benchmark_api.h revision c7ab1b987ba9badeda367145b2e2073fc0ed0d57
1// Support for registering benchmarks for functions. 2 3/* Example usage: 4// Define a function that executes the code to be measured a 5// specified number of times: 6static void BM_StringCreation(benchmark::State& state) { 7 while (state.KeepRunning()) 8 std::string empty_string; 9} 10 11// Register the function as a benchmark 12BENCHMARK(BM_StringCreation); 13 14// Define another benchmark 15static void BM_StringCopy(benchmark::State& state) { 16 std::string x = "hello"; 17 while (state.KeepRunning()) 18 std::string copy(x); 19} 20BENCHMARK(BM_StringCopy); 21 22// Augment the main() program to invoke benchmarks if specified 23// via the --benchmarks command line flag. E.g., 24// my_unittest --benchmark_filter=all 25// my_unittest --benchmark_filter=BM_StringCreation 26// my_unittest --benchmark_filter=String 27// my_unittest --benchmark_filter='Copy|Creation' 28int main(int argc, char** argv) { 29 benchmark::Initialize(&argc, argv); 30 benchmark::RunSpecifiedBenchmarks(); 31 return 0; 32} 33 34// Sometimes a family of microbenchmarks can be implemented with 35// just one routine that takes an extra argument to specify which 36// one of the family of benchmarks to run. For example, the following 37// code defines a family of microbenchmarks for measuring the speed 38// of memcpy() calls of different lengths: 39 40static void BM_memcpy(benchmark::State& state) { 41 char* src = new char[state.range_x()]; char* dst = new char[state.range_x()]; 42 memset(src, 'x', state.range_x()); 43 while (state.KeepRunning()) 44 memcpy(dst, src, state.range_x()); 45 state.SetBytesProcessed(int64_t(state.iterations()) * 46 int64_t(state.range_x())); 47 delete[] src; delete[] dst; 48} 49BENCHMARK(BM_memcpy)->Arg(8)->Arg(64)->Arg(512)->Arg(1<<10)->Arg(8<<10); 50 51// The preceding code is quite repetitive, and can be replaced with the 52// following short-hand. The following invocation will pick a few 53// appropriate arguments in the specified range and will generate a 54// microbenchmark for each such argument. 55BENCHMARK(BM_memcpy)->Range(8, 8<<10); 56 57// You might have a microbenchmark that depends on two inputs. For 58// example, the following code defines a family of microbenchmarks for 59// measuring the speed of set insertion. 60static void BM_SetInsert(benchmark::State& state) { 61 while (state.KeepRunning()) { 62 state.PauseTiming(); 63 set<int> data = ConstructRandomSet(state.range_x()); 64 state.ResumeTiming(); 65 for (int j = 0; j < state.range_y(); ++j) 66 data.insert(RandomNumber()); 67 } 68} 69BENCHMARK(BM_SetInsert) 70 ->ArgPair(1<<10, 1) 71 ->ArgPair(1<<10, 8) 72 ->ArgPair(1<<10, 64) 73 ->ArgPair(1<<10, 512) 74 ->ArgPair(8<<10, 1) 75 ->ArgPair(8<<10, 8) 76 ->ArgPair(8<<10, 64) 77 ->ArgPair(8<<10, 512); 78 79// The preceding code is quite repetitive, and can be replaced with 80// the following short-hand. The following macro will pick a few 81// appropriate arguments in the product of the two specified ranges 82// and will generate a microbenchmark for each such pair. 83BENCHMARK(BM_SetInsert)->RangePair(1<<10, 8<<10, 1, 512); 84 85// For more complex patterns of inputs, passing a custom function 86// to Apply allows programmatic specification of an 87// arbitrary set of arguments to run the microbenchmark on. 88// The following example enumerates a dense range on 89// one parameter, and a sparse range on the second. 90static void CustomArguments(benchmark::internal::Benchmark* b) { 91 for (int i = 0; i <= 10; ++i) 92 for (int j = 32; j <= 1024*1024; j *= 8) 93 b->ArgPair(i, j); 94} 95BENCHMARK(BM_SetInsert)->Apply(CustomArguments); 96 97// Templated microbenchmarks work the same way: 98// Produce then consume 'size' messages 'iters' times 99// Measures throughput in the absence of multiprogramming. 100template <class Q> int BM_Sequential(benchmark::State& state) { 101 Q q; 102 typename Q::value_type v; 103 while (state.KeepRunning()) { 104 for (int i = state.range_x(); i--; ) 105 q.push(v); 106 for (int e = state.range_x(); e--; ) 107 q.Wait(&v); 108 } 109 // actually messages, not bytes: 110 state.SetBytesProcessed( 111 static_cast<int64_t>(state.iterations())*state.range_x()); 112} 113BENCHMARK_TEMPLATE(BM_Sequential, WaitQueue<int>)->Range(1<<0, 1<<10); 114 115Use `Benchmark::MinTime(double t)` to set the minimum time used to run the 116benchmark. This option overrides the `benchmark_min_time` flag. 117 118void BM_test(benchmark::State& state) { 119 ... body ... 120} 121BENCHMARK(BM_test)->MinTime(2.0); // Run for at least 2 seconds. 122 123In a multithreaded test, it is guaranteed that none of the threads will start 124until all have called KeepRunning, and all will have finished before KeepRunning 125returns false. As such, any global setup or teardown you want to do can be 126wrapped in a check against the thread index: 127 128static void BM_MultiThreaded(benchmark::State& state) { 129 if (state.thread_index == 0) { 130 // Setup code here. 131 } 132 while (state.KeepRunning()) { 133 // Run the test as normal. 134 } 135 if (state.thread_index == 0) { 136 // Teardown code here. 137 } 138} 139BENCHMARK(BM_MultiThreaded)->Threads(4); 140*/ 141 142#ifndef BENCHMARK_BENCHMARK_API_H_ 143#define BENCHMARK_BENCHMARK_API_H_ 144 145#include <assert.h> 146#include <stddef.h> 147#include <stdint.h> 148 149#include "macros.h" 150 151namespace benchmark { 152class BenchmarkReporter; 153 154void Initialize(int* argc, char** argv); 155 156// Otherwise, run all benchmarks specified by the --benchmark_filter flag, 157// and exit after running the benchmarks. 158void RunSpecifiedBenchmarks(); 159void RunSpecifiedBenchmarks(BenchmarkReporter* reporter); 160 161// If this routine is called, peak memory allocation past this point in the 162// benchmark is reported at the end of the benchmark report line. (It is 163// computed by running the benchmark once with a single iteration and a memory 164// tracer.) 165// TODO(dominic) 166// void MemoryUsage(); 167 168namespace internal { 169class Benchmark; 170class BenchmarkImp; 171class BenchmarkFamilies; 172 173template <class T> struct Voider { 174 typedef void type; 175}; 176 177template <class T, class = void> 178struct EnableIfString {}; 179 180template <class T> 181struct EnableIfString<T, typename Voider<typename T::basic_string>::type> { 182 typedef int type; 183}; 184 185void UseCharPointer(char const volatile*); 186 187// Take ownership of the pointer and register the benchmark. Return the 188// registered benchmark. 189Benchmark* RegisterBenchmarkInternal(Benchmark*); 190 191} // end namespace internal 192 193 194// The DoNotOptimize(...) function can be used to prevent a value or 195// expression from being optimized away by the compiler. This function is 196// intented to add little to no overhead. 197// See: http://stackoverflow.com/questions/28287064 198#if defined(__clang__) && defined(__GNUC__) 199// TODO(ericwf): Clang has a bug where it tries to always use a register 200// even if value must be stored in memory. This causes codegen to fail. 201// To work around this we remove the "r" modifier so the operand is always 202// loaded into memory. 203template <class Tp> 204inline BENCHMARK_ALWAYS_INLINE void DoNotOptimize(Tp const& value) { 205 asm volatile("" : "+m" (const_cast<Tp&>(value))); 206} 207#elif defined(__GNUC__) 208template <class Tp> 209inline BENCHMARK_ALWAYS_INLINE void DoNotOptimize(Tp const& value) { 210 asm volatile("" : "+rm" (const_cast<Tp&>(value))); 211} 212#else 213template <class Tp> 214inline BENCHMARK_ALWAYS_INLINE void DoNotOptimize(Tp const& value) { 215 internal::UseCharPointer(&reinterpret_cast<char const volatile&>(value)); 216} 217#endif 218 219 220// State is passed to a running Benchmark and contains state for the 221// benchmark to use. 222class State { 223public: 224 State(size_t max_iters, bool has_x, int x, bool has_y, int y, int thread_i); 225 226 // Returns true iff the benchmark should continue through another iteration. 227 // NOTE: A benchmark may not return from the test until KeepRunning() has 228 // returned false. 229 bool KeepRunning() { 230 if (BENCHMARK_BUILTIN_EXPECT(!started_, false)) { 231 ResumeTiming(); 232 started_ = true; 233 } 234 bool const res = total_iterations_++ < max_iterations; 235 if (BENCHMARK_BUILTIN_EXPECT(!res, false)) { 236 assert(started_); 237 PauseTiming(); 238 // Total iterations now is one greater than max iterations. Fix this. 239 total_iterations_ = max_iterations; 240 } 241 return res; 242 } 243 244 // REQUIRES: timer is running 245 // Stop the benchmark timer. If not called, the timer will be 246 // automatically stopped after KeepRunning() returns false for the first time. 247 // 248 // For threaded benchmarks the PauseTiming() function acts 249 // like a barrier. I.e., the ith call by a particular thread to this 250 // function will block until all threads have made their ith call. 251 // The timer will stop when the last thread has called this function. 252 // 253 // NOTE: PauseTiming()/ResumeTiming() are relatively 254 // heavyweight, and so their use should generally be avoided 255 // within each benchmark iteration, if possible. 256 void PauseTiming(); 257 258 // REQUIRES: timer is not running 259 // Start the benchmark timer. The timer is NOT running on entrance to the 260 // benchmark function. It begins running after the first call to KeepRunning() 261 // 262 // For threaded benchmarks the ResumeTiming() function acts 263 // like a barrier. I.e., the ith call by a particular thread to this 264 // function will block until all threads have made their ith call. 265 // The timer will start when the last thread has called this function. 266 // 267 // NOTE: PauseTiming()/ResumeTiming() are relatively 268 // heavyweight, and so their use should generally be avoided 269 // within each benchmark iteration, if possible. 270 void ResumeTiming(); 271 272 // Set the number of bytes processed by the current benchmark 273 // execution. This routine is typically called once at the end of a 274 // throughput oriented benchmark. If this routine is called with a 275 // value > 0, the report is printed in MB/sec instead of nanoseconds 276 // per iteration. 277 // 278 // REQUIRES: a benchmark has exited its KeepRunning loop. 279 BENCHMARK_ALWAYS_INLINE 280 void SetBytesProcessed(size_t bytes) { 281 bytes_processed_ = bytes; 282 } 283 284 BENCHMARK_ALWAYS_INLINE 285 size_t bytes_processed() const { 286 return bytes_processed_; 287 } 288 289 // If this routine is called with items > 0, then an items/s 290 // label is printed on the benchmark report line for the currently 291 // executing benchmark. It is typically called at the end of a processing 292 // benchmark where a processing items/second output is desired. 293 // 294 // REQUIRES: a benchmark has exited its KeepRunning loop. 295 BENCHMARK_ALWAYS_INLINE 296 void SetItemsProcessed(size_t items) { 297 items_processed_ = items; 298 } 299 300 BENCHMARK_ALWAYS_INLINE 301 size_t items_processed() const { 302 return items_processed_; 303 } 304 305 // If this routine is called, the specified label is printed at the 306 // end of the benchmark report line for the currently executing 307 // benchmark. Example: 308 // static void BM_Compress(int iters) { 309 // ... 310 // double compress = input_size / output_size; 311 // benchmark::SetLabel(StringPrintf("compress:%.1f%%", 100.0*compression)); 312 // } 313 // Produces output that looks like: 314 // BM_Compress 50 50 14115038 compress:27.3% 315 // 316 // REQUIRES: a benchmark has exited its KeepRunning loop. 317 void SetLabel(const char* label); 318 319 // Allow the use of std::string without actually including <string>. 320 // This function does not participate in overload resolution unless StringType 321 // has the nested typename `basic_string`. This typename should be provided 322 // as an injected class name in the case of std::string. 323 template <class StringType> 324 void SetLabel(StringType const & str, 325 typename internal::EnableIfString<StringType>::type = 1) { 326 this->SetLabel(str.c_str()); 327 } 328 329 // Range arguments for this run. CHECKs if the argument has been set. 330 BENCHMARK_ALWAYS_INLINE 331 int range_x() const { 332 assert(has_range_x_); 333 ((void)has_range_x_); // Prevent unused warning. 334 return range_x_; 335 } 336 337 BENCHMARK_ALWAYS_INLINE 338 int range_y() const { 339 assert(has_range_y_); 340 ((void)has_range_y_); // Prevent unused warning. 341 return range_y_; 342 } 343 344 BENCHMARK_ALWAYS_INLINE 345 size_t iterations() const { return total_iterations_; } 346 347private: 348 bool started_; 349 size_t total_iterations_; 350 351 bool has_range_x_; 352 int range_x_; 353 354 bool has_range_y_; 355 int range_y_; 356 357 size_t bytes_processed_; 358 size_t items_processed_; 359 360public: 361 const int thread_index; 362 const size_t max_iterations; 363 364private: 365 BENCHMARK_DISALLOW_COPY_AND_ASSIGN(State); 366}; 367 368namespace internal { 369 370typedef void(Function)(State&); 371 372// ------------------------------------------------------ 373// Benchmark registration object. The BENCHMARK() macro expands 374// into an internal::Benchmark* object. Various methods can 375// be called on this object to change the properties of the benchmark. 376// Each method returns "this" so that multiple method calls can 377// chained into one expression. 378class Benchmark { 379public: 380 virtual ~Benchmark(); 381 382 // Note: the following methods all return "this" so that multiple 383 // method calls can be chained together in one expression. 384 385 // Run this benchmark once with "x" as the extra argument passed 386 // to the function. 387 // REQUIRES: The function passed to the constructor must accept an arg1. 388 Benchmark* Arg(int x); 389 390 // Run this benchmark once for a number of values picked from the 391 // range [start..limit]. (start and limit are always picked.) 392 // REQUIRES: The function passed to the constructor must accept an arg1. 393 Benchmark* Range(int start, int limit); 394 395 // Run this benchmark once for every value in the range [start..limit] 396 // REQUIRES: The function passed to the constructor must accept an arg1. 397 Benchmark* DenseRange(int start, int limit); 398 399 // Run this benchmark once with "x,y" as the extra arguments passed 400 // to the function. 401 // REQUIRES: The function passed to the constructor must accept arg1,arg2. 402 Benchmark* ArgPair(int x, int y); 403 404 // Pick a set of values A from the range [lo1..hi1] and a set 405 // of values B from the range [lo2..hi2]. Run the benchmark for 406 // every pair of values in the cartesian product of A and B 407 // (i.e., for all combinations of the values in A and B). 408 // REQUIRES: The function passed to the constructor must accept arg1,arg2. 409 Benchmark* RangePair(int lo1, int hi1, int lo2, int hi2); 410 411 // Pass this benchmark object to *func, which can customize 412 // the benchmark by calling various methods like Arg, ArgPair, 413 // Threads, etc. 414 Benchmark* Apply(void (*func)(Benchmark* benchmark)); 415 416 // Set the minimum amount of time to use when running this benchmark. This 417 // option overrides the `benchmark_min_time` flag. 418 Benchmark* MinTime(double t); 419 420 // If a particular benchmark is I/O bound, runs multiple threads internally or 421 // if for some reason CPU timings are not representative, call this method. If 422 // called, the elapsed time will be used to control how many iterations are 423 // run, and in the printing of items/second or MB/seconds values. If not 424 // called, the cpu time used by the benchmark will be used. 425 Benchmark* UseRealTime(); 426 427 // Support for running multiple copies of the same benchmark concurrently 428 // in multiple threads. This may be useful when measuring the scaling 429 // of some piece of code. 430 431 // Run one instance of this benchmark concurrently in t threads. 432 Benchmark* Threads(int t); 433 434 // Pick a set of values T from [min_threads,max_threads]. 435 // min_threads and max_threads are always included in T. Run this 436 // benchmark once for each value in T. The benchmark run for a 437 // particular value t consists of t threads running the benchmark 438 // function concurrently. For example, consider: 439 // BENCHMARK(Foo)->ThreadRange(1,16); 440 // This will run the following benchmarks: 441 // Foo in 1 thread 442 // Foo in 2 threads 443 // Foo in 4 threads 444 // Foo in 8 threads 445 // Foo in 16 threads 446 Benchmark* ThreadRange(int min_threads, int max_threads); 447 448 // Equivalent to ThreadRange(NumCPUs(), NumCPUs()) 449 Benchmark* ThreadPerCpu(); 450 451 virtual void Run(State& state) = 0; 452 453 // Used inside the benchmark implementation 454 struct Instance; 455 456protected: 457 explicit Benchmark(const char* name); 458 Benchmark(Benchmark const&); 459 void SetName(const char* name); 460 461private: 462 friend class BenchmarkFamilies; 463 BenchmarkImp* imp_; 464 465 Benchmark& operator=(Benchmark const&); 466}; 467 468// The class used to hold all Benchmarks created from static function. 469// (ie those created using the BENCHMARK(...) macros. 470class FunctionBenchmark : public Benchmark { 471public: 472 FunctionBenchmark(const char* name, Function* func) 473 : Benchmark(name), func_(func) 474 {} 475 476 virtual void Run(State& st); 477private: 478 Function* func_; 479}; 480 481} // end namespace internal 482 483// The base class for all fixture tests. 484class Fixture: public internal::Benchmark { 485public: 486 Fixture() : internal::Benchmark("") {} 487 488 virtual void Run(State& st) { 489 this->SetUp(); 490 this->BenchmarkCase(st); 491 this->TearDown(); 492 } 493 494 virtual void SetUp() {} 495 virtual void TearDown() {} 496 497protected: 498 virtual void BenchmarkCase(State&) = 0; 499}; 500 501} // end namespace benchmark 502 503 504// ------------------------------------------------------ 505// Macro to register benchmarks 506 507// Check that __COUNTER__ is defined and that __COUNTER__ increases by 1 508// every time it is expanded. X + 1 == X + 0 is used in case X is defined to be 509// empty. If X is empty the expression becomes (+1 == +0). 510#if defined(__COUNTER__) && (__COUNTER__ + 1 == __COUNTER__ + 0) 511#define BENCHMARK_PRIVATE_UNIQUE_ID __COUNTER__ 512#else 513#define BENCHMARK_PRIVATE_UNIQUE_ID __LINE__ 514#endif 515 516// Helpers for generating unique variable names 517#define BENCHMARK_PRIVATE_NAME(n) \ 518 BENCHMARK_PRIVATE_CONCAT(_benchmark_, BENCHMARK_PRIVATE_UNIQUE_ID, n) 519#define BENCHMARK_PRIVATE_CONCAT(a, b, c) BENCHMARK_PRIVATE_CONCAT2(a, b, c) 520#define BENCHMARK_PRIVATE_CONCAT2(a, b, c) a##b##c 521 522#define BENCHMARK_PRIVATE_DECLARE(n) \ 523 static ::benchmark::internal::Benchmark* \ 524 BENCHMARK_PRIVATE_NAME(n) BENCHMARK_UNUSED 525 526#define BENCHMARK(n) \ 527 BENCHMARK_PRIVATE_DECLARE(n) = \ 528 (::benchmark::internal::RegisterBenchmarkInternal( \ 529 new ::benchmark::internal::FunctionBenchmark(#n, n))) 530 531// Old-style macros 532#define BENCHMARK_WITH_ARG(n, a) BENCHMARK(n)->Arg((a)) 533#define BENCHMARK_WITH_ARG2(n, a1, a2) BENCHMARK(n)->ArgPair((a1), (a2)) 534#define BENCHMARK_RANGE(n, lo, hi) BENCHMARK(n)->Range((lo), (hi)) 535#define BENCHMARK_RANGE2(n, l1, h1, l2, h2) \ 536 BENCHMARK(n)->RangePair((l1), (h1), (l2), (h2)) 537 538// This will register a benchmark for a templatized function. For example: 539// 540// template<int arg> 541// void BM_Foo(int iters); 542// 543// BENCHMARK_TEMPLATE(BM_Foo, 1); 544// 545// will register BM_Foo<1> as a benchmark. 546#define BENCHMARK_TEMPLATE1(n, a) \ 547 BENCHMARK_PRIVATE_DECLARE(n) = \ 548 (::benchmark::internal::RegisterBenchmarkInternal( \ 549 new ::benchmark::internal::FunctionBenchmark(#n "<" #a ">", n<a>))) 550 551#define BENCHMARK_TEMPLATE2(n, a, b) \ 552 BENCHMARK_PRIVATE_DECLARE(n) = \ 553 (::benchmark::internal::RegisterBenchmarkInternal( \ 554 new ::benchmark::internal::FunctionBenchmark( \ 555 #n "<" #a "," #b ">", n<a, b>))) 556 557#if __cplusplus >= 201103L 558#define BENCHMARK_TEMPLATE(n, ...) \ 559 BENCHMARK_PRIVATE_DECLARE(n) = \ 560 (::benchmark::internal::RegisterBenchmarkInternal( \ 561 new ::benchmark::internal::FunctionBenchmark( \ 562 #n "<" #__VA_ARGS__ ">", n<__VA_ARGS__>))) 563#else 564#define BENCHMARK_TEMPLATE(n, a) BENCHMARK_TEMPLATE1(n, a) 565#endif 566 567 568#define BENCHMARK_PRIVATE_DECLARE_F(BaseClass, Method) \ 569class BaseClass##_##Method##_Benchmark : public BaseClass { \ 570public: \ 571 BaseClass##_##Method##_Benchmark() : BaseClass() { \ 572 this->SetName(#BaseClass "/" #Method);} \ 573protected: \ 574 virtual void BenchmarkCase(::benchmark::State&); \ 575}; 576 577#define BENCHMARK_DEFINE_F(BaseClass, Method) \ 578 BENCHMARK_PRIVATE_DECLARE_F(BaseClass, Method) \ 579 void BaseClass##_##Method##_Benchmark::BenchmarkCase 580 581#define BENCHMARK_REGISTER_F(BaseClass, Method) \ 582 BENCHMARK_PRIVATE_REGISTER_F(BaseClass##_##Method##_Benchmark) 583 584#define BENCHMARK_PRIVATE_REGISTER_F(TestName) \ 585 BENCHMARK_PRIVATE_DECLARE(TestName) = \ 586 (::benchmark::internal::RegisterBenchmarkInternal(new TestName())) 587 588// This macro will define and register a benchmark within a fixture class. 589#define BENCHMARK_F(BaseClass, Method) \ 590 BENCHMARK_PRIVATE_DECLARE_F(BaseClass, Method) \ 591 BENCHMARK_REGISTER_F(BaseClass, Method); \ 592 void BaseClass##_##Method##_Benchmark::BenchmarkCase 593 594 595// Helper macro to create a main routine in a test that runs the benchmarks 596#define BENCHMARK_MAIN() \ 597 int main(int argc, char** argv) { \ 598 ::benchmark::Initialize(&argc, argv); \ 599 ::benchmark::RunSpecifiedBenchmarks(); \ 600 } 601 602#endif // BENCHMARK_BENCHMARK_API_H_ 603