tsan_rtl_thread.cc revision 603c4be006d8c53905d736bf1f19a49f5ce98276
1//===-- tsan_rtl_thread.cc ------------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of ThreadSanitizer (TSan), a race detector.
11//
12//===----------------------------------------------------------------------===//
13
14#include "tsan_rtl.h"
15#include "tsan_mman.h"
16#include "tsan_placement_new.h"
17#include "tsan_platform.h"
18#include "tsan_report.h"
19#include "tsan_sync.h"
20
21namespace __tsan {
22
23const int kThreadQuarantineSize = 16;
24
25static void MaybeReportThreadLeak(ThreadContext *tctx) {
26  if (tctx->detached)
27    return;
28  if (tctx->status != ThreadStatusCreated
29      && tctx->status != ThreadStatusRunning
30      && tctx->status != ThreadStatusFinished)
31    return;
32  ScopedReport rep(ReportTypeThreadLeak);
33  rep.AddThread(tctx);
34  OutputReport(rep);
35}
36
37void ThreadFinalize(ThreadState *thr) {
38  CHECK_GT(thr->in_rtl, 0);
39  if (!flags()->report_thread_leaks)
40    return;
41  Context *ctx = CTX();
42  Lock l(&ctx->thread_mtx);
43  for (unsigned i = 0; i < kMaxTid; i++) {
44    ThreadContext *tctx = ctx->threads[i];
45    if (tctx == 0)
46      continue;
47    MaybeReportThreadLeak(tctx);
48  }
49}
50
51static void ThreadDead(ThreadState *thr, ThreadContext *tctx) {
52  Context *ctx = CTX();
53  CHECK_GT(thr->in_rtl, 0);
54  CHECK(tctx->status == ThreadStatusRunning
55      || tctx->status == ThreadStatusFinished);
56  DPrintf("#%d: ThreadDead uid=%lu\n", thr->tid, tctx->user_id);
57  tctx->status = ThreadStatusDead;
58  tctx->user_id = 0;
59  tctx->sync.Reset();
60
61  // Put to dead list.
62  tctx->dead_next = 0;
63  if (ctx->dead_list_size == 0)
64    ctx->dead_list_head = tctx;
65  else
66    ctx->dead_list_tail->dead_next = tctx;
67  ctx->dead_list_tail = tctx;
68  ctx->dead_list_size++;
69}
70
71int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached) {
72  CHECK_GT(thr->in_rtl, 0);
73  Context *ctx = CTX();
74  Lock l(&ctx->thread_mtx);
75  StatInc(thr, StatThreadCreate);
76  int tid = -1;
77  ThreadContext *tctx = 0;
78  if (ctx->dead_list_size > kThreadQuarantineSize
79      || ctx->thread_seq >= kMaxTid) {
80    if (ctx->dead_list_size == 0) {
81      Printf("ThreadSanitizer: %d thread limit exceeded. Dying.\n", kMaxTid);
82      Die();
83    }
84    StatInc(thr, StatThreadReuse);
85    tctx = ctx->dead_list_head;
86    ctx->dead_list_head = tctx->dead_next;
87    ctx->dead_list_size--;
88    if (ctx->dead_list_size == 0) {
89      CHECK_EQ(tctx->dead_next, 0);
90      ctx->dead_list_head = 0;
91    }
92    CHECK_EQ(tctx->status, ThreadStatusDead);
93    tctx->status = ThreadStatusInvalid;
94    tctx->reuse_count++;
95    tctx->sync.Reset();
96    tid = tctx->tid;
97    DestroyAndFree(tctx->dead_info);
98  } else {
99    StatInc(thr, StatThreadMaxTid);
100    tid = ctx->thread_seq++;
101    void *mem = internal_alloc(MBlockThreadContex, sizeof(ThreadContext));
102    tctx = new(mem) ThreadContext(tid);
103    ctx->threads[tid] = tctx;
104  }
105  CHECK_NE(tctx, 0);
106  CHECK_GE(tid, 0);
107  CHECK_LT(tid, kMaxTid);
108  DPrintf("#%d: ThreadCreate tid=%d uid=%lu\n", thr->tid, tid, uid);
109  CHECK_EQ(tctx->status, ThreadStatusInvalid);
110  ctx->alive_threads++;
111  if (ctx->max_alive_threads < ctx->alive_threads) {
112    ctx->max_alive_threads++;
113    CHECK_EQ(ctx->max_alive_threads, ctx->alive_threads);
114    StatInc(thr, StatThreadMaxAlive);
115  }
116  tctx->status = ThreadStatusCreated;
117  tctx->thr = 0;
118  tctx->user_id = uid;
119  tctx->unique_id = ctx->unique_thread_seq++;
120  tctx->detached = detached;
121  if (tid) {
122    thr->fast_state.IncrementEpoch();
123    // Can't increment epoch w/o writing to the trace as well.
124    TraceAddEvent(thr, thr->fast_state.epoch(), EventTypeMop, 0);
125    thr->clock.set(thr->tid, thr->fast_state.epoch());
126    thr->fast_synch_epoch = thr->fast_state.epoch();
127    thr->clock.release(&tctx->sync);
128    StatInc(thr, StatSyncRelease);
129
130    tctx->creation_stack.ObtainCurrent(thr, pc);
131  }
132  return tid;
133}
134
135void ThreadStart(ThreadState *thr, int tid) {
136  CHECK_GT(thr->in_rtl, 0);
137  uptr stk_addr = 0;
138  uptr stk_size = 0;
139  uptr tls_addr = 0;
140  uptr tls_size = 0;
141  GetThreadStackAndTls(tid == 0, &stk_addr, &stk_size, &tls_addr, &tls_size);
142
143  if (tid) {
144    MemoryResetRange(thr, /*pc=*/ 1, stk_addr, stk_size);
145
146    // Check that the thr object is in tls;
147    const uptr thr_beg = (uptr)thr;
148    const uptr thr_end = (uptr)thr + sizeof(*thr);
149    CHECK_GE(thr_beg, tls_addr);
150    CHECK_LE(thr_beg, tls_addr + tls_size);
151    CHECK_GE(thr_end, tls_addr);
152    CHECK_LE(thr_end, tls_addr + tls_size);
153    // Since the thr object is huge, skip it.
154    MemoryResetRange(thr, /*pc=*/ 2, tls_addr, thr_beg - tls_addr);
155    MemoryResetRange(thr, /*pc=*/ 2, thr_end, tls_addr + tls_size - thr_end);
156  }
157
158  Lock l(&CTX()->thread_mtx);
159  ThreadContext *tctx = CTX()->threads[tid];
160  CHECK_NE(tctx, 0);
161  CHECK_EQ(tctx->status, ThreadStatusCreated);
162  tctx->status = ThreadStatusRunning;
163  tctx->epoch0 = tctx->epoch1 + 1;
164  tctx->epoch1 = (u64)-1;
165  new(thr) ThreadState(CTX(), tid, tctx->epoch0, stk_addr, stk_size,
166                       tls_addr, tls_size);
167  tctx->thr = thr;
168  thr->fast_synch_epoch = tctx->epoch0;
169  thr->clock.set(tid, tctx->epoch0);
170  thr->clock.acquire(&tctx->sync);
171  StatInc(thr, StatSyncAcquire);
172  DPrintf("#%d: ThreadStart epoch=%llu stk_addr=%lx stk_size=%lx "
173      "tls_addr=%lx tls_size=%lx\n",
174      tid, tctx->epoch0, stk_addr, stk_size, tls_addr, tls_size);
175}
176
177void ThreadFinish(ThreadState *thr) {
178  CHECK_GT(thr->in_rtl, 0);
179  StatInc(thr, StatThreadFinish);
180  // FIXME: Treat it as write.
181  if (thr->stk_addr && thr->stk_size)
182    MemoryResetRange(thr, /*pc=*/ 3, thr->stk_addr, thr->stk_size);
183  if (thr->tls_addr && thr->tls_size) {
184    const uptr thr_beg = (uptr)thr;
185    const uptr thr_end = (uptr)thr + sizeof(*thr);
186    // Since the thr object is huge, skip it.
187    MemoryResetRange(thr, /*pc=*/ 4, thr->tls_addr, thr_beg - thr->tls_addr);
188    MemoryResetRange(thr, /*pc=*/ 5,
189        thr_end, thr->tls_addr + thr->tls_size - thr_end);
190  }
191  Context *ctx = CTX();
192  Lock l(&ctx->thread_mtx);
193  ThreadContext *tctx = ctx->threads[thr->tid];
194  CHECK_NE(tctx, 0);
195  CHECK_EQ(tctx->status, ThreadStatusRunning);
196  CHECK_GT(ctx->alive_threads, 0);
197  ctx->alive_threads--;
198  if (tctx->detached) {
199    ThreadDead(thr, tctx);
200  } else {
201    thr->fast_state.IncrementEpoch();
202    // Can't increment epoch w/o writing to the trace as well.
203    TraceAddEvent(thr, thr->fast_state.epoch(), EventTypeMop, 0);
204    thr->clock.set(thr->tid, thr->fast_state.epoch());
205    thr->fast_synch_epoch = thr->fast_state.epoch();
206    thr->clock.release(&tctx->sync);
207    StatInc(thr, StatSyncRelease);
208    tctx->status = ThreadStatusFinished;
209  }
210
211  // Save from info about the thread.
212  tctx->dead_info = new(internal_alloc(MBlockDeadInfo, sizeof(ThreadDeadInfo)))
213      ThreadDeadInfo();
214  internal_memcpy(&tctx->dead_info->trace.events[0],
215      &thr->trace.events[0], sizeof(thr->trace.events));
216  for (int i = 0; i < kTraceParts; i++) {
217    tctx->dead_info->trace.headers[i].stack0.CopyFrom(
218        thr->trace.headers[i].stack0);
219  }
220  tctx->epoch1 = thr->fast_state.epoch();
221
222  thr->~ThreadState();
223  StatAggregate(ctx->stat, thr->stat);
224  tctx->thr = 0;
225}
226
227int ThreadTid(ThreadState *thr, uptr pc, uptr uid) {
228  CHECK_GT(thr->in_rtl, 0);
229  Context *ctx = CTX();
230  Lock l(&ctx->thread_mtx);
231  int res = -1;
232  for (unsigned tid = 0; tid < kMaxTid; tid++) {
233    ThreadContext *tctx = ctx->threads[tid];
234    if (tctx != 0 && tctx->user_id == uid
235        && tctx->status != ThreadStatusInvalid) {
236      tctx->user_id = 0;
237      res = tid;
238      break;
239    }
240  }
241  DPrintf("#%d: ThreadTid uid=%lu tid=%d\n", thr->tid, uid, res);
242  return res;
243}
244
245void ThreadJoin(ThreadState *thr, uptr pc, int tid) {
246  CHECK_GT(thr->in_rtl, 0);
247  CHECK_GT(tid, 0);
248  CHECK_LT(tid, kMaxTid);
249  DPrintf("#%d: ThreadJoin tid=%d\n", thr->tid, tid);
250  Context *ctx = CTX();
251  Lock l(&ctx->thread_mtx);
252  ThreadContext *tctx = ctx->threads[tid];
253  if (tctx->status == ThreadStatusInvalid) {
254    Printf("ThreadSanitizer: join of non-existent thread\n");
255    return;
256  }
257  CHECK_EQ(tctx->detached, false);
258  CHECK_EQ(tctx->status, ThreadStatusFinished);
259  thr->clock.acquire(&tctx->sync);
260  StatInc(thr, StatSyncAcquire);
261  ThreadDead(thr, tctx);
262}
263
264void ThreadDetach(ThreadState *thr, uptr pc, int tid) {
265  CHECK_GT(thr->in_rtl, 0);
266  CHECK_GT(tid, 0);
267  CHECK_LT(tid, kMaxTid);
268  Context *ctx = CTX();
269  Lock l(&ctx->thread_mtx);
270  ThreadContext *tctx = ctx->threads[tid];
271  if (tctx->status == ThreadStatusInvalid) {
272    Printf("ThreadSanitizer: detach of non-existent thread\n");
273    return;
274  }
275  if (tctx->status == ThreadStatusFinished) {
276    ThreadDead(thr, tctx);
277  } else {
278    tctx->detached = true;
279  }
280}
281
282void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr,
283                       uptr size, bool is_write) {
284  if (size == 0)
285    return;
286
287  u64 *shadow_mem = (u64*)MemToShadow(addr);
288  DPrintf2("#%d: MemoryAccessRange: @%p %p size=%d is_write=%d\n",
289      thr->tid, (void*)pc, (void*)addr,
290      (int)size, is_write);
291
292#if TSAN_DEBUG
293  if (!IsAppMem(addr)) {
294    Printf("Access to non app mem %lx\n", addr);
295    DCHECK(IsAppMem(addr));
296  }
297  if (!IsAppMem(addr + size - 1)) {
298    Printf("Access to non app mem %lx\n", addr + size - 1);
299    DCHECK(IsAppMem(addr + size - 1));
300  }
301  if (!IsShadowMem((uptr)shadow_mem)) {
302    Printf("Bad shadow addr %p (%lx)\n", shadow_mem, addr);
303    DCHECK(IsShadowMem((uptr)shadow_mem));
304  }
305  if (!IsShadowMem((uptr)(shadow_mem + size * kShadowCnt / 8 - 1))) {
306    Printf("Bad shadow addr %p (%lx)\n",
307        shadow_mem + size * kShadowCnt / 8 - 1, addr + size - 1);
308    DCHECK(IsShadowMem((uptr)(shadow_mem + size * kShadowCnt / 8 - 1)));
309  }
310#endif
311
312  StatInc(thr, StatMopRange);
313
314  FastState fast_state = thr->fast_state;
315  if (fast_state.GetIgnoreBit())
316    return;
317
318  fast_state.IncrementEpoch();
319  thr->fast_state = fast_state;
320  TraceAddEvent(thr, fast_state.epoch(), EventTypeMop, pc);
321
322  bool unaligned = (addr % kShadowCell) != 0;
323
324  // Handle unaligned beginning, if any.
325  for (; addr % kShadowCell && size; addr++, size--) {
326    int const kAccessSizeLog = 0;
327    Shadow cur(fast_state);
328    cur.SetWrite(is_write);
329    cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog);
330    MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, fast_state,
331        shadow_mem, cur);
332  }
333  if (unaligned)
334    shadow_mem += kShadowCnt;
335  // Handle middle part, if any.
336  for (; size >= kShadowCell; addr += kShadowCell, size -= kShadowCell) {
337    int const kAccessSizeLog = 3;
338    Shadow cur(fast_state);
339    cur.SetWrite(is_write);
340    cur.SetAddr0AndSizeLog(0, kAccessSizeLog);
341    MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, fast_state,
342        shadow_mem, cur);
343    shadow_mem += kShadowCnt;
344  }
345  // Handle ending, if any.
346  for (; size; addr++, size--) {
347    int const kAccessSizeLog = 0;
348    Shadow cur(fast_state);
349    cur.SetWrite(is_write);
350    cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog);
351    MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, fast_state,
352        shadow_mem, cur);
353  }
354}
355
356void MemoryRead1Byte(ThreadState *thr, uptr pc, uptr addr) {
357  MemoryAccess(thr, pc, addr, 0, 0);
358}
359
360void MemoryWrite1Byte(ThreadState *thr, uptr pc, uptr addr) {
361  MemoryAccess(thr, pc, addr, 0, 1);
362}
363
364void MemoryRead8Byte(ThreadState *thr, uptr pc, uptr addr) {
365  MemoryAccess(thr, pc, addr, 3, 0);
366}
367
368void MemoryWrite8Byte(ThreadState *thr, uptr pc, uptr addr) {
369  MemoryAccess(thr, pc, addr, 3, 1);
370}
371}  // namespace __tsan
372