benchmark_api.h revision 31e71be77c0f45400628cf618c0360d544a522c5
1// Support for registering benchmarks for functions. 2 3/* Example usage: 4// Define a function that executes the code to be measured a 5// specified number of times: 6static void BM_StringCreation(benchmark::State& state) { 7 while (state.KeepRunning()) 8 std::string empty_string; 9} 10 11// Register the function as a benchmark 12BENCHMARK(BM_StringCreation); 13 14// Define another benchmark 15static void BM_StringCopy(benchmark::State& state) { 16 std::string x = "hello"; 17 while (state.KeepRunning()) 18 std::string copy(x); 19} 20BENCHMARK(BM_StringCopy); 21 22// Augment the main() program to invoke benchmarks if specified 23// via the --benchmarks command line flag. E.g., 24// my_unittest --benchmark_filter=all 25// my_unittest --benchmark_filter=BM_StringCreation 26// my_unittest --benchmark_filter=String 27// my_unittest --benchmark_filter='Copy|Creation' 28int main(int argc, char** argv) { 29 benchmark::Initialize(&argc, argv); 30 benchmark::RunSpecifiedBenchmarks(); 31 return 0; 32} 33 34// Sometimes a family of microbenchmarks can be implemented with 35// just one routine that takes an extra argument to specify which 36// one of the family of benchmarks to run. For example, the following 37// code defines a family of microbenchmarks for measuring the speed 38// of memcpy() calls of different lengths: 39 40static void BM_memcpy(benchmark::State& state) { 41 char* src = new char[state.range_x()]; char* dst = new char[state.range_x()]; 42 memset(src, 'x', state.range_x()); 43 while (state.KeepRunning()) 44 memcpy(dst, src, state.range_x()); 45 state.SetBytesProcessed(int64_t(state.iterations()) * 46 int64_t(state.range_x())); 47 delete[] src; delete[] dst; 48} 49BENCHMARK(BM_memcpy)->Arg(8)->Arg(64)->Arg(512)->Arg(1<<10)->Arg(8<<10); 50 51// The preceding code is quite repetitive, and can be replaced with the 52// following short-hand. The following invocation will pick a few 53// appropriate arguments in the specified range and will generate a 54// microbenchmark for each such argument. 55BENCHMARK(BM_memcpy)->Range(8, 8<<10); 56 57// You might have a microbenchmark that depends on two inputs. For 58// example, the following code defines a family of microbenchmarks for 59// measuring the speed of set insertion. 60static void BM_SetInsert(benchmark::State& state) { 61 while (state.KeepRunning()) { 62 state.PauseTiming(); 63 set<int> data = ConstructRandomSet(state.range_x()); 64 state.ResumeTiming(); 65 for (int j = 0; j < state.range_y(); ++j) 66 data.insert(RandomNumber()); 67 } 68} 69BENCHMARK(BM_SetInsert) 70 ->ArgPair(1<<10, 1) 71 ->ArgPair(1<<10, 8) 72 ->ArgPair(1<<10, 64) 73 ->ArgPair(1<<10, 512) 74 ->ArgPair(8<<10, 1) 75 ->ArgPair(8<<10, 8) 76 ->ArgPair(8<<10, 64) 77 ->ArgPair(8<<10, 512); 78 79// The preceding code is quite repetitive, and can be replaced with 80// the following short-hand. The following macro will pick a few 81// appropriate arguments in the product of the two specified ranges 82// and will generate a microbenchmark for each such pair. 83BENCHMARK(BM_SetInsert)->RangePair(1<<10, 8<<10, 1, 512); 84 85// For more complex patterns of inputs, passing a custom function 86// to Apply allows programmatic specification of an 87// arbitrary set of arguments to run the microbenchmark on. 88// The following example enumerates a dense range on 89// one parameter, and a sparse range on the second. 90static void CustomArguments(benchmark::internal::Benchmark* b) { 91 for (int i = 0; i <= 10; ++i) 92 for (int j = 32; j <= 1024*1024; j *= 8) 93 b->ArgPair(i, j); 94} 95BENCHMARK(BM_SetInsert)->Apply(CustomArguments); 96 97// Templated microbenchmarks work the same way: 98// Produce then consume 'size' messages 'iters' times 99// Measures throughput in the absence of multiprogramming. 100template <class Q> int BM_Sequential(benchmark::State& state) { 101 Q q; 102 typename Q::value_type v; 103 while (state.KeepRunning()) { 104 for (int i = state.range_x(); i--; ) 105 q.push(v); 106 for (int e = state.range_x(); e--; ) 107 q.Wait(&v); 108 } 109 // actually messages, not bytes: 110 state.SetBytesProcessed( 111 static_cast<int64_t>(state.iterations())*state.range_x()); 112} 113BENCHMARK_TEMPLATE(BM_Sequential, WaitQueue<int>)->Range(1<<0, 1<<10); 114 115Use `Benchmark::MinTime(double t)` to set the minimum time used to run the 116benchmark. This option overrides the `benchmark_min_time` flag. 117 118void BM_test(benchmark::State& state) { 119 ... body ... 120} 121BENCHMARK(BM_test)->MinTime(2.0); // Run for at least 2 seconds. 122 123In a multithreaded test, it is guaranteed that none of the threads will start 124until all have called KeepRunning, and all will have finished before KeepRunning 125returns false. As such, any global setup or teardown you want to do can be 126wrapped in a check against the thread index: 127 128static void BM_MultiThreaded(benchmark::State& state) { 129 if (state.thread_index == 0) { 130 // Setup code here. 131 } 132 while (state.KeepRunning()) { 133 // Run the test as normal. 134 } 135 if (state.thread_index == 0) { 136 // Teardown code here. 137 } 138} 139BENCHMARK(BM_MultiThreaded)->Threads(4); 140*/ 141 142#ifndef BENCHMARK_BENCHMARK_API_H_ 143#define BENCHMARK_BENCHMARK_API_H_ 144 145#include <assert.h> 146#include <stddef.h> 147#include <stdint.h> 148 149#include "macros.h" 150 151namespace benchmark { 152class BenchmarkReporter; 153 154void Initialize(int* argc, char** argv); 155 156// Otherwise, run all benchmarks specified by the --benchmark_filter flag, 157// and exit after running the benchmarks. 158void RunSpecifiedBenchmarks(); 159void RunSpecifiedBenchmarks(BenchmarkReporter* reporter); 160 161// If this routine is called, peak memory allocation past this point in the 162// benchmark is reported at the end of the benchmark report line. (It is 163// computed by running the benchmark once with a single iteration and a memory 164// tracer.) 165// TODO(dominic) 166// void MemoryUsage(); 167 168namespace internal { 169class Benchmark; 170class BenchmarkImp; 171class BenchmarkFamilies; 172 173template <class T> struct Voider { 174 typedef void type; 175}; 176 177template <class T, class = void> 178struct EnableIfString {}; 179 180template <class T> 181struct EnableIfString<T, typename Voider<typename T::basic_string>::type> { 182 typedef int type; 183}; 184 185void UseCharPointer(char const volatile*); 186 187// Take ownership of the pointer and register the benchmark. Return the 188// registered benchmark. 189Benchmark* RegisterBenchmarkInternal(Benchmark*); 190 191} // end namespace internal 192 193 194// The DoNotOptimize(...) function can be used to prevent a value or 195// expression from being optimized away by the compiler. This function is 196// intented to add little to no overhead. 197// See: http://stackoverflow.com/questions/28287064 198#if defined(__clang__) && defined(__GNUC__) 199// TODO(ericwf): Clang has a bug where it tries to always use a register 200// even if value must be stored in memory. This causes codegen to fail. 201// To work around this we remove the "r" modifier so the operand is always 202// loaded into memory. 203template <class Tp> 204inline BENCHMARK_ALWAYS_INLINE void DoNotOptimize(Tp const& value) { 205 asm volatile("" : "+m" (const_cast<Tp&>(value))); 206} 207#elif defined(__GNUC__) 208template <class Tp> 209inline BENCHMARK_ALWAYS_INLINE void DoNotOptimize(Tp const& value) { 210 asm volatile("" : "+rm" (const_cast<Tp&>(value))); 211} 212#else 213template <class Tp> 214inline BENCHMARK_ALWAYS_INLINE void DoNotOptimize(Tp const& value) { 215 internal::UseCharPointer(&reinterpret_cast<char const volatile&>(value)); 216} 217#endif 218 219 220// State is passed to a running Benchmark and contains state for the 221// benchmark to use. 222class State { 223public: 224 State(size_t max_iters, bool has_x, int x, bool has_y, int y, int thread_i, int n_threads); 225 226 // Returns true iff the benchmark should continue through another iteration. 227 // NOTE: A benchmark may not return from the test until KeepRunning() has 228 // returned false. 229 bool KeepRunning() { 230 if (BENCHMARK_BUILTIN_EXPECT(!started_, false)) { 231 ResumeTiming(); 232 started_ = true; 233 } 234 bool const res = total_iterations_++ < max_iterations; 235 if (BENCHMARK_BUILTIN_EXPECT(!res, false)) { 236 assert(started_); 237 PauseTiming(); 238 // Total iterations now is one greater than max iterations. Fix this. 239 total_iterations_ = max_iterations; 240 } 241 return res; 242 } 243 244 // REQUIRES: timer is running 245 // Stop the benchmark timer. If not called, the timer will be 246 // automatically stopped after KeepRunning() returns false for the first time. 247 // 248 // For threaded benchmarks the PauseTiming() function acts 249 // like a barrier. I.e., the ith call by a particular thread to this 250 // function will block until all threads have made their ith call. 251 // The timer will stop when the last thread has called this function. 252 // 253 // NOTE: PauseTiming()/ResumeTiming() are relatively 254 // heavyweight, and so their use should generally be avoided 255 // within each benchmark iteration, if possible. 256 void PauseTiming(); 257 258 // REQUIRES: timer is not running 259 // Start the benchmark timer. The timer is NOT running on entrance to the 260 // benchmark function. It begins running after the first call to KeepRunning() 261 // 262 // For threaded benchmarks the ResumeTiming() function acts 263 // like a barrier. I.e., the ith call by a particular thread to this 264 // function will block until all threads have made their ith call. 265 // The timer will start when the last thread has called this function. 266 // 267 // NOTE: PauseTiming()/ResumeTiming() are relatively 268 // heavyweight, and so their use should generally be avoided 269 // within each benchmark iteration, if possible. 270 void ResumeTiming(); 271 272 // Set the number of bytes processed by the current benchmark 273 // execution. This routine is typically called once at the end of a 274 // throughput oriented benchmark. If this routine is called with a 275 // value > 0, the report is printed in MB/sec instead of nanoseconds 276 // per iteration. 277 // 278 // REQUIRES: a benchmark has exited its KeepRunning loop. 279 BENCHMARK_ALWAYS_INLINE 280 void SetBytesProcessed(size_t bytes) { 281 bytes_processed_ = bytes; 282 } 283 284 BENCHMARK_ALWAYS_INLINE 285 size_t bytes_processed() const { 286 return bytes_processed_; 287 } 288 289 // If this routine is called with items > 0, then an items/s 290 // label is printed on the benchmark report line for the currently 291 // executing benchmark. It is typically called at the end of a processing 292 // benchmark where a processing items/second output is desired. 293 // 294 // REQUIRES: a benchmark has exited its KeepRunning loop. 295 BENCHMARK_ALWAYS_INLINE 296 void SetItemsProcessed(size_t items) { 297 items_processed_ = items; 298 } 299 300 BENCHMARK_ALWAYS_INLINE 301 size_t items_processed() const { 302 return items_processed_; 303 } 304 305 // If this routine is called, the specified label is printed at the 306 // end of the benchmark report line for the currently executing 307 // benchmark. Example: 308 // static void BM_Compress(int iters) { 309 // ... 310 // double compress = input_size / output_size; 311 // benchmark::SetLabel(StringPrintf("compress:%.1f%%", 100.0*compression)); 312 // } 313 // Produces output that looks like: 314 // BM_Compress 50 50 14115038 compress:27.3% 315 // 316 // REQUIRES: a benchmark has exited its KeepRunning loop. 317 void SetLabel(const char* label); 318 319 // Allow the use of std::string without actually including <string>. 320 // This function does not participate in overload resolution unless StringType 321 // has the nested typename `basic_string`. This typename should be provided 322 // as an injected class name in the case of std::string. 323 template <class StringType> 324 void SetLabel(StringType const & str, 325 typename internal::EnableIfString<StringType>::type = 1) { 326 this->SetLabel(str.c_str()); 327 } 328 329 // Range arguments for this run. CHECKs if the argument has been set. 330 BENCHMARK_ALWAYS_INLINE 331 int range_x() const { 332 assert(has_range_x_); 333 ((void)has_range_x_); // Prevent unused warning. 334 return range_x_; 335 } 336 337 BENCHMARK_ALWAYS_INLINE 338 int range_y() const { 339 assert(has_range_y_); 340 ((void)has_range_y_); // Prevent unused warning. 341 return range_y_; 342 } 343 344 BENCHMARK_ALWAYS_INLINE 345 size_t iterations() const { return total_iterations_; } 346 347private: 348 bool started_; 349 size_t total_iterations_; 350 351 bool has_range_x_; 352 int range_x_; 353 354 bool has_range_y_; 355 int range_y_; 356 357 size_t bytes_processed_; 358 size_t items_processed_; 359 360public: 361 // Index of the executing thread. Values from [0, threads). 362 const int thread_index; 363 // Number of threads concurrently executing the benchmark. 364 const int threads; 365 const size_t max_iterations; 366 367private: 368 BENCHMARK_DISALLOW_COPY_AND_ASSIGN(State); 369}; 370 371namespace internal { 372 373typedef void(Function)(State&); 374 375// ------------------------------------------------------ 376// Benchmark registration object. The BENCHMARK() macro expands 377// into an internal::Benchmark* object. Various methods can 378// be called on this object to change the properties of the benchmark. 379// Each method returns "this" so that multiple method calls can 380// chained into one expression. 381class Benchmark { 382public: 383 virtual ~Benchmark(); 384 385 // Note: the following methods all return "this" so that multiple 386 // method calls can be chained together in one expression. 387 388 // Run this benchmark once with "x" as the extra argument passed 389 // to the function. 390 // REQUIRES: The function passed to the constructor must accept an arg1. 391 Benchmark* Arg(int x); 392 393 // Run this benchmark once for a number of values picked from the 394 // range [start..limit]. (start and limit are always picked.) 395 // REQUIRES: The function passed to the constructor must accept an arg1. 396 Benchmark* Range(int start, int limit); 397 398 // Run this benchmark once for every value in the range [start..limit] 399 // REQUIRES: The function passed to the constructor must accept an arg1. 400 Benchmark* DenseRange(int start, int limit); 401 402 // Run this benchmark once with "x,y" as the extra arguments passed 403 // to the function. 404 // REQUIRES: The function passed to the constructor must accept arg1,arg2. 405 Benchmark* ArgPair(int x, int y); 406 407 // Pick a set of values A from the range [lo1..hi1] and a set 408 // of values B from the range [lo2..hi2]. Run the benchmark for 409 // every pair of values in the cartesian product of A and B 410 // (i.e., for all combinations of the values in A and B). 411 // REQUIRES: The function passed to the constructor must accept arg1,arg2. 412 Benchmark* RangePair(int lo1, int hi1, int lo2, int hi2); 413 414 // Pass this benchmark object to *func, which can customize 415 // the benchmark by calling various methods like Arg, ArgPair, 416 // Threads, etc. 417 Benchmark* Apply(void (*func)(Benchmark* benchmark)); 418 419 // Set the minimum amount of time to use when running this benchmark. This 420 // option overrides the `benchmark_min_time` flag. 421 Benchmark* MinTime(double t); 422 423 // If a particular benchmark is I/O bound, runs multiple threads internally or 424 // if for some reason CPU timings are not representative, call this method. If 425 // called, the elapsed time will be used to control how many iterations are 426 // run, and in the printing of items/second or MB/seconds values. If not 427 // called, the cpu time used by the benchmark will be used. 428 Benchmark* UseRealTime(); 429 430 // Support for running multiple copies of the same benchmark concurrently 431 // in multiple threads. This may be useful when measuring the scaling 432 // of some piece of code. 433 434 // Run one instance of this benchmark concurrently in t threads. 435 Benchmark* Threads(int t); 436 437 // Pick a set of values T from [min_threads,max_threads]. 438 // min_threads and max_threads are always included in T. Run this 439 // benchmark once for each value in T. The benchmark run for a 440 // particular value t consists of t threads running the benchmark 441 // function concurrently. For example, consider: 442 // BENCHMARK(Foo)->ThreadRange(1,16); 443 // This will run the following benchmarks: 444 // Foo in 1 thread 445 // Foo in 2 threads 446 // Foo in 4 threads 447 // Foo in 8 threads 448 // Foo in 16 threads 449 Benchmark* ThreadRange(int min_threads, int max_threads); 450 451 // Equivalent to ThreadRange(NumCPUs(), NumCPUs()) 452 Benchmark* ThreadPerCpu(); 453 454 virtual void Run(State& state) = 0; 455 456 // Used inside the benchmark implementation 457 struct Instance; 458 459protected: 460 explicit Benchmark(const char* name); 461 Benchmark(Benchmark const&); 462 void SetName(const char* name); 463 464private: 465 friend class BenchmarkFamilies; 466 BenchmarkImp* imp_; 467 468 Benchmark& operator=(Benchmark const&); 469}; 470 471// The class used to hold all Benchmarks created from static function. 472// (ie those created using the BENCHMARK(...) macros. 473class FunctionBenchmark : public Benchmark { 474public: 475 FunctionBenchmark(const char* name, Function* func) 476 : Benchmark(name), func_(func) 477 {} 478 479 virtual void Run(State& st); 480private: 481 Function* func_; 482}; 483 484} // end namespace internal 485 486// The base class for all fixture tests. 487class Fixture: public internal::Benchmark { 488public: 489 Fixture() : internal::Benchmark("") {} 490 491 virtual void Run(State& st) { 492 this->SetUp(st); 493 this->BenchmarkCase(st); 494 this->TearDown(); 495 } 496 497 virtual void SetUp(const State&) {} 498 virtual void TearDown() {} 499 500protected: 501 virtual void BenchmarkCase(State&) = 0; 502}; 503 504} // end namespace benchmark 505 506 507// ------------------------------------------------------ 508// Macro to register benchmarks 509 510// Check that __COUNTER__ is defined and that __COUNTER__ increases by 1 511// every time it is expanded. X + 1 == X + 0 is used in case X is defined to be 512// empty. If X is empty the expression becomes (+1 == +0). 513#if defined(__COUNTER__) && (__COUNTER__ + 1 == __COUNTER__ + 0) 514#define BENCHMARK_PRIVATE_UNIQUE_ID __COUNTER__ 515#else 516#define BENCHMARK_PRIVATE_UNIQUE_ID __LINE__ 517#endif 518 519// Helpers for generating unique variable names 520#define BENCHMARK_PRIVATE_NAME(n) \ 521 BENCHMARK_PRIVATE_CONCAT(_benchmark_, BENCHMARK_PRIVATE_UNIQUE_ID, n) 522#define BENCHMARK_PRIVATE_CONCAT(a, b, c) BENCHMARK_PRIVATE_CONCAT2(a, b, c) 523#define BENCHMARK_PRIVATE_CONCAT2(a, b, c) a##b##c 524 525#define BENCHMARK_PRIVATE_DECLARE(n) \ 526 static ::benchmark::internal::Benchmark* \ 527 BENCHMARK_PRIVATE_NAME(n) BENCHMARK_UNUSED 528 529#define BENCHMARK(n) \ 530 BENCHMARK_PRIVATE_DECLARE(n) = \ 531 (::benchmark::internal::RegisterBenchmarkInternal( \ 532 new ::benchmark::internal::FunctionBenchmark(#n, n))) 533 534// Old-style macros 535#define BENCHMARK_WITH_ARG(n, a) BENCHMARK(n)->Arg((a)) 536#define BENCHMARK_WITH_ARG2(n, a1, a2) BENCHMARK(n)->ArgPair((a1), (a2)) 537#define BENCHMARK_RANGE(n, lo, hi) BENCHMARK(n)->Range((lo), (hi)) 538#define BENCHMARK_RANGE2(n, l1, h1, l2, h2) \ 539 BENCHMARK(n)->RangePair((l1), (h1), (l2), (h2)) 540 541// This will register a benchmark for a templatized function. For example: 542// 543// template<int arg> 544// void BM_Foo(int iters); 545// 546// BENCHMARK_TEMPLATE(BM_Foo, 1); 547// 548// will register BM_Foo<1> as a benchmark. 549#define BENCHMARK_TEMPLATE1(n, a) \ 550 BENCHMARK_PRIVATE_DECLARE(n) = \ 551 (::benchmark::internal::RegisterBenchmarkInternal( \ 552 new ::benchmark::internal::FunctionBenchmark(#n "<" #a ">", n<a>))) 553 554#define BENCHMARK_TEMPLATE2(n, a, b) \ 555 BENCHMARK_PRIVATE_DECLARE(n) = \ 556 (::benchmark::internal::RegisterBenchmarkInternal( \ 557 new ::benchmark::internal::FunctionBenchmark( \ 558 #n "<" #a "," #b ">", n<a, b>))) 559 560#if __cplusplus >= 201103L 561#define BENCHMARK_TEMPLATE(n, ...) \ 562 BENCHMARK_PRIVATE_DECLARE(n) = \ 563 (::benchmark::internal::RegisterBenchmarkInternal( \ 564 new ::benchmark::internal::FunctionBenchmark( \ 565 #n "<" #__VA_ARGS__ ">", n<__VA_ARGS__>))) 566#else 567#define BENCHMARK_TEMPLATE(n, a) BENCHMARK_TEMPLATE1(n, a) 568#endif 569 570 571#define BENCHMARK_PRIVATE_DECLARE_F(BaseClass, Method) \ 572class BaseClass##_##Method##_Benchmark : public BaseClass { \ 573public: \ 574 BaseClass##_##Method##_Benchmark() : BaseClass() { \ 575 this->SetName(#BaseClass "/" #Method);} \ 576protected: \ 577 virtual void BenchmarkCase(::benchmark::State&); \ 578}; 579 580#define BENCHMARK_DEFINE_F(BaseClass, Method) \ 581 BENCHMARK_PRIVATE_DECLARE_F(BaseClass, Method) \ 582 void BaseClass##_##Method##_Benchmark::BenchmarkCase 583 584#define BENCHMARK_REGISTER_F(BaseClass, Method) \ 585 BENCHMARK_PRIVATE_REGISTER_F(BaseClass##_##Method##_Benchmark) 586 587#define BENCHMARK_PRIVATE_REGISTER_F(TestName) \ 588 BENCHMARK_PRIVATE_DECLARE(TestName) = \ 589 (::benchmark::internal::RegisterBenchmarkInternal(new TestName())) 590 591// This macro will define and register a benchmark within a fixture class. 592#define BENCHMARK_F(BaseClass, Method) \ 593 BENCHMARK_PRIVATE_DECLARE_F(BaseClass, Method) \ 594 BENCHMARK_REGISTER_F(BaseClass, Method); \ 595 void BaseClass##_##Method##_Benchmark::BenchmarkCase 596 597 598// Helper macro to create a main routine in a test that runs the benchmarks 599#define BENCHMARK_MAIN() \ 600 int main(int argc, char** argv) { \ 601 ::benchmark::Initialize(&argc, argv); \ 602 ::benchmark::RunSpecifiedBenchmarks(); \ 603 } 604 605#endif // BENCHMARK_BENCHMARK_API_H_ 606