tsan_rtl_thread.cc revision adfb65039646774f0f063b538f8fb0aec021f42b
1//===-- tsan_rtl_thread.cc --------------------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of ThreadSanitizer (TSan), a race detector.
11//
12//===----------------------------------------------------------------------===//
13
14#include "tsan_rtl.h"
15#include "tsan_mman.h"
16#include "tsan_placement_new.h"
17#include "tsan_platform.h"
18#include "tsan_report.h"
19#include "tsan_sync.h"
20
21namespace __tsan {
22
23const int kThreadQuarantineSize = 16;
24
25static void MaybeReportThreadLeak(ThreadContext *tctx) {
26  if (tctx->detached)
27    return;
28  if (tctx->status != ThreadStatusCreated
29      && tctx->status != ThreadStatusRunning
30      && tctx->status != ThreadStatusFinished)
31    return;
32  ScopedReport rep(ReportTypeThreadLeak);
33  rep.AddThread(tctx);
34  OutputReport(rep);
35}
36
37void ThreadFinalize(ThreadState *thr) {
38  CHECK_GT(thr->in_rtl, 0);
39  if (!flags()->report_thread_leaks)
40    return;
41  Context *ctx = CTX();
42  Lock l(&ctx->thread_mtx);
43  for (unsigned i = 0; i < kMaxTid; i++) {
44    ThreadContext *tctx = ctx->threads[i];
45    if (tctx == 0)
46      continue;
47    MaybeReportThreadLeak(tctx);
48  }
49}
50
51static void ThreadDead(ThreadState *thr, ThreadContext *tctx) {
52  Context *ctx = CTX();
53  CHECK_GT(thr->in_rtl, 0);
54  CHECK(tctx->status == ThreadStatusRunning
55      || tctx->status == ThreadStatusFinished);
56  DPrintf("#%d: ThreadDead uid=%lu\n", thr->tid, tctx->user_id);
57  tctx->status = ThreadStatusDead;
58  tctx->user_id = 0;
59  tctx->sync.Reset();
60
61  // Put to dead list.
62  tctx->dead_next = 0;
63  if (ctx->dead_list_size == 0)
64    ctx->dead_list_head = tctx;
65  else
66    ctx->dead_list_tail->dead_next = tctx;
67  ctx->dead_list_tail = tctx;
68  ctx->dead_list_size++;
69}
70
71int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached) {
72  CHECK_GT(thr->in_rtl, 0);
73  Context *ctx = CTX();
74  Lock l(&ctx->thread_mtx);
75  StatInc(thr, StatThreadCreate);
76  int tid = -1;
77  ThreadContext *tctx = 0;
78  if (ctx->dead_list_size > kThreadQuarantineSize
79      || ctx->thread_seq >= kMaxTid) {
80    if (ctx->dead_list_size == 0) {
81      Printf("ThreadSanitizer: %d thread limit exceeded. Dying.\n", kMaxTid);
82      Die();
83    }
84    StatInc(thr, StatThreadReuse);
85    tctx = ctx->dead_list_head;
86    ctx->dead_list_head = tctx->dead_next;
87    ctx->dead_list_size--;
88    if (ctx->dead_list_size == 0) {
89      CHECK_EQ(tctx->dead_next, 0);
90      ctx->dead_list_head = 0;
91    }
92    CHECK_EQ(tctx->status, ThreadStatusDead);
93    tctx->status = ThreadStatusInvalid;
94    tctx->reuse_count++;
95    tctx->sync.Reset();
96    tid = tctx->tid;
97    DestroyAndFree(tctx->dead_info);
98  } else {
99    StatInc(thr, StatThreadMaxTid);
100    tid = ctx->thread_seq++;
101    void *mem = internal_alloc(MBlockThreadContex, sizeof(ThreadContext));
102    tctx = new(mem) ThreadContext(tid);
103    ctx->threads[tid] = tctx;
104  }
105  CHECK_NE(tctx, 0);
106  CHECK_GE(tid, 0);
107  CHECK_LT(tid, kMaxTid);
108  DPrintf("#%d: ThreadCreate tid=%d uid=%lu\n", thr->tid, tid, uid);
109  CHECK_EQ(tctx->status, ThreadStatusInvalid);
110  ctx->alive_threads++;
111  if (ctx->max_alive_threads < ctx->alive_threads) {
112    ctx->max_alive_threads++;
113    CHECK_EQ(ctx->max_alive_threads, ctx->alive_threads);
114    StatInc(thr, StatThreadMaxAlive);
115  }
116  tctx->status = ThreadStatusCreated;
117  tctx->thr = 0;
118  tctx->user_id = uid;
119  tctx->unique_id = ctx->unique_thread_seq++;
120  tctx->detached = detached;
121  if (tid) {
122    thr->fast_state.IncrementEpoch();
123    // Can't increment epoch w/o writing to the trace as well.
124    TraceAddEvent(thr, thr->fast_state.epoch(), EventTypeMop, 0);
125    thr->clock.set(thr->tid, thr->fast_state.epoch());
126    thr->fast_synch_epoch = thr->fast_state.epoch();
127    thr->clock.release(&tctx->sync);
128    StatInc(thr, StatSyncRelease);
129
130    tctx->creation_stack.ObtainCurrent(thr, pc);
131  }
132  return tid;
133}
134
135void ThreadStart(ThreadState *thr, int tid) {
136  CHECK_GT(thr->in_rtl, 0);
137  uptr stk_addr = 0;
138  uptr stk_size = 0;
139  uptr tls_addr = 0;
140  uptr tls_size = 0;
141  GetThreadStackAndTls(&stk_addr, &stk_size, &tls_addr, &tls_size);
142
143  MemoryResetRange(thr, /*pc=*/ 1, stk_addr, stk_size);
144
145  // Check that the thr object is in tls;
146  const uptr thr_beg = (uptr)thr;
147  const uptr thr_end = (uptr)thr + sizeof(*thr);
148  CHECK_GE(thr_beg, tls_addr);
149  CHECK_LE(thr_beg, tls_addr + tls_size);
150  CHECK_GE(thr_end, tls_addr);
151  CHECK_LE(thr_end, tls_addr + tls_size);
152  // Since the thr object is huge, skip it.
153  MemoryResetRange(thr, /*pc=*/ 2, tls_addr, thr_beg - tls_addr);
154  MemoryResetRange(thr, /*pc=*/ 2, thr_end, tls_addr + tls_size - thr_end);
155
156  Lock l(&CTX()->thread_mtx);
157  ThreadContext *tctx = CTX()->threads[tid];
158  CHECK_NE(tctx, 0);
159  CHECK_EQ(tctx->status, ThreadStatusCreated);
160  tctx->status = ThreadStatusRunning;
161  tctx->epoch0 = tctx->epoch1 + 1;
162  tctx->epoch1 = (u64)-1;
163  new(thr) ThreadState(CTX(), tid, tctx->epoch0, stk_addr, stk_size,
164                       tls_addr, tls_size);
165  tctx->thr = thr;
166  thr->fast_synch_epoch = tctx->epoch0;
167  thr->clock.set(tid, tctx->epoch0);
168  thr->clock.acquire(&tctx->sync);
169  StatInc(thr, StatSyncAcquire);
170  DPrintf("#%d: ThreadStart epoch=%llu stk_addr=%lx stk_size=%lx "
171      "tls_addr=%lx tls_size=%lx\n",
172      tid, tctx->epoch0, stk_addr, stk_size, tls_addr, tls_size);
173}
174
175void ThreadFinish(ThreadState *thr) {
176  CHECK_GT(thr->in_rtl, 0);
177  StatInc(thr, StatThreadFinish);
178  // FIXME: Treat it as write.
179  if (thr->stk_addr && thr->stk_size)
180    MemoryResetRange(thr, /*pc=*/ 3, thr->stk_addr, thr->stk_size);
181  if (thr->tls_addr && thr->tls_size) {
182    const uptr thr_beg = (uptr)thr;
183    const uptr thr_end = (uptr)thr + sizeof(*thr);
184    // Since the thr object is huge, skip it.
185    MemoryResetRange(thr, /*pc=*/ 4, thr->tls_addr, thr_beg - thr->tls_addr);
186    MemoryResetRange(thr, /*pc=*/ 5,
187        thr_end, thr->tls_addr + thr->tls_size - thr_end);
188  }
189  Context *ctx = CTX();
190  Lock l(&ctx->thread_mtx);
191  ThreadContext *tctx = ctx->threads[thr->tid];
192  CHECK_NE(tctx, 0);
193  CHECK_EQ(tctx->status, ThreadStatusRunning);
194  CHECK_GT(ctx->alive_threads, 0);
195  ctx->alive_threads--;
196  if (tctx->detached) {
197    ThreadDead(thr, tctx);
198  } else {
199    thr->fast_state.IncrementEpoch();
200    // Can't increment epoch w/o writing to the trace as well.
201    TraceAddEvent(thr, thr->fast_state.epoch(), EventTypeMop, 0);
202    thr->clock.set(thr->tid, thr->fast_state.epoch());
203    thr->fast_synch_epoch = thr->fast_state.epoch();
204    thr->clock.release(&tctx->sync);
205    StatInc(thr, StatSyncRelease);
206    tctx->status = ThreadStatusFinished;
207  }
208
209  // Save from info about the thread.
210  tctx->dead_info = new(internal_alloc(MBlockDeadInfo, sizeof(ThreadDeadInfo)))
211      ThreadDeadInfo();
212  internal_memcpy(&tctx->dead_info->trace.events[0],
213      &thr->trace.events[0], sizeof(thr->trace.events));
214  for (int i = 0; i < kTraceParts; i++) {
215    tctx->dead_info->trace.headers[i].stack0.CopyFrom(
216        thr->trace.headers[i].stack0);
217  }
218  tctx->epoch1 = thr->fast_state.epoch();
219
220  thr->~ThreadState();
221  StatAggregate(ctx->stat, thr->stat);
222  tctx->thr = 0;
223}
224
225int ThreadTid(ThreadState *thr, uptr pc, uptr uid) {
226  CHECK_GT(thr->in_rtl, 0);
227  DPrintf("#%d: ThreadTid uid=%lu\n", thr->tid, uid);
228  Lock l(&CTX()->thread_mtx);
229  for (unsigned tid = 0; tid < kMaxTid; tid++) {
230    if (CTX()->threads[tid] != 0
231        && CTX()->threads[tid]->user_id == uid
232        && CTX()->threads[tid]->status != ThreadStatusInvalid)
233      return tid;
234  }
235  return -1;
236}
237
238void ThreadJoin(ThreadState *thr, uptr pc, int tid) {
239  CHECK_GT(thr->in_rtl, 0);
240  CHECK_GT(tid, 0);
241  CHECK_LT(tid, kMaxTid);
242  DPrintf("#%d: ThreadJoin tid=%d\n", thr->tid, tid);
243  Context *ctx = CTX();
244  Lock l(&ctx->thread_mtx);
245  ThreadContext *tctx = ctx->threads[tid];
246  if (tctx->status == ThreadStatusInvalid) {
247    Printf("ThreadSanitizer: join of non-existent thread\n");
248    return;
249  }
250  CHECK_EQ(tctx->detached, false);
251  CHECK_EQ(tctx->status, ThreadStatusFinished);
252  thr->clock.acquire(&tctx->sync);
253  StatInc(thr, StatSyncAcquire);
254  ThreadDead(thr, tctx);
255}
256
257void ThreadDetach(ThreadState *thr, uptr pc, int tid) {
258  CHECK_GT(thr->in_rtl, 0);
259  CHECK_GT(tid, 0);
260  CHECK_LT(tid, kMaxTid);
261  Context *ctx = CTX();
262  Lock l(&ctx->thread_mtx);
263  ThreadContext *tctx = ctx->threads[tid];
264  if (tctx->status == ThreadStatusInvalid) {
265    Printf("ThreadSanitizer: detach of non-existent thread\n");
266    return;
267  }
268  if (tctx->status == ThreadStatusFinished) {
269    ThreadDead(thr, tctx);
270  } else {
271    tctx->detached = true;
272  }
273}
274
275void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr,
276                       uptr size, bool is_write) {
277  if (size == 0)
278    return;
279
280  u64 *shadow_mem = (u64*)MemToShadow(addr);
281  DPrintf2("#%d: MemoryAccessRange: @%p %p size=%d is_write=%d\n",
282      thr->tid, (void*)pc, (void*)addr,
283      (int)size, is_write);
284
285#if TSAN_DEBUG
286  if (!IsAppMem(addr)) {
287    Printf("Access to non app mem %lx\n", addr);
288    DCHECK(IsAppMem(addr));
289  }
290  if (!IsAppMem(addr + size - 1)) {
291    Printf("Access to non app mem %lx\n", addr + size - 1);
292    DCHECK(IsAppMem(addr + size - 1));
293  }
294  if (!IsShadowMem((uptr)shadow_mem)) {
295    Printf("Bad shadow addr %p (%lx)\n", shadow_mem, addr);
296    DCHECK(IsShadowMem((uptr)shadow_mem));
297  }
298  if (!IsShadowMem((uptr)(shadow_mem + size * kShadowCnt / 8 - 1))) {
299    Printf("Bad shadow addr %p (%lx)\n",
300        shadow_mem + size * kShadowCnt / 8 - 1, addr + size - 1);
301    DCHECK(IsShadowMem((uptr)(shadow_mem + size * kShadowCnt / 8 - 1)));
302  }
303#endif
304
305  StatInc(thr, StatMopRange);
306
307  FastState fast_state = thr->fast_state;
308  if (fast_state.GetIgnoreBit())
309    return;
310
311  fast_state.IncrementEpoch();
312  thr->fast_state = fast_state;
313  TraceAddEvent(thr, fast_state.epoch(), EventTypeMop, pc);
314
315  bool unaligned = (addr % kShadowCell) != 0;
316
317  // Handle unaligned beginning, if any.
318  for (; addr % kShadowCell && size; addr++, size--) {
319    int const kAccessSizeLog = 0;
320    Shadow cur(fast_state);
321    cur.SetWrite(is_write);
322    cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog);
323    MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, fast_state,
324        shadow_mem, cur);
325  }
326  if (unaligned)
327    shadow_mem += kShadowCnt;
328  // Handle middle part, if any.
329  for (; size >= kShadowCell; addr += kShadowCell, size -= kShadowCell) {
330    int const kAccessSizeLog = 3;
331    Shadow cur(fast_state);
332    cur.SetWrite(is_write);
333    cur.SetAddr0AndSizeLog(0, kAccessSizeLog);
334    MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, fast_state,
335        shadow_mem, cur);
336    shadow_mem += kShadowCnt;
337  }
338  // Handle ending, if any.
339  for (; size; addr++, size--) {
340    int const kAccessSizeLog = 0;
341    Shadow cur(fast_state);
342    cur.SetWrite(is_write);
343    cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog);
344    MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, fast_state,
345        shadow_mem, cur);
346  }
347}
348
349void MemoryRead1Byte(ThreadState *thr, uptr pc, uptr addr) {
350  MemoryAccess(thr, pc, addr, 0, 0);
351}
352
353void MemoryWrite1Byte(ThreadState *thr, uptr pc, uptr addr) {
354  MemoryAccess(thr, pc, addr, 0, 1);
355}
356
357void MemoryRead8Byte(ThreadState *thr, uptr pc, uptr addr) {
358  MemoryAccess(thr, pc, addr, 3, 0);
359}
360
361void MemoryWrite8Byte(ThreadState *thr, uptr pc, uptr addr) {
362  MemoryAccess(thr, pc, addr, 3, 1);
363}
364}  // namespace __tsan
365