tsan_rtl_thread.cc revision e0023f74ea88efee329f68391b70f8adc6b21617
1//===-- tsan_rtl_thread.cc ------------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of ThreadSanitizer (TSan), a race detector.
11//
12//===----------------------------------------------------------------------===//
13
14#include "sanitizer_common/sanitizer_placement_new.h"
15#include "tsan_rtl.h"
16#include "tsan_mman.h"
17#include "tsan_platform.h"
18#include "tsan_report.h"
19#include "tsan_sync.h"
20
21namespace __tsan {
22
23#ifndef TSAN_GO
24const int kThreadQuarantineSize = 16;
25#else
26const int kThreadQuarantineSize = 64;
27#endif
28
29static void MaybeReportThreadLeak(ThreadContext *tctx) {
30  if (tctx->detached)
31    return;
32  if (tctx->status != ThreadStatusCreated
33      && tctx->status != ThreadStatusRunning
34      && tctx->status != ThreadStatusFinished)
35    return;
36  ScopedReport rep(ReportTypeThreadLeak);
37  rep.AddThread(tctx);
38  OutputReport(rep);
39}
40
41void ThreadFinalize(ThreadState *thr) {
42  CHECK_GT(thr->in_rtl, 0);
43  if (!flags()->report_thread_leaks)
44    return;
45  Context *ctx = CTX();
46  Lock l(&ctx->thread_mtx);
47  for (unsigned i = 0; i < kMaxTid; i++) {
48    ThreadContext *tctx = ctx->threads[i];
49    if (tctx == 0)
50      continue;
51    MaybeReportThreadLeak(tctx);
52  }
53}
54
55static void ThreadDead(ThreadState *thr, ThreadContext *tctx) {
56  Context *ctx = CTX();
57  CHECK_GT(thr->in_rtl, 0);
58  CHECK(tctx->status == ThreadStatusRunning
59      || tctx->status == ThreadStatusFinished);
60  DPrintf("#%d: ThreadDead uid=%zu\n", thr->tid, tctx->user_id);
61  tctx->status = ThreadStatusDead;
62  tctx->user_id = 0;
63  tctx->sync.Reset();
64
65  // Put to dead list.
66  tctx->dead_next = 0;
67  if (ctx->dead_list_size == 0)
68    ctx->dead_list_head = tctx;
69  else
70    ctx->dead_list_tail->dead_next = tctx;
71  ctx->dead_list_tail = tctx;
72  ctx->dead_list_size++;
73}
74
75int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached) {
76  CHECK_GT(thr->in_rtl, 0);
77  Context *ctx = CTX();
78  Lock l(&ctx->thread_mtx);
79  StatInc(thr, StatThreadCreate);
80  int tid = -1;
81  ThreadContext *tctx = 0;
82  if (ctx->dead_list_size > kThreadQuarantineSize
83      || ctx->thread_seq >= kMaxTid) {
84    if (ctx->dead_list_size == 0) {
85      TsanPrintf("ThreadSanitizer: %d thread limit exceeded. Dying.\n",
86                 kMaxTid);
87      Die();
88    }
89    StatInc(thr, StatThreadReuse);
90    tctx = ctx->dead_list_head;
91    ctx->dead_list_head = tctx->dead_next;
92    ctx->dead_list_size--;
93    if (ctx->dead_list_size == 0) {
94      CHECK_EQ(tctx->dead_next, 0);
95      ctx->dead_list_head = 0;
96    }
97    CHECK_EQ(tctx->status, ThreadStatusDead);
98    tctx->status = ThreadStatusInvalid;
99    tctx->reuse_count++;
100    tctx->sync.Reset();
101    tid = tctx->tid;
102    DestroyAndFree(tctx->dead_info);
103  } else {
104    StatInc(thr, StatThreadMaxTid);
105    tid = ctx->thread_seq++;
106    void *mem = internal_alloc(MBlockThreadContex, sizeof(ThreadContext));
107    tctx = new(mem) ThreadContext(tid);
108    ctx->threads[tid] = tctx;
109  }
110  CHECK_NE(tctx, 0);
111  CHECK_GE(tid, 0);
112  CHECK_LT(tid, kMaxTid);
113  DPrintf("#%d: ThreadCreate tid=%d uid=%zu\n", thr->tid, tid, uid);
114  CHECK_EQ(tctx->status, ThreadStatusInvalid);
115  ctx->alive_threads++;
116  if (ctx->max_alive_threads < ctx->alive_threads) {
117    ctx->max_alive_threads++;
118    CHECK_EQ(ctx->max_alive_threads, ctx->alive_threads);
119    StatInc(thr, StatThreadMaxAlive);
120  }
121  tctx->status = ThreadStatusCreated;
122  tctx->thr = 0;
123  tctx->user_id = uid;
124  tctx->unique_id = ctx->unique_thread_seq++;
125  tctx->detached = detached;
126  if (tid) {
127    thr->fast_state.IncrementEpoch();
128    // Can't increment epoch w/o writing to the trace as well.
129    TraceAddEvent(thr, thr->fast_state.epoch(), EventTypeMop, 0);
130    thr->clock.set(thr->tid, thr->fast_state.epoch());
131    thr->fast_synch_epoch = thr->fast_state.epoch();
132    thr->clock.release(&tctx->sync);
133    StatInc(thr, StatSyncRelease);
134
135    tctx->creation_stack.ObtainCurrent(thr, pc);
136  }
137  return tid;
138}
139
140void ThreadStart(ThreadState *thr, int tid, uptr os_id) {
141  CHECK_GT(thr->in_rtl, 0);
142  uptr stk_addr = 0;
143  uptr stk_size = 0;
144  uptr tls_addr = 0;
145  uptr tls_size = 0;
146  GetThreadStackAndTls(tid == 0, &stk_addr, &stk_size, &tls_addr, &tls_size);
147
148  if (tid) {
149    if (stk_addr && stk_size) {
150      MemoryResetRange(thr, /*pc=*/ 1, stk_addr, stk_size);
151    }
152
153    if (tls_addr && tls_size) {
154      // Check that the thr object is in tls;
155      const uptr thr_beg = (uptr)thr;
156      const uptr thr_end = (uptr)thr + sizeof(*thr);
157      CHECK_GE(thr_beg, tls_addr);
158      CHECK_LE(thr_beg, tls_addr + tls_size);
159      CHECK_GE(thr_end, tls_addr);
160      CHECK_LE(thr_end, tls_addr + tls_size);
161      // Since the thr object is huge, skip it.
162      MemoryResetRange(thr, /*pc=*/ 2, tls_addr, thr_beg - tls_addr);
163      MemoryResetRange(thr, /*pc=*/ 2, thr_end, tls_addr + tls_size - thr_end);
164    }
165  }
166
167  Lock l(&CTX()->thread_mtx);
168  ThreadContext *tctx = CTX()->threads[tid];
169  CHECK_NE(tctx, 0);
170  CHECK_EQ(tctx->status, ThreadStatusCreated);
171  tctx->status = ThreadStatusRunning;
172  tctx->os_id = os_id;
173  tctx->epoch0 = tctx->epoch1 + 1;
174  tctx->epoch1 = (u64)-1;
175  new(thr) ThreadState(CTX(), tid, tctx->unique_id,
176      tctx->epoch0, stk_addr, stk_size,
177      tls_addr, tls_size);
178#ifdef TSAN_GO
179  // Setup dynamic shadow stack.
180  const int kInitStackSize = 8;
181  thr->shadow_stack = (uptr*)internal_alloc(MBlockShadowStack,
182      kInitStackSize * sizeof(uptr));
183  thr->shadow_stack_pos = thr->shadow_stack;
184  thr->shadow_stack_end = thr->shadow_stack + kInitStackSize;
185#endif
186  tctx->thr = thr;
187  thr->fast_synch_epoch = tctx->epoch0;
188  thr->clock.set(tid, tctx->epoch0);
189  thr->clock.acquire(&tctx->sync);
190  StatInc(thr, StatSyncAcquire);
191  DPrintf("#%d: ThreadStart epoch=%zu stk_addr=%zx stk_size=%zx "
192          "tls_addr=%zx tls_size=%zx\n",
193          tid, (uptr)tctx->epoch0, stk_addr, stk_size, tls_addr, tls_size);
194  thr->is_alive = true;
195}
196
197void ThreadFinish(ThreadState *thr) {
198  CHECK_GT(thr->in_rtl, 0);
199  StatInc(thr, StatThreadFinish);
200  // FIXME: Treat it as write.
201  if (thr->stk_addr && thr->stk_size)
202    MemoryResetRange(thr, /*pc=*/ 3, thr->stk_addr, thr->stk_size);
203  if (thr->tls_addr && thr->tls_size) {
204    const uptr thr_beg = (uptr)thr;
205    const uptr thr_end = (uptr)thr + sizeof(*thr);
206    // Since the thr object is huge, skip it.
207    MemoryResetRange(thr, /*pc=*/ 4, thr->tls_addr, thr_beg - thr->tls_addr);
208    MemoryResetRange(thr, /*pc=*/ 5,
209        thr_end, thr->tls_addr + thr->tls_size - thr_end);
210  }
211  thr->is_alive = false;
212  Context *ctx = CTX();
213  Lock l(&ctx->thread_mtx);
214  ThreadContext *tctx = ctx->threads[thr->tid];
215  CHECK_NE(tctx, 0);
216  CHECK_EQ(tctx->status, ThreadStatusRunning);
217  CHECK_GT(ctx->alive_threads, 0);
218  ctx->alive_threads--;
219  if (tctx->detached) {
220    ThreadDead(thr, tctx);
221  } else {
222    thr->fast_state.IncrementEpoch();
223    // Can't increment epoch w/o writing to the trace as well.
224    TraceAddEvent(thr, thr->fast_state.epoch(), EventTypeMop, 0);
225    thr->clock.set(thr->tid, thr->fast_state.epoch());
226    thr->fast_synch_epoch = thr->fast_state.epoch();
227    thr->clock.release(&tctx->sync);
228    StatInc(thr, StatSyncRelease);
229    tctx->status = ThreadStatusFinished;
230  }
231
232  // Save from info about the thread.
233  tctx->dead_info = new(internal_alloc(MBlockDeadInfo, sizeof(ThreadDeadInfo)))
234      ThreadDeadInfo();
235  internal_memcpy(&tctx->dead_info->trace.events[0],
236      &thr->trace.events[0], sizeof(thr->trace.events));
237  for (int i = 0; i < kTraceParts; i++) {
238    tctx->dead_info->trace.headers[i].stack0.CopyFrom(
239        thr->trace.headers[i].stack0);
240  }
241  tctx->epoch1 = thr->fast_state.epoch();
242
243#ifndef TSAN_GO
244  AlloctorThreadFinish(thr);
245#endif
246  thr->~ThreadState();
247  StatAggregate(ctx->stat, thr->stat);
248  tctx->thr = 0;
249}
250
251int ThreadTid(ThreadState *thr, uptr pc, uptr uid) {
252  CHECK_GT(thr->in_rtl, 0);
253  Context *ctx = CTX();
254  Lock l(&ctx->thread_mtx);
255  int res = -1;
256  for (unsigned tid = 0; tid < kMaxTid; tid++) {
257    ThreadContext *tctx = ctx->threads[tid];
258    if (tctx != 0 && tctx->user_id == uid
259        && tctx->status != ThreadStatusInvalid) {
260      tctx->user_id = 0;
261      res = tid;
262      break;
263    }
264  }
265  DPrintf("#%d: ThreadTid uid=%zu tid=%d\n", thr->tid, uid, res);
266  return res;
267}
268
269void ThreadJoin(ThreadState *thr, uptr pc, int tid) {
270  CHECK_GT(thr->in_rtl, 0);
271  CHECK_GT(tid, 0);
272  CHECK_LT(tid, kMaxTid);
273  DPrintf("#%d: ThreadJoin tid=%d\n", thr->tid, tid);
274  Context *ctx = CTX();
275  Lock l(&ctx->thread_mtx);
276  ThreadContext *tctx = ctx->threads[tid];
277  if (tctx->status == ThreadStatusInvalid) {
278    TsanPrintf("ThreadSanitizer: join of non-existent thread\n");
279    return;
280  }
281  CHECK_EQ(tctx->detached, false);
282  CHECK_EQ(tctx->status, ThreadStatusFinished);
283  thr->clock.acquire(&tctx->sync);
284  StatInc(thr, StatSyncAcquire);
285  ThreadDead(thr, tctx);
286}
287
288void ThreadDetach(ThreadState *thr, uptr pc, int tid) {
289  CHECK_GT(thr->in_rtl, 0);
290  CHECK_GT(tid, 0);
291  CHECK_LT(tid, kMaxTid);
292  Context *ctx = CTX();
293  Lock l(&ctx->thread_mtx);
294  ThreadContext *tctx = ctx->threads[tid];
295  if (tctx->status == ThreadStatusInvalid) {
296    TsanPrintf("ThreadSanitizer: detach of non-existent thread\n");
297    return;
298  }
299  if (tctx->status == ThreadStatusFinished) {
300    ThreadDead(thr, tctx);
301  } else {
302    tctx->detached = true;
303  }
304}
305
306void ThreadFinalizerGoroutine(ThreadState *thr) {
307  thr->clock.Disable(thr->tid);
308}
309
310void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr,
311                       uptr size, bool is_write) {
312  if (size == 0)
313    return;
314
315  u64 *shadow_mem = (u64*)MemToShadow(addr);
316  DPrintf2("#%d: MemoryAccessRange: @%p %p size=%d is_write=%d\n",
317      thr->tid, (void*)pc, (void*)addr,
318      (int)size, is_write);
319
320#if TSAN_DEBUG
321  if (!IsAppMem(addr)) {
322    TsanPrintf("Access to non app mem %zx\n", addr);
323    DCHECK(IsAppMem(addr));
324  }
325  if (!IsAppMem(addr + size - 1)) {
326    TsanPrintf("Access to non app mem %zx\n", addr + size - 1);
327    DCHECK(IsAppMem(addr + size - 1));
328  }
329  if (!IsShadowMem((uptr)shadow_mem)) {
330    TsanPrintf("Bad shadow addr %p (%zx)\n", shadow_mem, addr);
331    DCHECK(IsShadowMem((uptr)shadow_mem));
332  }
333  if (!IsShadowMem((uptr)(shadow_mem + size * kShadowCnt / 8 - 1))) {
334    TsanPrintf("Bad shadow addr %p (%zx)\n",
335               shadow_mem + size * kShadowCnt / 8 - 1, addr + size - 1);
336    DCHECK(IsShadowMem((uptr)(shadow_mem + size * kShadowCnt / 8 - 1)));
337  }
338#endif
339
340  StatInc(thr, StatMopRange);
341
342  FastState fast_state = thr->fast_state;
343  if (fast_state.GetIgnoreBit())
344    return;
345
346  fast_state.IncrementEpoch();
347  thr->fast_state = fast_state;
348  TraceAddEvent(thr, fast_state.epoch(), EventTypeMop, pc);
349
350  bool unaligned = (addr % kShadowCell) != 0;
351
352  // Handle unaligned beginning, if any.
353  for (; addr % kShadowCell && size; addr++, size--) {
354    int const kAccessSizeLog = 0;
355    Shadow cur(fast_state);
356    cur.SetWrite(is_write);
357    cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog);
358    MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, fast_state,
359        shadow_mem, cur);
360  }
361  if (unaligned)
362    shadow_mem += kShadowCnt;
363  // Handle middle part, if any.
364  for (; size >= kShadowCell; addr += kShadowCell, size -= kShadowCell) {
365    int const kAccessSizeLog = 3;
366    Shadow cur(fast_state);
367    cur.SetWrite(is_write);
368    cur.SetAddr0AndSizeLog(0, kAccessSizeLog);
369    MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, fast_state,
370        shadow_mem, cur);
371    shadow_mem += kShadowCnt;
372  }
373  // Handle ending, if any.
374  for (; size; addr++, size--) {
375    int const kAccessSizeLog = 0;
376    Shadow cur(fast_state);
377    cur.SetWrite(is_write);
378    cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog);
379    MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, fast_state,
380        shadow_mem, cur);
381  }
382}
383
384void MemoryRead1Byte(ThreadState *thr, uptr pc, uptr addr) {
385  MemoryAccess(thr, pc, addr, 0, 0);
386}
387
388void MemoryWrite1Byte(ThreadState *thr, uptr pc, uptr addr) {
389  MemoryAccess(thr, pc, addr, 0, 1);
390}
391
392void MemoryRead8Byte(ThreadState *thr, uptr pc, uptr addr) {
393  MemoryAccess(thr, pc, addr, 3, 0);
394}
395
396void MemoryWrite8Byte(ThreadState *thr, uptr pc, uptr addr) {
397  MemoryAccess(thr, pc, addr, 3, 1);
398}
399}  // namespace __tsan
400