SemaType.cpp revision c0b53c2e4c954fe59917da5194ba4b9f831fa5bf
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/CXXInheritance.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/TypeLocVisitor.h"
21#include "clang/AST/Expr.h"
22#include "clang/Basic/PartialDiagnostic.h"
23#include "clang/Parse/DeclSpec.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/Support/ErrorHandling.h"
26using namespace clang;
27
28/// \brief Perform adjustment on the parameter type of a function.
29///
30/// This routine adjusts the given parameter type @p T to the actual
31/// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
32/// C++ [dcl.fct]p3). The adjusted parameter type is returned.
33QualType Sema::adjustParameterType(QualType T) {
34  // C99 6.7.5.3p7:
35  //   A declaration of a parameter as "array of type" shall be
36  //   adjusted to "qualified pointer to type", where the type
37  //   qualifiers (if any) are those specified within the [ and ] of
38  //   the array type derivation.
39  if (T->isArrayType())
40    return Context.getArrayDecayedType(T);
41
42  // C99 6.7.5.3p8:
43  //   A declaration of a parameter as "function returning type"
44  //   shall be adjusted to "pointer to function returning type", as
45  //   in 6.3.2.1.
46  if (T->isFunctionType())
47    return Context.getPointerType(T);
48
49  return T;
50}
51
52
53
54/// isOmittedBlockReturnType - Return true if this declarator is missing a
55/// return type because this is a omitted return type on a block literal.
56static bool isOmittedBlockReturnType(const Declarator &D) {
57  if (D.getContext() != Declarator::BlockLiteralContext ||
58      D.getDeclSpec().hasTypeSpecifier())
59    return false;
60
61  if (D.getNumTypeObjects() == 0)
62    return true;   // ^{ ... }
63
64  if (D.getNumTypeObjects() == 1 &&
65      D.getTypeObject(0).Kind == DeclaratorChunk::Function)
66    return true;   // ^(int X, float Y) { ... }
67
68  return false;
69}
70
71typedef std::pair<const AttributeList*,QualType> DelayedAttribute;
72typedef llvm::SmallVectorImpl<DelayedAttribute> DelayedAttributeSet;
73
74static void ProcessTypeAttributeList(Sema &S, QualType &Type,
75                                     bool IsDeclSpec,
76                                     const AttributeList *Attrs,
77                                     DelayedAttributeSet &DelayedFnAttrs);
78static bool ProcessFnAttr(Sema &S, QualType &Type, const AttributeList &Attr);
79
80static void ProcessDelayedFnAttrs(Sema &S, QualType &Type,
81                                  DelayedAttributeSet &Attrs) {
82  for (DelayedAttributeSet::iterator I = Attrs.begin(),
83         E = Attrs.end(); I != E; ++I)
84    if (ProcessFnAttr(S, Type, *I->first))
85      S.Diag(I->first->getLoc(), diag::warn_function_attribute_wrong_type)
86        << I->first->getName() << I->second;
87  Attrs.clear();
88}
89
90static void DiagnoseDelayedFnAttrs(Sema &S, DelayedAttributeSet &Attrs) {
91  for (DelayedAttributeSet::iterator I = Attrs.begin(),
92         E = Attrs.end(); I != E; ++I) {
93    S.Diag(I->first->getLoc(), diag::warn_function_attribute_wrong_type)
94      << I->first->getName() << I->second;
95  }
96  Attrs.clear();
97}
98
99/// \brief Convert the specified declspec to the appropriate type
100/// object.
101/// \param D  the declarator containing the declaration specifier.
102/// \returns The type described by the declaration specifiers.  This function
103/// never returns null.
104static QualType ConvertDeclSpecToType(Sema &TheSema,
105                                      Declarator &TheDeclarator,
106                                      DelayedAttributeSet &Delayed) {
107  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
108  // checking.
109  const DeclSpec &DS = TheDeclarator.getDeclSpec();
110  SourceLocation DeclLoc = TheDeclarator.getIdentifierLoc();
111  if (DeclLoc.isInvalid())
112    DeclLoc = DS.getSourceRange().getBegin();
113
114  ASTContext &Context = TheSema.Context;
115
116  QualType Result;
117  switch (DS.getTypeSpecType()) {
118  case DeclSpec::TST_void:
119    Result = Context.VoidTy;
120    break;
121  case DeclSpec::TST_char:
122    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
123      Result = Context.CharTy;
124    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
125      Result = Context.SignedCharTy;
126    else {
127      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
128             "Unknown TSS value");
129      Result = Context.UnsignedCharTy;
130    }
131    break;
132  case DeclSpec::TST_wchar:
133    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
134      Result = Context.WCharTy;
135    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
136      TheSema.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
137        << DS.getSpecifierName(DS.getTypeSpecType());
138      Result = Context.getSignedWCharType();
139    } else {
140      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
141        "Unknown TSS value");
142      TheSema.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
143        << DS.getSpecifierName(DS.getTypeSpecType());
144      Result = Context.getUnsignedWCharType();
145    }
146    break;
147  case DeclSpec::TST_char16:
148      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
149        "Unknown TSS value");
150      Result = Context.Char16Ty;
151    break;
152  case DeclSpec::TST_char32:
153      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
154        "Unknown TSS value");
155      Result = Context.Char32Ty;
156    break;
157  case DeclSpec::TST_unspecified:
158    // "<proto1,proto2>" is an objc qualified ID with a missing id.
159    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
160      Result = Context.getObjCObjectPointerType(Context.ObjCBuiltinIdTy,
161                                                (ObjCProtocolDecl**)PQ,
162                                                DS.getNumProtocolQualifiers());
163      break;
164    }
165
166    // If this is a missing declspec in a block literal return context, then it
167    // is inferred from the return statements inside the block.
168    if (isOmittedBlockReturnType(TheDeclarator)) {
169      Result = Context.DependentTy;
170      break;
171    }
172
173    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
174    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
175    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
176    // Note that the one exception to this is function definitions, which are
177    // allowed to be completely missing a declspec.  This is handled in the
178    // parser already though by it pretending to have seen an 'int' in this
179    // case.
180    if (TheSema.getLangOptions().ImplicitInt) {
181      // In C89 mode, we only warn if there is a completely missing declspec
182      // when one is not allowed.
183      if (DS.isEmpty()) {
184        TheSema.Diag(DeclLoc, diag::ext_missing_declspec)
185          << DS.getSourceRange()
186        << FixItHint::CreateInsertion(DS.getSourceRange().getBegin(), "int");
187      }
188    } else if (!DS.hasTypeSpecifier()) {
189      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
190      // "At least one type specifier shall be given in the declaration
191      // specifiers in each declaration, and in the specifier-qualifier list in
192      // each struct declaration and type name."
193      // FIXME: Does Microsoft really have the implicit int extension in C++?
194      if (TheSema.getLangOptions().CPlusPlus &&
195          !TheSema.getLangOptions().Microsoft) {
196        TheSema.Diag(DeclLoc, diag::err_missing_type_specifier)
197          << DS.getSourceRange();
198
199        // When this occurs in C++ code, often something is very broken with the
200        // value being declared, poison it as invalid so we don't get chains of
201        // errors.
202        TheDeclarator.setInvalidType(true);
203      } else {
204        TheSema.Diag(DeclLoc, diag::ext_missing_type_specifier)
205          << DS.getSourceRange();
206      }
207    }
208
209    // FALL THROUGH.
210  case DeclSpec::TST_int: {
211    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
212      switch (DS.getTypeSpecWidth()) {
213      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
214      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
215      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
216      case DeclSpec::TSW_longlong:
217        Result = Context.LongLongTy;
218
219        // long long is a C99 feature.
220        if (!TheSema.getLangOptions().C99 &&
221            !TheSema.getLangOptions().CPlusPlus0x)
222          TheSema.Diag(DS.getTypeSpecWidthLoc(), diag::ext_longlong);
223        break;
224      }
225    } else {
226      switch (DS.getTypeSpecWidth()) {
227      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
228      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
229      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
230      case DeclSpec::TSW_longlong:
231        Result = Context.UnsignedLongLongTy;
232
233        // long long is a C99 feature.
234        if (!TheSema.getLangOptions().C99 &&
235            !TheSema.getLangOptions().CPlusPlus0x)
236          TheSema.Diag(DS.getTypeSpecWidthLoc(), diag::ext_longlong);
237        break;
238      }
239    }
240    break;
241  }
242  case DeclSpec::TST_float: Result = Context.FloatTy; break;
243  case DeclSpec::TST_double:
244    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
245      Result = Context.LongDoubleTy;
246    else
247      Result = Context.DoubleTy;
248    break;
249  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
250  case DeclSpec::TST_decimal32:    // _Decimal32
251  case DeclSpec::TST_decimal64:    // _Decimal64
252  case DeclSpec::TST_decimal128:   // _Decimal128
253    TheSema.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
254    Result = Context.IntTy;
255    TheDeclarator.setInvalidType(true);
256    break;
257  case DeclSpec::TST_class:
258  case DeclSpec::TST_enum:
259  case DeclSpec::TST_union:
260  case DeclSpec::TST_struct: {
261    TypeDecl *D
262      = dyn_cast_or_null<TypeDecl>(static_cast<Decl *>(DS.getTypeRep()));
263    if (!D) {
264      // This can happen in C++ with ambiguous lookups.
265      Result = Context.IntTy;
266      TheDeclarator.setInvalidType(true);
267      break;
268    }
269
270    // If the type is deprecated or unavailable, diagnose it.
271    TheSema.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeLoc());
272
273    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
274           DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
275
276    // TypeQuals handled by caller.
277    Result = Context.getTypeDeclType(D);
278
279    // In C++, make an ElaboratedType.
280    if (TheSema.getLangOptions().CPlusPlus) {
281      TagDecl::TagKind Tag
282        = TagDecl::getTagKindForTypeSpec(DS.getTypeSpecType());
283      Result = Context.getElaboratedType(Result, Tag);
284    }
285
286    if (D->isInvalidDecl())
287      TheDeclarator.setInvalidType(true);
288    break;
289  }
290  case DeclSpec::TST_typename: {
291    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
292           DS.getTypeSpecSign() == 0 &&
293           "Can't handle qualifiers on typedef names yet!");
294    Result = TheSema.GetTypeFromParser(DS.getTypeRep());
295
296    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
297      if (const ObjCInterfaceType *
298            Interface = Result->getAs<ObjCInterfaceType>()) {
299        // It would be nice if protocol qualifiers were only stored with the
300        // ObjCObjectPointerType. Unfortunately, this isn't possible due
301        // to the following typedef idiom (which is uncommon, but allowed):
302        //
303        // typedef Foo<P> T;
304        // static void func() {
305        //   Foo<P> *yy;
306        //   T *zz;
307        // }
308        Result = Context.getObjCInterfaceType(Interface->getDecl(),
309                                              (ObjCProtocolDecl**)PQ,
310                                              DS.getNumProtocolQualifiers());
311      } else if (Result->isObjCIdType())
312        // id<protocol-list>
313        Result = Context.getObjCObjectPointerType(Context.ObjCBuiltinIdTy,
314                        (ObjCProtocolDecl**)PQ, DS.getNumProtocolQualifiers());
315      else if (Result->isObjCClassType()) {
316        // Class<protocol-list>
317        Result = Context.getObjCObjectPointerType(Context.ObjCBuiltinClassTy,
318                        (ObjCProtocolDecl**)PQ, DS.getNumProtocolQualifiers());
319      } else {
320        TheSema.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
321          << DS.getSourceRange();
322        TheDeclarator.setInvalidType(true);
323      }
324    }
325
326    // TypeQuals handled by caller.
327    break;
328  }
329  case DeclSpec::TST_typeofType:
330    // FIXME: Preserve type source info.
331    Result = TheSema.GetTypeFromParser(DS.getTypeRep());
332    assert(!Result.isNull() && "Didn't get a type for typeof?");
333    // TypeQuals handled by caller.
334    Result = Context.getTypeOfType(Result);
335    break;
336  case DeclSpec::TST_typeofExpr: {
337    Expr *E = static_cast<Expr *>(DS.getTypeRep());
338    assert(E && "Didn't get an expression for typeof?");
339    // TypeQuals handled by caller.
340    Result = TheSema.BuildTypeofExprType(E);
341    if (Result.isNull()) {
342      Result = Context.IntTy;
343      TheDeclarator.setInvalidType(true);
344    }
345    break;
346  }
347  case DeclSpec::TST_decltype: {
348    Expr *E = static_cast<Expr *>(DS.getTypeRep());
349    assert(E && "Didn't get an expression for decltype?");
350    // TypeQuals handled by caller.
351    Result = TheSema.BuildDecltypeType(E);
352    if (Result.isNull()) {
353      Result = Context.IntTy;
354      TheDeclarator.setInvalidType(true);
355    }
356    break;
357  }
358  case DeclSpec::TST_auto: {
359    // TypeQuals handled by caller.
360    Result = Context.UndeducedAutoTy;
361    break;
362  }
363
364  case DeclSpec::TST_error:
365    Result = Context.IntTy;
366    TheDeclarator.setInvalidType(true);
367    break;
368  }
369
370  // Handle complex types.
371  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
372    if (TheSema.getLangOptions().Freestanding)
373      TheSema.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
374    Result = Context.getComplexType(Result);
375  } else if (DS.isTypeAltiVecVector()) {
376    unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
377    assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
378    Result = Context.getVectorType(Result, 128/typeSize, true,
379      DS.isTypeAltiVecPixel());
380  }
381
382  assert(DS.getTypeSpecComplex() != DeclSpec::TSC_imaginary &&
383         "FIXME: imaginary types not supported yet!");
384
385  // See if there are any attributes on the declspec that apply to the type (as
386  // opposed to the decl).
387  if (const AttributeList *AL = DS.getAttributes())
388    ProcessTypeAttributeList(TheSema, Result, true, AL, Delayed);
389
390  // Apply const/volatile/restrict qualifiers to T.
391  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
392
393    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
394    // or incomplete types shall not be restrict-qualified."  C++ also allows
395    // restrict-qualified references.
396    if (TypeQuals & DeclSpec::TQ_restrict) {
397      if (Result->isAnyPointerType() || Result->isReferenceType()) {
398        QualType EltTy;
399        if (Result->isObjCObjectPointerType())
400          EltTy = Result;
401        else
402          EltTy = Result->isPointerType() ?
403                    Result->getAs<PointerType>()->getPointeeType() :
404                    Result->getAs<ReferenceType>()->getPointeeType();
405
406        // If we have a pointer or reference, the pointee must have an object
407        // incomplete type.
408        if (!EltTy->isIncompleteOrObjectType()) {
409          TheSema.Diag(DS.getRestrictSpecLoc(),
410               diag::err_typecheck_invalid_restrict_invalid_pointee)
411            << EltTy << DS.getSourceRange();
412          TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
413        }
414      } else {
415        TheSema.Diag(DS.getRestrictSpecLoc(),
416             diag::err_typecheck_invalid_restrict_not_pointer)
417          << Result << DS.getSourceRange();
418        TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
419      }
420    }
421
422    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
423    // of a function type includes any type qualifiers, the behavior is
424    // undefined."
425    if (Result->isFunctionType() && TypeQuals) {
426      // Get some location to point at, either the C or V location.
427      SourceLocation Loc;
428      if (TypeQuals & DeclSpec::TQ_const)
429        Loc = DS.getConstSpecLoc();
430      else if (TypeQuals & DeclSpec::TQ_volatile)
431        Loc = DS.getVolatileSpecLoc();
432      else {
433        assert((TypeQuals & DeclSpec::TQ_restrict) &&
434               "Has CVR quals but not C, V, or R?");
435        Loc = DS.getRestrictSpecLoc();
436      }
437      TheSema.Diag(Loc, diag::warn_typecheck_function_qualifiers)
438        << Result << DS.getSourceRange();
439    }
440
441    // C++ [dcl.ref]p1:
442    //   Cv-qualified references are ill-formed except when the
443    //   cv-qualifiers are introduced through the use of a typedef
444    //   (7.1.3) or of a template type argument (14.3), in which
445    //   case the cv-qualifiers are ignored.
446    // FIXME: Shouldn't we be checking SCS_typedef here?
447    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
448        TypeQuals && Result->isReferenceType()) {
449      TypeQuals &= ~DeclSpec::TQ_const;
450      TypeQuals &= ~DeclSpec::TQ_volatile;
451    }
452
453    Qualifiers Quals = Qualifiers::fromCVRMask(TypeQuals);
454    Result = Context.getQualifiedType(Result, Quals);
455  }
456
457  return Result;
458}
459
460static std::string getPrintableNameForEntity(DeclarationName Entity) {
461  if (Entity)
462    return Entity.getAsString();
463
464  return "type name";
465}
466
467/// \brief Build a pointer type.
468///
469/// \param T The type to which we'll be building a pointer.
470///
471/// \param Quals The cvr-qualifiers to be applied to the pointer type.
472///
473/// \param Loc The location of the entity whose type involves this
474/// pointer type or, if there is no such entity, the location of the
475/// type that will have pointer type.
476///
477/// \param Entity The name of the entity that involves the pointer
478/// type, if known.
479///
480/// \returns A suitable pointer type, if there are no
481/// errors. Otherwise, returns a NULL type.
482QualType Sema::BuildPointerType(QualType T, unsigned Quals,
483                                SourceLocation Loc, DeclarationName Entity) {
484  if (T->isReferenceType()) {
485    // C++ 8.3.2p4: There shall be no ... pointers to references ...
486    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
487      << getPrintableNameForEntity(Entity) << T;
488    return QualType();
489  }
490
491  Qualifiers Qs = Qualifiers::fromCVRMask(Quals);
492
493  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
494  // object or incomplete types shall not be restrict-qualified."
495  if (Qs.hasRestrict() && !T->isIncompleteOrObjectType()) {
496    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
497      << T;
498    Qs.removeRestrict();
499  }
500
501  // Build the pointer type.
502  return Context.getQualifiedType(Context.getPointerType(T), Qs);
503}
504
505/// \brief Build a reference type.
506///
507/// \param T The type to which we'll be building a reference.
508///
509/// \param CVR The cvr-qualifiers to be applied to the reference type.
510///
511/// \param Loc The location of the entity whose type involves this
512/// reference type or, if there is no such entity, the location of the
513/// type that will have reference type.
514///
515/// \param Entity The name of the entity that involves the reference
516/// type, if known.
517///
518/// \returns A suitable reference type, if there are no
519/// errors. Otherwise, returns a NULL type.
520QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
521                                  unsigned CVR, SourceLocation Loc,
522                                  DeclarationName Entity) {
523  Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
524
525  bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
526
527  // C++0x [dcl.typedef]p9: If a typedef TD names a type that is a
528  //   reference to a type T, and attempt to create the type "lvalue
529  //   reference to cv TD" creates the type "lvalue reference to T".
530  // We use the qualifiers (restrict or none) of the original reference,
531  // not the new ones. This is consistent with GCC.
532
533  // C++ [dcl.ref]p4: There shall be no references to references.
534  //
535  // According to C++ DR 106, references to references are only
536  // diagnosed when they are written directly (e.g., "int & &"),
537  // but not when they happen via a typedef:
538  //
539  //   typedef int& intref;
540  //   typedef intref& intref2;
541  //
542  // Parser::ParseDeclaratorInternal diagnoses the case where
543  // references are written directly; here, we handle the
544  // collapsing of references-to-references as described in C++
545  // DR 106 and amended by C++ DR 540.
546
547  // C++ [dcl.ref]p1:
548  //   A declarator that specifies the type "reference to cv void"
549  //   is ill-formed.
550  if (T->isVoidType()) {
551    Diag(Loc, diag::err_reference_to_void);
552    return QualType();
553  }
554
555  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
556  // object or incomplete types shall not be restrict-qualified."
557  if (Quals.hasRestrict() && !T->isIncompleteOrObjectType()) {
558    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
559      << T;
560    Quals.removeRestrict();
561  }
562
563  // C++ [dcl.ref]p1:
564  //   [...] Cv-qualified references are ill-formed except when the
565  //   cv-qualifiers are introduced through the use of a typedef
566  //   (7.1.3) or of a template type argument (14.3), in which case
567  //   the cv-qualifiers are ignored.
568  //
569  // We diagnose extraneous cv-qualifiers for the non-typedef,
570  // non-template type argument case within the parser. Here, we just
571  // ignore any extraneous cv-qualifiers.
572  Quals.removeConst();
573  Quals.removeVolatile();
574
575  // Handle restrict on references.
576  if (LValueRef)
577    return Context.getQualifiedType(
578               Context.getLValueReferenceType(T, SpelledAsLValue), Quals);
579  return Context.getQualifiedType(Context.getRValueReferenceType(T), Quals);
580}
581
582/// \brief Build an array type.
583///
584/// \param T The type of each element in the array.
585///
586/// \param ASM C99 array size modifier (e.g., '*', 'static').
587///
588/// \param ArraySize Expression describing the size of the array.
589///
590/// \param Quals The cvr-qualifiers to be applied to the array's
591/// element type.
592///
593/// \param Loc The location of the entity whose type involves this
594/// array type or, if there is no such entity, the location of the
595/// type that will have array type.
596///
597/// \param Entity The name of the entity that involves the array
598/// type, if known.
599///
600/// \returns A suitable array type, if there are no errors. Otherwise,
601/// returns a NULL type.
602QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
603                              Expr *ArraySize, unsigned Quals,
604                              SourceRange Brackets, DeclarationName Entity) {
605
606  SourceLocation Loc = Brackets.getBegin();
607  // C99 6.7.5.2p1: If the element type is an incomplete or function type,
608  // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
609  // Not in C++, though. There we only dislike void.
610  if (getLangOptions().CPlusPlus) {
611    if (T->isVoidType()) {
612      Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
613      return QualType();
614    }
615  } else {
616    if (RequireCompleteType(Loc, T,
617                            diag::err_illegal_decl_array_incomplete_type))
618      return QualType();
619  }
620
621  if (T->isFunctionType()) {
622    Diag(Loc, diag::err_illegal_decl_array_of_functions)
623      << getPrintableNameForEntity(Entity) << T;
624    return QualType();
625  }
626
627  // C++ 8.3.2p4: There shall be no ... arrays of references ...
628  if (T->isReferenceType()) {
629    Diag(Loc, diag::err_illegal_decl_array_of_references)
630      << getPrintableNameForEntity(Entity) << T;
631    return QualType();
632  }
633
634  if (Context.getCanonicalType(T) == Context.UndeducedAutoTy) {
635    Diag(Loc,  diag::err_illegal_decl_array_of_auto)
636      << getPrintableNameForEntity(Entity);
637    return QualType();
638  }
639
640  if (const RecordType *EltTy = T->getAs<RecordType>()) {
641    // If the element type is a struct or union that contains a variadic
642    // array, accept it as a GNU extension: C99 6.7.2.1p2.
643    if (EltTy->getDecl()->hasFlexibleArrayMember())
644      Diag(Loc, diag::ext_flexible_array_in_array) << T;
645  } else if (T->isObjCInterfaceType()) {
646    Diag(Loc, diag::err_objc_array_of_interfaces) << T;
647    return QualType();
648  }
649
650  // C99 6.7.5.2p1: The size expression shall have integer type.
651  if (ArraySize && !ArraySize->isTypeDependent() &&
652      !ArraySize->getType()->isIntegerType()) {
653    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
654      << ArraySize->getType() << ArraySize->getSourceRange();
655    ArraySize->Destroy(Context);
656    return QualType();
657  }
658  llvm::APSInt ConstVal(32);
659  if (!ArraySize) {
660    if (ASM == ArrayType::Star)
661      T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
662    else
663      T = Context.getIncompleteArrayType(T, ASM, Quals);
664  } else if (ArraySize->isValueDependent()) {
665    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
666  } else if (!ArraySize->isIntegerConstantExpr(ConstVal, Context) ||
667             (!T->isDependentType() && !T->isIncompleteType() &&
668              !T->isConstantSizeType())) {
669    // Per C99, a variable array is an array with either a non-constant
670    // size or an element type that has a non-constant-size
671    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
672  } else {
673    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
674    // have a value greater than zero.
675    if (ConstVal.isSigned() && ConstVal.isNegative()) {
676      Diag(ArraySize->getLocStart(),
677           diag::err_typecheck_negative_array_size)
678        << ArraySize->getSourceRange();
679      return QualType();
680    }
681    if (ConstVal == 0) {
682      // GCC accepts zero sized static arrays. We allow them when
683      // we're not in a SFINAE context.
684      Diag(ArraySize->getLocStart(),
685           isSFINAEContext()? diag::err_typecheck_zero_array_size
686                            : diag::ext_typecheck_zero_array_size)
687        << ArraySize->getSourceRange();
688    }
689    T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
690  }
691  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
692  if (!getLangOptions().C99) {
693    if (ArraySize && !ArraySize->isTypeDependent() &&
694        !ArraySize->isValueDependent() &&
695        !ArraySize->isIntegerConstantExpr(Context))
696      Diag(Loc, getLangOptions().CPlusPlus? diag::err_vla_cxx : diag::ext_vla);
697    else if (ASM != ArrayType::Normal || Quals != 0)
698      Diag(Loc,
699           getLangOptions().CPlusPlus? diag::err_c99_array_usage_cxx
700                                     : diag::ext_c99_array_usage);
701  }
702
703  return T;
704}
705
706/// \brief Build an ext-vector type.
707///
708/// Run the required checks for the extended vector type.
709QualType Sema::BuildExtVectorType(QualType T, ExprArg ArraySize,
710                                  SourceLocation AttrLoc) {
711
712  Expr *Arg = (Expr *)ArraySize.get();
713
714  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
715  // in conjunction with complex types (pointers, arrays, functions, etc.).
716  if (!T->isDependentType() &&
717      !T->isIntegerType() && !T->isRealFloatingType()) {
718    Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
719    return QualType();
720  }
721
722  if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
723    llvm::APSInt vecSize(32);
724    if (!Arg->isIntegerConstantExpr(vecSize, Context)) {
725      Diag(AttrLoc, diag::err_attribute_argument_not_int)
726      << "ext_vector_type" << Arg->getSourceRange();
727      return QualType();
728    }
729
730    // unlike gcc's vector_size attribute, the size is specified as the
731    // number of elements, not the number of bytes.
732    unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
733
734    if (vectorSize == 0) {
735      Diag(AttrLoc, diag::err_attribute_zero_size)
736      << Arg->getSourceRange();
737      return QualType();
738    }
739
740    if (!T->isDependentType())
741      return Context.getExtVectorType(T, vectorSize);
742  }
743
744  return Context.getDependentSizedExtVectorType(T, ArraySize.takeAs<Expr>(),
745                                                AttrLoc);
746}
747
748/// \brief Build a function type.
749///
750/// This routine checks the function type according to C++ rules and
751/// under the assumption that the result type and parameter types have
752/// just been instantiated from a template. It therefore duplicates
753/// some of the behavior of GetTypeForDeclarator, but in a much
754/// simpler form that is only suitable for this narrow use case.
755///
756/// \param T The return type of the function.
757///
758/// \param ParamTypes The parameter types of the function. This array
759/// will be modified to account for adjustments to the types of the
760/// function parameters.
761///
762/// \param NumParamTypes The number of parameter types in ParamTypes.
763///
764/// \param Variadic Whether this is a variadic function type.
765///
766/// \param Quals The cvr-qualifiers to be applied to the function type.
767///
768/// \param Loc The location of the entity whose type involves this
769/// function type or, if there is no such entity, the location of the
770/// type that will have function type.
771///
772/// \param Entity The name of the entity that involves the function
773/// type, if known.
774///
775/// \returns A suitable function type, if there are no
776/// errors. Otherwise, returns a NULL type.
777QualType Sema::BuildFunctionType(QualType T,
778                                 QualType *ParamTypes,
779                                 unsigned NumParamTypes,
780                                 bool Variadic, unsigned Quals,
781                                 SourceLocation Loc, DeclarationName Entity) {
782  if (T->isArrayType() || T->isFunctionType()) {
783    Diag(Loc, diag::err_func_returning_array_function)
784      << T->isFunctionType() << T;
785    return QualType();
786  }
787
788  bool Invalid = false;
789  for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
790    QualType ParamType = adjustParameterType(ParamTypes[Idx]);
791    if (ParamType->isVoidType()) {
792      Diag(Loc, diag::err_param_with_void_type);
793      Invalid = true;
794    }
795
796    ParamTypes[Idx] = ParamType;
797  }
798
799  if (Invalid)
800    return QualType();
801
802  return Context.getFunctionType(T, ParamTypes, NumParamTypes, Variadic,
803                                 Quals, false, false, 0, 0,
804                                 FunctionType::ExtInfo());
805}
806
807/// \brief Build a member pointer type \c T Class::*.
808///
809/// \param T the type to which the member pointer refers.
810/// \param Class the class type into which the member pointer points.
811/// \param CVR Qualifiers applied to the member pointer type
812/// \param Loc the location where this type begins
813/// \param Entity the name of the entity that will have this member pointer type
814///
815/// \returns a member pointer type, if successful, or a NULL type if there was
816/// an error.
817QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
818                                      unsigned CVR, SourceLocation Loc,
819                                      DeclarationName Entity) {
820  Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
821
822  // Verify that we're not building a pointer to pointer to function with
823  // exception specification.
824  if (CheckDistantExceptionSpec(T)) {
825    Diag(Loc, diag::err_distant_exception_spec);
826
827    // FIXME: If we're doing this as part of template instantiation,
828    // we should return immediately.
829
830    // Build the type anyway, but use the canonical type so that the
831    // exception specifiers are stripped off.
832    T = Context.getCanonicalType(T);
833  }
834
835  // C++ 8.3.3p3: A pointer to member shall not pointer to ... a member
836  //   with reference type, or "cv void."
837  if (T->isReferenceType()) {
838    Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
839      << (Entity? Entity.getAsString() : "type name") << T;
840    return QualType();
841  }
842
843  if (T->isVoidType()) {
844    Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
845      << (Entity? Entity.getAsString() : "type name");
846    return QualType();
847  }
848
849  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
850  // object or incomplete types shall not be restrict-qualified."
851  if (Quals.hasRestrict() && !T->isIncompleteOrObjectType()) {
852    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
853      << T;
854
855    // FIXME: If we're doing this as part of template instantiation,
856    // we should return immediately.
857    Quals.removeRestrict();
858  }
859
860  if (!Class->isDependentType() && !Class->isRecordType()) {
861    Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
862    return QualType();
863  }
864
865  return Context.getQualifiedType(
866           Context.getMemberPointerType(T, Class.getTypePtr()), Quals);
867}
868
869/// \brief Build a block pointer type.
870///
871/// \param T The type to which we'll be building a block pointer.
872///
873/// \param CVR The cvr-qualifiers to be applied to the block pointer type.
874///
875/// \param Loc The location of the entity whose type involves this
876/// block pointer type or, if there is no such entity, the location of the
877/// type that will have block pointer type.
878///
879/// \param Entity The name of the entity that involves the block pointer
880/// type, if known.
881///
882/// \returns A suitable block pointer type, if there are no
883/// errors. Otherwise, returns a NULL type.
884QualType Sema::BuildBlockPointerType(QualType T, unsigned CVR,
885                                     SourceLocation Loc,
886                                     DeclarationName Entity) {
887  if (!T->isFunctionType()) {
888    Diag(Loc, diag::err_nonfunction_block_type);
889    return QualType();
890  }
891
892  Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
893  return Context.getQualifiedType(Context.getBlockPointerType(T), Quals);
894}
895
896QualType Sema::GetTypeFromParser(TypeTy *Ty, TypeSourceInfo **TInfo) {
897  QualType QT = QualType::getFromOpaquePtr(Ty);
898  if (QT.isNull()) {
899    if (TInfo) *TInfo = 0;
900    return QualType();
901  }
902
903  TypeSourceInfo *DI = 0;
904  if (LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
905    QT = LIT->getType();
906    DI = LIT->getTypeSourceInfo();
907  }
908
909  if (TInfo) *TInfo = DI;
910  return QT;
911}
912
913/// GetTypeForDeclarator - Convert the type for the specified
914/// declarator to Type instances.
915///
916/// If OwnedDecl is non-NULL, and this declarator's decl-specifier-seq
917/// owns the declaration of a type (e.g., the definition of a struct
918/// type), then *OwnedDecl will receive the owned declaration.
919QualType Sema::GetTypeForDeclarator(Declarator &D, Scope *S,
920                                    TypeSourceInfo **TInfo,
921                                    TagDecl **OwnedDecl) {
922  // Determine the type of the declarator. Not all forms of declarator
923  // have a type.
924  QualType T;
925  TypeSourceInfo *ReturnTypeInfo = 0;
926
927  llvm::SmallVector<DelayedAttribute,4> FnAttrsFromDeclSpec;
928
929  switch (D.getName().getKind()) {
930  case UnqualifiedId::IK_Identifier:
931  case UnqualifiedId::IK_OperatorFunctionId:
932  case UnqualifiedId::IK_LiteralOperatorId:
933  case UnqualifiedId::IK_TemplateId:
934    T = ConvertDeclSpecToType(*this, D, FnAttrsFromDeclSpec);
935
936    if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
937      TagDecl* Owned = cast<TagDecl>((Decl *)D.getDeclSpec().getTypeRep());
938      // Owned is embedded if it was defined here, or if it is the
939      // very first (i.e., canonical) declaration of this tag type.
940      Owned->setEmbeddedInDeclarator(Owned->isDefinition() ||
941                                     Owned->isCanonicalDecl());
942      if (OwnedDecl) *OwnedDecl = Owned;
943    }
944    break;
945
946  case UnqualifiedId::IK_ConstructorName:
947  case UnqualifiedId::IK_ConstructorTemplateId:
948  case UnqualifiedId::IK_DestructorName:
949    // Constructors and destructors don't have return types. Use
950    // "void" instead.
951    T = Context.VoidTy;
952
953    if (TInfo)
954      ReturnTypeInfo = Context.getTrivialTypeSourceInfo(T,
955                                                    D.getName().StartLocation);
956    break;
957
958  case UnqualifiedId::IK_ConversionFunctionId:
959    // The result type of a conversion function is the type that it
960    // converts to.
961    T = GetTypeFromParser(D.getName().ConversionFunctionId,
962                          TInfo? &ReturnTypeInfo : 0);
963    break;
964  }
965
966  if (T.isNull())
967    return T;
968
969  if (T == Context.UndeducedAutoTy) {
970    int Error = -1;
971
972    switch (D.getContext()) {
973    case Declarator::KNRTypeListContext:
974      assert(0 && "K&R type lists aren't allowed in C++");
975      break;
976    case Declarator::PrototypeContext:
977      Error = 0; // Function prototype
978      break;
979    case Declarator::MemberContext:
980      switch (cast<TagDecl>(CurContext)->getTagKind()) {
981      case TagDecl::TK_enum: assert(0 && "unhandled tag kind"); break;
982      case TagDecl::TK_struct: Error = 1; /* Struct member */ break;
983      case TagDecl::TK_union:  Error = 2; /* Union member */ break;
984      case TagDecl::TK_class:  Error = 3; /* Class member */ break;
985      }
986      break;
987    case Declarator::CXXCatchContext:
988      Error = 4; // Exception declaration
989      break;
990    case Declarator::TemplateParamContext:
991      Error = 5; // Template parameter
992      break;
993    case Declarator::BlockLiteralContext:
994      Error = 6;  // Block literal
995      break;
996    case Declarator::FileContext:
997    case Declarator::BlockContext:
998    case Declarator::ForContext:
999    case Declarator::ConditionContext:
1000    case Declarator::TypeNameContext:
1001      break;
1002    }
1003
1004    if (Error != -1) {
1005      Diag(D.getDeclSpec().getTypeSpecTypeLoc(), diag::err_auto_not_allowed)
1006        << Error;
1007      T = Context.IntTy;
1008      D.setInvalidType(true);
1009    }
1010  }
1011
1012  // The name we're declaring, if any.
1013  DeclarationName Name;
1014  if (D.getIdentifier())
1015    Name = D.getIdentifier();
1016
1017  llvm::SmallVector<DelayedAttribute,4> FnAttrsFromPreviousChunk;
1018
1019  // Walk the DeclTypeInfo, building the recursive type as we go.
1020  // DeclTypeInfos are ordered from the identifier out, which is
1021  // opposite of what we want :).
1022  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
1023    DeclaratorChunk &DeclType = D.getTypeObject(e-i-1);
1024    switch (DeclType.Kind) {
1025    default: assert(0 && "Unknown decltype!");
1026    case DeclaratorChunk::BlockPointer:
1027      // If blocks are disabled, emit an error.
1028      if (!LangOpts.Blocks)
1029        Diag(DeclType.Loc, diag::err_blocks_disable);
1030
1031      T = BuildBlockPointerType(T, DeclType.Cls.TypeQuals, D.getIdentifierLoc(),
1032                                Name);
1033      break;
1034    case DeclaratorChunk::Pointer:
1035      // Verify that we're not building a pointer to pointer to function with
1036      // exception specification.
1037      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1038        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1039        D.setInvalidType(true);
1040        // Build the type anyway.
1041      }
1042      if (getLangOptions().ObjC1 && T->isObjCInterfaceType()) {
1043        const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>();
1044        T = Context.getObjCObjectPointerType(T,
1045                                         (ObjCProtocolDecl **)OIT->qual_begin(),
1046                                         OIT->getNumProtocols(),
1047                                         DeclType.Ptr.TypeQuals);
1048        break;
1049      }
1050      T = BuildPointerType(T, DeclType.Ptr.TypeQuals, DeclType.Loc, Name);
1051      break;
1052    case DeclaratorChunk::Reference: {
1053      Qualifiers Quals;
1054      if (DeclType.Ref.HasRestrict) Quals.addRestrict();
1055
1056      // Verify that we're not building a reference to pointer to function with
1057      // exception specification.
1058      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1059        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1060        D.setInvalidType(true);
1061        // Build the type anyway.
1062      }
1063      T = BuildReferenceType(T, DeclType.Ref.LValueRef, Quals,
1064                             DeclType.Loc, Name);
1065      break;
1066    }
1067    case DeclaratorChunk::Array: {
1068      // Verify that we're not building an array of pointers to function with
1069      // exception specification.
1070      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1071        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1072        D.setInvalidType(true);
1073        // Build the type anyway.
1074      }
1075      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
1076      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
1077      ArrayType::ArraySizeModifier ASM;
1078      if (ATI.isStar)
1079        ASM = ArrayType::Star;
1080      else if (ATI.hasStatic)
1081        ASM = ArrayType::Static;
1082      else
1083        ASM = ArrayType::Normal;
1084      if (ASM == ArrayType::Star &&
1085          D.getContext() != Declarator::PrototypeContext) {
1086        // FIXME: This check isn't quite right: it allows star in prototypes
1087        // for function definitions, and disallows some edge cases detailed
1088        // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
1089        Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
1090        ASM = ArrayType::Normal;
1091        D.setInvalidType(true);
1092      }
1093      T = BuildArrayType(T, ASM, ArraySize,
1094                         Qualifiers::fromCVRMask(ATI.TypeQuals),
1095                         SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
1096      break;
1097    }
1098    case DeclaratorChunk::Function: {
1099      // If the function declarator has a prototype (i.e. it is not () and
1100      // does not have a K&R-style identifier list), then the arguments are part
1101      // of the type, otherwise the argument list is ().
1102      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
1103
1104      // C99 6.7.5.3p1: The return type may not be a function or array type.
1105      // For conversion functions, we'll diagnose this particular error later.
1106      if ((T->isArrayType() || T->isFunctionType()) &&
1107          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
1108        Diag(DeclType.Loc, diag::err_func_returning_array_function)
1109          << T->isFunctionType() << T;
1110        T = Context.IntTy;
1111        D.setInvalidType(true);
1112      }
1113
1114      if (getLangOptions().CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
1115        // C++ [dcl.fct]p6:
1116        //   Types shall not be defined in return or parameter types.
1117        TagDecl *Tag = cast<TagDecl>((Decl *)D.getDeclSpec().getTypeRep());
1118        if (Tag->isDefinition())
1119          Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
1120            << Context.getTypeDeclType(Tag);
1121      }
1122
1123      // Exception specs are not allowed in typedefs. Complain, but add it
1124      // anyway.
1125      if (FTI.hasExceptionSpec &&
1126          D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1127        Diag(FTI.getThrowLoc(), diag::err_exception_spec_in_typedef);
1128
1129      if (FTI.NumArgs == 0) {
1130        if (getLangOptions().CPlusPlus) {
1131          // C++ 8.3.5p2: If the parameter-declaration-clause is empty, the
1132          // function takes no arguments.
1133          llvm::SmallVector<QualType, 4> Exceptions;
1134          Exceptions.reserve(FTI.NumExceptions);
1135          for (unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
1136            // FIXME: Preserve type source info.
1137            QualType ET = GetTypeFromParser(FTI.Exceptions[ei].Ty);
1138            // Check that the type is valid for an exception spec, and drop it
1139            // if not.
1140            if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
1141              Exceptions.push_back(ET);
1142          }
1143          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, FTI.TypeQuals,
1144                                      FTI.hasExceptionSpec,
1145                                      FTI.hasAnyExceptionSpec,
1146                                      Exceptions.size(), Exceptions.data(),
1147                                      FunctionType::ExtInfo());
1148        } else if (FTI.isVariadic) {
1149          // We allow a zero-parameter variadic function in C if the
1150          // function is marked with the "overloadable"
1151          // attribute. Scan for this attribute now.
1152          bool Overloadable = false;
1153          for (const AttributeList *Attrs = D.getAttributes();
1154               Attrs; Attrs = Attrs->getNext()) {
1155            if (Attrs->getKind() == AttributeList::AT_overloadable) {
1156              Overloadable = true;
1157              break;
1158            }
1159          }
1160
1161          if (!Overloadable)
1162            Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
1163          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, 0,
1164                                      false, false, 0, 0,
1165                                      FunctionType::ExtInfo());
1166        } else {
1167          // Simple void foo(), where the incoming T is the result type.
1168          T = Context.getFunctionNoProtoType(T);
1169        }
1170      } else if (FTI.ArgInfo[0].Param == 0) {
1171        // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function definition.
1172        Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
1173        D.setInvalidType(true);
1174      } else {
1175        // Otherwise, we have a function with an argument list that is
1176        // potentially variadic.
1177        llvm::SmallVector<QualType, 16> ArgTys;
1178
1179        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1180          ParmVarDecl *Param =
1181            cast<ParmVarDecl>(FTI.ArgInfo[i].Param.getAs<Decl>());
1182          QualType ArgTy = Param->getType();
1183          assert(!ArgTy.isNull() && "Couldn't parse type?");
1184
1185          // Adjust the parameter type.
1186          assert((ArgTy == adjustParameterType(ArgTy)) && "Unadjusted type?");
1187
1188          // Look for 'void'.  void is allowed only as a single argument to a
1189          // function with no other parameters (C99 6.7.5.3p10).  We record
1190          // int(void) as a FunctionProtoType with an empty argument list.
1191          if (ArgTy->isVoidType()) {
1192            // If this is something like 'float(int, void)', reject it.  'void'
1193            // is an incomplete type (C99 6.2.5p19) and function decls cannot
1194            // have arguments of incomplete type.
1195            if (FTI.NumArgs != 1 || FTI.isVariadic) {
1196              Diag(DeclType.Loc, diag::err_void_only_param);
1197              ArgTy = Context.IntTy;
1198              Param->setType(ArgTy);
1199            } else if (FTI.ArgInfo[i].Ident) {
1200              // Reject, but continue to parse 'int(void abc)'.
1201              Diag(FTI.ArgInfo[i].IdentLoc,
1202                   diag::err_param_with_void_type);
1203              ArgTy = Context.IntTy;
1204              Param->setType(ArgTy);
1205            } else {
1206              // Reject, but continue to parse 'float(const void)'.
1207              if (ArgTy.hasQualifiers())
1208                Diag(DeclType.Loc, diag::err_void_param_qualified);
1209
1210              // Do not add 'void' to the ArgTys list.
1211              break;
1212            }
1213          } else if (!FTI.hasPrototype) {
1214            if (ArgTy->isPromotableIntegerType()) {
1215              ArgTy = Context.getPromotedIntegerType(ArgTy);
1216            } else if (const BuiltinType* BTy = ArgTy->getAs<BuiltinType>()) {
1217              if (BTy->getKind() == BuiltinType::Float)
1218                ArgTy = Context.DoubleTy;
1219            }
1220          }
1221
1222          ArgTys.push_back(ArgTy);
1223        }
1224
1225        llvm::SmallVector<QualType, 4> Exceptions;
1226        Exceptions.reserve(FTI.NumExceptions);
1227        for (unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
1228          // FIXME: Preserve type source info.
1229          QualType ET = GetTypeFromParser(FTI.Exceptions[ei].Ty);
1230          // Check that the type is valid for an exception spec, and drop it if
1231          // not.
1232          if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
1233            Exceptions.push_back(ET);
1234        }
1235
1236        T = Context.getFunctionType(T, ArgTys.data(), ArgTys.size(),
1237                                    FTI.isVariadic, FTI.TypeQuals,
1238                                    FTI.hasExceptionSpec,
1239                                    FTI.hasAnyExceptionSpec,
1240                                    Exceptions.size(), Exceptions.data(),
1241                                    FunctionType::ExtInfo());
1242      }
1243
1244      // For GCC compatibility, we allow attributes that apply only to
1245      // function types to be placed on a function's return type
1246      // instead (as long as that type doesn't happen to be function
1247      // or function-pointer itself).
1248      ProcessDelayedFnAttrs(*this, T, FnAttrsFromPreviousChunk);
1249
1250      break;
1251    }
1252    case DeclaratorChunk::MemberPointer:
1253      // Verify that we're not building a pointer to pointer to function with
1254      // exception specification.
1255      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1256        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1257        D.setInvalidType(true);
1258        // Build the type anyway.
1259      }
1260      // The scope spec must refer to a class, or be dependent.
1261      QualType ClsType;
1262      if (DeclType.Mem.Scope().isInvalid()) {
1263        // Avoid emitting extra errors if we already errored on the scope.
1264        D.setInvalidType(true);
1265      } else if (isDependentScopeSpecifier(DeclType.Mem.Scope())
1266                 || dyn_cast_or_null<CXXRecordDecl>(
1267                                   computeDeclContext(DeclType.Mem.Scope()))) {
1268        NestedNameSpecifier *NNS
1269          = (NestedNameSpecifier *)DeclType.Mem.Scope().getScopeRep();
1270        NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
1271        switch (NNS->getKind()) {
1272        case NestedNameSpecifier::Identifier:
1273          ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
1274                                                 NNS->getAsIdentifier());
1275          break;
1276
1277        case NestedNameSpecifier::Namespace:
1278        case NestedNameSpecifier::Global:
1279          llvm_unreachable("Nested-name-specifier must name a type");
1280          break;
1281
1282        case NestedNameSpecifier::TypeSpec:
1283        case NestedNameSpecifier::TypeSpecWithTemplate:
1284          ClsType = QualType(NNS->getAsType(), 0);
1285          if (NNSPrefix)
1286            ClsType = Context.getQualifiedNameType(NNSPrefix, ClsType);
1287          break;
1288        }
1289      } else {
1290        Diag(DeclType.Mem.Scope().getBeginLoc(),
1291             diag::err_illegal_decl_mempointer_in_nonclass)
1292          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
1293          << DeclType.Mem.Scope().getRange();
1294        D.setInvalidType(true);
1295      }
1296
1297      if (!ClsType.isNull())
1298        T = BuildMemberPointerType(T, ClsType, DeclType.Mem.TypeQuals,
1299                                   DeclType.Loc, D.getIdentifier());
1300      if (T.isNull()) {
1301        T = Context.IntTy;
1302        D.setInvalidType(true);
1303      }
1304      break;
1305    }
1306
1307    if (T.isNull()) {
1308      D.setInvalidType(true);
1309      T = Context.IntTy;
1310    }
1311
1312    DiagnoseDelayedFnAttrs(*this, FnAttrsFromPreviousChunk);
1313
1314    // See if there are any attributes on this declarator chunk.
1315    if (const AttributeList *AL = DeclType.getAttrs())
1316      ProcessTypeAttributeList(*this, T, false, AL, FnAttrsFromPreviousChunk);
1317  }
1318
1319  if (getLangOptions().CPlusPlus && T->isFunctionType()) {
1320    const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
1321    assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
1322
1323    // C++ 8.3.5p4: A cv-qualifier-seq shall only be part of the function type
1324    // for a nonstatic member function, the function type to which a pointer
1325    // to member refers, or the top-level function type of a function typedef
1326    // declaration.
1327    if (FnTy->getTypeQuals() != 0 &&
1328        D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
1329        ((D.getContext() != Declarator::MemberContext &&
1330          (!D.getCXXScopeSpec().isSet() ||
1331           !computeDeclContext(D.getCXXScopeSpec(), /*FIXME:*/true)
1332              ->isRecord())) ||
1333         D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)) {
1334      if (D.isFunctionDeclarator())
1335        Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_function_type);
1336      else
1337        Diag(D.getIdentifierLoc(),
1338             diag::err_invalid_qualified_typedef_function_type_use);
1339
1340      // Strip the cv-quals from the type.
1341      T = Context.getFunctionType(FnTy->getResultType(), FnTy->arg_type_begin(),
1342                                  FnTy->getNumArgs(), FnTy->isVariadic(), 0,
1343                                  false, false, 0, 0, FunctionType::ExtInfo());
1344    }
1345  }
1346
1347  // Process any function attributes we might have delayed from the
1348  // declaration-specifiers.
1349  ProcessDelayedFnAttrs(*this, T, FnAttrsFromDeclSpec);
1350
1351  // If there were any type attributes applied to the decl itself, not
1352  // the type, apply them to the result type.  But don't do this for
1353  // block-literal expressions, which are parsed wierdly.
1354  if (D.getContext() != Declarator::BlockLiteralContext)
1355    if (const AttributeList *Attrs = D.getAttributes())
1356      ProcessTypeAttributeList(*this, T, false, Attrs,
1357                               FnAttrsFromPreviousChunk);
1358
1359  DiagnoseDelayedFnAttrs(*this, FnAttrsFromPreviousChunk);
1360
1361  if (TInfo) {
1362    if (D.isInvalidType())
1363      *TInfo = 0;
1364    else
1365      *TInfo = GetTypeSourceInfoForDeclarator(D, T, ReturnTypeInfo);
1366  }
1367
1368  return T;
1369}
1370
1371namespace {
1372  class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
1373    const DeclSpec &DS;
1374
1375  public:
1376    TypeSpecLocFiller(const DeclSpec &DS) : DS(DS) {}
1377
1378    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
1379      Visit(TL.getUnqualifiedLoc());
1380    }
1381    void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
1382      TL.setNameLoc(DS.getTypeSpecTypeLoc());
1383    }
1384    void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
1385      TL.setNameLoc(DS.getTypeSpecTypeLoc());
1386
1387      if (DS.getProtocolQualifiers()) {
1388        assert(TL.getNumProtocols() > 0);
1389        assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
1390        TL.setLAngleLoc(DS.getProtocolLAngleLoc());
1391        TL.setRAngleLoc(DS.getSourceRange().getEnd());
1392        for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
1393          TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
1394      } else {
1395        assert(TL.getNumProtocols() == 0);
1396        TL.setLAngleLoc(SourceLocation());
1397        TL.setRAngleLoc(SourceLocation());
1398      }
1399    }
1400    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
1401      assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
1402
1403      TL.setStarLoc(SourceLocation());
1404
1405      if (DS.getProtocolQualifiers()) {
1406        assert(TL.getNumProtocols() > 0);
1407        assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
1408        TL.setHasProtocolsAsWritten(true);
1409        TL.setLAngleLoc(DS.getProtocolLAngleLoc());
1410        TL.setRAngleLoc(DS.getSourceRange().getEnd());
1411        for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
1412          TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
1413
1414      } else {
1415        assert(TL.getNumProtocols() == 0);
1416        TL.setHasProtocolsAsWritten(false);
1417        TL.setLAngleLoc(SourceLocation());
1418        TL.setRAngleLoc(SourceLocation());
1419      }
1420
1421      // This might not have been written with an inner type.
1422      if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
1423        TL.setHasBaseTypeAsWritten(false);
1424        TL.getBaseTypeLoc().initialize(SourceLocation());
1425      } else {
1426        TL.setHasBaseTypeAsWritten(true);
1427        Visit(TL.getBaseTypeLoc());
1428      }
1429    }
1430    void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
1431      TypeSourceInfo *TInfo = 0;
1432      Sema::GetTypeFromParser(DS.getTypeRep(), &TInfo);
1433
1434      // If we got no declarator info from previous Sema routines,
1435      // just fill with the typespec loc.
1436      if (!TInfo) {
1437        TL.initialize(DS.getTypeSpecTypeLoc());
1438        return;
1439      }
1440
1441      TemplateSpecializationTypeLoc OldTL =
1442        cast<TemplateSpecializationTypeLoc>(TInfo->getTypeLoc());
1443      TL.copy(OldTL);
1444    }
1445    void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
1446      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
1447      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
1448      TL.setParensRange(DS.getTypeofParensRange());
1449    }
1450    void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
1451      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
1452      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
1453      TL.setParensRange(DS.getTypeofParensRange());
1454      assert(DS.getTypeRep());
1455      TypeSourceInfo *TInfo = 0;
1456      Sema::GetTypeFromParser(DS.getTypeRep(), &TInfo);
1457      TL.setUnderlyingTInfo(TInfo);
1458    }
1459    void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
1460      // By default, use the source location of the type specifier.
1461      TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
1462      if (TL.needsExtraLocalData()) {
1463        // Set info for the written builtin specifiers.
1464        TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
1465        // Try to have a meaningful source location.
1466        if (TL.getWrittenSignSpec() != TSS_unspecified)
1467          // Sign spec loc overrides the others (e.g., 'unsigned long').
1468          TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
1469        else if (TL.getWrittenWidthSpec() != TSW_unspecified)
1470          // Width spec loc overrides type spec loc (e.g., 'short int').
1471          TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
1472      }
1473    }
1474    void VisitTypeLoc(TypeLoc TL) {
1475      // FIXME: add other typespec types and change this to an assert.
1476      TL.initialize(DS.getTypeSpecTypeLoc());
1477    }
1478  };
1479
1480  class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
1481    const DeclaratorChunk &Chunk;
1482
1483  public:
1484    DeclaratorLocFiller(const DeclaratorChunk &Chunk) : Chunk(Chunk) {}
1485
1486    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
1487      llvm_unreachable("qualified type locs not expected here!");
1488    }
1489
1490    void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
1491      assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
1492      TL.setCaretLoc(Chunk.Loc);
1493    }
1494    void VisitPointerTypeLoc(PointerTypeLoc TL) {
1495      assert(Chunk.Kind == DeclaratorChunk::Pointer);
1496      TL.setStarLoc(Chunk.Loc);
1497    }
1498    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
1499      assert(Chunk.Kind == DeclaratorChunk::Pointer);
1500      TL.setStarLoc(Chunk.Loc);
1501      TL.setHasBaseTypeAsWritten(true);
1502      TL.setHasProtocolsAsWritten(false);
1503      TL.setLAngleLoc(SourceLocation());
1504      TL.setRAngleLoc(SourceLocation());
1505    }
1506    void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
1507      assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
1508      TL.setStarLoc(Chunk.Loc);
1509      // FIXME: nested name specifier
1510    }
1511    void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
1512      assert(Chunk.Kind == DeclaratorChunk::Reference);
1513      // 'Amp' is misleading: this might have been originally
1514      /// spelled with AmpAmp.
1515      TL.setAmpLoc(Chunk.Loc);
1516    }
1517    void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
1518      assert(Chunk.Kind == DeclaratorChunk::Reference);
1519      assert(!Chunk.Ref.LValueRef);
1520      TL.setAmpAmpLoc(Chunk.Loc);
1521    }
1522    void VisitArrayTypeLoc(ArrayTypeLoc TL) {
1523      assert(Chunk.Kind == DeclaratorChunk::Array);
1524      TL.setLBracketLoc(Chunk.Loc);
1525      TL.setRBracketLoc(Chunk.EndLoc);
1526      TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
1527    }
1528    void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
1529      assert(Chunk.Kind == DeclaratorChunk::Function);
1530      TL.setLParenLoc(Chunk.Loc);
1531      TL.setRParenLoc(Chunk.EndLoc);
1532
1533      const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
1534      for (unsigned i = 0, e = TL.getNumArgs(), tpi = 0; i != e; ++i) {
1535        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
1536        TL.setArg(tpi++, Param);
1537      }
1538      // FIXME: exception specs
1539    }
1540
1541    void VisitTypeLoc(TypeLoc TL) {
1542      llvm_unreachable("unsupported TypeLoc kind in declarator!");
1543    }
1544  };
1545}
1546
1547/// \brief Create and instantiate a TypeSourceInfo with type source information.
1548///
1549/// \param T QualType referring to the type as written in source code.
1550///
1551/// \param ReturnTypeInfo For declarators whose return type does not show
1552/// up in the normal place in the declaration specifiers (such as a C++
1553/// conversion function), this pointer will refer to a type source information
1554/// for that return type.
1555TypeSourceInfo *
1556Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
1557                                     TypeSourceInfo *ReturnTypeInfo) {
1558  TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
1559  UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
1560
1561  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
1562    DeclaratorLocFiller(D.getTypeObject(i)).Visit(CurrTL);
1563    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
1564  }
1565
1566  TypeSpecLocFiller(D.getDeclSpec()).Visit(CurrTL);
1567
1568  // We have source information for the return type that was not in the
1569  // declaration specifiers; copy that information into the current type
1570  // location so that it will be retained. This occurs, for example, with
1571  // a C++ conversion function, where the return type occurs within the
1572  // declarator-id rather than in the declaration specifiers.
1573  if (ReturnTypeInfo && D.getDeclSpec().getTypeSpecType() == TST_unspecified) {
1574    TypeLoc TL = ReturnTypeInfo->getTypeLoc();
1575    assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
1576    memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
1577  }
1578
1579  return TInfo;
1580}
1581
1582/// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
1583QualType Sema::CreateLocInfoType(QualType T, TypeSourceInfo *TInfo) {
1584  // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
1585  // and Sema during declaration parsing. Try deallocating/caching them when
1586  // it's appropriate, instead of allocating them and keeping them around.
1587  LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType), 8);
1588  new (LocT) LocInfoType(T, TInfo);
1589  assert(LocT->getTypeClass() != T->getTypeClass() &&
1590         "LocInfoType's TypeClass conflicts with an existing Type class");
1591  return QualType(LocT, 0);
1592}
1593
1594void LocInfoType::getAsStringInternal(std::string &Str,
1595                                      const PrintingPolicy &Policy) const {
1596  assert(false && "LocInfoType leaked into the type system; an opaque TypeTy*"
1597         " was used directly instead of getting the QualType through"
1598         " GetTypeFromParser");
1599}
1600
1601/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
1602/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
1603/// they point to and return true. If T1 and T2 aren't pointer types
1604/// or pointer-to-member types, or if they are not similar at this
1605/// level, returns false and leaves T1 and T2 unchanged. Top-level
1606/// qualifiers on T1 and T2 are ignored. This function will typically
1607/// be called in a loop that successively "unwraps" pointer and
1608/// pointer-to-member types to compare them at each level.
1609bool Sema::UnwrapSimilarPointerTypes(QualType& T1, QualType& T2) {
1610  const PointerType *T1PtrType = T1->getAs<PointerType>(),
1611                    *T2PtrType = T2->getAs<PointerType>();
1612  if (T1PtrType && T2PtrType) {
1613    T1 = T1PtrType->getPointeeType();
1614    T2 = T2PtrType->getPointeeType();
1615    return true;
1616  }
1617
1618  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
1619                          *T2MPType = T2->getAs<MemberPointerType>();
1620  if (T1MPType && T2MPType &&
1621      Context.getCanonicalType(T1MPType->getClass()) ==
1622      Context.getCanonicalType(T2MPType->getClass())) {
1623    T1 = T1MPType->getPointeeType();
1624    T2 = T2MPType->getPointeeType();
1625    return true;
1626  }
1627  return false;
1628}
1629
1630Sema::TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
1631  // C99 6.7.6: Type names have no identifier.  This is already validated by
1632  // the parser.
1633  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
1634
1635  TypeSourceInfo *TInfo = 0;
1636  TagDecl *OwnedTag = 0;
1637  QualType T = GetTypeForDeclarator(D, S, &TInfo, &OwnedTag);
1638  if (D.isInvalidType())
1639    return true;
1640
1641  if (getLangOptions().CPlusPlus) {
1642    // Check that there are no default arguments (C++ only).
1643    CheckExtraCXXDefaultArguments(D);
1644
1645    // C++0x [dcl.type]p3:
1646    //   A type-specifier-seq shall not define a class or enumeration
1647    //   unless it appears in the type-id of an alias-declaration
1648    //   (7.1.3).
1649    if (OwnedTag && OwnedTag->isDefinition())
1650      Diag(OwnedTag->getLocation(), diag::err_type_defined_in_type_specifier)
1651        << Context.getTypeDeclType(OwnedTag);
1652  }
1653
1654  if (TInfo)
1655    T = CreateLocInfoType(T, TInfo);
1656
1657  return T.getAsOpaquePtr();
1658}
1659
1660
1661
1662//===----------------------------------------------------------------------===//
1663// Type Attribute Processing
1664//===----------------------------------------------------------------------===//
1665
1666/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
1667/// specified type.  The attribute contains 1 argument, the id of the address
1668/// space for the type.
1669static void HandleAddressSpaceTypeAttribute(QualType &Type,
1670                                            const AttributeList &Attr, Sema &S){
1671
1672  // If this type is already address space qualified, reject it.
1673  // Clause 6.7.3 - Type qualifiers: "No type shall be qualified by qualifiers
1674  // for two or more different address spaces."
1675  if (Type.getAddressSpace()) {
1676    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
1677    return;
1678  }
1679
1680  // Check the attribute arguments.
1681  if (Attr.getNumArgs() != 1) {
1682    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1683    return;
1684  }
1685  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
1686  llvm::APSInt addrSpace(32);
1687  if (!ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
1688    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
1689      << ASArgExpr->getSourceRange();
1690    return;
1691  }
1692
1693  // Bounds checking.
1694  if (addrSpace.isSigned()) {
1695    if (addrSpace.isNegative()) {
1696      S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
1697        << ASArgExpr->getSourceRange();
1698      return;
1699    }
1700    addrSpace.setIsSigned(false);
1701  }
1702  llvm::APSInt max(addrSpace.getBitWidth());
1703  max = Qualifiers::MaxAddressSpace;
1704  if (addrSpace > max) {
1705    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
1706      << Qualifiers::MaxAddressSpace << ASArgExpr->getSourceRange();
1707    return;
1708  }
1709
1710  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
1711  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
1712}
1713
1714/// HandleObjCGCTypeAttribute - Process an objc's gc attribute on the
1715/// specified type.  The attribute contains 1 argument, weak or strong.
1716static void HandleObjCGCTypeAttribute(QualType &Type,
1717                                      const AttributeList &Attr, Sema &S) {
1718  if (Type.getObjCGCAttr() != Qualifiers::GCNone) {
1719    S.Diag(Attr.getLoc(), diag::err_attribute_multiple_objc_gc);
1720    return;
1721  }
1722
1723  // Check the attribute arguments.
1724  if (!Attr.getParameterName()) {
1725    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
1726      << "objc_gc" << 1;
1727    return;
1728  }
1729  Qualifiers::GC GCAttr;
1730  if (Attr.getNumArgs() != 0) {
1731    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1732    return;
1733  }
1734  if (Attr.getParameterName()->isStr("weak"))
1735    GCAttr = Qualifiers::Weak;
1736  else if (Attr.getParameterName()->isStr("strong"))
1737    GCAttr = Qualifiers::Strong;
1738  else {
1739    S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
1740      << "objc_gc" << Attr.getParameterName();
1741    return;
1742  }
1743
1744  Type = S.Context.getObjCGCQualType(Type, GCAttr);
1745}
1746
1747/// Process an individual function attribute.  Returns true if the
1748/// attribute does not make sense to apply to this type.
1749bool ProcessFnAttr(Sema &S, QualType &Type, const AttributeList &Attr) {
1750  if (Attr.getKind() == AttributeList::AT_noreturn) {
1751    // Complain immediately if the arg count is wrong.
1752    if (Attr.getNumArgs() != 0) {
1753      S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1754      return false;
1755    }
1756
1757    // Delay if this is not a function or pointer to block.
1758    if (!Type->isFunctionPointerType()
1759        && !Type->isBlockPointerType()
1760        && !Type->isFunctionType())
1761      return true;
1762
1763    // Otherwise we can process right away.
1764    Type = S.Context.getNoReturnType(Type);
1765    return false;
1766  }
1767
1768  if (Attr.getKind() == AttributeList::AT_regparm) {
1769    // The warning is emitted elsewhere
1770    if (Attr.getNumArgs() != 1) {
1771      return false;
1772    }
1773
1774    // Delay if this is not a function or pointer to block.
1775    if (!Type->isFunctionPointerType()
1776        && !Type->isBlockPointerType()
1777        && !Type->isFunctionType())
1778      return true;
1779
1780    // Otherwise we can process right away.
1781    Expr *NumParamsExpr = static_cast<Expr *>(Attr.getArg(0));
1782    llvm::APSInt NumParams(32);
1783
1784    // The warning is emitted elsewhere
1785    if (!NumParamsExpr->isIntegerConstantExpr(NumParams, S.Context))
1786      return false;
1787
1788    Type = S.Context.getRegParmType(Type, NumParams.getZExtValue());
1789    return false;
1790  }
1791
1792  // Otherwise, a calling convention.
1793  if (Attr.getNumArgs() != 0) {
1794    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1795    return false;
1796  }
1797
1798  QualType T = Type;
1799  if (const PointerType *PT = Type->getAs<PointerType>())
1800    T = PT->getPointeeType();
1801  const FunctionType *Fn = T->getAs<FunctionType>();
1802
1803  // Delay if the type didn't work out to a function.
1804  if (!Fn) return true;
1805
1806  // TODO: diagnose uses of these conventions on the wrong target.
1807  CallingConv CC;
1808  switch (Attr.getKind()) {
1809  case AttributeList::AT_cdecl: CC = CC_C; break;
1810  case AttributeList::AT_fastcall: CC = CC_X86FastCall; break;
1811  case AttributeList::AT_stdcall: CC = CC_X86StdCall; break;
1812  default: llvm_unreachable("unexpected attribute kind"); return false;
1813  }
1814
1815  CallingConv CCOld = Fn->getCallConv();
1816  if (S.Context.getCanonicalCallConv(CC) ==
1817      S.Context.getCanonicalCallConv(CCOld)) return false;
1818
1819  if (CCOld != CC_Default) {
1820    // Should we diagnose reapplications of the same convention?
1821    S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
1822      << FunctionType::getNameForCallConv(CC)
1823      << FunctionType::getNameForCallConv(CCOld);
1824    return false;
1825  }
1826
1827  // Diagnose the use of X86 fastcall on varargs or unprototyped functions.
1828  if (CC == CC_X86FastCall) {
1829    if (isa<FunctionNoProtoType>(Fn)) {
1830      S.Diag(Attr.getLoc(), diag::err_cconv_knr)
1831        << FunctionType::getNameForCallConv(CC);
1832      return false;
1833    }
1834
1835    const FunctionProtoType *FnP = cast<FunctionProtoType>(Fn);
1836    if (FnP->isVariadic()) {
1837      S.Diag(Attr.getLoc(), diag::err_cconv_varargs)
1838        << FunctionType::getNameForCallConv(CC);
1839      return false;
1840    }
1841  }
1842
1843  Type = S.Context.getCallConvType(Type, CC);
1844  return false;
1845}
1846
1847/// HandleVectorSizeAttribute - this attribute is only applicable to integral
1848/// and float scalars, although arrays, pointers, and function return values are
1849/// allowed in conjunction with this construct. Aggregates with this attribute
1850/// are invalid, even if they are of the same size as a corresponding scalar.
1851/// The raw attribute should contain precisely 1 argument, the vector size for
1852/// the variable, measured in bytes. If curType and rawAttr are well formed,
1853/// this routine will return a new vector type.
1854static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr, Sema &S) {
1855  // Check the attribute arugments.
1856  if (Attr.getNumArgs() != 1) {
1857    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1858    return;
1859  }
1860  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
1861  llvm::APSInt vecSize(32);
1862  if (!sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
1863    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
1864      << "vector_size" << sizeExpr->getSourceRange();
1865    return;
1866  }
1867  // the base type must be integer or float, and can't already be a vector.
1868  if (CurType->isVectorType() ||
1869      (!CurType->isIntegerType() && !CurType->isRealFloatingType())) {
1870    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
1871    return;
1872  }
1873  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
1874  // vecSize is specified in bytes - convert to bits.
1875  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
1876
1877  // the vector size needs to be an integral multiple of the type size.
1878  if (vectorSize % typeSize) {
1879    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
1880      << sizeExpr->getSourceRange();
1881    return;
1882  }
1883  if (vectorSize == 0) {
1884    S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
1885      << sizeExpr->getSourceRange();
1886    return;
1887  }
1888
1889  // Success! Instantiate the vector type, the number of elements is > 0, and
1890  // not required to be a power of 2, unlike GCC.
1891  CurType = S.Context.getVectorType(CurType, vectorSize/typeSize, false, false);
1892}
1893
1894void ProcessTypeAttributeList(Sema &S, QualType &Result,
1895                              bool IsDeclSpec, const AttributeList *AL,
1896                              DelayedAttributeSet &FnAttrs) {
1897  // Scan through and apply attributes to this type where it makes sense.  Some
1898  // attributes (such as __address_space__, __vector_size__, etc) apply to the
1899  // type, but others can be present in the type specifiers even though they
1900  // apply to the decl.  Here we apply type attributes and ignore the rest.
1901  for (; AL; AL = AL->getNext()) {
1902    // If this is an attribute we can handle, do so now, otherwise, add it to
1903    // the LeftOverAttrs list for rechaining.
1904    switch (AL->getKind()) {
1905    default: break;
1906
1907    case AttributeList::AT_address_space:
1908      HandleAddressSpaceTypeAttribute(Result, *AL, S);
1909      break;
1910    case AttributeList::AT_objc_gc:
1911      HandleObjCGCTypeAttribute(Result, *AL, S);
1912      break;
1913    case AttributeList::AT_vector_size:
1914      HandleVectorSizeAttr(Result, *AL, S);
1915      break;
1916
1917    case AttributeList::AT_noreturn:
1918    case AttributeList::AT_cdecl:
1919    case AttributeList::AT_fastcall:
1920    case AttributeList::AT_stdcall:
1921    case AttributeList::AT_regparm:
1922      // Don't process these on the DeclSpec.
1923      if (IsDeclSpec ||
1924          ProcessFnAttr(S, Result, *AL))
1925        FnAttrs.push_back(DelayedAttribute(AL, Result));
1926      break;
1927    }
1928  }
1929}
1930
1931/// @brief Ensure that the type T is a complete type.
1932///
1933/// This routine checks whether the type @p T is complete in any
1934/// context where a complete type is required. If @p T is a complete
1935/// type, returns false. If @p T is a class template specialization,
1936/// this routine then attempts to perform class template
1937/// instantiation. If instantiation fails, or if @p T is incomplete
1938/// and cannot be completed, issues the diagnostic @p diag (giving it
1939/// the type @p T) and returns true.
1940///
1941/// @param Loc  The location in the source that the incomplete type
1942/// diagnostic should refer to.
1943///
1944/// @param T  The type that this routine is examining for completeness.
1945///
1946/// @param PD The partial diagnostic that will be printed out if T is not a
1947/// complete type.
1948///
1949/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
1950/// @c false otherwise.
1951bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
1952                               const PartialDiagnostic &PD,
1953                               std::pair<SourceLocation,
1954                                         PartialDiagnostic> Note) {
1955  unsigned diag = PD.getDiagID();
1956
1957  // FIXME: Add this assertion to make sure we always get instantiation points.
1958  //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
1959  // FIXME: Add this assertion to help us flush out problems with
1960  // checking for dependent types and type-dependent expressions.
1961  //
1962  //  assert(!T->isDependentType() &&
1963  //         "Can't ask whether a dependent type is complete");
1964
1965  // If we have a complete type, we're done.
1966  if (!T->isIncompleteType())
1967    return false;
1968
1969  // If we have a class template specialization or a class member of a
1970  // class template specialization, or an array with known size of such,
1971  // try to instantiate it.
1972  QualType MaybeTemplate = T;
1973  if (const ConstantArrayType *Array = Context.getAsConstantArrayType(T))
1974    MaybeTemplate = Array->getElementType();
1975  if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
1976    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
1977          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
1978      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
1979        return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
1980                                                      TSK_ImplicitInstantiation,
1981                                                      /*Complain=*/diag != 0);
1982    } else if (CXXRecordDecl *Rec
1983                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
1984      if (CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass()) {
1985        MemberSpecializationInfo *MSInfo = Rec->getMemberSpecializationInfo();
1986        assert(MSInfo && "Missing member specialization information?");
1987        // This record was instantiated from a class within a template.
1988        if (MSInfo->getTemplateSpecializationKind()
1989                                               != TSK_ExplicitSpecialization)
1990          return InstantiateClass(Loc, Rec, Pattern,
1991                                  getTemplateInstantiationArgs(Rec),
1992                                  TSK_ImplicitInstantiation,
1993                                  /*Complain=*/diag != 0);
1994      }
1995    }
1996  }
1997
1998  if (diag == 0)
1999    return true;
2000
2001  const TagType *Tag = 0;
2002  if (const RecordType *Record = T->getAs<RecordType>())
2003    Tag = Record;
2004  else if (const EnumType *Enum = T->getAs<EnumType>())
2005    Tag = Enum;
2006
2007  // Avoid diagnosing invalid decls as incomplete.
2008  if (Tag && Tag->getDecl()->isInvalidDecl())
2009    return true;
2010
2011  // We have an incomplete type. Produce a diagnostic.
2012  Diag(Loc, PD) << T;
2013
2014  // If we have a note, produce it.
2015  if (!Note.first.isInvalid())
2016    Diag(Note.first, Note.second);
2017
2018  // If the type was a forward declaration of a class/struct/union
2019  // type, produce a note.
2020  if (Tag && !Tag->getDecl()->isInvalidDecl())
2021    Diag(Tag->getDecl()->getLocation(),
2022         Tag->isBeingDefined() ? diag::note_type_being_defined
2023                               : diag::note_forward_declaration)
2024        << QualType(Tag, 0);
2025
2026  return true;
2027}
2028
2029bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
2030                               const PartialDiagnostic &PD) {
2031  return RequireCompleteType(Loc, T, PD,
2032                             std::make_pair(SourceLocation(), PDiag(0)));
2033}
2034
2035bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
2036                               unsigned DiagID) {
2037  return RequireCompleteType(Loc, T, PDiag(DiagID),
2038                             std::make_pair(SourceLocation(), PDiag(0)));
2039}
2040
2041/// \brief Retrieve a version of the type 'T' that is qualified by the
2042/// nested-name-specifier contained in SS.
2043QualType Sema::getQualifiedNameType(const CXXScopeSpec &SS, QualType T) {
2044  if (!SS.isSet() || SS.isInvalid() || T.isNull())
2045    return T;
2046
2047  NestedNameSpecifier *NNS
2048    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2049  return Context.getQualifiedNameType(NNS, T);
2050}
2051
2052QualType Sema::BuildTypeofExprType(Expr *E) {
2053  if (E->getType() == Context.OverloadTy) {
2054    // C++ [temp.arg.explicit]p3 allows us to resolve a template-id to a
2055    // function template specialization wherever deduction cannot occur.
2056    if (FunctionDecl *Specialization
2057        = ResolveSingleFunctionTemplateSpecialization(E)) {
2058      // The access doesn't really matter in this case.
2059      DeclAccessPair Found = DeclAccessPair::make(Specialization,
2060                                                  Specialization->getAccess());
2061      E = FixOverloadedFunctionReference(E, Found, Specialization);
2062      if (!E)
2063        return QualType();
2064    } else {
2065      Diag(E->getLocStart(),
2066           diag::err_cannot_determine_declared_type_of_overloaded_function)
2067        << false << E->getSourceRange();
2068      return QualType();
2069    }
2070  }
2071
2072  return Context.getTypeOfExprType(E);
2073}
2074
2075QualType Sema::BuildDecltypeType(Expr *E) {
2076  if (E->getType() == Context.OverloadTy) {
2077    // C++ [temp.arg.explicit]p3 allows us to resolve a template-id to a
2078    // function template specialization wherever deduction cannot occur.
2079    if (FunctionDecl *Specialization
2080          = ResolveSingleFunctionTemplateSpecialization(E)) {
2081      // The access doesn't really matter in this case.
2082      DeclAccessPair Found = DeclAccessPair::make(Specialization,
2083                                                  Specialization->getAccess());
2084      E = FixOverloadedFunctionReference(E, Found, Specialization);
2085      if (!E)
2086        return QualType();
2087    } else {
2088      Diag(E->getLocStart(),
2089           diag::err_cannot_determine_declared_type_of_overloaded_function)
2090        << true << E->getSourceRange();
2091      return QualType();
2092    }
2093  }
2094
2095  return Context.getDecltypeType(E);
2096}
2097