
10230      Selector S = ME->getSelector();
10231      StringRef SelArg0 = S.getNameForSlot(0);
10232      if (SelArg0.startswith("performSelector"))
10233        Diag = diag::warn_objc_pointer_masking_performSelector;
10234    }
10235
10236    S.Diag(OpLoc, Diag)
10237      << ObjCPointerExpr->getSourceRange();
10238  }
10239}
10240
10241static NamedDecl *getDeclFromExpr(Expr *E) {
10242  if (!E)
10243    return nullptr;
10244  if (auto *DRE = dyn_cast<DeclRefExpr>(E))
10245    return DRE->getDecl();
10246  if (auto *ME = dyn_cast<MemberExpr>(E))
10247    return ME->getMemberDecl();
10248  if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
10249    return IRE->getDecl();
10250  return nullptr;
10251}
10252
10253/// CreateBuiltinBinOp - Creates a new built-in binary operation with
10254/// operator @p Opc at location @c TokLoc. This routine only supports
10255/// built-in operations; ActOnBinOp handles overloaded operators.
10256ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
10257                                    BinaryOperatorKind Opc,
10258                                    Expr *LHSExpr, Expr *RHSExpr) {
10259  if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
10260    // The syntax only allows initializer lists on the RHS of assignment,
10261    // so we don't need to worry about accepting invalid code for
10262    // non-assignment operators.
10263    // C++11 5.17p9:
10264    //   The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
10265    //   of x = {} is x = T().
10266    InitializationKind Kind =
10267        InitializationKind::CreateDirectList(RHSExpr->getLocStart());
10268    InitializedEntity Entity =
10269        InitializedEntity::InitializeTemporary(LHSExpr->getType());
10270    InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
10271    ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
10272    if (Init.isInvalid())
10273      return Init;
10274    RHSExpr = Init.get();
10275  }
10276
10277  ExprResult LHS = LHSExpr, RHS = RHSExpr;
10278  QualType ResultTy;     // Result type of the binary operator.
10279  // The following two variables are used for compound assignment operators
10280  QualType CompLHSTy;    // Type of LHS after promotions for computation
10281  QualType CompResultTy; // Type of computation result
10282  ExprValueKind VK = VK_RValue;
10283  ExprObjectKind OK = OK_Ordinary;
10284
10285  if (!getLangOpts().CPlusPlus) {
10286    // C cannot handle TypoExpr nodes on either side of a binop because it
10287    // doesn't handle dependent types properly, so make sure any TypoExprs have
10288    // been dealt with before checking the operands.
10289    LHS = CorrectDelayedTyposInExpr(LHSExpr);
10290    RHS = CorrectDelayedTyposInExpr(RHSExpr, [Opc, LHS](Expr *E) {
10291      if (Opc != BO_Assign)
10292        return ExprResult(E);
10293      // Avoid correcting the RHS to the same Expr as the LHS.
10294      Decl *D = getDeclFromExpr(E);
10295      return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E;
10296    });
10297    if (!LHS.isUsable() || !RHS.isUsable())
10298      return ExprError();
10299  }
10300
10301  if (getLangOpts().OpenCL) {
10302    // OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by
10303    // the ATOMIC_VAR_INIT macro.
10304    if (LHSExpr->getType()->isAtomicType() ||
10305        RHSExpr->getType()->isAtomicType()) {
10306      SourceRange SR(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
10307      if (BO_Assign == Opc)
10308        Diag(OpLoc, diag::err_atomic_init_constant) << SR;
10309      else
10310        ResultTy = InvalidOperands(OpLoc, LHS, RHS);
10311      return ExprError();
10312    }
10313  }
10314
10315  switch (Opc) {
10316  case BO_Assign:
10317    ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
10318    if (getLangOpts().CPlusPlus &&
10319        LHS.get()->getObjectKind() != OK_ObjCProperty) {
10320      VK = LHS.get()->getValueKind();
10321      OK = LHS.get()->getObjectKind();
10322    }
10323    if (!ResultTy.isNull()) {
10324      DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc);
10325      DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc);
10326    }
10327    RecordModifiableNonNullParam(*this, LHS.get());
10328    break;
10329  case BO_PtrMemD:
10330  case BO_PtrMemI:
10331    ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
10332                                            Opc == BO_PtrMemI);
10333    break;
10334  case BO_Mul:
10335  case BO_Div:
10336    ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
10337                                           Opc == BO_Div);
10338    break;
10339  case BO_Rem:
10340    ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
10341    break;
10342  case BO_Add:
10343    ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
10344    break;
10345  case BO_Sub:
10346    ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
10347    break;
10348  case BO_Shl:
10349  case BO_Shr:
10350    ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
10351    break;
10352  case BO_LE:
10353  case BO_LT:
10354  case BO_GE:
10355  case BO_GT:
10356    ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, true);
10357    break;
10358  case BO_EQ:
10359  case BO_NE:
10360    ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, false);
10361    break;
10362  case BO_And:
10363    checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc);
10364  case BO_Xor:
10365  case BO_Or:
10366    ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc);
10367    break;
10368  case BO_LAnd:
10369  case BO_LOr:
10370    ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
10371    break;
10372  case BO_MulAssign:
10373  case BO_DivAssign:
10374    CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
10375                                               Opc == BO_DivAssign);
10376    CompLHSTy = CompResultTy;
10377    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
10378      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
10379    break;
10380  case BO_RemAssign:
10381    CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
10382    CompLHSTy = CompResultTy;
10383    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
10384      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
10385    break;
10386  case BO_AddAssign:
10387    CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
10388    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
10389      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
10390    break;
10391  case BO_SubAssign:
10392    CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
10393    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
10394      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
10395    break;
10396  case BO_ShlAssign:
10397  case BO_ShrAssign:
10398    CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
10399    CompLHSTy = CompResultTy;
10400    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
10401      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
10402    break;
10403  case BO_AndAssign:
10404  case BO_OrAssign: // fallthrough
10405    DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc);
10406  case BO_XorAssign:
10407    CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, true);
10408    CompLHSTy = CompResultTy;
10409    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
10410      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
10411    break;
10412  case BO_Comma:
10413    ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
10414    if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
10415      VK = RHS.get()->getValueKind();
10416      OK = RHS.get()->getObjectKind();
10417    }
10418    break;
10419  }
10420  if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
10421    return ExprError();
10422
10423  // Check for array bounds violations for both sides of the BinaryOperator
10424  CheckArrayAccess(LHS.get());
10425  CheckArrayAccess(RHS.get());
10426
10427  if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
10428    NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
10429                                                 &Context.Idents.get("object_setClass"),
10430                                                 SourceLocation(), LookupOrdinaryName);
10431    if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
10432      SourceLocation RHSLocEnd = getLocForEndOfToken(RHS.get()->getLocEnd());
10433      Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign) <<
10434      FixItHint::CreateInsertion(LHS.get()->getLocStart(), "object_setClass(") <<
10435      FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc), ",") <<
10436      FixItHint::CreateInsertion(RHSLocEnd, ")");
10437    }
10438    else
10439      Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
10440  }
10441  else if (const ObjCIvarRefExpr *OIRE =
10442           dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
10443    DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());
10444
10445  if (CompResultTy.isNull())
10446    return new (Context) BinaryOperator(LHS.get(), RHS.get(), Opc, ResultTy, VK,
10447                                        OK, OpLoc, FPFeatures.fp_contract);
10448  if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
10449      OK_ObjCProperty) {
10450    VK = VK_LValue;
10451    OK = LHS.get()->getObjectKind();
10452  }
10453  return new (Context) CompoundAssignOperator(
10454      LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, CompLHSTy, CompResultTy,
10455      OpLoc, FPFeatures.fp_contract);
10456}
10457
10458/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
10459/// operators are mixed in a way that suggests that the programmer forgot that
10460/// comparison operators have higher precedence. The most typical example of
10461/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
10462static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
10463                                      SourceLocation OpLoc, Expr *LHSExpr,
10464                                      Expr *RHSExpr) {
10465  BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
10466  BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
10467
10468  // Check that one of the sides is a comparison operator and the other isn't.
10469  bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
10470  bool isRightComp = RHSBO && RHSBO->isComparisonOp();
10471  if (isLeftComp == isRightComp)
10472    return;
10473
10474  // Bitwise operations are sometimes used as eager logical ops.
10475  // Don't diagnose this.
10476  bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
10477  bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
10478  if (isLeftBitwise || isRightBitwise)
10479    return;
10480
10481  SourceRange DiagRange = isLeftComp ? SourceRange(LHSExpr->getLocStart(),
10482                                                   OpLoc)
10483                                     : SourceRange(OpLoc, RHSExpr->getLocEnd());
10484  StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
10485  SourceRange ParensRange = isLeftComp ?
10486      SourceRange(LHSBO->getRHS()->getLocStart(), RHSExpr->getLocEnd())
10487    : SourceRange(LHSExpr->getLocStart(), RHSBO->getLHS()->getLocEnd());
10488
10489  Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
10490    << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
10491  SuggestParentheses(Self, OpLoc,
10492    Self.PDiag(diag::note_precedence_silence) << OpStr,
10493    (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
10494  SuggestParentheses(Self, OpLoc,
10495    Self.PDiag(diag::note_precedence_bitwise_first)
10496      << BinaryOperator::getOpcodeStr(Opc),
10497    ParensRange);
10498}
10499
10500/// \brief It accepts a '&&' expr that is inside a '||' one.
10501/// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
10502/// in parentheses.
10503static void
10504EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
10505                                       BinaryOperator *Bop) {
10506  assert(Bop->getOpcode() == BO_LAnd);
10507  Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
10508      << Bop->getSourceRange() << OpLoc;
10509  SuggestParentheses(Self, Bop->getOperatorLoc(),
10510    Self.PDiag(diag::note_precedence_silence)
10511      << Bop->getOpcodeStr(),
10512    Bop->getSourceRange());
10513}
10514
10515/// \brief Returns true if the given expression can be evaluated as a constant
10516/// 'true'.
10517static bool EvaluatesAsTrue(Sema &S, Expr *E) {
10518  bool Res;
10519  return !E->isValueDependent() &&
10520         E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
10521}
10522
10523/// \brief Returns true if the given expression can be evaluated as a constant
10524/// 'false'.
10525static bool EvaluatesAsFalse(Sema &S, Expr *E) {
10526  bool Res;
10527  return !E->isValueDependent() &&
10528         E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
10529}
10530
10531/// \brief Look for '&&' in the left hand of a '||' expr.
10532static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
10533                                             Expr *LHSExpr, Expr *RHSExpr) {
10534  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
10535    if (Bop->getOpcode() == BO_LAnd) {
10536      // If it's "a && b || 0" don't warn since the precedence doesn't matter.
10537      if (EvaluatesAsFalse(S, RHSExpr))
10538        return;
10539      // If it's "1 && a || b" don't warn since the precedence doesn't matter.
10540      if (!EvaluatesAsTrue(S, Bop->getLHS()))
10541        return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
10542    } else if (Bop->getOpcode() == BO_LOr) {
10543      if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
10544        // If it's "a || b && 1 || c" we didn't warn earlier for
10545        // "a || b && 1", but warn now.
10546        if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
10547          return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
10548      }
10549    }
10550  }
10551}
10552
10553/// \brief Look for '&&' in the right hand of a '||' expr.
10554static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
10555                                             Expr *LHSExpr, Expr *RHSExpr) {
10556  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
10557    if (Bop->getOpcode() == BO_LAnd) {
10558      // If it's "0 || a && b" don't warn since the precedence doesn't matter.
10559      if (EvaluatesAsFalse(S, LHSExpr))
10560        return;
10561      // If it's "a || b && 1" don't warn since the precedence doesn't matter.
10562      if (!EvaluatesAsTrue(S, Bop->getRHS()))
10563        return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
10564    }
10565  }
10566}
10567
10568/// \brief Look for bitwise op in the left or right hand of a bitwise op with
10569/// lower precedence and emit a diagnostic together with a fixit hint that wraps
10570/// the '&' expression in parentheses.
10571static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc,
10572                                         SourceLocation OpLoc, Expr *SubExpr) {
10573  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
10574    if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) {
10575      S.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op)
10576        << Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc)
10577        << Bop->getSourceRange() << OpLoc;
10578      SuggestParentheses(S, Bop->getOperatorLoc(),
10579        S.PDiag(diag::note_precedence_silence)
10580          << Bop->getOpcodeStr(),
10581        Bop->getSourceRange());
10582    }
10583  }
10584}
10585
10586static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
10587                                    Expr *SubExpr, StringRef Shift) {
10588  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
10589    if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
10590      StringRef Op = Bop->getOpcodeStr();
10591      S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
10592          << Bop->getSourceRange() << OpLoc << Shift << Op;
10593      SuggestParentheses(S, Bop->getOperatorLoc(),
10594          S.PDiag(diag::note_precedence_silence) << Op,
10595          Bop->getSourceRange());
10596    }
10597  }
10598}
10599
10600static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
10601                                 Expr *LHSExpr, Expr *RHSExpr) {
10602  CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr);
10603  if (!OCE)
10604    return;
10605
10606  FunctionDecl *FD = OCE->getDirectCallee();
10607  if (!FD || !FD->isOverloadedOperator())
10608    return;
10609
10610  OverloadedOperatorKind Kind = FD->getOverloadedOperator();
10611  if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
10612    return;
10613
10614  S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
10615      << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
10616      << (Kind == OO_LessLess);
10617  SuggestParentheses(S, OCE->getOperatorLoc(),
10618                     S.PDiag(diag::note_precedence_silence)
10619                         << (Kind == OO_LessLess ? "<<" : ">>"),
10620                     OCE->getSourceRange());
10621  SuggestParentheses(S, OpLoc,
10622                     S.PDiag(diag::note_evaluate_comparison_first),
10623                     SourceRange(OCE->getArg(1)->getLocStart(),
10624                                 RHSExpr->getLocEnd()));
10625}
10626
10627/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
10628/// precedence.
10629static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
10630                                    SourceLocation OpLoc, Expr *LHSExpr,
10631                                    Expr *RHSExpr){
10632  // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
10633  if (BinaryOperator::isBitwiseOp(Opc))
10634    DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
10635
10636  // Diagnose "arg1 & arg2 | arg3"
10637  if ((Opc == BO_Or || Opc == BO_Xor) &&
10638      !OpLoc.isMacroID()/* Don't warn in macros. */) {
10639    DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, LHSExpr);
10640    DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, RHSExpr);
10641  }
10642
10643  // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
10644  // We don't warn for 'assert(a || b && "bad")' since this is safe.
10645  if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
10646    DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
10647    DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
10648  }
10649
10650  if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
10651      || Opc == BO_Shr) {
10652    StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
10653    DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
10654    DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
10655  }
10656
10657  // Warn on overloaded shift operators and comparisons, such as:
10658  // cout << 5 == 4;
10659  if (BinaryOperator::isComparisonOp(Opc))
10660    DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr);
10661}
10662
10663// Binary Operators.  'Tok' is the token for the operator.
10664ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
10665                            tok::TokenKind Kind,
10666                            Expr *LHSExpr, Expr *RHSExpr) {
10667  BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
10668  assert(LHSExpr && "ActOnBinOp(): missing left expression");
10669  assert(RHSExpr && "ActOnBinOp(): missing right expression");
10670
10671  // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
10672  DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
10673
10674  return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
10675}
10676
10677/// Build an overloaded binary operator expression in the given scope.
10678static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
10679                                       BinaryOperatorKind Opc,
10680                                       Expr *LHS, Expr *RHS) {
10681  // Find all of the overloaded operators visible from this
10682  // point. We perform both an operator-name lookup from the local
10683  // scope and an argument-dependent lookup based on the types of
10684  // the arguments.
10685  UnresolvedSet<16> Functions;
10686  OverloadedOperatorKind OverOp
10687    = BinaryOperator::getOverloadedOperator(Opc);
10688  if (Sc && OverOp != OO_None && OverOp != OO_Equal)
10689    S.LookupOverloadedOperatorName(OverOp, Sc, LHS->getType(),
10690                                   RHS->getType(), Functions);
10691
10692  // Build the (potentially-overloaded, potentially-dependent)
10693  // binary operation.
10694  return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
10695}
10696
10697ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
10698                            BinaryOperatorKind Opc,
10699                            Expr *LHSExpr, Expr *RHSExpr) {
10700  // We want to end up calling one of checkPseudoObjectAssignment
10701  // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
10702  // both expressions are overloadable or either is type-dependent),
10703  // or CreateBuiltinBinOp (in any other case).  We also want to get
10704  // any placeholder types out of the way.
10705
10706  // Handle pseudo-objects in the LHS.
10707  if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
10708    // Assignments with a pseudo-object l-value need special analysis.
10709    if (pty->getKind() == BuiltinType::PseudoObject &&
10710        BinaryOperator::isAssignmentOp(Opc))
10711      return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
10712
10713    // Don't resolve overloads if the other type is overloadable.
10714    if (pty->getKind() == BuiltinType::Overload) {
10715      // We can't actually test that if we still have a placeholder,
10716      // though.  Fortunately, none of the exceptions we see in that
10717      // code below are valid when the LHS is an overload set.  Note
10718      // that an overload set can be dependently-typed, but it never
10719      // instantiates to having an overloadable type.
10720      ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
10721      if (resolvedRHS.isInvalid()) return ExprError();
10722      RHSExpr = resolvedRHS.get();
10723
10724      if (RHSExpr->isTypeDependent() ||
10725          RHSExpr->getType()->isOverloadableType())
10726        return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
10727    }
10728
10729    ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
10730    if (LHS.isInvalid()) return ExprError();
10731    LHSExpr = LHS.get();
10732  }
10733
10734  // Handle pseudo-objects in the RHS.
10735  if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
10736    // An overload in the RHS can potentially be resolved by the type
10737    // being assigned to.
10738    if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
10739      if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
10740        return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
10741
10742      if (LHSExpr->getType()->isOverloadableType())
10743        return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
10744
10745      return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
10746    }
10747
10748    // Don't resolve overloads if the other type is overloadable.
10749    if (pty->getKind() == BuiltinType::Overload &&
10750        LHSExpr->getType()->isOverloadableType())
10751      return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
10752
10753    ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
10754    if (!resolvedRHS.isUsable()) return ExprError();
10755    RHSExpr = resolvedRHS.get();
10756  }
10757
10758  if (getLangOpts().CPlusPlus) {
10759    // If either expression is type-dependent, always build an
10760    // overloaded op.
10761    if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
10762      return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
10763
10764    // Otherwise, build an overloaded op if either expression has an
10765    // overloadable type.
10766    if (LHSExpr->getType()->isOverloadableType() ||
10767        RHSExpr->getType()->isOverloadableType())
10768      return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
10769  }
10770
10771  // Build a built-in binary operation.
10772  return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
10773}
10774
10775ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
10776                                      UnaryOperatorKind Opc,
10777                                      Expr *InputExpr) {
10778  ExprResult Input = InputExpr;
10779  ExprValueKind VK = VK_RValue;
10780  ExprObjectKind OK = OK_Ordinary;
10781  QualType resultType;
10782  if (getLangOpts().OpenCL) {
10783    // The only legal unary operation for atomics is '&'.
10784    if (Opc != UO_AddrOf && InputExpr->getType()->isAtomicType()) {
10785      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
10786                       << InputExpr->getType()
10787                       << Input.get()->getSourceRange());
10788    }
10789  }
10790  switch (Opc) {
10791  case UO_PreInc:
10792  case UO_PreDec:
10793  case UO_PostInc:
10794  case UO_PostDec:
10795    resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OK,
10796                                                OpLoc,
10797                                                Opc == UO_PreInc ||
10798                                                Opc == UO_PostInc,
10799                                                Opc == UO_PreInc ||
10800                                                Opc == UO_PreDec);
10801    break;
10802  case UO_AddrOf:
10803    resultType = CheckAddressOfOperand(Input, OpLoc);
10804    RecordModifiableNonNullParam(*this, InputExpr);
10805    break;
10806  case UO_Deref: {
10807    Input = DefaultFunctionArrayLvalueConversion(Input.get());
10808    if (Input.isInvalid()) return ExprError();
10809    resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
10810    break;
10811  }
10812  case UO_Plus:
10813  case UO_Minus:
10814    Input = UsualUnaryConversions(Input.get());
10815    if (Input.isInvalid()) return ExprError();
10816    resultType = Input.get()->getType();
10817    if (resultType->isDependentType())
10818      break;
10819    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
10820      break;
10821    else if (resultType->isVectorType() &&
10822             // The z vector extensions don't allow + or - with bool vectors.
10823             (!Context.getLangOpts().ZVector ||
10824              resultType->getAs<VectorType>()->getVectorKind() !=
10825              VectorType::AltiVecBool))
10826      break;
10827    else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
10828             Opc == UO_Plus &&
10829             resultType->isPointerType())
10830      break;
10831
10832    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
10833      << resultType << Input.get()->getSourceRange());
10834
10835  case UO_Not: // bitwise complement
10836    Input = UsualUnaryConversions(Input.get());
10837    if (Input.isInvalid())
10838      return ExprError();
10839    resultType = Input.get()->getType();
10840    if (resultType->isDependentType())
10841      break;
10842    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
10843    if (resultType->isComplexType() || resultType->isComplexIntegerType())
10844      // C99 does not support '~' for complex conjugation.
10845      Diag(OpLoc, diag::ext_integer_complement_complex)
10846          << resultType << Input.get()->getSourceRange();
10847    else if (resultType->hasIntegerRepresentation())
10848      break;
10849    else if (resultType->isExtVectorType()) {
10850      if (Context.getLangOpts().OpenCL) {
10851        // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
10852        // on vector float types.
10853        QualType T = resultType->getAs<ExtVectorType>()->getElementType();
10854        if (!T->isIntegerType())
10855          return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
10856                           << resultType << Input.get()->getSourceRange());
10857      }
10858      break;
10859    } else {
10860      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
10861                       << resultType << Input.get()->getSourceRange());
10862    }
10863    break;
10864
10865  case UO_LNot: // logical negation
10866    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
10867    Input = DefaultFunctionArrayLvalueConversion(Input.get());
10868    if (Input.isInvalid()) return ExprError();
10869    resultType = Input.get()->getType();
10870
10871    // Though we still have to promote half FP to float...
10872    if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
10873      Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast).get();
10874      resultType = Context.FloatTy;
10875    }
10876
10877    if (resultType->isDependentType())
10878      break;
10879    if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) {
10880      // C99 6.5.3.3p1: ok, fallthrough;
10881      if (Context.getLangOpts().CPlusPlus) {
10882        // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
10883        // operand contextually converted to bool.
10884        Input = ImpCastExprToType(Input.get(), Context.BoolTy,
10885                                  ScalarTypeToBooleanCastKind(resultType));
10886      } else if (Context.getLangOpts().OpenCL &&
10887                 Context.getLangOpts().OpenCLVersion < 120) {
10888        // OpenCL v1.1 6.3.h: The logical operator not (!) does not
10889        // operate on scalar float types.
10890        if (!resultType->isIntegerType())
10891          return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
10892                           << resultType << Input.get()->getSourceRange());
10893      }
10894    } else if (resultType->isExtVectorType()) {
10895      if (Context.getLangOpts().OpenCL &&
10896          Context.getLangOpts().OpenCLVersion < 120) {
10897        // OpenCL v1.1 6.3.h: The logical operator not (!) does not
10898        // operate on vector float types.
10899        QualType T = resultType->getAs<ExtVectorType>()->getElementType();
10900        if (!T->isIntegerType())
10901          return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
10902                           << resultType << Input.get()->getSourceRange());
10903      }
10904      // Vector logical not returns the signed variant of the operand type.
10905      resultType = GetSignedVectorType(resultType);
10906      break;
10907    } else {
10908      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
10909        << resultType << Input.get()->getSourceRange());
10910    }
10911
10912    // LNot always has type int. C99 6.5.3.3p5.
10913    // In C++, it's bool. C++ 5.3.1p8
10914    resultType = Context.getLogicalOperationType();
10915    break;
10916  case UO_Real:
10917  case UO_Imag:
10918    resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
10919    // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
10920    // complex l-values to ordinary l-values and all other values to r-values.
10921    if (Input.isInvalid()) return ExprError();
10922    if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
10923      if (Input.get()->getValueKind() != VK_RValue &&
10924          Input.get()->getObjectKind() == OK_Ordinary)
10925        VK = Input.get()->getValueKind();
10926    } else if (!getLangOpts().CPlusPlus) {
10927      // In C, a volatile scalar is read by __imag. In C++, it is not.
10928      Input = DefaultLvalueConversion(Input.get());
10929    }
10930    break;
10931  case UO_Extension:
10932  case UO_Coawait:
10933    resultType = Input.get()->getType();
10934    VK = Input.get()->getValueKind();
10935    OK = Input.get()->getObjectKind();
10936    break;
10937  }
10938  if (resultType.isNull() || Input.isInvalid())
10939    return ExprError();
10940
10941  // Check for array bounds violations in the operand of the UnaryOperator,
10942  // except for the '*' and '&' operators that have to be handled specially
10943  // by CheckArrayAccess (as there are special cases like &array[arraysize]
10944  // that are explicitly defined as valid by the standard).
10945  if (Opc != UO_AddrOf && Opc != UO_Deref)
10946    CheckArrayAccess(Input.get());
10947
10948  return new (Context)
10949      UnaryOperator(Input.get(), Opc, resultType, VK, OK, OpLoc);
10950}
10951
10952/// \brief Determine whether the given expression is a qualified member
10953/// access expression, of a form that could be turned into a pointer to member
10954/// with the address-of operator.
10955static bool isQualifiedMemberAccess(Expr *E) {
10956  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
10957    if (!DRE->getQualifier())
10958      return false;
10959
10960    ValueDecl *VD = DRE->getDecl();
10961    if (!VD->isCXXClassMember())
10962      return false;
10963
10964    if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
10965      return true;
10966    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
10967      return Method->isInstance();
10968
10969    return false;
10970  }
10971
10972  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
10973    if (!ULE->getQualifier())
10974      return false;
10975
10976    for (NamedDecl *D : ULE->decls()) {
10977      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
10978        if (Method->isInstance())
10979          return true;
10980      } else {
10981        // Overload set does not contain methods.
10982        break;
10983      }
10984    }
10985
10986    return false;
10987  }
10988
10989  return false;
10990}
10991
10992ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
10993                              UnaryOperatorKind Opc, Expr *Input) {
10994  // First things first: handle placeholders so that the
10995  // overloaded-operator check considers the right type.
10996  if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
10997    // Increment and decrement of pseudo-object references.
10998    if (pty->getKind() == BuiltinType::PseudoObject &&
10999        UnaryOperator::isIncrementDecrementOp(Opc))
11000      return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
11001
11002    // extension is always a builtin operator.
11003    if (Opc == UO_Extension)
11004      return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
11005
11006    // & gets special logic for several kinds of placeholder.
11007    // The builtin code knows what to do.
11008    if (Opc == UO_AddrOf &&
11009        (pty->getKind() == BuiltinType::Overload ||
11010         pty->getKind() == BuiltinType::UnknownAny ||
11011         pty->getKind() == BuiltinType::BoundMember))
11012      return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
11013
11014    // Anything else needs to be handled now.
11015    ExprResult Result = CheckPlaceholderExpr(Input);
11016    if (Result.isInvalid()) return ExprError();
11017    Input = Result.get();
11018  }
11019
11020  if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
11021      UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
11022      !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
11023    // Find all of the overloaded operators visible from this
11024    // point. We perform both an operator-name lookup from the local
11025    // scope and an argument-dependent lookup based on the types of
11026    // the arguments.
11027    UnresolvedSet<16> Functions;
11028    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
11029    if (S && OverOp != OO_None)
11030      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
11031                                   Functions);
11032
11033    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
11034  }
11035
11036  return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
11037}
11038
11039// Unary Operators.  'Tok' is the token for the operator.
11040ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
11041                              tok::TokenKind Op, Expr *Input) {
11042  return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
11043}
11044
11045/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
11046ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
11047                                LabelDecl *TheDecl) {
11048  TheDecl->markUsed(Context);
11049  // Create the AST node.  The address of a label always has type 'void*'.
11050  return new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
11051                                     Context.getPointerType(Context.VoidTy));
11052}
11053
11054/// Given the last statement in a statement-expression, check whether
11055/// the result is a producing expression (like a call to an
11056/// ns_returns_retained function) and, if so, rebuild it to hoist the
11057/// release out of the full-expression.  Otherwise, return null.
11058/// Cannot fail.
11059static Expr *maybeRebuildARCConsumingStmt(Stmt *Statement) {
11060  // Should always be wrapped with one of these.
11061  ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(Statement);
11062  if (!cleanups) return nullptr;
11063
11064  ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(cleanups->getSubExpr());
11065  if (!cast || cast->getCastKind() != CK_ARCConsumeObject)
11066    return nullptr;
11067
11068  // Splice out the cast.  This shouldn't modify any interesting
11069  // features of the statement.
11070  Expr *producer = cast->getSubExpr();
11071  assert(producer->getType() == cast->getType());
11072  assert(producer->getValueKind() == cast->getValueKind());
11073  cleanups->setSubExpr(producer);
11074  return cleanups;
11075}
11076
11077void Sema::ActOnStartStmtExpr() {
11078  PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
11079}
11080
11081void Sema::ActOnStmtExprError() {
11082  // Note that function is also called by TreeTransform when leaving a
11083  // StmtExpr scope without rebuilding anything.
11084
11085  DiscardCleanupsInEvaluationContext();
11086  PopExpressionEvaluationContext();
11087}
11088
11089ExprResult
11090Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
11091                    SourceLocation RPLoc) { // "({..})"
11092  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
11093  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
11094
11095  if (hasAnyUnrecoverableErrorsInThisFunction())
11096    DiscardCleanupsInEvaluationContext();
11097  assert(!ExprNeedsCleanups && "cleanups within StmtExpr not correctly bound!");
11098  PopExpressionEvaluationContext();
11099
11100  // FIXME: there are a variety of strange constraints to enforce here, for
11101  // example, it is not possible to goto into a stmt expression apparently.
11102  // More semantic analysis is needed.
11103
11104  // If there are sub-stmts in the compound stmt, take the type of the last one
11105  // as the type of the stmtexpr.
11106  QualType Ty = Context.VoidTy;
11107  bool StmtExprMayBindToTemp = false;
11108  if (!Compound->body_empty()) {
11109    Stmt *LastStmt = Compound->body_back();
11110    LabelStmt *LastLabelStmt = nullptr;
11111    // If LastStmt is a label, skip down through into the body.
11112    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
11113      LastLabelStmt = Label;
11114      LastStmt = Label->getSubStmt();
11115    }
11116
11117    if (Expr *LastE = dyn_cast<Expr>(LastStmt)) {
11118      // Do function/array conversion on the last expression, but not
11119      // lvalue-to-rvalue.  However, initialize an unqualified type.
11120      ExprResult LastExpr = DefaultFunctionArrayConversion(LastE);
11121      if (LastExpr.isInvalid())
11122        return ExprError();
11123      Ty = LastExpr.get()->getType().getUnqualifiedType();
11124
11125      if (!Ty->isDependentType() && !LastExpr.get()->isTypeDependent()) {
11126        // In ARC, if the final expression ends in a consume, splice
11127        // the consume out and bind it later.  In the alternate case
11128        // (when dealing with a retainable type), the result
11129        // initialization will create a produce.  In both cases the
11130        // result will be +1, and we'll need to balance that out with
11131        // a bind.
11132        if (Expr *rebuiltLastStmt
11133              = maybeRebuildARCConsumingStmt(LastExpr.get())) {
11134          LastExpr = rebuiltLastStmt;
11135        } else {
11136          LastExpr = PerformCopyInitialization(
11137                            InitializedEntity::InitializeResult(LPLoc,
11138                                                                Ty,
11139                                                                false),
11140                                                   SourceLocation(),
11141                                               LastExpr);
11142        }
11143
11144        if (LastExpr.isInvalid())
11145          return ExprError();
11146        if (LastExpr.get() != nullptr) {
11147          if (!LastLabelStmt)
11148            Compound->setLastStmt(LastExpr.get());
11149          else
11150            LastLabelStmt->setSubStmt(LastExpr.get());
11151          StmtExprMayBindToTemp = true;
11152        }
11153      }
11154    }
11155  }
11156
11157  // FIXME: Check that expression type is complete/non-abstract; statement
11158  // expressions are not lvalues.
11159  Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
11160  if (StmtExprMayBindToTemp)
11161    return MaybeBindToTemporary(ResStmtExpr);
11162  return ResStmtExpr;
11163}
11164
11165ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
11166                                      TypeSourceInfo *TInfo,
11167                                      ArrayRef<OffsetOfComponent> Components,
11168                                      SourceLocation RParenLoc) {
11169  QualType ArgTy = TInfo->getType();
11170  bool Dependent = ArgTy->isDependentType();
11171  SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
11172
11173  // We must have at least one component that refers to the type, and the first
11174  // one is known to be a field designator.  Verify that the ArgTy represents
11175  // a struct/union/class.
11176  if (!Dependent && !ArgTy->isRecordType())
11177    return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
11178                       << ArgTy << TypeRange);
11179
11180  // Type must be complete per C99 7.17p3 because a declaring a variable
11181  // with an incomplete type would be ill-formed.
11182  if (!Dependent
11183      && RequireCompleteType(BuiltinLoc, ArgTy,
11184                             diag::err_offsetof_incomplete_type, TypeRange))
11185    return ExprError();
11186
11187  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
11188  // GCC extension, diagnose them.
11189  // FIXME: This diagnostic isn't actually visible because the location is in
11190  // a system header!
11191  if (Components.size() != 1)
11192    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
11193      << SourceRange(Components[1].LocStart, Components.back().LocEnd);
11194
11195  bool DidWarnAboutNonPOD = false;
11196  QualType CurrentType = ArgTy;
11197  typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
11198  SmallVector<OffsetOfNode, 4> Comps;
11199  SmallVector<Expr*, 4> Exprs;
11200  for (const OffsetOfComponent &OC : Components) {
11201    if (OC.isBrackets) {
11202      // Offset of an array sub-field.  TODO: Should we allow vector elements?
11203      if (!CurrentType->isDependentType()) {
11204        const ArrayType *AT = Context.getAsArrayType(CurrentType);
11205        if(!AT)
11206          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
11207                           << CurrentType);
11208        CurrentType = AT->getElementType();
11209      } else
11210        CurrentType = Context.DependentTy;
11211
11212      ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
11213      if (IdxRval.isInvalid())
11214        return ExprError();
11215      Expr *Idx = IdxRval.get();
11216
11217      // The expression must be an integral expression.
11218      // FIXME: An integral constant expression?
11219      if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
11220          !Idx->getType()->isIntegerType())
11221        return ExprError(Diag(Idx->getLocStart(),
11222                              diag::err_typecheck_subscript_not_integer)
11223                         << Idx->getSourceRange());
11224
11225      // Record this array index.
11226      Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
11227      Exprs.push_back(Idx);
11228      continue;
11229    }
11230
11231    // Offset of a field.
11232    if (CurrentType->isDependentType()) {
11233      // We have the offset of a field, but we can't look into the dependent
11234      // type. Just record the identifier of the field.
11235      Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
11236      CurrentType = Context.DependentTy;
11237      continue;
11238    }
11239
11240    // We need to have a complete type to look into.
11241    if (RequireCompleteType(OC.LocStart, CurrentType,
11242                            diag::err_offsetof_incomplete_type))
11243      return ExprError();
11244
11245    // Look for the designated field.
11246    const RecordType *RC = CurrentType->getAs<RecordType>();
11247    if (!RC)
11248      return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
11249                       << CurrentType);
11250    RecordDecl *RD = RC->getDecl();
11251
11252    // C++ [lib.support.types]p5:
11253    //   The macro offsetof accepts a restricted set of type arguments in this
11254    //   International Standard. type shall be a POD structure or a POD union
11255    //   (clause 9).
11256    // C++11 [support.types]p4:
11257    //   If type is not a standard-layout class (Clause 9), the results are
11258    //   undefined.
11259    if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
11260      bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
11261      unsigned DiagID =
11262        LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type
11263                            : diag::ext_offsetof_non_pod_type;
11264
11265      if (!IsSafe && !DidWarnAboutNonPOD &&
11266          DiagRuntimeBehavior(BuiltinLoc, nullptr,
11267                              PDiag(DiagID)
11268                              << SourceRange(Components[0].LocStart, OC.LocEnd)
11269                              << CurrentType))
11270        DidWarnAboutNonPOD = true;
11271    }
11272
11273    // Look for the field.
11274    LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
11275    LookupQualifiedName(R, RD);
11276    FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
11277    IndirectFieldDecl *IndirectMemberDecl = nullptr;
11278    if (!MemberDecl) {
11279      if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
11280        MemberDecl = IndirectMemberDecl->getAnonField();
11281    }
11282
11283    if (!MemberDecl)
11284      return ExprError(Diag(BuiltinLoc, diag::err_no_member)
11285                       << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
11286                                                              OC.LocEnd));
11287
11288    // C99 7.17p3:
11289    //   (If the specified member is a bit-field, the behavior is undefined.)
11290    //
11291    // We diagnose this as an error.
11292    if (MemberDecl->isBitField()) {
11293      Diag(OC.LocEnd, diag::err_offsetof_bitfield)
11294        << MemberDecl->getDeclName()
11295        << SourceRange(BuiltinLoc, RParenLoc);
11296      Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
11297      return ExprError();
11298    }
11299
11300    RecordDecl *Parent = MemberDecl->getParent();
11301    if (IndirectMemberDecl)
11302      Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
11303
11304    // If the member was found in a base class, introduce OffsetOfNodes for
11305    // the base class indirections.
11306    CXXBasePaths Paths;
11307    if (IsDerivedFrom(OC.LocStart, CurrentType, Context.getTypeDeclType(Parent),
11308                      Paths)) {
11309      if (Paths.getDetectedVirtual()) {
11310        Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base)
11311          << MemberDecl->getDeclName()
11312          << SourceRange(BuiltinLoc, RParenLoc);
11313        return ExprError();
11314      }
11315
11316      CXXBasePath &Path = Paths.front();
11317      for (const CXXBasePathElement &B : Path)
11318        Comps.push_back(OffsetOfNode(B.Base));
11319    }
11320
11321    if (IndirectMemberDecl) {
11322      for (auto *FI : IndirectMemberDecl->chain()) {
11323        assert(isa<FieldDecl>(FI));
11324        Comps.push_back(OffsetOfNode(OC.LocStart,
11325                                     cast<FieldDecl>(FI), OC.LocEnd));
11326      }
11327    } else
11328      Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
11329
11330    CurrentType = MemberDecl->getType().getNonReferenceType();
11331  }
11332
11333  return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo,
11334                              Comps, Exprs, RParenLoc);
11335}
11336
11337ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
11338                                      SourceLocation BuiltinLoc,
11339                                      SourceLocation TypeLoc,
11340                                      ParsedType ParsedArgTy,
11341                                      ArrayRef<OffsetOfComponent> Components,
11342                                      SourceLocation RParenLoc) {
11343
11344  TypeSourceInfo *ArgTInfo;
11345  QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
11346  if (ArgTy.isNull())
11347    return ExprError();
11348
11349  if (!ArgTInfo)
11350    ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
11351
11352  return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, Components, RParenLoc);
11353}
11354
11355
11356ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
11357                                 Expr *CondExpr,
11358                                 Expr *LHSExpr, Expr *RHSExpr,
11359                                 SourceLocation RPLoc) {
11360  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
11361
11362  ExprValueKind VK = VK_RValue;
11363  ExprObjectKind OK = OK_Ordinary;
11364  QualType resType;
11365  bool ValueDependent = false;
11366  bool CondIsTrue = false;
11367  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
11368    resType = Context.DependentTy;
11369    ValueDependent = true;
11370  } else {
11371    // The conditional expression is required to be a constant expression.
11372    llvm::APSInt condEval(32);
11373    ExprResult CondICE
11374      = VerifyIntegerConstantExpression(CondExpr, &condEval,
11375          diag::err_typecheck_choose_expr_requires_constant, false);
11376    if (CondICE.isInvalid())
11377      return ExprError();
11378    CondExpr = CondICE.get();
11379    CondIsTrue = condEval.getZExtValue();
11380
11381    // If the condition is > zero, then the AST type is the same as the LSHExpr.
11382    Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
11383
11384    resType = ActiveExpr->getType();
11385    ValueDependent = ActiveExpr->isValueDependent();
11386    VK = ActiveExpr->getValueKind();
11387    OK = ActiveExpr->getObjectKind();
11388  }
11389
11390  return new (Context)
11391      ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, VK, OK, RPLoc,
11392                 CondIsTrue, resType->isDependentType(), ValueDependent);
11393}
11394
11395//===----------------------------------------------------------------------===//
11396// Clang Extensions.
11397//===----------------------------------------------------------------------===//
11398
11399/// ActOnBlockStart - This callback is invoked when a block literal is started.
11400void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
11401  BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
11402
11403  if (LangOpts.CPlusPlus) {
11404    Decl *ManglingContextDecl;
11405    if (MangleNumberingContext *MCtx =
11406            getCurrentMangleNumberContext(Block->getDeclContext(),
11407                                          ManglingContextDecl)) {
11408      unsigned ManglingNumber = MCtx->getManglingNumber(Block);
11409      Block->setBlockMangling(ManglingNumber, ManglingContextDecl);
11410    }
11411  }
11412
11413  PushBlockScope(CurScope, Block);
11414  CurContext->addDecl(Block);
11415  if (CurScope)
11416    PushDeclContext(CurScope, Block);
11417  else
11418    CurContext = Block;
11419
11420  getCurBlock()->HasImplicitReturnType = true;
11421
11422  // Enter a new evaluation context to insulate the block from any
11423  // cleanups from the enclosing full-expression.
11424  PushExpressionEvaluationContext(PotentiallyEvaluated);
11425}
11426
11427void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
11428                               Scope *CurScope) {
11429  assert(ParamInfo.getIdentifier() == nullptr &&
11430         "block-id should have no identifier!");
11431  assert(ParamInfo.getContext() == Declarator::BlockLiteralContext);
11432  BlockScopeInfo *CurBlock = getCurBlock();
11433
11434  TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
11435  QualType T = Sig->getType();
11436
11437  // FIXME: We should allow unexpanded parameter packs here, but that would,
11438  // in turn, make the block expression contain unexpanded parameter packs.
11439  if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
11440    // Drop the parameters.
11441    FunctionProtoType::ExtProtoInfo EPI;
11442    EPI.HasTrailingReturn = false;
11443    EPI.TypeQuals |= DeclSpec::TQ_const;
11444    T = Context.getFunctionType(Context.DependentTy, None, EPI);
11445    Sig = Context.getTrivialTypeSourceInfo(T);
11446  }
11447
11448  // GetTypeForDeclarator always produces a function type for a block
11449  // literal signature.  Furthermore, it is always a FunctionProtoType
11450  // unless the function was written with a typedef.
11451  assert(T->isFunctionType() &&
11452         "GetTypeForDeclarator made a non-function block signature");
11453
11454  // Look for an explicit signature in that function type.
11455  FunctionProtoTypeLoc ExplicitSignature;
11456
11457  TypeLoc tmp = Sig->getTypeLoc().IgnoreParens();
11458  if ((ExplicitSignature = tmp.getAs<FunctionProtoTypeLoc>())) {
11459
11460    // Check whether that explicit signature was synthesized by
11461    // GetTypeForDeclarator.  If so, don't save that as part of the
11462    // written signature.
11463    if (ExplicitSignature.getLocalRangeBegin() ==
11464        ExplicitSignature.getLocalRangeEnd()) {
11465      // This would be much cheaper if we stored TypeLocs instead of
11466      // TypeSourceInfos.
11467      TypeLoc Result = ExplicitSignature.getReturnLoc();
11468      unsigned Size = Result.getFullDataSize();
11469      Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
11470      Sig->getTypeLoc().initializeFullCopy(Result, Size);
11471
11472      ExplicitSignature = FunctionProtoTypeLoc();
11473    }
11474  }
11475
11476  CurBlock->TheDecl->setSignatureAsWritten(Sig);
11477  CurBlock->FunctionType = T;
11478
11479  const FunctionType *Fn = T->getAs<FunctionType>();
11480  QualType RetTy = Fn->getReturnType();
11481  bool isVariadic =
11482    (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
11483
11484  CurBlock->TheDecl->setIsVariadic(isVariadic);
11485
11486  // Context.DependentTy is used as a placeholder for a missing block
11487  // return type.  TODO:  what should we do with declarators like:
11488  //   ^ * { ... }
11489  // If the answer is "apply template argument deduction"....
11490  if (RetTy != Context.DependentTy) {
11491    CurBlock->ReturnType = RetTy;
11492    CurBlock->TheDecl->setBlockMissingReturnType(false);
11493    CurBlock->HasImplicitReturnType = false;
11494  }
11495
11496  // Push block parameters from the declarator if we had them.
11497  SmallVector<ParmVarDecl*, 8> Params;
11498  if (ExplicitSignature) {
11499    for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) {
11500      ParmVarDecl *Param = ExplicitSignature.getParam(I);
11501      if (Param->getIdentifier() == nullptr &&
11502          !Param->isImplicit() &&
11503          !Param->isInvalidDecl() &&
11504          !getLangOpts().CPlusPlus)
11505        Diag(Param->getLocation(), diag::err_parameter_name_omitted);
11506      Params.push_back(Param);
11507    }
11508
11509  // Fake up parameter variables if we have a typedef, like
11510  //   ^ fntype { ... }
11511  } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
11512    for (const auto &I : Fn->param_types()) {
11513      ParmVarDecl *Param = BuildParmVarDeclForTypedef(
11514          CurBlock->TheDecl, ParamInfo.getLocStart(), I);
11515      Params.push_back(Param);
11516    }
11517  }
11518
11519  // Set the parameters on the block decl.
11520  if (!Params.empty()) {
11521    CurBlock->TheDecl->setParams(Params);
11522    CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(),
11523                             CurBlock->TheDecl->param_end(),
11524                             /*CheckParameterNames=*/false);
11525  }
11526
11527  // Finally we can process decl attributes.
11528  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
11529
11530  // Put the parameter variables in scope.
11531  for (auto AI : CurBlock->TheDecl->params()) {
11532    AI->setOwningFunction(CurBlock->TheDecl);
11533
11534    // If this has an identifier, add it to the scope stack.
11535    if (AI->getIdentifier()) {
11536      CheckShadow(CurBlock->TheScope, AI);
11537
11538      PushOnScopeChains(AI, CurBlock->TheScope);
11539    }
11540  }
11541}
11542
11543/// ActOnBlockError - If there is an error parsing a block, this callback
11544/// is invoked to pop the information about the block from the action impl.
11545void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
11546  // Leave the expression-evaluation context.
11547  DiscardCleanupsInEvaluationContext();
11548  PopExpressionEvaluationContext();
11549
11550  // Pop off CurBlock, handle nested blocks.
11551  PopDeclContext();
11552  PopFunctionScopeInfo();
11553}
11554
11555/// ActOnBlockStmtExpr - This is called when the body of a block statement
11556/// literal was successfully completed.  ^(int x){...}
11557ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
11558                                    Stmt *Body, Scope *CurScope) {
11559  // If blocks are disabled, emit an error.
11560  if (!LangOpts.Blocks)
11561    Diag(CaretLoc, diag::err_blocks_disable);
11562
11563  // Leave the expression-evaluation context.
11564  if (hasAnyUnrecoverableErrorsInThisFunction())
11565    DiscardCleanupsInEvaluationContext();
11566  assert(!ExprNeedsCleanups && "cleanups within block not correctly bound!");
11567  PopExpressionEvaluationContext();
11568
11569  BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
11570
11571  if (BSI->HasImplicitReturnType)
11572    deduceClosureReturnType(*BSI);
11573
11574  PopDeclContext();
11575
11576  QualType RetTy = Context.VoidTy;
11577  if (!BSI->ReturnType.isNull())
11578    RetTy = BSI->ReturnType;
11579
11580  bool NoReturn = BSI->TheDecl->hasAttr<NoReturnAttr>();
11581  QualType BlockTy;
11582
11583  // Set the captured variables on the block.
11584  // FIXME: Share capture structure between BlockDecl and CapturingScopeInfo!
11585  SmallVector<BlockDecl::Capture, 4> Captures;
11586  for (CapturingScopeInfo::Capture &Cap : BSI->Captures) {
11587    if (Cap.isThisCapture())
11588      continue;
11589    BlockDecl::Capture NewCap(Cap.getVariable(), Cap.isBlockCapture(),
11590                              Cap.isNested(), Cap.getInitExpr());
11591    Captures.push_back(NewCap);
11592  }
11593  BSI->TheDecl->setCaptures(Context, Captures, BSI->CXXThisCaptureIndex != 0);
11594
11595  // If the user wrote a function type in some form, try to use that.
11596  if (!BSI->FunctionType.isNull()) {
11597    const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
11598
11599    FunctionType::ExtInfo Ext = FTy->getExtInfo();
11600    if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
11601
11602    // Turn protoless block types into nullary block types.
11603    if (isa<FunctionNoProtoType>(FTy)) {
11604      FunctionProtoType::ExtProtoInfo EPI;
11605      EPI.ExtInfo = Ext;
11606      BlockTy = Context.getFunctionType(RetTy, None, EPI);
11607
11608    // Otherwise, if we don't need to change anything about the function type,
11609    // preserve its sugar structure.
11610    } else if (FTy->getReturnType() == RetTy &&
11611               (!NoReturn || FTy->getNoReturnAttr())) {
11612      BlockTy = BSI->FunctionType;
11613
11614    // Otherwise, make the minimal modifications to the function type.
11615    } else {
11616      const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
11617      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
11618      EPI.TypeQuals = 0; // FIXME: silently?
11619      EPI.ExtInfo = Ext;
11620      BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI);
11621    }
11622
11623  // If we don't have a function type, just build one from nothing.
11624  } else {
11625    FunctionProtoType::ExtProtoInfo EPI;
11626    EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
11627    BlockTy = Context.getFunctionType(RetTy, None, EPI);
11628  }
11629
11630  DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
11631                           BSI->TheDecl->param_end());
11632  BlockTy = Context.getBlockPointerType(BlockTy);
11633
11634  // If needed, diagnose invalid gotos and switches in the block.
11635  if (getCurFunction()->NeedsScopeChecking() &&
11636      !PP.isCodeCompletionEnabled())
11637    DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
11638
11639  BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
11640
11641  // Try to apply the named return value optimization. We have to check again
11642  // if we can do this, though, because blocks keep return statements around
11643  // to deduce an implicit return type.
11644  if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
11645      !BSI->TheDecl->isDependentContext())
11646    computeNRVO(Body, BSI);
11647
11648  BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy);
11649  AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
11650  PopFunctionScopeInfo(&WP, Result->getBlockDecl(), Result);
11651
11652  // If the block isn't obviously global, i.e. it captures anything at
11653  // all, then we need to do a few things in the surrounding context:
11654  if (Result->getBlockDecl()->hasCaptures()) {
11655    // First, this expression has a new cleanup object.
11656    ExprCleanupObjects.push_back(Result->getBlockDecl());
11657    ExprNeedsCleanups = true;
11658
11659    // It also gets a branch-protected scope if any of the captured
11660    // variables needs destruction.
11661    for (const auto &CI : Result->getBlockDecl()->captures()) {
11662      const VarDecl *var = CI.getVariable();
11663      if (var->getType().isDestructedType() != QualType::DK_none) {
11664        getCurFunction()->setHasBranchProtectedScope();
11665        break;
11666      }
11667    }
11668  }
11669
11670  return Result;
11671}
11672
11673ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
11674                                        Expr *E, ParsedType Ty,
11675                                        SourceLocation RPLoc) {
11676  TypeSourceInfo *TInfo;
11677  GetTypeFromParser(Ty, &TInfo);
11678  return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
11679}
11680
11681ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
11682                                Expr *E, TypeSourceInfo *TInfo,
11683                                SourceLocation RPLoc) {
11684  Expr *OrigExpr = E;
11685  bool IsMS = false;
11686
11687  // It might be a __builtin_ms_va_list. (But don't ever mark a va_arg()
11688  // as Microsoft ABI on an actual Microsoft platform, where
11689  // __builtin_ms_va_list and __builtin_va_list are the same.)
11690  if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() &&
11691      Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) {
11692    QualType MSVaListType = Context.getBuiltinMSVaListType();
11693    if (Context.hasSameType(MSVaListType, E->getType())) {
11694      if (CheckForModifiableLvalue(E, BuiltinLoc, *this))
11695        return ExprError();
11696      IsMS = true;
11697    }
11698  }
11699
11700  // Get the va_list type
11701  QualType VaListType = Context.getBuiltinVaListType();
11702  if (!IsMS) {
11703    if (VaListType->isArrayType()) {
11704      // Deal with implicit array decay; for example, on x86-64,
11705      // va_list is an array, but it's supposed to decay to
11706      // a pointer for va_arg.
11707      VaListType = Context.getArrayDecayedType(VaListType);
11708      // Make sure the input expression also decays appropriately.
11709      ExprResult Result = UsualUnaryConversions(E);
11710      if (Result.isInvalid())
11711        return ExprError();
11712      E = Result.get();
11713    } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
11714      // If va_list is a record type and we are compiling in C++ mode,
11715      // check the argument using reference binding.
11716      InitializedEntity Entity = InitializedEntity::InitializeParameter(
11717          Context, Context.getLValueReferenceType(VaListType), false);
11718      ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
11719      if (Init.isInvalid())
11720        return ExprError();
11721      E = Init.getAs<Expr>();
11722    } else {
11723      // Otherwise, the va_list argument must be an l-value because
11724      // it is modified by va_arg.
11725      if (!E->isTypeDependent() &&
11726          CheckForModifiableLvalue(E, BuiltinLoc, *this))
11727        return ExprError();
11728    }
11729  }
11730
11731  if (!IsMS && !E->isTypeDependent() &&
11732      !Context.hasSameType(VaListType, E->getType()))
11733    return ExprError(Diag(E->getLocStart(),
11734                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
11735      << OrigExpr->getType() << E->getSourceRange());
11736
11737  if (!TInfo->getType()->isDependentType()) {
11738    if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
11739                            diag::err_second_parameter_to_va_arg_incomplete,
11740                            TInfo->getTypeLoc()))
11741      return ExprError();
11742
11743    if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
11744                               TInfo->getType(),
11745                               diag::err_second_parameter_to_va_arg_abstract,
11746                               TInfo->getTypeLoc()))
11747      return ExprError();
11748
11749    if (!TInfo->getType().isPODType(Context)) {
11750      Diag(TInfo->getTypeLoc().getBeginLoc(),
11751           TInfo->getType()->isObjCLifetimeType()
11752             ? diag::warn_second_parameter_to_va_arg_ownership_qualified
11753             : diag::warn_second_parameter_to_va_arg_not_pod)
11754        << TInfo->getType()
11755        << TInfo->getTypeLoc().getSourceRange();
11756    }
11757
11758    // Check for va_arg where arguments of the given type will be promoted
11759    // (i.e. this va_arg is guaranteed to have undefined behavior).
11760    QualType PromoteType;
11761    if (TInfo->getType()->isPromotableIntegerType()) {
11762      PromoteType = Context.getPromotedIntegerType(TInfo->getType());
11763      if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
11764        PromoteType = QualType();
11765    }
11766    if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
11767      PromoteType = Context.DoubleTy;
11768    if (!PromoteType.isNull())
11769      DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
11770                  PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
11771                          << TInfo->getType()
11772                          << PromoteType
11773                          << TInfo->getTypeLoc().getSourceRange());
11774  }
11775
11776  QualType T = TInfo->getType().getNonLValueExprType(Context);
11777  return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS);
11778}
11779
11780ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
11781  // The type of __null will be int or long, depending on the size of
11782  // pointers on the target.
11783  QualType Ty;
11784  unsigned pw = Context.getTargetInfo().getPointerWidth(0);
11785  if (pw == Context.getTargetInfo().getIntWidth())
11786    Ty = Context.IntTy;
11787  else if (pw == Context.getTargetInfo().getLongWidth())
11788    Ty = Context.LongTy;
11789  else if (pw == Context.getTargetInfo().getLongLongWidth())
11790    Ty = Context.LongLongTy;
11791  else {
11792    llvm_unreachable("I don't know size of pointer!");
11793  }
11794
11795  return new (Context) GNUNullExpr(Ty, TokenLoc);
11796}
11797
11798bool
11799Sema::ConversionToObjCStringLiteralCheck(QualType DstType, Expr *&Exp) {
11800  if (!getLangOpts().ObjC1)
11801    return false;
11802
11803  const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
11804  if (!PT)
11805    return false;
11806
11807  if (!PT->isObjCIdType()) {
11808    // Check if the destination is the 'NSString' interface.
11809    const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
11810    if (!ID || !ID->getIdentifier()->isStr("NSString"))
11811      return false;
11812  }
11813
11814  // Ignore any parens, implicit casts (should only be
11815  // array-to-pointer decays), and not-so-opaque values.  The last is
11816  // important for making this trigger for property assignments.
11817  Expr *SrcExpr = Exp->IgnoreParenImpCasts();
11818  if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
11819    if (OV->getSourceExpr())
11820      SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
11821
11822  StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr);
11823  if (!SL || !SL->isAscii())
11824    return false;
11825  Diag(SL->getLocStart(), diag::err_missing_atsign_prefix)
11826    << FixItHint::CreateInsertion(SL->getLocStart(), "@");
11827  Exp = BuildObjCStringLiteral(SL->getLocStart(), SL).get();
11828  return true;
11829}
11830
11831static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType,
11832                                              const Expr *SrcExpr) {
11833  if (!DstType->isFunctionPointerType() ||
11834      !SrcExpr->getType()->isFunctionType())
11835    return false;
11836
11837  auto *DRE = dyn_cast<DeclRefExpr>(SrcExpr->IgnoreParenImpCasts());
11838  if (!DRE)
11839    return false;
11840
11841  auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
11842  if (!FD)
11843    return false;
11844
11845  return !S.checkAddressOfFunctionIsAvailable(FD,
11846                                              /*Complain=*/true,
11847                                              SrcExpr->getLocStart());
11848}
11849
11850bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
11851                                    SourceLocation Loc,
11852                                    QualType DstType, QualType SrcType,
11853                                    Expr *SrcExpr, AssignmentAction Action,
11854                                    bool *Complained) {
11855  if (Complained)
11856    *Complained = false;
11857
11858  // Decode the result (notice that AST's are still created for extensions).
11859  bool CheckInferredResultType = false;
11860  bool isInvalid = false;
11861  unsigned DiagKind = 0;
11862  FixItHint Hint;
11863  ConversionFixItGenerator ConvHints;
11864  bool MayHaveConvFixit = false;
11865  bool MayHaveFunctionDiff = false;
11866  const ObjCInterfaceDecl *IFace = nullptr;
11867  const ObjCProtocolDecl *PDecl = nullptr;
11868
11869  switch (ConvTy) {
11870  case Compatible:
11871      DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
11872      return false;
11873
11874  case PointerToInt:
11875    DiagKind = diag::ext_typecheck_convert_pointer_int;
11876    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
11877    MayHaveConvFixit = true;
11878    break;
11879  case IntToPointer:
11880    DiagKind = diag::ext_typecheck_convert_int_pointer;
11881    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
11882    MayHaveConvFixit = true;
11883    break;
11884  case IncompatiblePointer:
11885      DiagKind =
11886        (Action == AA_Passing_CFAudited ?
11887          diag::err_arc_typecheck_convert_incompatible_pointer :
11888          diag::ext_typecheck_convert_incompatible_pointer);
11889    CheckInferredResultType = DstType->isObjCObjectPointerType() &&
11890      SrcType->isObjCObjectPointerType();
11891    if (Hint.isNull() && !CheckInferredResultType) {
11892      ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
11893    }
11894    else if (CheckInferredResultType) {
11895      SrcType = SrcType.getUnqualifiedType();
11896      DstType = DstType.getUnqualifiedType();
11897    }
11898    MayHaveConvFixit = true;
11899    break;
11900  case IncompatiblePointerSign:
11901    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
11902    break;
11903  case FunctionVoidPointer:
11904    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
11905    break;
11906  case IncompatiblePointerDiscardsQualifiers: {
11907    // Perform array-to-pointer decay if necessary.
11908    if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
11909
11910    Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
11911    Qualifiers rhq = DstType->getPointeeType().getQualifiers();
11912    if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
11913      DiagKind = diag::err_typecheck_incompatible_address_space;
11914      break;
11915
11916
11917    } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
11918      DiagKind = diag::err_typecheck_incompatible_ownership;
11919      break;
11920    }
11921
11922    llvm_unreachable("unknown error case for discarding qualifiers!");
11923    // fallthrough
11924  }
11925  case CompatiblePointerDiscardsQualifiers:
11926    // If the qualifiers lost were because we were applying the
11927    // (deprecated) C++ conversion from a string literal to a char*
11928    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
11929    // Ideally, this check would be performed in
11930    // checkPointerTypesForAssignment. However, that would require a
11931    // bit of refactoring (so that the second argument is an
11932    // expression, rather than a type), which should be done as part
11933    // of a larger effort to fix checkPointerTypesForAssignment for
11934    // C++ semantics.
11935    if (getLangOpts().CPlusPlus &&
11936        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
11937      return false;
11938    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
11939    break;
11940  case IncompatibleNestedPointerQualifiers:
11941    DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
11942    break;
11943  case IntToBlockPointer:
11944    DiagKind = diag::err_int_to_block_pointer;
11945    break;
11946  case IncompatibleBlockPointer:
11947    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
11948    break;
11949  case IncompatibleObjCQualifiedId: {
11950    if (SrcType->isObjCQualifiedIdType()) {
11951      const ObjCObjectPointerType *srcOPT =
11952                SrcType->getAs<ObjCObjectPointerType>();
11953      for (auto *srcProto : srcOPT->quals()) {
11954        PDecl = srcProto;
11955        break;
11956      }
11957      if (const ObjCInterfaceType *IFaceT =
11958            DstType->getAs<ObjCObjectPointerType>()->getInterfaceType())
11959        IFace = IFaceT->getDecl();
11960    }
11961    else if (DstType->isObjCQualifiedIdType()) {
11962      const ObjCObjectPointerType *dstOPT =
11963        DstType->getAs<ObjCObjectPointerType>();
11964      for (auto *dstProto : dstOPT->quals()) {
11965        PDecl = dstProto;
11966        break;
11967      }
11968      if (const ObjCInterfaceType *IFaceT =
11969            SrcType->getAs<ObjCObjectPointerType>()->getInterfaceType())
11970        IFace = IFaceT->getDecl();
11971    }
11972    DiagKind = diag::warn_incompatible_qualified_id;
11973    break;
11974  }
11975  case IncompatibleVectors:
11976    DiagKind = diag::warn_incompatible_vectors;
11977    break;
11978  case IncompatibleObjCWeakRef:
11979    DiagKind = diag::err_arc_weak_unavailable_assign;
11980    break;
11981  case Incompatible:
11982    if (maybeDiagnoseAssignmentToFunction(*this, DstType, SrcExpr)) {
11983      if (Complained)
11984        *Complained = true;
11985      return true;
11986    }
11987
11988    DiagKind = diag::err_typecheck_convert_incompatible;
11989    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
11990    MayHaveConvFixit = true;
11991    isInvalid = true;
11992    MayHaveFunctionDiff = true;
11993    break;
11994  }
11995
11996  QualType FirstType, SecondType;
11997  switch (Action) {
11998  case AA_Assigning:
11999  case AA_Initializing:
12000    // The destination type comes first.
12001    FirstType = DstType;
12002    SecondType = SrcType;
12003    break;
12004
12005  case AA_Returning:
12006  case AA_Passing:
12007  case AA_Passing_CFAudited:
12008  case AA_Converting:
12009  case AA_Sending:
12010  case AA_Casting:
12011    // The source type comes first.
12012    FirstType = SrcType;
12013    SecondType = DstType;
12014    break;
12015  }
12016
12017  PartialDiagnostic FDiag = PDiag(DiagKind);
12018  if (Action == AA_Passing_CFAudited)
12019    FDiag << FirstType << SecondType << AA_Passing << SrcExpr->getSourceRange();
12020  else
12021    FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
12022
12023  // If we can fix the conversion, suggest the FixIts.
12024  assert(ConvHints.isNull() || Hint.isNull());
12025  if (!ConvHints.isNull()) {
12026    for (FixItHint &H : ConvHints.Hints)
12027      FDiag << H;
12028  } else {
12029    FDiag << Hint;
12030  }
12031  if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
12032
12033  if (MayHaveFunctionDiff)
12034    HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
12035
12036  Diag(Loc, FDiag);
12037  if (DiagKind == diag::warn_incompatible_qualified_id &&
12038      PDecl && IFace && !IFace->hasDefinition())
12039      Diag(IFace->getLocation(), diag::not_incomplete_class_and_qualified_id)
12040        << IFace->getName() << PDecl->getName();
12041
12042  if (SecondType == Context.OverloadTy)
12043    NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
12044                              FirstType, /*TakingAddress=*/true);
12045
12046  if (CheckInferredResultType)
12047    EmitRelatedResultTypeNote(SrcExpr);
12048
12049  if (Action == AA_Returning && ConvTy == IncompatiblePointer)
12050    EmitRelatedResultTypeNoteForReturn(DstType);
12051
12052  if (Complained)
12053    *Complained = true;
12054  return isInvalid;
12055}
12056
12057ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
12058                                                 llvm::APSInt *Result) {
12059  class SimpleICEDiagnoser : public VerifyICEDiagnoser {
12060  public:
12061    void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
12062      S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus << SR;
12063    }
12064  } Diagnoser;
12065
12066  return VerifyIntegerConstantExpression(E, Result, Diagnoser);
12067}
12068
12069ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
12070                                                 llvm::APSInt *Result,
12071                                                 unsigned DiagID,
12072                                                 bool AllowFold) {
12073  class IDDiagnoser : public VerifyICEDiagnoser {
12074    unsigned DiagID;
12075
12076  public:
12077    IDDiagnoser(unsigned DiagID)
12078      : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
12079
12080    void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
12081      S.Diag(Loc, DiagID) << SR;
12082    }
12083  } Diagnoser(DiagID);
12084
12085  return VerifyIntegerConstantExpression(E, Result, Diagnoser, AllowFold);
12086}
12087
12088void Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc,
12089                                            SourceRange SR) {
12090  S.Diag(Loc, diag::ext_expr_not_ice) << SR << S.LangOpts.CPlusPlus;
12091}
12092
12093ExprResult
12094Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
12095                                      VerifyICEDiagnoser &Diagnoser,
12096                                      bool AllowFold) {
12097  SourceLocation DiagLoc = E->getLocStart();
12098
12099  if (getLangOpts().CPlusPlus11) {
12100    // C++11 [expr.const]p5:
12101    //   If an expression of literal class type is used in a context where an
12102    //   integral constant expression is required, then that class type shall
12103    //   have a single non-explicit conversion function to an integral or
12104    //   unscoped enumeration type
12105    ExprResult Converted;
12106    class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
12107    public:
12108      CXX11ConvertDiagnoser(bool Silent)
12109          : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false,
12110                                Silent, true) {}
12111
12112      SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
12113                                           QualType T) override {
12114        return S.Diag(Loc, diag::err_ice_not_integral) << T;
12115      }
12116
12117      SemaDiagnosticBuilder diagnoseIncomplete(
12118          Sema &S, SourceLocation Loc, QualType T) override {
12119        return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
12120      }
12121
12122      SemaDiagnosticBuilder diagnoseExplicitConv(
12123          Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
12124        return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
12125      }
12126
12127      SemaDiagnosticBuilder noteExplicitConv(
12128          Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
12129        return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
12130                 << ConvTy->isEnumeralType() << ConvTy;
12131      }
12132
12133      SemaDiagnosticBuilder diagnoseAmbiguous(
12134          Sema &S, SourceLocation Loc, QualType T) override {
12135        return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
12136      }
12137
12138      SemaDiagnosticBuilder noteAmbiguous(
12139          Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
12140        return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
12141                 << ConvTy->isEnumeralType() << ConvTy;
12142      }
12143
12144      SemaDiagnosticBuilder diagnoseConversion(
12145          Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
12146        llvm_unreachable("conversion functions are permitted");
12147      }
12148    } ConvertDiagnoser(Diagnoser.Suppress);
12149
12150    Converted = PerformContextualImplicitConversion(DiagLoc, E,
12151                                                    ConvertDiagnoser);
12152    if (Converted.isInvalid())
12153      return Converted;
12154    E = Converted.get();
12155    if (!E->getType()->isIntegralOrUnscopedEnumerationType())
12156      return ExprError();
12157  } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
12158    // An ICE must be of integral or unscoped enumeration type.
12159    if (!Diagnoser.Suppress)
12160      Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
12161    return ExprError();
12162  }
12163
12164  // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
12165  // in the non-ICE case.
12166  if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
12167    if (Result)
12168      *Result = E->EvaluateKnownConstInt(Context);
12169    return E;
12170  }
12171
12172  Expr::EvalResult EvalResult;
12173  SmallVector<PartialDiagnosticAt, 8> Notes;
12174  EvalResult.Diag = &Notes;
12175
12176  // Try to evaluate the expression, and produce diagnostics explaining why it's
12177  // not a constant expression as a side-effect.
12178  bool Folded = E->EvaluateAsRValue(EvalResult, Context) &&
12179                EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
12180
12181  // In C++11, we can rely on diagnostics being produced for any expression
12182  // which is not a constant expression. If no diagnostics were produced, then
12183  // this is a constant expression.
12184  if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
12185    if (Result)
12186      *Result = EvalResult.Val.getInt();
12187    return E;
12188  }
12189
12190  // If our only note is the usual "invalid subexpression" note, just point
12191  // the caret at its location rather than producing an essentially
12192  // redundant note.
12193  if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
12194        diag::note_invalid_subexpr_in_const_expr) {
12195    DiagLoc = Notes[0].first;
12196    Notes.clear();
12197  }
12198
12199  if (!Folded || !AllowFold) {
12200    if (!Diagnoser.Suppress) {
12201      Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
12202      for (const PartialDiagnosticAt &Note : Notes)
12203        Diag(Note.first, Note.second);
12204    }
12205
12206    return ExprError();
12207  }
12208
12209  Diagnoser.diagnoseFold(*this, DiagLoc, E->getSourceRange());
12210  for (const PartialDiagnosticAt &Note : Notes)
12211    Diag(Note.first, Note.second);
12212
12213  if (Result)
12214    *Result = EvalResult.Val.getInt();
12215  return E;
12216}
12217
12218namespace {
12219  // Handle the case where we conclude a expression which we speculatively
12220  // considered to be unevaluated is actually evaluated.
12221  class TransformToPE : public TreeTransform<TransformToPE> {
12222    typedef TreeTransform<TransformToPE> BaseTransform;
12223
12224  public:
12225    TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
12226
12227    // Make sure we redo semantic analysis
12228    bool AlwaysRebuild() { return true; }
12229
12230    // Make sure we handle LabelStmts correctly.
12231    // FIXME: This does the right thing, but maybe we need a more general
12232    // fix to TreeTransform?
12233    StmtResult TransformLabelStmt(LabelStmt *S) {
12234      S->getDecl()->setStmt(nullptr);
12235      return BaseTransform::TransformLabelStmt(S);
12236    }
12237
12238    // We need to special-case DeclRefExprs referring to FieldDecls which
12239    // are not part of a member pointer formation; normal TreeTransforming
12240    // doesn't catch this case because of the way we represent them in the AST.
12241    // FIXME: This is a bit ugly; is it really the best way to handle this
12242    // case?
12243    //
12244    // Error on DeclRefExprs referring to FieldDecls.
12245    ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
12246      if (isa<FieldDecl>(E->getDecl()) &&
12247          !SemaRef.isUnevaluatedContext())
12248        return SemaRef.Diag(E->getLocation(),
12249                            diag::err_invalid_non_static_member_use)
12250            << E->getDecl() << E->getSourceRange();
12251
12252      return BaseTransform::TransformDeclRefExpr(E);
12253    }
12254
12255    // Exception: filter out member pointer formation
12256    ExprResult TransformUnaryOperator(UnaryOperator *E) {
12257      if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
12258        return E;
12259
12260      return BaseTransform::TransformUnaryOperator(E);
12261    }
12262
12263    ExprResult TransformLambdaExpr(LambdaExpr *E) {
12264      // Lambdas never need to be transformed.
12265      return E;
12266    }
12267  };
12268}
12269
12270ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
12271  assert(isUnevaluatedContext() &&
12272         "Should only transform unevaluated expressions");
12273  ExprEvalContexts.back().Context =
12274      ExprEvalContexts[ExprEvalContexts.size()-2].Context;
12275  if (isUnevaluatedContext())
12276    return E;
12277  return TransformToPE(*this).TransformExpr(E);
12278}
12279
12280void
12281Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
12282                                      Decl *LambdaContextDecl,
12283                                      bool IsDecltype) {
12284  ExprEvalContexts.emplace_back(NewContext, ExprCleanupObjects.size(),
12285                                ExprNeedsCleanups, LambdaContextDecl,
12286                                IsDecltype);
12287  ExprNeedsCleanups = false;
12288  if (!MaybeODRUseExprs.empty())
12289    std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
12290}
12291
12292void
12293Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
12294                                      ReuseLambdaContextDecl_t,
12295                                      bool IsDecltype) {
12296  Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
12297  PushExpressionEvaluationContext(NewContext, ClosureContextDecl, IsDecltype);
12298}
12299
12300void Sema::PopExpressionEvaluationContext() {
12301  ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
12302  unsigned NumTypos = Rec.NumTypos;
12303
12304  if (!Rec.Lambdas.empty()) {
12305    if (Rec.isUnevaluated() || Rec.Context == ConstantEvaluated) {
12306      unsigned D;
12307      if (Rec.isUnevaluated()) {
12308        // C++11 [expr.prim.lambda]p2:
12309        //   A lambda-expression shall not appear in an unevaluated operand
12310        //   (Clause 5).
12311        D = diag::err_lambda_unevaluated_operand;
12312      } else {
12313        // C++1y [expr.const]p2:
12314        //   A conditional-expression e is a core constant expression unless the
12315        //   evaluation of e, following the rules of the abstract machine, would
12316        //   evaluate [...] a lambda-expression.
12317        D = diag::err_lambda_in_constant_expression;
12318      }
12319      for (const auto *L : Rec.Lambdas)
12320        Diag(L->getLocStart(), D);
12321    } else {
12322      // Mark the capture expressions odr-used. This was deferred
12323      // during lambda expression creation.
12324      for (auto *Lambda : Rec.Lambdas) {
12325        for (auto *C : Lambda->capture_inits())
12326          MarkDeclarationsReferencedInExpr(C);
12327      }
12328    }
12329  }
12330
12331  // When are coming out of an unevaluated context, clear out any
12332  // temporaries that we may have created as part of the evaluation of
12333  // the expression in that context: they aren't relevant because they
12334  // will never be constructed.
12335  if (Rec.isUnevaluated() || Rec.Context == ConstantEvaluated) {
12336    ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
12337                             ExprCleanupObjects.end());
12338    ExprNeedsCleanups = Rec.ParentNeedsCleanups;
12339    CleanupVarDeclMarking();
12340    std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
12341  // Otherwise, merge the contexts together.
12342  } else {
12343    ExprNeedsCleanups |= Rec.ParentNeedsCleanups;
12344    MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
12345                            Rec.SavedMaybeODRUseExprs.end());
12346  }
12347
12348  // Pop the current expression evaluation context off the stack.
12349  ExprEvalContexts.pop_back();
12350
12351  if (!ExprEvalContexts.empty())
12352    ExprEvalContexts.back().NumTypos += NumTypos;
12353  else
12354    assert(NumTypos == 0 && "There are outstanding typos after popping the "
12355                            "last ExpressionEvaluationContextRecord");
12356}
12357
12358void Sema::DiscardCleanupsInEvaluationContext() {
12359  ExprCleanupObjects.erase(
12360         ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
12361         ExprCleanupObjects.end());
12362  ExprNeedsCleanups = false;
12363  MaybeODRUseExprs.clear();
12364}
12365
12366ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
12367  if (!E->getType()->isVariablyModifiedType())
12368    return E;
12369  return TransformToPotentiallyEvaluated(E);
12370}
12371
12372static bool IsPotentiallyEvaluatedContext(Sema &SemaRef) {
12373  // Do not mark anything as "used" within a dependent context; wait for
12374  // an instantiation.
12375  if (SemaRef.CurContext->isDependentContext())
12376    return false;
12377
12378  switch (SemaRef.ExprEvalContexts.back().Context) {
12379    case Sema::Unevaluated:
12380    case Sema::UnevaluatedAbstract:
12381      // We are in an expression that is not potentially evaluated; do nothing.
12382      // (Depending on how you read the standard, we actually do need to do
12383      // something here for null pointer constants, but the standard's
12384      // definition of a null pointer constant is completely crazy.)
12385      return false;
12386
12387    case Sema::ConstantEvaluated:
12388    case Sema::PotentiallyEvaluated:
12389      // We are in a potentially evaluated expression (or a constant-expression
12390      // in C++03); we need to do implicit template instantiation, implicitly
12391      // define class members, and mark most declarations as used.
12392      return true;
12393
12394    case Sema::PotentiallyEvaluatedIfUsed:
12395      // Referenced declarations will only be used if the construct in the
12396      // containing expression is used.
12397      return false;
12398  }
12399  llvm_unreachable("Invalid context");
12400}
12401
12402/// \brief Mark a function referenced, and check whether it is odr-used
12403/// (C++ [basic.def.odr]p2, C99 6.9p3)
12404void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
12405                                  bool OdrUse) {
12406  assert(Func && "No function?");
12407
12408  Func->setReferenced();
12409
12410  // C++11 [basic.def.odr]p3:
12411  //   A function whose name appears as a potentially-evaluated expression is
12412  //   odr-used if it is the unique lookup result or the selected member of a
12413  //   set of overloaded functions [...].
12414  //
12415  // We (incorrectly) mark overload resolution as an unevaluated context, so we
12416  // can just check that here. Skip the rest of this function if we've already
12417  // marked the function as used.
12418  if (Func->isUsed(/*CheckUsedAttr=*/false) ||
12419      !IsPotentiallyEvaluatedContext(*this)) {
12420    // C++11 [temp.inst]p3:
12421    //   Unless a function template specialization has been explicitly
12422    //   instantiated or explicitly specialized, the function template
12423    //   specialization is implicitly instantiated when the specialization is
12424    //   referenced in a context that requires a function definition to exist.
12425    //
12426    // We consider constexpr function templates to be referenced in a context
12427    // that requires a definition to exist whenever they are referenced.
12428    //
12429    // FIXME: This instantiates constexpr functions too frequently. If this is
12430    // really an unevaluated context (and we're not just in the definition of a
12431    // function template or overload resolution or other cases which we
12432    // incorrectly consider to be unevaluated contexts), and we're not in a
12433    // subexpression which we actually need to evaluate (for instance, a
12434    // template argument, array bound or an expression in a braced-init-list),
12435    // we are not permitted to instantiate this constexpr function definition.
12436    //
12437    // FIXME: This also implicitly defines special members too frequently. They
12438    // are only supposed to be implicitly defined if they are odr-used, but they
12439    // are not odr-used from constant expressions in unevaluated contexts.
12440    // However, they cannot be referenced if they are deleted, and they are
12441    // deleted whenever the implicit definition of the special member would
12442    // fail.
12443    if (!Func->isConstexpr() || Func->getBody())
12444      return;
12445    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Func);
12446    if (!Func->isImplicitlyInstantiable() && (!MD || MD->isUserProvided()))
12447      return;
12448  }
12449
12450  // Note that this declaration has been used.
12451  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
12452    Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl());
12453    if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
12454      if (Constructor->isDefaultConstructor()) {
12455        if (Constructor->isTrivial() && !Constructor->hasAttr<DLLExportAttr>())
12456          return;
12457        DefineImplicitDefaultConstructor(Loc, Constructor);
12458      } else if (Constructor->isCopyConstructor()) {
12459        DefineImplicitCopyConstructor(Loc, Constructor);
12460      } else if (Constructor->isMoveConstructor()) {
12461        DefineImplicitMoveConstructor(Loc, Constructor);
12462      }
12463    } else if (Constructor->getInheritedConstructor()) {
12464      DefineInheritingConstructor(Loc, Constructor);
12465    }
12466  } else if (CXXDestructorDecl *Destructor =
12467                 dyn_cast<CXXDestructorDecl>(Func)) {
12468    Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl());
12469    if (Destructor->isDefaulted() && !Destructor->isDeleted()) {
12470      if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>())
12471        return;
12472      DefineImplicitDestructor(Loc, Destructor);
12473    }
12474    if (Destructor->isVirtual() && getLangOpts().AppleKext)
12475      MarkVTableUsed(Loc, Destructor->getParent());
12476  } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
12477    if (MethodDecl->isOverloadedOperator() &&
12478        MethodDecl->getOverloadedOperator() == OO_Equal) {
12479      MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl());
12480      if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) {
12481        if (MethodDecl->isCopyAssignmentOperator())
12482          DefineImplicitCopyAssignment(Loc, MethodDecl);
12483        else
12484          DefineImplicitMoveAssignment(Loc, MethodDecl);
12485      }
12486    } else if (isa<CXXConversionDecl>(MethodDecl) &&
12487               MethodDecl->getParent()->isLambda()) {
12488      CXXConversionDecl *Conversion =
12489          cast<CXXConversionDecl>(MethodDecl->getFirstDecl());
12490      if (Conversion->isLambdaToBlockPointerConversion())
12491        DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
12492      else
12493        DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
12494    } else if (MethodDecl->isVirtual() && getLangOpts().AppleKext)
12495      MarkVTableUsed(Loc, MethodDecl->getParent());
12496  }
12497
12498  // Recursive functions should be marked when used from another function.
12499  // FIXME: Is this really right?
12500  if (CurContext == Func) return;
12501
12502  // Resolve the exception specification for any function which is
12503  // used: CodeGen will need it.
12504  const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
12505  if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
12506    ResolveExceptionSpec(Loc, FPT);
12507
12508  if (!OdrUse) return;
12509
12510  // Implicit instantiation of function templates and member functions of
12511  // class templates.
12512  if (Func->isImplicitlyInstantiable()) {
12513    bool AlreadyInstantiated = false;
12514    SourceLocation PointOfInstantiation = Loc;
12515    if (FunctionTemplateSpecializationInfo *SpecInfo
12516                              = Func->getTemplateSpecializationInfo()) {
12517      if (SpecInfo->getPointOfInstantiation().isInvalid())
12518        SpecInfo->setPointOfInstantiation(Loc);
12519      else if (SpecInfo->getTemplateSpecializationKind()
12520                 == TSK_ImplicitInstantiation) {
12521        AlreadyInstantiated = true;
12522        PointOfInstantiation = SpecInfo->getPointOfInstantiation();
12523      }
12524    } else if (MemberSpecializationInfo *MSInfo
12525                                = Func->getMemberSpecializationInfo()) {
12526      if (MSInfo->getPointOfInstantiation().isInvalid())
12527        MSInfo->setPointOfInstantiation(Loc);
12528      else if (MSInfo->getTemplateSpecializationKind()
12529                 == TSK_ImplicitInstantiation) {
12530        AlreadyInstantiated = true;
12531        PointOfInstantiation = MSInfo->getPointOfInstantiation();
12532      }
12533    }
12534
12535    if (!AlreadyInstantiated || Func->isConstexpr()) {
12536      if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
12537          cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
12538          ActiveTemplateInstantiations.size())
12539        PendingLocalImplicitInstantiations.push_back(
12540            std::make_pair(Func, PointOfInstantiation));
12541      else if (Func->isConstexpr())
12542        // Do not defer instantiations of constexpr functions, to avoid the
12543        // expression evaluator needing to call back into Sema if it sees a
12544        // call to such a function.
12545        InstantiateFunctionDefinition(PointOfInstantiation, Func);
12546      else {
12547        PendingInstantiations.push_back(std::make_pair(Func,
12548                                                       PointOfInstantiation));
12549        // Notify the consumer that a function was implicitly instantiated.
12550        Consumer.HandleCXXImplicitFunctionInstantiation(Func);
12551      }
12552    }
12553  } else {
12554    // Walk redefinitions, as some of them may be instantiable.
12555    for (auto i : Func->redecls()) {
12556      if (!i->isUsed(false) && i->isImplicitlyInstantiable())
12557        MarkFunctionReferenced(Loc, i);
12558    }
12559  }
12560
12561  // Keep track of used but undefined functions.
12562  if (!Func->isDefined()) {
12563    if (mightHaveNonExternalLinkage(Func))
12564      UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
12565    else if (Func->getMostRecentDecl()->isInlined() &&
12566             !LangOpts.GNUInline &&
12567             !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
12568      UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
12569  }
12570
12571  // Normally the most current decl is marked used while processing the use and
12572  // any subsequent decls are marked used by decl merging. This fails with
12573  // template instantiation since marking can happen at the end of the file
12574  // and, because of the two phase lookup, this function is called with at
12575  // decl in the middle of a decl chain. We loop to maintain the invariant
12576  // that once a decl is used, all decls after it are also used.
12577  for (FunctionDecl *F = Func->getMostRecentDecl();; F = F->getPreviousDecl()) {
12578    F->markUsed(Context);
12579    if (F == Func)
12580      break;
12581  }
12582}
12583
12584static void
12585diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
12586                                   VarDecl *var, DeclContext *DC) {
12587  DeclContext *VarDC = var->getDeclContext();
12588
12589  //  If the parameter still belongs to the translation unit, then
12590  //  we're actually just using one parameter in the declaration of
12591  //  the next.
12592  if (isa<ParmVarDecl>(var) &&
12593      isa<TranslationUnitDecl>(VarDC))
12594    return;
12595
12596  // For C code, don't diagnose about capture if we're not actually in code
12597  // right now; it's impossible to write a non-constant expression outside of
12598  // function context, so we'll get other (more useful) diagnostics later.
12599  //
12600  // For C++, things get a bit more nasty... it would be nice to suppress this
12601  // diagnostic for certain cases like using a local variable in an array bound
12602  // for a member of a local class, but the correct predicate is not obvious.
12603  if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
12604    return;
12605
12606  if (isa<CXXMethodDecl>(VarDC) &&
12607      cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
12608    S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_lambda)
12609      << var->getIdentifier();
12610  } else if (FunctionDecl *fn = dyn_cast<FunctionDecl>(VarDC)) {
12611    S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_function)
12612      << var->getIdentifier() << fn->getDeclName();
12613  } else if (isa<BlockDecl>(VarDC)) {
12614    S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_block)
12615      << var->getIdentifier();
12616  } else {
12617    // FIXME: Is there any other context where a local variable can be
12618    // declared?
12619    S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_context)
12620      << var->getIdentifier();
12621  }
12622
12623  S.Diag(var->getLocation(), diag::note_entity_declared_at)
12624      << var->getIdentifier();
12625
12626  // FIXME: Add additional diagnostic info about class etc. which prevents
12627  // capture.
12628}
12629
12630
12631static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI, VarDecl *Var,
12632                                      bool &SubCapturesAreNested,
12633                                      QualType &CaptureType,
12634                                      QualType &DeclRefType) {
12635   // Check whether we've already captured it.
12636  if (CSI->CaptureMap.count(Var)) {
12637    // If we found a capture, any subcaptures are nested.
12638    SubCapturesAreNested = true;
12639
12640    // Retrieve the capture type for this variable.
12641    CaptureType = CSI->getCapture(Var).getCaptureType();
12642
12643    // Compute the type of an expression that refers to this variable.
12644    DeclRefType = CaptureType.getNonReferenceType();
12645
12646    // Similarly to mutable captures in lambda, all the OpenMP captures by copy
12647    // are mutable in the sense that user can change their value - they are
12648    // private instances of the captured declarations.
12649    const CapturingScopeInfo::Capture &Cap = CSI->getCapture(Var);
12650    if (Cap.isCopyCapture() &&
12651        !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable) &&
12652        !(isa<CapturedRegionScopeInfo>(CSI) &&
12653          cast<CapturedRegionScopeInfo>(CSI)->CapRegionKind == CR_OpenMP))
12654      DeclRefType.addConst();
12655    return true;
12656  }
12657  return false;
12658}
12659
12660// Only block literals, captured statements, and lambda expressions can
12661// capture; other scopes don't work.
12662static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC, VarDecl *Var,
12663                                 SourceLocation Loc,
12664                                 const bool Diagnose, Sema &S) {
12665  if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC))
12666    return getLambdaAwareParentOfDeclContext(DC);
12667  else if (Var->hasLocalStorage()) {
12668    if (Diagnose)
12669       diagnoseUncapturableValueReference(S, Loc, Var, DC);
12670  }
12671  return nullptr;
12672}
12673
12674// Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
12675// certain types of variables (unnamed, variably modified types etc.)
12676// so check for eligibility.
12677static bool isVariableCapturable(CapturingScopeInfo *CSI, VarDecl *Var,
12678                                 SourceLocation Loc,
12679                                 const bool Diagnose, Sema &S) {
12680
12681  bool IsBlock = isa<BlockScopeInfo>(CSI);
12682  bool IsLambda = isa<LambdaScopeInfo>(CSI);
12683
12684  // Lambdas are not allowed to capture unnamed variables
12685  // (e.g. anonymous unions).
12686  // FIXME: The C++11 rule don't actually state this explicitly, but I'm
12687  // assuming that's the intent.
12688  if (IsLambda && !Var->getDeclName()) {
12689    if (Diagnose) {
12690      S.Diag(Loc, diag::err_lambda_capture_anonymous_var);
12691      S.Diag(Var->getLocation(), diag::note_declared_at);
12692    }
12693    return false;
12694  }
12695
12696  // Prohibit variably-modified types in blocks; they're difficult to deal with.
12697  if (Var->getType()->isVariablyModifiedType() && IsBlock) {
12698    if (Diagnose) {
12699      S.Diag(Loc, diag::err_ref_vm_type);
12700      S.Diag(Var->getLocation(), diag::note_previous_decl)
12701        << Var->getDeclName();
12702    }
12703    return false;
12704  }
12705  // Prohibit structs with flexible array members too.
12706  // We cannot capture what is in the tail end of the struct.
12707  if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
12708    if (VTTy->getDecl()->hasFlexibleArrayMember()) {
12709      if (Diagnose) {
12710        if (IsBlock)
12711          S.Diag(Loc, diag::err_ref_flexarray_type);
12712        else
12713          S.Diag(Loc, diag::err_lambda_capture_flexarray_type)
12714            << Var->getDeclName();
12715        S.Diag(Var->getLocation(), diag::note_previous_decl)
12716          << Var->getDeclName();
12717      }
12718      return false;
12719    }
12720  }
12721  const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
12722  // Lambdas and captured statements are not allowed to capture __block
12723  // variables; they don't support the expected semantics.
12724  if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) {
12725    if (Diagnose) {
12726      S.Diag(Loc, diag::err_capture_block_variable)
12727        << Var->getDeclName() << !IsLambda;
12728      S.Diag(Var->getLocation(), diag::note_previous_decl)
12729        << Var->getDeclName();
12730    }
12731    return false;
12732  }
12733
12734  return true;
12735}
12736
12737// Returns true if the capture by block was successful.
12738static bool captureInBlock(BlockScopeInfo *BSI, VarDecl *Var,
12739                                 SourceLocation Loc,
12740                                 const bool BuildAndDiagnose,
12741                                 QualType &CaptureType,
12742                                 QualType &DeclRefType,
12743                                 const bool Nested,
12744                                 Sema &S) {
12745  Expr *CopyExpr = nullptr;
12746  bool ByRef = false;
12747
12748  // Blocks are not allowed to capture arrays.
12749  if (CaptureType->isArrayType()) {
12750    if (BuildAndDiagnose) {
12751      S.Diag(Loc, diag::err_ref_array_type);
12752      S.Diag(Var->getLocation(), diag::note_previous_decl)
12753      << Var->getDeclName();
12754    }
12755    return false;
12756  }
12757
12758  // Forbid the block-capture of autoreleasing variables.
12759  if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
12760    if (BuildAndDiagnose) {
12761      S.Diag(Loc, diag::err_arc_autoreleasing_capture)
12762        << /*block*/ 0;
12763      S.Diag(Var->getLocation(), diag::note_previous_decl)
12764        << Var->getDeclName();
12765    }
12766    return false;
12767  }
12768  const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
12769  if (HasBlocksAttr || CaptureType->isReferenceType()) {
12770    // Block capture by reference does not change the capture or
12771    // declaration reference types.
12772    ByRef = true;
12773  } else {
12774    // Block capture by copy introduces 'const'.
12775    CaptureType = CaptureType.getNonReferenceType().withConst();
12776    DeclRefType = CaptureType;
12777
12778    if (S.getLangOpts().CPlusPlus && BuildAndDiagnose) {
12779      if (const RecordType *Record = DeclRefType->getAs<RecordType>()) {
12780        // The capture logic needs the destructor, so make sure we mark it.
12781        // Usually this is unnecessary because most local variables have
12782        // their destructors marked at declaration time, but parameters are
12783        // an exception because it's technically only the call site that
12784        // actually requires the destructor.
12785        if (isa<ParmVarDecl>(Var))
12786          S.FinalizeVarWithDestructor(Var, Record);
12787
12788        // Enter a new evaluation context to insulate the copy
12789        // full-expression.
12790        EnterExpressionEvaluationContext scope(S, S.PotentiallyEvaluated);
12791
12792        // According to the blocks spec, the capture of a variable from
12793        // the stack requires a const copy constructor.  This is not true
12794        // of the copy/move done to move a __block variable to the heap.
12795        Expr *DeclRef = new (S.Context) DeclRefExpr(Var, Nested,
12796                                                  DeclRefType.withConst(),
12797                                                  VK_LValue, Loc);
12798
12799        ExprResult Result
12800          = S.PerformCopyInitialization(
12801              InitializedEntity::InitializeBlock(Var->getLocation(),
12802                                                  CaptureType, false),
12803              Loc, DeclRef);
12804
12805        // Build a full-expression copy expression if initialization
12806        // succeeded and used a non-trivial constructor.  Recover from
12807        // errors by pretending that the copy isn't necessary.
12808        if (!Result.isInvalid() &&
12809            !cast<CXXConstructExpr>(Result.get())->getConstructor()
12810                ->isTrivial()) {
12811          Result = S.MaybeCreateExprWithCleanups(Result);
12812          CopyExpr = Result.get();
12813        }
12814      }
12815    }
12816  }
12817
12818  // Actually capture the variable.
12819  if (BuildAndDiagnose)
12820    BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc,
12821                    SourceLocation(), CaptureType, CopyExpr);
12822
12823  return true;
12824
12825}
12826
12827
12828/// \brief Capture the given variable in the captured region.
12829static bool captureInCapturedRegion(CapturedRegionScopeInfo *RSI,
12830                                    VarDecl *Var,
12831                                    SourceLocation Loc,
12832                                    const bool BuildAndDiagnose,
12833                                    QualType &CaptureType,
12834                                    QualType &DeclRefType,
12835                                    const bool RefersToCapturedVariable,
12836                                    Sema &S) {
12837
12838  // By default, capture variables by reference.
12839  bool ByRef = true;
12840  // Using an LValue reference type is consistent with Lambdas (see below).
12841  if (S.getLangOpts().OpenMP) {
12842    ByRef = S.IsOpenMPCapturedByRef(Var, RSI);
12843    if (S.IsOpenMPCapturedVar(Var))
12844      DeclRefType = DeclRefType.getUnqualifiedType();
12845  }
12846
12847  if (ByRef)
12848    CaptureType = S.Context.getLValueReferenceType(DeclRefType);
12849  else
12850    CaptureType = DeclRefType;
12851
12852  Expr *CopyExpr = nullptr;
12853  if (BuildAndDiagnose) {
12854    // The current implementation assumes that all variables are captured
12855    // by references. Since there is no capture by copy, no expression
12856    // evaluation will be needed.
12857    RecordDecl *RD = RSI->TheRecordDecl;
12858
12859    FieldDecl *Field
12860      = FieldDecl::Create(S.Context, RD, Loc, Loc, nullptr, CaptureType,
12861                          S.Context.getTrivialTypeSourceInfo(CaptureType, Loc),
12862                          nullptr, false, ICIS_NoInit);
12863    Field->setImplicit(true);
12864    Field->setAccess(AS_private);
12865    RD->addDecl(Field);
12866
12867    CopyExpr = new (S.Context) DeclRefExpr(Var, RefersToCapturedVariable,
12868                                            DeclRefType, VK_LValue, Loc);
12869    Var->setReferenced(true);
12870    Var->markUsed(S.Context);
12871  }
12872
12873  // Actually capture the variable.
12874  if (BuildAndDiagnose)
12875    RSI->addCapture(Var, /*isBlock*/false, ByRef, RefersToCapturedVariable, Loc,
12876                    SourceLocation(), CaptureType, CopyExpr);
12877
12878
12879  return true;
12880}
12881
12882/// \brief Create a field within the lambda class for the variable
12883/// being captured.
12884static void addAsFieldToClosureType(Sema &S, LambdaScopeInfo *LSI, VarDecl *Var,
12885                                    QualType FieldType, QualType DeclRefType,
12886                                    SourceLocation Loc,
12887                                    bool RefersToCapturedVariable) {
12888  CXXRecordDecl *Lambda = LSI->Lambda;
12889
12890  // Build the non-static data member.
12891  FieldDecl *Field
12892    = FieldDecl::Create(S.Context, Lambda, Loc, Loc, nullptr, FieldType,
12893                        S.Context.getTrivialTypeSourceInfo(FieldType, Loc),
12894                        nullptr, false, ICIS_NoInit);
12895  Field->setImplicit(true);
12896  Field->setAccess(AS_private);
12897  Lambda->addDecl(Field);
12898}
12899
12900/// \brief Capture the given variable in the lambda.
12901static bool captureInLambda(LambdaScopeInfo *LSI,
12902                            VarDecl *Var,
12903                            SourceLocation Loc,
12904                            const bool BuildAndDiagnose,
12905                            QualType &CaptureType,
12906                            QualType &DeclRefType,
12907                            const bool RefersToCapturedVariable,
12908                            const Sema::TryCaptureKind Kind,
12909                            SourceLocation EllipsisLoc,
12910                            const bool IsTopScope,
12911                            Sema &S) {
12912
12913  // Determine whether we are capturing by reference or by value.
12914  bool ByRef = false;
12915  if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
12916    ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
12917  } else {
12918    ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
12919  }
12920
12921  // Compute the type of the field that will capture this variable.
12922  if (ByRef) {
12923    // C++11 [expr.prim.lambda]p15:
12924    //   An entity is captured by reference if it is implicitly or
12925    //   explicitly captured but not captured by copy. It is
12926    //   unspecified whether additional unnamed non-static data
12927    //   members are declared in the closure type for entities
12928    //   captured by reference.
12929    //
12930    // FIXME: It is not clear whether we want to build an lvalue reference
12931    // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
12932    // to do the former, while EDG does the latter. Core issue 1249 will
12933    // clarify, but for now we follow GCC because it's a more permissive and
12934    // easily defensible position.
12935    CaptureType = S.Context.getLValueReferenceType(DeclRefType);
12936  } else {
12937    // C++11 [expr.prim.lambda]p14:
12938    //   For each entity captured by copy, an unnamed non-static
12939    //   data member is declared in the closure type. The
12940    //   declaration order of these members is unspecified. The type
12941    //   of such a data member is the type of the corresponding
12942    //   captured entity if the entity is not a reference to an
12943    //   object, or the referenced type otherwise. [Note: If the
12944    //   captured entity is a reference to a function, the
12945    //   corresponding data member is also a reference to a
12946    //   function. - end note ]
12947    if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
12948      if (!RefType->getPointeeType()->isFunctionType())
12949        CaptureType = RefType->getPointeeType();
12950    }
12951
12952    // Forbid the lambda copy-capture of autoreleasing variables.
12953    if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
12954      if (BuildAndDiagnose) {
12955        S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
12956        S.Diag(Var->getLocation(), diag::note_previous_decl)
12957          << Var->getDeclName();
12958      }
12959      return false;
12960    }
12961
12962    // Make sure that by-copy captures are of a complete and non-abstract type.
12963    if (BuildAndDiagnose) {
12964      if (!CaptureType->isDependentType() &&
12965          S.RequireCompleteType(Loc, CaptureType,
12966                                diag::err_capture_of_incomplete_type,
12967                                Var->getDeclName()))
12968        return false;
12969
12970      if (S.RequireNonAbstractType(Loc, CaptureType,
12971                                   diag::err_capture_of_abstract_type))
12972        return false;
12973    }
12974  }
12975
12976  // Capture this variable in the lambda.
12977  if (BuildAndDiagnose)
12978    addAsFieldToClosureType(S, LSI, Var, CaptureType, DeclRefType, Loc,
12979                            RefersToCapturedVariable);
12980
12981  // Compute the type of a reference to this captured variable.
12982  if (ByRef)
12983    DeclRefType = CaptureType.getNonReferenceType();
12984  else {
12985    // C++ [expr.prim.lambda]p5:
12986    //   The closure type for a lambda-expression has a public inline
12987    //   function call operator [...]. This function call operator is
12988    //   declared const (9.3.1) if and only if the lambda-expression’s
12989    //   parameter-declaration-clause is not followed by mutable.
12990    DeclRefType = CaptureType.getNonReferenceType();
12991    if (!LSI->Mutable && !CaptureType->isReferenceType())
12992      DeclRefType.addConst();
12993  }
12994
12995  // Add the capture.
12996  if (BuildAndDiagnose)
12997    LSI->addCapture(Var, /*IsBlock=*/false, ByRef, RefersToCapturedVariable,
12998                    Loc, EllipsisLoc, CaptureType, /*CopyExpr=*/nullptr);
12999
13000  return true;
13001}
13002
13003bool Sema::tryCaptureVariable(
13004    VarDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind,
13005    SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType,
13006    QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) {
13007  // An init-capture is notionally from the context surrounding its
13008  // declaration, but its parent DC is the lambda class.
13009  DeclContext *VarDC = Var->getDeclContext();
13010  if (Var->isInitCapture())
13011    VarDC = VarDC->getParent();
13012
13013  DeclContext *DC = CurContext;
13014  const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
13015      ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
13016  // We need to sync up the Declaration Context with the
13017  // FunctionScopeIndexToStopAt
13018  if (FunctionScopeIndexToStopAt) {
13019    unsigned FSIndex = FunctionScopes.size() - 1;
13020    while (FSIndex != MaxFunctionScopesIndex) {
13021      DC = getLambdaAwareParentOfDeclContext(DC);
13022      --FSIndex;
13023    }
13024  }
13025
13026
13027  // If the variable is declared in the current context, there is no need to
13028  // capture it.
13029  if (VarDC == DC) return true;
13030
13031  // Capture global variables if it is required to use private copy of this
13032  // variable.
13033  bool IsGlobal = !Var->hasLocalStorage();
13034  if (IsGlobal && !(LangOpts.OpenMP && IsOpenMPCapturedVar(Var)))
13035    return true;
13036
13037  // Walk up the stack to determine whether we can capture the variable,
13038  // performing the "simple" checks that don't depend on type. We stop when
13039  // we've either hit the declared scope of the variable or find an existing
13040  // capture of that variable.  We start from the innermost capturing-entity
13041  // (the DC) and ensure that all intervening capturing-entities
13042  // (blocks/lambdas etc.) between the innermost capturer and the variable`s
13043  // declcontext can either capture the variable or have already captured
13044  // the variable.
13045  CaptureType = Var->getType();
13046  DeclRefType = CaptureType.getNonReferenceType();
13047  bool Nested = false;
13048  bool Explicit = (Kind != TryCapture_Implicit);
13049  unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
13050  unsigned OpenMPLevel = 0;
13051  do {
13052    // Only block literals, captured statements, and lambda expressions can
13053    // capture; other scopes don't work.
13054    DeclContext *ParentDC = getParentOfCapturingContextOrNull(DC, Var,
13055                                                              ExprLoc,
13056                                                              BuildAndDiagnose,
13057                                                              *this);
13058    // We need to check for the parent *first* because, if we *have*
13059    // private-captured a global variable, we need to recursively capture it in
13060    // intermediate blocks, lambdas, etc.
13061    if (!ParentDC) {
13062      if (IsGlobal) {
13063        FunctionScopesIndex = MaxFunctionScopesIndex - 1;
13064        break;
13065      }
13066      return true;
13067    }
13068
13069    FunctionScopeInfo  *FSI = FunctionScopes[FunctionScopesIndex];
13070    CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI);
13071
13072
13073    // Check whether we've already captured it.
13074    if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType,
13075                                             DeclRefType))
13076      break;
13077    // If we are instantiating a generic lambda call operator body,
13078    // we do not want to capture new variables.  What was captured
13079    // during either a lambdas transformation or initial parsing
13080    // should be used.
13081    if (isGenericLambdaCallOperatorSpecialization(DC)) {
13082      if (BuildAndDiagnose) {
13083        LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
13084        if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
13085          Diag(ExprLoc, diag::err_lambda_impcap) << Var->getDeclName();
13086          Diag(Var->getLocation(), diag::note_previous_decl)
13087             << Var->getDeclName();
13088          Diag(LSI->Lambda->getLocStart(), diag::note_lambda_decl);
13089        } else
13090          diagnoseUncapturableValueReference(*this, ExprLoc, Var, DC);
13091      }
13092      return true;
13093    }
13094    // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
13095    // certain types of variables (unnamed, variably modified types etc.)
13096    // so check for eligibility.
13097    if (!isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this))
13098       return true;
13099
13100    // Try to capture variable-length arrays types.
13101    if (Var->getType()->isVariablyModifiedType()) {
13102      // We're going to walk down into the type and look for VLA
13103      // expressions.
13104      QualType QTy = Var->getType();
13105      if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
13106        QTy = PVD->getOriginalType();
13107      do {
13108        const Type *Ty = QTy.getTypePtr();
13109        switch (Ty->getTypeClass()) {
13110#define TYPE(Class, Base)
13111#define ABSTRACT_TYPE(Class, Base)
13112#define NON_CANONICAL_TYPE(Class, Base)
13113#define DEPENDENT_TYPE(Class, Base) case Type::Class:
13114#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
13115#include "clang/AST/TypeNodes.def"
13116          QTy = QualType();
13117          break;
13118        // These types are never variably-modified.
13119        case Type::Builtin:
13120        case Type::Complex:
13121        case Type::Vector:
13122        case Type::ExtVector:
13123        case Type::Record:
13124        case Type::Enum:
13125        case Type::Elaborated:
13126        case Type::TemplateSpecialization:
13127        case Type::ObjCObject:
13128        case Type::ObjCInterface:
13129        case Type::ObjCObjectPointer:
13130          llvm_unreachable("type class is never variably-modified!");
13131        case Type::Adjusted:
13132          QTy = cast<AdjustedType>(Ty)->getOriginalType();
13133          break;
13134        case Type::Decayed:
13135          QTy = cast<DecayedType>(Ty)->getPointeeType();
13136          break;
13137        case Type::Pointer:
13138          QTy = cast<PointerType>(Ty)->getPointeeType();
13139          break;
13140        case Type::BlockPointer:
13141          QTy = cast<BlockPointerType>(Ty)->getPointeeType();
13142          break;
13143        case Type::LValueReference:
13144        case Type::RValueReference:
13145          QTy = cast<ReferenceType>(Ty)->getPointeeType();
13146          break;
13147        case Type::MemberPointer:
13148          QTy = cast<MemberPointerType>(Ty)->getPointeeType();
13149          break;
13150        case Type::ConstantArray:
13151        case Type::IncompleteArray:
13152          // Losing element qualification here is fine.
13153          QTy = cast<ArrayType>(Ty)->getElementType();
13154          break;
13155        case Type::VariableArray: {
13156          // Losing element qualification here is fine.
13157          const VariableArrayType *VAT = cast<VariableArrayType>(Ty);
13158
13159          // Unknown size indication requires no size computation.
13160          // Otherwise, evaluate and record it.
13161          if (auto Size = VAT->getSizeExpr()) {
13162            if (!CSI->isVLATypeCaptured(VAT)) {
13163              RecordDecl *CapRecord = nullptr;
13164              if (auto LSI = dyn_cast<LambdaScopeInfo>(CSI)) {
13165                CapRecord = LSI->Lambda;
13166              } else if (auto CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
13167                CapRecord = CRSI->TheRecordDecl;
13168              }
13169              if (CapRecord) {
13170                auto ExprLoc = Size->getExprLoc();
13171                auto SizeType = Context.getSizeType();
13172                // Build the non-static data member.
13173                auto Field = FieldDecl::Create(
13174                    Context, CapRecord, ExprLoc, ExprLoc,
13175                    /*Id*/ nullptr, SizeType, /*TInfo*/ nullptr,
13176                    /*BW*/ nullptr, /*Mutable*/ false,
13177                    /*InitStyle*/ ICIS_NoInit);
13178                Field->setImplicit(true);
13179                Field->setAccess(AS_private);
13180                Field->setCapturedVLAType(VAT);
13181                CapRecord->addDecl(Field);
13182
13183                CSI->addVLATypeCapture(ExprLoc, SizeType);
13184              }
13185            }
13186          }
13187          QTy = VAT->getElementType();
13188          break;
13189        }
13190        case Type::FunctionProto:
13191        case Type::FunctionNoProto:
13192          QTy = cast<FunctionType>(Ty)->getReturnType();
13193          break;
13194        case Type::Paren:
13195        case Type::TypeOf:
13196        case Type::UnaryTransform:
13197        case Type::Attributed:
13198        case Type::SubstTemplateTypeParm:
13199        case Type::PackExpansion:
13200          // Keep walking after single level desugaring.
13201          QTy = QTy.getSingleStepDesugaredType(getASTContext());
13202          break;
13203        case Type::Typedef:
13204          QTy = cast<TypedefType>(Ty)->desugar();
13205          break;
13206        case Type::Decltype:
13207          QTy = cast<DecltypeType>(Ty)->desugar();
13208          break;
13209        case Type::Auto:
13210          QTy = cast<AutoType>(Ty)->getDeducedType();
13211          break;
13212        case Type::TypeOfExpr:
13213          QTy = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType();
13214          break;
13215        case Type::Atomic:
13216          QTy = cast<AtomicType>(Ty)->getValueType();
13217          break;
13218        }
13219      } while (!QTy.isNull() && QTy->isVariablyModifiedType());
13220    }
13221
13222    if (getLangOpts().OpenMP) {
13223      if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
13224        // OpenMP private variables should not be captured in outer scope, so
13225        // just break here. Similarly, global variables that are captured in a
13226        // target region should not be captured outside the scope of the region.
13227        if (RSI->CapRegionKind == CR_OpenMP) {
13228          auto isTargetCap = isOpenMPTargetCapturedVar(Var, OpenMPLevel);
13229          // When we detect target captures we are looking from inside the
13230          // target region, therefore we need to propagate the capture from the
13231          // enclosing region. Therefore, the capture is not initially nested.
13232          if (isTargetCap)
13233            FunctionScopesIndex--;
13234
13235          if (isTargetCap || isOpenMPPrivateVar(Var, OpenMPLevel)) {
13236            Nested = !isTargetCap;
13237            DeclRefType = DeclRefType.getUnqualifiedType();
13238            CaptureType = Context.getLValueReferenceType(DeclRefType);
13239            break;
13240          }
13241          ++OpenMPLevel;
13242        }
13243      }
13244    }
13245    if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
13246      // No capture-default, and this is not an explicit capture
13247      // so cannot capture this variable.
13248      if (BuildAndDiagnose) {
13249        Diag(ExprLoc, diag::err_lambda_impcap) << Var->getDeclName();
13250        Diag(Var->getLocation(), diag::note_previous_decl)
13251          << Var->getDeclName();
13252        Diag(cast<LambdaScopeInfo>(CSI)->Lambda->getLocStart(),
13253             diag::note_lambda_decl);
13254        // FIXME: If we error out because an outer lambda can not implicitly
13255        // capture a variable that an inner lambda explicitly captures, we
13256        // should have the inner lambda do the explicit capture - because
13257        // it makes for cleaner diagnostics later.  This would purely be done
13258        // so that the diagnostic does not misleadingly claim that a variable
13259        // can not be captured by a lambda implicitly even though it is captured
13260        // explicitly.  Suggestion:
13261        //  - create const bool VariableCaptureWasInitiallyExplicit = Explicit
13262        //    at the function head
13263        //  - cache the StartingDeclContext - this must be a lambda
13264        //  - captureInLambda in the innermost lambda the variable.
13265      }
13266      return true;
13267    }
13268
13269    FunctionScopesIndex--;
13270    DC = ParentDC;
13271    Explicit = false;
13272  } while (!VarDC->Equals(DC));
13273
13274  // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
13275  // computing the type of the capture at each step, checking type-specific
13276  // requirements, and adding captures if requested.
13277  // If the variable had already been captured previously, we start capturing
13278  // at the lambda nested within that one.
13279  for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
13280       ++I) {
13281    CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
13282
13283    if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) {
13284      if (!captureInBlock(BSI, Var, ExprLoc,
13285                          BuildAndDiagnose, CaptureType,
13286                          DeclRefType, Nested, *this))
13287        return true;
13288      Nested = true;
13289    } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
13290      if (!captureInCapturedRegion(RSI, Var, ExprLoc,
13291                                   BuildAndDiagnose, CaptureType,
13292                                   DeclRefType, Nested, *this))
13293        return true;
13294      Nested = true;
13295    } else {
13296      LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
13297      if (!captureInLambda(LSI, Var, ExprLoc,
13298                           BuildAndDiagnose, CaptureType,
13299                           DeclRefType, Nested, Kind, EllipsisLoc,
13300                            /*IsTopScope*/I == N - 1, *this))
13301        return true;
13302      Nested = true;
13303    }
13304  }
13305  return false;
13306}
13307
13308bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
13309                              TryCaptureKind Kind, SourceLocation EllipsisLoc) {
13310  QualType CaptureType;
13311  QualType DeclRefType;
13312  return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
13313                            /*BuildAndDiagnose=*/true, CaptureType,
13314                            DeclRefType, nullptr);
13315}
13316
13317bool Sema::NeedToCaptureVariable(VarDecl *Var, SourceLocation Loc) {
13318  QualType CaptureType;
13319  QualType DeclRefType;
13320  return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
13321                             /*BuildAndDiagnose=*/false, CaptureType,
13322                             DeclRefType, nullptr);
13323}
13324
13325QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
13326  QualType CaptureType;
13327  QualType DeclRefType;
13328
13329  // Determine whether we can capture this variable.
13330  if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
13331                         /*BuildAndDiagnose=*/false, CaptureType,
13332                         DeclRefType, nullptr))
13333    return QualType();
13334
13335  return DeclRefType;
13336}
13337
13338
13339
13340// If either the type of the variable or the initializer is dependent,
13341// return false. Otherwise, determine whether the variable is a constant
13342// expression. Use this if you need to know if a variable that might or
13343// might not be dependent is truly a constant expression.
13344static inline bool IsVariableNonDependentAndAConstantExpression(VarDecl *Var,
13345    ASTContext &Context) {
13346
13347  if (Var->getType()->isDependentType())
13348    return false;
13349  const VarDecl *DefVD = nullptr;
13350  Var->getAnyInitializer(DefVD);
13351  if (!DefVD)
13352    return false;
13353  EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
13354  Expr *Init = cast<Expr>(Eval->Value);
13355  if (Init->isValueDependent())
13356    return false;
13357  return IsVariableAConstantExpression(Var, Context);
13358}
13359
13360
13361void Sema::UpdateMarkingForLValueToRValue(Expr *E) {
13362  // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
13363  // an object that satisfies the requirements for appearing in a
13364  // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
13365  // is immediately applied."  This function handles the lvalue-to-rvalue
13366  // conversion part.
13367  MaybeODRUseExprs.erase(E->IgnoreParens());
13368
13369  // If we are in a lambda, check if this DeclRefExpr or MemberExpr refers
13370  // to a variable that is a constant expression, and if so, identify it as
13371  // a reference to a variable that does not involve an odr-use of that
13372  // variable.
13373  if (LambdaScopeInfo *LSI = getCurLambda()) {
13374    Expr *SansParensExpr = E->IgnoreParens();
13375    VarDecl *Var = nullptr;
13376    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SansParensExpr))
13377      Var = dyn_cast<VarDecl>(DRE->getFoundDecl());
13378    else if (MemberExpr *ME = dyn_cast<MemberExpr>(SansParensExpr))
13379      Var = dyn_cast<VarDecl>(ME->getMemberDecl());
13380
13381    if (Var && IsVariableNonDependentAndAConstantExpression(Var, Context))
13382      LSI->markVariableExprAsNonODRUsed(SansParensExpr);
13383  }
13384}
13385
13386ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
13387  Res = CorrectDelayedTyposInExpr(Res);
13388
13389  if (!Res.isUsable())
13390    return Res;
13391
13392  // If a constant-expression is a reference to a variable where we delay
13393  // deciding whether it is an odr-use, just assume we will apply the
13394  // lvalue-to-rvalue conversion.  In the one case where this doesn't happen
13395  // (a non-type template argument), we have special handling anyway.
13396  UpdateMarkingForLValueToRValue(Res.get());
13397  return Res;
13398}
13399
13400void Sema::CleanupVarDeclMarking() {
13401  for (Expr *E : MaybeODRUseExprs) {
13402    VarDecl *Var;
13403    SourceLocation Loc;
13404    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
13405      Var = cast<VarDecl>(DRE->getDecl());
13406      Loc = DRE->getLocation();
13407    } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
13408      Var = cast<VarDecl>(ME->getMemberDecl());
13409      Loc = ME->getMemberLoc();
13410    } else {
13411      llvm_unreachable("Unexpected expression");
13412    }
13413
13414    MarkVarDeclODRUsed(Var, Loc, *this,
13415                       /*MaxFunctionScopeIndex Pointer*/ nullptr);
13416  }
13417
13418  MaybeODRUseExprs.clear();
13419}
13420
13421
13422static void DoMarkVarDeclReferenced(Sema &SemaRef, SourceLocation Loc,
13423                                    VarDecl *Var, Expr *E) {
13424  assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E)) &&
13425         "Invalid Expr argument to DoMarkVarDeclReferenced");
13426  Var->setReferenced();
13427
13428  TemplateSpecializationKind TSK = Var->getTemplateSpecializationKind();
13429  bool MarkODRUsed = true;
13430
13431  // If the context is not potentially evaluated, this is not an odr-use and
13432  // does not trigger instantiation.
13433  if (!IsPotentiallyEvaluatedContext(SemaRef)) {
13434    if (SemaRef.isUnevaluatedContext())
13435      return;
13436
13437    // If we don't yet know whether this context is going to end up being an
13438    // evaluated context, and we're referencing a variable from an enclosing
13439    // scope, add a potential capture.
13440    //
13441    // FIXME: Is this necessary? These contexts are only used for default
13442    // arguments, where local variables can't be used.
13443    const bool RefersToEnclosingScope =
13444        (SemaRef.CurContext != Var->getDeclContext() &&
13445         Var->getDeclContext()->isFunctionOrMethod() && Var->hasLocalStorage());
13446    if (RefersToEnclosingScope) {
13447      if (LambdaScopeInfo *const LSI = SemaRef.getCurLambda()) {
13448        // If a variable could potentially be odr-used, defer marking it so
13449        // until we finish analyzing the full expression for any
13450        // lvalue-to-rvalue
13451        // or discarded value conversions that would obviate odr-use.
13452        // Add it to the list of potential captures that will be analyzed
13453        // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
13454        // unless the variable is a reference that was initialized by a constant
13455        // expression (this will never need to be captured or odr-used).
13456        assert(E && "Capture variable should be used in an expression.");
13457        if (!Var->getType()->isReferenceType() ||
13458            !IsVariableNonDependentAndAConstantExpression(Var, SemaRef.Context))
13459          LSI->addPotentialCapture(E->IgnoreParens());
13460      }
13461    }
13462
13463    if (!isTemplateInstantiation(TSK))
13464      return;
13465
13466    // Instantiate, but do not mark as odr-used, variable templates.
13467    MarkODRUsed = false;
13468  }
13469
13470  VarTemplateSpecializationDecl *VarSpec =
13471      dyn_cast<VarTemplateSpecializationDecl>(Var);
13472  assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&
13473         "Can't instantiate a partial template specialization.");
13474
13475  // Perform implicit instantiation of static data members, static data member
13476  // templates of class templates, and variable template specializations. Delay
13477  // instantiations of variable templates, except for those that could be used
13478  // in a constant expression.
13479  if (isTemplateInstantiation(TSK)) {
13480    bool TryInstantiating = TSK == TSK_ImplicitInstantiation;
13481
13482    if (TryInstantiating && !isa<VarTemplateSpecializationDecl>(Var)) {
13483      if (Var->getPointOfInstantiation().isInvalid()) {
13484        // This is a modification of an existing AST node. Notify listeners.
13485        if (ASTMutationListener *L = SemaRef.getASTMutationListener())
13486          L->StaticDataMemberInstantiated(Var);
13487      } else if (!Var->isUsableInConstantExpressions(SemaRef.Context))
13488        // Don't bother trying to instantiate it again, unless we might need
13489        // its initializer before we get to the end of the TU.
13490        TryInstantiating = false;
13491    }
13492
13493    if (Var->getPointOfInstantiation().isInvalid())
13494      Var->setTemplateSpecializationKind(TSK, Loc);
13495
13496    if (TryInstantiating) {
13497      SourceLocation PointOfInstantiation = Var->getPointOfInstantiation();
13498      bool InstantiationDependent = false;
13499      bool IsNonDependent =
13500          VarSpec ? !TemplateSpecializationType::anyDependentTemplateArguments(
13501                        VarSpec->getTemplateArgsInfo(), InstantiationDependent)
13502                  : true;
13503
13504      // Do not instantiate specializations that are still type-dependent.
13505      if (IsNonDependent) {
13506        if (Var->isUsableInConstantExpressions(SemaRef.Context)) {
13507          // Do not defer instantiations of variables which could be used in a
13508          // constant expression.
13509          SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
13510        } else {
13511          SemaRef.PendingInstantiations
13512              .push_back(std::make_pair(Var, PointOfInstantiation));
13513        }
13514      }
13515    }
13516  }
13517
13518  if(!MarkODRUsed) return;
13519
13520  // Per C++11 [basic.def.odr], a variable is odr-used "unless it satisfies
13521  // the requirements for appearing in a constant expression (5.19) and, if
13522  // it is an object, the lvalue-to-rvalue conversion (4.1)
13523  // is immediately applied."  We check the first part here, and
13524  // Sema::UpdateMarkingForLValueToRValue deals with the second part.
13525  // Note that we use the C++11 definition everywhere because nothing in
13526  // C++03 depends on whether we get the C++03 version correct. The second
13527  // part does not apply to references, since they are not objects.
13528  if (E && IsVariableAConstantExpression(Var, SemaRef.Context)) {
13529    // A reference initialized by a constant expression can never be
13530    // odr-used, so simply ignore it.
13531    if (!Var->getType()->isReferenceType())
13532      SemaRef.MaybeODRUseExprs.insert(E);
13533  } else
13534    MarkVarDeclODRUsed(Var, Loc, SemaRef,
13535                       /*MaxFunctionScopeIndex ptr*/ nullptr);
13536}
13537
13538/// \brief Mark a variable referenced, and check whether it is odr-used
13539/// (C++ [basic.def.odr]p2, C99 6.9p3).  Note that this should not be
13540/// used directly for normal expressions referring to VarDecl.
13541void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
13542  DoMarkVarDeclReferenced(*this, Loc, Var, nullptr);
13543}
13544
13545static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc,
13546                               Decl *D, Expr *E, bool OdrUse) {
13547  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
13548    DoMarkVarDeclReferenced(SemaRef, Loc, Var, E);
13549    return;
13550  }
13551
13552  SemaRef.MarkAnyDeclReferenced(Loc, D, OdrUse);
13553
13554  // If this is a call to a method via a cast, also mark the method in the
13555  // derived class used in case codegen can devirtualize the call.
13556  const MemberExpr *ME = dyn_cast<MemberExpr>(E);
13557  if (!ME)
13558    return;
13559  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
13560  if (!MD)
13561    return;
13562  // Only attempt to devirtualize if this is truly a virtual call.
13563  bool IsVirtualCall = MD->isVirtual() &&
13564                          ME->performsVirtualDispatch(SemaRef.getLangOpts());
13565  if (!IsVirtualCall)
13566    return;
13567  const Expr *Base = ME->getBase();
13568  const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
13569  if (!MostDerivedClassDecl)
13570    return;
13571  CXXMethodDecl *DM = MD->getCorrespondingMethodInClass(MostDerivedClassDecl);
13572  if (!DM || DM->isPure())
13573    return;
13574  SemaRef.MarkAnyDeclReferenced(Loc, DM, OdrUse);
13575}
13576
13577/// \brief Perform reference-marking and odr-use handling for a DeclRefExpr.
13578void Sema::MarkDeclRefReferenced(DeclRefExpr *E) {
13579  // TODO: update this with DR# once a defect report is filed.
13580  // C++11 defect. The address of a pure member should not be an ODR use, even
13581  // if it's a qualified reference.
13582  bool OdrUse = true;
13583  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
13584    if (Method->isVirtual())
13585      OdrUse = false;
13586  MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse);
13587}
13588
13589/// \brief Perform reference-marking and odr-use handling for a MemberExpr.
13590void Sema::MarkMemberReferenced(MemberExpr *E) {
13591  // C++11 [basic.def.odr]p2:
13592  //   A non-overloaded function whose name appears as a potentially-evaluated
13593  //   expression or a member of a set of candidate functions, if selected by
13594  //   overload resolution when referred to from a potentially-evaluated
13595  //   expression, is odr-used, unless it is a pure virtual function and its
13596  //   name is not explicitly qualified.
13597  bool OdrUse = true;
13598  if (E->performsVirtualDispatch(getLangOpts())) {
13599    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
13600      if (Method->isPure())
13601        OdrUse = false;
13602  }
13603  SourceLocation Loc = E->getMemberLoc().isValid() ?
13604                            E->getMemberLoc() : E->getLocStart();
13605  MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, OdrUse);
13606}
13607
13608/// \brief Perform marking for a reference to an arbitrary declaration.  It
13609/// marks the declaration referenced, and performs odr-use checking for
13610/// functions and variables. This method should not be used when building a
13611/// normal expression which refers to a variable.
13612void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D, bool OdrUse) {
13613  if (OdrUse) {
13614    if (auto *VD = dyn_cast<VarDecl>(D)) {
13615      MarkVariableReferenced(Loc, VD);
13616      return;
13617    }
13618  }
13619  if (auto *FD = dyn_cast<FunctionDecl>(D)) {
13620    MarkFunctionReferenced(Loc, FD, OdrUse);
13621    return;
13622  }
13623  D->setReferenced();
13624}
13625
13626namespace {
13627  // Mark all of the declarations referenced
13628  // FIXME: Not fully implemented yet! We need to have a better understanding
13629  // of when we're entering
13630  class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
13631    Sema &S;
13632    SourceLocation Loc;
13633
13634  public:
13635    typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
13636
13637    MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
13638
13639    bool TraverseTemplateArgument(const TemplateArgument &Arg);
13640    bool TraverseRecordType(RecordType *T);
13641  };
13642}
13643
13644bool MarkReferencedDecls::TraverseTemplateArgument(
13645    const TemplateArgument &Arg) {
13646  if (Arg.getKind() == TemplateArgument::Declaration) {
13647    if (Decl *D = Arg.getAsDecl())
13648      S.MarkAnyDeclReferenced(Loc, D, true);
13649  }
13650
13651  return Inherited::TraverseTemplateArgument(Arg);
13652}
13653
13654bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
13655  if (ClassTemplateSpecializationDecl *Spec
13656                  = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
13657    const TemplateArgumentList &Args = Spec->getTemplateArgs();
13658    return TraverseTemplateArguments(Args.data(), Args.size());
13659  }
13660
13661  return true;
13662}
13663
13664void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
13665  MarkReferencedDecls Marker(*this, Loc);
13666  Marker.TraverseType(Context.getCanonicalType(T));
13667}
13668
13669namespace {
13670  /// \brief Helper class that marks all of the declarations referenced by
13671  /// potentially-evaluated subexpressions as "referenced".
13672  class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
13673    Sema &S;
13674    bool SkipLocalVariables;
13675
13676  public:
13677    typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
13678
13679    EvaluatedExprMarker(Sema &S, bool SkipLocalVariables)
13680      : Inherited(S.Context), S(S), SkipLocalVariables(SkipLocalVariables) { }
13681
13682    void VisitDeclRefExpr(DeclRefExpr *E) {
13683      // If we were asked not to visit local variables, don't.
13684      if (SkipLocalVariables) {
13685        if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
13686          if (VD->hasLocalStorage())
13687            return;
13688      }
13689
13690      S.MarkDeclRefReferenced(E);
13691    }
13692
13693    void VisitMemberExpr(MemberExpr *E) {
13694      S.MarkMemberReferenced(E);
13695      Inherited::VisitMemberExpr(E);
13696    }
13697
13698    void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
13699      S.MarkFunctionReferenced(E->getLocStart(),
13700            const_cast<CXXDestructorDecl*>(E->getTemporary()->getDestructor()));
13701      Visit(E->getSubExpr());
13702    }
13703
13704    void VisitCXXNewExpr(CXXNewExpr *E) {
13705      if (E->getOperatorNew())
13706        S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorNew());
13707      if (E->getOperatorDelete())
13708        S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
13709      Inherited::VisitCXXNewExpr(E);
13710    }
13711
13712    void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
13713      if (E->getOperatorDelete())
13714        S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
13715      QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
13716      if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
13717        CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
13718        S.MarkFunctionReferenced(E->getLocStart(),
13719                                    S.LookupDestructor(Record));
13720      }
13721
13722      Inherited::VisitCXXDeleteExpr(E);
13723    }
13724
13725    void VisitCXXConstructExpr(CXXConstructExpr *E) {
13726      S.MarkFunctionReferenced(E->getLocStart(), E->getConstructor());
13727      Inherited::VisitCXXConstructExpr(E);
13728    }
13729
13730    void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
13731      Visit(E->getExpr());
13732    }
13733
13734    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
13735      Inherited::VisitImplicitCastExpr(E);
13736
13737      if (E->getCastKind() == CK_LValueToRValue)
13738        S.UpdateMarkingForLValueToRValue(E->getSubExpr());
13739    }
13740  };
13741}
13742
13743/// \brief Mark any declarations that appear within this expression or any
13744/// potentially-evaluated subexpressions as "referenced".
13745///
13746/// \param SkipLocalVariables If true, don't mark local variables as
13747/// 'referenced'.
13748void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
13749                                            bool SkipLocalVariables) {
13750  EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E);
13751}
13752
13753/// \brief Emit a diagnostic that describes an effect on the run-time behavior
13754/// of the program being compiled.
13755///
13756/// This routine emits the given diagnostic when the code currently being
13757/// type-checked is "potentially evaluated", meaning that there is a
13758/// possibility that the code will actually be executable. Code in sizeof()
13759/// expressions, code used only during overload resolution, etc., are not
13760/// potentially evaluated. This routine will suppress such diagnostics or,
13761/// in the absolutely nutty case of potentially potentially evaluated
13762/// expressions (C++ typeid), queue the diagnostic to potentially emit it
13763/// later.
13764///
13765/// This routine should be used for all diagnostics that describe the run-time
13766/// behavior of a program, such as passing a non-POD value through an ellipsis.
13767/// Failure to do so will likely result in spurious diagnostics or failures
13768/// during overload resolution or within sizeof/alignof/typeof/typeid.
13769bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
13770                               const PartialDiagnostic &PD) {
13771  switch (ExprEvalContexts.back().Context) {
13772  case Unevaluated:
13773  case UnevaluatedAbstract:
13774    // The argument will never be evaluated, so don't complain.
13775    break;
13776
13777  case ConstantEvaluated:
13778    // Relevant diagnostics should be produced by constant evaluation.
13779    break;
13780
13781  case PotentiallyEvaluated:
13782  case PotentiallyEvaluatedIfUsed:
13783    if (Statement && getCurFunctionOrMethodDecl()) {
13784      FunctionScopes.back()->PossiblyUnreachableDiags.
13785        push_back(sema::PossiblyUnreachableDiag(PD, Loc, Statement));
13786    }
13787    else
13788      Diag(Loc, PD);
13789
13790    return true;
13791  }
13792
13793  return false;
13794}
13795
13796bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
13797                               CallExpr *CE, FunctionDecl *FD) {
13798  if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
13799    return false;
13800
13801  // If we're inside a decltype's expression, don't check for a valid return
13802  // type or construct temporaries until we know whether this is the last call.
13803  if (ExprEvalContexts.back().IsDecltype) {
13804    ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
13805    return false;
13806  }
13807
13808  class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
13809    FunctionDecl *FD;
13810    CallExpr *CE;
13811
13812  public:
13813    CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
13814      : FD(FD), CE(CE) { }
13815
13816    void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
13817      if (!FD) {
13818        S.Diag(Loc, diag::err_call_incomplete_return)
13819          << T << CE->getSourceRange();
13820        return;
13821      }
13822
13823      S.Diag(Loc, diag::err_call_function_incomplete_return)
13824        << CE->getSourceRange() << FD->getDeclName() << T;
13825      S.Diag(FD->getLocation(), diag::note_entity_declared_at)
13826          << FD->getDeclName();
13827    }
13828  } Diagnoser(FD, CE);
13829
13830  if (RequireCompleteType(Loc, ReturnType, Diagnoser))
13831    return true;
13832
13833  return false;
13834}
13835
13836// Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
13837// will prevent this condition from triggering, which is what we want.
13838void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
13839  SourceLocation Loc;
13840
13841  unsigned diagnostic = diag::warn_condition_is_assignment;
13842  bool IsOrAssign = false;
13843
13844  if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
13845    if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
13846      return;
13847
13848    IsOrAssign = Op->getOpcode() == BO_OrAssign;
13849
13850    // Greylist some idioms by putting them into a warning subcategory.
13851    if (ObjCMessageExpr *ME
13852          = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
13853      Selector Sel = ME->getSelector();
13854
13855      // self = [<foo> init...]
13856      if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
13857        diagnostic = diag::warn_condition_is_idiomatic_assignment;
13858
13859      // <foo> = [<bar> nextObject]
13860      else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
13861        diagnostic = diag::warn_condition_is_idiomatic_assignment;
13862    }
13863
13864    Loc = Op->getOperatorLoc();
13865  } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
13866    if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
13867      return;
13868
13869    IsOrAssign = Op->getOperator() == OO_PipeEqual;
13870    Loc = Op->getOperatorLoc();
13871  } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
13872    return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
13873  else {
13874    // Not an assignment.
13875    return;
13876  }
13877
13878  Diag(Loc, diagnostic) << E->getSourceRange();
13879
13880  SourceLocation Open = E->getLocStart();
13881  SourceLocation Close = getLocForEndOfToken(E->getSourceRange().getEnd());
13882  Diag(Loc, diag::note_condition_assign_silence)
13883        << FixItHint::CreateInsertion(Open, "(")
13884        << FixItHint::CreateInsertion(Close, ")");
13885
13886  if (IsOrAssign)
13887    Diag(Loc, diag::note_condition_or_assign_to_comparison)
13888      << FixItHint::CreateReplacement(Loc, "!=");
13889  else
13890    Diag(Loc, diag::note_condition_assign_to_comparison)
13891      << FixItHint::CreateReplacement(Loc, "==");
13892}
13893
13894/// \brief Redundant parentheses over an equality comparison can indicate
13895/// that the user intended an assignment used as condition.
13896void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
13897  // Don't warn if the parens came from a macro.
13898  SourceLocation parenLoc = ParenE->getLocStart();
13899  if (parenLoc.isInvalid() || parenLoc.isMacroID())
13900    return;
13901  // Don't warn for dependent expressions.
13902  if (ParenE->isTypeDependent())
13903    return;
13904
13905  Expr *E = ParenE->IgnoreParens();
13906
13907  if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
13908    if (opE->getOpcode() == BO_EQ &&
13909        opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
13910                                                           == Expr::MLV_Valid) {
13911      SourceLocation Loc = opE->getOperatorLoc();
13912
13913      Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
13914      SourceRange ParenERange = ParenE->getSourceRange();
13915      Diag(Loc, diag::note_equality_comparison_silence)
13916        << FixItHint::CreateRemoval(ParenERange.getBegin())
13917        << FixItHint::CreateRemoval(ParenERange.getEnd());
13918      Diag(Loc, diag::note_equality_comparison_to_assign)
13919        << FixItHint::CreateReplacement(Loc, "=");
13920    }
13921}
13922
13923ExprResult Sema::CheckBooleanCondition(Expr *E, SourceLocation Loc) {
13924  DiagnoseAssignmentAsCondition(E);
13925  if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
13926    DiagnoseEqualityWithExtraParens(parenE);
13927
13928  ExprResult result = CheckPlaceholderExpr(E);
13929  if (result.isInvalid()) return ExprError();
13930  E = result.get();
13931
13932  if (!E->isTypeDependent()) {
13933    if (getLangOpts().CPlusPlus)
13934      return CheckCXXBooleanCondition(E); // C++ 6.4p4
13935
13936    ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
13937    if (ERes.isInvalid())
13938      return ExprError();
13939    E = ERes.get();
13940
13941    QualType T = E->getType();
13942    if (!T->isScalarType()) { // C99 6.8.4.1p1
13943      Diag(Loc, diag::err_typecheck_statement_requires_scalar)
13944        << T << E->getSourceRange();
13945      return ExprError();
13946    }
13947    CheckBoolLikeConversion(E, Loc);
13948  }
13949
13950  return E;
13951}
13952
13953ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
13954                                       Expr *SubExpr) {
13955  if (!SubExpr)
13956    return ExprError();
13957
13958  return CheckBooleanCondition(SubExpr, Loc);
13959}
13960
13961namespace {
13962  /// A visitor for rebuilding a call to an __unknown_any expression
13963  /// to have an appropriate type.
13964  struct RebuildUnknownAnyFunction
13965    : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
13966
13967    Sema &S;
13968
13969    RebuildUnknownAnyFunction(Sema &S) : S(S) {}
13970
13971    ExprResult VisitStmt(Stmt *S) {
13972      llvm_unreachable("unexpected statement!");
13973    }
13974
13975    ExprResult VisitExpr(Expr *E) {
13976      S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
13977        << E->getSourceRange();
13978      return ExprError();
13979    }
13980
13981    /// Rebuild an expression which simply semantically wraps another
13982    /// expression which it shares the type and value kind of.
13983    template <class T> ExprResult rebuildSugarExpr(T *E) {
13984      ExprResult SubResult = Visit(E->getSubExpr());
13985      if (SubResult.isInvalid()) return ExprError();
13986
13987      Expr *SubExpr = SubResult.get();
13988      E->setSubExpr(SubExpr);
13989      E->setType(SubExpr->getType());
13990      E->setValueKind(SubExpr->getValueKind());
13991      assert(E->getObjectKind() == OK_Ordinary);
13992      return E;
13993    }
13994
13995    ExprResult VisitParenExpr(ParenExpr *E) {
13996      return rebuildSugarExpr(E);
13997    }
13998
13999    ExprResult VisitUnaryExtension(UnaryOperator *E) {
14000      return rebuildSugarExpr(E);
14001    }
14002
14003    ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
14004      ExprResult SubResult = Visit(E->getSubExpr());
14005      if (SubResult.isInvalid()) return ExprError();
14006
14007      Expr *SubExpr = SubResult.get();
14008      E->setSubExpr(SubExpr);
14009      E->setType(S.Context.getPointerType(SubExpr->getType()));
14010      assert(E->getValueKind() == VK_RValue);
14011      assert(E->getObjectKind() == OK_Ordinary);
14012      return E;
14013    }
14014
14015    ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
14016      if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
14017
14018      E->setType(VD->getType());
14019
14020      assert(E->getValueKind() == VK_RValue);
14021      if (S.getLangOpts().CPlusPlus &&
14022          !(isa<CXXMethodDecl>(VD) &&
14023            cast<CXXMethodDecl>(VD)->isInstance()))
14024        E->setValueKind(VK_LValue);
14025
14026      return E;
14027    }
14028
14029    ExprResult VisitMemberExpr(MemberExpr *E) {
14030      return resolveDecl(E, E->getMemberDecl());
14031    }
14032
14033    ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
14034      return resolveDecl(E, E->getDecl());
14035    }
14036  };
14037}
14038
14039/// Given a function expression of unknown-any type, try to rebuild it
14040/// to have a function type.
14041static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
14042  ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
14043  if (Result.isInvalid()) return ExprError();
14044  return S.DefaultFunctionArrayConversion(Result.get());
14045}
14046
14047namespace {
14048  /// A visitor for rebuilding an expression of type __unknown_anytype
14049  /// into one which resolves the type directly on the referring
14050  /// expression.  Strict preservation of the original source
14051  /// structure is not a goal.
14052  struct RebuildUnknownAnyExpr
14053    : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
14054
14055    Sema &S;
14056
14057    /// The current destination type.
14058    QualType DestType;
14059
14060    RebuildUnknownAnyExpr(Sema &S, QualType CastType)
14061      : S(S), DestType(CastType) {}
14062
14063    ExprResult VisitStmt(Stmt *S) {
14064      llvm_unreachable("unexpected statement!");
14065    }
14066
14067    ExprResult VisitExpr(Expr *E) {
14068      S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
14069        << E->getSourceRange();
14070      return ExprError();
14071    }
14072
14073    ExprResult VisitCallExpr(CallExpr *E);
14074    ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
14075
14076    /// Rebuild an expression which simply semantically wraps another
14077    /// expression which it shares the type and value kind of.
14078    template <class T> ExprResult rebuildSugarExpr(T *E) {
14079      ExprResult SubResult = Visit(E->getSubExpr());
14080      if (SubResult.isInvalid()) return ExprError();
14081      Expr *SubExpr = SubResult.get();
14082      E->setSubExpr(SubExpr);
14083      E->setType(SubExpr->getType());
14084      E->setValueKind(SubExpr->getValueKind());
14085      assert(E->getObjectKind() == OK_Ordinary);
14086      return E;
14087    }
14088
14089    ExprResult VisitParenExpr(ParenExpr *E) {
14090      return rebuildSugarExpr(E);
14091    }
14092
14093    ExprResult VisitUnaryExtension(UnaryOperator *E) {
14094      return rebuildSugarExpr(E);
14095    }
14096
14097    ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
14098      const PointerType *Ptr = DestType->getAs<PointerType>();
14099      if (!Ptr) {
14100        S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
14101          << E->getSourceRange();
14102        return ExprError();
14103      }
14104      assert(E->getValueKind() == VK_RValue);
14105      assert(E->getObjectKind() == OK_Ordinary);
14106      E->setType(DestType);
14107
14108      // Build the sub-expression as if it were an object of the pointee type.
14109      DestType = Ptr->getPointeeType();
14110      ExprResult SubResult = Visit(E->getSubExpr());
14111      if (SubResult.isInvalid()) return ExprError();
14112      E->setSubExpr(SubResult.get());
14113      return E;
14114    }
14115
14116    ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
14117
14118    ExprResult resolveDecl(Expr *E, ValueDecl *VD);
14119
14120    ExprResult VisitMemberExpr(MemberExpr *E) {
14121      return resolveDecl(E, E->getMemberDecl());
14122    }
14123
14124    ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
14125      return resolveDecl(E, E->getDecl());
14126    }
14127  };
14128}
14129
14130/// Rebuilds a call expression which yielded __unknown_anytype.
14131ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
14132  Expr *CalleeExpr = E->getCallee();
14133
14134  enum FnKind {
14135    FK_MemberFunction,
14136    FK_FunctionPointer,
14137    FK_BlockPointer
14138  };
14139
14140  FnKind Kind;
14141  QualType CalleeType = CalleeExpr->getType();
14142  if (CalleeType == S.Context.BoundMemberTy) {
14143    assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
14144    Kind = FK_MemberFunction;
14145    CalleeType = Expr::findBoundMemberType(CalleeExpr);
14146  } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
14147    CalleeType = Ptr->getPointeeType();
14148    Kind = FK_FunctionPointer;
14149  } else {
14150    CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
14151    Kind = FK_BlockPointer;
14152  }
14153  const FunctionType *FnType = CalleeType->castAs<FunctionType>();
14154
14155  // Verify that this is a legal result type of a function.
14156  if (DestType->isArrayType() || DestType->isFunctionType()) {
14157    unsigned diagID = diag::err_func_returning_array_function;
14158    if (Kind == FK_BlockPointer)
14159      diagID = diag::err_block_returning_array_function;
14160
14161    S.Diag(E->getExprLoc(), diagID)
14162      << DestType->isFunctionType() << DestType;
14163    return ExprError();
14164  }
14165
14166  // Otherwise, go ahead and set DestType as the call's result.
14167  E->setType(DestType.getNonLValueExprType(S.Context));
14168  E->setValueKind(Expr::getValueKindForType(DestType));
14169  assert(E->getObjectKind() == OK_Ordinary);
14170
14171  // Rebuild the function type, replacing the result type with DestType.
14172  const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
14173  if (Proto) {
14174    // __unknown_anytype(...) is a special case used by the debugger when
14175    // it has no idea what a function's signature is.
14176    //
14177    // We want to build this call essentially under the K&R
14178    // unprototyped rules, but making a FunctionNoProtoType in C++
14179    // would foul up all sorts of assumptions.  However, we cannot
14180    // simply pass all arguments as variadic arguments, nor can we
14181    // portably just call the function under a non-variadic type; see
14182    // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
14183    // However, it turns out that in practice it is generally safe to
14184    // call a function declared as "A foo(B,C,D);" under the prototype
14185    // "A foo(B,C,D,...);".  The only known exception is with the
14186    // Windows ABI, where any variadic function is implicitly cdecl
14187    // regardless of its normal CC.  Therefore we change the parameter
14188    // types to match the types of the arguments.
14189    //
14190    // This is a hack, but it is far superior to moving the
14191    // corresponding target-specific code from IR-gen to Sema/AST.
14192
14193    ArrayRef<QualType> ParamTypes = Proto->getParamTypes();
14194    SmallVector<QualType, 8> ArgTypes;
14195    if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
14196      ArgTypes.reserve(E->getNumArgs());
14197      for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
14198        Expr *Arg = E->getArg(i);
14199        QualType ArgType = Arg->getType();
14200        if (E->isLValue()) {
14201          ArgType = S.Context.getLValueReferenceType(ArgType);
14202        } else if (E->isXValue()) {
14203          ArgType = S.Context.getRValueReferenceType(ArgType);
14204        }
14205        ArgTypes.push_back(ArgType);
14206      }
14207      ParamTypes = ArgTypes;
14208    }
14209    DestType = S.Context.getFunctionType(DestType, ParamTypes,
14210                                         Proto->getExtProtoInfo());
14211  } else {
14212    DestType = S.Context.getFunctionNoProtoType(DestType,
14213                                                FnType->getExtInfo());
14214  }
14215
14216  // Rebuild the appropriate pointer-to-function type.
14217  switch (Kind) {
14218  case FK_MemberFunction:
14219    // Nothing to do.
14220    break;
14221
14222  case FK_FunctionPointer:
14223    DestType = S.Context.getPointerType(DestType);
14224    break;
14225
14226  case FK_BlockPointer:
14227    DestType = S.Context.getBlockPointerType(DestType);
14228    break;
14229  }
14230
14231  // Finally, we can recurse.
14232  ExprResult CalleeResult = Visit(CalleeExpr);
14233  if (!CalleeResult.isUsable()) return ExprError();
14234  E->setCallee(CalleeResult.get());
14235
14236  // Bind a temporary if necessary.
14237  return S.MaybeBindToTemporary(E);
14238}
14239
14240ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
14241  // Verify that this is a legal result type of a call.
14242  if (DestType->isArrayType() || DestType->isFunctionType()) {
14243    S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
14244      << DestType->isFunctionType() << DestType;
14245    return ExprError();
14246  }
14247
14248  // Rewrite the method result type if available.
14249  if (ObjCMethodDecl *Method = E->getMethodDecl()) {
14250    assert(Method->getReturnType() == S.Context.UnknownAnyTy);
14251    Method->setReturnType(DestType);
14252  }
14253
14254  // Change the type of the message.
14255  E->setType(DestType.getNonReferenceType());
14256  E->setValueKind(Expr::getValueKindForType(DestType));
14257
14258  return S.MaybeBindToTemporary(E);
14259}
14260
14261ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
14262  // The only case we should ever see here is a function-to-pointer decay.
14263  if (E->getCastKind() == CK_FunctionToPointerDecay) {
14264    assert(E->getValueKind() == VK_RValue);
14265    assert(E->getObjectKind() == OK_Ordinary);
14266
14267    E->setType(DestType);
14268
14269    // Rebuild the sub-expression as the pointee (function) type.
14270    DestType = DestType->castAs<PointerType>()->getPointeeType();
14271
14272    ExprResult Result = Visit(E->getSubExpr());
14273    if (!Result.isUsable()) return ExprError();
14274
14275    E->setSubExpr(Result.get());
14276    return E;
14277  } else if (E->getCastKind() == CK_LValueToRValue) {
14278    assert(E->getValueKind() == VK_RValue);
14279    assert(E->getObjectKind() == OK_Ordinary);
14280
14281    assert(isa<BlockPointerType>(E->getType()));
14282
14283    E->setType(DestType);
14284
14285    // The sub-expression has to be a lvalue reference, so rebuild it as such.
14286    DestType = S.Context.getLValueReferenceType(DestType);
14287
14288    ExprResult Result = Visit(E->getSubExpr());
14289    if (!Result.isUsable()) return ExprError();
14290
14291    E->setSubExpr(Result.get());
14292    return E;
14293  } else {
14294    llvm_unreachable("Unhandled cast type!");
14295  }
14296}
14297
14298ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
14299  ExprValueKind ValueKind = VK_LValue;
14300  QualType Type = DestType;
14301
14302  // We know how to make this work for certain kinds of decls:
14303
14304  //  - functions
14305  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
14306    if (const PointerType *Ptr = Type->getAs<PointerType>()) {
14307      DestType = Ptr->getPointeeType();
14308      ExprResult Result = resolveDecl(E, VD);
14309      if (Result.isInvalid()) return ExprError();
14310      return S.ImpCastExprToType(Result.get(), Type,
14311                                 CK_FunctionToPointerDecay, VK_RValue);
14312    }
14313
14314    if (!Type->isFunctionType()) {
14315      S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
14316        << VD << E->getSourceRange();
14317      return ExprError();
14318    }
14319    if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) {
14320      // We must match the FunctionDecl's type to the hack introduced in
14321      // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
14322      // type. See the lengthy commentary in that routine.
14323      QualType FDT = FD->getType();
14324      const FunctionType *FnType = FDT->castAs<FunctionType>();
14325      const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(FnType);
14326      DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
14327      if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) {
14328        SourceLocation Loc = FD->getLocation();
14329        FunctionDecl *NewFD = FunctionDecl::Create(FD->getASTContext(),
14330                                      FD->getDeclContext(),
14331                                      Loc, Loc, FD->getNameInfo().getName(),
14332                                      DestType, FD->getTypeSourceInfo(),
14333                                      SC_None, false/*isInlineSpecified*/,
14334                                      FD->hasPrototype(),
14335                                      false/*isConstexprSpecified*/);
14336
14337        if (FD->getQualifier())
14338          NewFD->setQualifierInfo(FD->getQualifierLoc());
14339
14340        SmallVector<ParmVarDecl*, 16> Params;
14341        for (const auto &AI : FT->param_types()) {
14342          ParmVarDecl *Param =
14343            S.BuildParmVarDeclForTypedef(FD, Loc, AI);
14344          Param->setScopeInfo(0, Params.size());
14345          Params.push_back(Param);
14346        }
14347        NewFD->setParams(Params);
14348        DRE->setDecl(NewFD);
14349        VD = DRE->getDecl();
14350      }
14351    }
14352
14353    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
14354      if (MD->isInstance()) {
14355        ValueKind = VK_RValue;
14356        Type = S.Context.BoundMemberTy;
14357      }
14358
14359    // Function references aren't l-values in C.
14360    if (!S.getLangOpts().CPlusPlus)
14361      ValueKind = VK_RValue;
14362
14363  //  - variables
14364  } else if (isa<VarDecl>(VD)) {
14365    if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
14366      Type = RefTy->getPointeeType();
14367    } else if (Type->isFunctionType()) {
14368      S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
14369        << VD << E->getSourceRange();
14370      return ExprError();
14371    }
14372
14373  //  - nothing else
14374  } else {
14375    S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
14376      << VD << E->getSourceRange();
14377    return ExprError();
14378  }
14379
14380  // Modifying the declaration like this is friendly to IR-gen but
14381  // also really dangerous.
14382  VD->setType(DestType);
14383  E->setType(Type);
14384  E->setValueKind(ValueKind);
14385  return E;
14386}
14387
14388/// Check a cast of an unknown-any type.  We intentionally only
14389/// trigger this for C-style casts.
14390ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
14391                                     Expr *CastExpr, CastKind &CastKind,
14392                                     ExprValueKind &VK, CXXCastPath &Path) {
14393  // Rewrite the casted expression from scratch.
14394  ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
14395  if (!result.isUsable()) return ExprError();
14396
14397  CastExpr = result.get();
14398  VK = CastExpr->getValueKind();
14399  CastKind = CK_NoOp;
14400
14401  return CastExpr;
14402}
14403
14404ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
14405  return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
14406}
14407
14408ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
14409                                    Expr *arg, QualType &paramType) {
14410  // If the syntactic form of the argument is not an explicit cast of
14411  // any sort, just do default argument promotion.
14412  ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
14413  if (!castArg) {
14414    ExprResult result = DefaultArgumentPromotion(arg);
14415    if (result.isInvalid()) return ExprError();
14416    paramType = result.get()->getType();
14417    return result;
14418  }
14419
14420  // Otherwise, use the type that was written in the explicit cast.
14421  assert(!arg->hasPlaceholderType());
14422  paramType = castArg->getTypeAsWritten();
14423
14424  // Copy-initialize a parameter of that type.
14425  InitializedEntity entity =
14426    InitializedEntity::InitializeParameter(Context, paramType,
14427                                           /*consumed*/ false);
14428  return PerformCopyInitialization(entity, callLoc, arg);
14429}
14430
14431static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
14432  Expr *orig = E;
14433  unsigned diagID = diag::err_uncasted_use_of_unknown_any;
14434  while (true) {
14435    E = E->IgnoreParenImpCasts();
14436    if (CallExpr *call = dyn_cast<CallExpr>(E)) {
14437      E = call->getCallee();
14438      diagID = diag::err_uncasted_call_of_unknown_any;
14439    } else {
14440      break;
14441    }
14442  }
14443
14444  SourceLocation loc;
14445  NamedDecl *d;
14446  if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
14447    loc = ref->getLocation();
14448    d = ref->getDecl();
14449  } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
14450    loc = mem->getMemberLoc();
14451    d = mem->getMemberDecl();
14452  } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
14453    diagID = diag::err_uncasted_call_of_unknown_any;
14454    loc = msg->getSelectorStartLoc();
14455    d = msg->getMethodDecl();
14456    if (!d) {
14457      S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
14458        << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
14459        << orig->getSourceRange();
14460      return ExprError();
14461    }
14462  } else {
14463    S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
14464      << E->getSourceRange();
14465    return ExprError();
14466  }
14467
14468  S.Diag(loc, diagID) << d << orig->getSourceRange();
14469
14470  // Never recoverable.
14471  return ExprError();
14472}
14473
14474/// Check for operands with placeholder types and complain if found.
14475/// Returns true if there was an error and no recovery was possible.
14476ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
14477  if (!getLangOpts().CPlusPlus) {
14478    // C cannot handle TypoExpr nodes on either side of a binop because it
14479    // doesn't handle dependent types properly, so make sure any TypoExprs have
14480    // been dealt with before checking the operands.
14481    ExprResult Result = CorrectDelayedTyposInExpr(E);
14482    if (!Result.isUsable()) return ExprError();
14483    E = Result.get();
14484  }
14485
14486  const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
14487  if (!placeholderType) return E;
14488
14489  switch (placeholderType->getKind()) {
14490
14491  // Overloaded expressions.
14492  case BuiltinType::Overload: {
14493    // Try to resolve a single function template specialization.
14494    // This is obligatory.
14495    ExprResult result = E;
14496    if (ResolveAndFixSingleFunctionTemplateSpecialization(result, false)) {
14497      return result;
14498
14499    // If that failed, try to recover with a call.
14500    } else {
14501      tryToRecoverWithCall(result, PDiag(diag::err_ovl_unresolvable),
14502                           /*complain*/ true);
14503      return result;
14504    }
14505  }
14506
14507  // Bound member functions.
14508  case BuiltinType::BoundMember: {
14509    ExprResult result = E;
14510    const Expr *BME = E->IgnoreParens();
14511    PartialDiagnostic PD = PDiag(diag::err_bound_member_function);
14512    // Try to give a nicer diagnostic if it is a bound member that we recognize.
14513    if (isa<CXXPseudoDestructorExpr>(BME)) {
14514      PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1;
14515    } else if (const auto *ME = dyn_cast<MemberExpr>(BME)) {
14516      if (ME->getMemberNameInfo().getName().getNameKind() ==
14517          DeclarationName::CXXDestructorName)
14518        PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0;
14519    }
14520    tryToRecoverWithCall(result, PD,
14521                         /*complain*/ true);
14522    return result;
14523  }
14524
14525  // ARC unbridged casts.
14526  case BuiltinType::ARCUnbridgedCast: {
14527    Expr *realCast = stripARCUnbridgedCast(E);
14528    diagnoseARCUnbridgedCast(realCast);
14529    return realCast;
14530  }
14531
14532  // Expressions of unknown type.
14533  case BuiltinType::UnknownAny:
14534    return diagnoseUnknownAnyExpr(*this, E);
14535
14536  // Pseudo-objects.
14537  case BuiltinType::PseudoObject:
14538    return checkPseudoObjectRValue(E);
14539
14540  case BuiltinType::BuiltinFn: {
14541    // Accept __noop without parens by implicitly converting it to a call expr.
14542    auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
14543    if (DRE) {
14544      auto *FD = cast<FunctionDecl>(DRE->getDecl());
14545      if (FD->getBuiltinID() == Builtin::BI__noop) {
14546        E = ImpCastExprToType(E, Context.getPointerType(FD->getType()),
14547                              CK_BuiltinFnToFnPtr).get();
14548        return new (Context) CallExpr(Context, E, None, Context.IntTy,
14549                                      VK_RValue, SourceLocation());
14550      }
14551    }
14552
14553    Diag(E->getLocStart(), diag::err_builtin_fn_use);
14554    return ExprError();
14555  }
14556
14557  // Expressions of unknown type.
14558  case BuiltinType::OMPArraySection:
14559    Diag(E->getLocStart(), diag::err_omp_array_section_use);
14560    return ExprError();
14561
14562  // Everything else should be impossible.
14563#define BUILTIN_TYPE(Id, SingletonId) \
14564  case BuiltinType::Id:
14565#define PLACEHOLDER_TYPE(Id, SingletonId)
14566#include "clang/AST/BuiltinTypes.def"
14567    break;
14568  }
14569
14570  llvm_unreachable("invalid placeholder type!");
14571}
14572
14573bool Sema::CheckCaseExpression(Expr *E) {
14574  if (E->isTypeDependent())
14575    return true;
14576  if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
14577    return E->getType()->isIntegralOrEnumerationType();
14578  return false;
14579}
14580
14581/// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
14582ExprResult
14583Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
14584  assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
14585         "Unknown Objective-C Boolean value!");
14586  QualType BoolT = Context.ObjCBuiltinBoolTy;
14587  if (!Context.getBOOLDecl()) {
14588    LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
14589                        Sema::LookupOrdinaryName);
14590    if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
14591      NamedDecl *ND = Result.getFoundDecl();
14592      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
14593        Context.setBOOLDecl(TD);
14594    }
14595  }
14596  if (Context.getBOOLDecl())
14597    BoolT = Context.getBOOLType();
14598  return new (Context)
14599      ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes, BoolT, OpLoc);
14600}
14601