SemaType.cpp revision 4994d2d50ceacdc8908f750c55589c0a20942a0a
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/Expr.h"
19#include "clang/Parse/DeclSpec.h"
20#include "llvm/ADT/SmallPtrSet.h"
21using namespace clang;
22
23/// \brief Perform adjustment on the parameter type of a function.
24///
25/// This routine adjusts the given parameter type @p T to the actual
26/// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
27/// C++ [dcl.fct]p3). The adjusted parameter type is returned.
28QualType Sema::adjustParameterType(QualType T) {
29  // C99 6.7.5.3p7:
30  if (T->isArrayType()) {
31    // C99 6.7.5.3p7:
32    //   A declaration of a parameter as "array of type" shall be
33    //   adjusted to "qualified pointer to type", where the type
34    //   qualifiers (if any) are those specified within the [ and ] of
35    //   the array type derivation.
36    return Context.getArrayDecayedType(T);
37  } else if (T->isFunctionType())
38    // C99 6.7.5.3p8:
39    //   A declaration of a parameter as "function returning type"
40    //   shall be adjusted to "pointer to function returning type", as
41    //   in 6.3.2.1.
42    return Context.getPointerType(T);
43
44  return T;
45}
46
47/// \brief Convert the specified declspec to the appropriate type
48/// object.
49/// \param DS  the declaration specifiers
50/// \param DeclLoc The location of the declarator identifier or invalid if none.
51/// \returns The type described by the declaration specifiers.  This function
52/// never returns null.
53QualType Sema::ConvertDeclSpecToType(const DeclSpec &DS,
54                                     SourceLocation DeclLoc,
55                                     bool &isInvalid) {
56  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
57  // checking.
58  QualType Result;
59
60  switch (DS.getTypeSpecType()) {
61  case DeclSpec::TST_void:
62    Result = Context.VoidTy;
63    break;
64  case DeclSpec::TST_char:
65    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
66      Result = Context.CharTy;
67    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
68      Result = Context.SignedCharTy;
69    else {
70      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
71             "Unknown TSS value");
72      Result = Context.UnsignedCharTy;
73    }
74    break;
75  case DeclSpec::TST_wchar:
76    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
77      Result = Context.WCharTy;
78    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
79      Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
80        << DS.getSpecifierName(DS.getTypeSpecType());
81      Result = Context.getSignedWCharType();
82    } else {
83      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
84        "Unknown TSS value");
85      Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
86        << DS.getSpecifierName(DS.getTypeSpecType());
87      Result = Context.getUnsignedWCharType();
88    }
89    break;
90  case DeclSpec::TST_unspecified:
91    // "<proto1,proto2>" is an objc qualified ID with a missing id.
92    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
93      Result = Context.getObjCObjectPointerType(0, (ObjCProtocolDecl**)PQ,
94                                                DS.getNumProtocolQualifiers());
95      break;
96    }
97
98    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
99    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
100    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
101    // Note that the one exception to this is function definitions, which are
102    // allowed to be completely missing a declspec.  This is handled in the
103    // parser already though by it pretending to have seen an 'int' in this
104    // case.
105    if (getLangOptions().ImplicitInt) {
106      // In C89 mode, we only warn if there is a completely missing declspec
107      // when one is not allowed.
108      if (DS.isEmpty()) {
109        if (DeclLoc.isInvalid())
110          DeclLoc = DS.getSourceRange().getBegin();
111        Diag(DeclLoc, diag::ext_missing_declspec)
112          << DS.getSourceRange()
113        << CodeModificationHint::CreateInsertion(DS.getSourceRange().getBegin(),
114                                                 "int");
115      }
116    } else if (!DS.hasTypeSpecifier()) {
117      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
118      // "At least one type specifier shall be given in the declaration
119      // specifiers in each declaration, and in the specifier-qualifier list in
120      // each struct declaration and type name."
121      // FIXME: Does Microsoft really have the implicit int extension in C++?
122      if (DeclLoc.isInvalid())
123        DeclLoc = DS.getSourceRange().getBegin();
124
125      if (getLangOptions().CPlusPlus && !getLangOptions().Microsoft) {
126        Diag(DeclLoc, diag::err_missing_type_specifier)
127          << DS.getSourceRange();
128
129        // When this occurs in C++ code, often something is very broken with the
130        // value being declared, poison it as invalid so we don't get chains of
131        // errors.
132        isInvalid = true;
133      } else {
134        Diag(DeclLoc, diag::ext_missing_type_specifier)
135          << DS.getSourceRange();
136      }
137    }
138
139    // FALL THROUGH.
140  case DeclSpec::TST_int: {
141    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
142      switch (DS.getTypeSpecWidth()) {
143      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
144      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
145      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
146      case DeclSpec::TSW_longlong:    Result = Context.LongLongTy; break;
147      }
148    } else {
149      switch (DS.getTypeSpecWidth()) {
150      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
151      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
152      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
153      case DeclSpec::TSW_longlong:    Result =Context.UnsignedLongLongTy; break;
154      }
155    }
156    break;
157  }
158  case DeclSpec::TST_float: Result = Context.FloatTy; break;
159  case DeclSpec::TST_double:
160    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
161      Result = Context.LongDoubleTy;
162    else
163      Result = Context.DoubleTy;
164    break;
165  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
166  case DeclSpec::TST_decimal32:    // _Decimal32
167  case DeclSpec::TST_decimal64:    // _Decimal64
168  case DeclSpec::TST_decimal128:   // _Decimal128
169    Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
170    Result = Context.IntTy;
171    isInvalid = true;
172    break;
173  case DeclSpec::TST_class:
174  case DeclSpec::TST_enum:
175  case DeclSpec::TST_union:
176  case DeclSpec::TST_struct: {
177    Decl *D = static_cast<Decl *>(DS.getTypeRep());
178    assert(D && "Didn't get a decl for a class/enum/union/struct?");
179    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
180           DS.getTypeSpecSign() == 0 &&
181           "Can't handle qualifiers on typedef names yet!");
182    // TypeQuals handled by caller.
183    Result = Context.getTypeDeclType(cast<TypeDecl>(D));
184
185    if (D->isInvalidDecl())
186      isInvalid = true;
187    break;
188  }
189  case DeclSpec::TST_typename: {
190    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
191           DS.getTypeSpecSign() == 0 &&
192           "Can't handle qualifiers on typedef names yet!");
193    Result = QualType::getFromOpaquePtr(DS.getTypeRep());
194
195    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
196      // FIXME: Adding a TST_objcInterface clause doesn't seem ideal, so we have
197      // this "hack" for now...
198      if (const ObjCInterfaceType *Interface = Result->getAsObjCInterfaceType())
199        Result = Context.getObjCQualifiedInterfaceType(Interface->getDecl(),
200                                                       (ObjCProtocolDecl**)PQ,
201                                               DS.getNumProtocolQualifiers());
202      else if (Result == Context.getObjCIdType())
203        // id<protocol-list>
204        Result = Context.getObjCObjectPointerType(0, (ObjCProtocolDecl**)PQ,
205                                                 DS.getNumProtocolQualifiers());
206      else if (Result == Context.getObjCClassType()) {
207        if (DeclLoc.isInvalid())
208          DeclLoc = DS.getSourceRange().getBegin();
209        // Class<protocol-list>
210        Diag(DeclLoc, diag::err_qualified_class_unsupported)
211          << DS.getSourceRange();
212      } else {
213        if (DeclLoc.isInvalid())
214          DeclLoc = DS.getSourceRange().getBegin();
215        Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
216          << DS.getSourceRange();
217        isInvalid = true;
218      }
219    }
220
221    // If this is a reference to an invalid typedef, propagate the invalidity.
222    if (TypedefType *TDT = dyn_cast<TypedefType>(Result))
223      if (TDT->getDecl()->isInvalidDecl())
224        isInvalid = true;
225
226    // TypeQuals handled by caller.
227    break;
228  }
229  case DeclSpec::TST_typeofType:
230    Result = QualType::getFromOpaquePtr(DS.getTypeRep());
231    assert(!Result.isNull() && "Didn't get a type for typeof?");
232    // TypeQuals handled by caller.
233    Result = Context.getTypeOfType(Result);
234    break;
235  case DeclSpec::TST_typeofExpr: {
236    Expr *E = static_cast<Expr *>(DS.getTypeRep());
237    assert(E && "Didn't get an expression for typeof?");
238    // TypeQuals handled by caller.
239    Result = Context.getTypeOfExprType(E);
240    break;
241  }
242  case DeclSpec::TST_decltype: {
243    Expr *E = static_cast<Expr *>(DS.getTypeRep());
244    assert(E && "Didn't get an expression for decltype?");
245    // TypeQuals handled by caller.
246    Result = BuildDecltypeType(E);
247    if (Result.isNull()) {
248      Result = Context.IntTy;
249      isInvalid = true;
250    }
251    break;
252  }
253  case DeclSpec::TST_auto: {
254    // TypeQuals handled by caller.
255    Result = Context.UndeducedAutoTy;
256    break;
257  }
258
259  case DeclSpec::TST_error:
260    Result = Context.IntTy;
261    isInvalid = true;
262    break;
263  }
264
265  // Handle complex types.
266  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
267    if (getLangOptions().Freestanding)
268      Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
269    Result = Context.getComplexType(Result);
270  }
271
272  assert(DS.getTypeSpecComplex() != DeclSpec::TSC_imaginary &&
273         "FIXME: imaginary types not supported yet!");
274
275  // See if there are any attributes on the declspec that apply to the type (as
276  // opposed to the decl).
277  if (const AttributeList *AL = DS.getAttributes())
278    ProcessTypeAttributeList(Result, AL);
279
280  // Apply const/volatile/restrict qualifiers to T.
281  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
282
283    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
284    // or incomplete types shall not be restrict-qualified."  C++ also allows
285    // restrict-qualified references.
286    if (TypeQuals & QualType::Restrict) {
287      if (Result->isPointerType() || Result->isReferenceType()) {
288        QualType EltTy = Result->isPointerType() ?
289          Result->getAsPointerType()->getPointeeType() :
290          Result->getAsReferenceType()->getPointeeType();
291
292        // If we have a pointer or reference, the pointee must have an object
293        // incomplete type.
294        if (!EltTy->isIncompleteOrObjectType()) {
295          Diag(DS.getRestrictSpecLoc(),
296               diag::err_typecheck_invalid_restrict_invalid_pointee)
297            << EltTy << DS.getSourceRange();
298          TypeQuals &= ~QualType::Restrict; // Remove the restrict qualifier.
299        }
300      } else {
301        Diag(DS.getRestrictSpecLoc(),
302             diag::err_typecheck_invalid_restrict_not_pointer)
303          << Result << DS.getSourceRange();
304        TypeQuals &= ~QualType::Restrict; // Remove the restrict qualifier.
305      }
306    }
307
308    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
309    // of a function type includes any type qualifiers, the behavior is
310    // undefined."
311    if (Result->isFunctionType() && TypeQuals) {
312      // Get some location to point at, either the C or V location.
313      SourceLocation Loc;
314      if (TypeQuals & QualType::Const)
315        Loc = DS.getConstSpecLoc();
316      else {
317        assert((TypeQuals & QualType::Volatile) &&
318               "Has CV quals but not C or V?");
319        Loc = DS.getVolatileSpecLoc();
320      }
321      Diag(Loc, diag::warn_typecheck_function_qualifiers)
322        << Result << DS.getSourceRange();
323    }
324
325    // C++ [dcl.ref]p1:
326    //   Cv-qualified references are ill-formed except when the
327    //   cv-qualifiers are introduced through the use of a typedef
328    //   (7.1.3) or of a template type argument (14.3), in which
329    //   case the cv-qualifiers are ignored.
330    // FIXME: Shouldn't we be checking SCS_typedef here?
331    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
332        TypeQuals && Result->isReferenceType()) {
333      TypeQuals &= ~QualType::Const;
334      TypeQuals &= ~QualType::Volatile;
335    }
336
337    Result = Result.getQualifiedType(TypeQuals);
338  }
339  return Result;
340}
341
342static std::string getPrintableNameForEntity(DeclarationName Entity) {
343  if (Entity)
344    return Entity.getAsString();
345
346  return "type name";
347}
348
349/// \brief Build a pointer type.
350///
351/// \param T The type to which we'll be building a pointer.
352///
353/// \param Quals The cvr-qualifiers to be applied to the pointer type.
354///
355/// \param Loc The location of the entity whose type involves this
356/// pointer type or, if there is no such entity, the location of the
357/// type that will have pointer type.
358///
359/// \param Entity The name of the entity that involves the pointer
360/// type, if known.
361///
362/// \returns A suitable pointer type, if there are no
363/// errors. Otherwise, returns a NULL type.
364QualType Sema::BuildPointerType(QualType T, unsigned Quals,
365                                SourceLocation Loc, DeclarationName Entity) {
366  if (T->isReferenceType()) {
367    // C++ 8.3.2p4: There shall be no ... pointers to references ...
368    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
369      << getPrintableNameForEntity(Entity);
370    return QualType();
371  }
372
373  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
374  // object or incomplete types shall not be restrict-qualified."
375  if ((Quals & QualType::Restrict) && !T->isIncompleteOrObjectType()) {
376    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
377      << T;
378    Quals &= ~QualType::Restrict;
379  }
380
381  // Build the pointer type.
382  return Context.getPointerType(T).getQualifiedType(Quals);
383}
384
385/// \brief Build a reference type.
386///
387/// \param T The type to which we'll be building a reference.
388///
389/// \param Quals The cvr-qualifiers to be applied to the reference type.
390///
391/// \param Loc The location of the entity whose type involves this
392/// reference type or, if there is no such entity, the location of the
393/// type that will have reference type.
394///
395/// \param Entity The name of the entity that involves the reference
396/// type, if known.
397///
398/// \returns A suitable reference type, if there are no
399/// errors. Otherwise, returns a NULL type.
400QualType Sema::BuildReferenceType(QualType T, bool LValueRef, unsigned Quals,
401                                  SourceLocation Loc, DeclarationName Entity) {
402  if (LValueRef) {
403    if (const RValueReferenceType *R = T->getAsRValueReferenceType()) {
404      // C++0x [dcl.typedef]p9: If a typedef TD names a type that is a
405      //   reference to a type T, and attempt to create the type "lvalue
406      //   reference to cv TD" creates the type "lvalue reference to T".
407      // We use the qualifiers (restrict or none) of the original reference,
408      // not the new ones. This is consistent with GCC.
409      return Context.getLValueReferenceType(R->getPointeeType()).
410               getQualifiedType(T.getCVRQualifiers());
411    }
412  }
413  if (T->isReferenceType()) {
414    // C++ [dcl.ref]p4: There shall be no references to references.
415    //
416    // According to C++ DR 106, references to references are only
417    // diagnosed when they are written directly (e.g., "int & &"),
418    // but not when they happen via a typedef:
419    //
420    //   typedef int& intref;
421    //   typedef intref& intref2;
422    //
423    // Parser::ParserDeclaratorInternal diagnoses the case where
424    // references are written directly; here, we handle the
425    // collapsing of references-to-references as described in C++
426    // DR 106 and amended by C++ DR 540.
427    return T;
428  }
429
430  // C++ [dcl.ref]p1:
431  //   A declarator that specifies the type “reference to cv void”
432  //   is ill-formed.
433  if (T->isVoidType()) {
434    Diag(Loc, diag::err_reference_to_void);
435    return QualType();
436  }
437
438  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
439  // object or incomplete types shall not be restrict-qualified."
440  if ((Quals & QualType::Restrict) && !T->isIncompleteOrObjectType()) {
441    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
442      << T;
443    Quals &= ~QualType::Restrict;
444  }
445
446  // C++ [dcl.ref]p1:
447  //   [...] Cv-qualified references are ill-formed except when the
448  //   cv-qualifiers are introduced through the use of a typedef
449  //   (7.1.3) or of a template type argument (14.3), in which case
450  //   the cv-qualifiers are ignored.
451  //
452  // We diagnose extraneous cv-qualifiers for the non-typedef,
453  // non-template type argument case within the parser. Here, we just
454  // ignore any extraneous cv-qualifiers.
455  Quals &= ~QualType::Const;
456  Quals &= ~QualType::Volatile;
457
458  // Handle restrict on references.
459  if (LValueRef)
460    return Context.getLValueReferenceType(T).getQualifiedType(Quals);
461  return Context.getRValueReferenceType(T).getQualifiedType(Quals);
462}
463
464/// \brief Build an array type.
465///
466/// \param T The type of each element in the array.
467///
468/// \param ASM C99 array size modifier (e.g., '*', 'static').
469///
470/// \param ArraySize Expression describing the size of the array.
471///
472/// \param Quals The cvr-qualifiers to be applied to the array's
473/// element type.
474///
475/// \param Loc The location of the entity whose type involves this
476/// array type or, if there is no such entity, the location of the
477/// type that will have array type.
478///
479/// \param Entity The name of the entity that involves the array
480/// type, if known.
481///
482/// \returns A suitable array type, if there are no errors. Otherwise,
483/// returns a NULL type.
484QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
485                              Expr *ArraySize, unsigned Quals,
486                              SourceLocation Loc, DeclarationName Entity) {
487  // C99 6.7.5.2p1: If the element type is an incomplete or function type,
488  // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
489  if (RequireCompleteType(Loc, T,
490                             diag::err_illegal_decl_array_incomplete_type))
491    return QualType();
492
493  if (T->isFunctionType()) {
494    Diag(Loc, diag::err_illegal_decl_array_of_functions)
495      << getPrintableNameForEntity(Entity);
496    return QualType();
497  }
498
499  // C++ 8.3.2p4: There shall be no ... arrays of references ...
500  if (T->isReferenceType()) {
501    Diag(Loc, diag::err_illegal_decl_array_of_references)
502      << getPrintableNameForEntity(Entity);
503    return QualType();
504  }
505
506  if (Context.getCanonicalType(T) == Context.UndeducedAutoTy) {
507    Diag(Loc,  diag::err_illegal_decl_array_of_auto)
508      << getPrintableNameForEntity(Entity);
509    return QualType();
510  }
511
512  if (const RecordType *EltTy = T->getAsRecordType()) {
513    // If the element type is a struct or union that contains a variadic
514    // array, accept it as a GNU extension: C99 6.7.2.1p2.
515    if (EltTy->getDecl()->hasFlexibleArrayMember())
516      Diag(Loc, diag::ext_flexible_array_in_array) << T;
517  } else if (T->isObjCInterfaceType()) {
518    Diag(Loc, diag::err_objc_array_of_interfaces) << T;
519    return QualType();
520  }
521
522  // C99 6.7.5.2p1: The size expression shall have integer type.
523  if (ArraySize && !ArraySize->isTypeDependent() &&
524      !ArraySize->getType()->isIntegerType()) {
525    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
526      << ArraySize->getType() << ArraySize->getSourceRange();
527    ArraySize->Destroy(Context);
528    return QualType();
529  }
530  llvm::APSInt ConstVal(32);
531  if (!ArraySize) {
532    if (ASM == ArrayType::Star)
533      T = Context.getVariableArrayType(T, 0, ASM, Quals);
534    else
535      T = Context.getIncompleteArrayType(T, ASM, Quals);
536  } else if (ArraySize->isValueDependent()) {
537    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals);
538  } else if (!ArraySize->isIntegerConstantExpr(ConstVal, Context) ||
539             (!T->isDependentType() && !T->isConstantSizeType())) {
540    // Per C99, a variable array is an array with either a non-constant
541    // size or an element type that has a non-constant-size
542    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals);
543  } else {
544    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
545    // have a value greater than zero.
546    if (ConstVal.isSigned()) {
547      if (ConstVal.isNegative()) {
548        Diag(ArraySize->getLocStart(),
549             diag::err_typecheck_negative_array_size)
550          << ArraySize->getSourceRange();
551        return QualType();
552      } else if (ConstVal == 0) {
553        // GCC accepts zero sized static arrays.
554        Diag(ArraySize->getLocStart(), diag::ext_typecheck_zero_array_size)
555          << ArraySize->getSourceRange();
556      }
557    }
558    T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
559  }
560  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
561  if (!getLangOptions().C99) {
562    if (ArraySize && !ArraySize->isTypeDependent() &&
563        !ArraySize->isValueDependent() &&
564        !ArraySize->isIntegerConstantExpr(Context))
565      Diag(Loc, diag::ext_vla);
566    else if (ASM != ArrayType::Normal || Quals != 0)
567      Diag(Loc, diag::ext_c99_array_usage);
568  }
569
570  return T;
571}
572
573/// \brief Build an ext-vector type.
574///
575/// Run the required checks for the extended vector type.
576QualType Sema::BuildExtVectorType(QualType T, ExprArg ArraySize,
577                                  SourceLocation AttrLoc) {
578
579  Expr *Arg = (Expr *)ArraySize.get();
580
581  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
582  // in conjunction with complex types (pointers, arrays, functions, etc.).
583  if (!T->isDependentType() &&
584      !T->isIntegerType() && !T->isRealFloatingType()) {
585    Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
586    return QualType();
587  }
588
589  if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
590    llvm::APSInt vecSize(32);
591    if (!Arg->isIntegerConstantExpr(vecSize, Context)) {
592      Diag(AttrLoc, diag::err_attribute_argument_not_int)
593      << "ext_vector_type" << Arg->getSourceRange();
594      return QualType();
595    }
596
597    // unlike gcc's vector_size attribute, the size is specified as the
598    // number of elements, not the number of bytes.
599    unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
600
601    if (vectorSize == 0) {
602      Diag(AttrLoc, diag::err_attribute_zero_size)
603      << Arg->getSourceRange();
604      return QualType();
605    }
606
607    if (!T->isDependentType())
608      return Context.getExtVectorType(T, vectorSize);
609  }
610
611  return Context.getDependentSizedExtVectorType(T, ArraySize.takeAs<Expr>(),
612                                                AttrLoc);
613}
614
615/// \brief Build a function type.
616///
617/// This routine checks the function type according to C++ rules and
618/// under the assumption that the result type and parameter types have
619/// just been instantiated from a template. It therefore duplicates
620/// some of the behavior of GetTypeForDeclarator, but in a much
621/// simpler form that is only suitable for this narrow use case.
622///
623/// \param T The return type of the function.
624///
625/// \param ParamTypes The parameter types of the function. This array
626/// will be modified to account for adjustments to the types of the
627/// function parameters.
628///
629/// \param NumParamTypes The number of parameter types in ParamTypes.
630///
631/// \param Variadic Whether this is a variadic function type.
632///
633/// \param Quals The cvr-qualifiers to be applied to the function type.
634///
635/// \param Loc The location of the entity whose type involves this
636/// function type or, if there is no such entity, the location of the
637/// type that will have function type.
638///
639/// \param Entity The name of the entity that involves the function
640/// type, if known.
641///
642/// \returns A suitable function type, if there are no
643/// errors. Otherwise, returns a NULL type.
644QualType Sema::BuildFunctionType(QualType T,
645                                 QualType *ParamTypes,
646                                 unsigned NumParamTypes,
647                                 bool Variadic, unsigned Quals,
648                                 SourceLocation Loc, DeclarationName Entity) {
649  if (T->isArrayType() || T->isFunctionType()) {
650    Diag(Loc, diag::err_func_returning_array_function) << T;
651    return QualType();
652  }
653
654  bool Invalid = false;
655  for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
656    QualType ParamType = adjustParameterType(ParamTypes[Idx]);
657    if (ParamType->isVoidType()) {
658      Diag(Loc, diag::err_param_with_void_type);
659      Invalid = true;
660    }
661
662    ParamTypes[Idx] = ParamType;
663  }
664
665  if (Invalid)
666    return QualType();
667
668  return Context.getFunctionType(T, ParamTypes, NumParamTypes, Variadic,
669                                 Quals);
670}
671
672/// \brief Build a member pointer type \c T Class::*.
673///
674/// \param T the type to which the member pointer refers.
675/// \param Class the class type into which the member pointer points.
676/// \param Quals Qualifiers applied to the member pointer type
677/// \param Loc the location where this type begins
678/// \param Entity the name of the entity that will have this member pointer type
679///
680/// \returns a member pointer type, if successful, or a NULL type if there was
681/// an error.
682QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
683                                      unsigned Quals, SourceLocation Loc,
684                                      DeclarationName Entity) {
685  // Verify that we're not building a pointer to pointer to function with
686  // exception specification.
687  if (CheckDistantExceptionSpec(T)) {
688    Diag(Loc, diag::err_distant_exception_spec);
689
690    // FIXME: If we're doing this as part of template instantiation,
691    // we should return immediately.
692
693    // Build the type anyway, but use the canonical type so that the
694    // exception specifiers are stripped off.
695    T = Context.getCanonicalType(T);
696  }
697
698  // C++ 8.3.3p3: A pointer to member shall not pointer to ... a member
699  //   with reference type, or "cv void."
700  if (T->isReferenceType()) {
701    Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
702      << (Entity? Entity.getAsString() : "type name");
703    return QualType();
704  }
705
706  if (T->isVoidType()) {
707    Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
708      << (Entity? Entity.getAsString() : "type name");
709    return QualType();
710  }
711
712  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
713  // object or incomplete types shall not be restrict-qualified."
714  if ((Quals & QualType::Restrict) && !T->isIncompleteOrObjectType()) {
715    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
716      << T;
717
718    // FIXME: If we're doing this as part of template instantiation,
719    // we should return immediately.
720    Quals &= ~QualType::Restrict;
721  }
722
723  if (!Class->isDependentType() && !Class->isRecordType()) {
724    Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
725    return QualType();
726  }
727
728  return Context.getMemberPointerType(T, Class.getTypePtr())
729           .getQualifiedType(Quals);
730}
731
732/// \brief Build a block pointer type.
733///
734/// \param T The type to which we'll be building a block pointer.
735///
736/// \param Quals The cvr-qualifiers to be applied to the block pointer type.
737///
738/// \param Loc The location of the entity whose type involves this
739/// block pointer type or, if there is no such entity, the location of the
740/// type that will have block pointer type.
741///
742/// \param Entity The name of the entity that involves the block pointer
743/// type, if known.
744///
745/// \returns A suitable block pointer type, if there are no
746/// errors. Otherwise, returns a NULL type.
747QualType Sema::BuildBlockPointerType(QualType T, unsigned Quals,
748                                     SourceLocation Loc,
749                                     DeclarationName Entity) {
750  if (!T.getTypePtr()->isFunctionType()) {
751    Diag(Loc, diag::err_nonfunction_block_type);
752    return QualType();
753  }
754
755  return Context.getBlockPointerType(T).getQualifiedType(Quals);
756}
757
758/// GetTypeForDeclarator - Convert the type for the specified
759/// declarator to Type instances. Skip the outermost Skip type
760/// objects.
761///
762/// If OwnedDecl is non-NULL, and this declarator's decl-specifier-seq
763/// owns the declaration of a type (e.g., the definition of a struct
764/// type), then *OwnedDecl will receive the owned declaration.
765QualType Sema::GetTypeForDeclarator(Declarator &D, Scope *S, unsigned Skip,
766                                    TagDecl **OwnedDecl) {
767  bool OmittedReturnType = false;
768
769  if (D.getContext() == Declarator::BlockLiteralContext
770      && Skip == 0
771      && !D.getDeclSpec().hasTypeSpecifier()
772      && (D.getNumTypeObjects() == 0
773          || (D.getNumTypeObjects() == 1
774              && D.getTypeObject(0).Kind == DeclaratorChunk::Function)))
775    OmittedReturnType = true;
776
777  // long long is a C99 feature.
778  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
779      D.getDeclSpec().getTypeSpecWidth() == DeclSpec::TSW_longlong)
780    Diag(D.getDeclSpec().getTypeSpecWidthLoc(), diag::ext_longlong);
781
782  // Determine the type of the declarator. Not all forms of declarator
783  // have a type.
784  QualType T;
785  switch (D.getKind()) {
786  case Declarator::DK_Abstract:
787  case Declarator::DK_Normal:
788  case Declarator::DK_Operator: {
789    const DeclSpec &DS = D.getDeclSpec();
790    if (OmittedReturnType) {
791      // We default to a dependent type initially.  Can be modified by
792      // the first return statement.
793      T = Context.DependentTy;
794    } else {
795      bool isInvalid = false;
796      T = ConvertDeclSpecToType(DS, D.getIdentifierLoc(), isInvalid);
797      if (isInvalid)
798        D.setInvalidType(true);
799      else if (OwnedDecl && DS.isTypeSpecOwned())
800        *OwnedDecl = cast<TagDecl>((Decl *)DS.getTypeRep());
801    }
802    break;
803  }
804
805  case Declarator::DK_Constructor:
806  case Declarator::DK_Destructor:
807  case Declarator::DK_Conversion:
808    // Constructors and destructors don't have return types. Use
809    // "void" instead. Conversion operators will check their return
810    // types separately.
811    T = Context.VoidTy;
812    break;
813  }
814
815  if (T == Context.UndeducedAutoTy) {
816    int Error = -1;
817
818    switch (D.getContext()) {
819    case Declarator::KNRTypeListContext:
820      assert(0 && "K&R type lists aren't allowed in C++");
821      break;
822    case Declarator::PrototypeContext:
823      Error = 0; // Function prototype
824      break;
825    case Declarator::MemberContext:
826      switch (cast<TagDecl>(CurContext)->getTagKind()) {
827      case TagDecl::TK_enum: assert(0 && "unhandled tag kind"); break;
828      case TagDecl::TK_struct: Error = 1; /* Struct member */ break;
829      case TagDecl::TK_union:  Error = 2; /* Union member */ break;
830      case TagDecl::TK_class:  Error = 3; /* Class member */ break;
831      }
832      break;
833    case Declarator::CXXCatchContext:
834      Error = 4; // Exception declaration
835      break;
836    case Declarator::TemplateParamContext:
837      Error = 5; // Template parameter
838      break;
839    case Declarator::BlockLiteralContext:
840      Error = 6;  // Block literal
841      break;
842    case Declarator::FileContext:
843    case Declarator::BlockContext:
844    case Declarator::ForContext:
845    case Declarator::ConditionContext:
846    case Declarator::TypeNameContext:
847      break;
848    }
849
850    if (Error != -1) {
851      Diag(D.getDeclSpec().getTypeSpecTypeLoc(), diag::err_auto_not_allowed)
852        << Error;
853      T = Context.IntTy;
854      D.setInvalidType(true);
855    }
856  }
857
858  // The name we're declaring, if any.
859  DeclarationName Name;
860  if (D.getIdentifier())
861    Name = D.getIdentifier();
862
863  // Walk the DeclTypeInfo, building the recursive type as we go.
864  // DeclTypeInfos are ordered from the identifier out, which is
865  // opposite of what we want :).
866  for (unsigned i = Skip, e = D.getNumTypeObjects(); i != e; ++i) {
867    DeclaratorChunk &DeclType = D.getTypeObject(e-i-1+Skip);
868    switch (DeclType.Kind) {
869    default: assert(0 && "Unknown decltype!");
870    case DeclaratorChunk::BlockPointer:
871      // If blocks are disabled, emit an error.
872      if (!LangOpts.Blocks)
873        Diag(DeclType.Loc, diag::err_blocks_disable);
874
875      T = BuildBlockPointerType(T, DeclType.Cls.TypeQuals, D.getIdentifierLoc(),
876                                Name);
877      break;
878    case DeclaratorChunk::Pointer:
879      // Verify that we're not building a pointer to pointer to function with
880      // exception specification.
881      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
882        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
883        D.setInvalidType(true);
884        // Build the type anyway.
885      }
886      T = BuildPointerType(T, DeclType.Ptr.TypeQuals, DeclType.Loc, Name);
887      break;
888    case DeclaratorChunk::Reference:
889      // Verify that we're not building a reference to pointer to function with
890      // exception specification.
891      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
892        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
893        D.setInvalidType(true);
894        // Build the type anyway.
895      }
896      T = BuildReferenceType(T, DeclType.Ref.LValueRef,
897                             DeclType.Ref.HasRestrict ? QualType::Restrict : 0,
898                             DeclType.Loc, Name);
899      break;
900    case DeclaratorChunk::Array: {
901      // Verify that we're not building an array of pointers to function with
902      // exception specification.
903      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
904        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
905        D.setInvalidType(true);
906        // Build the type anyway.
907      }
908      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
909      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
910      ArrayType::ArraySizeModifier ASM;
911      if (ATI.isStar)
912        ASM = ArrayType::Star;
913      else if (ATI.hasStatic)
914        ASM = ArrayType::Static;
915      else
916        ASM = ArrayType::Normal;
917      if (ASM == ArrayType::Star &&
918          D.getContext() != Declarator::PrototypeContext) {
919        // FIXME: This check isn't quite right: it allows star in prototypes
920        // for function definitions, and disallows some edge cases detailed
921        // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
922        Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
923        ASM = ArrayType::Normal;
924        D.setInvalidType(true);
925      }
926      T = BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals, DeclType.Loc, Name);
927      break;
928    }
929    case DeclaratorChunk::Function: {
930      // If the function declarator has a prototype (i.e. it is not () and
931      // does not have a K&R-style identifier list), then the arguments are part
932      // of the type, otherwise the argument list is ().
933      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
934
935      // C99 6.7.5.3p1: The return type may not be a function or array type.
936      if (T->isArrayType() || T->isFunctionType()) {
937        Diag(DeclType.Loc, diag::err_func_returning_array_function) << T;
938        T = Context.IntTy;
939        D.setInvalidType(true);
940      }
941
942      if (getLangOptions().CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
943        // C++ [dcl.fct]p6:
944        //   Types shall not be defined in return or parameter types.
945        TagDecl *Tag = cast<TagDecl>((Decl *)D.getDeclSpec().getTypeRep());
946        if (Tag->isDefinition())
947          Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
948            << Context.getTypeDeclType(Tag);
949      }
950
951      // Exception specs are not allowed in typedefs. Complain, but add it
952      // anyway.
953      if (FTI.hasExceptionSpec &&
954          D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
955        Diag(FTI.getThrowLoc(), diag::err_exception_spec_in_typedef);
956
957      if (FTI.NumArgs == 0) {
958        if (getLangOptions().CPlusPlus) {
959          // C++ 8.3.5p2: If the parameter-declaration-clause is empty, the
960          // function takes no arguments.
961          llvm::SmallVector<QualType, 4> Exceptions;
962          Exceptions.reserve(FTI.NumExceptions);
963          for(unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
964            QualType ET = QualType::getFromOpaquePtr(FTI.Exceptions[ei].Ty);
965            // Check that the type is valid for an exception spec, and drop it
966            // if not.
967            if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
968              Exceptions.push_back(ET);
969          }
970          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, FTI.TypeQuals,
971                                      FTI.hasExceptionSpec,
972                                      FTI.hasAnyExceptionSpec,
973                                      Exceptions.size(), Exceptions.data());
974        } else if (FTI.isVariadic) {
975          // We allow a zero-parameter variadic function in C if the
976          // function is marked with the "overloadable"
977          // attribute. Scan for this attribute now.
978          bool Overloadable = false;
979          for (const AttributeList *Attrs = D.getAttributes();
980               Attrs; Attrs = Attrs->getNext()) {
981            if (Attrs->getKind() == AttributeList::AT_overloadable) {
982              Overloadable = true;
983              break;
984            }
985          }
986
987          if (!Overloadable)
988            Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
989          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, 0);
990        } else {
991          // Simple void foo(), where the incoming T is the result type.
992          T = Context.getFunctionNoProtoType(T);
993        }
994      } else if (FTI.ArgInfo[0].Param == 0) {
995        // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function definition.
996        Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
997      } else {
998        // Otherwise, we have a function with an argument list that is
999        // potentially variadic.
1000        llvm::SmallVector<QualType, 16> ArgTys;
1001
1002        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1003          ParmVarDecl *Param =
1004            cast<ParmVarDecl>(FTI.ArgInfo[i].Param.getAs<Decl>());
1005          QualType ArgTy = Param->getType();
1006          assert(!ArgTy.isNull() && "Couldn't parse type?");
1007
1008          // Adjust the parameter type.
1009          assert((ArgTy == adjustParameterType(ArgTy)) && "Unadjusted type?");
1010
1011          // Look for 'void'.  void is allowed only as a single argument to a
1012          // function with no other parameters (C99 6.7.5.3p10).  We record
1013          // int(void) as a FunctionProtoType with an empty argument list.
1014          if (ArgTy->isVoidType()) {
1015            // If this is something like 'float(int, void)', reject it.  'void'
1016            // is an incomplete type (C99 6.2.5p19) and function decls cannot
1017            // have arguments of incomplete type.
1018            if (FTI.NumArgs != 1 || FTI.isVariadic) {
1019              Diag(DeclType.Loc, diag::err_void_only_param);
1020              ArgTy = Context.IntTy;
1021              Param->setType(ArgTy);
1022            } else if (FTI.ArgInfo[i].Ident) {
1023              // Reject, but continue to parse 'int(void abc)'.
1024              Diag(FTI.ArgInfo[i].IdentLoc,
1025                   diag::err_param_with_void_type);
1026              ArgTy = Context.IntTy;
1027              Param->setType(ArgTy);
1028            } else {
1029              // Reject, but continue to parse 'float(const void)'.
1030              if (ArgTy.getCVRQualifiers())
1031                Diag(DeclType.Loc, diag::err_void_param_qualified);
1032
1033              // Do not add 'void' to the ArgTys list.
1034              break;
1035            }
1036          } else if (!FTI.hasPrototype) {
1037            if (ArgTy->isPromotableIntegerType()) {
1038              ArgTy = Context.IntTy;
1039            } else if (const BuiltinType* BTy = ArgTy->getAsBuiltinType()) {
1040              if (BTy->getKind() == BuiltinType::Float)
1041                ArgTy = Context.DoubleTy;
1042            }
1043          }
1044
1045          ArgTys.push_back(ArgTy);
1046        }
1047
1048        llvm::SmallVector<QualType, 4> Exceptions;
1049        Exceptions.reserve(FTI.NumExceptions);
1050        for(unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
1051          QualType ET = QualType::getFromOpaquePtr(FTI.Exceptions[ei].Ty);
1052          // Check that the type is valid for an exception spec, and drop it if
1053          // not.
1054          if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
1055            Exceptions.push_back(ET);
1056        }
1057
1058        T = Context.getFunctionType(T, ArgTys.data(), ArgTys.size(),
1059                                    FTI.isVariadic, FTI.TypeQuals,
1060                                    FTI.hasExceptionSpec,
1061                                    FTI.hasAnyExceptionSpec,
1062                                    Exceptions.size(), Exceptions.data());
1063      }
1064      break;
1065    }
1066    case DeclaratorChunk::MemberPointer:
1067      // Verify that we're not building a pointer to pointer to function with
1068      // exception specification.
1069      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1070        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1071        D.setInvalidType(true);
1072        // Build the type anyway.
1073      }
1074      // The scope spec must refer to a class, or be dependent.
1075      QualType ClsType;
1076      if (isDependentScopeSpecifier(DeclType.Mem.Scope())) {
1077        NestedNameSpecifier *NNS
1078          = (NestedNameSpecifier *)DeclType.Mem.Scope().getScopeRep();
1079        assert(NNS->getAsType() && "Nested-name-specifier must name a type");
1080        ClsType = QualType(NNS->getAsType(), 0);
1081      } else if (CXXRecordDecl *RD
1082                   = dyn_cast_or_null<CXXRecordDecl>(
1083                                    computeDeclContext(DeclType.Mem.Scope()))) {
1084        ClsType = Context.getTagDeclType(RD);
1085      } else {
1086        Diag(DeclType.Mem.Scope().getBeginLoc(),
1087             diag::err_illegal_decl_mempointer_in_nonclass)
1088          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
1089          << DeclType.Mem.Scope().getRange();
1090        D.setInvalidType(true);
1091      }
1092
1093      if (!ClsType.isNull())
1094        T = BuildMemberPointerType(T, ClsType, DeclType.Mem.TypeQuals,
1095                                   DeclType.Loc, D.getIdentifier());
1096      if (T.isNull()) {
1097        T = Context.IntTy;
1098        D.setInvalidType(true);
1099      }
1100      break;
1101    }
1102
1103    if (T.isNull()) {
1104      D.setInvalidType(true);
1105      T = Context.IntTy;
1106    }
1107
1108    // See if there are any attributes on this declarator chunk.
1109    if (const AttributeList *AL = DeclType.getAttrs())
1110      ProcessTypeAttributeList(T, AL);
1111  }
1112
1113  if (getLangOptions().CPlusPlus && T->isFunctionType()) {
1114    const FunctionProtoType *FnTy = T->getAsFunctionProtoType();
1115    assert(FnTy && "Why oh why is there not a FunctionProtoType here ?");
1116
1117    // C++ 8.3.5p4: A cv-qualifier-seq shall only be part of the function type
1118    // for a nonstatic member function, the function type to which a pointer
1119    // to member refers, or the top-level function type of a function typedef
1120    // declaration.
1121    if (FnTy->getTypeQuals() != 0 &&
1122        D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
1123        ((D.getContext() != Declarator::MemberContext &&
1124          (!D.getCXXScopeSpec().isSet() ||
1125           !computeDeclContext(D.getCXXScopeSpec())->isRecord())) ||
1126         D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)) {
1127      if (D.isFunctionDeclarator())
1128        Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_function_type);
1129      else
1130        Diag(D.getIdentifierLoc(),
1131             diag::err_invalid_qualified_typedef_function_type_use);
1132
1133      // Strip the cv-quals from the type.
1134      T = Context.getFunctionType(FnTy->getResultType(), FnTy->arg_type_begin(),
1135                                  FnTy->getNumArgs(), FnTy->isVariadic(), 0);
1136    }
1137  }
1138
1139  // If there were any type attributes applied to the decl itself (not the
1140  // type, apply the type attribute to the type!)
1141  if (const AttributeList *Attrs = D.getAttributes())
1142    ProcessTypeAttributeList(T, Attrs);
1143
1144  return T;
1145}
1146
1147/// CheckSpecifiedExceptionType - Check if the given type is valid in an
1148/// exception specification. Incomplete types, or pointers to incomplete types
1149/// other than void are not allowed.
1150bool Sema::CheckSpecifiedExceptionType(QualType T, const SourceRange &Range) {
1151  // FIXME: This may not correctly work with the fix for core issue 437,
1152  // where a class's own type is considered complete within its body.
1153
1154  // C++ 15.4p2: A type denoted in an exception-specification shall not denote
1155  //   an incomplete type.
1156  if (T->isIncompleteType())
1157    return Diag(Range.getBegin(), diag::err_incomplete_in_exception_spec)
1158      << Range << T << /*direct*/0;
1159
1160  // C++ 15.4p2: A type denoted in an exception-specification shall not denote
1161  //   an incomplete type a pointer or reference to an incomplete type, other
1162  //   than (cv) void*.
1163  int kind;
1164  if (const PointerType* IT = T->getAsPointerType()) {
1165    T = IT->getPointeeType();
1166    kind = 1;
1167  } else if (const ReferenceType* IT = T->getAsReferenceType()) {
1168    T = IT->getPointeeType();
1169    kind = 2;
1170  } else
1171    return false;
1172
1173  if (T->isIncompleteType() && !T->isVoidType())
1174    return Diag(Range.getBegin(), diag::err_incomplete_in_exception_spec)
1175      << Range << T << /*indirect*/kind;
1176
1177  return false;
1178}
1179
1180/// CheckDistantExceptionSpec - Check if the given type is a pointer or pointer
1181/// to member to a function with an exception specification. This means that
1182/// it is invalid to add another level of indirection.
1183bool Sema::CheckDistantExceptionSpec(QualType T) {
1184  if (const PointerType *PT = T->getAsPointerType())
1185    T = PT->getPointeeType();
1186  else if (const MemberPointerType *PT = T->getAsMemberPointerType())
1187    T = PT->getPointeeType();
1188  else
1189    return false;
1190
1191  const FunctionProtoType *FnT = T->getAsFunctionProtoType();
1192  if (!FnT)
1193    return false;
1194
1195  return FnT->hasExceptionSpec();
1196}
1197
1198/// CheckEquivalentExceptionSpec - Check if the two types have equivalent
1199/// exception specifications. Exception specifications are equivalent if
1200/// they allow exactly the same set of exception types. It does not matter how
1201/// that is achieved. See C++ [except.spec]p2.
1202bool Sema::CheckEquivalentExceptionSpec(
1203    const FunctionProtoType *Old, SourceLocation OldLoc,
1204    const FunctionProtoType *New, SourceLocation NewLoc) {
1205  bool OldAny = !Old->hasExceptionSpec() || Old->hasAnyExceptionSpec();
1206  bool NewAny = !New->hasExceptionSpec() || New->hasAnyExceptionSpec();
1207  if (OldAny && NewAny)
1208    return false;
1209  if (OldAny || NewAny) {
1210    Diag(NewLoc, diag::err_mismatched_exception_spec);
1211    Diag(OldLoc, diag::note_previous_declaration);
1212    return true;
1213  }
1214
1215  bool Success = true;
1216  // Both have a definite exception spec. Collect the first set, then compare
1217  // to the second.
1218  llvm::SmallPtrSet<const Type*, 8> Types;
1219  for (FunctionProtoType::exception_iterator I = Old->exception_begin(),
1220       E = Old->exception_end(); I != E; ++I)
1221    Types.insert(Context.getCanonicalType(*I).getTypePtr());
1222
1223  for (FunctionProtoType::exception_iterator I = New->exception_begin(),
1224       E = New->exception_end(); I != E && Success; ++I)
1225    Success = Types.erase(Context.getCanonicalType(*I).getTypePtr());
1226
1227  Success = Success && Types.empty();
1228
1229  if (Success) {
1230    return false;
1231  }
1232  Diag(NewLoc, diag::err_mismatched_exception_spec);
1233  Diag(OldLoc, diag::note_previous_declaration);
1234  return true;
1235}
1236
1237/// ObjCGetTypeForMethodDefinition - Builds the type for a method definition
1238/// declarator
1239QualType Sema::ObjCGetTypeForMethodDefinition(DeclPtrTy D) {
1240  ObjCMethodDecl *MDecl = cast<ObjCMethodDecl>(D.getAs<Decl>());
1241  QualType T = MDecl->getResultType();
1242  llvm::SmallVector<QualType, 16> ArgTys;
1243
1244  // Add the first two invisible argument types for self and _cmd.
1245  if (MDecl->isInstanceMethod()) {
1246    QualType selfTy = Context.getObjCInterfaceType(MDecl->getClassInterface());
1247    selfTy = Context.getPointerType(selfTy);
1248    ArgTys.push_back(selfTy);
1249  } else
1250    ArgTys.push_back(Context.getObjCIdType());
1251  ArgTys.push_back(Context.getObjCSelType());
1252
1253  for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
1254       E = MDecl->param_end(); PI != E; ++PI) {
1255    QualType ArgTy = (*PI)->getType();
1256    assert(!ArgTy.isNull() && "Couldn't parse type?");
1257    ArgTy = adjustParameterType(ArgTy);
1258    ArgTys.push_back(ArgTy);
1259  }
1260  T = Context.getFunctionType(T, &ArgTys[0], ArgTys.size(),
1261                              MDecl->isVariadic(), 0);
1262  return T;
1263}
1264
1265/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
1266/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
1267/// they point to and return true. If T1 and T2 aren't pointer types
1268/// or pointer-to-member types, or if they are not similar at this
1269/// level, returns false and leaves T1 and T2 unchanged. Top-level
1270/// qualifiers on T1 and T2 are ignored. This function will typically
1271/// be called in a loop that successively "unwraps" pointer and
1272/// pointer-to-member types to compare them at each level.
1273bool Sema::UnwrapSimilarPointerTypes(QualType& T1, QualType& T2) {
1274  const PointerType *T1PtrType = T1->getAsPointerType(),
1275                    *T2PtrType = T2->getAsPointerType();
1276  if (T1PtrType && T2PtrType) {
1277    T1 = T1PtrType->getPointeeType();
1278    T2 = T2PtrType->getPointeeType();
1279    return true;
1280  }
1281
1282  const MemberPointerType *T1MPType = T1->getAsMemberPointerType(),
1283                          *T2MPType = T2->getAsMemberPointerType();
1284  if (T1MPType && T2MPType &&
1285      Context.getCanonicalType(T1MPType->getClass()) ==
1286      Context.getCanonicalType(T2MPType->getClass())) {
1287    T1 = T1MPType->getPointeeType();
1288    T2 = T2MPType->getPointeeType();
1289    return true;
1290  }
1291  return false;
1292}
1293
1294Sema::TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
1295  // C99 6.7.6: Type names have no identifier.  This is already validated by
1296  // the parser.
1297  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
1298
1299  TagDecl *OwnedTag = 0;
1300  QualType T = GetTypeForDeclarator(D, S, /*Skip=*/0, &OwnedTag);
1301  if (D.isInvalidType())
1302    return true;
1303
1304  if (getLangOptions().CPlusPlus) {
1305    // Check that there are no default arguments (C++ only).
1306    CheckExtraCXXDefaultArguments(D);
1307
1308    // C++0x [dcl.type]p3:
1309    //   A type-specifier-seq shall not define a class or enumeration
1310    //   unless it appears in the type-id of an alias-declaration
1311    //   (7.1.3).
1312    if (OwnedTag && OwnedTag->isDefinition())
1313      Diag(OwnedTag->getLocation(), diag::err_type_defined_in_type_specifier)
1314        << Context.getTypeDeclType(OwnedTag);
1315  }
1316
1317  return T.getAsOpaquePtr();
1318}
1319
1320
1321
1322//===----------------------------------------------------------------------===//
1323// Type Attribute Processing
1324//===----------------------------------------------------------------------===//
1325
1326/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
1327/// specified type.  The attribute contains 1 argument, the id of the address
1328/// space for the type.
1329static void HandleAddressSpaceTypeAttribute(QualType &Type,
1330                                            const AttributeList &Attr, Sema &S){
1331  // If this type is already address space qualified, reject it.
1332  // Clause 6.7.3 - Type qualifiers: "No type shall be qualified by qualifiers
1333  // for two or more different address spaces."
1334  if (Type.getAddressSpace()) {
1335    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
1336    return;
1337  }
1338
1339  // Check the attribute arguments.
1340  if (Attr.getNumArgs() != 1) {
1341    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1342    return;
1343  }
1344  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
1345  llvm::APSInt addrSpace(32);
1346  if (!ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
1347    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
1348      << ASArgExpr->getSourceRange();
1349    return;
1350  }
1351
1352  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
1353  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
1354}
1355
1356/// HandleObjCGCTypeAttribute - Process an objc's gc attribute on the
1357/// specified type.  The attribute contains 1 argument, weak or strong.
1358static void HandleObjCGCTypeAttribute(QualType &Type,
1359                                      const AttributeList &Attr, Sema &S) {
1360  if (Type.getObjCGCAttr() != QualType::GCNone) {
1361    S.Diag(Attr.getLoc(), diag::err_attribute_multiple_objc_gc);
1362    return;
1363  }
1364
1365  // Check the attribute arguments.
1366  if (!Attr.getParameterName()) {
1367    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
1368      << "objc_gc" << 1;
1369    return;
1370  }
1371  QualType::GCAttrTypes GCAttr;
1372  if (Attr.getNumArgs() != 0) {
1373    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1374    return;
1375  }
1376  if (Attr.getParameterName()->isStr("weak"))
1377    GCAttr = QualType::Weak;
1378  else if (Attr.getParameterName()->isStr("strong"))
1379    GCAttr = QualType::Strong;
1380  else {
1381    S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
1382      << "objc_gc" << Attr.getParameterName();
1383    return;
1384  }
1385
1386  Type = S.Context.getObjCGCQualType(Type, GCAttr);
1387}
1388
1389void Sema::ProcessTypeAttributeList(QualType &Result, const AttributeList *AL) {
1390  // Scan through and apply attributes to this type where it makes sense.  Some
1391  // attributes (such as __address_space__, __vector_size__, etc) apply to the
1392  // type, but others can be present in the type specifiers even though they
1393  // apply to the decl.  Here we apply type attributes and ignore the rest.
1394  for (; AL; AL = AL->getNext()) {
1395    // If this is an attribute we can handle, do so now, otherwise, add it to
1396    // the LeftOverAttrs list for rechaining.
1397    switch (AL->getKind()) {
1398    default: break;
1399    case AttributeList::AT_address_space:
1400      HandleAddressSpaceTypeAttribute(Result, *AL, *this);
1401      break;
1402    case AttributeList::AT_objc_gc:
1403      HandleObjCGCTypeAttribute(Result, *AL, *this);
1404      break;
1405    }
1406  }
1407}
1408
1409/// @brief Ensure that the type T is a complete type.
1410///
1411/// This routine checks whether the type @p T is complete in any
1412/// context where a complete type is required. If @p T is a complete
1413/// type, returns false. If @p T is a class template specialization,
1414/// this routine then attempts to perform class template
1415/// instantiation. If instantiation fails, or if @p T is incomplete
1416/// and cannot be completed, issues the diagnostic @p diag (giving it
1417/// the type @p T) and returns true.
1418///
1419/// @param Loc  The location in the source that the incomplete type
1420/// diagnostic should refer to.
1421///
1422/// @param T  The type that this routine is examining for completeness.
1423///
1424/// @param diag The diagnostic value (e.g.,
1425/// @c diag::err_typecheck_decl_incomplete_type) that will be used
1426/// for the error message if @p T is incomplete.
1427///
1428/// @param Range1  An optional range in the source code that will be a
1429/// part of the "incomplete type" error message.
1430///
1431/// @param Range2  An optional range in the source code that will be a
1432/// part of the "incomplete type" error message.
1433///
1434/// @param PrintType If non-NULL, the type that should be printed
1435/// instead of @p T. This parameter should be used when the type that
1436/// we're checking for incompleteness isn't the type that should be
1437/// displayed to the user, e.g., when T is a type and PrintType is a
1438/// pointer to T.
1439///
1440/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
1441/// @c false otherwise.
1442bool Sema::RequireCompleteType(SourceLocation Loc, QualType T, unsigned diag,
1443                               SourceRange Range1, SourceRange Range2,
1444                               QualType PrintType) {
1445  // FIXME: Add this assertion to help us flush out problems with
1446  // checking for dependent types and type-dependent expressions.
1447  //
1448  //  assert(!T->isDependentType() &&
1449  //         "Can't ask whether a dependent type is complete");
1450
1451  // If we have a complete type, we're done.
1452  if (!T->isIncompleteType())
1453    return false;
1454
1455  // If we have a class template specialization or a class member of a
1456  // class template specialization, try to instantiate it.
1457  if (const RecordType *Record = T->getAsRecordType()) {
1458    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
1459          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
1460      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
1461        // Update the class template specialization's location to
1462        // refer to the point of instantiation.
1463        if (Loc.isValid())
1464          ClassTemplateSpec->setLocation(Loc);
1465        return InstantiateClassTemplateSpecialization(ClassTemplateSpec,
1466                                             /*ExplicitInstantiation=*/false);
1467      }
1468    } else if (CXXRecordDecl *Rec
1469                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
1470      if (CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass()) {
1471        // Find the class template specialization that surrounds this
1472        // member class.
1473        ClassTemplateSpecializationDecl *Spec = 0;
1474        for (DeclContext *Parent = Rec->getDeclContext();
1475             Parent && !Spec; Parent = Parent->getParent())
1476          Spec = dyn_cast<ClassTemplateSpecializationDecl>(Parent);
1477        assert(Spec && "Not a member of a class template specialization?");
1478        return InstantiateClass(Loc, Rec, Pattern, Spec->getTemplateArgs(),
1479                                /*ExplicitInstantiation=*/false);
1480      }
1481    }
1482  }
1483
1484  if (PrintType.isNull())
1485    PrintType = T;
1486
1487  // We have an incomplete type. Produce a diagnostic.
1488  Diag(Loc, diag) << PrintType << Range1 << Range2;
1489
1490  // If the type was a forward declaration of a class/struct/union
1491  // type, produce
1492  const TagType *Tag = 0;
1493  if (const RecordType *Record = T->getAsRecordType())
1494    Tag = Record;
1495  else if (const EnumType *Enum = T->getAsEnumType())
1496    Tag = Enum;
1497
1498  if (Tag && !Tag->getDecl()->isInvalidDecl())
1499    Diag(Tag->getDecl()->getLocation(),
1500         Tag->isBeingDefined() ? diag::note_type_being_defined
1501                               : diag::note_forward_declaration)
1502        << QualType(Tag, 0);
1503
1504  return true;
1505}
1506
1507/// \brief Retrieve a version of the type 'T' that is qualified by the
1508/// nested-name-specifier contained in SS.
1509QualType Sema::getQualifiedNameType(const CXXScopeSpec &SS, QualType T) {
1510  if (!SS.isSet() || SS.isInvalid() || T.isNull())
1511    return T;
1512
1513  NestedNameSpecifier *NNS
1514    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1515  return Context.getQualifiedNameType(NNS, T);
1516}
1517
1518QualType Sema::BuildTypeofExprType(Expr *E) {
1519  return Context.getTypeOfExprType(E);
1520}
1521
1522QualType Sema::BuildDecltypeType(Expr *E) {
1523  if (E->getType() == Context.OverloadTy) {
1524    Diag(E->getLocStart(),
1525         diag::err_cannot_determine_declared_type_of_overloaded_function);
1526    return QualType();
1527  }
1528  return Context.getDecltypeType(E);
1529}
1530