SemaType.cpp revision 788b0fd67e1992f23555454efcdb16a19dfefac3
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/CXXInheritance.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/TypeLocVisitor.h"
21#include "clang/AST/Expr.h"
22#include "clang/Basic/PartialDiagnostic.h"
23#include "clang/Parse/DeclSpec.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/Support/ErrorHandling.h"
26using namespace clang;
27
28#include <iostream>
29
30/// \brief Perform adjustment on the parameter type of a function.
31///
32/// This routine adjusts the given parameter type @p T to the actual
33/// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
34/// C++ [dcl.fct]p3). The adjusted parameter type is returned.
35QualType Sema::adjustParameterType(QualType T) {
36  // C99 6.7.5.3p7:
37  //   A declaration of a parameter as "array of type" shall be
38  //   adjusted to "qualified pointer to type", where the type
39  //   qualifiers (if any) are those specified within the [ and ] of
40  //   the array type derivation.
41  if (T->isArrayType())
42    return Context.getArrayDecayedType(T);
43
44  // C99 6.7.5.3p8:
45  //   A declaration of a parameter as "function returning type"
46  //   shall be adjusted to "pointer to function returning type", as
47  //   in 6.3.2.1.
48  if (T->isFunctionType())
49    return Context.getPointerType(T);
50
51  return T;
52}
53
54
55
56/// isOmittedBlockReturnType - Return true if this declarator is missing a
57/// return type because this is a omitted return type on a block literal.
58static bool isOmittedBlockReturnType(const Declarator &D) {
59  if (D.getContext() != Declarator::BlockLiteralContext ||
60      D.getDeclSpec().hasTypeSpecifier())
61    return false;
62
63  if (D.getNumTypeObjects() == 0)
64    return true;   // ^{ ... }
65
66  if (D.getNumTypeObjects() == 1 &&
67      D.getTypeObject(0).Kind == DeclaratorChunk::Function)
68    return true;   // ^(int X, float Y) { ... }
69
70  return false;
71}
72
73typedef std::pair<const AttributeList*,QualType> DelayedAttribute;
74typedef llvm::SmallVectorImpl<DelayedAttribute> DelayedAttributeSet;
75
76static void ProcessTypeAttributeList(Sema &S, QualType &Type,
77                                     bool IsDeclSpec,
78                                     const AttributeList *Attrs,
79                                     DelayedAttributeSet &DelayedFnAttrs);
80static bool ProcessFnAttr(Sema &S, QualType &Type, const AttributeList &Attr);
81
82static void ProcessDelayedFnAttrs(Sema &S, QualType &Type,
83                                  DelayedAttributeSet &Attrs) {
84  for (DelayedAttributeSet::iterator I = Attrs.begin(),
85         E = Attrs.end(); I != E; ++I)
86    if (ProcessFnAttr(S, Type, *I->first)) {
87      S.Diag(I->first->getLoc(), diag::warn_function_attribute_wrong_type)
88        << I->first->getName() << I->second;
89      // Avoid any further processing of this attribute.
90      I->first->setInvalid();
91    }
92  Attrs.clear();
93}
94
95static void DiagnoseDelayedFnAttrs(Sema &S, DelayedAttributeSet &Attrs) {
96  for (DelayedAttributeSet::iterator I = Attrs.begin(),
97         E = Attrs.end(); I != E; ++I) {
98    S.Diag(I->first->getLoc(), diag::warn_function_attribute_wrong_type)
99      << I->first->getName() << I->second;
100    // Avoid any further processing of this attribute.
101    I->first->setInvalid();
102  }
103  Attrs.clear();
104}
105
106/// \brief Convert the specified declspec to the appropriate type
107/// object.
108/// \param D  the declarator containing the declaration specifier.
109/// \returns The type described by the declaration specifiers.  This function
110/// never returns null.
111static QualType ConvertDeclSpecToType(Sema &TheSema,
112                                      Declarator &TheDeclarator,
113                                      DelayedAttributeSet &Delayed) {
114  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
115  // checking.
116  const DeclSpec &DS = TheDeclarator.getDeclSpec();
117  SourceLocation DeclLoc = TheDeclarator.getIdentifierLoc();
118  if (DeclLoc.isInvalid())
119    DeclLoc = DS.getSourceRange().getBegin();
120
121  ASTContext &Context = TheSema.Context;
122
123  QualType Result;
124  switch (DS.getTypeSpecType()) {
125  case DeclSpec::TST_void:
126    Result = Context.VoidTy;
127    break;
128  case DeclSpec::TST_char:
129    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
130      Result = Context.CharTy;
131    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
132      Result = Context.SignedCharTy;
133    else {
134      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
135             "Unknown TSS value");
136      Result = Context.UnsignedCharTy;
137    }
138    break;
139  case DeclSpec::TST_wchar:
140    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
141      Result = Context.WCharTy;
142    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
143      TheSema.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
144        << DS.getSpecifierName(DS.getTypeSpecType());
145      Result = Context.getSignedWCharType();
146    } else {
147      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
148        "Unknown TSS value");
149      TheSema.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
150        << DS.getSpecifierName(DS.getTypeSpecType());
151      Result = Context.getUnsignedWCharType();
152    }
153    break;
154  case DeclSpec::TST_char16:
155      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
156        "Unknown TSS value");
157      Result = Context.Char16Ty;
158    break;
159  case DeclSpec::TST_char32:
160      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
161        "Unknown TSS value");
162      Result = Context.Char32Ty;
163    break;
164  case DeclSpec::TST_unspecified:
165    // "<proto1,proto2>" is an objc qualified ID with a missing id.
166    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
167      Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
168                                         (ObjCProtocolDecl**)PQ,
169                                         DS.getNumProtocolQualifiers());
170      Result = Context.getObjCObjectPointerType(Result);
171      break;
172    }
173
174    // If this is a missing declspec in a block literal return context, then it
175    // is inferred from the return statements inside the block.
176    if (isOmittedBlockReturnType(TheDeclarator)) {
177      Result = Context.DependentTy;
178      break;
179    }
180
181    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
182    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
183    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
184    // Note that the one exception to this is function definitions, which are
185    // allowed to be completely missing a declspec.  This is handled in the
186    // parser already though by it pretending to have seen an 'int' in this
187    // case.
188    if (TheSema.getLangOptions().ImplicitInt) {
189      // In C89 mode, we only warn if there is a completely missing declspec
190      // when one is not allowed.
191      if (DS.isEmpty()) {
192        TheSema.Diag(DeclLoc, diag::ext_missing_declspec)
193          << DS.getSourceRange()
194        << FixItHint::CreateInsertion(DS.getSourceRange().getBegin(), "int");
195      }
196    } else if (!DS.hasTypeSpecifier()) {
197      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
198      // "At least one type specifier shall be given in the declaration
199      // specifiers in each declaration, and in the specifier-qualifier list in
200      // each struct declaration and type name."
201      // FIXME: Does Microsoft really have the implicit int extension in C++?
202      if (TheSema.getLangOptions().CPlusPlus &&
203          !TheSema.getLangOptions().Microsoft) {
204        TheSema.Diag(DeclLoc, diag::err_missing_type_specifier)
205          << DS.getSourceRange();
206
207        // When this occurs in C++ code, often something is very broken with the
208        // value being declared, poison it as invalid so we don't get chains of
209        // errors.
210        TheDeclarator.setInvalidType(true);
211      } else {
212        TheSema.Diag(DeclLoc, diag::ext_missing_type_specifier)
213          << DS.getSourceRange();
214      }
215    }
216
217    // FALL THROUGH.
218  case DeclSpec::TST_int: {
219    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
220      switch (DS.getTypeSpecWidth()) {
221      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
222      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
223      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
224      case DeclSpec::TSW_longlong:
225        Result = Context.LongLongTy;
226
227        // long long is a C99 feature.
228        if (!TheSema.getLangOptions().C99 &&
229            !TheSema.getLangOptions().CPlusPlus0x)
230          TheSema.Diag(DS.getTypeSpecWidthLoc(), diag::ext_longlong);
231        break;
232      }
233    } else {
234      switch (DS.getTypeSpecWidth()) {
235      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
236      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
237      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
238      case DeclSpec::TSW_longlong:
239        Result = Context.UnsignedLongLongTy;
240
241        // long long is a C99 feature.
242        if (!TheSema.getLangOptions().C99 &&
243            !TheSema.getLangOptions().CPlusPlus0x)
244          TheSema.Diag(DS.getTypeSpecWidthLoc(), diag::ext_longlong);
245        break;
246      }
247    }
248    break;
249  }
250  case DeclSpec::TST_float: Result = Context.FloatTy; break;
251  case DeclSpec::TST_double:
252    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
253      Result = Context.LongDoubleTy;
254    else
255      Result = Context.DoubleTy;
256    break;
257  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
258  case DeclSpec::TST_decimal32:    // _Decimal32
259  case DeclSpec::TST_decimal64:    // _Decimal64
260  case DeclSpec::TST_decimal128:   // _Decimal128
261    TheSema.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
262    Result = Context.IntTy;
263    TheDeclarator.setInvalidType(true);
264    break;
265  case DeclSpec::TST_class:
266  case DeclSpec::TST_enum:
267  case DeclSpec::TST_union:
268  case DeclSpec::TST_struct: {
269    TypeDecl *D
270      = dyn_cast_or_null<TypeDecl>(static_cast<Decl *>(DS.getTypeRep()));
271    if (!D) {
272      // This can happen in C++ with ambiguous lookups.
273      Result = Context.IntTy;
274      TheDeclarator.setInvalidType(true);
275      break;
276    }
277
278    // If the type is deprecated or unavailable, diagnose it.
279    TheSema.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeLoc());
280
281    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
282           DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
283
284    // TypeQuals handled by caller.
285    Result = Context.getTypeDeclType(D);
286
287    // In C++, make an ElaboratedType.
288    if (TheSema.getLangOptions().CPlusPlus) {
289      ElaboratedTypeKeyword Keyword
290        = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
291      Result = TheSema.getElaboratedType(Keyword, DS.getTypeSpecScope(),
292                                         Result);
293    }
294    if (D->isInvalidDecl())
295      TheDeclarator.setInvalidType(true);
296    break;
297  }
298  case DeclSpec::TST_typename: {
299    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
300           DS.getTypeSpecSign() == 0 &&
301           "Can't handle qualifiers on typedef names yet!");
302    Result = TheSema.GetTypeFromParser(DS.getTypeRep());
303
304    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
305      if (const ObjCObjectType *ObjT = Result->getAs<ObjCObjectType>()) {
306        // Silently drop any existing protocol qualifiers.
307        // TODO: determine whether that's the right thing to do.
308        if (ObjT->getNumProtocols())
309          Result = ObjT->getBaseType();
310
311        if (DS.getNumProtocolQualifiers())
312          Result = Context.getObjCObjectType(Result,
313                                             (ObjCProtocolDecl**) PQ,
314                                             DS.getNumProtocolQualifiers());
315      } else if (Result->isObjCIdType()) {
316        // id<protocol-list>
317        Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
318                                           (ObjCProtocolDecl**) PQ,
319                                           DS.getNumProtocolQualifiers());
320        Result = Context.getObjCObjectPointerType(Result);
321      } else if (Result->isObjCClassType()) {
322        // Class<protocol-list>
323        Result = Context.getObjCObjectType(Context.ObjCBuiltinClassTy,
324                                           (ObjCProtocolDecl**) PQ,
325                                           DS.getNumProtocolQualifiers());
326        Result = Context.getObjCObjectPointerType(Result);
327      } else {
328        TheSema.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
329          << DS.getSourceRange();
330        TheDeclarator.setInvalidType(true);
331      }
332    }
333
334    // TypeQuals handled by caller.
335    break;
336  }
337  case DeclSpec::TST_typeofType:
338    // FIXME: Preserve type source info.
339    Result = TheSema.GetTypeFromParser(DS.getTypeRep());
340    assert(!Result.isNull() && "Didn't get a type for typeof?");
341    // TypeQuals handled by caller.
342    Result = Context.getTypeOfType(Result);
343    break;
344  case DeclSpec::TST_typeofExpr: {
345    Expr *E = static_cast<Expr *>(DS.getTypeRep());
346    assert(E && "Didn't get an expression for typeof?");
347    // TypeQuals handled by caller.
348    Result = TheSema.BuildTypeofExprType(E);
349    if (Result.isNull()) {
350      Result = Context.IntTy;
351      TheDeclarator.setInvalidType(true);
352    }
353    break;
354  }
355  case DeclSpec::TST_decltype: {
356    Expr *E = static_cast<Expr *>(DS.getTypeRep());
357    assert(E && "Didn't get an expression for decltype?");
358    // TypeQuals handled by caller.
359    Result = TheSema.BuildDecltypeType(E);
360    if (Result.isNull()) {
361      Result = Context.IntTy;
362      TheDeclarator.setInvalidType(true);
363    }
364    break;
365  }
366  case DeclSpec::TST_auto: {
367    // TypeQuals handled by caller.
368    Result = Context.UndeducedAutoTy;
369    break;
370  }
371
372  case DeclSpec::TST_error:
373    Result = Context.IntTy;
374    TheDeclarator.setInvalidType(true);
375    break;
376  }
377
378  // Handle complex types.
379  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
380    if (TheSema.getLangOptions().Freestanding)
381      TheSema.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
382    Result = Context.getComplexType(Result);
383  } else if (DS.isTypeAltiVecVector()) {
384    unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
385    assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
386    VectorType::AltiVecSpecific AltiVecSpec = VectorType::AltiVec;
387    if (DS.isTypeAltiVecPixel())
388      AltiVecSpec = VectorType::Pixel;
389    else if (DS.isTypeAltiVecBool())
390      AltiVecSpec = VectorType::Bool;
391    Result = Context.getVectorType(Result, 128/typeSize, AltiVecSpec);
392  }
393
394  assert(DS.getTypeSpecComplex() != DeclSpec::TSC_imaginary &&
395         "FIXME: imaginary types not supported yet!");
396
397  // See if there are any attributes on the declspec that apply to the type (as
398  // opposed to the decl).
399  if (const AttributeList *AL = DS.getAttributes())
400    ProcessTypeAttributeList(TheSema, Result, true, AL, Delayed);
401
402  // Apply const/volatile/restrict qualifiers to T.
403  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
404
405    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
406    // or incomplete types shall not be restrict-qualified."  C++ also allows
407    // restrict-qualified references.
408    if (TypeQuals & DeclSpec::TQ_restrict) {
409      if (Result->isAnyPointerType() || Result->isReferenceType()) {
410        QualType EltTy;
411        if (Result->isObjCObjectPointerType())
412          EltTy = Result;
413        else
414          EltTy = Result->isPointerType() ?
415                    Result->getAs<PointerType>()->getPointeeType() :
416                    Result->getAs<ReferenceType>()->getPointeeType();
417
418        // If we have a pointer or reference, the pointee must have an object
419        // incomplete type.
420        if (!EltTy->isIncompleteOrObjectType()) {
421          TheSema.Diag(DS.getRestrictSpecLoc(),
422               diag::err_typecheck_invalid_restrict_invalid_pointee)
423            << EltTy << DS.getSourceRange();
424          TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
425        }
426      } else {
427        TheSema.Diag(DS.getRestrictSpecLoc(),
428             diag::err_typecheck_invalid_restrict_not_pointer)
429          << Result << DS.getSourceRange();
430        TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
431      }
432    }
433
434    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
435    // of a function type includes any type qualifiers, the behavior is
436    // undefined."
437    if (Result->isFunctionType() && TypeQuals) {
438      // Get some location to point at, either the C or V location.
439      SourceLocation Loc;
440      if (TypeQuals & DeclSpec::TQ_const)
441        Loc = DS.getConstSpecLoc();
442      else if (TypeQuals & DeclSpec::TQ_volatile)
443        Loc = DS.getVolatileSpecLoc();
444      else {
445        assert((TypeQuals & DeclSpec::TQ_restrict) &&
446               "Has CVR quals but not C, V, or R?");
447        Loc = DS.getRestrictSpecLoc();
448      }
449      TheSema.Diag(Loc, diag::warn_typecheck_function_qualifiers)
450        << Result << DS.getSourceRange();
451    }
452
453    // C++ [dcl.ref]p1:
454    //   Cv-qualified references are ill-formed except when the
455    //   cv-qualifiers are introduced through the use of a typedef
456    //   (7.1.3) or of a template type argument (14.3), in which
457    //   case the cv-qualifiers are ignored.
458    // FIXME: Shouldn't we be checking SCS_typedef here?
459    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
460        TypeQuals && Result->isReferenceType()) {
461      TypeQuals &= ~DeclSpec::TQ_const;
462      TypeQuals &= ~DeclSpec::TQ_volatile;
463    }
464
465    Qualifiers Quals = Qualifiers::fromCVRMask(TypeQuals);
466    Result = Context.getQualifiedType(Result, Quals);
467  }
468
469  return Result;
470}
471
472static std::string getPrintableNameForEntity(DeclarationName Entity) {
473  if (Entity)
474    return Entity.getAsString();
475
476  return "type name";
477}
478
479QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
480                                  Qualifiers Qs) {
481  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
482  // object or incomplete types shall not be restrict-qualified."
483  if (Qs.hasRestrict()) {
484    unsigned DiagID = 0;
485    QualType ProblemTy;
486
487    const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
488    if (const ReferenceType *RTy = dyn_cast<ReferenceType>(Ty)) {
489      if (!RTy->getPointeeType()->isIncompleteOrObjectType()) {
490        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
491        ProblemTy = T->getAs<ReferenceType>()->getPointeeType();
492      }
493    } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
494      if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
495        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
496        ProblemTy = T->getAs<PointerType>()->getPointeeType();
497      }
498    } else if (const MemberPointerType *PTy = dyn_cast<MemberPointerType>(Ty)) {
499      if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
500        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
501        ProblemTy = T->getAs<PointerType>()->getPointeeType();
502      }
503    } else if (!Ty->isDependentType()) {
504      // FIXME: this deserves a proper diagnostic
505      DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
506      ProblemTy = T;
507    }
508
509    if (DiagID) {
510      Diag(Loc, DiagID) << ProblemTy;
511      Qs.removeRestrict();
512    }
513  }
514
515  return Context.getQualifiedType(T, Qs);
516}
517
518/// \brief Build a pointer type.
519///
520/// \param T The type to which we'll be building a pointer.
521///
522/// \param Loc The location of the entity whose type involves this
523/// pointer type or, if there is no such entity, the location of the
524/// type that will have pointer type.
525///
526/// \param Entity The name of the entity that involves the pointer
527/// type, if known.
528///
529/// \returns A suitable pointer type, if there are no
530/// errors. Otherwise, returns a NULL type.
531QualType Sema::BuildPointerType(QualType T,
532                                SourceLocation Loc, DeclarationName Entity) {
533  if (T->isReferenceType()) {
534    // C++ 8.3.2p4: There shall be no ... pointers to references ...
535    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
536      << getPrintableNameForEntity(Entity) << T;
537    return QualType();
538  }
539
540  assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
541
542  // Build the pointer type.
543  return Context.getPointerType(T);
544}
545
546/// \brief Build a reference type.
547///
548/// \param T The type to which we'll be building a reference.
549///
550/// \param Loc The location of the entity whose type involves this
551/// reference type or, if there is no such entity, the location of the
552/// type that will have reference type.
553///
554/// \param Entity The name of the entity that involves the reference
555/// type, if known.
556///
557/// \returns A suitable reference type, if there are no
558/// errors. Otherwise, returns a NULL type.
559QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
560                                  SourceLocation Loc,
561                                  DeclarationName Entity) {
562  bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
563
564  // C++0x [dcl.typedef]p9: If a typedef TD names a type that is a
565  //   reference to a type T, and attempt to create the type "lvalue
566  //   reference to cv TD" creates the type "lvalue reference to T".
567  // We use the qualifiers (restrict or none) of the original reference,
568  // not the new ones. This is consistent with GCC.
569
570  // C++ [dcl.ref]p4: There shall be no references to references.
571  //
572  // According to C++ DR 106, references to references are only
573  // diagnosed when they are written directly (e.g., "int & &"),
574  // but not when they happen via a typedef:
575  //
576  //   typedef int& intref;
577  //   typedef intref& intref2;
578  //
579  // Parser::ParseDeclaratorInternal diagnoses the case where
580  // references are written directly; here, we handle the
581  // collapsing of references-to-references as described in C++
582  // DR 106 and amended by C++ DR 540.
583
584  // C++ [dcl.ref]p1:
585  //   A declarator that specifies the type "reference to cv void"
586  //   is ill-formed.
587  if (T->isVoidType()) {
588    Diag(Loc, diag::err_reference_to_void);
589    return QualType();
590  }
591
592  // Handle restrict on references.
593  if (LValueRef)
594    return Context.getLValueReferenceType(T, SpelledAsLValue);
595  return Context.getRValueReferenceType(T);
596}
597
598/// \brief Build an array type.
599///
600/// \param T The type of each element in the array.
601///
602/// \param ASM C99 array size modifier (e.g., '*', 'static').
603///
604/// \param ArraySize Expression describing the size of the array.
605///
606/// \param Loc The location of the entity whose type involves this
607/// array type or, if there is no such entity, the location of the
608/// type that will have array type.
609///
610/// \param Entity The name of the entity that involves the array
611/// type, if known.
612///
613/// \returns A suitable array type, if there are no errors. Otherwise,
614/// returns a NULL type.
615QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
616                              Expr *ArraySize, unsigned Quals,
617                              SourceRange Brackets, DeclarationName Entity) {
618
619  SourceLocation Loc = Brackets.getBegin();
620  if (getLangOptions().CPlusPlus) {
621    // C++ [dcl.array]p1:
622    //   T is called the array element type; this type shall not be a reference
623    //   type, the (possibly cv-qualified) type void, a function type or an
624    //   abstract class type.
625    //
626    // Note: function types are handled in the common path with C.
627    if (T->isReferenceType()) {
628      Diag(Loc, diag::err_illegal_decl_array_of_references)
629      << getPrintableNameForEntity(Entity) << T;
630      return QualType();
631    }
632
633    if (T->isVoidType()) {
634      Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
635      return QualType();
636    }
637
638    if (RequireNonAbstractType(Brackets.getBegin(), T,
639                               diag::err_array_of_abstract_type))
640      return QualType();
641
642  } else {
643    // C99 6.7.5.2p1: If the element type is an incomplete or function type,
644    // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
645    if (RequireCompleteType(Loc, T,
646                            diag::err_illegal_decl_array_incomplete_type))
647      return QualType();
648  }
649
650  if (T->isFunctionType()) {
651    Diag(Loc, diag::err_illegal_decl_array_of_functions)
652      << getPrintableNameForEntity(Entity) << T;
653    return QualType();
654  }
655
656  if (Context.getCanonicalType(T) == Context.UndeducedAutoTy) {
657    Diag(Loc,  diag::err_illegal_decl_array_of_auto)
658      << getPrintableNameForEntity(Entity);
659    return QualType();
660  }
661
662  if (const RecordType *EltTy = T->getAs<RecordType>()) {
663    // If the element type is a struct or union that contains a variadic
664    // array, accept it as a GNU extension: C99 6.7.2.1p2.
665    if (EltTy->getDecl()->hasFlexibleArrayMember())
666      Diag(Loc, diag::ext_flexible_array_in_array) << T;
667  } else if (T->isObjCObjectType()) {
668    Diag(Loc, diag::err_objc_array_of_interfaces) << T;
669    return QualType();
670  }
671
672  // C99 6.7.5.2p1: The size expression shall have integer type.
673  if (ArraySize && !ArraySize->isTypeDependent() &&
674      !ArraySize->getType()->isIntegerType()) {
675    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
676      << ArraySize->getType() << ArraySize->getSourceRange();
677    ArraySize->Destroy(Context);
678    return QualType();
679  }
680  llvm::APSInt ConstVal(32);
681  if (!ArraySize) {
682    if (ASM == ArrayType::Star)
683      T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
684    else
685      T = Context.getIncompleteArrayType(T, ASM, Quals);
686  } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
687    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
688  } else if (!ArraySize->isIntegerConstantExpr(ConstVal, Context) ||
689             (!T->isDependentType() && !T->isIncompleteType() &&
690              !T->isConstantSizeType())) {
691    // Per C99, a variable array is an array with either a non-constant
692    // size or an element type that has a non-constant-size
693    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
694  } else {
695    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
696    // have a value greater than zero.
697    if (ConstVal.isSigned() && ConstVal.isNegative()) {
698      Diag(ArraySize->getLocStart(),
699           diag::err_typecheck_negative_array_size)
700        << ArraySize->getSourceRange();
701      return QualType();
702    }
703    if (ConstVal == 0) {
704      // GCC accepts zero sized static arrays. We allow them when
705      // we're not in a SFINAE context.
706      Diag(ArraySize->getLocStart(),
707           isSFINAEContext()? diag::err_typecheck_zero_array_size
708                            : diag::ext_typecheck_zero_array_size)
709        << ArraySize->getSourceRange();
710    }
711    T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
712  }
713  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
714  if (!getLangOptions().C99) {
715    if (T->isVariableArrayType()) {
716      // Prohibit the use of non-POD types in VLAs.
717      if (!T->isDependentType() &&
718          !Context.getBaseElementType(T)->isPODType()) {
719        Diag(Loc, diag::err_vla_non_pod)
720          << Context.getBaseElementType(T);
721        return QualType();
722      }
723      // Prohibit the use of VLAs during template argument deduction.
724      else if (isSFINAEContext()) {
725        Diag(Loc, diag::err_vla_in_sfinae);
726        return QualType();
727      }
728      // Just extwarn about VLAs.
729      else
730        Diag(Loc, diag::ext_vla);
731    } else if (ASM != ArrayType::Normal || Quals != 0)
732      Diag(Loc,
733           getLangOptions().CPlusPlus? diag::err_c99_array_usage_cxx
734                                     : diag::ext_c99_array_usage);
735  }
736
737  return T;
738}
739
740/// \brief Build an ext-vector type.
741///
742/// Run the required checks for the extended vector type.
743QualType Sema::BuildExtVectorType(QualType T, ExprArg ArraySize,
744                                  SourceLocation AttrLoc) {
745
746  Expr *Arg = (Expr *)ArraySize.get();
747
748  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
749  // in conjunction with complex types (pointers, arrays, functions, etc.).
750  if (!T->isDependentType() &&
751      !T->isIntegerType() && !T->isRealFloatingType()) {
752    Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
753    return QualType();
754  }
755
756  if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
757    llvm::APSInt vecSize(32);
758    if (!Arg->isIntegerConstantExpr(vecSize, Context)) {
759      Diag(AttrLoc, diag::err_attribute_argument_not_int)
760      << "ext_vector_type" << Arg->getSourceRange();
761      return QualType();
762    }
763
764    // unlike gcc's vector_size attribute, the size is specified as the
765    // number of elements, not the number of bytes.
766    unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
767
768    if (vectorSize == 0) {
769      Diag(AttrLoc, diag::err_attribute_zero_size)
770      << Arg->getSourceRange();
771      return QualType();
772    }
773
774    if (!T->isDependentType())
775      return Context.getExtVectorType(T, vectorSize);
776  }
777
778  return Context.getDependentSizedExtVectorType(T, ArraySize.takeAs<Expr>(),
779                                                AttrLoc);
780}
781
782/// \brief Build a function type.
783///
784/// This routine checks the function type according to C++ rules and
785/// under the assumption that the result type and parameter types have
786/// just been instantiated from a template. It therefore duplicates
787/// some of the behavior of GetTypeForDeclarator, but in a much
788/// simpler form that is only suitable for this narrow use case.
789///
790/// \param T The return type of the function.
791///
792/// \param ParamTypes The parameter types of the function. This array
793/// will be modified to account for adjustments to the types of the
794/// function parameters.
795///
796/// \param NumParamTypes The number of parameter types in ParamTypes.
797///
798/// \param Variadic Whether this is a variadic function type.
799///
800/// \param Quals The cvr-qualifiers to be applied to the function type.
801///
802/// \param Loc The location of the entity whose type involves this
803/// function type or, if there is no such entity, the location of the
804/// type that will have function type.
805///
806/// \param Entity The name of the entity that involves the function
807/// type, if known.
808///
809/// \returns A suitable function type, if there are no
810/// errors. Otherwise, returns a NULL type.
811QualType Sema::BuildFunctionType(QualType T,
812                                 QualType *ParamTypes,
813                                 unsigned NumParamTypes,
814                                 bool Variadic, unsigned Quals,
815                                 SourceLocation Loc, DeclarationName Entity) {
816  if (T->isArrayType() || T->isFunctionType()) {
817    Diag(Loc, diag::err_func_returning_array_function)
818      << T->isFunctionType() << T;
819    return QualType();
820  }
821
822  bool Invalid = false;
823  for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
824    QualType ParamType = adjustParameterType(ParamTypes[Idx]);
825    if (ParamType->isVoidType()) {
826      Diag(Loc, diag::err_param_with_void_type);
827      Invalid = true;
828    }
829
830    ParamTypes[Idx] = ParamType;
831  }
832
833  if (Invalid)
834    return QualType();
835
836  return Context.getFunctionType(T, ParamTypes, NumParamTypes, Variadic,
837                                 Quals, false, false, 0, 0,
838                                 FunctionType::ExtInfo());
839}
840
841/// \brief Build a member pointer type \c T Class::*.
842///
843/// \param T the type to which the member pointer refers.
844/// \param Class the class type into which the member pointer points.
845/// \param CVR Qualifiers applied to the member pointer type
846/// \param Loc the location where this type begins
847/// \param Entity the name of the entity that will have this member pointer type
848///
849/// \returns a member pointer type, if successful, or a NULL type if there was
850/// an error.
851QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
852                                      SourceLocation Loc,
853                                      DeclarationName Entity) {
854  // Verify that we're not building a pointer to pointer to function with
855  // exception specification.
856  if (CheckDistantExceptionSpec(T)) {
857    Diag(Loc, diag::err_distant_exception_spec);
858
859    // FIXME: If we're doing this as part of template instantiation,
860    // we should return immediately.
861
862    // Build the type anyway, but use the canonical type so that the
863    // exception specifiers are stripped off.
864    T = Context.getCanonicalType(T);
865  }
866
867  // C++ 8.3.3p3: A pointer to member shall not point to ... a member
868  //   with reference type, or "cv void."
869  if (T->isReferenceType()) {
870    Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
871      << (Entity? Entity.getAsString() : "type name") << T;
872    return QualType();
873  }
874
875  if (T->isVoidType()) {
876    Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
877      << (Entity? Entity.getAsString() : "type name");
878    return QualType();
879  }
880
881  if (!Class->isDependentType() && !Class->isRecordType()) {
882    Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
883    return QualType();
884  }
885
886  return Context.getMemberPointerType(T, Class.getTypePtr());
887}
888
889/// \brief Build a block pointer type.
890///
891/// \param T The type to which we'll be building a block pointer.
892///
893/// \param CVR The cvr-qualifiers to be applied to the block pointer type.
894///
895/// \param Loc The location of the entity whose type involves this
896/// block pointer type or, if there is no such entity, the location of the
897/// type that will have block pointer type.
898///
899/// \param Entity The name of the entity that involves the block pointer
900/// type, if known.
901///
902/// \returns A suitable block pointer type, if there are no
903/// errors. Otherwise, returns a NULL type.
904QualType Sema::BuildBlockPointerType(QualType T,
905                                     SourceLocation Loc,
906                                     DeclarationName Entity) {
907  if (!T->isFunctionType()) {
908    Diag(Loc, diag::err_nonfunction_block_type);
909    return QualType();
910  }
911
912  return Context.getBlockPointerType(T);
913}
914
915QualType Sema::GetTypeFromParser(TypeTy *Ty, TypeSourceInfo **TInfo) {
916  QualType QT = QualType::getFromOpaquePtr(Ty);
917  if (QT.isNull()) {
918    if (TInfo) *TInfo = 0;
919    return QualType();
920  }
921
922  TypeSourceInfo *DI = 0;
923  if (LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
924    QT = LIT->getType();
925    DI = LIT->getTypeSourceInfo();
926  }
927
928  if (TInfo) *TInfo = DI;
929  return QT;
930}
931
932/// GetTypeForDeclarator - Convert the type for the specified
933/// declarator to Type instances.
934///
935/// If OwnedDecl is non-NULL, and this declarator's decl-specifier-seq
936/// owns the declaration of a type (e.g., the definition of a struct
937/// type), then *OwnedDecl will receive the owned declaration.
938///
939/// The result of this call will never be null, but the associated
940/// type may be a null type if there's an unrecoverable error.
941TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S,
942                                           TagDecl **OwnedDecl) {
943  // Determine the type of the declarator. Not all forms of declarator
944  // have a type.
945  QualType T;
946  TypeSourceInfo *ReturnTypeInfo = 0;
947
948  llvm::SmallVector<DelayedAttribute,4> FnAttrsFromDeclSpec;
949
950  switch (D.getName().getKind()) {
951  case UnqualifiedId::IK_Identifier:
952  case UnqualifiedId::IK_OperatorFunctionId:
953  case UnqualifiedId::IK_LiteralOperatorId:
954  case UnqualifiedId::IK_TemplateId:
955    T = ConvertDeclSpecToType(*this, D, FnAttrsFromDeclSpec);
956
957    if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
958      TagDecl* Owned = cast<TagDecl>((Decl *)D.getDeclSpec().getTypeRep());
959      // Owned is embedded if it was defined here, or if it is the
960      // very first (i.e., canonical) declaration of this tag type.
961      Owned->setEmbeddedInDeclarator(Owned->isDefinition() ||
962                                     Owned->isCanonicalDecl());
963      if (OwnedDecl) *OwnedDecl = Owned;
964    }
965    break;
966
967  case UnqualifiedId::IK_ConstructorName:
968  case UnqualifiedId::IK_ConstructorTemplateId:
969  case UnqualifiedId::IK_DestructorName:
970    // Constructors and destructors don't have return types. Use
971    // "void" instead.
972    T = Context.VoidTy;
973    break;
974
975  case UnqualifiedId::IK_ConversionFunctionId:
976    // The result type of a conversion function is the type that it
977    // converts to.
978    T = GetTypeFromParser(D.getName().ConversionFunctionId,
979                          &ReturnTypeInfo);
980    break;
981  }
982
983  if (T.isNull())
984    return Context.getNullTypeSourceInfo();
985
986  if (T == Context.UndeducedAutoTy) {
987    int Error = -1;
988
989    switch (D.getContext()) {
990    case Declarator::KNRTypeListContext:
991      assert(0 && "K&R type lists aren't allowed in C++");
992      break;
993    case Declarator::PrototypeContext:
994      Error = 0; // Function prototype
995      break;
996    case Declarator::MemberContext:
997      switch (cast<TagDecl>(CurContext)->getTagKind()) {
998      case TTK_Enum: assert(0 && "unhandled tag kind"); break;
999      case TTK_Struct: Error = 1; /* Struct member */ break;
1000      case TTK_Union:  Error = 2; /* Union member */ break;
1001      case TTK_Class:  Error = 3; /* Class member */ break;
1002      }
1003      break;
1004    case Declarator::CXXCatchContext:
1005      Error = 4; // Exception declaration
1006      break;
1007    case Declarator::TemplateParamContext:
1008      Error = 5; // Template parameter
1009      break;
1010    case Declarator::BlockLiteralContext:
1011      Error = 6;  // Block literal
1012      break;
1013    case Declarator::FileContext:
1014    case Declarator::BlockContext:
1015    case Declarator::ForContext:
1016    case Declarator::ConditionContext:
1017    case Declarator::TypeNameContext:
1018      break;
1019    }
1020
1021    if (Error != -1) {
1022      Diag(D.getDeclSpec().getTypeSpecTypeLoc(), diag::err_auto_not_allowed)
1023        << Error;
1024      T = Context.IntTy;
1025      D.setInvalidType(true);
1026    }
1027  }
1028
1029  // The name we're declaring, if any.
1030  DeclarationName Name;
1031  if (D.getIdentifier())
1032    Name = D.getIdentifier();
1033
1034  llvm::SmallVector<DelayedAttribute,4> FnAttrsFromPreviousChunk;
1035
1036  // Walk the DeclTypeInfo, building the recursive type as we go.
1037  // DeclTypeInfos are ordered from the identifier out, which is
1038  // opposite of what we want :).
1039  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
1040    DeclaratorChunk &DeclType = D.getTypeObject(e-i-1);
1041    switch (DeclType.Kind) {
1042    default: assert(0 && "Unknown decltype!");
1043    case DeclaratorChunk::BlockPointer:
1044      // If blocks are disabled, emit an error.
1045      if (!LangOpts.Blocks)
1046        Diag(DeclType.Loc, diag::err_blocks_disable);
1047
1048      T = BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
1049      if (DeclType.Cls.TypeQuals)
1050        T = BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
1051      break;
1052    case DeclaratorChunk::Pointer:
1053      // Verify that we're not building a pointer to pointer to function with
1054      // exception specification.
1055      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1056        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1057        D.setInvalidType(true);
1058        // Build the type anyway.
1059      }
1060      if (getLangOptions().ObjC1 && T->getAs<ObjCObjectType>()) {
1061        T = Context.getObjCObjectPointerType(T);
1062        if (DeclType.Ptr.TypeQuals)
1063          T = BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
1064        break;
1065      }
1066      T = BuildPointerType(T, DeclType.Loc, Name);
1067      if (DeclType.Ptr.TypeQuals)
1068        T = BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
1069      break;
1070    case DeclaratorChunk::Reference: {
1071      // Verify that we're not building a reference to pointer to function with
1072      // exception specification.
1073      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1074        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1075        D.setInvalidType(true);
1076        // Build the type anyway.
1077      }
1078      T = BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
1079
1080      Qualifiers Quals;
1081      if (DeclType.Ref.HasRestrict)
1082        T = BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
1083      break;
1084    }
1085    case DeclaratorChunk::Array: {
1086      // Verify that we're not building an array of pointers to function with
1087      // exception specification.
1088      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1089        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1090        D.setInvalidType(true);
1091        // Build the type anyway.
1092      }
1093      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
1094      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
1095      ArrayType::ArraySizeModifier ASM;
1096      if (ATI.isStar)
1097        ASM = ArrayType::Star;
1098      else if (ATI.hasStatic)
1099        ASM = ArrayType::Static;
1100      else
1101        ASM = ArrayType::Normal;
1102      if (ASM == ArrayType::Star &&
1103          D.getContext() != Declarator::PrototypeContext) {
1104        // FIXME: This check isn't quite right: it allows star in prototypes
1105        // for function definitions, and disallows some edge cases detailed
1106        // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
1107        Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
1108        ASM = ArrayType::Normal;
1109        D.setInvalidType(true);
1110      }
1111      T = BuildArrayType(T, ASM, ArraySize,
1112                         Qualifiers::fromCVRMask(ATI.TypeQuals),
1113                         SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
1114      break;
1115    }
1116    case DeclaratorChunk::Function: {
1117      // If the function declarator has a prototype (i.e. it is not () and
1118      // does not have a K&R-style identifier list), then the arguments are part
1119      // of the type, otherwise the argument list is ().
1120      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
1121
1122      // C99 6.7.5.3p1: The return type may not be a function or array type.
1123      // For conversion functions, we'll diagnose this particular error later.
1124      if ((T->isArrayType() || T->isFunctionType()) &&
1125          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
1126        Diag(DeclType.Loc, diag::err_func_returning_array_function)
1127          << T->isFunctionType() << T;
1128        T = Context.IntTy;
1129        D.setInvalidType(true);
1130      }
1131
1132      if (getLangOptions().CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
1133        // C++ [dcl.fct]p6:
1134        //   Types shall not be defined in return or parameter types.
1135        TagDecl *Tag = cast<TagDecl>((Decl *)D.getDeclSpec().getTypeRep());
1136        if (Tag->isDefinition())
1137          Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
1138            << Context.getTypeDeclType(Tag);
1139      }
1140
1141      // Exception specs are not allowed in typedefs. Complain, but add it
1142      // anyway.
1143      if (FTI.hasExceptionSpec &&
1144          D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1145        Diag(FTI.getThrowLoc(), diag::err_exception_spec_in_typedef);
1146
1147      if (!FTI.NumArgs && !FTI.isVariadic && !getLangOptions().CPlusPlus) {
1148        // Simple void foo(), where the incoming T is the result type.
1149        T = Context.getFunctionNoProtoType(T);
1150      } else {
1151        // We allow a zero-parameter variadic function in C if the
1152        // function is marked with the "overloadable" attribute. Scan
1153        // for this attribute now.
1154        if (!FTI.NumArgs && FTI.isVariadic && !getLangOptions().CPlusPlus) {
1155          bool Overloadable = false;
1156          for (const AttributeList *Attrs = D.getAttributes();
1157               Attrs; Attrs = Attrs->getNext()) {
1158            if (Attrs->getKind() == AttributeList::AT_overloadable) {
1159              Overloadable = true;
1160              break;
1161            }
1162          }
1163
1164          if (!Overloadable)
1165            Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
1166        }
1167
1168        if (FTI.NumArgs && FTI.ArgInfo[0].Param == 0) {
1169          // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
1170          // definition.
1171          Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
1172          D.setInvalidType(true);
1173          break;
1174        }
1175
1176        // Otherwise, we have a function with an argument list that is
1177        // potentially variadic.
1178        llvm::SmallVector<QualType, 16> ArgTys;
1179        ArgTys.reserve(FTI.NumArgs);
1180
1181        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1182          ParmVarDecl *Param =
1183            cast<ParmVarDecl>(FTI.ArgInfo[i].Param.getAs<Decl>());
1184          QualType ArgTy = Param->getType();
1185          assert(!ArgTy.isNull() && "Couldn't parse type?");
1186
1187          // Adjust the parameter type.
1188          assert((ArgTy == adjustParameterType(ArgTy)) && "Unadjusted type?");
1189
1190          // Look for 'void'.  void is allowed only as a single argument to a
1191          // function with no other parameters (C99 6.7.5.3p10).  We record
1192          // int(void) as a FunctionProtoType with an empty argument list.
1193          if (ArgTy->isVoidType()) {
1194            // If this is something like 'float(int, void)', reject it.  'void'
1195            // is an incomplete type (C99 6.2.5p19) and function decls cannot
1196            // have arguments of incomplete type.
1197            if (FTI.NumArgs != 1 || FTI.isVariadic) {
1198              Diag(DeclType.Loc, diag::err_void_only_param);
1199              ArgTy = Context.IntTy;
1200              Param->setType(ArgTy);
1201            } else if (FTI.ArgInfo[i].Ident) {
1202              // Reject, but continue to parse 'int(void abc)'.
1203              Diag(FTI.ArgInfo[i].IdentLoc,
1204                   diag::err_param_with_void_type);
1205              ArgTy = Context.IntTy;
1206              Param->setType(ArgTy);
1207            } else {
1208              // Reject, but continue to parse 'float(const void)'.
1209              if (ArgTy.hasQualifiers())
1210                Diag(DeclType.Loc, diag::err_void_param_qualified);
1211
1212              // Do not add 'void' to the ArgTys list.
1213              break;
1214            }
1215          } else if (!FTI.hasPrototype) {
1216            if (ArgTy->isPromotableIntegerType()) {
1217              ArgTy = Context.getPromotedIntegerType(ArgTy);
1218            } else if (const BuiltinType* BTy = ArgTy->getAs<BuiltinType>()) {
1219              if (BTy->getKind() == BuiltinType::Float)
1220                ArgTy = Context.DoubleTy;
1221            }
1222          }
1223
1224          ArgTys.push_back(ArgTy);
1225        }
1226
1227        llvm::SmallVector<QualType, 4> Exceptions;
1228        Exceptions.reserve(FTI.NumExceptions);
1229        for (unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
1230          // FIXME: Preserve type source info.
1231          QualType ET = GetTypeFromParser(FTI.Exceptions[ei].Ty);
1232          // Check that the type is valid for an exception spec, and drop it if
1233          // not.
1234          if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
1235            Exceptions.push_back(ET);
1236        }
1237
1238        T = Context.getFunctionType(T, ArgTys.data(), ArgTys.size(),
1239                                    FTI.isVariadic, FTI.TypeQuals,
1240                                    FTI.hasExceptionSpec,
1241                                    FTI.hasAnyExceptionSpec,
1242                                    Exceptions.size(), Exceptions.data(),
1243                                    FunctionType::ExtInfo());
1244      }
1245
1246      // For GCC compatibility, we allow attributes that apply only to
1247      // function types to be placed on a function's return type
1248      // instead (as long as that type doesn't happen to be function
1249      // or function-pointer itself).
1250      ProcessDelayedFnAttrs(*this, T, FnAttrsFromPreviousChunk);
1251
1252      break;
1253    }
1254    case DeclaratorChunk::MemberPointer:
1255      // The scope spec must refer to a class, or be dependent.
1256      QualType ClsType;
1257      if (DeclType.Mem.Scope().isInvalid()) {
1258        // Avoid emitting extra errors if we already errored on the scope.
1259        D.setInvalidType(true);
1260      } else if (isDependentScopeSpecifier(DeclType.Mem.Scope())
1261                 || dyn_cast_or_null<CXXRecordDecl>(
1262                                   computeDeclContext(DeclType.Mem.Scope()))) {
1263        NestedNameSpecifier *NNS
1264          = (NestedNameSpecifier *)DeclType.Mem.Scope().getScopeRep();
1265        NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
1266        switch (NNS->getKind()) {
1267        case NestedNameSpecifier::Identifier:
1268          ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
1269                                                 NNS->getAsIdentifier());
1270          break;
1271
1272        case NestedNameSpecifier::Namespace:
1273        case NestedNameSpecifier::Global:
1274          llvm_unreachable("Nested-name-specifier must name a type");
1275          break;
1276
1277        case NestedNameSpecifier::TypeSpec:
1278        case NestedNameSpecifier::TypeSpecWithTemplate:
1279          ClsType = QualType(NNS->getAsType(), 0);
1280          if (NNSPrefix)
1281            ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
1282          break;
1283        }
1284      } else {
1285        Diag(DeclType.Mem.Scope().getBeginLoc(),
1286             diag::err_illegal_decl_mempointer_in_nonclass)
1287          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
1288          << DeclType.Mem.Scope().getRange();
1289        D.setInvalidType(true);
1290      }
1291
1292      if (!ClsType.isNull())
1293        T = BuildMemberPointerType(T, ClsType, DeclType.Loc, D.getIdentifier());
1294      if (T.isNull()) {
1295        T = Context.IntTy;
1296        D.setInvalidType(true);
1297      } else if (DeclType.Mem.TypeQuals) {
1298        T = BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
1299      }
1300      break;
1301    }
1302
1303    if (T.isNull()) {
1304      D.setInvalidType(true);
1305      T = Context.IntTy;
1306    }
1307
1308    DiagnoseDelayedFnAttrs(*this, FnAttrsFromPreviousChunk);
1309
1310    // See if there are any attributes on this declarator chunk.
1311    if (const AttributeList *AL = DeclType.getAttrs())
1312      ProcessTypeAttributeList(*this, T, false, AL, FnAttrsFromPreviousChunk);
1313  }
1314
1315  if (getLangOptions().CPlusPlus && T->isFunctionType()) {
1316    const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
1317    assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
1318
1319    // C++ 8.3.5p4: A cv-qualifier-seq shall only be part of the function type
1320    // for a nonstatic member function, the function type to which a pointer
1321    // to member refers, or the top-level function type of a function typedef
1322    // declaration.
1323    if (FnTy->getTypeQuals() != 0 &&
1324        D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
1325        ((D.getContext() != Declarator::MemberContext &&
1326          (!D.getCXXScopeSpec().isSet() ||
1327           !computeDeclContext(D.getCXXScopeSpec(), /*FIXME:*/true)
1328              ->isRecord())) ||
1329         D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)) {
1330      if (D.isFunctionDeclarator())
1331        Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_function_type);
1332      else
1333        Diag(D.getIdentifierLoc(),
1334             diag::err_invalid_qualified_typedef_function_type_use);
1335
1336      // Strip the cv-quals from the type.
1337      T = Context.getFunctionType(FnTy->getResultType(), FnTy->arg_type_begin(),
1338                                  FnTy->getNumArgs(), FnTy->isVariadic(), 0,
1339                                  false, false, 0, 0, FunctionType::ExtInfo());
1340    }
1341  }
1342
1343  // If there's a constexpr specifier, treat it as a top-level const.
1344  if (D.getDeclSpec().isConstexprSpecified()) {
1345    T.addConst();
1346  }
1347
1348  // Process any function attributes we might have delayed from the
1349  // declaration-specifiers.
1350  ProcessDelayedFnAttrs(*this, T, FnAttrsFromDeclSpec);
1351
1352  // If there were any type attributes applied to the decl itself, not
1353  // the type, apply them to the result type.  But don't do this for
1354  // block-literal expressions, which are parsed wierdly.
1355  if (D.getContext() != Declarator::BlockLiteralContext)
1356    if (const AttributeList *Attrs = D.getAttributes())
1357      ProcessTypeAttributeList(*this, T, false, Attrs,
1358                               FnAttrsFromPreviousChunk);
1359
1360  DiagnoseDelayedFnAttrs(*this, FnAttrsFromPreviousChunk);
1361
1362  if (T.isNull())
1363    return Context.getNullTypeSourceInfo();
1364  else if (D.isInvalidType())
1365    return Context.getTrivialTypeSourceInfo(T);
1366  return GetTypeSourceInfoForDeclarator(D, T, ReturnTypeInfo);
1367}
1368
1369namespace {
1370  class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
1371    const DeclSpec &DS;
1372
1373  public:
1374    TypeSpecLocFiller(const DeclSpec &DS) : DS(DS) {}
1375
1376    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
1377      Visit(TL.getUnqualifiedLoc());
1378    }
1379    void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
1380      TL.setNameLoc(DS.getTypeSpecTypeLoc());
1381    }
1382    void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
1383      TL.setNameLoc(DS.getTypeSpecTypeLoc());
1384    }
1385    void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
1386      // Handle the base type, which might not have been written explicitly.
1387      if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
1388        TL.setHasBaseTypeAsWritten(false);
1389        TL.getBaseLoc().initialize(SourceLocation());
1390      } else {
1391        TL.setHasBaseTypeAsWritten(true);
1392        Visit(TL.getBaseLoc());
1393      }
1394
1395      // Protocol qualifiers.
1396      if (DS.getProtocolQualifiers()) {
1397        assert(TL.getNumProtocols() > 0);
1398        assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
1399        TL.setLAngleLoc(DS.getProtocolLAngleLoc());
1400        TL.setRAngleLoc(DS.getSourceRange().getEnd());
1401        for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
1402          TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
1403      } else {
1404        assert(TL.getNumProtocols() == 0);
1405        TL.setLAngleLoc(SourceLocation());
1406        TL.setRAngleLoc(SourceLocation());
1407      }
1408    }
1409    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
1410      TL.setStarLoc(SourceLocation());
1411      Visit(TL.getPointeeLoc());
1412    }
1413    void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
1414      TypeSourceInfo *TInfo = 0;
1415      Sema::GetTypeFromParser(DS.getTypeRep(), &TInfo);
1416
1417      // If we got no declarator info from previous Sema routines,
1418      // just fill with the typespec loc.
1419      if (!TInfo) {
1420        TL.initialize(DS.getTypeSpecTypeLoc());
1421        return;
1422      }
1423
1424      TypeLoc OldTL = TInfo->getTypeLoc();
1425      if (TInfo->getType()->getAs<ElaboratedType>()) {
1426        ElaboratedTypeLoc ElabTL = cast<ElaboratedTypeLoc>(OldTL);
1427        TemplateSpecializationTypeLoc NamedTL =
1428          cast<TemplateSpecializationTypeLoc>(ElabTL.getNamedTypeLoc());
1429        TL.copy(NamedTL);
1430      }
1431      else
1432        TL.copy(cast<TemplateSpecializationTypeLoc>(OldTL));
1433    }
1434    void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
1435      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
1436      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
1437      TL.setParensRange(DS.getTypeofParensRange());
1438    }
1439    void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
1440      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
1441      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
1442      TL.setParensRange(DS.getTypeofParensRange());
1443      assert(DS.getTypeRep());
1444      TypeSourceInfo *TInfo = 0;
1445      Sema::GetTypeFromParser(DS.getTypeRep(), &TInfo);
1446      TL.setUnderlyingTInfo(TInfo);
1447    }
1448    void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
1449      // By default, use the source location of the type specifier.
1450      TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
1451      if (TL.needsExtraLocalData()) {
1452        // Set info for the written builtin specifiers.
1453        TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
1454        // Try to have a meaningful source location.
1455        if (TL.getWrittenSignSpec() != TSS_unspecified)
1456          // Sign spec loc overrides the others (e.g., 'unsigned long').
1457          TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
1458        else if (TL.getWrittenWidthSpec() != TSW_unspecified)
1459          // Width spec loc overrides type spec loc (e.g., 'short int').
1460          TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
1461      }
1462    }
1463    void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
1464      ElaboratedTypeKeyword Keyword
1465        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
1466      if (Keyword == ETK_Typename) {
1467        TypeSourceInfo *TInfo = 0;
1468        Sema::GetTypeFromParser(DS.getTypeRep(), &TInfo);
1469        if (TInfo) {
1470          TL.copy(cast<ElaboratedTypeLoc>(TInfo->getTypeLoc()));
1471          return;
1472        }
1473      }
1474      TL.setKeywordLoc(Keyword != ETK_None
1475                       ? DS.getTypeSpecTypeLoc()
1476                       : SourceLocation());
1477      const CXXScopeSpec& SS = DS.getTypeSpecScope();
1478      TL.setQualifierRange(SS.isEmpty() ? SourceRange(): SS.getRange());
1479      Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
1480    }
1481    void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
1482      ElaboratedTypeKeyword Keyword
1483        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
1484      if (Keyword == ETK_Typename) {
1485        TypeSourceInfo *TInfo = 0;
1486        Sema::GetTypeFromParser(DS.getTypeRep(), &TInfo);
1487        if (TInfo) {
1488          TL.copy(cast<DependentNameTypeLoc>(TInfo->getTypeLoc()));
1489          return;
1490        }
1491      }
1492      TL.setKeywordLoc(Keyword != ETK_None
1493                       ? DS.getTypeSpecTypeLoc()
1494                       : SourceLocation());
1495      const CXXScopeSpec& SS = DS.getTypeSpecScope();
1496      TL.setQualifierRange(SS.isEmpty() ? SourceRange() : SS.getRange());
1497      // FIXME: load appropriate source location.
1498      TL.setNameLoc(DS.getTypeSpecTypeLoc());
1499    }
1500    void VisitDependentTemplateSpecializationTypeLoc(
1501                                 DependentTemplateSpecializationTypeLoc TL) {
1502      ElaboratedTypeKeyword Keyword
1503        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
1504      if (Keyword == ETK_Typename) {
1505        TypeSourceInfo *TInfo = 0;
1506        Sema::GetTypeFromParser(DS.getTypeRep(), &TInfo);
1507        if (TInfo) {
1508          TL.copy(cast<DependentTemplateSpecializationTypeLoc>(
1509                    TInfo->getTypeLoc()));
1510          return;
1511        }
1512      }
1513      TL.initializeLocal(SourceLocation());
1514      TL.setKeywordLoc(Keyword != ETK_None
1515                       ? DS.getTypeSpecTypeLoc()
1516                       : SourceLocation());
1517      const CXXScopeSpec& SS = DS.getTypeSpecScope();
1518      TL.setQualifierRange(SS.isEmpty() ? SourceRange() : SS.getRange());
1519      // FIXME: load appropriate source location.
1520      TL.setNameLoc(DS.getTypeSpecTypeLoc());
1521    }
1522
1523    void VisitTypeLoc(TypeLoc TL) {
1524      // FIXME: add other typespec types and change this to an assert.
1525      TL.initialize(DS.getTypeSpecTypeLoc());
1526    }
1527  };
1528
1529  class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
1530    const DeclaratorChunk &Chunk;
1531
1532  public:
1533    DeclaratorLocFiller(const DeclaratorChunk &Chunk) : Chunk(Chunk) {}
1534
1535    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
1536      llvm_unreachable("qualified type locs not expected here!");
1537    }
1538
1539    void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
1540      assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
1541      TL.setCaretLoc(Chunk.Loc);
1542    }
1543    void VisitPointerTypeLoc(PointerTypeLoc TL) {
1544      assert(Chunk.Kind == DeclaratorChunk::Pointer);
1545      TL.setStarLoc(Chunk.Loc);
1546    }
1547    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
1548      assert(Chunk.Kind == DeclaratorChunk::Pointer);
1549      TL.setStarLoc(Chunk.Loc);
1550    }
1551    void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
1552      assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
1553      TL.setStarLoc(Chunk.Loc);
1554      // FIXME: nested name specifier
1555    }
1556    void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
1557      assert(Chunk.Kind == DeclaratorChunk::Reference);
1558      // 'Amp' is misleading: this might have been originally
1559      /// spelled with AmpAmp.
1560      TL.setAmpLoc(Chunk.Loc);
1561    }
1562    void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
1563      assert(Chunk.Kind == DeclaratorChunk::Reference);
1564      assert(!Chunk.Ref.LValueRef);
1565      TL.setAmpAmpLoc(Chunk.Loc);
1566    }
1567    void VisitArrayTypeLoc(ArrayTypeLoc TL) {
1568      assert(Chunk.Kind == DeclaratorChunk::Array);
1569      TL.setLBracketLoc(Chunk.Loc);
1570      TL.setRBracketLoc(Chunk.EndLoc);
1571      TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
1572    }
1573    void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
1574      assert(Chunk.Kind == DeclaratorChunk::Function);
1575      TL.setLParenLoc(Chunk.Loc);
1576      TL.setRParenLoc(Chunk.EndLoc);
1577
1578      const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
1579      for (unsigned i = 0, e = TL.getNumArgs(), tpi = 0; i != e; ++i) {
1580        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
1581        TL.setArg(tpi++, Param);
1582      }
1583      // FIXME: exception specs
1584    }
1585
1586    void VisitTypeLoc(TypeLoc TL) {
1587      llvm_unreachable("unsupported TypeLoc kind in declarator!");
1588    }
1589  };
1590}
1591
1592/// \brief Create and instantiate a TypeSourceInfo with type source information.
1593///
1594/// \param T QualType referring to the type as written in source code.
1595///
1596/// \param ReturnTypeInfo For declarators whose return type does not show
1597/// up in the normal place in the declaration specifiers (such as a C++
1598/// conversion function), this pointer will refer to a type source information
1599/// for that return type.
1600TypeSourceInfo *
1601Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
1602                                     TypeSourceInfo *ReturnTypeInfo) {
1603  TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
1604  UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
1605
1606  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
1607    DeclaratorLocFiller(D.getTypeObject(i)).Visit(CurrTL);
1608    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
1609  }
1610
1611  TypeSpecLocFiller(D.getDeclSpec()).Visit(CurrTL);
1612
1613  // We have source information for the return type that was not in the
1614  // declaration specifiers; copy that information into the current type
1615  // location so that it will be retained. This occurs, for example, with
1616  // a C++ conversion function, where the return type occurs within the
1617  // declarator-id rather than in the declaration specifiers.
1618  if (ReturnTypeInfo && D.getDeclSpec().getTypeSpecType() == TST_unspecified) {
1619    TypeLoc TL = ReturnTypeInfo->getTypeLoc();
1620    assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
1621    memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
1622  }
1623
1624  return TInfo;
1625}
1626
1627/// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
1628QualType Sema::CreateLocInfoType(QualType T, TypeSourceInfo *TInfo) {
1629  // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
1630  // and Sema during declaration parsing. Try deallocating/caching them when
1631  // it's appropriate, instead of allocating them and keeping them around.
1632  LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType), 8);
1633  new (LocT) LocInfoType(T, TInfo);
1634  assert(LocT->getTypeClass() != T->getTypeClass() &&
1635         "LocInfoType's TypeClass conflicts with an existing Type class");
1636  return QualType(LocT, 0);
1637}
1638
1639void LocInfoType::getAsStringInternal(std::string &Str,
1640                                      const PrintingPolicy &Policy) const {
1641  assert(false && "LocInfoType leaked into the type system; an opaque TypeTy*"
1642         " was used directly instead of getting the QualType through"
1643         " GetTypeFromParser");
1644}
1645
1646Sema::TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
1647  // C99 6.7.6: Type names have no identifier.  This is already validated by
1648  // the parser.
1649  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
1650
1651  TagDecl *OwnedTag = 0;
1652  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
1653  QualType T = TInfo->getType();
1654  if (D.isInvalidType())
1655    return true;
1656
1657  if (getLangOptions().CPlusPlus) {
1658    // Check that there are no default arguments (C++ only).
1659    CheckExtraCXXDefaultArguments(D);
1660
1661    // C++0x [dcl.type]p3:
1662    //   A type-specifier-seq shall not define a class or enumeration
1663    //   unless it appears in the type-id of an alias-declaration
1664    //   (7.1.3).
1665    if (OwnedTag && OwnedTag->isDefinition())
1666      Diag(OwnedTag->getLocation(), diag::err_type_defined_in_type_specifier)
1667        << Context.getTypeDeclType(OwnedTag);
1668  }
1669
1670  T = CreateLocInfoType(T, TInfo);
1671  return T.getAsOpaquePtr();
1672}
1673
1674
1675
1676//===----------------------------------------------------------------------===//
1677// Type Attribute Processing
1678//===----------------------------------------------------------------------===//
1679
1680/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
1681/// specified type.  The attribute contains 1 argument, the id of the address
1682/// space for the type.
1683static void HandleAddressSpaceTypeAttribute(QualType &Type,
1684                                            const AttributeList &Attr, Sema &S){
1685
1686  // If this type is already address space qualified, reject it.
1687  // Clause 6.7.3 - Type qualifiers: "No type shall be qualified by qualifiers
1688  // for two or more different address spaces."
1689  if (Type.getAddressSpace()) {
1690    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
1691    Attr.setInvalid();
1692    return;
1693  }
1694
1695  // Check the attribute arguments.
1696  if (Attr.getNumArgs() != 1) {
1697    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1698    Attr.setInvalid();
1699    return;
1700  }
1701  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
1702  llvm::APSInt addrSpace(32);
1703  if (ASArgExpr->isTypeDependent() || ASArgExpr->isValueDependent() ||
1704      !ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
1705    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
1706      << ASArgExpr->getSourceRange();
1707    Attr.setInvalid();
1708    return;
1709  }
1710
1711  // Bounds checking.
1712  if (addrSpace.isSigned()) {
1713    if (addrSpace.isNegative()) {
1714      S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
1715        << ASArgExpr->getSourceRange();
1716      Attr.setInvalid();
1717      return;
1718    }
1719    addrSpace.setIsSigned(false);
1720  }
1721  llvm::APSInt max(addrSpace.getBitWidth());
1722  max = Qualifiers::MaxAddressSpace;
1723  if (addrSpace > max) {
1724    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
1725      << Qualifiers::MaxAddressSpace << ASArgExpr->getSourceRange();
1726    Attr.setInvalid();
1727    return;
1728  }
1729
1730  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
1731  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
1732}
1733
1734/// HandleObjCGCTypeAttribute - Process an objc's gc attribute on the
1735/// specified type.  The attribute contains 1 argument, weak or strong.
1736static void HandleObjCGCTypeAttribute(QualType &Type,
1737                                      const AttributeList &Attr, Sema &S) {
1738  if (Type.getObjCGCAttr() != Qualifiers::GCNone) {
1739    S.Diag(Attr.getLoc(), diag::err_attribute_multiple_objc_gc);
1740    Attr.setInvalid();
1741    return;
1742  }
1743
1744  // Check the attribute arguments.
1745  if (!Attr.getParameterName()) {
1746    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
1747      << "objc_gc" << 1;
1748    Attr.setInvalid();
1749    return;
1750  }
1751  Qualifiers::GC GCAttr;
1752  if (Attr.getNumArgs() != 0) {
1753    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1754    Attr.setInvalid();
1755    return;
1756  }
1757  if (Attr.getParameterName()->isStr("weak"))
1758    GCAttr = Qualifiers::Weak;
1759  else if (Attr.getParameterName()->isStr("strong"))
1760    GCAttr = Qualifiers::Strong;
1761  else {
1762    S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
1763      << "objc_gc" << Attr.getParameterName();
1764    Attr.setInvalid();
1765    return;
1766  }
1767
1768  Type = S.Context.getObjCGCQualType(Type, GCAttr);
1769}
1770
1771/// Process an individual function attribute.  Returns true if the
1772/// attribute does not make sense to apply to this type.
1773bool ProcessFnAttr(Sema &S, QualType &Type, const AttributeList &Attr) {
1774  if (Attr.getKind() == AttributeList::AT_noreturn) {
1775    // Complain immediately if the arg count is wrong.
1776    if (Attr.getNumArgs() != 0) {
1777      S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1778      Attr.setInvalid();
1779      return false;
1780    }
1781
1782    // Delay if this is not a function or pointer to block.
1783    if (!Type->isFunctionPointerType()
1784        && !Type->isBlockPointerType()
1785        && !Type->isFunctionType())
1786      return true;
1787
1788    // Otherwise we can process right away.
1789    Type = S.Context.getNoReturnType(Type);
1790    return false;
1791  }
1792
1793  if (Attr.getKind() == AttributeList::AT_regparm) {
1794    // The warning is emitted elsewhere
1795    if (Attr.getNumArgs() != 1) {
1796      return false;
1797    }
1798
1799    // Delay if this is not a function or pointer to block.
1800    if (!Type->isFunctionPointerType()
1801        && !Type->isBlockPointerType()
1802        && !Type->isFunctionType())
1803      return true;
1804
1805    // Otherwise we can process right away.
1806    Expr *NumParamsExpr = static_cast<Expr *>(Attr.getArg(0));
1807    llvm::APSInt NumParams(32);
1808
1809    // The warning is emitted elsewhere
1810    if (NumParamsExpr->isTypeDependent() || NumParamsExpr->isValueDependent() ||
1811        !NumParamsExpr->isIntegerConstantExpr(NumParams, S.Context))
1812      return false;
1813
1814    Type = S.Context.getRegParmType(Type, NumParams.getZExtValue());
1815    return false;
1816  }
1817
1818  // Otherwise, a calling convention.
1819  if (Attr.getNumArgs() != 0) {
1820    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1821    Attr.setInvalid();
1822    return false;
1823  }
1824
1825  QualType T = Type;
1826  if (const PointerType *PT = Type->getAs<PointerType>())
1827    T = PT->getPointeeType();
1828  const FunctionType *Fn = T->getAs<FunctionType>();
1829
1830  // Delay if the type didn't work out to a function.
1831  if (!Fn) return true;
1832
1833  // TODO: diagnose uses of these conventions on the wrong target.
1834  CallingConv CC;
1835  switch (Attr.getKind()) {
1836  case AttributeList::AT_cdecl: CC = CC_C; break;
1837  case AttributeList::AT_fastcall: CC = CC_X86FastCall; break;
1838  case AttributeList::AT_stdcall: CC = CC_X86StdCall; break;
1839  case AttributeList::AT_thiscall: CC = CC_X86ThisCall; break;
1840  default: llvm_unreachable("unexpected attribute kind"); return false;
1841  }
1842
1843  CallingConv CCOld = Fn->getCallConv();
1844  if (S.Context.getCanonicalCallConv(CC) ==
1845      S.Context.getCanonicalCallConv(CCOld)) {
1846    Attr.setInvalid();
1847    return false;
1848  }
1849
1850  if (CCOld != CC_Default) {
1851    // Should we diagnose reapplications of the same convention?
1852    S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
1853      << FunctionType::getNameForCallConv(CC)
1854      << FunctionType::getNameForCallConv(CCOld);
1855    Attr.setInvalid();
1856    return false;
1857  }
1858
1859  // Diagnose the use of X86 fastcall on varargs or unprototyped functions.
1860  if (CC == CC_X86FastCall) {
1861    if (isa<FunctionNoProtoType>(Fn)) {
1862      S.Diag(Attr.getLoc(), diag::err_cconv_knr)
1863        << FunctionType::getNameForCallConv(CC);
1864      Attr.setInvalid();
1865      return false;
1866    }
1867
1868    const FunctionProtoType *FnP = cast<FunctionProtoType>(Fn);
1869    if (FnP->isVariadic()) {
1870      S.Diag(Attr.getLoc(), diag::err_cconv_varargs)
1871        << FunctionType::getNameForCallConv(CC);
1872      Attr.setInvalid();
1873      return false;
1874    }
1875  }
1876
1877  Type = S.Context.getCallConvType(Type, CC);
1878  return false;
1879}
1880
1881/// HandleVectorSizeAttribute - this attribute is only applicable to integral
1882/// and float scalars, although arrays, pointers, and function return values are
1883/// allowed in conjunction with this construct. Aggregates with this attribute
1884/// are invalid, even if they are of the same size as a corresponding scalar.
1885/// The raw attribute should contain precisely 1 argument, the vector size for
1886/// the variable, measured in bytes. If curType and rawAttr are well formed,
1887/// this routine will return a new vector type.
1888static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr,
1889                                 Sema &S) {
1890  // Check the attribute arugments.
1891  if (Attr.getNumArgs() != 1) {
1892    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1893    Attr.setInvalid();
1894    return;
1895  }
1896  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
1897  llvm::APSInt vecSize(32);
1898  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
1899      !sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
1900    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
1901      << "vector_size" << sizeExpr->getSourceRange();
1902    Attr.setInvalid();
1903    return;
1904  }
1905  // the base type must be integer or float, and can't already be a vector.
1906  if (CurType->isVectorType() ||
1907      (!CurType->isIntegerType() && !CurType->isRealFloatingType())) {
1908    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
1909    Attr.setInvalid();
1910    return;
1911  }
1912  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
1913  // vecSize is specified in bytes - convert to bits.
1914  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
1915
1916  // the vector size needs to be an integral multiple of the type size.
1917  if (vectorSize % typeSize) {
1918    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
1919      << sizeExpr->getSourceRange();
1920    Attr.setInvalid();
1921    return;
1922  }
1923  if (vectorSize == 0) {
1924    S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
1925      << sizeExpr->getSourceRange();
1926    Attr.setInvalid();
1927    return;
1928  }
1929
1930  // Success! Instantiate the vector type, the number of elements is > 0, and
1931  // not required to be a power of 2, unlike GCC.
1932  CurType = S.Context.getVectorType(CurType, vectorSize/typeSize,
1933                                    VectorType::NotAltiVec);
1934}
1935
1936void ProcessTypeAttributeList(Sema &S, QualType &Result,
1937                              bool IsDeclSpec, const AttributeList *AL,
1938                              DelayedAttributeSet &FnAttrs) {
1939  // Scan through and apply attributes to this type where it makes sense.  Some
1940  // attributes (such as __address_space__, __vector_size__, etc) apply to the
1941  // type, but others can be present in the type specifiers even though they
1942  // apply to the decl.  Here we apply type attributes and ignore the rest.
1943  for (; AL; AL = AL->getNext()) {
1944    // Skip attributes that were marked to be invalid.
1945    if (AL->isInvalid())
1946      continue;
1947
1948    // If this is an attribute we can handle, do so now,
1949    // otherwise, add it to the FnAttrs list for rechaining.
1950    switch (AL->getKind()) {
1951    default: break;
1952
1953    case AttributeList::AT_address_space:
1954      HandleAddressSpaceTypeAttribute(Result, *AL, S);
1955      break;
1956    case AttributeList::AT_objc_gc:
1957      HandleObjCGCTypeAttribute(Result, *AL, S);
1958      break;
1959    case AttributeList::AT_vector_size:
1960      HandleVectorSizeAttr(Result, *AL, S);
1961      break;
1962
1963    case AttributeList::AT_noreturn:
1964    case AttributeList::AT_cdecl:
1965    case AttributeList::AT_fastcall:
1966    case AttributeList::AT_stdcall:
1967    case AttributeList::AT_thiscall:
1968    case AttributeList::AT_regparm:
1969      // Don't process these on the DeclSpec.
1970      if (IsDeclSpec ||
1971          ProcessFnAttr(S, Result, *AL))
1972        FnAttrs.push_back(DelayedAttribute(AL, Result));
1973      break;
1974    }
1975  }
1976}
1977
1978/// @brief Ensure that the type T is a complete type.
1979///
1980/// This routine checks whether the type @p T is complete in any
1981/// context where a complete type is required. If @p T is a complete
1982/// type, returns false. If @p T is a class template specialization,
1983/// this routine then attempts to perform class template
1984/// instantiation. If instantiation fails, or if @p T is incomplete
1985/// and cannot be completed, issues the diagnostic @p diag (giving it
1986/// the type @p T) and returns true.
1987///
1988/// @param Loc  The location in the source that the incomplete type
1989/// diagnostic should refer to.
1990///
1991/// @param T  The type that this routine is examining for completeness.
1992///
1993/// @param PD The partial diagnostic that will be printed out if T is not a
1994/// complete type.
1995///
1996/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
1997/// @c false otherwise.
1998bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
1999                               const PartialDiagnostic &PD,
2000                               std::pair<SourceLocation,
2001                                         PartialDiagnostic> Note) {
2002  unsigned diag = PD.getDiagID();
2003
2004  // FIXME: Add this assertion to make sure we always get instantiation points.
2005  //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
2006  // FIXME: Add this assertion to help us flush out problems with
2007  // checking for dependent types and type-dependent expressions.
2008  //
2009  //  assert(!T->isDependentType() &&
2010  //         "Can't ask whether a dependent type is complete");
2011
2012  // If we have a complete type, we're done.
2013  if (!T->isIncompleteType())
2014    return false;
2015
2016  // If we have a class template specialization or a class member of a
2017  // class template specialization, or an array with known size of such,
2018  // try to instantiate it.
2019  QualType MaybeTemplate = T;
2020  if (const ConstantArrayType *Array = Context.getAsConstantArrayType(T))
2021    MaybeTemplate = Array->getElementType();
2022  if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
2023    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
2024          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
2025      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
2026        return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
2027                                                      TSK_ImplicitInstantiation,
2028                                                      /*Complain=*/diag != 0);
2029    } else if (CXXRecordDecl *Rec
2030                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
2031      if (CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass()) {
2032        MemberSpecializationInfo *MSInfo = Rec->getMemberSpecializationInfo();
2033        assert(MSInfo && "Missing member specialization information?");
2034        // This record was instantiated from a class within a template.
2035        if (MSInfo->getTemplateSpecializationKind()
2036                                               != TSK_ExplicitSpecialization)
2037          return InstantiateClass(Loc, Rec, Pattern,
2038                                  getTemplateInstantiationArgs(Rec),
2039                                  TSK_ImplicitInstantiation,
2040                                  /*Complain=*/diag != 0);
2041      }
2042    }
2043  }
2044
2045  if (diag == 0)
2046    return true;
2047
2048  const TagType *Tag = 0;
2049  if (const RecordType *Record = T->getAs<RecordType>())
2050    Tag = Record;
2051  else if (const EnumType *Enum = T->getAs<EnumType>())
2052    Tag = Enum;
2053
2054  // Avoid diagnosing invalid decls as incomplete.
2055  if (Tag && Tag->getDecl()->isInvalidDecl())
2056    return true;
2057
2058  // We have an incomplete type. Produce a diagnostic.
2059  Diag(Loc, PD) << T;
2060
2061  // If we have a note, produce it.
2062  if (!Note.first.isInvalid())
2063    Diag(Note.first, Note.second);
2064
2065  // If the type was a forward declaration of a class/struct/union
2066  // type, produce a note.
2067  if (Tag && !Tag->getDecl()->isInvalidDecl())
2068    Diag(Tag->getDecl()->getLocation(),
2069         Tag->isBeingDefined() ? diag::note_type_being_defined
2070                               : diag::note_forward_declaration)
2071        << QualType(Tag, 0);
2072
2073  return true;
2074}
2075
2076bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
2077                               const PartialDiagnostic &PD) {
2078  return RequireCompleteType(Loc, T, PD,
2079                             std::make_pair(SourceLocation(), PDiag(0)));
2080}
2081
2082bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
2083                               unsigned DiagID) {
2084  return RequireCompleteType(Loc, T, PDiag(DiagID),
2085                             std::make_pair(SourceLocation(), PDiag(0)));
2086}
2087
2088/// \brief Retrieve a version of the type 'T' that is elaborated by Keyword
2089/// and qualified by the nested-name-specifier contained in SS.
2090QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
2091                                 const CXXScopeSpec &SS, QualType T) {
2092  if (T.isNull())
2093    return T;
2094  NestedNameSpecifier *NNS;
2095  if (SS.isValid())
2096    NNS = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2097  else {
2098    if (Keyword == ETK_None)
2099      return T;
2100    NNS = 0;
2101  }
2102  return Context.getElaboratedType(Keyword, NNS, T);
2103}
2104
2105QualType Sema::BuildTypeofExprType(Expr *E) {
2106  if (E->getType() == Context.OverloadTy) {
2107    // C++ [temp.arg.explicit]p3 allows us to resolve a template-id to a
2108    // function template specialization wherever deduction cannot occur.
2109    if (FunctionDecl *Specialization
2110        = ResolveSingleFunctionTemplateSpecialization(E)) {
2111      // The access doesn't really matter in this case.
2112      DeclAccessPair Found = DeclAccessPair::make(Specialization,
2113                                                  Specialization->getAccess());
2114      E = FixOverloadedFunctionReference(E, Found, Specialization);
2115      if (!E)
2116        return QualType();
2117    } else {
2118      Diag(E->getLocStart(),
2119           diag::err_cannot_determine_declared_type_of_overloaded_function)
2120        << false << E->getSourceRange();
2121      return QualType();
2122    }
2123  }
2124
2125  return Context.getTypeOfExprType(E);
2126}
2127
2128QualType Sema::BuildDecltypeType(Expr *E) {
2129  if (E->getType() == Context.OverloadTy) {
2130    // C++ [temp.arg.explicit]p3 allows us to resolve a template-id to a
2131    // function template specialization wherever deduction cannot occur.
2132    if (FunctionDecl *Specialization
2133          = ResolveSingleFunctionTemplateSpecialization(E)) {
2134      // The access doesn't really matter in this case.
2135      DeclAccessPair Found = DeclAccessPair::make(Specialization,
2136                                                  Specialization->getAccess());
2137      E = FixOverloadedFunctionReference(E, Found, Specialization);
2138      if (!E)
2139        return QualType();
2140    } else {
2141      Diag(E->getLocStart(),
2142           diag::err_cannot_determine_declared_type_of_overloaded_function)
2143        << true << E->getSourceRange();
2144      return QualType();
2145    }
2146  }
2147
2148  return Context.getDecltypeType(E);
2149}
2150