benchmark_api.h revision 31e71be77c0f45400628cf618c0360d544a522c5
1// Support for registering benchmarks for functions.
2
3/* Example usage:
4// Define a function that executes the code to be measured a
5// specified number of times:
6static void BM_StringCreation(benchmark::State& state) {
7  while (state.KeepRunning())
8    std::string empty_string;
9}
10
11// Register the function as a benchmark
12BENCHMARK(BM_StringCreation);
13
14// Define another benchmark
15static void BM_StringCopy(benchmark::State& state) {
16  std::string x = "hello";
17  while (state.KeepRunning())
18    std::string copy(x);
19}
20BENCHMARK(BM_StringCopy);
21
22// Augment the main() program to invoke benchmarks if specified
23// via the --benchmarks command line flag.  E.g.,
24//       my_unittest --benchmark_filter=all
25//       my_unittest --benchmark_filter=BM_StringCreation
26//       my_unittest --benchmark_filter=String
27//       my_unittest --benchmark_filter='Copy|Creation'
28int main(int argc, char** argv) {
29  benchmark::Initialize(&argc, argv);
30  benchmark::RunSpecifiedBenchmarks();
31  return 0;
32}
33
34// Sometimes a family of microbenchmarks can be implemented with
35// just one routine that takes an extra argument to specify which
36// one of the family of benchmarks to run.  For example, the following
37// code defines a family of microbenchmarks for measuring the speed
38// of memcpy() calls of different lengths:
39
40static void BM_memcpy(benchmark::State& state) {
41  char* src = new char[state.range_x()]; char* dst = new char[state.range_x()];
42  memset(src, 'x', state.range_x());
43  while (state.KeepRunning())
44    memcpy(dst, src, state.range_x());
45  state.SetBytesProcessed(int64_t(state.iterations()) *
46                          int64_t(state.range_x()));
47  delete[] src; delete[] dst;
48}
49BENCHMARK(BM_memcpy)->Arg(8)->Arg(64)->Arg(512)->Arg(1<<10)->Arg(8<<10);
50
51// The preceding code is quite repetitive, and can be replaced with the
52// following short-hand.  The following invocation will pick a few
53// appropriate arguments in the specified range and will generate a
54// microbenchmark for each such argument.
55BENCHMARK(BM_memcpy)->Range(8, 8<<10);
56
57// You might have a microbenchmark that depends on two inputs.  For
58// example, the following code defines a family of microbenchmarks for
59// measuring the speed of set insertion.
60static void BM_SetInsert(benchmark::State& state) {
61  while (state.KeepRunning()) {
62    state.PauseTiming();
63    set<int> data = ConstructRandomSet(state.range_x());
64    state.ResumeTiming();
65    for (int j = 0; j < state.range_y(); ++j)
66      data.insert(RandomNumber());
67  }
68}
69BENCHMARK(BM_SetInsert)
70   ->ArgPair(1<<10, 1)
71   ->ArgPair(1<<10, 8)
72   ->ArgPair(1<<10, 64)
73   ->ArgPair(1<<10, 512)
74   ->ArgPair(8<<10, 1)
75   ->ArgPair(8<<10, 8)
76   ->ArgPair(8<<10, 64)
77   ->ArgPair(8<<10, 512);
78
79// The preceding code is quite repetitive, and can be replaced with
80// the following short-hand.  The following macro will pick a few
81// appropriate arguments in the product of the two specified ranges
82// and will generate a microbenchmark for each such pair.
83BENCHMARK(BM_SetInsert)->RangePair(1<<10, 8<<10, 1, 512);
84
85// For more complex patterns of inputs, passing a custom function
86// to Apply allows programmatic specification of an
87// arbitrary set of arguments to run the microbenchmark on.
88// The following example enumerates a dense range on
89// one parameter, and a sparse range on the second.
90static void CustomArguments(benchmark::internal::Benchmark* b) {
91  for (int i = 0; i <= 10; ++i)
92    for (int j = 32; j <= 1024*1024; j *= 8)
93      b->ArgPair(i, j);
94}
95BENCHMARK(BM_SetInsert)->Apply(CustomArguments);
96
97// Templated microbenchmarks work the same way:
98// Produce then consume 'size' messages 'iters' times
99// Measures throughput in the absence of multiprogramming.
100template <class Q> int BM_Sequential(benchmark::State& state) {
101  Q q;
102  typename Q::value_type v;
103  while (state.KeepRunning()) {
104    for (int i = state.range_x(); i--; )
105      q.push(v);
106    for (int e = state.range_x(); e--; )
107      q.Wait(&v);
108  }
109  // actually messages, not bytes:
110  state.SetBytesProcessed(
111      static_cast<int64_t>(state.iterations())*state.range_x());
112}
113BENCHMARK_TEMPLATE(BM_Sequential, WaitQueue<int>)->Range(1<<0, 1<<10);
114
115Use `Benchmark::MinTime(double t)` to set the minimum time used to run the
116benchmark. This option overrides the `benchmark_min_time` flag.
117
118void BM_test(benchmark::State& state) {
119 ... body ...
120}
121BENCHMARK(BM_test)->MinTime(2.0); // Run for at least 2 seconds.
122
123In a multithreaded test, it is guaranteed that none of the threads will start
124until all have called KeepRunning, and all will have finished before KeepRunning
125returns false. As such, any global setup or teardown you want to do can be
126wrapped in a check against the thread index:
127
128static void BM_MultiThreaded(benchmark::State& state) {
129  if (state.thread_index == 0) {
130    // Setup code here.
131  }
132  while (state.KeepRunning()) {
133    // Run the test as normal.
134  }
135  if (state.thread_index == 0) {
136    // Teardown code here.
137  }
138}
139BENCHMARK(BM_MultiThreaded)->Threads(4);
140*/
141
142#ifndef BENCHMARK_BENCHMARK_API_H_
143#define BENCHMARK_BENCHMARK_API_H_
144
145#include <assert.h>
146#include <stddef.h>
147#include <stdint.h>
148
149#include "macros.h"
150
151namespace benchmark {
152class BenchmarkReporter;
153
154void Initialize(int* argc, char** argv);
155
156// Otherwise, run all benchmarks specified by the --benchmark_filter flag,
157// and exit after running the benchmarks.
158void RunSpecifiedBenchmarks();
159void RunSpecifiedBenchmarks(BenchmarkReporter* reporter);
160
161// If this routine is called, peak memory allocation past this point in the
162// benchmark is reported at the end of the benchmark report line. (It is
163// computed by running the benchmark once with a single iteration and a memory
164// tracer.)
165// TODO(dominic)
166// void MemoryUsage();
167
168namespace internal {
169class Benchmark;
170class BenchmarkImp;
171class BenchmarkFamilies;
172
173template <class T> struct Voider {
174    typedef void type;
175};
176
177template <class T, class = void>
178struct EnableIfString {};
179
180template <class T>
181struct EnableIfString<T, typename Voider<typename T::basic_string>::type> {
182    typedef int type;
183};
184
185void UseCharPointer(char const volatile*);
186
187// Take ownership of the pointer and register the benchmark. Return the
188// registered benchmark.
189Benchmark* RegisterBenchmarkInternal(Benchmark*);
190
191} // end namespace internal
192
193
194// The DoNotOptimize(...) function can be used to prevent a value or
195// expression from being optimized away by the compiler. This function is
196// intented to add little to no overhead.
197// See: http://stackoverflow.com/questions/28287064
198#if defined(__clang__) && defined(__GNUC__)
199// TODO(ericwf): Clang has a bug where it tries to always use a register
200// even if value must be stored in memory. This causes codegen to fail.
201// To work around this we remove the "r" modifier so the operand is always
202// loaded into memory.
203template <class Tp>
204inline BENCHMARK_ALWAYS_INLINE void DoNotOptimize(Tp const& value) {
205    asm volatile("" : "+m" (const_cast<Tp&>(value)));
206}
207#elif defined(__GNUC__)
208template <class Tp>
209inline BENCHMARK_ALWAYS_INLINE void DoNotOptimize(Tp const& value) {
210    asm volatile("" : "+rm" (const_cast<Tp&>(value)));
211}
212#else
213template <class Tp>
214inline BENCHMARK_ALWAYS_INLINE void DoNotOptimize(Tp const& value) {
215    internal::UseCharPointer(&reinterpret_cast<char const volatile&>(value));
216}
217#endif
218
219
220// State is passed to a running Benchmark and contains state for the
221// benchmark to use.
222class State {
223public:
224  State(size_t max_iters, bool has_x, int x, bool has_y, int y, int thread_i, int n_threads);
225
226  // Returns true iff the benchmark should continue through another iteration.
227  // NOTE: A benchmark may not return from the test until KeepRunning() has
228  // returned false.
229  bool KeepRunning() {
230    if (BENCHMARK_BUILTIN_EXPECT(!started_, false)) {
231        ResumeTiming();
232        started_ = true;
233    }
234    bool const res = total_iterations_++ < max_iterations;
235    if (BENCHMARK_BUILTIN_EXPECT(!res, false)) {
236        assert(started_);
237        PauseTiming();
238        // Total iterations now is one greater than max iterations. Fix this.
239        total_iterations_ = max_iterations;
240    }
241    return res;
242  }
243
244  // REQUIRES: timer is running
245  // Stop the benchmark timer.  If not called, the timer will be
246  // automatically stopped after KeepRunning() returns false for the first time.
247  //
248  // For threaded benchmarks the PauseTiming() function acts
249  // like a barrier.  I.e., the ith call by a particular thread to this
250  // function will block until all threads have made their ith call.
251  // The timer will stop when the last thread has called this function.
252  //
253  // NOTE: PauseTiming()/ResumeTiming() are relatively
254  // heavyweight, and so their use should generally be avoided
255  // within each benchmark iteration, if possible.
256  void PauseTiming();
257
258  // REQUIRES: timer is not running
259  // Start the benchmark timer.  The timer is NOT running on entrance to the
260  // benchmark function. It begins running after the first call to KeepRunning()
261  //
262  // For threaded benchmarks the ResumeTiming() function acts
263  // like a barrier.  I.e., the ith call by a particular thread to this
264  // function will block until all threads have made their ith call.
265  // The timer will start when the last thread has called this function.
266  //
267  // NOTE: PauseTiming()/ResumeTiming() are relatively
268  // heavyweight, and so their use should generally be avoided
269  // within each benchmark iteration, if possible.
270  void ResumeTiming();
271
272  // Set the number of bytes processed by the current benchmark
273  // execution.  This routine is typically called once at the end of a
274  // throughput oriented benchmark.  If this routine is called with a
275  // value > 0, the report is printed in MB/sec instead of nanoseconds
276  // per iteration.
277  //
278  // REQUIRES: a benchmark has exited its KeepRunning loop.
279  BENCHMARK_ALWAYS_INLINE
280  void SetBytesProcessed(size_t bytes) {
281    bytes_processed_ = bytes;
282  }
283
284  BENCHMARK_ALWAYS_INLINE
285  size_t bytes_processed() const {
286    return bytes_processed_;
287  }
288
289  // If this routine is called with items > 0, then an items/s
290  // label is printed on the benchmark report line for the currently
291  // executing benchmark. It is typically called at the end of a processing
292  // benchmark where a processing items/second output is desired.
293  //
294  // REQUIRES: a benchmark has exited its KeepRunning loop.
295  BENCHMARK_ALWAYS_INLINE
296  void SetItemsProcessed(size_t items) {
297    items_processed_ = items;
298  }
299
300  BENCHMARK_ALWAYS_INLINE
301  size_t items_processed() const {
302    return items_processed_;
303  }
304
305  // If this routine is called, the specified label is printed at the
306  // end of the benchmark report line for the currently executing
307  // benchmark.  Example:
308  //  static void BM_Compress(int iters) {
309  //    ...
310  //    double compress = input_size / output_size;
311  //    benchmark::SetLabel(StringPrintf("compress:%.1f%%", 100.0*compression));
312  //  }
313  // Produces output that looks like:
314  //  BM_Compress   50         50   14115038  compress:27.3%
315  //
316  // REQUIRES: a benchmark has exited its KeepRunning loop.
317  void SetLabel(const char* label);
318
319  // Allow the use of std::string without actually including <string>.
320  // This function does not participate in overload resolution unless StringType
321  // has the nested typename `basic_string`. This typename should be provided
322  // as an injected class name in the case of std::string.
323  template <class StringType>
324  void SetLabel(StringType const & str,
325                typename internal::EnableIfString<StringType>::type = 1) {
326    this->SetLabel(str.c_str());
327  }
328
329  // Range arguments for this run. CHECKs if the argument has been set.
330  BENCHMARK_ALWAYS_INLINE
331  int range_x() const {
332    assert(has_range_x_);
333    ((void)has_range_x_); // Prevent unused warning.
334    return range_x_;
335  }
336
337  BENCHMARK_ALWAYS_INLINE
338  int range_y() const {
339    assert(has_range_y_);
340    ((void)has_range_y_); // Prevent unused warning.
341    return range_y_;
342  }
343
344  BENCHMARK_ALWAYS_INLINE
345  size_t iterations() const { return total_iterations_; }
346
347private:
348  bool started_;
349  size_t total_iterations_;
350
351  bool has_range_x_;
352  int range_x_;
353
354  bool has_range_y_;
355  int range_y_;
356
357  size_t bytes_processed_;
358  size_t items_processed_;
359
360public:
361  // Index of the executing thread. Values from [0, threads).
362  const int thread_index;
363  // Number of threads concurrently executing the benchmark.
364  const int threads;
365  const size_t max_iterations;
366
367private:
368  BENCHMARK_DISALLOW_COPY_AND_ASSIGN(State);
369};
370
371namespace internal {
372
373typedef void(Function)(State&);
374
375// ------------------------------------------------------
376// Benchmark registration object.  The BENCHMARK() macro expands
377// into an internal::Benchmark* object.  Various methods can
378// be called on this object to change the properties of the benchmark.
379// Each method returns "this" so that multiple method calls can
380// chained into one expression.
381class Benchmark {
382public:
383  virtual ~Benchmark();
384
385  // Note: the following methods all return "this" so that multiple
386  // method calls can be chained together in one expression.
387
388  // Run this benchmark once with "x" as the extra argument passed
389  // to the function.
390  // REQUIRES: The function passed to the constructor must accept an arg1.
391  Benchmark* Arg(int x);
392
393  // Run this benchmark once for a number of values picked from the
394  // range [start..limit].  (start and limit are always picked.)
395  // REQUIRES: The function passed to the constructor must accept an arg1.
396  Benchmark* Range(int start, int limit);
397
398  // Run this benchmark once for every value in the range [start..limit]
399  // REQUIRES: The function passed to the constructor must accept an arg1.
400  Benchmark* DenseRange(int start, int limit);
401
402  // Run this benchmark once with "x,y" as the extra arguments passed
403  // to the function.
404  // REQUIRES: The function passed to the constructor must accept arg1,arg2.
405  Benchmark* ArgPair(int x, int y);
406
407  // Pick a set of values A from the range [lo1..hi1] and a set
408  // of values B from the range [lo2..hi2].  Run the benchmark for
409  // every pair of values in the cartesian product of A and B
410  // (i.e., for all combinations of the values in A and B).
411  // REQUIRES: The function passed to the constructor must accept arg1,arg2.
412  Benchmark* RangePair(int lo1, int hi1, int lo2, int hi2);
413
414  // Pass this benchmark object to *func, which can customize
415  // the benchmark by calling various methods like Arg, ArgPair,
416  // Threads, etc.
417  Benchmark* Apply(void (*func)(Benchmark* benchmark));
418
419  // Set the minimum amount of time to use when running this benchmark. This
420  // option overrides the `benchmark_min_time` flag.
421  Benchmark* MinTime(double t);
422
423  // If a particular benchmark is I/O bound, runs multiple threads internally or
424  // if for some reason CPU timings are not representative, call this method. If
425  // called, the elapsed time will be used to control how many iterations are
426  // run, and in the printing of items/second or MB/seconds values.  If not
427  // called, the cpu time used by the benchmark will be used.
428  Benchmark* UseRealTime();
429
430  // Support for running multiple copies of the same benchmark concurrently
431  // in multiple threads.  This may be useful when measuring the scaling
432  // of some piece of code.
433
434  // Run one instance of this benchmark concurrently in t threads.
435  Benchmark* Threads(int t);
436
437  // Pick a set of values T from [min_threads,max_threads].
438  // min_threads and max_threads are always included in T.  Run this
439  // benchmark once for each value in T.  The benchmark run for a
440  // particular value t consists of t threads running the benchmark
441  // function concurrently.  For example, consider:
442  //    BENCHMARK(Foo)->ThreadRange(1,16);
443  // This will run the following benchmarks:
444  //    Foo in 1 thread
445  //    Foo in 2 threads
446  //    Foo in 4 threads
447  //    Foo in 8 threads
448  //    Foo in 16 threads
449  Benchmark* ThreadRange(int min_threads, int max_threads);
450
451  // Equivalent to ThreadRange(NumCPUs(), NumCPUs())
452  Benchmark* ThreadPerCpu();
453
454  virtual void Run(State& state) = 0;
455
456  // Used inside the benchmark implementation
457  struct Instance;
458
459protected:
460  explicit Benchmark(const char* name);
461  Benchmark(Benchmark const&);
462  void SetName(const char* name);
463
464private:
465  friend class BenchmarkFamilies;
466  BenchmarkImp* imp_;
467
468  Benchmark& operator=(Benchmark const&);
469};
470
471// The class used to hold all Benchmarks created from static function.
472// (ie those created using the BENCHMARK(...) macros.
473class FunctionBenchmark : public Benchmark {
474public:
475    FunctionBenchmark(const char* name, Function* func)
476        : Benchmark(name), func_(func)
477    {}
478
479    virtual void Run(State& st);
480private:
481    Function* func_;
482};
483
484}  // end namespace internal
485
486// The base class for all fixture tests.
487class Fixture: public internal::Benchmark {
488public:
489    Fixture() : internal::Benchmark("") {}
490
491    virtual void Run(State& st) {
492      this->SetUp(st);
493      this->BenchmarkCase(st);
494      this->TearDown();
495    }
496
497    virtual void SetUp(const State&) {}
498    virtual void TearDown() {}
499
500protected:
501    virtual void BenchmarkCase(State&) = 0;
502};
503
504}  // end namespace benchmark
505
506
507// ------------------------------------------------------
508// Macro to register benchmarks
509
510// Check that __COUNTER__ is defined and that __COUNTER__ increases by 1
511// every time it is expanded. X + 1 == X + 0 is used in case X is defined to be
512// empty. If X is empty the expression becomes (+1 == +0).
513#if defined(__COUNTER__) && (__COUNTER__ + 1 == __COUNTER__ + 0)
514#define BENCHMARK_PRIVATE_UNIQUE_ID __COUNTER__
515#else
516#define BENCHMARK_PRIVATE_UNIQUE_ID __LINE__
517#endif
518
519// Helpers for generating unique variable names
520#define BENCHMARK_PRIVATE_NAME(n) \
521    BENCHMARK_PRIVATE_CONCAT(_benchmark_, BENCHMARK_PRIVATE_UNIQUE_ID, n)
522#define BENCHMARK_PRIVATE_CONCAT(a, b, c) BENCHMARK_PRIVATE_CONCAT2(a, b, c)
523#define BENCHMARK_PRIVATE_CONCAT2(a, b, c) a##b##c
524
525#define BENCHMARK_PRIVATE_DECLARE(n)       \
526  static ::benchmark::internal::Benchmark* \
527  BENCHMARK_PRIVATE_NAME(n) BENCHMARK_UNUSED
528
529#define BENCHMARK(n) \
530    BENCHMARK_PRIVATE_DECLARE(n) =                               \
531        (::benchmark::internal::RegisterBenchmarkInternal(       \
532            new ::benchmark::internal::FunctionBenchmark(#n, n)))
533
534// Old-style macros
535#define BENCHMARK_WITH_ARG(n, a) BENCHMARK(n)->Arg((a))
536#define BENCHMARK_WITH_ARG2(n, a1, a2) BENCHMARK(n)->ArgPair((a1), (a2))
537#define BENCHMARK_RANGE(n, lo, hi) BENCHMARK(n)->Range((lo), (hi))
538#define BENCHMARK_RANGE2(n, l1, h1, l2, h2) \
539  BENCHMARK(n)->RangePair((l1), (h1), (l2), (h2))
540
541// This will register a benchmark for a templatized function.  For example:
542//
543// template<int arg>
544// void BM_Foo(int iters);
545//
546// BENCHMARK_TEMPLATE(BM_Foo, 1);
547//
548// will register BM_Foo<1> as a benchmark.
549#define BENCHMARK_TEMPLATE1(n, a) \
550  BENCHMARK_PRIVATE_DECLARE(n) =  \
551      (::benchmark::internal::RegisterBenchmarkInternal( \
552        new ::benchmark::internal::FunctionBenchmark(#n "<" #a ">", n<a>)))
553
554#define BENCHMARK_TEMPLATE2(n, a, b)                     \
555  BENCHMARK_PRIVATE_DECLARE(n) =                         \
556      (::benchmark::internal::RegisterBenchmarkInternal( \
557        new ::benchmark::internal::FunctionBenchmark(    \
558            #n "<" #a "," #b ">", n<a, b>)))
559
560#if __cplusplus >= 201103L
561#define BENCHMARK_TEMPLATE(n, ...)           \
562  BENCHMARK_PRIVATE_DECLARE(n) =             \
563      (::benchmark::internal::RegisterBenchmarkInternal( \
564        new ::benchmark::internal::FunctionBenchmark( \
565        #n "<" #__VA_ARGS__ ">", n<__VA_ARGS__>)))
566#else
567#define BENCHMARK_TEMPLATE(n, a) BENCHMARK_TEMPLATE1(n, a)
568#endif
569
570
571#define BENCHMARK_PRIVATE_DECLARE_F(BaseClass, Method)      \
572class BaseClass##_##Method##_Benchmark : public BaseClass { \
573public:                                                     \
574    BaseClass##_##Method##_Benchmark() : BaseClass() {      \
575        this->SetName(#BaseClass "/" #Method);}             \
576protected:                                                  \
577    virtual void BenchmarkCase(::benchmark::State&);        \
578};
579
580#define BENCHMARK_DEFINE_F(BaseClass, Method) \
581    BENCHMARK_PRIVATE_DECLARE_F(BaseClass, Method) \
582    void BaseClass##_##Method##_Benchmark::BenchmarkCase
583
584#define BENCHMARK_REGISTER_F(BaseClass, Method) \
585    BENCHMARK_PRIVATE_REGISTER_F(BaseClass##_##Method##_Benchmark)
586
587#define BENCHMARK_PRIVATE_REGISTER_F(TestName) \
588    BENCHMARK_PRIVATE_DECLARE(TestName) = \
589        (::benchmark::internal::RegisterBenchmarkInternal(new TestName()))
590
591// This macro will define and register a benchmark within a fixture class.
592#define BENCHMARK_F(BaseClass, Method) \
593    BENCHMARK_PRIVATE_DECLARE_F(BaseClass, Method) \
594    BENCHMARK_REGISTER_F(BaseClass, Method); \
595    void BaseClass##_##Method##_Benchmark::BenchmarkCase
596
597
598// Helper macro to create a main routine in a test that runs the benchmarks
599#define BENCHMARK_MAIN()                   \
600  int main(int argc, char** argv) {        \
601    ::benchmark::Initialize(&argc, argv);  \
602    ::benchmark::RunSpecifiedBenchmarks(); \
603  }
604
605#endif  // BENCHMARK_BENCHMARK_API_H_
606