SemaType.cpp revision e925322569cb4aad26cc62036a13e2d3daed862d
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/ScopeInfo.h"
15#include "clang/Sema/SemaInternal.h"
16#include "clang/Sema/Template.h"
17#include "clang/Basic/OpenCL.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/ASTMutationListener.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/TypeLoc.h"
24#include "clang/AST/TypeLocVisitor.h"
25#include "clang/AST/Expr.h"
26#include "clang/Basic/PartialDiagnostic.h"
27#include "clang/Basic/TargetInfo.h"
28#include "clang/Lex/Preprocessor.h"
29#include "clang/Parse/ParseDiagnostic.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/DelayedDiagnostic.h"
32#include "clang/Sema/Lookup.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/Support/ErrorHandling.h"
35using namespace clang;
36
37/// isOmittedBlockReturnType - Return true if this declarator is missing a
38/// return type because this is a omitted return type on a block literal.
39static bool isOmittedBlockReturnType(const Declarator &D) {
40  if (D.getContext() != Declarator::BlockLiteralContext ||
41      D.getDeclSpec().hasTypeSpecifier())
42    return false;
43
44  if (D.getNumTypeObjects() == 0)
45    return true;   // ^{ ... }
46
47  if (D.getNumTypeObjects() == 1 &&
48      D.getTypeObject(0).Kind == DeclaratorChunk::Function)
49    return true;   // ^(int X, float Y) { ... }
50
51  return false;
52}
53
54/// diagnoseBadTypeAttribute - Diagnoses a type attribute which
55/// doesn't apply to the given type.
56static void diagnoseBadTypeAttribute(Sema &S, const AttributeList &attr,
57                                     QualType type) {
58  bool useExpansionLoc = false;
59
60  unsigned diagID = 0;
61  switch (attr.getKind()) {
62  case AttributeList::AT_ObjCGC:
63    diagID = diag::warn_pointer_attribute_wrong_type;
64    useExpansionLoc = true;
65    break;
66
67  case AttributeList::AT_ObjCOwnership:
68    diagID = diag::warn_objc_object_attribute_wrong_type;
69    useExpansionLoc = true;
70    break;
71
72  default:
73    // Assume everything else was a function attribute.
74    diagID = diag::warn_function_attribute_wrong_type;
75    break;
76  }
77
78  SourceLocation loc = attr.getLoc();
79  StringRef name = attr.getName()->getName();
80
81  // The GC attributes are usually written with macros;  special-case them.
82  if (useExpansionLoc && loc.isMacroID() && attr.getParameterName()) {
83    if (attr.getParameterName()->isStr("strong")) {
84      if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
85    } else if (attr.getParameterName()->isStr("weak")) {
86      if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
87    }
88  }
89
90  S.Diag(loc, diagID) << name << type;
91}
92
93// objc_gc applies to Objective-C pointers or, otherwise, to the
94// smallest available pointer type (i.e. 'void*' in 'void**').
95#define OBJC_POINTER_TYPE_ATTRS_CASELIST \
96    case AttributeList::AT_ObjCGC: \
97    case AttributeList::AT_ObjCOwnership
98
99// Function type attributes.
100#define FUNCTION_TYPE_ATTRS_CASELIST \
101    case AttributeList::AT_NoReturn: \
102    case AttributeList::AT_CDecl: \
103    case AttributeList::AT_FastCall: \
104    case AttributeList::AT_StdCall: \
105    case AttributeList::AT_ThisCall: \
106    case AttributeList::AT_Pascal: \
107    case AttributeList::AT_Regparm: \
108    case AttributeList::AT_Pcs: \
109    case AttributeList::AT_PnaclCall \
110
111namespace {
112  /// An object which stores processing state for the entire
113  /// GetTypeForDeclarator process.
114  class TypeProcessingState {
115    Sema &sema;
116
117    /// The declarator being processed.
118    Declarator &declarator;
119
120    /// The index of the declarator chunk we're currently processing.
121    /// May be the total number of valid chunks, indicating the
122    /// DeclSpec.
123    unsigned chunkIndex;
124
125    /// Whether there are non-trivial modifications to the decl spec.
126    bool trivial;
127
128    /// Whether we saved the attributes in the decl spec.
129    bool hasSavedAttrs;
130
131    /// The original set of attributes on the DeclSpec.
132    SmallVector<AttributeList*, 2> savedAttrs;
133
134    /// A list of attributes to diagnose the uselessness of when the
135    /// processing is complete.
136    SmallVector<AttributeList*, 2> ignoredTypeAttrs;
137
138  public:
139    TypeProcessingState(Sema &sema, Declarator &declarator)
140      : sema(sema), declarator(declarator),
141        chunkIndex(declarator.getNumTypeObjects()),
142        trivial(true), hasSavedAttrs(false) {}
143
144    Sema &getSema() const {
145      return sema;
146    }
147
148    Declarator &getDeclarator() const {
149      return declarator;
150    }
151
152    unsigned getCurrentChunkIndex() const {
153      return chunkIndex;
154    }
155
156    void setCurrentChunkIndex(unsigned idx) {
157      assert(idx <= declarator.getNumTypeObjects());
158      chunkIndex = idx;
159    }
160
161    AttributeList *&getCurrentAttrListRef() const {
162      assert(chunkIndex <= declarator.getNumTypeObjects());
163      if (chunkIndex == declarator.getNumTypeObjects())
164        return getMutableDeclSpec().getAttributes().getListRef();
165      return declarator.getTypeObject(chunkIndex).getAttrListRef();
166    }
167
168    /// Save the current set of attributes on the DeclSpec.
169    void saveDeclSpecAttrs() {
170      // Don't try to save them multiple times.
171      if (hasSavedAttrs) return;
172
173      DeclSpec &spec = getMutableDeclSpec();
174      for (AttributeList *attr = spec.getAttributes().getList(); attr;
175             attr = attr->getNext())
176        savedAttrs.push_back(attr);
177      trivial &= savedAttrs.empty();
178      hasSavedAttrs = true;
179    }
180
181    /// Record that we had nowhere to put the given type attribute.
182    /// We will diagnose such attributes later.
183    void addIgnoredTypeAttr(AttributeList &attr) {
184      ignoredTypeAttrs.push_back(&attr);
185    }
186
187    /// Diagnose all the ignored type attributes, given that the
188    /// declarator worked out to the given type.
189    void diagnoseIgnoredTypeAttrs(QualType type) const {
190      for (SmallVectorImpl<AttributeList*>::const_iterator
191             i = ignoredTypeAttrs.begin(), e = ignoredTypeAttrs.end();
192           i != e; ++i)
193        diagnoseBadTypeAttribute(getSema(), **i, type);
194    }
195
196    ~TypeProcessingState() {
197      if (trivial) return;
198
199      restoreDeclSpecAttrs();
200    }
201
202  private:
203    DeclSpec &getMutableDeclSpec() const {
204      return const_cast<DeclSpec&>(declarator.getDeclSpec());
205    }
206
207    void restoreDeclSpecAttrs() {
208      assert(hasSavedAttrs);
209
210      if (savedAttrs.empty()) {
211        getMutableDeclSpec().getAttributes().set(0);
212        return;
213      }
214
215      getMutableDeclSpec().getAttributes().set(savedAttrs[0]);
216      for (unsigned i = 0, e = savedAttrs.size() - 1; i != e; ++i)
217        savedAttrs[i]->setNext(savedAttrs[i+1]);
218      savedAttrs.back()->setNext(0);
219    }
220  };
221
222  /// Basically std::pair except that we really want to avoid an
223  /// implicit operator= for safety concerns.  It's also a minor
224  /// link-time optimization for this to be a private type.
225  struct AttrAndList {
226    /// The attribute.
227    AttributeList &first;
228
229    /// The head of the list the attribute is currently in.
230    AttributeList *&second;
231
232    AttrAndList(AttributeList &attr, AttributeList *&head)
233      : first(attr), second(head) {}
234  };
235}
236
237namespace llvm {
238  template <> struct isPodLike<AttrAndList> {
239    static const bool value = true;
240  };
241}
242
243static void spliceAttrIntoList(AttributeList &attr, AttributeList *&head) {
244  attr.setNext(head);
245  head = &attr;
246}
247
248static void spliceAttrOutOfList(AttributeList &attr, AttributeList *&head) {
249  if (head == &attr) {
250    head = attr.getNext();
251    return;
252  }
253
254  AttributeList *cur = head;
255  while (true) {
256    assert(cur && cur->getNext() && "ran out of attrs?");
257    if (cur->getNext() == &attr) {
258      cur->setNext(attr.getNext());
259      return;
260    }
261    cur = cur->getNext();
262  }
263}
264
265static void moveAttrFromListToList(AttributeList &attr,
266                                   AttributeList *&fromList,
267                                   AttributeList *&toList) {
268  spliceAttrOutOfList(attr, fromList);
269  spliceAttrIntoList(attr, toList);
270}
271
272static void processTypeAttrs(TypeProcessingState &state,
273                             QualType &type, bool isDeclSpec,
274                             AttributeList *attrs);
275
276static bool handleFunctionTypeAttr(TypeProcessingState &state,
277                                   AttributeList &attr,
278                                   QualType &type);
279
280static bool handleObjCGCTypeAttr(TypeProcessingState &state,
281                                 AttributeList &attr, QualType &type);
282
283static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
284                                       AttributeList &attr, QualType &type);
285
286static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
287                                      AttributeList &attr, QualType &type) {
288  if (attr.getKind() == AttributeList::AT_ObjCGC)
289    return handleObjCGCTypeAttr(state, attr, type);
290  assert(attr.getKind() == AttributeList::AT_ObjCOwnership);
291  return handleObjCOwnershipTypeAttr(state, attr, type);
292}
293
294/// Given that an objc_gc attribute was written somewhere on a
295/// declaration *other* than on the declarator itself (for which, use
296/// distributeObjCPointerTypeAttrFromDeclarator), and given that it
297/// didn't apply in whatever position it was written in, try to move
298/// it to a more appropriate position.
299static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
300                                          AttributeList &attr,
301                                          QualType type) {
302  Declarator &declarator = state.getDeclarator();
303  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
304    DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
305    switch (chunk.Kind) {
306    case DeclaratorChunk::Pointer:
307    case DeclaratorChunk::BlockPointer:
308      moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
309                             chunk.getAttrListRef());
310      return;
311
312    case DeclaratorChunk::Paren:
313    case DeclaratorChunk::Array:
314      continue;
315
316    // Don't walk through these.
317    case DeclaratorChunk::Reference:
318    case DeclaratorChunk::Function:
319    case DeclaratorChunk::MemberPointer:
320      goto error;
321    }
322  }
323 error:
324
325  diagnoseBadTypeAttribute(state.getSema(), attr, type);
326}
327
328/// Distribute an objc_gc type attribute that was written on the
329/// declarator.
330static void
331distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState &state,
332                                            AttributeList &attr,
333                                            QualType &declSpecType) {
334  Declarator &declarator = state.getDeclarator();
335
336  // objc_gc goes on the innermost pointer to something that's not a
337  // pointer.
338  unsigned innermost = -1U;
339  bool considerDeclSpec = true;
340  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
341    DeclaratorChunk &chunk = declarator.getTypeObject(i);
342    switch (chunk.Kind) {
343    case DeclaratorChunk::Pointer:
344    case DeclaratorChunk::BlockPointer:
345      innermost = i;
346      continue;
347
348    case DeclaratorChunk::Reference:
349    case DeclaratorChunk::MemberPointer:
350    case DeclaratorChunk::Paren:
351    case DeclaratorChunk::Array:
352      continue;
353
354    case DeclaratorChunk::Function:
355      considerDeclSpec = false;
356      goto done;
357    }
358  }
359 done:
360
361  // That might actually be the decl spec if we weren't blocked by
362  // anything in the declarator.
363  if (considerDeclSpec) {
364    if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
365      // Splice the attribute into the decl spec.  Prevents the
366      // attribute from being applied multiple times and gives
367      // the source-location-filler something to work with.
368      state.saveDeclSpecAttrs();
369      moveAttrFromListToList(attr, declarator.getAttrListRef(),
370               declarator.getMutableDeclSpec().getAttributes().getListRef());
371      return;
372    }
373  }
374
375  // Otherwise, if we found an appropriate chunk, splice the attribute
376  // into it.
377  if (innermost != -1U) {
378    moveAttrFromListToList(attr, declarator.getAttrListRef(),
379                       declarator.getTypeObject(innermost).getAttrListRef());
380    return;
381  }
382
383  // Otherwise, diagnose when we're done building the type.
384  spliceAttrOutOfList(attr, declarator.getAttrListRef());
385  state.addIgnoredTypeAttr(attr);
386}
387
388/// A function type attribute was written somewhere in a declaration
389/// *other* than on the declarator itself or in the decl spec.  Given
390/// that it didn't apply in whatever position it was written in, try
391/// to move it to a more appropriate position.
392static void distributeFunctionTypeAttr(TypeProcessingState &state,
393                                       AttributeList &attr,
394                                       QualType type) {
395  Declarator &declarator = state.getDeclarator();
396
397  // Try to push the attribute from the return type of a function to
398  // the function itself.
399  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
400    DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
401    switch (chunk.Kind) {
402    case DeclaratorChunk::Function:
403      moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
404                             chunk.getAttrListRef());
405      return;
406
407    case DeclaratorChunk::Paren:
408    case DeclaratorChunk::Pointer:
409    case DeclaratorChunk::BlockPointer:
410    case DeclaratorChunk::Array:
411    case DeclaratorChunk::Reference:
412    case DeclaratorChunk::MemberPointer:
413      continue;
414    }
415  }
416
417  diagnoseBadTypeAttribute(state.getSema(), attr, type);
418}
419
420/// Try to distribute a function type attribute to the innermost
421/// function chunk or type.  Returns true if the attribute was
422/// distributed, false if no location was found.
423static bool
424distributeFunctionTypeAttrToInnermost(TypeProcessingState &state,
425                                      AttributeList &attr,
426                                      AttributeList *&attrList,
427                                      QualType &declSpecType) {
428  Declarator &declarator = state.getDeclarator();
429
430  // Put it on the innermost function chunk, if there is one.
431  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
432    DeclaratorChunk &chunk = declarator.getTypeObject(i);
433    if (chunk.Kind != DeclaratorChunk::Function) continue;
434
435    moveAttrFromListToList(attr, attrList, chunk.getAttrListRef());
436    return true;
437  }
438
439  if (handleFunctionTypeAttr(state, attr, declSpecType)) {
440    spliceAttrOutOfList(attr, attrList);
441    return true;
442  }
443
444  return false;
445}
446
447/// A function type attribute was written in the decl spec.  Try to
448/// apply it somewhere.
449static void
450distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
451                                       AttributeList &attr,
452                                       QualType &declSpecType) {
453  state.saveDeclSpecAttrs();
454
455  // Try to distribute to the innermost.
456  if (distributeFunctionTypeAttrToInnermost(state, attr,
457                                            state.getCurrentAttrListRef(),
458                                            declSpecType))
459    return;
460
461  // If that failed, diagnose the bad attribute when the declarator is
462  // fully built.
463  state.addIgnoredTypeAttr(attr);
464}
465
466/// A function type attribute was written on the declarator.  Try to
467/// apply it somewhere.
468static void
469distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
470                                         AttributeList &attr,
471                                         QualType &declSpecType) {
472  Declarator &declarator = state.getDeclarator();
473
474  // Try to distribute to the innermost.
475  if (distributeFunctionTypeAttrToInnermost(state, attr,
476                                            declarator.getAttrListRef(),
477                                            declSpecType))
478    return;
479
480  // If that failed, diagnose the bad attribute when the declarator is
481  // fully built.
482  spliceAttrOutOfList(attr, declarator.getAttrListRef());
483  state.addIgnoredTypeAttr(attr);
484}
485
486/// \brief Given that there are attributes written on the declarator
487/// itself, try to distribute any type attributes to the appropriate
488/// declarator chunk.
489///
490/// These are attributes like the following:
491///   int f ATTR;
492///   int (f ATTR)();
493/// but not necessarily this:
494///   int f() ATTR;
495static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
496                                              QualType &declSpecType) {
497  // Collect all the type attributes from the declarator itself.
498  assert(state.getDeclarator().getAttributes() && "declarator has no attrs!");
499  AttributeList *attr = state.getDeclarator().getAttributes();
500  AttributeList *next;
501  do {
502    next = attr->getNext();
503
504    switch (attr->getKind()) {
505    OBJC_POINTER_TYPE_ATTRS_CASELIST:
506      distributeObjCPointerTypeAttrFromDeclarator(state, *attr, declSpecType);
507      break;
508
509    case AttributeList::AT_NSReturnsRetained:
510      if (!state.getSema().getLangOpts().ObjCAutoRefCount)
511        break;
512      // fallthrough
513
514    FUNCTION_TYPE_ATTRS_CASELIST:
515      distributeFunctionTypeAttrFromDeclarator(state, *attr, declSpecType);
516      break;
517
518    default:
519      break;
520    }
521  } while ((attr = next));
522}
523
524/// Add a synthetic '()' to a block-literal declarator if it is
525/// required, given the return type.
526static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
527                                          QualType declSpecType) {
528  Declarator &declarator = state.getDeclarator();
529
530  // First, check whether the declarator would produce a function,
531  // i.e. whether the innermost semantic chunk is a function.
532  if (declarator.isFunctionDeclarator()) {
533    // If so, make that declarator a prototyped declarator.
534    declarator.getFunctionTypeInfo().hasPrototype = true;
535    return;
536  }
537
538  // If there are any type objects, the type as written won't name a
539  // function, regardless of the decl spec type.  This is because a
540  // block signature declarator is always an abstract-declarator, and
541  // abstract-declarators can't just be parentheses chunks.  Therefore
542  // we need to build a function chunk unless there are no type
543  // objects and the decl spec type is a function.
544  if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
545    return;
546
547  // Note that there *are* cases with invalid declarators where
548  // declarators consist solely of parentheses.  In general, these
549  // occur only in failed efforts to make function declarators, so
550  // faking up the function chunk is still the right thing to do.
551
552  // Otherwise, we need to fake up a function declarator.
553  SourceLocation loc = declarator.getLocStart();
554
555  // ...and *prepend* it to the declarator.
556  SourceLocation NoLoc;
557  declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
558                             /*HasProto=*/true,
559                             /*IsAmbiguous=*/false,
560                             /*LParenLoc=*/NoLoc,
561                             /*ArgInfo=*/0,
562                             /*NumArgs=*/0,
563                             /*EllipsisLoc=*/NoLoc,
564                             /*RParenLoc=*/NoLoc,
565                             /*TypeQuals=*/0,
566                             /*RefQualifierIsLvalueRef=*/true,
567                             /*RefQualifierLoc=*/NoLoc,
568                             /*ConstQualifierLoc=*/NoLoc,
569                             /*VolatileQualifierLoc=*/NoLoc,
570                             /*MutableLoc=*/NoLoc,
571                             EST_None,
572                             /*ESpecLoc=*/NoLoc,
573                             /*Exceptions=*/0,
574                             /*ExceptionRanges=*/0,
575                             /*NumExceptions=*/0,
576                             /*NoexceptExpr=*/0,
577                             loc, loc, declarator));
578
579  // For consistency, make sure the state still has us as processing
580  // the decl spec.
581  assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
582  state.setCurrentChunkIndex(declarator.getNumTypeObjects());
583}
584
585/// \brief Convert the specified declspec to the appropriate type
586/// object.
587/// \param state Specifies the declarator containing the declaration specifier
588/// to be converted, along with other associated processing state.
589/// \returns The type described by the declaration specifiers.  This function
590/// never returns null.
591static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
592  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
593  // checking.
594
595  Sema &S = state.getSema();
596  Declarator &declarator = state.getDeclarator();
597  const DeclSpec &DS = declarator.getDeclSpec();
598  SourceLocation DeclLoc = declarator.getIdentifierLoc();
599  if (DeclLoc.isInvalid())
600    DeclLoc = DS.getLocStart();
601
602  ASTContext &Context = S.Context;
603
604  QualType Result;
605  switch (DS.getTypeSpecType()) {
606  case DeclSpec::TST_void:
607    Result = Context.VoidTy;
608    break;
609  case DeclSpec::TST_char:
610    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
611      Result = Context.CharTy;
612    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
613      Result = Context.SignedCharTy;
614    else {
615      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
616             "Unknown TSS value");
617      Result = Context.UnsignedCharTy;
618    }
619    break;
620  case DeclSpec::TST_wchar:
621    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
622      Result = Context.WCharTy;
623    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
624      S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
625        << DS.getSpecifierName(DS.getTypeSpecType());
626      Result = Context.getSignedWCharType();
627    } else {
628      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
629        "Unknown TSS value");
630      S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
631        << DS.getSpecifierName(DS.getTypeSpecType());
632      Result = Context.getUnsignedWCharType();
633    }
634    break;
635  case DeclSpec::TST_char16:
636      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
637        "Unknown TSS value");
638      Result = Context.Char16Ty;
639    break;
640  case DeclSpec::TST_char32:
641      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
642        "Unknown TSS value");
643      Result = Context.Char32Ty;
644    break;
645  case DeclSpec::TST_unspecified:
646    // "<proto1,proto2>" is an objc qualified ID with a missing id.
647    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
648      Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
649                                         (ObjCProtocolDecl*const*)PQ,
650                                         DS.getNumProtocolQualifiers());
651      Result = Context.getObjCObjectPointerType(Result);
652      break;
653    }
654
655    // If this is a missing declspec in a block literal return context, then it
656    // is inferred from the return statements inside the block.
657    // The declspec is always missing in a lambda expr context; it is either
658    // specified with a trailing return type or inferred.
659    if (declarator.getContext() == Declarator::LambdaExprContext ||
660        isOmittedBlockReturnType(declarator)) {
661      Result = Context.DependentTy;
662      break;
663    }
664
665    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
666    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
667    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
668    // Note that the one exception to this is function definitions, which are
669    // allowed to be completely missing a declspec.  This is handled in the
670    // parser already though by it pretending to have seen an 'int' in this
671    // case.
672    if (S.getLangOpts().ImplicitInt) {
673      // In C89 mode, we only warn if there is a completely missing declspec
674      // when one is not allowed.
675      if (DS.isEmpty()) {
676        S.Diag(DeclLoc, diag::ext_missing_declspec)
677          << DS.getSourceRange()
678        << FixItHint::CreateInsertion(DS.getLocStart(), "int");
679      }
680    } else if (!DS.hasTypeSpecifier()) {
681      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
682      // "At least one type specifier shall be given in the declaration
683      // specifiers in each declaration, and in the specifier-qualifier list in
684      // each struct declaration and type name."
685      // FIXME: Does Microsoft really have the implicit int extension in C++?
686      if (S.getLangOpts().CPlusPlus &&
687          !S.getLangOpts().MicrosoftExt) {
688        S.Diag(DeclLoc, diag::err_missing_type_specifier)
689          << DS.getSourceRange();
690
691        // When this occurs in C++ code, often something is very broken with the
692        // value being declared, poison it as invalid so we don't get chains of
693        // errors.
694        declarator.setInvalidType(true);
695      } else {
696        S.Diag(DeclLoc, diag::ext_missing_type_specifier)
697          << DS.getSourceRange();
698      }
699    }
700
701    // FALL THROUGH.
702  case DeclSpec::TST_int: {
703    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
704      switch (DS.getTypeSpecWidth()) {
705      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
706      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
707      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
708      case DeclSpec::TSW_longlong:
709        Result = Context.LongLongTy;
710
711        // 'long long' is a C99 or C++11 feature.
712        if (!S.getLangOpts().C99) {
713          if (S.getLangOpts().CPlusPlus)
714            S.Diag(DS.getTypeSpecWidthLoc(),
715                   S.getLangOpts().CPlusPlus0x ?
716                   diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
717          else
718            S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
719        }
720        break;
721      }
722    } else {
723      switch (DS.getTypeSpecWidth()) {
724      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
725      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
726      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
727      case DeclSpec::TSW_longlong:
728        Result = Context.UnsignedLongLongTy;
729
730        // 'long long' is a C99 or C++11 feature.
731        if (!S.getLangOpts().C99) {
732          if (S.getLangOpts().CPlusPlus)
733            S.Diag(DS.getTypeSpecWidthLoc(),
734                   S.getLangOpts().CPlusPlus0x ?
735                   diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
736          else
737            S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
738        }
739        break;
740      }
741    }
742    break;
743  }
744  case DeclSpec::TST_int128:
745    if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
746      Result = Context.UnsignedInt128Ty;
747    else
748      Result = Context.Int128Ty;
749    break;
750  case DeclSpec::TST_half: Result = Context.HalfTy; break;
751  case DeclSpec::TST_float: Result = Context.FloatTy; break;
752  case DeclSpec::TST_double:
753    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
754      Result = Context.LongDoubleTy;
755    else
756      Result = Context.DoubleTy;
757
758    if (S.getLangOpts().OpenCL && !S.getOpenCLOptions().cl_khr_fp64) {
759      S.Diag(DS.getTypeSpecTypeLoc(), diag::err_double_requires_fp64);
760      declarator.setInvalidType(true);
761    }
762    break;
763  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
764  case DeclSpec::TST_decimal32:    // _Decimal32
765  case DeclSpec::TST_decimal64:    // _Decimal64
766  case DeclSpec::TST_decimal128:   // _Decimal128
767    S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
768    Result = Context.IntTy;
769    declarator.setInvalidType(true);
770    break;
771  case DeclSpec::TST_class:
772  case DeclSpec::TST_enum:
773  case DeclSpec::TST_union:
774  case DeclSpec::TST_struct:
775  case DeclSpec::TST_interface: {
776    TypeDecl *D = dyn_cast_or_null<TypeDecl>(DS.getRepAsDecl());
777    if (!D) {
778      // This can happen in C++ with ambiguous lookups.
779      Result = Context.IntTy;
780      declarator.setInvalidType(true);
781      break;
782    }
783
784    // If the type is deprecated or unavailable, diagnose it.
785    S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
786
787    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
788           DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
789
790    // TypeQuals handled by caller.
791    Result = Context.getTypeDeclType(D);
792
793    // In both C and C++, make an ElaboratedType.
794    ElaboratedTypeKeyword Keyword
795      = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
796    Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result);
797    break;
798  }
799  case DeclSpec::TST_typename: {
800    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
801           DS.getTypeSpecSign() == 0 &&
802           "Can't handle qualifiers on typedef names yet!");
803    Result = S.GetTypeFromParser(DS.getRepAsType());
804    if (Result.isNull())
805      declarator.setInvalidType(true);
806    else if (DeclSpec::ProtocolQualifierListTy PQ
807               = DS.getProtocolQualifiers()) {
808      if (const ObjCObjectType *ObjT = Result->getAs<ObjCObjectType>()) {
809        // Silently drop any existing protocol qualifiers.
810        // TODO: determine whether that's the right thing to do.
811        if (ObjT->getNumProtocols())
812          Result = ObjT->getBaseType();
813
814        if (DS.getNumProtocolQualifiers())
815          Result = Context.getObjCObjectType(Result,
816                                             (ObjCProtocolDecl*const*) PQ,
817                                             DS.getNumProtocolQualifiers());
818      } else if (Result->isObjCIdType()) {
819        // id<protocol-list>
820        Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
821                                           (ObjCProtocolDecl*const*) PQ,
822                                           DS.getNumProtocolQualifiers());
823        Result = Context.getObjCObjectPointerType(Result);
824      } else if (Result->isObjCClassType()) {
825        // Class<protocol-list>
826        Result = Context.getObjCObjectType(Context.ObjCBuiltinClassTy,
827                                           (ObjCProtocolDecl*const*) PQ,
828                                           DS.getNumProtocolQualifiers());
829        Result = Context.getObjCObjectPointerType(Result);
830      } else {
831        S.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
832          << DS.getSourceRange();
833        declarator.setInvalidType(true);
834      }
835    }
836
837    // TypeQuals handled by caller.
838    break;
839  }
840  case DeclSpec::TST_typeofType:
841    // FIXME: Preserve type source info.
842    Result = S.GetTypeFromParser(DS.getRepAsType());
843    assert(!Result.isNull() && "Didn't get a type for typeof?");
844    if (!Result->isDependentType())
845      if (const TagType *TT = Result->getAs<TagType>())
846        S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
847    // TypeQuals handled by caller.
848    Result = Context.getTypeOfType(Result);
849    break;
850  case DeclSpec::TST_typeofExpr: {
851    Expr *E = DS.getRepAsExpr();
852    assert(E && "Didn't get an expression for typeof?");
853    // TypeQuals handled by caller.
854    Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
855    if (Result.isNull()) {
856      Result = Context.IntTy;
857      declarator.setInvalidType(true);
858    }
859    break;
860  }
861  case DeclSpec::TST_decltype: {
862    Expr *E = DS.getRepAsExpr();
863    assert(E && "Didn't get an expression for decltype?");
864    // TypeQuals handled by caller.
865    Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
866    if (Result.isNull()) {
867      Result = Context.IntTy;
868      declarator.setInvalidType(true);
869    }
870    break;
871  }
872  case DeclSpec::TST_underlyingType:
873    Result = S.GetTypeFromParser(DS.getRepAsType());
874    assert(!Result.isNull() && "Didn't get a type for __underlying_type?");
875    Result = S.BuildUnaryTransformType(Result,
876                                       UnaryTransformType::EnumUnderlyingType,
877                                       DS.getTypeSpecTypeLoc());
878    if (Result.isNull()) {
879      Result = Context.IntTy;
880      declarator.setInvalidType(true);
881    }
882    break;
883
884  case DeclSpec::TST_auto: {
885    // TypeQuals handled by caller.
886    Result = Context.getAutoType(QualType());
887    break;
888  }
889
890  case DeclSpec::TST_unknown_anytype:
891    Result = Context.UnknownAnyTy;
892    break;
893
894  case DeclSpec::TST_atomic:
895    Result = S.GetTypeFromParser(DS.getRepAsType());
896    assert(!Result.isNull() && "Didn't get a type for _Atomic?");
897    Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
898    if (Result.isNull()) {
899      Result = Context.IntTy;
900      declarator.setInvalidType(true);
901    }
902    break;
903
904  case DeclSpec::TST_error:
905    Result = Context.IntTy;
906    declarator.setInvalidType(true);
907    break;
908  }
909
910  // Handle complex types.
911  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
912    if (S.getLangOpts().Freestanding)
913      S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
914    Result = Context.getComplexType(Result);
915  } else if (DS.isTypeAltiVecVector()) {
916    unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
917    assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
918    VectorType::VectorKind VecKind = VectorType::AltiVecVector;
919    if (DS.isTypeAltiVecPixel())
920      VecKind = VectorType::AltiVecPixel;
921    else if (DS.isTypeAltiVecBool())
922      VecKind = VectorType::AltiVecBool;
923    Result = Context.getVectorType(Result, 128/typeSize, VecKind);
924  }
925
926  // FIXME: Imaginary.
927  if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
928    S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
929
930  // Before we process any type attributes, synthesize a block literal
931  // function declarator if necessary.
932  if (declarator.getContext() == Declarator::BlockLiteralContext)
933    maybeSynthesizeBlockSignature(state, Result);
934
935  // Apply any type attributes from the decl spec.  This may cause the
936  // list of type attributes to be temporarily saved while the type
937  // attributes are pushed around.
938  if (AttributeList *attrs = DS.getAttributes().getList())
939    processTypeAttrs(state, Result, true, attrs);
940
941  // Apply const/volatile/restrict qualifiers to T.
942  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
943
944    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
945    // or incomplete types shall not be restrict-qualified."  C++ also allows
946    // restrict-qualified references.
947    if (TypeQuals & DeclSpec::TQ_restrict) {
948      if (Result->isAnyPointerType() || Result->isReferenceType()) {
949        QualType EltTy;
950        if (Result->isObjCObjectPointerType())
951          EltTy = Result;
952        else
953          EltTy = Result->isPointerType() ?
954                    Result->getAs<PointerType>()->getPointeeType() :
955                    Result->getAs<ReferenceType>()->getPointeeType();
956
957        // If we have a pointer or reference, the pointee must have an object
958        // incomplete type.
959        if (!EltTy->isIncompleteOrObjectType()) {
960          S.Diag(DS.getRestrictSpecLoc(),
961               diag::err_typecheck_invalid_restrict_invalid_pointee)
962            << EltTy << DS.getSourceRange();
963          TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
964        }
965      } else {
966        S.Diag(DS.getRestrictSpecLoc(),
967               diag::err_typecheck_invalid_restrict_not_pointer)
968          << Result << DS.getSourceRange();
969        TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
970      }
971    }
972
973    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
974    // of a function type includes any type qualifiers, the behavior is
975    // undefined."
976    if (Result->isFunctionType() && TypeQuals) {
977      // Get some location to point at, either the C or V location.
978      SourceLocation Loc;
979      if (TypeQuals & DeclSpec::TQ_const)
980        Loc = DS.getConstSpecLoc();
981      else if (TypeQuals & DeclSpec::TQ_volatile)
982        Loc = DS.getVolatileSpecLoc();
983      else {
984        assert((TypeQuals & DeclSpec::TQ_restrict) &&
985               "Has CVR quals but not C, V, or R?");
986        Loc = DS.getRestrictSpecLoc();
987      }
988      S.Diag(Loc, diag::warn_typecheck_function_qualifiers)
989        << Result << DS.getSourceRange();
990    }
991
992    // C++ [dcl.ref]p1:
993    //   Cv-qualified references are ill-formed except when the
994    //   cv-qualifiers are introduced through the use of a typedef
995    //   (7.1.3) or of a template type argument (14.3), in which
996    //   case the cv-qualifiers are ignored.
997    // FIXME: Shouldn't we be checking SCS_typedef here?
998    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
999        TypeQuals && Result->isReferenceType()) {
1000      TypeQuals &= ~DeclSpec::TQ_const;
1001      TypeQuals &= ~DeclSpec::TQ_volatile;
1002    }
1003
1004    // C90 6.5.3 constraints: "The same type qualifier shall not appear more
1005    // than once in the same specifier-list or qualifier-list, either directly
1006    // or via one or more typedefs."
1007    if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
1008        && TypeQuals & Result.getCVRQualifiers()) {
1009      if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
1010        S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
1011          << "const";
1012      }
1013
1014      if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
1015        S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
1016          << "volatile";
1017      }
1018
1019      // C90 doesn't have restrict, so it doesn't force us to produce a warning
1020      // in this case.
1021    }
1022
1023    Qualifiers Quals = Qualifiers::fromCVRMask(TypeQuals);
1024    Result = Context.getQualifiedType(Result, Quals);
1025  }
1026
1027  return Result;
1028}
1029
1030static std::string getPrintableNameForEntity(DeclarationName Entity) {
1031  if (Entity)
1032    return Entity.getAsString();
1033
1034  return "type name";
1035}
1036
1037QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1038                                  Qualifiers Qs) {
1039  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
1040  // object or incomplete types shall not be restrict-qualified."
1041  if (Qs.hasRestrict()) {
1042    unsigned DiagID = 0;
1043    QualType ProblemTy;
1044
1045    const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
1046    if (const ReferenceType *RTy = dyn_cast<ReferenceType>(Ty)) {
1047      if (!RTy->getPointeeType()->isIncompleteOrObjectType()) {
1048        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1049        ProblemTy = T->getAs<ReferenceType>()->getPointeeType();
1050      }
1051    } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1052      if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
1053        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1054        ProblemTy = T->getAs<PointerType>()->getPointeeType();
1055      }
1056    } else if (const MemberPointerType *PTy = dyn_cast<MemberPointerType>(Ty)) {
1057      if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
1058        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1059        ProblemTy = T->getAs<PointerType>()->getPointeeType();
1060      }
1061    } else if (!Ty->isDependentType()) {
1062      // FIXME: this deserves a proper diagnostic
1063      DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1064      ProblemTy = T;
1065    }
1066
1067    if (DiagID) {
1068      Diag(Loc, DiagID) << ProblemTy;
1069      Qs.removeRestrict();
1070    }
1071  }
1072
1073  return Context.getQualifiedType(T, Qs);
1074}
1075
1076/// \brief Build a paren type including \p T.
1077QualType Sema::BuildParenType(QualType T) {
1078  return Context.getParenType(T);
1079}
1080
1081/// Given that we're building a pointer or reference to the given
1082static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
1083                                           SourceLocation loc,
1084                                           bool isReference) {
1085  // Bail out if retention is unrequired or already specified.
1086  if (!type->isObjCLifetimeType() ||
1087      type.getObjCLifetime() != Qualifiers::OCL_None)
1088    return type;
1089
1090  Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
1091
1092  // If the object type is const-qualified, we can safely use
1093  // __unsafe_unretained.  This is safe (because there are no read
1094  // barriers), and it'll be safe to coerce anything but __weak* to
1095  // the resulting type.
1096  if (type.isConstQualified()) {
1097    implicitLifetime = Qualifiers::OCL_ExplicitNone;
1098
1099  // Otherwise, check whether the static type does not require
1100  // retaining.  This currently only triggers for Class (possibly
1101  // protocol-qualifed, and arrays thereof).
1102  } else if (type->isObjCARCImplicitlyUnretainedType()) {
1103    implicitLifetime = Qualifiers::OCL_ExplicitNone;
1104
1105  // If we are in an unevaluated context, like sizeof, skip adding a
1106  // qualification.
1107  } else if (S.isUnevaluatedContext()) {
1108    return type;
1109
1110  // If that failed, give an error and recover using __strong.  __strong
1111  // is the option most likely to prevent spurious second-order diagnostics,
1112  // like when binding a reference to a field.
1113  } else {
1114    // These types can show up in private ivars in system headers, so
1115    // we need this to not be an error in those cases.  Instead we
1116    // want to delay.
1117    if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1118      S.DelayedDiagnostics.add(
1119          sema::DelayedDiagnostic::makeForbiddenType(loc,
1120              diag::err_arc_indirect_no_ownership, type, isReference));
1121    } else {
1122      S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
1123    }
1124    implicitLifetime = Qualifiers::OCL_Strong;
1125  }
1126  assert(implicitLifetime && "didn't infer any lifetime!");
1127
1128  Qualifiers qs;
1129  qs.addObjCLifetime(implicitLifetime);
1130  return S.Context.getQualifiedType(type, qs);
1131}
1132
1133/// \brief Build a pointer type.
1134///
1135/// \param T The type to which we'll be building a pointer.
1136///
1137/// \param Loc The location of the entity whose type involves this
1138/// pointer type or, if there is no such entity, the location of the
1139/// type that will have pointer type.
1140///
1141/// \param Entity The name of the entity that involves the pointer
1142/// type, if known.
1143///
1144/// \returns A suitable pointer type, if there are no
1145/// errors. Otherwise, returns a NULL type.
1146QualType Sema::BuildPointerType(QualType T,
1147                                SourceLocation Loc, DeclarationName Entity) {
1148  if (T->isReferenceType()) {
1149    // C++ 8.3.2p4: There shall be no ... pointers to references ...
1150    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
1151      << getPrintableNameForEntity(Entity) << T;
1152    return QualType();
1153  }
1154
1155  assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
1156
1157  // In ARC, it is forbidden to build pointers to unqualified pointers.
1158  if (getLangOpts().ObjCAutoRefCount)
1159    T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
1160
1161  // Build the pointer type.
1162  return Context.getPointerType(T);
1163}
1164
1165/// \brief Build a reference type.
1166///
1167/// \param T The type to which we'll be building a reference.
1168///
1169/// \param Loc The location of the entity whose type involves this
1170/// reference type or, if there is no such entity, the location of the
1171/// type that will have reference type.
1172///
1173/// \param Entity The name of the entity that involves the reference
1174/// type, if known.
1175///
1176/// \returns A suitable reference type, if there are no
1177/// errors. Otherwise, returns a NULL type.
1178QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
1179                                  SourceLocation Loc,
1180                                  DeclarationName Entity) {
1181  assert(Context.getCanonicalType(T) != Context.OverloadTy &&
1182         "Unresolved overloaded function type");
1183
1184  // C++0x [dcl.ref]p6:
1185  //   If a typedef (7.1.3), a type template-parameter (14.3.1), or a
1186  //   decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
1187  //   type T, an attempt to create the type "lvalue reference to cv TR" creates
1188  //   the type "lvalue reference to T", while an attempt to create the type
1189  //   "rvalue reference to cv TR" creates the type TR.
1190  bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
1191
1192  // C++ [dcl.ref]p4: There shall be no references to references.
1193  //
1194  // According to C++ DR 106, references to references are only
1195  // diagnosed when they are written directly (e.g., "int & &"),
1196  // but not when they happen via a typedef:
1197  //
1198  //   typedef int& intref;
1199  //   typedef intref& intref2;
1200  //
1201  // Parser::ParseDeclaratorInternal diagnoses the case where
1202  // references are written directly; here, we handle the
1203  // collapsing of references-to-references as described in C++0x.
1204  // DR 106 and 540 introduce reference-collapsing into C++98/03.
1205
1206  // C++ [dcl.ref]p1:
1207  //   A declarator that specifies the type "reference to cv void"
1208  //   is ill-formed.
1209  if (T->isVoidType()) {
1210    Diag(Loc, diag::err_reference_to_void);
1211    return QualType();
1212  }
1213
1214  // In ARC, it is forbidden to build references to unqualified pointers.
1215  if (getLangOpts().ObjCAutoRefCount)
1216    T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
1217
1218  // Handle restrict on references.
1219  if (LValueRef)
1220    return Context.getLValueReferenceType(T, SpelledAsLValue);
1221  return Context.getRValueReferenceType(T);
1222}
1223
1224/// Check whether the specified array size makes the array type a VLA.  If so,
1225/// return true, if not, return the size of the array in SizeVal.
1226static bool isArraySizeVLA(Sema &S, Expr *ArraySize, llvm::APSInt &SizeVal) {
1227  // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
1228  // (like gnu99, but not c99) accept any evaluatable value as an extension.
1229  class VLADiagnoser : public Sema::VerifyICEDiagnoser {
1230  public:
1231    VLADiagnoser() : Sema::VerifyICEDiagnoser(true) {}
1232
1233    virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
1234    }
1235
1236    virtual void diagnoseFold(Sema &S, SourceLocation Loc, SourceRange SR) {
1237      S.Diag(Loc, diag::ext_vla_folded_to_constant) << SR;
1238    }
1239  } Diagnoser;
1240
1241  return S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser,
1242                                           S.LangOpts.GNUMode).isInvalid();
1243}
1244
1245
1246/// \brief Build an array type.
1247///
1248/// \param T The type of each element in the array.
1249///
1250/// \param ASM C99 array size modifier (e.g., '*', 'static').
1251///
1252/// \param ArraySize Expression describing the size of the array.
1253///
1254/// \param Brackets The range from the opening '[' to the closing ']'.
1255///
1256/// \param Entity The name of the entity that involves the array
1257/// type, if known.
1258///
1259/// \returns A suitable array type, if there are no errors. Otherwise,
1260/// returns a NULL type.
1261QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
1262                              Expr *ArraySize, unsigned Quals,
1263                              SourceRange Brackets, DeclarationName Entity) {
1264
1265  SourceLocation Loc = Brackets.getBegin();
1266  if (getLangOpts().CPlusPlus) {
1267    // C++ [dcl.array]p1:
1268    //   T is called the array element type; this type shall not be a reference
1269    //   type, the (possibly cv-qualified) type void, a function type or an
1270    //   abstract class type.
1271    //
1272    // C++ [dcl.array]p3:
1273    //   When several "array of" specifications are adjacent, [...] only the
1274    //   first of the constant expressions that specify the bounds of the arrays
1275    //   may be omitted.
1276    //
1277    // Note: function types are handled in the common path with C.
1278    if (T->isReferenceType()) {
1279      Diag(Loc, diag::err_illegal_decl_array_of_references)
1280      << getPrintableNameForEntity(Entity) << T;
1281      return QualType();
1282    }
1283
1284    if (T->isVoidType() || T->isIncompleteArrayType()) {
1285      Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
1286      return QualType();
1287    }
1288
1289    if (RequireNonAbstractType(Brackets.getBegin(), T,
1290                               diag::err_array_of_abstract_type))
1291      return QualType();
1292
1293  } else {
1294    // C99 6.7.5.2p1: If the element type is an incomplete or function type,
1295    // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
1296    if (RequireCompleteType(Loc, T,
1297                            diag::err_illegal_decl_array_incomplete_type))
1298      return QualType();
1299  }
1300
1301  if (T->isFunctionType()) {
1302    Diag(Loc, diag::err_illegal_decl_array_of_functions)
1303      << getPrintableNameForEntity(Entity) << T;
1304    return QualType();
1305  }
1306
1307  if (T->getContainedAutoType()) {
1308    Diag(Loc, diag::err_illegal_decl_array_of_auto)
1309      << getPrintableNameForEntity(Entity) << T;
1310    return QualType();
1311  }
1312
1313  if (const RecordType *EltTy = T->getAs<RecordType>()) {
1314    // If the element type is a struct or union that contains a variadic
1315    // array, accept it as a GNU extension: C99 6.7.2.1p2.
1316    if (EltTy->getDecl()->hasFlexibleArrayMember())
1317      Diag(Loc, diag::ext_flexible_array_in_array) << T;
1318  } else if (T->isObjCObjectType()) {
1319    Diag(Loc, diag::err_objc_array_of_interfaces) << T;
1320    return QualType();
1321  }
1322
1323  // Do placeholder conversions on the array size expression.
1324  if (ArraySize && ArraySize->hasPlaceholderType()) {
1325    ExprResult Result = CheckPlaceholderExpr(ArraySize);
1326    if (Result.isInvalid()) return QualType();
1327    ArraySize = Result.take();
1328  }
1329
1330  // Do lvalue-to-rvalue conversions on the array size expression.
1331  if (ArraySize && !ArraySize->isRValue()) {
1332    ExprResult Result = DefaultLvalueConversion(ArraySize);
1333    if (Result.isInvalid())
1334      return QualType();
1335
1336    ArraySize = Result.take();
1337  }
1338
1339  // C99 6.7.5.2p1: The size expression shall have integer type.
1340  // C++11 allows contextual conversions to such types.
1341  if (!getLangOpts().CPlusPlus0x &&
1342      ArraySize && !ArraySize->isTypeDependent() &&
1343      !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
1344    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
1345      << ArraySize->getType() << ArraySize->getSourceRange();
1346    return QualType();
1347  }
1348
1349  llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
1350  if (!ArraySize) {
1351    if (ASM == ArrayType::Star)
1352      T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
1353    else
1354      T = Context.getIncompleteArrayType(T, ASM, Quals);
1355  } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
1356    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
1357  } else if ((!T->isDependentType() && !T->isIncompleteType() &&
1358              !T->isConstantSizeType()) ||
1359             isArraySizeVLA(*this, ArraySize, ConstVal)) {
1360    // Even in C++11, don't allow contextual conversions in the array bound
1361    // of a VLA.
1362    if (getLangOpts().CPlusPlus0x &&
1363        !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
1364      Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
1365        << ArraySize->getType() << ArraySize->getSourceRange();
1366      return QualType();
1367    }
1368
1369    // C99: an array with an element type that has a non-constant-size is a VLA.
1370    // C99: an array with a non-ICE size is a VLA.  We accept any expression
1371    // that we can fold to a non-zero positive value as an extension.
1372    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
1373  } else {
1374    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
1375    // have a value greater than zero.
1376    if (ConstVal.isSigned() && ConstVal.isNegative()) {
1377      if (Entity)
1378        Diag(ArraySize->getLocStart(), diag::err_decl_negative_array_size)
1379          << getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
1380      else
1381        Diag(ArraySize->getLocStart(), diag::err_typecheck_negative_array_size)
1382          << ArraySize->getSourceRange();
1383      return QualType();
1384    }
1385    if (ConstVal == 0) {
1386      // GCC accepts zero sized static arrays. We allow them when
1387      // we're not in a SFINAE context.
1388      Diag(ArraySize->getLocStart(),
1389           isSFINAEContext()? diag::err_typecheck_zero_array_size
1390                            : diag::ext_typecheck_zero_array_size)
1391        << ArraySize->getSourceRange();
1392
1393      if (ASM == ArrayType::Static) {
1394        Diag(ArraySize->getLocStart(),
1395             diag::warn_typecheck_zero_static_array_size)
1396          << ArraySize->getSourceRange();
1397        ASM = ArrayType::Normal;
1398      }
1399    } else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
1400               !T->isIncompleteType()) {
1401      // Is the array too large?
1402      unsigned ActiveSizeBits
1403        = ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
1404      if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
1405        Diag(ArraySize->getLocStart(), diag::err_array_too_large)
1406          << ConstVal.toString(10)
1407          << ArraySize->getSourceRange();
1408    }
1409
1410    T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
1411  }
1412  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
1413  if (!getLangOpts().C99) {
1414    if (T->isVariableArrayType()) {
1415      // Prohibit the use of non-POD types in VLAs.
1416      QualType BaseT = Context.getBaseElementType(T);
1417      if (!T->isDependentType() &&
1418          !BaseT.isPODType(Context) &&
1419          !BaseT->isObjCLifetimeType()) {
1420        Diag(Loc, diag::err_vla_non_pod)
1421          << BaseT;
1422        return QualType();
1423      }
1424      // Prohibit the use of VLAs during template argument deduction.
1425      else if (isSFINAEContext()) {
1426        Diag(Loc, diag::err_vla_in_sfinae);
1427        return QualType();
1428      }
1429      // Just extwarn about VLAs.
1430      else
1431        Diag(Loc, diag::ext_vla);
1432    } else if (ASM != ArrayType::Normal || Quals != 0)
1433      Diag(Loc,
1434           getLangOpts().CPlusPlus? diag::err_c99_array_usage_cxx
1435                                     : diag::ext_c99_array_usage) << ASM;
1436  }
1437
1438  return T;
1439}
1440
1441/// \brief Build an ext-vector type.
1442///
1443/// Run the required checks for the extended vector type.
1444QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
1445                                  SourceLocation AttrLoc) {
1446  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
1447  // in conjunction with complex types (pointers, arrays, functions, etc.).
1448  if (!T->isDependentType() &&
1449      !T->isIntegerType() && !T->isRealFloatingType()) {
1450    Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
1451    return QualType();
1452  }
1453
1454  if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
1455    llvm::APSInt vecSize(32);
1456    if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
1457      Diag(AttrLoc, diag::err_attribute_argument_not_int)
1458        << "ext_vector_type" << ArraySize->getSourceRange();
1459      return QualType();
1460    }
1461
1462    // unlike gcc's vector_size attribute, the size is specified as the
1463    // number of elements, not the number of bytes.
1464    unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
1465
1466    if (vectorSize == 0) {
1467      Diag(AttrLoc, diag::err_attribute_zero_size)
1468      << ArraySize->getSourceRange();
1469      return QualType();
1470    }
1471
1472    return Context.getExtVectorType(T, vectorSize);
1473  }
1474
1475  return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
1476}
1477
1478/// \brief Build a function type.
1479///
1480/// This routine checks the function type according to C++ rules and
1481/// under the assumption that the result type and parameter types have
1482/// just been instantiated from a template. It therefore duplicates
1483/// some of the behavior of GetTypeForDeclarator, but in a much
1484/// simpler form that is only suitable for this narrow use case.
1485///
1486/// \param T The return type of the function.
1487///
1488/// \param ParamTypes The parameter types of the function. This array
1489/// will be modified to account for adjustments to the types of the
1490/// function parameters.
1491///
1492/// \param NumParamTypes The number of parameter types in ParamTypes.
1493///
1494/// \param Variadic Whether this is a variadic function type.
1495///
1496/// \param HasTrailingReturn Whether this function has a trailing return type.
1497///
1498/// \param Quals The cvr-qualifiers to be applied to the function type.
1499///
1500/// \param Loc The location of the entity whose type involves this
1501/// function type or, if there is no such entity, the location of the
1502/// type that will have function type.
1503///
1504/// \param Entity The name of the entity that involves the function
1505/// type, if known.
1506///
1507/// \returns A suitable function type, if there are no
1508/// errors. Otherwise, returns a NULL type.
1509QualType Sema::BuildFunctionType(QualType T,
1510                                 QualType *ParamTypes,
1511                                 unsigned NumParamTypes,
1512                                 bool Variadic, bool HasTrailingReturn,
1513                                 unsigned Quals,
1514                                 RefQualifierKind RefQualifier,
1515                                 SourceLocation Loc, DeclarationName Entity,
1516                                 FunctionType::ExtInfo Info) {
1517  if (T->isArrayType() || T->isFunctionType()) {
1518    Diag(Loc, diag::err_func_returning_array_function)
1519      << T->isFunctionType() << T;
1520    return QualType();
1521  }
1522
1523  // Functions cannot return half FP.
1524  if (T->isHalfType()) {
1525    Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
1526      FixItHint::CreateInsertion(Loc, "*");
1527    return QualType();
1528  }
1529
1530  bool Invalid = false;
1531  for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
1532    // FIXME: Loc is too inprecise here, should use proper locations for args.
1533    QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
1534    if (ParamType->isVoidType()) {
1535      Diag(Loc, diag::err_param_with_void_type);
1536      Invalid = true;
1537    } else if (ParamType->isHalfType()) {
1538      // Disallow half FP arguments.
1539      Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
1540        FixItHint::CreateInsertion(Loc, "*");
1541      Invalid = true;
1542    }
1543
1544    ParamTypes[Idx] = ParamType;
1545  }
1546
1547  if (Invalid)
1548    return QualType();
1549
1550  FunctionProtoType::ExtProtoInfo EPI;
1551  EPI.Variadic = Variadic;
1552  EPI.HasTrailingReturn = HasTrailingReturn;
1553  EPI.TypeQuals = Quals;
1554  EPI.RefQualifier = RefQualifier;
1555  EPI.ExtInfo = Info;
1556
1557  return Context.getFunctionType(T, ParamTypes, NumParamTypes, EPI);
1558}
1559
1560/// \brief Build a member pointer type \c T Class::*.
1561///
1562/// \param T the type to which the member pointer refers.
1563/// \param Class the class type into which the member pointer points.
1564/// \param Loc the location where this type begins
1565/// \param Entity the name of the entity that will have this member pointer type
1566///
1567/// \returns a member pointer type, if successful, or a NULL type if there was
1568/// an error.
1569QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
1570                                      SourceLocation Loc,
1571                                      DeclarationName Entity) {
1572  // Verify that we're not building a pointer to pointer to function with
1573  // exception specification.
1574  if (CheckDistantExceptionSpec(T)) {
1575    Diag(Loc, diag::err_distant_exception_spec);
1576
1577    // FIXME: If we're doing this as part of template instantiation,
1578    // we should return immediately.
1579
1580    // Build the type anyway, but use the canonical type so that the
1581    // exception specifiers are stripped off.
1582    T = Context.getCanonicalType(T);
1583  }
1584
1585  // C++ 8.3.3p3: A pointer to member shall not point to ... a member
1586  //   with reference type, or "cv void."
1587  if (T->isReferenceType()) {
1588    Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
1589      << (Entity? Entity.getAsString() : "type name") << T;
1590    return QualType();
1591  }
1592
1593  if (T->isVoidType()) {
1594    Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
1595      << (Entity? Entity.getAsString() : "type name");
1596    return QualType();
1597  }
1598
1599  if (!Class->isDependentType() && !Class->isRecordType()) {
1600    Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
1601    return QualType();
1602  }
1603
1604  // In the Microsoft ABI, the class is allowed to be an incomplete
1605  // type. In such cases, the compiler makes a worst-case assumption.
1606  // We make no such assumption right now, so emit an error if the
1607  // class isn't a complete type.
1608  if (Context.getTargetInfo().getCXXABI() == CXXABI_Microsoft &&
1609      RequireCompleteType(Loc, Class, diag::err_incomplete_type))
1610    return QualType();
1611
1612  return Context.getMemberPointerType(T, Class.getTypePtr());
1613}
1614
1615/// \brief Build a block pointer type.
1616///
1617/// \param T The type to which we'll be building a block pointer.
1618///
1619/// \param Loc The source location, used for diagnostics.
1620///
1621/// \param Entity The name of the entity that involves the block pointer
1622/// type, if known.
1623///
1624/// \returns A suitable block pointer type, if there are no
1625/// errors. Otherwise, returns a NULL type.
1626QualType Sema::BuildBlockPointerType(QualType T,
1627                                     SourceLocation Loc,
1628                                     DeclarationName Entity) {
1629  if (!T->isFunctionType()) {
1630    Diag(Loc, diag::err_nonfunction_block_type);
1631    return QualType();
1632  }
1633
1634  return Context.getBlockPointerType(T);
1635}
1636
1637QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
1638  QualType QT = Ty.get();
1639  if (QT.isNull()) {
1640    if (TInfo) *TInfo = 0;
1641    return QualType();
1642  }
1643
1644  TypeSourceInfo *DI = 0;
1645  if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
1646    QT = LIT->getType();
1647    DI = LIT->getTypeSourceInfo();
1648  }
1649
1650  if (TInfo) *TInfo = DI;
1651  return QT;
1652}
1653
1654static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
1655                                            Qualifiers::ObjCLifetime ownership,
1656                                            unsigned chunkIndex);
1657
1658/// Given that this is the declaration of a parameter under ARC,
1659/// attempt to infer attributes and such for pointer-to-whatever
1660/// types.
1661static void inferARCWriteback(TypeProcessingState &state,
1662                              QualType &declSpecType) {
1663  Sema &S = state.getSema();
1664  Declarator &declarator = state.getDeclarator();
1665
1666  // TODO: should we care about decl qualifiers?
1667
1668  // Check whether the declarator has the expected form.  We walk
1669  // from the inside out in order to make the block logic work.
1670  unsigned outermostPointerIndex = 0;
1671  bool isBlockPointer = false;
1672  unsigned numPointers = 0;
1673  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
1674    unsigned chunkIndex = i;
1675    DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
1676    switch (chunk.Kind) {
1677    case DeclaratorChunk::Paren:
1678      // Ignore parens.
1679      break;
1680
1681    case DeclaratorChunk::Reference:
1682    case DeclaratorChunk::Pointer:
1683      // Count the number of pointers.  Treat references
1684      // interchangeably as pointers; if they're mis-ordered, normal
1685      // type building will discover that.
1686      outermostPointerIndex = chunkIndex;
1687      numPointers++;
1688      break;
1689
1690    case DeclaratorChunk::BlockPointer:
1691      // If we have a pointer to block pointer, that's an acceptable
1692      // indirect reference; anything else is not an application of
1693      // the rules.
1694      if (numPointers != 1) return;
1695      numPointers++;
1696      outermostPointerIndex = chunkIndex;
1697      isBlockPointer = true;
1698
1699      // We don't care about pointer structure in return values here.
1700      goto done;
1701
1702    case DeclaratorChunk::Array: // suppress if written (id[])?
1703    case DeclaratorChunk::Function:
1704    case DeclaratorChunk::MemberPointer:
1705      return;
1706    }
1707  }
1708 done:
1709
1710  // If we have *one* pointer, then we want to throw the qualifier on
1711  // the declaration-specifiers, which means that it needs to be a
1712  // retainable object type.
1713  if (numPointers == 1) {
1714    // If it's not a retainable object type, the rule doesn't apply.
1715    if (!declSpecType->isObjCRetainableType()) return;
1716
1717    // If it already has lifetime, don't do anything.
1718    if (declSpecType.getObjCLifetime()) return;
1719
1720    // Otherwise, modify the type in-place.
1721    Qualifiers qs;
1722
1723    if (declSpecType->isObjCARCImplicitlyUnretainedType())
1724      qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
1725    else
1726      qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
1727    declSpecType = S.Context.getQualifiedType(declSpecType, qs);
1728
1729  // If we have *two* pointers, then we want to throw the qualifier on
1730  // the outermost pointer.
1731  } else if (numPointers == 2) {
1732    // If we don't have a block pointer, we need to check whether the
1733    // declaration-specifiers gave us something that will turn into a
1734    // retainable object pointer after we slap the first pointer on it.
1735    if (!isBlockPointer && !declSpecType->isObjCObjectType())
1736      return;
1737
1738    // Look for an explicit lifetime attribute there.
1739    DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
1740    if (chunk.Kind != DeclaratorChunk::Pointer &&
1741        chunk.Kind != DeclaratorChunk::BlockPointer)
1742      return;
1743    for (const AttributeList *attr = chunk.getAttrs(); attr;
1744           attr = attr->getNext())
1745      if (attr->getKind() == AttributeList::AT_ObjCOwnership)
1746        return;
1747
1748    transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
1749                                          outermostPointerIndex);
1750
1751  // Any other number of pointers/references does not trigger the rule.
1752  } else return;
1753
1754  // TODO: mark whether we did this inference?
1755}
1756
1757static void DiagnoseIgnoredQualifiers(unsigned Quals,
1758                                      SourceLocation ConstQualLoc,
1759                                      SourceLocation VolatileQualLoc,
1760                                      SourceLocation RestrictQualLoc,
1761                                      Sema& S) {
1762  std::string QualStr;
1763  unsigned NumQuals = 0;
1764  SourceLocation Loc;
1765
1766  FixItHint ConstFixIt;
1767  FixItHint VolatileFixIt;
1768  FixItHint RestrictFixIt;
1769
1770  const SourceManager &SM = S.getSourceManager();
1771
1772  // FIXME: The locations here are set kind of arbitrarily. It'd be nicer to
1773  // find a range and grow it to encompass all the qualifiers, regardless of
1774  // the order in which they textually appear.
1775  if (Quals & Qualifiers::Const) {
1776    ConstFixIt = FixItHint::CreateRemoval(ConstQualLoc);
1777    QualStr = "const";
1778    ++NumQuals;
1779    if (!Loc.isValid() || SM.isBeforeInTranslationUnit(ConstQualLoc, Loc))
1780      Loc = ConstQualLoc;
1781  }
1782  if (Quals & Qualifiers::Volatile) {
1783    VolatileFixIt = FixItHint::CreateRemoval(VolatileQualLoc);
1784    QualStr += (NumQuals == 0 ? "volatile" : " volatile");
1785    ++NumQuals;
1786    if (!Loc.isValid() || SM.isBeforeInTranslationUnit(VolatileQualLoc, Loc))
1787      Loc = VolatileQualLoc;
1788  }
1789  if (Quals & Qualifiers::Restrict) {
1790    RestrictFixIt = FixItHint::CreateRemoval(RestrictQualLoc);
1791    QualStr += (NumQuals == 0 ? "restrict" : " restrict");
1792    ++NumQuals;
1793    if (!Loc.isValid() || SM.isBeforeInTranslationUnit(RestrictQualLoc, Loc))
1794      Loc = RestrictQualLoc;
1795  }
1796
1797  assert(NumQuals > 0 && "No known qualifiers?");
1798
1799  S.Diag(Loc, diag::warn_qual_return_type)
1800    << QualStr << NumQuals << ConstFixIt << VolatileFixIt << RestrictFixIt;
1801}
1802
1803static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
1804                                             TypeSourceInfo *&ReturnTypeInfo) {
1805  Sema &SemaRef = state.getSema();
1806  Declarator &D = state.getDeclarator();
1807  QualType T;
1808  ReturnTypeInfo = 0;
1809
1810  // The TagDecl owned by the DeclSpec.
1811  TagDecl *OwnedTagDecl = 0;
1812
1813  switch (D.getName().getKind()) {
1814  case UnqualifiedId::IK_ImplicitSelfParam:
1815  case UnqualifiedId::IK_OperatorFunctionId:
1816  case UnqualifiedId::IK_Identifier:
1817  case UnqualifiedId::IK_LiteralOperatorId:
1818  case UnqualifiedId::IK_TemplateId:
1819    T = ConvertDeclSpecToType(state);
1820
1821    if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
1822      OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
1823      // Owned declaration is embedded in declarator.
1824      OwnedTagDecl->setEmbeddedInDeclarator(true);
1825    }
1826    break;
1827
1828  case UnqualifiedId::IK_ConstructorName:
1829  case UnqualifiedId::IK_ConstructorTemplateId:
1830  case UnqualifiedId::IK_DestructorName:
1831    // Constructors and destructors don't have return types. Use
1832    // "void" instead.
1833    T = SemaRef.Context.VoidTy;
1834    if (AttributeList *attrs = D.getDeclSpec().getAttributes().getList())
1835      processTypeAttrs(state, T, true, attrs);
1836    break;
1837
1838  case UnqualifiedId::IK_ConversionFunctionId:
1839    // The result type of a conversion function is the type that it
1840    // converts to.
1841    T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
1842                                  &ReturnTypeInfo);
1843    break;
1844  }
1845
1846  if (D.getAttributes())
1847    distributeTypeAttrsFromDeclarator(state, T);
1848
1849  // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
1850  // In C++11, a function declarator using 'auto' must have a trailing return
1851  // type (this is checked later) and we can skip this. In other languages
1852  // using auto, we need to check regardless.
1853  if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
1854      (!SemaRef.getLangOpts().CPlusPlus0x || !D.isFunctionDeclarator())) {
1855    int Error = -1;
1856
1857    switch (D.getContext()) {
1858    case Declarator::KNRTypeListContext:
1859      llvm_unreachable("K&R type lists aren't allowed in C++");
1860    case Declarator::LambdaExprContext:
1861      llvm_unreachable("Can't specify a type specifier in lambda grammar");
1862    case Declarator::ObjCParameterContext:
1863    case Declarator::ObjCResultContext:
1864    case Declarator::PrototypeContext:
1865      Error = 0; // Function prototype
1866      break;
1867    case Declarator::MemberContext:
1868      if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)
1869        break;
1870      switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
1871      case TTK_Enum: llvm_unreachable("unhandled tag kind");
1872      case TTK_Struct: Error = 1; /* Struct member */ break;
1873      case TTK_Union:  Error = 2; /* Union member */ break;
1874      case TTK_Class:  Error = 3; /* Class member */ break;
1875      case TTK_Interface: Error = 4; /* Interface member */ break;
1876      }
1877      break;
1878    case Declarator::CXXCatchContext:
1879    case Declarator::ObjCCatchContext:
1880      Error = 5; // Exception declaration
1881      break;
1882    case Declarator::TemplateParamContext:
1883      Error = 6; // Template parameter
1884      break;
1885    case Declarator::BlockLiteralContext:
1886      Error = 7; // Block literal
1887      break;
1888    case Declarator::TemplateTypeArgContext:
1889      Error = 8; // Template type argument
1890      break;
1891    case Declarator::AliasDeclContext:
1892    case Declarator::AliasTemplateContext:
1893      Error = 10; // Type alias
1894      break;
1895    case Declarator::TrailingReturnContext:
1896      Error = 11; // Function return type
1897      break;
1898    case Declarator::TypeNameContext:
1899      Error = 12; // Generic
1900      break;
1901    case Declarator::FileContext:
1902    case Declarator::BlockContext:
1903    case Declarator::ForContext:
1904    case Declarator::ConditionContext:
1905    case Declarator::CXXNewContext:
1906      break;
1907    }
1908
1909    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1910      Error = 9;
1911
1912    // In Objective-C it is an error to use 'auto' on a function declarator.
1913    if (D.isFunctionDeclarator())
1914      Error = 11;
1915
1916    // C++11 [dcl.spec.auto]p2: 'auto' is always fine if the declarator
1917    // contains a trailing return type. That is only legal at the outermost
1918    // level. Check all declarator chunks (outermost first) anyway, to give
1919    // better diagnostics.
1920    if (SemaRef.getLangOpts().CPlusPlus0x && Error != -1) {
1921      for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
1922        unsigned chunkIndex = e - i - 1;
1923        state.setCurrentChunkIndex(chunkIndex);
1924        DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
1925        if (DeclType.Kind == DeclaratorChunk::Function) {
1926          const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
1927          if (FTI.hasTrailingReturnType()) {
1928            Error = -1;
1929            break;
1930          }
1931        }
1932      }
1933    }
1934
1935    if (Error != -1) {
1936      SemaRef.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
1937                   diag::err_auto_not_allowed)
1938        << Error;
1939      T = SemaRef.Context.IntTy;
1940      D.setInvalidType(true);
1941    } else
1942      SemaRef.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
1943                   diag::warn_cxx98_compat_auto_type_specifier);
1944  }
1945
1946  if (SemaRef.getLangOpts().CPlusPlus &&
1947      OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
1948    // Check the contexts where C++ forbids the declaration of a new class
1949    // or enumeration in a type-specifier-seq.
1950    switch (D.getContext()) {
1951    case Declarator::TrailingReturnContext:
1952      // Class and enumeration definitions are syntactically not allowed in
1953      // trailing return types.
1954      llvm_unreachable("parser should not have allowed this");
1955      break;
1956    case Declarator::FileContext:
1957    case Declarator::MemberContext:
1958    case Declarator::BlockContext:
1959    case Declarator::ForContext:
1960    case Declarator::BlockLiteralContext:
1961    case Declarator::LambdaExprContext:
1962      // C++11 [dcl.type]p3:
1963      //   A type-specifier-seq shall not define a class or enumeration unless
1964      //   it appears in the type-id of an alias-declaration (7.1.3) that is not
1965      //   the declaration of a template-declaration.
1966    case Declarator::AliasDeclContext:
1967      break;
1968    case Declarator::AliasTemplateContext:
1969      SemaRef.Diag(OwnedTagDecl->getLocation(),
1970             diag::err_type_defined_in_alias_template)
1971        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
1972      break;
1973    case Declarator::TypeNameContext:
1974    case Declarator::TemplateParamContext:
1975    case Declarator::CXXNewContext:
1976    case Declarator::CXXCatchContext:
1977    case Declarator::ObjCCatchContext:
1978    case Declarator::TemplateTypeArgContext:
1979      SemaRef.Diag(OwnedTagDecl->getLocation(),
1980             diag::err_type_defined_in_type_specifier)
1981        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
1982      break;
1983    case Declarator::PrototypeContext:
1984    case Declarator::ObjCParameterContext:
1985    case Declarator::ObjCResultContext:
1986    case Declarator::KNRTypeListContext:
1987      // C++ [dcl.fct]p6:
1988      //   Types shall not be defined in return or parameter types.
1989      SemaRef.Diag(OwnedTagDecl->getLocation(),
1990                   diag::err_type_defined_in_param_type)
1991        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
1992      break;
1993    case Declarator::ConditionContext:
1994      // C++ 6.4p2:
1995      // The type-specifier-seq shall not contain typedef and shall not declare
1996      // a new class or enumeration.
1997      SemaRef.Diag(OwnedTagDecl->getLocation(),
1998                   diag::err_type_defined_in_condition);
1999      break;
2000    }
2001  }
2002
2003  return T;
2004}
2005
2006static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
2007  std::string Quals =
2008    Qualifiers::fromCVRMask(FnTy->getTypeQuals()).getAsString();
2009
2010  switch (FnTy->getRefQualifier()) {
2011  case RQ_None:
2012    break;
2013
2014  case RQ_LValue:
2015    if (!Quals.empty())
2016      Quals += ' ';
2017    Quals += '&';
2018    break;
2019
2020  case RQ_RValue:
2021    if (!Quals.empty())
2022      Quals += ' ';
2023    Quals += "&&";
2024    break;
2025  }
2026
2027  return Quals;
2028}
2029
2030/// Check that the function type T, which has a cv-qualifier or a ref-qualifier,
2031/// can be contained within the declarator chunk DeclType, and produce an
2032/// appropriate diagnostic if not.
2033static void checkQualifiedFunction(Sema &S, QualType T,
2034                                   DeclaratorChunk &DeclType) {
2035  // C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6: a function type with a
2036  // cv-qualifier or a ref-qualifier can only appear at the topmost level
2037  // of a type.
2038  int DiagKind = -1;
2039  switch (DeclType.Kind) {
2040  case DeclaratorChunk::Paren:
2041  case DeclaratorChunk::MemberPointer:
2042    // These cases are permitted.
2043    return;
2044  case DeclaratorChunk::Array:
2045  case DeclaratorChunk::Function:
2046    // These cases don't allow function types at all; no need to diagnose the
2047    // qualifiers separately.
2048    return;
2049  case DeclaratorChunk::BlockPointer:
2050    DiagKind = 0;
2051    break;
2052  case DeclaratorChunk::Pointer:
2053    DiagKind = 1;
2054    break;
2055  case DeclaratorChunk::Reference:
2056    DiagKind = 2;
2057    break;
2058  }
2059
2060  assert(DiagKind != -1);
2061  S.Diag(DeclType.Loc, diag::err_compound_qualified_function_type)
2062    << DiagKind << isa<FunctionType>(T.IgnoreParens()) << T
2063    << getFunctionQualifiersAsString(T->castAs<FunctionProtoType>());
2064}
2065
2066/// Produce an approprioate diagnostic for an ambiguity between a function
2067/// declarator and a C++ direct-initializer.
2068static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
2069                                       DeclaratorChunk &DeclType, QualType RT) {
2070  const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2071  assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity");
2072
2073  // If the return type is void there is no ambiguity.
2074  if (RT->isVoidType())
2075    return;
2076
2077  // An initializer for a non-class type can have at most one argument.
2078  if (!RT->isRecordType() && FTI.NumArgs > 1)
2079    return;
2080
2081  // An initializer for a reference must have exactly one argument.
2082  if (RT->isReferenceType() && FTI.NumArgs != 1)
2083    return;
2084
2085  // Only warn if this declarator is declaring a function at block scope, and
2086  // doesn't have a storage class (such as 'extern') specified.
2087  if (!D.isFunctionDeclarator() ||
2088      D.getFunctionDefinitionKind() != FDK_Declaration ||
2089      !S.CurContext->isFunctionOrMethod() ||
2090      D.getDeclSpec().getStorageClassSpecAsWritten()
2091        != DeclSpec::SCS_unspecified)
2092    return;
2093
2094  // Inside a condition, a direct initializer is not permitted. We allow one to
2095  // be parsed in order to give better diagnostics in condition parsing.
2096  if (D.getContext() == Declarator::ConditionContext)
2097    return;
2098
2099  SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
2100
2101  S.Diag(DeclType.Loc,
2102         FTI.NumArgs ? diag::warn_parens_disambiguated_as_function_declaration
2103                     : diag::warn_empty_parens_are_function_decl)
2104    << ParenRange;
2105
2106  // If the declaration looks like:
2107  //   T var1,
2108  //   f();
2109  // and name lookup finds a function named 'f', then the ',' was
2110  // probably intended to be a ';'.
2111  if (!D.isFirstDeclarator() && D.getIdentifier()) {
2112    FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
2113    FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
2114    if (Comma.getFileID() != Name.getFileID() ||
2115        Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
2116      LookupResult Result(S, D.getIdentifier(), SourceLocation(),
2117                          Sema::LookupOrdinaryName);
2118      if (S.LookupName(Result, S.getCurScope()))
2119        S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
2120          << FixItHint::CreateReplacement(D.getCommaLoc(), ";")
2121          << D.getIdentifier();
2122    }
2123  }
2124
2125  if (FTI.NumArgs > 0) {
2126    // For a declaration with parameters, eg. "T var(T());", suggest adding parens
2127    // around the first parameter to turn the declaration into a variable
2128    // declaration.
2129    SourceRange Range = FTI.ArgInfo[0].Param->getSourceRange();
2130    SourceLocation B = Range.getBegin();
2131    SourceLocation E = S.PP.getLocForEndOfToken(Range.getEnd());
2132    // FIXME: Maybe we should suggest adding braces instead of parens
2133    // in C++11 for classes that don't have an initializer_list constructor.
2134    S.Diag(B, diag::note_additional_parens_for_variable_declaration)
2135      << FixItHint::CreateInsertion(B, "(")
2136      << FixItHint::CreateInsertion(E, ")");
2137  } else {
2138    // For a declaration without parameters, eg. "T var();", suggest replacing the
2139    // parens with an initializer to turn the declaration into a variable
2140    // declaration.
2141    const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
2142
2143    // Empty parens mean value-initialization, and no parens mean
2144    // default initialization. These are equivalent if the default
2145    // constructor is user-provided or if zero-initialization is a
2146    // no-op.
2147    if (RD && RD->hasDefinition() &&
2148        (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
2149      S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
2150        << FixItHint::CreateRemoval(ParenRange);
2151    else {
2152      std::string Init = S.getFixItZeroInitializerForType(RT);
2153      if (Init.empty() && S.LangOpts.CPlusPlus0x)
2154        Init = "{}";
2155      if (!Init.empty())
2156        S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
2157          << FixItHint::CreateReplacement(ParenRange, Init);
2158    }
2159  }
2160}
2161
2162static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
2163                                                QualType declSpecType,
2164                                                TypeSourceInfo *TInfo) {
2165
2166  QualType T = declSpecType;
2167  Declarator &D = state.getDeclarator();
2168  Sema &S = state.getSema();
2169  ASTContext &Context = S.Context;
2170  const LangOptions &LangOpts = S.getLangOpts();
2171
2172  // The name we're declaring, if any.
2173  DeclarationName Name;
2174  if (D.getIdentifier())
2175    Name = D.getIdentifier();
2176
2177  // Does this declaration declare a typedef-name?
2178  bool IsTypedefName =
2179    D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
2180    D.getContext() == Declarator::AliasDeclContext ||
2181    D.getContext() == Declarator::AliasTemplateContext;
2182
2183  // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
2184  bool IsQualifiedFunction = T->isFunctionProtoType() &&
2185      (T->castAs<FunctionProtoType>()->getTypeQuals() != 0 ||
2186       T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
2187
2188  // Walk the DeclTypeInfo, building the recursive type as we go.
2189  // DeclTypeInfos are ordered from the identifier out, which is
2190  // opposite of what we want :).
2191  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2192    unsigned chunkIndex = e - i - 1;
2193    state.setCurrentChunkIndex(chunkIndex);
2194    DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
2195    if (IsQualifiedFunction) {
2196      checkQualifiedFunction(S, T, DeclType);
2197      IsQualifiedFunction = DeclType.Kind == DeclaratorChunk::Paren;
2198    }
2199    switch (DeclType.Kind) {
2200    case DeclaratorChunk::Paren:
2201      T = S.BuildParenType(T);
2202      break;
2203    case DeclaratorChunk::BlockPointer:
2204      // If blocks are disabled, emit an error.
2205      if (!LangOpts.Blocks)
2206        S.Diag(DeclType.Loc, diag::err_blocks_disable);
2207
2208      T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
2209      if (DeclType.Cls.TypeQuals)
2210        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
2211      break;
2212    case DeclaratorChunk::Pointer:
2213      // Verify that we're not building a pointer to pointer to function with
2214      // exception specification.
2215      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2216        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2217        D.setInvalidType(true);
2218        // Build the type anyway.
2219      }
2220      if (LangOpts.ObjC1 && T->getAs<ObjCObjectType>()) {
2221        T = Context.getObjCObjectPointerType(T);
2222        if (DeclType.Ptr.TypeQuals)
2223          T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
2224        break;
2225      }
2226      T = S.BuildPointerType(T, DeclType.Loc, Name);
2227      if (DeclType.Ptr.TypeQuals)
2228        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
2229
2230      break;
2231    case DeclaratorChunk::Reference: {
2232      // Verify that we're not building a reference to pointer to function with
2233      // exception specification.
2234      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2235        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2236        D.setInvalidType(true);
2237        // Build the type anyway.
2238      }
2239      T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
2240
2241      Qualifiers Quals;
2242      if (DeclType.Ref.HasRestrict)
2243        T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
2244      break;
2245    }
2246    case DeclaratorChunk::Array: {
2247      // Verify that we're not building an array of pointers to function with
2248      // exception specification.
2249      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2250        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2251        D.setInvalidType(true);
2252        // Build the type anyway.
2253      }
2254      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
2255      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
2256      ArrayType::ArraySizeModifier ASM;
2257      if (ATI.isStar)
2258        ASM = ArrayType::Star;
2259      else if (ATI.hasStatic)
2260        ASM = ArrayType::Static;
2261      else
2262        ASM = ArrayType::Normal;
2263      if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
2264        // FIXME: This check isn't quite right: it allows star in prototypes
2265        // for function definitions, and disallows some edge cases detailed
2266        // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
2267        S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
2268        ASM = ArrayType::Normal;
2269        D.setInvalidType(true);
2270      }
2271
2272      // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
2273      // shall appear only in a declaration of a function parameter with an
2274      // array type, ...
2275      if (ASM == ArrayType::Static || ATI.TypeQuals) {
2276        if (!(D.isPrototypeContext() ||
2277              D.getContext() == Declarator::KNRTypeListContext)) {
2278          S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) <<
2279              (ASM == ArrayType::Static ? "'static'" : "type qualifier");
2280          // Remove the 'static' and the type qualifiers.
2281          if (ASM == ArrayType::Static)
2282            ASM = ArrayType::Normal;
2283          ATI.TypeQuals = 0;
2284          D.setInvalidType(true);
2285        }
2286
2287        // C99 6.7.5.2p1: ... and then only in the outermost array type
2288        // derivation.
2289        unsigned x = chunkIndex;
2290        while (x != 0) {
2291          // Walk outwards along the declarator chunks.
2292          x--;
2293          const DeclaratorChunk &DC = D.getTypeObject(x);
2294          switch (DC.Kind) {
2295          case DeclaratorChunk::Paren:
2296            continue;
2297          case DeclaratorChunk::Array:
2298          case DeclaratorChunk::Pointer:
2299          case DeclaratorChunk::Reference:
2300          case DeclaratorChunk::MemberPointer:
2301            S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) <<
2302              (ASM == ArrayType::Static ? "'static'" : "type qualifier");
2303            if (ASM == ArrayType::Static)
2304              ASM = ArrayType::Normal;
2305            ATI.TypeQuals = 0;
2306            D.setInvalidType(true);
2307            break;
2308          case DeclaratorChunk::Function:
2309          case DeclaratorChunk::BlockPointer:
2310            // These are invalid anyway, so just ignore.
2311            break;
2312          }
2313        }
2314      }
2315
2316      T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
2317                           SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
2318      break;
2319    }
2320    case DeclaratorChunk::Function: {
2321      // If the function declarator has a prototype (i.e. it is not () and
2322      // does not have a K&R-style identifier list), then the arguments are part
2323      // of the type, otherwise the argument list is ().
2324      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2325      IsQualifiedFunction = FTI.TypeQuals || FTI.hasRefQualifier();
2326
2327      // Check for auto functions and trailing return type and adjust the
2328      // return type accordingly.
2329      if (!D.isInvalidType()) {
2330        // trailing-return-type is only required if we're declaring a function,
2331        // and not, for instance, a pointer to a function.
2332        if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
2333            !FTI.hasTrailingReturnType() && chunkIndex == 0) {
2334          S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2335               diag::err_auto_missing_trailing_return);
2336          T = Context.IntTy;
2337          D.setInvalidType(true);
2338        } else if (FTI.hasTrailingReturnType()) {
2339          // T must be exactly 'auto' at this point. See CWG issue 681.
2340          if (isa<ParenType>(T)) {
2341            S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2342                 diag::err_trailing_return_in_parens)
2343              << T << D.getDeclSpec().getSourceRange();
2344            D.setInvalidType(true);
2345          } else if (D.getContext() != Declarator::LambdaExprContext &&
2346                     (T.hasQualifiers() || !isa<AutoType>(T))) {
2347            S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2348                 diag::err_trailing_return_without_auto)
2349              << T << D.getDeclSpec().getSourceRange();
2350            D.setInvalidType(true);
2351          }
2352          T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
2353          if (T.isNull()) {
2354            // An error occurred parsing the trailing return type.
2355            T = Context.IntTy;
2356            D.setInvalidType(true);
2357          }
2358        }
2359      }
2360
2361      // C99 6.7.5.3p1: The return type may not be a function or array type.
2362      // For conversion functions, we'll diagnose this particular error later.
2363      if ((T->isArrayType() || T->isFunctionType()) &&
2364          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
2365        unsigned diagID = diag::err_func_returning_array_function;
2366        // Last processing chunk in block context means this function chunk
2367        // represents the block.
2368        if (chunkIndex == 0 &&
2369            D.getContext() == Declarator::BlockLiteralContext)
2370          diagID = diag::err_block_returning_array_function;
2371        S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
2372        T = Context.IntTy;
2373        D.setInvalidType(true);
2374      }
2375
2376      // Do not allow returning half FP value.
2377      // FIXME: This really should be in BuildFunctionType.
2378      if (T->isHalfType()) {
2379        S.Diag(D.getIdentifierLoc(),
2380             diag::err_parameters_retval_cannot_have_fp16_type) << 1
2381          << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
2382        D.setInvalidType(true);
2383      }
2384
2385      // cv-qualifiers on return types are pointless except when the type is a
2386      // class type in C++.
2387      if (isa<PointerType>(T) && T.getLocalCVRQualifiers() &&
2388          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId) &&
2389          (!LangOpts.CPlusPlus || !T->isDependentType())) {
2390        assert(chunkIndex + 1 < e && "No DeclaratorChunk for the return type?");
2391        DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
2392        assert(ReturnTypeChunk.Kind == DeclaratorChunk::Pointer);
2393
2394        DeclaratorChunk::PointerTypeInfo &PTI = ReturnTypeChunk.Ptr;
2395
2396        DiagnoseIgnoredQualifiers(PTI.TypeQuals,
2397            SourceLocation::getFromRawEncoding(PTI.ConstQualLoc),
2398            SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc),
2399            SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc),
2400            S);
2401
2402      } else if (T.getCVRQualifiers() && D.getDeclSpec().getTypeQualifiers() &&
2403          (!LangOpts.CPlusPlus ||
2404           (!T->isDependentType() && !T->isRecordType()))) {
2405
2406        DiagnoseIgnoredQualifiers(D.getDeclSpec().getTypeQualifiers(),
2407                                  D.getDeclSpec().getConstSpecLoc(),
2408                                  D.getDeclSpec().getVolatileSpecLoc(),
2409                                  D.getDeclSpec().getRestrictSpecLoc(),
2410                                  S);
2411      }
2412
2413      if (LangOpts.CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
2414        // C++ [dcl.fct]p6:
2415        //   Types shall not be defined in return or parameter types.
2416        TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
2417        if (Tag->isCompleteDefinition())
2418          S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
2419            << Context.getTypeDeclType(Tag);
2420      }
2421
2422      // Exception specs are not allowed in typedefs. Complain, but add it
2423      // anyway.
2424      if (IsTypedefName && FTI.getExceptionSpecType())
2425        S.Diag(FTI.getExceptionSpecLoc(), diag::err_exception_spec_in_typedef)
2426          << (D.getContext() == Declarator::AliasDeclContext ||
2427              D.getContext() == Declarator::AliasTemplateContext);
2428
2429      // If we see "T var();" or "T var(T());" at block scope, it is probably
2430      // an attempt to initialize a variable, not a function declaration.
2431      if (FTI.isAmbiguous)
2432        warnAboutAmbiguousFunction(S, D, DeclType, T);
2433
2434      if (!FTI.NumArgs && !FTI.isVariadic && !LangOpts.CPlusPlus) {
2435        // Simple void foo(), where the incoming T is the result type.
2436        T = Context.getFunctionNoProtoType(T);
2437      } else {
2438        // We allow a zero-parameter variadic function in C if the
2439        // function is marked with the "overloadable" attribute. Scan
2440        // for this attribute now.
2441        if (!FTI.NumArgs && FTI.isVariadic && !LangOpts.CPlusPlus) {
2442          bool Overloadable = false;
2443          for (const AttributeList *Attrs = D.getAttributes();
2444               Attrs; Attrs = Attrs->getNext()) {
2445            if (Attrs->getKind() == AttributeList::AT_Overloadable) {
2446              Overloadable = true;
2447              break;
2448            }
2449          }
2450
2451          if (!Overloadable)
2452            S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
2453        }
2454
2455        if (FTI.NumArgs && FTI.ArgInfo[0].Param == 0) {
2456          // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
2457          // definition.
2458          S.Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
2459          D.setInvalidType(true);
2460          break;
2461        }
2462
2463        FunctionProtoType::ExtProtoInfo EPI;
2464        EPI.Variadic = FTI.isVariadic;
2465        EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
2466        EPI.TypeQuals = FTI.TypeQuals;
2467        EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
2468                    : FTI.RefQualifierIsLValueRef? RQ_LValue
2469                    : RQ_RValue;
2470
2471        // Otherwise, we have a function with an argument list that is
2472        // potentially variadic.
2473        SmallVector<QualType, 16> ArgTys;
2474        ArgTys.reserve(FTI.NumArgs);
2475
2476        SmallVector<bool, 16> ConsumedArguments;
2477        ConsumedArguments.reserve(FTI.NumArgs);
2478        bool HasAnyConsumedArguments = false;
2479
2480        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2481          ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
2482          QualType ArgTy = Param->getType();
2483          assert(!ArgTy.isNull() && "Couldn't parse type?");
2484
2485          // Adjust the parameter type.
2486          assert((ArgTy == Context.getAdjustedParameterType(ArgTy)) &&
2487                 "Unadjusted type?");
2488
2489          // Look for 'void'.  void is allowed only as a single argument to a
2490          // function with no other parameters (C99 6.7.5.3p10).  We record
2491          // int(void) as a FunctionProtoType with an empty argument list.
2492          if (ArgTy->isVoidType()) {
2493            // If this is something like 'float(int, void)', reject it.  'void'
2494            // is an incomplete type (C99 6.2.5p19) and function decls cannot
2495            // have arguments of incomplete type.
2496            if (FTI.NumArgs != 1 || FTI.isVariadic) {
2497              S.Diag(DeclType.Loc, diag::err_void_only_param);
2498              ArgTy = Context.IntTy;
2499              Param->setType(ArgTy);
2500            } else if (FTI.ArgInfo[i].Ident) {
2501              // Reject, but continue to parse 'int(void abc)'.
2502              S.Diag(FTI.ArgInfo[i].IdentLoc,
2503                   diag::err_param_with_void_type);
2504              ArgTy = Context.IntTy;
2505              Param->setType(ArgTy);
2506            } else {
2507              // Reject, but continue to parse 'float(const void)'.
2508              if (ArgTy.hasQualifiers())
2509                S.Diag(DeclType.Loc, diag::err_void_param_qualified);
2510
2511              // Do not add 'void' to the ArgTys list.
2512              break;
2513            }
2514          } else if (ArgTy->isHalfType()) {
2515            // Disallow half FP arguments.
2516            // FIXME: This really should be in BuildFunctionType.
2517            S.Diag(Param->getLocation(),
2518               diag::err_parameters_retval_cannot_have_fp16_type) << 0
2519            << FixItHint::CreateInsertion(Param->getLocation(), "*");
2520            D.setInvalidType();
2521          } else if (!FTI.hasPrototype) {
2522            if (ArgTy->isPromotableIntegerType()) {
2523              ArgTy = Context.getPromotedIntegerType(ArgTy);
2524              Param->setKNRPromoted(true);
2525            } else if (const BuiltinType* BTy = ArgTy->getAs<BuiltinType>()) {
2526              if (BTy->getKind() == BuiltinType::Float) {
2527                ArgTy = Context.DoubleTy;
2528                Param->setKNRPromoted(true);
2529              }
2530            }
2531          }
2532
2533          if (LangOpts.ObjCAutoRefCount) {
2534            bool Consumed = Param->hasAttr<NSConsumedAttr>();
2535            ConsumedArguments.push_back(Consumed);
2536            HasAnyConsumedArguments |= Consumed;
2537          }
2538
2539          ArgTys.push_back(ArgTy);
2540        }
2541
2542        if (HasAnyConsumedArguments)
2543          EPI.ConsumedArguments = ConsumedArguments.data();
2544
2545        SmallVector<QualType, 4> Exceptions;
2546        SmallVector<ParsedType, 2> DynamicExceptions;
2547        SmallVector<SourceRange, 2> DynamicExceptionRanges;
2548        Expr *NoexceptExpr = 0;
2549
2550        if (FTI.getExceptionSpecType() == EST_Dynamic) {
2551          // FIXME: It's rather inefficient to have to split into two vectors
2552          // here.
2553          unsigned N = FTI.NumExceptions;
2554          DynamicExceptions.reserve(N);
2555          DynamicExceptionRanges.reserve(N);
2556          for (unsigned I = 0; I != N; ++I) {
2557            DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
2558            DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
2559          }
2560        } else if (FTI.getExceptionSpecType() == EST_ComputedNoexcept) {
2561          NoexceptExpr = FTI.NoexceptExpr;
2562        }
2563
2564        S.checkExceptionSpecification(FTI.getExceptionSpecType(),
2565                                      DynamicExceptions,
2566                                      DynamicExceptionRanges,
2567                                      NoexceptExpr,
2568                                      Exceptions,
2569                                      EPI);
2570
2571        T = Context.getFunctionType(T, ArgTys.data(), ArgTys.size(), EPI);
2572      }
2573
2574      break;
2575    }
2576    case DeclaratorChunk::MemberPointer:
2577      // The scope spec must refer to a class, or be dependent.
2578      CXXScopeSpec &SS = DeclType.Mem.Scope();
2579      QualType ClsType;
2580      if (SS.isInvalid()) {
2581        // Avoid emitting extra errors if we already errored on the scope.
2582        D.setInvalidType(true);
2583      } else if (S.isDependentScopeSpecifier(SS) ||
2584                 dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
2585        NestedNameSpecifier *NNS
2586          = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2587        NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
2588        switch (NNS->getKind()) {
2589        case NestedNameSpecifier::Identifier:
2590          ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
2591                                                 NNS->getAsIdentifier());
2592          break;
2593
2594        case NestedNameSpecifier::Namespace:
2595        case NestedNameSpecifier::NamespaceAlias:
2596        case NestedNameSpecifier::Global:
2597          llvm_unreachable("Nested-name-specifier must name a type");
2598
2599        case NestedNameSpecifier::TypeSpec:
2600        case NestedNameSpecifier::TypeSpecWithTemplate:
2601          ClsType = QualType(NNS->getAsType(), 0);
2602          // Note: if the NNS has a prefix and ClsType is a nondependent
2603          // TemplateSpecializationType, then the NNS prefix is NOT included
2604          // in ClsType; hence we wrap ClsType into an ElaboratedType.
2605          // NOTE: in particular, no wrap occurs if ClsType already is an
2606          // Elaborated, DependentName, or DependentTemplateSpecialization.
2607          if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
2608            ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
2609          break;
2610        }
2611      } else {
2612        S.Diag(DeclType.Mem.Scope().getBeginLoc(),
2613             diag::err_illegal_decl_mempointer_in_nonclass)
2614          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
2615          << DeclType.Mem.Scope().getRange();
2616        D.setInvalidType(true);
2617      }
2618
2619      if (!ClsType.isNull())
2620        T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc, D.getIdentifier());
2621      if (T.isNull()) {
2622        T = Context.IntTy;
2623        D.setInvalidType(true);
2624      } else if (DeclType.Mem.TypeQuals) {
2625        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
2626      }
2627      break;
2628    }
2629
2630    if (T.isNull()) {
2631      D.setInvalidType(true);
2632      T = Context.IntTy;
2633    }
2634
2635    // See if there are any attributes on this declarator chunk.
2636    if (AttributeList *attrs = const_cast<AttributeList*>(DeclType.getAttrs()))
2637      processTypeAttrs(state, T, false, attrs);
2638  }
2639
2640  if (LangOpts.CPlusPlus && T->isFunctionType()) {
2641    const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
2642    assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
2643
2644    // C++ 8.3.5p4:
2645    //   A cv-qualifier-seq shall only be part of the function type
2646    //   for a nonstatic member function, the function type to which a pointer
2647    //   to member refers, or the top-level function type of a function typedef
2648    //   declaration.
2649    //
2650    // Core issue 547 also allows cv-qualifiers on function types that are
2651    // top-level template type arguments.
2652    bool FreeFunction;
2653    if (!D.getCXXScopeSpec().isSet()) {
2654      FreeFunction = ((D.getContext() != Declarator::MemberContext &&
2655                       D.getContext() != Declarator::LambdaExprContext) ||
2656                      D.getDeclSpec().isFriendSpecified());
2657    } else {
2658      DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
2659      FreeFunction = (DC && !DC->isRecord());
2660    }
2661
2662    // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
2663    // function that is not a constructor declares that function to be const.
2664    // FIXME: This should be deferred until we know whether this is a static
2665    //        member function (for an out-of-class definition, we don't know
2666    //        this until we perform redeclaration lookup).
2667    if (D.getDeclSpec().isConstexprSpecified() && !FreeFunction &&
2668        D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static &&
2669        D.getName().getKind() != UnqualifiedId::IK_ConstructorName &&
2670        D.getName().getKind() != UnqualifiedId::IK_ConstructorTemplateId &&
2671        !(FnTy->getTypeQuals() & DeclSpec::TQ_const)) {
2672      // Rebuild function type adding a 'const' qualifier.
2673      FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
2674      EPI.TypeQuals |= DeclSpec::TQ_const;
2675      T = Context.getFunctionType(FnTy->getResultType(),
2676                                  FnTy->arg_type_begin(),
2677                                  FnTy->getNumArgs(), EPI);
2678      // Rebuild any parens around the identifier in the function type.
2679      for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2680        if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
2681          break;
2682        T = S.BuildParenType(T);
2683      }
2684    }
2685
2686    // C++11 [dcl.fct]p6 (w/DR1417):
2687    // An attempt to specify a function type with a cv-qualifier-seq or a
2688    // ref-qualifier (including by typedef-name) is ill-formed unless it is:
2689    //  - the function type for a non-static member function,
2690    //  - the function type to which a pointer to member refers,
2691    //  - the top-level function type of a function typedef declaration or
2692    //    alias-declaration,
2693    //  - the type-id in the default argument of a type-parameter, or
2694    //  - the type-id of a template-argument for a type-parameter
2695    if (IsQualifiedFunction &&
2696        !(!FreeFunction &&
2697          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
2698        !IsTypedefName &&
2699        D.getContext() != Declarator::TemplateTypeArgContext) {
2700      SourceLocation Loc = D.getLocStart();
2701      SourceRange RemovalRange;
2702      unsigned I;
2703      if (D.isFunctionDeclarator(I)) {
2704        SmallVector<SourceLocation, 4> RemovalLocs;
2705        const DeclaratorChunk &Chunk = D.getTypeObject(I);
2706        assert(Chunk.Kind == DeclaratorChunk::Function);
2707        if (Chunk.Fun.hasRefQualifier())
2708          RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
2709        if (Chunk.Fun.TypeQuals & Qualifiers::Const)
2710          RemovalLocs.push_back(Chunk.Fun.getConstQualifierLoc());
2711        if (Chunk.Fun.TypeQuals & Qualifiers::Volatile)
2712          RemovalLocs.push_back(Chunk.Fun.getVolatileQualifierLoc());
2713        // FIXME: We do not track the location of the __restrict qualifier.
2714        //if (Chunk.Fun.TypeQuals & Qualifiers::Restrict)
2715        //  RemovalLocs.push_back(Chunk.Fun.getRestrictQualifierLoc());
2716        if (!RemovalLocs.empty()) {
2717          std::sort(RemovalLocs.begin(), RemovalLocs.end(),
2718                    BeforeThanCompare<SourceLocation>(S.getSourceManager()));
2719          RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
2720          Loc = RemovalLocs.front();
2721        }
2722      }
2723
2724      S.Diag(Loc, diag::err_invalid_qualified_function_type)
2725        << FreeFunction << D.isFunctionDeclarator() << T
2726        << getFunctionQualifiersAsString(FnTy)
2727        << FixItHint::CreateRemoval(RemovalRange);
2728
2729      // Strip the cv-qualifiers and ref-qualifiers from the type.
2730      FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
2731      EPI.TypeQuals = 0;
2732      EPI.RefQualifier = RQ_None;
2733
2734      T = Context.getFunctionType(FnTy->getResultType(),
2735                                  FnTy->arg_type_begin(),
2736                                  FnTy->getNumArgs(), EPI);
2737      // Rebuild any parens around the identifier in the function type.
2738      for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2739        if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
2740          break;
2741        T = S.BuildParenType(T);
2742      }
2743    }
2744  }
2745
2746  // Apply any undistributed attributes from the declarator.
2747  if (!T.isNull())
2748    if (AttributeList *attrs = D.getAttributes())
2749      processTypeAttrs(state, T, false, attrs);
2750
2751  // Diagnose any ignored type attributes.
2752  if (!T.isNull()) state.diagnoseIgnoredTypeAttrs(T);
2753
2754  // C++0x [dcl.constexpr]p9:
2755  //  A constexpr specifier used in an object declaration declares the object
2756  //  as const.
2757  if (D.getDeclSpec().isConstexprSpecified() && T->isObjectType()) {
2758    T.addConst();
2759  }
2760
2761  // If there was an ellipsis in the declarator, the declaration declares a
2762  // parameter pack whose type may be a pack expansion type.
2763  if (D.hasEllipsis() && !T.isNull()) {
2764    // C++0x [dcl.fct]p13:
2765    //   A declarator-id or abstract-declarator containing an ellipsis shall
2766    //   only be used in a parameter-declaration. Such a parameter-declaration
2767    //   is a parameter pack (14.5.3). [...]
2768    switch (D.getContext()) {
2769    case Declarator::PrototypeContext:
2770      // C++0x [dcl.fct]p13:
2771      //   [...] When it is part of a parameter-declaration-clause, the
2772      //   parameter pack is a function parameter pack (14.5.3). The type T
2773      //   of the declarator-id of the function parameter pack shall contain
2774      //   a template parameter pack; each template parameter pack in T is
2775      //   expanded by the function parameter pack.
2776      //
2777      // We represent function parameter packs as function parameters whose
2778      // type is a pack expansion.
2779      if (!T->containsUnexpandedParameterPack()) {
2780        S.Diag(D.getEllipsisLoc(),
2781             diag::err_function_parameter_pack_without_parameter_packs)
2782          << T <<  D.getSourceRange();
2783        D.setEllipsisLoc(SourceLocation());
2784      } else {
2785        T = Context.getPackExpansionType(T, llvm::Optional<unsigned>());
2786      }
2787      break;
2788
2789    case Declarator::TemplateParamContext:
2790      // C++0x [temp.param]p15:
2791      //   If a template-parameter is a [...] is a parameter-declaration that
2792      //   declares a parameter pack (8.3.5), then the template-parameter is a
2793      //   template parameter pack (14.5.3).
2794      //
2795      // Note: core issue 778 clarifies that, if there are any unexpanded
2796      // parameter packs in the type of the non-type template parameter, then
2797      // it expands those parameter packs.
2798      if (T->containsUnexpandedParameterPack())
2799        T = Context.getPackExpansionType(T, llvm::Optional<unsigned>());
2800      else
2801        S.Diag(D.getEllipsisLoc(),
2802               LangOpts.CPlusPlus0x
2803                 ? diag::warn_cxx98_compat_variadic_templates
2804                 : diag::ext_variadic_templates);
2805      break;
2806
2807    case Declarator::FileContext:
2808    case Declarator::KNRTypeListContext:
2809    case Declarator::ObjCParameterContext:  // FIXME: special diagnostic here?
2810    case Declarator::ObjCResultContext:     // FIXME: special diagnostic here?
2811    case Declarator::TypeNameContext:
2812    case Declarator::CXXNewContext:
2813    case Declarator::AliasDeclContext:
2814    case Declarator::AliasTemplateContext:
2815    case Declarator::MemberContext:
2816    case Declarator::BlockContext:
2817    case Declarator::ForContext:
2818    case Declarator::ConditionContext:
2819    case Declarator::CXXCatchContext:
2820    case Declarator::ObjCCatchContext:
2821    case Declarator::BlockLiteralContext:
2822    case Declarator::LambdaExprContext:
2823    case Declarator::TrailingReturnContext:
2824    case Declarator::TemplateTypeArgContext:
2825      // FIXME: We may want to allow parameter packs in block-literal contexts
2826      // in the future.
2827      S.Diag(D.getEllipsisLoc(), diag::err_ellipsis_in_declarator_not_parameter);
2828      D.setEllipsisLoc(SourceLocation());
2829      break;
2830    }
2831  }
2832
2833  if (T.isNull())
2834    return Context.getNullTypeSourceInfo();
2835  else if (D.isInvalidType())
2836    return Context.getTrivialTypeSourceInfo(T);
2837
2838  return S.GetTypeSourceInfoForDeclarator(D, T, TInfo);
2839}
2840
2841/// GetTypeForDeclarator - Convert the type for the specified
2842/// declarator to Type instances.
2843///
2844/// The result of this call will never be null, but the associated
2845/// type may be a null type if there's an unrecoverable error.
2846TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
2847  // Determine the type of the declarator. Not all forms of declarator
2848  // have a type.
2849
2850  TypeProcessingState state(*this, D);
2851
2852  TypeSourceInfo *ReturnTypeInfo = 0;
2853  QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
2854  if (T.isNull())
2855    return Context.getNullTypeSourceInfo();
2856
2857  if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
2858    inferARCWriteback(state, T);
2859
2860  return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
2861}
2862
2863static void transferARCOwnershipToDeclSpec(Sema &S,
2864                                           QualType &declSpecTy,
2865                                           Qualifiers::ObjCLifetime ownership) {
2866  if (declSpecTy->isObjCRetainableType() &&
2867      declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
2868    Qualifiers qs;
2869    qs.addObjCLifetime(ownership);
2870    declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
2871  }
2872}
2873
2874static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
2875                                            Qualifiers::ObjCLifetime ownership,
2876                                            unsigned chunkIndex) {
2877  Sema &S = state.getSema();
2878  Declarator &D = state.getDeclarator();
2879
2880  // Look for an explicit lifetime attribute.
2881  DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
2882  for (const AttributeList *attr = chunk.getAttrs(); attr;
2883         attr = attr->getNext())
2884    if (attr->getKind() == AttributeList::AT_ObjCOwnership)
2885      return;
2886
2887  const char *attrStr = 0;
2888  switch (ownership) {
2889  case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
2890  case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
2891  case Qualifiers::OCL_Strong: attrStr = "strong"; break;
2892  case Qualifiers::OCL_Weak: attrStr = "weak"; break;
2893  case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
2894  }
2895
2896  // If there wasn't one, add one (with an invalid source location
2897  // so that we don't make an AttributedType for it).
2898  AttributeList *attr = D.getAttributePool()
2899    .create(&S.Context.Idents.get("objc_ownership"), SourceLocation(),
2900            /*scope*/ 0, SourceLocation(),
2901            &S.Context.Idents.get(attrStr), SourceLocation(),
2902            /*args*/ 0, 0, AttributeList::AS_GNU);
2903  spliceAttrIntoList(*attr, chunk.getAttrListRef());
2904
2905  // TODO: mark whether we did this inference?
2906}
2907
2908/// \brief Used for transferring ownership in casts resulting in l-values.
2909static void transferARCOwnership(TypeProcessingState &state,
2910                                 QualType &declSpecTy,
2911                                 Qualifiers::ObjCLifetime ownership) {
2912  Sema &S = state.getSema();
2913  Declarator &D = state.getDeclarator();
2914
2915  int inner = -1;
2916  bool hasIndirection = false;
2917  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2918    DeclaratorChunk &chunk = D.getTypeObject(i);
2919    switch (chunk.Kind) {
2920    case DeclaratorChunk::Paren:
2921      // Ignore parens.
2922      break;
2923
2924    case DeclaratorChunk::Array:
2925    case DeclaratorChunk::Reference:
2926    case DeclaratorChunk::Pointer:
2927      if (inner != -1)
2928        hasIndirection = true;
2929      inner = i;
2930      break;
2931
2932    case DeclaratorChunk::BlockPointer:
2933      if (inner != -1)
2934        transferARCOwnershipToDeclaratorChunk(state, ownership, i);
2935      return;
2936
2937    case DeclaratorChunk::Function:
2938    case DeclaratorChunk::MemberPointer:
2939      return;
2940    }
2941  }
2942
2943  if (inner == -1)
2944    return;
2945
2946  DeclaratorChunk &chunk = D.getTypeObject(inner);
2947  if (chunk.Kind == DeclaratorChunk::Pointer) {
2948    if (declSpecTy->isObjCRetainableType())
2949      return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
2950    if (declSpecTy->isObjCObjectType() && hasIndirection)
2951      return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
2952  } else {
2953    assert(chunk.Kind == DeclaratorChunk::Array ||
2954           chunk.Kind == DeclaratorChunk::Reference);
2955    return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
2956  }
2957}
2958
2959TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
2960  TypeProcessingState state(*this, D);
2961
2962  TypeSourceInfo *ReturnTypeInfo = 0;
2963  QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
2964  if (declSpecTy.isNull())
2965    return Context.getNullTypeSourceInfo();
2966
2967  if (getLangOpts().ObjCAutoRefCount) {
2968    Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
2969    if (ownership != Qualifiers::OCL_None)
2970      transferARCOwnership(state, declSpecTy, ownership);
2971  }
2972
2973  return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
2974}
2975
2976/// Map an AttributedType::Kind to an AttributeList::Kind.
2977static AttributeList::Kind getAttrListKind(AttributedType::Kind kind) {
2978  switch (kind) {
2979  case AttributedType::attr_address_space:
2980    return AttributeList::AT_AddressSpace;
2981  case AttributedType::attr_regparm:
2982    return AttributeList::AT_Regparm;
2983  case AttributedType::attr_vector_size:
2984    return AttributeList::AT_VectorSize;
2985  case AttributedType::attr_neon_vector_type:
2986    return AttributeList::AT_NeonVectorType;
2987  case AttributedType::attr_neon_polyvector_type:
2988    return AttributeList::AT_NeonPolyVectorType;
2989  case AttributedType::attr_objc_gc:
2990    return AttributeList::AT_ObjCGC;
2991  case AttributedType::attr_objc_ownership:
2992    return AttributeList::AT_ObjCOwnership;
2993  case AttributedType::attr_noreturn:
2994    return AttributeList::AT_NoReturn;
2995  case AttributedType::attr_cdecl:
2996    return AttributeList::AT_CDecl;
2997  case AttributedType::attr_fastcall:
2998    return AttributeList::AT_FastCall;
2999  case AttributedType::attr_stdcall:
3000    return AttributeList::AT_StdCall;
3001  case AttributedType::attr_thiscall:
3002    return AttributeList::AT_ThisCall;
3003  case AttributedType::attr_pascal:
3004    return AttributeList::AT_Pascal;
3005  case AttributedType::attr_pcs:
3006    return AttributeList::AT_Pcs;
3007  case AttributedType::attr_pnaclcall:
3008    return AttributeList::AT_PnaclCall;
3009  }
3010  llvm_unreachable("unexpected attribute kind!");
3011}
3012
3013static void fillAttributedTypeLoc(AttributedTypeLoc TL,
3014                                  const AttributeList *attrs) {
3015  AttributedType::Kind kind = TL.getAttrKind();
3016
3017  assert(attrs && "no type attributes in the expected location!");
3018  AttributeList::Kind parsedKind = getAttrListKind(kind);
3019  while (attrs->getKind() != parsedKind) {
3020    attrs = attrs->getNext();
3021    assert(attrs && "no matching attribute in expected location!");
3022  }
3023
3024  TL.setAttrNameLoc(attrs->getLoc());
3025  if (TL.hasAttrExprOperand())
3026    TL.setAttrExprOperand(attrs->getArg(0));
3027  else if (TL.hasAttrEnumOperand())
3028    TL.setAttrEnumOperandLoc(attrs->getParameterLoc());
3029
3030  // FIXME: preserve this information to here.
3031  if (TL.hasAttrOperand())
3032    TL.setAttrOperandParensRange(SourceRange());
3033}
3034
3035namespace {
3036  class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
3037    ASTContext &Context;
3038    const DeclSpec &DS;
3039
3040  public:
3041    TypeSpecLocFiller(ASTContext &Context, const DeclSpec &DS)
3042      : Context(Context), DS(DS) {}
3043
3044    void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
3045      fillAttributedTypeLoc(TL, DS.getAttributes().getList());
3046      Visit(TL.getModifiedLoc());
3047    }
3048    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
3049      Visit(TL.getUnqualifiedLoc());
3050    }
3051    void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
3052      TL.setNameLoc(DS.getTypeSpecTypeLoc());
3053    }
3054    void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
3055      TL.setNameLoc(DS.getTypeSpecTypeLoc());
3056      // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
3057      // addition field. What we have is good enough for dispay of location
3058      // of 'fixit' on interface name.
3059      TL.setNameEndLoc(DS.getLocEnd());
3060    }
3061    void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
3062      // Handle the base type, which might not have been written explicitly.
3063      if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
3064        TL.setHasBaseTypeAsWritten(false);
3065        TL.getBaseLoc().initialize(Context, SourceLocation());
3066      } else {
3067        TL.setHasBaseTypeAsWritten(true);
3068        Visit(TL.getBaseLoc());
3069      }
3070
3071      // Protocol qualifiers.
3072      if (DS.getProtocolQualifiers()) {
3073        assert(TL.getNumProtocols() > 0);
3074        assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
3075        TL.setLAngleLoc(DS.getProtocolLAngleLoc());
3076        TL.setRAngleLoc(DS.getSourceRange().getEnd());
3077        for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
3078          TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
3079      } else {
3080        assert(TL.getNumProtocols() == 0);
3081        TL.setLAngleLoc(SourceLocation());
3082        TL.setRAngleLoc(SourceLocation());
3083      }
3084    }
3085    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
3086      TL.setStarLoc(SourceLocation());
3087      Visit(TL.getPointeeLoc());
3088    }
3089    void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
3090      TypeSourceInfo *TInfo = 0;
3091      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3092
3093      // If we got no declarator info from previous Sema routines,
3094      // just fill with the typespec loc.
3095      if (!TInfo) {
3096        TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
3097        return;
3098      }
3099
3100      TypeLoc OldTL = TInfo->getTypeLoc();
3101      if (TInfo->getType()->getAs<ElaboratedType>()) {
3102        ElaboratedTypeLoc ElabTL = cast<ElaboratedTypeLoc>(OldTL);
3103        TemplateSpecializationTypeLoc NamedTL =
3104          cast<TemplateSpecializationTypeLoc>(ElabTL.getNamedTypeLoc());
3105        TL.copy(NamedTL);
3106      }
3107      else
3108        TL.copy(cast<TemplateSpecializationTypeLoc>(OldTL));
3109    }
3110    void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
3111      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
3112      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
3113      TL.setParensRange(DS.getTypeofParensRange());
3114    }
3115    void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
3116      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
3117      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
3118      TL.setParensRange(DS.getTypeofParensRange());
3119      assert(DS.getRepAsType());
3120      TypeSourceInfo *TInfo = 0;
3121      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3122      TL.setUnderlyingTInfo(TInfo);
3123    }
3124    void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
3125      // FIXME: This holds only because we only have one unary transform.
3126      assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType);
3127      TL.setKWLoc(DS.getTypeSpecTypeLoc());
3128      TL.setParensRange(DS.getTypeofParensRange());
3129      assert(DS.getRepAsType());
3130      TypeSourceInfo *TInfo = 0;
3131      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3132      TL.setUnderlyingTInfo(TInfo);
3133    }
3134    void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
3135      // By default, use the source location of the type specifier.
3136      TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
3137      if (TL.needsExtraLocalData()) {
3138        // Set info for the written builtin specifiers.
3139        TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
3140        // Try to have a meaningful source location.
3141        if (TL.getWrittenSignSpec() != TSS_unspecified)
3142          // Sign spec loc overrides the others (e.g., 'unsigned long').
3143          TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
3144        else if (TL.getWrittenWidthSpec() != TSW_unspecified)
3145          // Width spec loc overrides type spec loc (e.g., 'short int').
3146          TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
3147      }
3148    }
3149    void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
3150      ElaboratedTypeKeyword Keyword
3151        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
3152      if (DS.getTypeSpecType() == TST_typename) {
3153        TypeSourceInfo *TInfo = 0;
3154        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3155        if (TInfo) {
3156          TL.copy(cast<ElaboratedTypeLoc>(TInfo->getTypeLoc()));
3157          return;
3158        }
3159      }
3160      TL.setElaboratedKeywordLoc(Keyword != ETK_None
3161                                 ? DS.getTypeSpecTypeLoc()
3162                                 : SourceLocation());
3163      const CXXScopeSpec& SS = DS.getTypeSpecScope();
3164      TL.setQualifierLoc(SS.getWithLocInContext(Context));
3165      Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
3166    }
3167    void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
3168      assert(DS.getTypeSpecType() == TST_typename);
3169      TypeSourceInfo *TInfo = 0;
3170      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3171      assert(TInfo);
3172      TL.copy(cast<DependentNameTypeLoc>(TInfo->getTypeLoc()));
3173    }
3174    void VisitDependentTemplateSpecializationTypeLoc(
3175                                 DependentTemplateSpecializationTypeLoc TL) {
3176      assert(DS.getTypeSpecType() == TST_typename);
3177      TypeSourceInfo *TInfo = 0;
3178      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3179      assert(TInfo);
3180      TL.copy(cast<DependentTemplateSpecializationTypeLoc>(
3181                TInfo->getTypeLoc()));
3182    }
3183    void VisitTagTypeLoc(TagTypeLoc TL) {
3184      TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
3185    }
3186    void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
3187      TL.setKWLoc(DS.getTypeSpecTypeLoc());
3188      TL.setParensRange(DS.getTypeofParensRange());
3189
3190      TypeSourceInfo *TInfo = 0;
3191      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3192      TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
3193    }
3194
3195    void VisitTypeLoc(TypeLoc TL) {
3196      // FIXME: add other typespec types and change this to an assert.
3197      TL.initialize(Context, DS.getTypeSpecTypeLoc());
3198    }
3199  };
3200
3201  class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
3202    ASTContext &Context;
3203    const DeclaratorChunk &Chunk;
3204
3205  public:
3206    DeclaratorLocFiller(ASTContext &Context, const DeclaratorChunk &Chunk)
3207      : Context(Context), Chunk(Chunk) {}
3208
3209    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
3210      llvm_unreachable("qualified type locs not expected here!");
3211    }
3212
3213    void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
3214      fillAttributedTypeLoc(TL, Chunk.getAttrs());
3215    }
3216    void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
3217      assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
3218      TL.setCaretLoc(Chunk.Loc);
3219    }
3220    void VisitPointerTypeLoc(PointerTypeLoc TL) {
3221      assert(Chunk.Kind == DeclaratorChunk::Pointer);
3222      TL.setStarLoc(Chunk.Loc);
3223    }
3224    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
3225      assert(Chunk.Kind == DeclaratorChunk::Pointer);
3226      TL.setStarLoc(Chunk.Loc);
3227    }
3228    void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
3229      assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
3230      const CXXScopeSpec& SS = Chunk.Mem.Scope();
3231      NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
3232
3233      const Type* ClsTy = TL.getClass();
3234      QualType ClsQT = QualType(ClsTy, 0);
3235      TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
3236      // Now copy source location info into the type loc component.
3237      TypeLoc ClsTL = ClsTInfo->getTypeLoc();
3238      switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
3239      case NestedNameSpecifier::Identifier:
3240        assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
3241        {
3242          DependentNameTypeLoc DNTLoc = cast<DependentNameTypeLoc>(ClsTL);
3243          DNTLoc.setElaboratedKeywordLoc(SourceLocation());
3244          DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
3245          DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
3246        }
3247        break;
3248
3249      case NestedNameSpecifier::TypeSpec:
3250      case NestedNameSpecifier::TypeSpecWithTemplate:
3251        if (isa<ElaboratedType>(ClsTy)) {
3252          ElaboratedTypeLoc ETLoc = *cast<ElaboratedTypeLoc>(&ClsTL);
3253          ETLoc.setElaboratedKeywordLoc(SourceLocation());
3254          ETLoc.setQualifierLoc(NNSLoc.getPrefix());
3255          TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
3256          NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
3257        } else {
3258          ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
3259        }
3260        break;
3261
3262      case NestedNameSpecifier::Namespace:
3263      case NestedNameSpecifier::NamespaceAlias:
3264      case NestedNameSpecifier::Global:
3265        llvm_unreachable("Nested-name-specifier must name a type");
3266      }
3267
3268      // Finally fill in MemberPointerLocInfo fields.
3269      TL.setStarLoc(Chunk.Loc);
3270      TL.setClassTInfo(ClsTInfo);
3271    }
3272    void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
3273      assert(Chunk.Kind == DeclaratorChunk::Reference);
3274      // 'Amp' is misleading: this might have been originally
3275      /// spelled with AmpAmp.
3276      TL.setAmpLoc(Chunk.Loc);
3277    }
3278    void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
3279      assert(Chunk.Kind == DeclaratorChunk::Reference);
3280      assert(!Chunk.Ref.LValueRef);
3281      TL.setAmpAmpLoc(Chunk.Loc);
3282    }
3283    void VisitArrayTypeLoc(ArrayTypeLoc TL) {
3284      assert(Chunk.Kind == DeclaratorChunk::Array);
3285      TL.setLBracketLoc(Chunk.Loc);
3286      TL.setRBracketLoc(Chunk.EndLoc);
3287      TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
3288    }
3289    void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
3290      assert(Chunk.Kind == DeclaratorChunk::Function);
3291      TL.setLocalRangeBegin(Chunk.Loc);
3292      TL.setLocalRangeEnd(Chunk.EndLoc);
3293
3294      const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
3295      TL.setLParenLoc(FTI.getLParenLoc());
3296      TL.setRParenLoc(FTI.getRParenLoc());
3297      for (unsigned i = 0, e = TL.getNumArgs(), tpi = 0; i != e; ++i) {
3298        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3299        TL.setArg(tpi++, Param);
3300      }
3301      // FIXME: exception specs
3302    }
3303    void VisitParenTypeLoc(ParenTypeLoc TL) {
3304      assert(Chunk.Kind == DeclaratorChunk::Paren);
3305      TL.setLParenLoc(Chunk.Loc);
3306      TL.setRParenLoc(Chunk.EndLoc);
3307    }
3308
3309    void VisitTypeLoc(TypeLoc TL) {
3310      llvm_unreachable("unsupported TypeLoc kind in declarator!");
3311    }
3312  };
3313}
3314
3315/// \brief Create and instantiate a TypeSourceInfo with type source information.
3316///
3317/// \param T QualType referring to the type as written in source code.
3318///
3319/// \param ReturnTypeInfo For declarators whose return type does not show
3320/// up in the normal place in the declaration specifiers (such as a C++
3321/// conversion function), this pointer will refer to a type source information
3322/// for that return type.
3323TypeSourceInfo *
3324Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
3325                                     TypeSourceInfo *ReturnTypeInfo) {
3326  TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
3327  UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
3328
3329  // Handle parameter packs whose type is a pack expansion.
3330  if (isa<PackExpansionType>(T)) {
3331    cast<PackExpansionTypeLoc>(CurrTL).setEllipsisLoc(D.getEllipsisLoc());
3332    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
3333  }
3334
3335  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
3336    while (isa<AttributedTypeLoc>(CurrTL)) {
3337      AttributedTypeLoc TL = cast<AttributedTypeLoc>(CurrTL);
3338      fillAttributedTypeLoc(TL, D.getTypeObject(i).getAttrs());
3339      CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
3340    }
3341
3342    DeclaratorLocFiller(Context, D.getTypeObject(i)).Visit(CurrTL);
3343    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
3344  }
3345
3346  // If we have different source information for the return type, use
3347  // that.  This really only applies to C++ conversion functions.
3348  if (ReturnTypeInfo) {
3349    TypeLoc TL = ReturnTypeInfo->getTypeLoc();
3350    assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
3351    memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
3352  } else {
3353    TypeSpecLocFiller(Context, D.getDeclSpec()).Visit(CurrTL);
3354  }
3355
3356  return TInfo;
3357}
3358
3359/// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
3360ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
3361  // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
3362  // and Sema during declaration parsing. Try deallocating/caching them when
3363  // it's appropriate, instead of allocating them and keeping them around.
3364  LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
3365                                                       TypeAlignment);
3366  new (LocT) LocInfoType(T, TInfo);
3367  assert(LocT->getTypeClass() != T->getTypeClass() &&
3368         "LocInfoType's TypeClass conflicts with an existing Type class");
3369  return ParsedType::make(QualType(LocT, 0));
3370}
3371
3372void LocInfoType::getAsStringInternal(std::string &Str,
3373                                      const PrintingPolicy &Policy) const {
3374  llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
3375         " was used directly instead of getting the QualType through"
3376         " GetTypeFromParser");
3377}
3378
3379TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
3380  // C99 6.7.6: Type names have no identifier.  This is already validated by
3381  // the parser.
3382  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
3383
3384  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3385  QualType T = TInfo->getType();
3386  if (D.isInvalidType())
3387    return true;
3388
3389  // Make sure there are no unused decl attributes on the declarator.
3390  // We don't want to do this for ObjC parameters because we're going
3391  // to apply them to the actual parameter declaration.
3392  if (D.getContext() != Declarator::ObjCParameterContext)
3393    checkUnusedDeclAttributes(D);
3394
3395  if (getLangOpts().CPlusPlus) {
3396    // Check that there are no default arguments (C++ only).
3397    CheckExtraCXXDefaultArguments(D);
3398  }
3399
3400  return CreateParsedType(T, TInfo);
3401}
3402
3403ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
3404  QualType T = Context.getObjCInstanceType();
3405  TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
3406  return CreateParsedType(T, TInfo);
3407}
3408
3409
3410//===----------------------------------------------------------------------===//
3411// Type Attribute Processing
3412//===----------------------------------------------------------------------===//
3413
3414/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
3415/// specified type.  The attribute contains 1 argument, the id of the address
3416/// space for the type.
3417static void HandleAddressSpaceTypeAttribute(QualType &Type,
3418                                            const AttributeList &Attr, Sema &S){
3419
3420  // If this type is already address space qualified, reject it.
3421  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified by
3422  // qualifiers for two or more different address spaces."
3423  if (Type.getAddressSpace()) {
3424    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
3425    Attr.setInvalid();
3426    return;
3427  }
3428
3429  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
3430  // qualified by an address-space qualifier."
3431  if (Type->isFunctionType()) {
3432    S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
3433    Attr.setInvalid();
3434    return;
3435  }
3436
3437  // Check the attribute arguments.
3438  if (Attr.getNumArgs() != 1) {
3439    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3440    Attr.setInvalid();
3441    return;
3442  }
3443  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
3444  llvm::APSInt addrSpace(32);
3445  if (ASArgExpr->isTypeDependent() || ASArgExpr->isValueDependent() ||
3446      !ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
3447    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
3448      << ASArgExpr->getSourceRange();
3449    Attr.setInvalid();
3450    return;
3451  }
3452
3453  // Bounds checking.
3454  if (addrSpace.isSigned()) {
3455    if (addrSpace.isNegative()) {
3456      S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
3457        << ASArgExpr->getSourceRange();
3458      Attr.setInvalid();
3459      return;
3460    }
3461    addrSpace.setIsSigned(false);
3462  }
3463  llvm::APSInt max(addrSpace.getBitWidth());
3464  max = Qualifiers::MaxAddressSpace;
3465  if (addrSpace > max) {
3466    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
3467      << Qualifiers::MaxAddressSpace << ASArgExpr->getSourceRange();
3468    Attr.setInvalid();
3469    return;
3470  }
3471
3472  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
3473  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
3474}
3475
3476/// Does this type have a "direct" ownership qualifier?  That is,
3477/// is it written like "__strong id", as opposed to something like
3478/// "typeof(foo)", where that happens to be strong?
3479static bool hasDirectOwnershipQualifier(QualType type) {
3480  // Fast path: no qualifier at all.
3481  assert(type.getQualifiers().hasObjCLifetime());
3482
3483  while (true) {
3484    // __strong id
3485    if (const AttributedType *attr = dyn_cast<AttributedType>(type)) {
3486      if (attr->getAttrKind() == AttributedType::attr_objc_ownership)
3487        return true;
3488
3489      type = attr->getModifiedType();
3490
3491    // X *__strong (...)
3492    } else if (const ParenType *paren = dyn_cast<ParenType>(type)) {
3493      type = paren->getInnerType();
3494
3495    // That's it for things we want to complain about.  In particular,
3496    // we do not want to look through typedefs, typeof(expr),
3497    // typeof(type), or any other way that the type is somehow
3498    // abstracted.
3499    } else {
3500
3501      return false;
3502    }
3503  }
3504}
3505
3506/// handleObjCOwnershipTypeAttr - Process an objc_ownership
3507/// attribute on the specified type.
3508///
3509/// Returns 'true' if the attribute was handled.
3510static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
3511                                       AttributeList &attr,
3512                                       QualType &type) {
3513  bool NonObjCPointer = false;
3514
3515  if (!type->isDependentType()) {
3516    if (const PointerType *ptr = type->getAs<PointerType>()) {
3517      QualType pointee = ptr->getPointeeType();
3518      if (pointee->isObjCRetainableType() || pointee->isPointerType())
3519        return false;
3520      // It is important not to lose the source info that there was an attribute
3521      // applied to non-objc pointer. We will create an attributed type but
3522      // its type will be the same as the original type.
3523      NonObjCPointer = true;
3524    } else if (!type->isObjCRetainableType()) {
3525      return false;
3526    }
3527  }
3528
3529  Sema &S = state.getSema();
3530  SourceLocation AttrLoc = attr.getLoc();
3531  if (AttrLoc.isMacroID())
3532    AttrLoc = S.getSourceManager().getImmediateExpansionRange(AttrLoc).first;
3533
3534  if (!attr.getParameterName()) {
3535    S.Diag(AttrLoc, diag::err_attribute_argument_n_not_string)
3536      << "objc_ownership" << 1;
3537    attr.setInvalid();
3538    return true;
3539  }
3540
3541  // Consume lifetime attributes without further comment outside of
3542  // ARC mode.
3543  if (!S.getLangOpts().ObjCAutoRefCount)
3544    return true;
3545
3546  Qualifiers::ObjCLifetime lifetime;
3547  if (attr.getParameterName()->isStr("none"))
3548    lifetime = Qualifiers::OCL_ExplicitNone;
3549  else if (attr.getParameterName()->isStr("strong"))
3550    lifetime = Qualifiers::OCL_Strong;
3551  else if (attr.getParameterName()->isStr("weak"))
3552    lifetime = Qualifiers::OCL_Weak;
3553  else if (attr.getParameterName()->isStr("autoreleasing"))
3554    lifetime = Qualifiers::OCL_Autoreleasing;
3555  else {
3556    S.Diag(AttrLoc, diag::warn_attribute_type_not_supported)
3557      << "objc_ownership" << attr.getParameterName();
3558    attr.setInvalid();
3559    return true;
3560  }
3561
3562  SplitQualType underlyingType = type.split();
3563
3564  // Check for redundant/conflicting ownership qualifiers.
3565  if (Qualifiers::ObjCLifetime previousLifetime
3566        = type.getQualifiers().getObjCLifetime()) {
3567    // If it's written directly, that's an error.
3568    if (hasDirectOwnershipQualifier(type)) {
3569      S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
3570        << type;
3571      return true;
3572    }
3573
3574    // Otherwise, if the qualifiers actually conflict, pull sugar off
3575    // until we reach a type that is directly qualified.
3576    if (previousLifetime != lifetime) {
3577      // This should always terminate: the canonical type is
3578      // qualified, so some bit of sugar must be hiding it.
3579      while (!underlyingType.Quals.hasObjCLifetime()) {
3580        underlyingType = underlyingType.getSingleStepDesugaredType();
3581      }
3582      underlyingType.Quals.removeObjCLifetime();
3583    }
3584  }
3585
3586  underlyingType.Quals.addObjCLifetime(lifetime);
3587
3588  if (NonObjCPointer) {
3589    StringRef name = attr.getName()->getName();
3590    switch (lifetime) {
3591    case Qualifiers::OCL_None:
3592    case Qualifiers::OCL_ExplicitNone:
3593      break;
3594    case Qualifiers::OCL_Strong: name = "__strong"; break;
3595    case Qualifiers::OCL_Weak: name = "__weak"; break;
3596    case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
3597    }
3598    S.Diag(AttrLoc, diag::warn_objc_object_attribute_wrong_type)
3599      << name << type;
3600  }
3601
3602  QualType origType = type;
3603  if (!NonObjCPointer)
3604    type = S.Context.getQualifiedType(underlyingType);
3605
3606  // If we have a valid source location for the attribute, use an
3607  // AttributedType instead.
3608  if (AttrLoc.isValid())
3609    type = S.Context.getAttributedType(AttributedType::attr_objc_ownership,
3610                                       origType, type);
3611
3612  // Forbid __weak if the runtime doesn't support it.
3613  if (lifetime == Qualifiers::OCL_Weak &&
3614      !S.getLangOpts().ObjCARCWeak && !NonObjCPointer) {
3615
3616    // Actually, delay this until we know what we're parsing.
3617    if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
3618      S.DelayedDiagnostics.add(
3619          sema::DelayedDiagnostic::makeForbiddenType(
3620              S.getSourceManager().getExpansionLoc(AttrLoc),
3621              diag::err_arc_weak_no_runtime, type, /*ignored*/ 0));
3622    } else {
3623      S.Diag(AttrLoc, diag::err_arc_weak_no_runtime);
3624    }
3625
3626    attr.setInvalid();
3627    return true;
3628  }
3629
3630  // Forbid __weak for class objects marked as
3631  // objc_arc_weak_reference_unavailable
3632  if (lifetime == Qualifiers::OCL_Weak) {
3633    QualType T = type;
3634    while (const PointerType *ptr = T->getAs<PointerType>())
3635      T = ptr->getPointeeType();
3636    if (const ObjCObjectPointerType *ObjT = T->getAs<ObjCObjectPointerType>()) {
3637      if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
3638        if (Class->isArcWeakrefUnavailable()) {
3639            S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
3640            S.Diag(ObjT->getInterfaceDecl()->getLocation(),
3641                   diag::note_class_declared);
3642        }
3643      }
3644    }
3645  }
3646
3647  return true;
3648}
3649
3650/// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
3651/// attribute on the specified type.  Returns true to indicate that
3652/// the attribute was handled, false to indicate that the type does
3653/// not permit the attribute.
3654static bool handleObjCGCTypeAttr(TypeProcessingState &state,
3655                                 AttributeList &attr,
3656                                 QualType &type) {
3657  Sema &S = state.getSema();
3658
3659  // Delay if this isn't some kind of pointer.
3660  if (!type->isPointerType() &&
3661      !type->isObjCObjectPointerType() &&
3662      !type->isBlockPointerType())
3663    return false;
3664
3665  if (type.getObjCGCAttr() != Qualifiers::GCNone) {
3666    S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
3667    attr.setInvalid();
3668    return true;
3669  }
3670
3671  // Check the attribute arguments.
3672  if (!attr.getParameterName()) {
3673    S.Diag(attr.getLoc(), diag::err_attribute_argument_n_not_string)
3674      << "objc_gc" << 1;
3675    attr.setInvalid();
3676    return true;
3677  }
3678  Qualifiers::GC GCAttr;
3679  if (attr.getNumArgs() != 0) {
3680    S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3681    attr.setInvalid();
3682    return true;
3683  }
3684  if (attr.getParameterName()->isStr("weak"))
3685    GCAttr = Qualifiers::Weak;
3686  else if (attr.getParameterName()->isStr("strong"))
3687    GCAttr = Qualifiers::Strong;
3688  else {
3689    S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
3690      << "objc_gc" << attr.getParameterName();
3691    attr.setInvalid();
3692    return true;
3693  }
3694
3695  QualType origType = type;
3696  type = S.Context.getObjCGCQualType(origType, GCAttr);
3697
3698  // Make an attributed type to preserve the source information.
3699  if (attr.getLoc().isValid())
3700    type = S.Context.getAttributedType(AttributedType::attr_objc_gc,
3701                                       origType, type);
3702
3703  return true;
3704}
3705
3706namespace {
3707  /// A helper class to unwrap a type down to a function for the
3708  /// purposes of applying attributes there.
3709  ///
3710  /// Use:
3711  ///   FunctionTypeUnwrapper unwrapped(SemaRef, T);
3712  ///   if (unwrapped.isFunctionType()) {
3713  ///     const FunctionType *fn = unwrapped.get();
3714  ///     // change fn somehow
3715  ///     T = unwrapped.wrap(fn);
3716  ///   }
3717  struct FunctionTypeUnwrapper {
3718    enum WrapKind {
3719      Desugar,
3720      Parens,
3721      Pointer,
3722      BlockPointer,
3723      Reference,
3724      MemberPointer
3725    };
3726
3727    QualType Original;
3728    const FunctionType *Fn;
3729    SmallVector<unsigned char /*WrapKind*/, 8> Stack;
3730
3731    FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
3732      while (true) {
3733        const Type *Ty = T.getTypePtr();
3734        if (isa<FunctionType>(Ty)) {
3735          Fn = cast<FunctionType>(Ty);
3736          return;
3737        } else if (isa<ParenType>(Ty)) {
3738          T = cast<ParenType>(Ty)->getInnerType();
3739          Stack.push_back(Parens);
3740        } else if (isa<PointerType>(Ty)) {
3741          T = cast<PointerType>(Ty)->getPointeeType();
3742          Stack.push_back(Pointer);
3743        } else if (isa<BlockPointerType>(Ty)) {
3744          T = cast<BlockPointerType>(Ty)->getPointeeType();
3745          Stack.push_back(BlockPointer);
3746        } else if (isa<MemberPointerType>(Ty)) {
3747          T = cast<MemberPointerType>(Ty)->getPointeeType();
3748          Stack.push_back(MemberPointer);
3749        } else if (isa<ReferenceType>(Ty)) {
3750          T = cast<ReferenceType>(Ty)->getPointeeType();
3751          Stack.push_back(Reference);
3752        } else {
3753          const Type *DTy = Ty->getUnqualifiedDesugaredType();
3754          if (Ty == DTy) {
3755            Fn = 0;
3756            return;
3757          }
3758
3759          T = QualType(DTy, 0);
3760          Stack.push_back(Desugar);
3761        }
3762      }
3763    }
3764
3765    bool isFunctionType() const { return (Fn != 0); }
3766    const FunctionType *get() const { return Fn; }
3767
3768    QualType wrap(Sema &S, const FunctionType *New) {
3769      // If T wasn't modified from the unwrapped type, do nothing.
3770      if (New == get()) return Original;
3771
3772      Fn = New;
3773      return wrap(S.Context, Original, 0);
3774    }
3775
3776  private:
3777    QualType wrap(ASTContext &C, QualType Old, unsigned I) {
3778      if (I == Stack.size())
3779        return C.getQualifiedType(Fn, Old.getQualifiers());
3780
3781      // Build up the inner type, applying the qualifiers from the old
3782      // type to the new type.
3783      SplitQualType SplitOld = Old.split();
3784
3785      // As a special case, tail-recurse if there are no qualifiers.
3786      if (SplitOld.Quals.empty())
3787        return wrap(C, SplitOld.Ty, I);
3788      return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
3789    }
3790
3791    QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
3792      if (I == Stack.size()) return QualType(Fn, 0);
3793
3794      switch (static_cast<WrapKind>(Stack[I++])) {
3795      case Desugar:
3796        // This is the point at which we potentially lose source
3797        // information.
3798        return wrap(C, Old->getUnqualifiedDesugaredType(), I);
3799
3800      case Parens: {
3801        QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
3802        return C.getParenType(New);
3803      }
3804
3805      case Pointer: {
3806        QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
3807        return C.getPointerType(New);
3808      }
3809
3810      case BlockPointer: {
3811        QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
3812        return C.getBlockPointerType(New);
3813      }
3814
3815      case MemberPointer: {
3816        const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
3817        QualType New = wrap(C, OldMPT->getPointeeType(), I);
3818        return C.getMemberPointerType(New, OldMPT->getClass());
3819      }
3820
3821      case Reference: {
3822        const ReferenceType *OldRef = cast<ReferenceType>(Old);
3823        QualType New = wrap(C, OldRef->getPointeeType(), I);
3824        if (isa<LValueReferenceType>(OldRef))
3825          return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
3826        else
3827          return C.getRValueReferenceType(New);
3828      }
3829      }
3830
3831      llvm_unreachable("unknown wrapping kind");
3832    }
3833  };
3834}
3835
3836/// Process an individual function attribute.  Returns true to
3837/// indicate that the attribute was handled, false if it wasn't.
3838static bool handleFunctionTypeAttr(TypeProcessingState &state,
3839                                   AttributeList &attr,
3840                                   QualType &type) {
3841  Sema &S = state.getSema();
3842
3843  FunctionTypeUnwrapper unwrapped(S, type);
3844
3845  if (attr.getKind() == AttributeList::AT_NoReturn) {
3846    if (S.CheckNoReturnAttr(attr))
3847      return true;
3848
3849    // Delay if this is not a function type.
3850    if (!unwrapped.isFunctionType())
3851      return false;
3852
3853    // Otherwise we can process right away.
3854    FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
3855    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3856    return true;
3857  }
3858
3859  // ns_returns_retained is not always a type attribute, but if we got
3860  // here, we're treating it as one right now.
3861  if (attr.getKind() == AttributeList::AT_NSReturnsRetained) {
3862    assert(S.getLangOpts().ObjCAutoRefCount &&
3863           "ns_returns_retained treated as type attribute in non-ARC");
3864    if (attr.getNumArgs()) return true;
3865
3866    // Delay if this is not a function type.
3867    if (!unwrapped.isFunctionType())
3868      return false;
3869
3870    FunctionType::ExtInfo EI
3871      = unwrapped.get()->getExtInfo().withProducesResult(true);
3872    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3873    return true;
3874  }
3875
3876  if (attr.getKind() == AttributeList::AT_Regparm) {
3877    unsigned value;
3878    if (S.CheckRegparmAttr(attr, value))
3879      return true;
3880
3881    // Delay if this is not a function type.
3882    if (!unwrapped.isFunctionType())
3883      return false;
3884
3885    // Diagnose regparm with fastcall.
3886    const FunctionType *fn = unwrapped.get();
3887    CallingConv CC = fn->getCallConv();
3888    if (CC == CC_X86FastCall) {
3889      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
3890        << FunctionType::getNameForCallConv(CC)
3891        << "regparm";
3892      attr.setInvalid();
3893      return true;
3894    }
3895
3896    FunctionType::ExtInfo EI =
3897      unwrapped.get()->getExtInfo().withRegParm(value);
3898    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3899    return true;
3900  }
3901
3902  // Delay if the type didn't work out to a function.
3903  if (!unwrapped.isFunctionType()) return false;
3904
3905  // Otherwise, a calling convention.
3906  CallingConv CC;
3907  if (S.CheckCallingConvAttr(attr, CC))
3908    return true;
3909
3910  const FunctionType *fn = unwrapped.get();
3911  CallingConv CCOld = fn->getCallConv();
3912  if (S.Context.getCanonicalCallConv(CC) ==
3913      S.Context.getCanonicalCallConv(CCOld)) {
3914    FunctionType::ExtInfo EI= unwrapped.get()->getExtInfo().withCallingConv(CC);
3915    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3916    return true;
3917  }
3918
3919  if (CCOld != (S.LangOpts.MRTD ? CC_X86StdCall : CC_Default)) {
3920    // Should we diagnose reapplications of the same convention?
3921    S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
3922      << FunctionType::getNameForCallConv(CC)
3923      << FunctionType::getNameForCallConv(CCOld);
3924    attr.setInvalid();
3925    return true;
3926  }
3927
3928  // Diagnose the use of X86 fastcall on varargs or unprototyped functions.
3929  if (CC == CC_X86FastCall) {
3930    if (isa<FunctionNoProtoType>(fn)) {
3931      S.Diag(attr.getLoc(), diag::err_cconv_knr)
3932        << FunctionType::getNameForCallConv(CC);
3933      attr.setInvalid();
3934      return true;
3935    }
3936
3937    const FunctionProtoType *FnP = cast<FunctionProtoType>(fn);
3938    if (FnP->isVariadic()) {
3939      S.Diag(attr.getLoc(), diag::err_cconv_varargs)
3940        << FunctionType::getNameForCallConv(CC);
3941      attr.setInvalid();
3942      return true;
3943    }
3944
3945    // Also diagnose fastcall with regparm.
3946    if (fn->getHasRegParm()) {
3947      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
3948        << "regparm"
3949        << FunctionType::getNameForCallConv(CC);
3950      attr.setInvalid();
3951      return true;
3952    }
3953  }
3954
3955  FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
3956  type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3957  return true;
3958}
3959
3960/// Handle OpenCL image access qualifiers: read_only, write_only, read_write
3961static void HandleOpenCLImageAccessAttribute(QualType& CurType,
3962                                             const AttributeList &Attr,
3963                                             Sema &S) {
3964  // Check the attribute arguments.
3965  if (Attr.getNumArgs() != 1) {
3966    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3967    Attr.setInvalid();
3968    return;
3969  }
3970  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
3971  llvm::APSInt arg(32);
3972  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
3973      !sizeExpr->isIntegerConstantExpr(arg, S.Context)) {
3974    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
3975      << "opencl_image_access" << sizeExpr->getSourceRange();
3976    Attr.setInvalid();
3977    return;
3978  }
3979  unsigned iarg = static_cast<unsigned>(arg.getZExtValue());
3980  switch (iarg) {
3981  case CLIA_read_only:
3982  case CLIA_write_only:
3983  case CLIA_read_write:
3984    // Implemented in a separate patch
3985    break;
3986  default:
3987    // Implemented in a separate patch
3988    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
3989      << sizeExpr->getSourceRange();
3990    Attr.setInvalid();
3991    break;
3992  }
3993}
3994
3995/// HandleVectorSizeAttribute - this attribute is only applicable to integral
3996/// and float scalars, although arrays, pointers, and function return values are
3997/// allowed in conjunction with this construct. Aggregates with this attribute
3998/// are invalid, even if they are of the same size as a corresponding scalar.
3999/// The raw attribute should contain precisely 1 argument, the vector size for
4000/// the variable, measured in bytes. If curType and rawAttr are well formed,
4001/// this routine will return a new vector type.
4002static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr,
4003                                 Sema &S) {
4004  // Check the attribute arguments.
4005  if (Attr.getNumArgs() != 1) {
4006    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
4007    Attr.setInvalid();
4008    return;
4009  }
4010  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
4011  llvm::APSInt vecSize(32);
4012  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
4013      !sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
4014    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
4015      << "vector_size" << sizeExpr->getSourceRange();
4016    Attr.setInvalid();
4017    return;
4018  }
4019  // the base type must be integer or float, and can't already be a vector.
4020  if (!CurType->isIntegerType() && !CurType->isRealFloatingType()) {
4021    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
4022    Attr.setInvalid();
4023    return;
4024  }
4025  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
4026  // vecSize is specified in bytes - convert to bits.
4027  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
4028
4029  // the vector size needs to be an integral multiple of the type size.
4030  if (vectorSize % typeSize) {
4031    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
4032      << sizeExpr->getSourceRange();
4033    Attr.setInvalid();
4034    return;
4035  }
4036  if (vectorSize == 0) {
4037    S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
4038      << sizeExpr->getSourceRange();
4039    Attr.setInvalid();
4040    return;
4041  }
4042
4043  // Success! Instantiate the vector type, the number of elements is > 0, and
4044  // not required to be a power of 2, unlike GCC.
4045  CurType = S.Context.getVectorType(CurType, vectorSize/typeSize,
4046                                    VectorType::GenericVector);
4047}
4048
4049/// \brief Process the OpenCL-like ext_vector_type attribute when it occurs on
4050/// a type.
4051static void HandleExtVectorTypeAttr(QualType &CurType,
4052                                    const AttributeList &Attr,
4053                                    Sema &S) {
4054  Expr *sizeExpr;
4055
4056  // Special case where the argument is a template id.
4057  if (Attr.getParameterName()) {
4058    CXXScopeSpec SS;
4059    SourceLocation TemplateKWLoc;
4060    UnqualifiedId id;
4061    id.setIdentifier(Attr.getParameterName(), Attr.getLoc());
4062
4063    ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
4064                                          id, false, false);
4065    if (Size.isInvalid())
4066      return;
4067
4068    sizeExpr = Size.get();
4069  } else {
4070    // check the attribute arguments.
4071    if (Attr.getNumArgs() != 1) {
4072      S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
4073      return;
4074    }
4075    sizeExpr = Attr.getArg(0);
4076  }
4077
4078  // Create the vector type.
4079  QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
4080  if (!T.isNull())
4081    CurType = T;
4082}
4083
4084/// HandleNeonVectorTypeAttr - The "neon_vector_type" and
4085/// "neon_polyvector_type" attributes are used to create vector types that
4086/// are mangled according to ARM's ABI.  Otherwise, these types are identical
4087/// to those created with the "vector_size" attribute.  Unlike "vector_size"
4088/// the argument to these Neon attributes is the number of vector elements,
4089/// not the vector size in bytes.  The vector width and element type must
4090/// match one of the standard Neon vector types.
4091static void HandleNeonVectorTypeAttr(QualType& CurType,
4092                                     const AttributeList &Attr, Sema &S,
4093                                     VectorType::VectorKind VecKind,
4094                                     const char *AttrName) {
4095  // Check the attribute arguments.
4096  if (Attr.getNumArgs() != 1) {
4097    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
4098    Attr.setInvalid();
4099    return;
4100  }
4101  // The number of elements must be an ICE.
4102  Expr *numEltsExpr = static_cast<Expr *>(Attr.getArg(0));
4103  llvm::APSInt numEltsInt(32);
4104  if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
4105      !numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
4106    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
4107      << AttrName << numEltsExpr->getSourceRange();
4108    Attr.setInvalid();
4109    return;
4110  }
4111  // Only certain element types are supported for Neon vectors.
4112  const BuiltinType* BTy = CurType->getAs<BuiltinType>();
4113  if (!BTy ||
4114      (VecKind == VectorType::NeonPolyVector &&
4115       BTy->getKind() != BuiltinType::SChar &&
4116       BTy->getKind() != BuiltinType::Short) ||
4117      (BTy->getKind() != BuiltinType::SChar &&
4118       BTy->getKind() != BuiltinType::UChar &&
4119       BTy->getKind() != BuiltinType::Short &&
4120       BTy->getKind() != BuiltinType::UShort &&
4121       BTy->getKind() != BuiltinType::Int &&
4122       BTy->getKind() != BuiltinType::UInt &&
4123       BTy->getKind() != BuiltinType::LongLong &&
4124       BTy->getKind() != BuiltinType::ULongLong &&
4125       BTy->getKind() != BuiltinType::Float)) {
4126    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) <<CurType;
4127    Attr.setInvalid();
4128    return;
4129  }
4130  // The total size of the vector must be 64 or 128 bits.
4131  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
4132  unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
4133  unsigned vecSize = typeSize * numElts;
4134  if (vecSize != 64 && vecSize != 128) {
4135    S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
4136    Attr.setInvalid();
4137    return;
4138  }
4139
4140  CurType = S.Context.getVectorType(CurType, numElts, VecKind);
4141}
4142
4143static void processTypeAttrs(TypeProcessingState &state, QualType &type,
4144                             bool isDeclSpec, AttributeList *attrs) {
4145  // Scan through and apply attributes to this type where it makes sense.  Some
4146  // attributes (such as __address_space__, __vector_size__, etc) apply to the
4147  // type, but others can be present in the type specifiers even though they
4148  // apply to the decl.  Here we apply type attributes and ignore the rest.
4149
4150  AttributeList *next;
4151  do {
4152    AttributeList &attr = *attrs;
4153    next = attr.getNext();
4154
4155    // Skip attributes that were marked to be invalid.
4156    if (attr.isInvalid())
4157      continue;
4158
4159    // If this is an attribute we can handle, do so now,
4160    // otherwise, add it to the FnAttrs list for rechaining.
4161    switch (attr.getKind()) {
4162    default: break;
4163
4164    case AttributeList::AT_MayAlias:
4165      // FIXME: This attribute needs to actually be handled, but if we ignore
4166      // it it breaks large amounts of Linux software.
4167      attr.setUsedAsTypeAttr();
4168      break;
4169    case AttributeList::AT_AddressSpace:
4170      HandleAddressSpaceTypeAttribute(type, attr, state.getSema());
4171      attr.setUsedAsTypeAttr();
4172      break;
4173    OBJC_POINTER_TYPE_ATTRS_CASELIST:
4174      if (!handleObjCPointerTypeAttr(state, attr, type))
4175        distributeObjCPointerTypeAttr(state, attr, type);
4176      attr.setUsedAsTypeAttr();
4177      break;
4178    case AttributeList::AT_VectorSize:
4179      HandleVectorSizeAttr(type, attr, state.getSema());
4180      attr.setUsedAsTypeAttr();
4181      break;
4182    case AttributeList::AT_ExtVectorType:
4183      if (state.getDeclarator().getDeclSpec().getStorageClassSpec()
4184            != DeclSpec::SCS_typedef)
4185        HandleExtVectorTypeAttr(type, attr, state.getSema());
4186      attr.setUsedAsTypeAttr();
4187      break;
4188    case AttributeList::AT_NeonVectorType:
4189      HandleNeonVectorTypeAttr(type, attr, state.getSema(),
4190                               VectorType::NeonVector, "neon_vector_type");
4191      attr.setUsedAsTypeAttr();
4192      break;
4193    case AttributeList::AT_NeonPolyVectorType:
4194      HandleNeonVectorTypeAttr(type, attr, state.getSema(),
4195                               VectorType::NeonPolyVector,
4196                               "neon_polyvector_type");
4197      attr.setUsedAsTypeAttr();
4198      break;
4199    case AttributeList::AT_OpenCLImageAccess:
4200      HandleOpenCLImageAccessAttribute(type, attr, state.getSema());
4201      attr.setUsedAsTypeAttr();
4202      break;
4203
4204    case AttributeList::AT_Win64:
4205    case AttributeList::AT_Ptr32:
4206    case AttributeList::AT_Ptr64:
4207      // FIXME: don't ignore these
4208      attr.setUsedAsTypeAttr();
4209      break;
4210
4211    case AttributeList::AT_NSReturnsRetained:
4212      if (!state.getSema().getLangOpts().ObjCAutoRefCount)
4213    break;
4214      // fallthrough into the function attrs
4215
4216    FUNCTION_TYPE_ATTRS_CASELIST:
4217      attr.setUsedAsTypeAttr();
4218
4219      // Never process function type attributes as part of the
4220      // declaration-specifiers.
4221      if (isDeclSpec)
4222        distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
4223
4224      // Otherwise, handle the possible delays.
4225      else if (!handleFunctionTypeAttr(state, attr, type))
4226        distributeFunctionTypeAttr(state, attr, type);
4227      break;
4228    }
4229  } while ((attrs = next));
4230}
4231
4232/// \brief Ensure that the type of the given expression is complete.
4233///
4234/// This routine checks whether the expression \p E has a complete type. If the
4235/// expression refers to an instantiable construct, that instantiation is
4236/// performed as needed to complete its type. Furthermore
4237/// Sema::RequireCompleteType is called for the expression's type (or in the
4238/// case of a reference type, the referred-to type).
4239///
4240/// \param E The expression whose type is required to be complete.
4241/// \param Diagnoser The object that will emit a diagnostic if the type is
4242/// incomplete.
4243///
4244/// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
4245/// otherwise.
4246bool Sema::RequireCompleteExprType(Expr *E, TypeDiagnoser &Diagnoser){
4247  QualType T = E->getType();
4248
4249  // Fast path the case where the type is already complete.
4250  if (!T->isIncompleteType())
4251    return false;
4252
4253  // Incomplete array types may be completed by the initializer attached to
4254  // their definitions. For static data members of class templates we need to
4255  // instantiate the definition to get this initializer and complete the type.
4256  if (T->isIncompleteArrayType()) {
4257    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4258      if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
4259        if (Var->isStaticDataMember() &&
4260            Var->getInstantiatedFromStaticDataMember()) {
4261
4262          MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
4263          assert(MSInfo && "Missing member specialization information?");
4264          if (MSInfo->getTemplateSpecializationKind()
4265                != TSK_ExplicitSpecialization) {
4266            // If we don't already have a point of instantiation, this is it.
4267            if (MSInfo->getPointOfInstantiation().isInvalid()) {
4268              MSInfo->setPointOfInstantiation(E->getLocStart());
4269
4270              // This is a modification of an existing AST node. Notify
4271              // listeners.
4272              if (ASTMutationListener *L = getASTMutationListener())
4273                L->StaticDataMemberInstantiated(Var);
4274            }
4275
4276            InstantiateStaticDataMemberDefinition(E->getExprLoc(), Var);
4277
4278            // Update the type to the newly instantiated definition's type both
4279            // here and within the expression.
4280            if (VarDecl *Def = Var->getDefinition()) {
4281              DRE->setDecl(Def);
4282              T = Def->getType();
4283              DRE->setType(T);
4284              E->setType(T);
4285            }
4286          }
4287
4288          // We still go on to try to complete the type independently, as it
4289          // may also require instantiations or diagnostics if it remains
4290          // incomplete.
4291        }
4292      }
4293    }
4294  }
4295
4296  // FIXME: Are there other cases which require instantiating something other
4297  // than the type to complete the type of an expression?
4298
4299  // Look through reference types and complete the referred type.
4300  if (const ReferenceType *Ref = T->getAs<ReferenceType>())
4301    T = Ref->getPointeeType();
4302
4303  return RequireCompleteType(E->getExprLoc(), T, Diagnoser);
4304}
4305
4306namespace {
4307  struct TypeDiagnoserDiag : Sema::TypeDiagnoser {
4308    unsigned DiagID;
4309
4310    TypeDiagnoserDiag(unsigned DiagID)
4311      : Sema::TypeDiagnoser(DiagID == 0), DiagID(DiagID) {}
4312
4313    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
4314      if (Suppressed) return;
4315      S.Diag(Loc, DiagID) << T;
4316    }
4317  };
4318}
4319
4320bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
4321  TypeDiagnoserDiag Diagnoser(DiagID);
4322  return RequireCompleteExprType(E, Diagnoser);
4323}
4324
4325/// @brief Ensure that the type T is a complete type.
4326///
4327/// This routine checks whether the type @p T is complete in any
4328/// context where a complete type is required. If @p T is a complete
4329/// type, returns false. If @p T is a class template specialization,
4330/// this routine then attempts to perform class template
4331/// instantiation. If instantiation fails, or if @p T is incomplete
4332/// and cannot be completed, issues the diagnostic @p diag (giving it
4333/// the type @p T) and returns true.
4334///
4335/// @param Loc  The location in the source that the incomplete type
4336/// diagnostic should refer to.
4337///
4338/// @param T  The type that this routine is examining for completeness.
4339///
4340/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
4341/// @c false otherwise.
4342bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
4343                               TypeDiagnoser &Diagnoser) {
4344  // FIXME: Add this assertion to make sure we always get instantiation points.
4345  //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
4346  // FIXME: Add this assertion to help us flush out problems with
4347  // checking for dependent types and type-dependent expressions.
4348  //
4349  //  assert(!T->isDependentType() &&
4350  //         "Can't ask whether a dependent type is complete");
4351
4352  // If we have a complete type, we're done.
4353  NamedDecl *Def = 0;
4354  if (!T->isIncompleteType(&Def)) {
4355    // If we know about the definition but it is not visible, complain.
4356    if (!Diagnoser.Suppressed && Def && !LookupResult::isVisible(Def)) {
4357      // Suppress this error outside of a SFINAE context if we've already
4358      // emitted the error once for this type. There's no usefulness in
4359      // repeating the diagnostic.
4360      // FIXME: Add a Fix-It that imports the corresponding module or includes
4361      // the header.
4362      if (isSFINAEContext() || HiddenDefinitions.insert(Def)) {
4363        Diag(Loc, diag::err_module_private_definition) << T;
4364        Diag(Def->getLocation(), diag::note_previous_definition);
4365      }
4366    }
4367
4368    return false;
4369  }
4370
4371  const TagType *Tag = T->getAs<TagType>();
4372  const ObjCInterfaceType *IFace = 0;
4373
4374  if (Tag) {
4375    // Avoid diagnosing invalid decls as incomplete.
4376    if (Tag->getDecl()->isInvalidDecl())
4377      return true;
4378
4379    // Give the external AST source a chance to complete the type.
4380    if (Tag->getDecl()->hasExternalLexicalStorage()) {
4381      Context.getExternalSource()->CompleteType(Tag->getDecl());
4382      if (!Tag->isIncompleteType())
4383        return false;
4384    }
4385  }
4386  else if ((IFace = T->getAs<ObjCInterfaceType>())) {
4387    // Avoid diagnosing invalid decls as incomplete.
4388    if (IFace->getDecl()->isInvalidDecl())
4389      return true;
4390
4391    // Give the external AST source a chance to complete the type.
4392    if (IFace->getDecl()->hasExternalLexicalStorage()) {
4393      Context.getExternalSource()->CompleteType(IFace->getDecl());
4394      if (!IFace->isIncompleteType())
4395        return false;
4396    }
4397  }
4398
4399  // If we have a class template specialization or a class member of a
4400  // class template specialization, or an array with known size of such,
4401  // try to instantiate it.
4402  QualType MaybeTemplate = T;
4403  while (const ConstantArrayType *Array
4404           = Context.getAsConstantArrayType(MaybeTemplate))
4405    MaybeTemplate = Array->getElementType();
4406  if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
4407    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
4408          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
4409      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
4410        return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
4411                                                      TSK_ImplicitInstantiation,
4412                                            /*Complain=*/!Diagnoser.Suppressed);
4413    } else if (CXXRecordDecl *Rec
4414                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
4415      CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass();
4416      if (!Rec->isBeingDefined() && Pattern) {
4417        MemberSpecializationInfo *MSI = Rec->getMemberSpecializationInfo();
4418        assert(MSI && "Missing member specialization information?");
4419        // This record was instantiated from a class within a template.
4420        if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
4421          return InstantiateClass(Loc, Rec, Pattern,
4422                                  getTemplateInstantiationArgs(Rec),
4423                                  TSK_ImplicitInstantiation,
4424                                  /*Complain=*/!Diagnoser.Suppressed);
4425      }
4426    }
4427  }
4428
4429  if (Diagnoser.Suppressed)
4430    return true;
4431
4432  // We have an incomplete type. Produce a diagnostic.
4433  Diagnoser.diagnose(*this, Loc, T);
4434
4435  // If the type was a forward declaration of a class/struct/union
4436  // type, produce a note.
4437  if (Tag && !Tag->getDecl()->isInvalidDecl())
4438    Diag(Tag->getDecl()->getLocation(),
4439         Tag->isBeingDefined() ? diag::note_type_being_defined
4440                               : diag::note_forward_declaration)
4441      << QualType(Tag, 0);
4442
4443  // If the Objective-C class was a forward declaration, produce a note.
4444  if (IFace && !IFace->getDecl()->isInvalidDecl())
4445    Diag(IFace->getDecl()->getLocation(), diag::note_forward_class);
4446
4447  return true;
4448}
4449
4450bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
4451                               unsigned DiagID) {
4452  TypeDiagnoserDiag Diagnoser(DiagID);
4453  return RequireCompleteType(Loc, T, Diagnoser);
4454}
4455
4456/// \brief Get diagnostic %select index for tag kind for
4457/// literal type diagnostic message.
4458/// WARNING: Indexes apply to particular diagnostics only!
4459///
4460/// \returns diagnostic %select index.
4461static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
4462  switch (Tag) {
4463  case TTK_Struct: return 0;
4464  case TTK_Interface: return 1;
4465  case TTK_Class:  return 2;
4466  default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
4467  }
4468}
4469
4470/// @brief Ensure that the type T is a literal type.
4471///
4472/// This routine checks whether the type @p T is a literal type. If @p T is an
4473/// incomplete type, an attempt is made to complete it. If @p T is a literal
4474/// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
4475/// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
4476/// it the type @p T), along with notes explaining why the type is not a
4477/// literal type, and returns true.
4478///
4479/// @param Loc  The location in the source that the non-literal type
4480/// diagnostic should refer to.
4481///
4482/// @param T  The type that this routine is examining for literalness.
4483///
4484/// @param Diagnoser Emits a diagnostic if T is not a literal type.
4485///
4486/// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
4487/// @c false otherwise.
4488bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
4489                              TypeDiagnoser &Diagnoser) {
4490  assert(!T->isDependentType() && "type should not be dependent");
4491
4492  QualType ElemType = Context.getBaseElementType(T);
4493  RequireCompleteType(Loc, ElemType, 0);
4494
4495  if (T->isLiteralType())
4496    return false;
4497
4498  if (Diagnoser.Suppressed)
4499    return true;
4500
4501  Diagnoser.diagnose(*this, Loc, T);
4502
4503  if (T->isVariableArrayType())
4504    return true;
4505
4506  const RecordType *RT = ElemType->getAs<RecordType>();
4507  if (!RT)
4508    return true;
4509
4510  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4511
4512  // A partially-defined class type can't be a literal type, because a literal
4513  // class type must have a trivial destructor (which can't be checked until
4514  // the class definition is complete).
4515  if (!RD->isCompleteDefinition()) {
4516    RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T);
4517    return true;
4518  }
4519
4520  // If the class has virtual base classes, then it's not an aggregate, and
4521  // cannot have any constexpr constructors or a trivial default constructor,
4522  // so is non-literal. This is better to diagnose than the resulting absence
4523  // of constexpr constructors.
4524  if (RD->getNumVBases()) {
4525    Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
4526      << getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
4527    for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
4528           E = RD->vbases_end(); I != E; ++I)
4529      Diag(I->getLocStart(),
4530           diag::note_constexpr_virtual_base_here) << I->getSourceRange();
4531  } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
4532             !RD->hasTrivialDefaultConstructor()) {
4533    Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
4534  } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
4535    for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
4536         E = RD->bases_end(); I != E; ++I) {
4537      if (!I->getType()->isLiteralType()) {
4538        Diag(I->getLocStart(),
4539             diag::note_non_literal_base_class)
4540          << RD << I->getType() << I->getSourceRange();
4541        return true;
4542      }
4543    }
4544    for (CXXRecordDecl::field_iterator I = RD->field_begin(),
4545         E = RD->field_end(); I != E; ++I) {
4546      if (!I->getType()->isLiteralType() ||
4547          I->getType().isVolatileQualified()) {
4548        Diag(I->getLocation(), diag::note_non_literal_field)
4549          << RD << *I << I->getType()
4550          << I->getType().isVolatileQualified();
4551        return true;
4552      }
4553    }
4554  } else if (!RD->hasTrivialDestructor()) {
4555    // All fields and bases are of literal types, so have trivial destructors.
4556    // If this class's destructor is non-trivial it must be user-declared.
4557    CXXDestructorDecl *Dtor = RD->getDestructor();
4558    assert(Dtor && "class has literal fields and bases but no dtor?");
4559    if (!Dtor)
4560      return true;
4561
4562    Diag(Dtor->getLocation(), Dtor->isUserProvided() ?
4563         diag::note_non_literal_user_provided_dtor :
4564         diag::note_non_literal_nontrivial_dtor) << RD;
4565  }
4566
4567  return true;
4568}
4569
4570bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
4571  TypeDiagnoserDiag Diagnoser(DiagID);
4572  return RequireLiteralType(Loc, T, Diagnoser);
4573}
4574
4575/// \brief Retrieve a version of the type 'T' that is elaborated by Keyword
4576/// and qualified by the nested-name-specifier contained in SS.
4577QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
4578                                 const CXXScopeSpec &SS, QualType T) {
4579  if (T.isNull())
4580    return T;
4581  NestedNameSpecifier *NNS;
4582  if (SS.isValid())
4583    NNS = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4584  else {
4585    if (Keyword == ETK_None)
4586      return T;
4587    NNS = 0;
4588  }
4589  return Context.getElaboratedType(Keyword, NNS, T);
4590}
4591
4592QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
4593  ExprResult ER = CheckPlaceholderExpr(E);
4594  if (ER.isInvalid()) return QualType();
4595  E = ER.take();
4596
4597  if (!E->isTypeDependent()) {
4598    QualType T = E->getType();
4599    if (const TagType *TT = T->getAs<TagType>())
4600      DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
4601  }
4602  return Context.getTypeOfExprType(E);
4603}
4604
4605/// getDecltypeForExpr - Given an expr, will return the decltype for
4606/// that expression, according to the rules in C++11
4607/// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
4608static QualType getDecltypeForExpr(Sema &S, Expr *E) {
4609  if (E->isTypeDependent())
4610    return S.Context.DependentTy;
4611
4612  // C++11 [dcl.type.simple]p4:
4613  //   The type denoted by decltype(e) is defined as follows:
4614  //
4615  //     - if e is an unparenthesized id-expression or an unparenthesized class
4616  //       member access (5.2.5), decltype(e) is the type of the entity named
4617  //       by e. If there is no such entity, or if e names a set of overloaded
4618  //       functions, the program is ill-formed;
4619  //
4620  // We apply the same rules for Objective-C ivar and property references.
4621  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
4622    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
4623      return VD->getType();
4624  } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
4625    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
4626      return FD->getType();
4627  } else if (const ObjCIvarRefExpr *IR = dyn_cast<ObjCIvarRefExpr>(E)) {
4628    return IR->getDecl()->getType();
4629  } else if (const ObjCPropertyRefExpr *PR = dyn_cast<ObjCPropertyRefExpr>(E)) {
4630    if (PR->isExplicitProperty())
4631      return PR->getExplicitProperty()->getType();
4632  }
4633
4634  // C++11 [expr.lambda.prim]p18:
4635  //   Every occurrence of decltype((x)) where x is a possibly
4636  //   parenthesized id-expression that names an entity of automatic
4637  //   storage duration is treated as if x were transformed into an
4638  //   access to a corresponding data member of the closure type that
4639  //   would have been declared if x were an odr-use of the denoted
4640  //   entity.
4641  using namespace sema;
4642  if (S.getCurLambda()) {
4643    if (isa<ParenExpr>(E)) {
4644      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4645        if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
4646          QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation());
4647          if (!T.isNull())
4648            return S.Context.getLValueReferenceType(T);
4649        }
4650      }
4651    }
4652  }
4653
4654
4655  // C++11 [dcl.type.simple]p4:
4656  //   [...]
4657  QualType T = E->getType();
4658  switch (E->getValueKind()) {
4659  //     - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
4660  //       type of e;
4661  case VK_XValue: T = S.Context.getRValueReferenceType(T); break;
4662  //     - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
4663  //       type of e;
4664  case VK_LValue: T = S.Context.getLValueReferenceType(T); break;
4665  //  - otherwise, decltype(e) is the type of e.
4666  case VK_RValue: break;
4667  }
4668
4669  return T;
4670}
4671
4672QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc) {
4673  ExprResult ER = CheckPlaceholderExpr(E);
4674  if (ER.isInvalid()) return QualType();
4675  E = ER.take();
4676
4677  return Context.getDecltypeType(E, getDecltypeForExpr(*this, E));
4678}
4679
4680QualType Sema::BuildUnaryTransformType(QualType BaseType,
4681                                       UnaryTransformType::UTTKind UKind,
4682                                       SourceLocation Loc) {
4683  switch (UKind) {
4684  case UnaryTransformType::EnumUnderlyingType:
4685    if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
4686      Diag(Loc, diag::err_only_enums_have_underlying_types);
4687      return QualType();
4688    } else {
4689      QualType Underlying = BaseType;
4690      if (!BaseType->isDependentType()) {
4691        EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
4692        assert(ED && "EnumType has no EnumDecl");
4693        DiagnoseUseOfDecl(ED, Loc);
4694        Underlying = ED->getIntegerType();
4695      }
4696      assert(!Underlying.isNull());
4697      return Context.getUnaryTransformType(BaseType, Underlying,
4698                                        UnaryTransformType::EnumUnderlyingType);
4699    }
4700  }
4701  llvm_unreachable("unknown unary transform type");
4702}
4703
4704QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
4705  if (!T->isDependentType()) {
4706    // FIXME: It isn't entirely clear whether incomplete atomic types
4707    // are allowed or not; for simplicity, ban them for the moment.
4708    if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
4709      return QualType();
4710
4711    int DisallowedKind = -1;
4712    if (T->isArrayType())
4713      DisallowedKind = 1;
4714    else if (T->isFunctionType())
4715      DisallowedKind = 2;
4716    else if (T->isReferenceType())
4717      DisallowedKind = 3;
4718    else if (T->isAtomicType())
4719      DisallowedKind = 4;
4720    else if (T.hasQualifiers())
4721      DisallowedKind = 5;
4722    else if (!T.isTriviallyCopyableType(Context))
4723      // Some other non-trivially-copyable type (probably a C++ class)
4724      DisallowedKind = 6;
4725
4726    if (DisallowedKind != -1) {
4727      Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
4728      return QualType();
4729    }
4730
4731    // FIXME: Do we need any handling for ARC here?
4732  }
4733
4734  // Build the pointer type.
4735  return Context.getAtomicType(T);
4736}
4737