1// Copyright 2007, Google Inc.
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8//     * Redistributions of source code must retain the above copyright
9// notice, this list of conditions and the following disclaimer.
10//     * Redistributions in binary form must reproduce the above
11// copyright notice, this list of conditions and the following disclaimer
12// in the documentation and/or other materials provided with the
13// distribution.
14//     * Neither the name of Google Inc. nor the names of its
15// contributors may be used to endorse or promote products derived from
16// this software without specific prior written permission.
17//
18// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29//
30// Author: wan@google.com (Zhanyong Wan)
31
32// Google Mock - a framework for writing C++ mock classes.
33//
34// This file tests some commonly used argument matchers.
35
36#include "gmock/gmock-matchers.h"
37
38#include <string.h>
39#include <functional>
40#include <iostream>
41#include <list>
42#include <map>
43#include <set>
44#include <sstream>
45#include <string>
46#include <utility>
47#include <vector>
48#include "gmock/gmock.h"
49#include "gtest/gtest.h"
50#include "gtest/gtest-spi.h"
51
52namespace testing {
53
54namespace internal {
55GTEST_API_ string JoinAsTuple(const Strings& fields);
56}  // namespace internal
57
58namespace gmock_matchers_test {
59
60using std::greater;
61using std::less;
62using std::list;
63using std::make_pair;
64using std::map;
65using std::multimap;
66using std::multiset;
67using std::ostream;
68using std::pair;
69using std::set;
70using std::stringstream;
71using std::tr1::get;
72using std::tr1::make_tuple;
73using std::tr1::tuple;
74using std::vector;
75using testing::A;
76using testing::AllArgs;
77using testing::AllOf;
78using testing::An;
79using testing::AnyOf;
80using testing::ByRef;
81using testing::ContainsRegex;
82using testing::DoubleEq;
83using testing::EndsWith;
84using testing::Eq;
85using testing::ExplainMatchResult;
86using testing::Field;
87using testing::FloatEq;
88using testing::Ge;
89using testing::Gt;
90using testing::HasSubstr;
91using testing::IsNull;
92using testing::Key;
93using testing::Le;
94using testing::Lt;
95using testing::MakeMatcher;
96using testing::MakePolymorphicMatcher;
97using testing::MatchResultListener;
98using testing::Matcher;
99using testing::MatcherCast;
100using testing::MatcherInterface;
101using testing::Matches;
102using testing::MatchesRegex;
103using testing::NanSensitiveDoubleEq;
104using testing::NanSensitiveFloatEq;
105using testing::Ne;
106using testing::Not;
107using testing::NotNull;
108using testing::Pair;
109using testing::Pointee;
110using testing::Pointwise;
111using testing::PolymorphicMatcher;
112using testing::Property;
113using testing::Ref;
114using testing::ResultOf;
115using testing::StartsWith;
116using testing::StrCaseEq;
117using testing::StrCaseNe;
118using testing::StrEq;
119using testing::StrNe;
120using testing::Truly;
121using testing::TypedEq;
122using testing::Value;
123using testing::WhenSorted;
124using testing::WhenSortedBy;
125using testing::_;
126using testing::internal::DummyMatchResultListener;
127using testing::internal::ExplainMatchFailureTupleTo;
128using testing::internal::FloatingEqMatcher;
129using testing::internal::FormatMatcherDescription;
130using testing::internal::IsReadableTypeName;
131using testing::internal::JoinAsTuple;
132using testing::internal::RE;
133using testing::internal::StreamMatchResultListener;
134using testing::internal::String;
135using testing::internal::StringMatchResultListener;
136using testing::internal::Strings;
137using testing::internal::linked_ptr;
138using testing::internal::scoped_ptr;
139using testing::internal::string;
140
141// For testing ExplainMatchResultTo().
142class GreaterThanMatcher : public MatcherInterface<int> {
143 public:
144  explicit GreaterThanMatcher(int rhs) : rhs_(rhs) {}
145
146  virtual void DescribeTo(ostream* os) const {
147    *os << "is > " << rhs_;
148  }
149
150  virtual bool MatchAndExplain(int lhs,
151                               MatchResultListener* listener) const {
152    const int diff = lhs - rhs_;
153    if (diff > 0) {
154      *listener << "which is " << diff << " more than " << rhs_;
155    } else if (diff == 0) {
156      *listener << "which is the same as " << rhs_;
157    } else {
158      *listener << "which is " << -diff << " less than " << rhs_;
159    }
160
161    return lhs > rhs_;
162  }
163
164 private:
165  int rhs_;
166};
167
168Matcher<int> GreaterThan(int n) {
169  return MakeMatcher(new GreaterThanMatcher(n));
170}
171
172string OfType(const string& type_name) {
173#if GTEST_HAS_RTTI
174  return " (of type " + type_name + ")";
175#else
176  return "";
177#endif
178}
179
180// Returns the description of the given matcher.
181template <typename T>
182string Describe(const Matcher<T>& m) {
183  stringstream ss;
184  m.DescribeTo(&ss);
185  return ss.str();
186}
187
188// Returns the description of the negation of the given matcher.
189template <typename T>
190string DescribeNegation(const Matcher<T>& m) {
191  stringstream ss;
192  m.DescribeNegationTo(&ss);
193  return ss.str();
194}
195
196// Returns the reason why x matches, or doesn't match, m.
197template <typename MatcherType, typename Value>
198string Explain(const MatcherType& m, const Value& x) {
199  StringMatchResultListener listener;
200  ExplainMatchResult(m, x, &listener);
201  return listener.str();
202}
203
204TEST(MatchResultListenerTest, StreamingWorks) {
205  StringMatchResultListener listener;
206  listener << "hi" << 5;
207  EXPECT_EQ("hi5", listener.str());
208
209  // Streaming shouldn't crash when the underlying ostream is NULL.
210  DummyMatchResultListener dummy;
211  dummy << "hi" << 5;
212}
213
214TEST(MatchResultListenerTest, CanAccessUnderlyingStream) {
215  EXPECT_TRUE(DummyMatchResultListener().stream() == NULL);
216  EXPECT_TRUE(StreamMatchResultListener(NULL).stream() == NULL);
217
218  EXPECT_EQ(&std::cout, StreamMatchResultListener(&std::cout).stream());
219}
220
221TEST(MatchResultListenerTest, IsInterestedWorks) {
222  EXPECT_TRUE(StringMatchResultListener().IsInterested());
223  EXPECT_TRUE(StreamMatchResultListener(&std::cout).IsInterested());
224
225  EXPECT_FALSE(DummyMatchResultListener().IsInterested());
226  EXPECT_FALSE(StreamMatchResultListener(NULL).IsInterested());
227}
228
229// Makes sure that the MatcherInterface<T> interface doesn't
230// change.
231class EvenMatcherImpl : public MatcherInterface<int> {
232 public:
233  virtual bool MatchAndExplain(int x,
234                               MatchResultListener* /* listener */) const {
235    return x % 2 == 0;
236  }
237
238  virtual void DescribeTo(ostream* os) const {
239    *os << "is an even number";
240  }
241
242  // We deliberately don't define DescribeNegationTo() and
243  // ExplainMatchResultTo() here, to make sure the definition of these
244  // two methods is optional.
245};
246
247// Makes sure that the MatcherInterface API doesn't change.
248TEST(MatcherInterfaceTest, CanBeImplementedUsingPublishedAPI) {
249  EvenMatcherImpl m;
250}
251
252// Tests implementing a monomorphic matcher using MatchAndExplain().
253
254class NewEvenMatcherImpl : public MatcherInterface<int> {
255 public:
256  virtual bool MatchAndExplain(int x, MatchResultListener* listener) const {
257    const bool match = x % 2 == 0;
258    // Verifies that we can stream to a listener directly.
259    *listener << "value % " << 2;
260    if (listener->stream() != NULL) {
261      // Verifies that we can stream to a listener's underlying stream
262      // too.
263      *listener->stream() << " == " << (x % 2);
264    }
265    return match;
266  }
267
268  virtual void DescribeTo(ostream* os) const {
269    *os << "is an even number";
270  }
271};
272
273TEST(MatcherInterfaceTest, CanBeImplementedUsingNewAPI) {
274  Matcher<int> m = MakeMatcher(new NewEvenMatcherImpl);
275  EXPECT_TRUE(m.Matches(2));
276  EXPECT_FALSE(m.Matches(3));
277  EXPECT_EQ("value % 2 == 0", Explain(m, 2));
278  EXPECT_EQ("value % 2 == 1", Explain(m, 3));
279}
280
281// Tests default-constructing a matcher.
282TEST(MatcherTest, CanBeDefaultConstructed) {
283  Matcher<double> m;
284}
285
286// Tests that Matcher<T> can be constructed from a MatcherInterface<T>*.
287TEST(MatcherTest, CanBeConstructedFromMatcherInterface) {
288  const MatcherInterface<int>* impl = new EvenMatcherImpl;
289  Matcher<int> m(impl);
290  EXPECT_TRUE(m.Matches(4));
291  EXPECT_FALSE(m.Matches(5));
292}
293
294// Tests that value can be used in place of Eq(value).
295TEST(MatcherTest, CanBeImplicitlyConstructedFromValue) {
296  Matcher<int> m1 = 5;
297  EXPECT_TRUE(m1.Matches(5));
298  EXPECT_FALSE(m1.Matches(6));
299}
300
301// Tests that NULL can be used in place of Eq(NULL).
302TEST(MatcherTest, CanBeImplicitlyConstructedFromNULL) {
303  Matcher<int*> m1 = NULL;
304  EXPECT_TRUE(m1.Matches(NULL));
305  int n = 0;
306  EXPECT_FALSE(m1.Matches(&n));
307}
308
309// Tests that matchers are copyable.
310TEST(MatcherTest, IsCopyable) {
311  // Tests the copy constructor.
312  Matcher<bool> m1 = Eq(false);
313  EXPECT_TRUE(m1.Matches(false));
314  EXPECT_FALSE(m1.Matches(true));
315
316  // Tests the assignment operator.
317  m1 = Eq(true);
318  EXPECT_TRUE(m1.Matches(true));
319  EXPECT_FALSE(m1.Matches(false));
320}
321
322// Tests that Matcher<T>::DescribeTo() calls
323// MatcherInterface<T>::DescribeTo().
324TEST(MatcherTest, CanDescribeItself) {
325  EXPECT_EQ("is an even number",
326            Describe(Matcher<int>(new EvenMatcherImpl)));
327}
328
329// Tests Matcher<T>::MatchAndExplain().
330TEST(MatcherTest, MatchAndExplain) {
331  Matcher<int> m = GreaterThan(0);
332  StringMatchResultListener listener1;
333  EXPECT_TRUE(m.MatchAndExplain(42, &listener1));
334  EXPECT_EQ("which is 42 more than 0", listener1.str());
335
336  StringMatchResultListener listener2;
337  EXPECT_FALSE(m.MatchAndExplain(-9, &listener2));
338  EXPECT_EQ("which is 9 less than 0", listener2.str());
339}
340
341// Tests that a C-string literal can be implicitly converted to a
342// Matcher<string> or Matcher<const string&>.
343TEST(StringMatcherTest, CanBeImplicitlyConstructedFromCStringLiteral) {
344  Matcher<string> m1 = "hi";
345  EXPECT_TRUE(m1.Matches("hi"));
346  EXPECT_FALSE(m1.Matches("hello"));
347
348  Matcher<const string&> m2 = "hi";
349  EXPECT_TRUE(m2.Matches("hi"));
350  EXPECT_FALSE(m2.Matches("hello"));
351}
352
353// Tests that a string object can be implicitly converted to a
354// Matcher<string> or Matcher<const string&>.
355TEST(StringMatcherTest, CanBeImplicitlyConstructedFromString) {
356  Matcher<string> m1 = string("hi");
357  EXPECT_TRUE(m1.Matches("hi"));
358  EXPECT_FALSE(m1.Matches("hello"));
359
360  Matcher<const string&> m2 = string("hi");
361  EXPECT_TRUE(m2.Matches("hi"));
362  EXPECT_FALSE(m2.Matches("hello"));
363}
364
365// Tests that MakeMatcher() constructs a Matcher<T> from a
366// MatcherInterface* without requiring the user to explicitly
367// write the type.
368TEST(MakeMatcherTest, ConstructsMatcherFromMatcherInterface) {
369  const MatcherInterface<int>* dummy_impl = NULL;
370  Matcher<int> m = MakeMatcher(dummy_impl);
371}
372
373// Tests that MakePolymorphicMatcher() can construct a polymorphic
374// matcher from its implementation using the old API.
375const int g_bar = 1;
376class ReferencesBarOrIsZeroImpl {
377 public:
378  template <typename T>
379  bool MatchAndExplain(const T& x,
380                       MatchResultListener* /* listener */) const {
381    const void* p = &x;
382    return p == &g_bar || x == 0;
383  }
384
385  void DescribeTo(ostream* os) const { *os << "g_bar or zero"; }
386
387  void DescribeNegationTo(ostream* os) const {
388    *os << "doesn't reference g_bar and is not zero";
389  }
390};
391
392// This function verifies that MakePolymorphicMatcher() returns a
393// PolymorphicMatcher<T> where T is the argument's type.
394PolymorphicMatcher<ReferencesBarOrIsZeroImpl> ReferencesBarOrIsZero() {
395  return MakePolymorphicMatcher(ReferencesBarOrIsZeroImpl());
396}
397
398TEST(MakePolymorphicMatcherTest, ConstructsMatcherUsingOldAPI) {
399  // Using a polymorphic matcher to match a reference type.
400  Matcher<const int&> m1 = ReferencesBarOrIsZero();
401  EXPECT_TRUE(m1.Matches(0));
402  // Verifies that the identity of a by-reference argument is preserved.
403  EXPECT_TRUE(m1.Matches(g_bar));
404  EXPECT_FALSE(m1.Matches(1));
405  EXPECT_EQ("g_bar or zero", Describe(m1));
406
407  // Using a polymorphic matcher to match a value type.
408  Matcher<double> m2 = ReferencesBarOrIsZero();
409  EXPECT_TRUE(m2.Matches(0.0));
410  EXPECT_FALSE(m2.Matches(0.1));
411  EXPECT_EQ("g_bar or zero", Describe(m2));
412}
413
414// Tests implementing a polymorphic matcher using MatchAndExplain().
415
416class PolymorphicIsEvenImpl {
417 public:
418  void DescribeTo(ostream* os) const { *os << "is even"; }
419
420  void DescribeNegationTo(ostream* os) const {
421    *os << "is odd";
422  }
423
424  template <typename T>
425  bool MatchAndExplain(const T& x, MatchResultListener* listener) const {
426    // Verifies that we can stream to the listener directly.
427    *listener << "% " << 2;
428    if (listener->stream() != NULL) {
429      // Verifies that we can stream to the listener's underlying stream
430      // too.
431      *listener->stream() << " == " << (x % 2);
432    }
433    return (x % 2) == 0;
434  }
435};
436
437PolymorphicMatcher<PolymorphicIsEvenImpl> PolymorphicIsEven() {
438  return MakePolymorphicMatcher(PolymorphicIsEvenImpl());
439}
440
441TEST(MakePolymorphicMatcherTest, ConstructsMatcherUsingNewAPI) {
442  // Using PolymorphicIsEven() as a Matcher<int>.
443  const Matcher<int> m1 = PolymorphicIsEven();
444  EXPECT_TRUE(m1.Matches(42));
445  EXPECT_FALSE(m1.Matches(43));
446  EXPECT_EQ("is even", Describe(m1));
447
448  const Matcher<int> not_m1 = Not(m1);
449  EXPECT_EQ("is odd", Describe(not_m1));
450
451  EXPECT_EQ("% 2 == 0", Explain(m1, 42));
452
453  // Using PolymorphicIsEven() as a Matcher<char>.
454  const Matcher<char> m2 = PolymorphicIsEven();
455  EXPECT_TRUE(m2.Matches('\x42'));
456  EXPECT_FALSE(m2.Matches('\x43'));
457  EXPECT_EQ("is even", Describe(m2));
458
459  const Matcher<char> not_m2 = Not(m2);
460  EXPECT_EQ("is odd", Describe(not_m2));
461
462  EXPECT_EQ("% 2 == 0", Explain(m2, '\x42'));
463}
464
465// Tests that MatcherCast<T>(m) works when m is a polymorphic matcher.
466TEST(MatcherCastTest, FromPolymorphicMatcher) {
467  Matcher<int> m = MatcherCast<int>(Eq(5));
468  EXPECT_TRUE(m.Matches(5));
469  EXPECT_FALSE(m.Matches(6));
470}
471
472// For testing casting matchers between compatible types.
473class IntValue {
474 public:
475  // An int can be statically (although not implicitly) cast to a
476  // IntValue.
477  explicit IntValue(int a_value) : value_(a_value) {}
478
479  int value() const { return value_; }
480 private:
481  int value_;
482};
483
484// For testing casting matchers between compatible types.
485bool IsPositiveIntValue(const IntValue& foo) {
486  return foo.value() > 0;
487}
488
489// Tests that MatcherCast<T>(m) works when m is a Matcher<U> where T
490// can be statically converted to U.
491TEST(MatcherCastTest, FromCompatibleType) {
492  Matcher<double> m1 = Eq(2.0);
493  Matcher<int> m2 = MatcherCast<int>(m1);
494  EXPECT_TRUE(m2.Matches(2));
495  EXPECT_FALSE(m2.Matches(3));
496
497  Matcher<IntValue> m3 = Truly(IsPositiveIntValue);
498  Matcher<int> m4 = MatcherCast<int>(m3);
499  // In the following, the arguments 1 and 0 are statically converted
500  // to IntValue objects, and then tested by the IsPositiveIntValue()
501  // predicate.
502  EXPECT_TRUE(m4.Matches(1));
503  EXPECT_FALSE(m4.Matches(0));
504}
505
506// Tests that MatcherCast<T>(m) works when m is a Matcher<const T&>.
507TEST(MatcherCastTest, FromConstReferenceToNonReference) {
508  Matcher<const int&> m1 = Eq(0);
509  Matcher<int> m2 = MatcherCast<int>(m1);
510  EXPECT_TRUE(m2.Matches(0));
511  EXPECT_FALSE(m2.Matches(1));
512}
513
514// Tests that MatcherCast<T>(m) works when m is a Matcher<T&>.
515TEST(MatcherCastTest, FromReferenceToNonReference) {
516  Matcher<int&> m1 = Eq(0);
517  Matcher<int> m2 = MatcherCast<int>(m1);
518  EXPECT_TRUE(m2.Matches(0));
519  EXPECT_FALSE(m2.Matches(1));
520}
521
522// Tests that MatcherCast<const T&>(m) works when m is a Matcher<T>.
523TEST(MatcherCastTest, FromNonReferenceToConstReference) {
524  Matcher<int> m1 = Eq(0);
525  Matcher<const int&> m2 = MatcherCast<const int&>(m1);
526  EXPECT_TRUE(m2.Matches(0));
527  EXPECT_FALSE(m2.Matches(1));
528}
529
530// Tests that MatcherCast<T&>(m) works when m is a Matcher<T>.
531TEST(MatcherCastTest, FromNonReferenceToReference) {
532  Matcher<int> m1 = Eq(0);
533  Matcher<int&> m2 = MatcherCast<int&>(m1);
534  int n = 0;
535  EXPECT_TRUE(m2.Matches(n));
536  n = 1;
537  EXPECT_FALSE(m2.Matches(n));
538}
539
540// Tests that MatcherCast<T>(m) works when m is a Matcher<T>.
541TEST(MatcherCastTest, FromSameType) {
542  Matcher<int> m1 = Eq(0);
543  Matcher<int> m2 = MatcherCast<int>(m1);
544  EXPECT_TRUE(m2.Matches(0));
545  EXPECT_FALSE(m2.Matches(1));
546}
547
548// Implicitly convertible form any type.
549struct ConvertibleFromAny {
550  ConvertibleFromAny(int a_value) : value(a_value) {}
551  template <typename T>
552  ConvertibleFromAny(const T& a_value) : value(-1) {
553    ADD_FAILURE() << "Conversion constructor called";
554  }
555  int value;
556};
557
558bool operator==(const ConvertibleFromAny& a, const ConvertibleFromAny& b) {
559  return a.value == b.value;
560}
561
562ostream& operator<<(ostream& os, const ConvertibleFromAny& a) {
563  return os << a.value;
564}
565
566TEST(MatcherCastTest, ConversionConstructorIsUsed) {
567  Matcher<ConvertibleFromAny> m = MatcherCast<ConvertibleFromAny>(1);
568  EXPECT_TRUE(m.Matches(ConvertibleFromAny(1)));
569  EXPECT_FALSE(m.Matches(ConvertibleFromAny(2)));
570}
571
572TEST(MatcherCastTest, FromConvertibleFromAny) {
573  Matcher<ConvertibleFromAny> m =
574      MatcherCast<ConvertibleFromAny>(Eq(ConvertibleFromAny(1)));
575  EXPECT_TRUE(m.Matches(ConvertibleFromAny(1)));
576  EXPECT_FALSE(m.Matches(ConvertibleFromAny(2)));
577}
578
579class Base {};
580class Derived : public Base {};
581
582// Tests that SafeMatcherCast<T>(m) works when m is a polymorphic matcher.
583TEST(SafeMatcherCastTest, FromPolymorphicMatcher) {
584  Matcher<char> m2 = SafeMatcherCast<char>(Eq(32));
585  EXPECT_TRUE(m2.Matches(' '));
586  EXPECT_FALSE(m2.Matches('\n'));
587}
588
589// Tests that SafeMatcherCast<T>(m) works when m is a Matcher<U> where
590// T and U are arithmetic types and T can be losslessly converted to
591// U.
592TEST(SafeMatcherCastTest, FromLosslesslyConvertibleArithmeticType) {
593  Matcher<double> m1 = DoubleEq(1.0);
594  Matcher<float> m2 = SafeMatcherCast<float>(m1);
595  EXPECT_TRUE(m2.Matches(1.0f));
596  EXPECT_FALSE(m2.Matches(2.0f));
597
598  Matcher<char> m3 = SafeMatcherCast<char>(TypedEq<int>('a'));
599  EXPECT_TRUE(m3.Matches('a'));
600  EXPECT_FALSE(m3.Matches('b'));
601}
602
603// Tests that SafeMatcherCast<T>(m) works when m is a Matcher<U> where T and U
604// are pointers or references to a derived and a base class, correspondingly.
605TEST(SafeMatcherCastTest, FromBaseClass) {
606  Derived d, d2;
607  Matcher<Base*> m1 = Eq(&d);
608  Matcher<Derived*> m2 = SafeMatcherCast<Derived*>(m1);
609  EXPECT_TRUE(m2.Matches(&d));
610  EXPECT_FALSE(m2.Matches(&d2));
611
612  Matcher<Base&> m3 = Ref(d);
613  Matcher<Derived&> m4 = SafeMatcherCast<Derived&>(m3);
614  EXPECT_TRUE(m4.Matches(d));
615  EXPECT_FALSE(m4.Matches(d2));
616}
617
618// Tests that SafeMatcherCast<T&>(m) works when m is a Matcher<const T&>.
619TEST(SafeMatcherCastTest, FromConstReferenceToReference) {
620  int n = 0;
621  Matcher<const int&> m1 = Ref(n);
622  Matcher<int&> m2 = SafeMatcherCast<int&>(m1);
623  int n1 = 0;
624  EXPECT_TRUE(m2.Matches(n));
625  EXPECT_FALSE(m2.Matches(n1));
626}
627
628// Tests that MatcherCast<const T&>(m) works when m is a Matcher<T>.
629TEST(SafeMatcherCastTest, FromNonReferenceToConstReference) {
630  Matcher<int> m1 = Eq(0);
631  Matcher<const int&> m2 = SafeMatcherCast<const int&>(m1);
632  EXPECT_TRUE(m2.Matches(0));
633  EXPECT_FALSE(m2.Matches(1));
634}
635
636// Tests that SafeMatcherCast<T&>(m) works when m is a Matcher<T>.
637TEST(SafeMatcherCastTest, FromNonReferenceToReference) {
638  Matcher<int> m1 = Eq(0);
639  Matcher<int&> m2 = SafeMatcherCast<int&>(m1);
640  int n = 0;
641  EXPECT_TRUE(m2.Matches(n));
642  n = 1;
643  EXPECT_FALSE(m2.Matches(n));
644}
645
646// Tests that SafeMatcherCast<T>(m) works when m is a Matcher<T>.
647TEST(SafeMatcherCastTest, FromSameType) {
648  Matcher<int> m1 = Eq(0);
649  Matcher<int> m2 = SafeMatcherCast<int>(m1);
650  EXPECT_TRUE(m2.Matches(0));
651  EXPECT_FALSE(m2.Matches(1));
652}
653
654TEST(SafeMatcherCastTest, ConversionConstructorIsUsed) {
655  Matcher<ConvertibleFromAny> m = SafeMatcherCast<ConvertibleFromAny>(1);
656  EXPECT_TRUE(m.Matches(ConvertibleFromAny(1)));
657  EXPECT_FALSE(m.Matches(ConvertibleFromAny(2)));
658}
659
660TEST(SafeMatcherCastTest, FromConvertibleFromAny) {
661  Matcher<ConvertibleFromAny> m =
662      SafeMatcherCast<ConvertibleFromAny>(Eq(ConvertibleFromAny(1)));
663  EXPECT_TRUE(m.Matches(ConvertibleFromAny(1)));
664  EXPECT_FALSE(m.Matches(ConvertibleFromAny(2)));
665}
666
667// Tests that A<T>() matches any value of type T.
668TEST(ATest, MatchesAnyValue) {
669  // Tests a matcher for a value type.
670  Matcher<double> m1 = A<double>();
671  EXPECT_TRUE(m1.Matches(91.43));
672  EXPECT_TRUE(m1.Matches(-15.32));
673
674  // Tests a matcher for a reference type.
675  int a = 2;
676  int b = -6;
677  Matcher<int&> m2 = A<int&>();
678  EXPECT_TRUE(m2.Matches(a));
679  EXPECT_TRUE(m2.Matches(b));
680}
681
682// Tests that A<T>() describes itself properly.
683TEST(ATest, CanDescribeSelf) {
684  EXPECT_EQ("is anything", Describe(A<bool>()));
685}
686
687// Tests that An<T>() matches any value of type T.
688TEST(AnTest, MatchesAnyValue) {
689  // Tests a matcher for a value type.
690  Matcher<int> m1 = An<int>();
691  EXPECT_TRUE(m1.Matches(9143));
692  EXPECT_TRUE(m1.Matches(-1532));
693
694  // Tests a matcher for a reference type.
695  int a = 2;
696  int b = -6;
697  Matcher<int&> m2 = An<int&>();
698  EXPECT_TRUE(m2.Matches(a));
699  EXPECT_TRUE(m2.Matches(b));
700}
701
702// Tests that An<T>() describes itself properly.
703TEST(AnTest, CanDescribeSelf) {
704  EXPECT_EQ("is anything", Describe(An<int>()));
705}
706
707// Tests that _ can be used as a matcher for any type and matches any
708// value of that type.
709TEST(UnderscoreTest, MatchesAnyValue) {
710  // Uses _ as a matcher for a value type.
711  Matcher<int> m1 = _;
712  EXPECT_TRUE(m1.Matches(123));
713  EXPECT_TRUE(m1.Matches(-242));
714
715  // Uses _ as a matcher for a reference type.
716  bool a = false;
717  const bool b = true;
718  Matcher<const bool&> m2 = _;
719  EXPECT_TRUE(m2.Matches(a));
720  EXPECT_TRUE(m2.Matches(b));
721}
722
723// Tests that _ describes itself properly.
724TEST(UnderscoreTest, CanDescribeSelf) {
725  Matcher<int> m = _;
726  EXPECT_EQ("is anything", Describe(m));
727}
728
729// Tests that Eq(x) matches any value equal to x.
730TEST(EqTest, MatchesEqualValue) {
731  // 2 C-strings with same content but different addresses.
732  const char a1[] = "hi";
733  const char a2[] = "hi";
734
735  Matcher<const char*> m1 = Eq(a1);
736  EXPECT_TRUE(m1.Matches(a1));
737  EXPECT_FALSE(m1.Matches(a2));
738}
739
740// Tests that Eq(v) describes itself properly.
741
742class Unprintable {
743 public:
744  Unprintable() : c_('a') {}
745
746  bool operator==(const Unprintable& /* rhs */) { return true; }
747 private:
748  char c_;
749};
750
751TEST(EqTest, CanDescribeSelf) {
752  Matcher<Unprintable> m = Eq(Unprintable());
753  EXPECT_EQ("is equal to 1-byte object <61>", Describe(m));
754}
755
756// Tests that Eq(v) can be used to match any type that supports
757// comparing with type T, where T is v's type.
758TEST(EqTest, IsPolymorphic) {
759  Matcher<int> m1 = Eq(1);
760  EXPECT_TRUE(m1.Matches(1));
761  EXPECT_FALSE(m1.Matches(2));
762
763  Matcher<char> m2 = Eq(1);
764  EXPECT_TRUE(m2.Matches('\1'));
765  EXPECT_FALSE(m2.Matches('a'));
766}
767
768// Tests that TypedEq<T>(v) matches values of type T that's equal to v.
769TEST(TypedEqTest, ChecksEqualityForGivenType) {
770  Matcher<char> m1 = TypedEq<char>('a');
771  EXPECT_TRUE(m1.Matches('a'));
772  EXPECT_FALSE(m1.Matches('b'));
773
774  Matcher<int> m2 = TypedEq<int>(6);
775  EXPECT_TRUE(m2.Matches(6));
776  EXPECT_FALSE(m2.Matches(7));
777}
778
779// Tests that TypedEq(v) describes itself properly.
780TEST(TypedEqTest, CanDescribeSelf) {
781  EXPECT_EQ("is equal to 2", Describe(TypedEq<int>(2)));
782}
783
784// Tests that TypedEq<T>(v) has type Matcher<T>.
785
786// Type<T>::IsTypeOf(v) compiles iff the type of value v is T, where T
787// is a "bare" type (i.e. not in the form of const U or U&).  If v's
788// type is not T, the compiler will generate a message about
789// "undefined referece".
790template <typename T>
791struct Type {
792  static bool IsTypeOf(const T& /* v */) { return true; }
793
794  template <typename T2>
795  static void IsTypeOf(T2 v);
796};
797
798TEST(TypedEqTest, HasSpecifiedType) {
799  // Verfies that the type of TypedEq<T>(v) is Matcher<T>.
800  Type<Matcher<int> >::IsTypeOf(TypedEq<int>(5));
801  Type<Matcher<double> >::IsTypeOf(TypedEq<double>(5));
802}
803
804// Tests that Ge(v) matches anything >= v.
805TEST(GeTest, ImplementsGreaterThanOrEqual) {
806  Matcher<int> m1 = Ge(0);
807  EXPECT_TRUE(m1.Matches(1));
808  EXPECT_TRUE(m1.Matches(0));
809  EXPECT_FALSE(m1.Matches(-1));
810}
811
812// Tests that Ge(v) describes itself properly.
813TEST(GeTest, CanDescribeSelf) {
814  Matcher<int> m = Ge(5);
815  EXPECT_EQ("is >= 5", Describe(m));
816}
817
818// Tests that Gt(v) matches anything > v.
819TEST(GtTest, ImplementsGreaterThan) {
820  Matcher<double> m1 = Gt(0);
821  EXPECT_TRUE(m1.Matches(1.0));
822  EXPECT_FALSE(m1.Matches(0.0));
823  EXPECT_FALSE(m1.Matches(-1.0));
824}
825
826// Tests that Gt(v) describes itself properly.
827TEST(GtTest, CanDescribeSelf) {
828  Matcher<int> m = Gt(5);
829  EXPECT_EQ("is > 5", Describe(m));
830}
831
832// Tests that Le(v) matches anything <= v.
833TEST(LeTest, ImplementsLessThanOrEqual) {
834  Matcher<char> m1 = Le('b');
835  EXPECT_TRUE(m1.Matches('a'));
836  EXPECT_TRUE(m1.Matches('b'));
837  EXPECT_FALSE(m1.Matches('c'));
838}
839
840// Tests that Le(v) describes itself properly.
841TEST(LeTest, CanDescribeSelf) {
842  Matcher<int> m = Le(5);
843  EXPECT_EQ("is <= 5", Describe(m));
844}
845
846// Tests that Lt(v) matches anything < v.
847TEST(LtTest, ImplementsLessThan) {
848  Matcher<const string&> m1 = Lt("Hello");
849  EXPECT_TRUE(m1.Matches("Abc"));
850  EXPECT_FALSE(m1.Matches("Hello"));
851  EXPECT_FALSE(m1.Matches("Hello, world!"));
852}
853
854// Tests that Lt(v) describes itself properly.
855TEST(LtTest, CanDescribeSelf) {
856  Matcher<int> m = Lt(5);
857  EXPECT_EQ("is < 5", Describe(m));
858}
859
860// Tests that Ne(v) matches anything != v.
861TEST(NeTest, ImplementsNotEqual) {
862  Matcher<int> m1 = Ne(0);
863  EXPECT_TRUE(m1.Matches(1));
864  EXPECT_TRUE(m1.Matches(-1));
865  EXPECT_FALSE(m1.Matches(0));
866}
867
868// Tests that Ne(v) describes itself properly.
869TEST(NeTest, CanDescribeSelf) {
870  Matcher<int> m = Ne(5);
871  EXPECT_EQ("isn't equal to 5", Describe(m));
872}
873
874// Tests that IsNull() matches any NULL pointer of any type.
875TEST(IsNullTest, MatchesNullPointer) {
876  Matcher<int*> m1 = IsNull();
877  int* p1 = NULL;
878  int n = 0;
879  EXPECT_TRUE(m1.Matches(p1));
880  EXPECT_FALSE(m1.Matches(&n));
881
882  Matcher<const char*> m2 = IsNull();
883  const char* p2 = NULL;
884  EXPECT_TRUE(m2.Matches(p2));
885  EXPECT_FALSE(m2.Matches("hi"));
886
887#if !GTEST_OS_SYMBIAN
888  // Nokia's Symbian compiler generates:
889  // gmock-matchers.h: ambiguous access to overloaded function
890  // gmock-matchers.h: 'testing::Matcher<void *>::Matcher(void *)'
891  // gmock-matchers.h: 'testing::Matcher<void *>::Matcher(const testing::
892  //     MatcherInterface<void *> *)'
893  // gmock-matchers.h:  (point of instantiation: 'testing::
894  //     gmock_matchers_test::IsNullTest_MatchesNullPointer_Test::TestBody()')
895  // gmock-matchers.h:   (instantiating: 'testing::PolymorphicMatc
896  Matcher<void*> m3 = IsNull();
897  void* p3 = NULL;
898  EXPECT_TRUE(m3.Matches(p3));
899  EXPECT_FALSE(m3.Matches(reinterpret_cast<void*>(0xbeef)));
900#endif
901}
902
903TEST(IsNullTest, LinkedPtr) {
904  const Matcher<linked_ptr<int> > m = IsNull();
905  const linked_ptr<int> null_p;
906  const linked_ptr<int> non_null_p(new int);
907
908  EXPECT_TRUE(m.Matches(null_p));
909  EXPECT_FALSE(m.Matches(non_null_p));
910}
911
912TEST(IsNullTest, ReferenceToConstLinkedPtr) {
913  const Matcher<const linked_ptr<double>&> m = IsNull();
914  const linked_ptr<double> null_p;
915  const linked_ptr<double> non_null_p(new double);
916
917  EXPECT_TRUE(m.Matches(null_p));
918  EXPECT_FALSE(m.Matches(non_null_p));
919}
920
921TEST(IsNullTest, ReferenceToConstScopedPtr) {
922  const Matcher<const scoped_ptr<double>&> m = IsNull();
923  const scoped_ptr<double> null_p;
924  const scoped_ptr<double> non_null_p(new double);
925
926  EXPECT_TRUE(m.Matches(null_p));
927  EXPECT_FALSE(m.Matches(non_null_p));
928}
929
930// Tests that IsNull() describes itself properly.
931TEST(IsNullTest, CanDescribeSelf) {
932  Matcher<int*> m = IsNull();
933  EXPECT_EQ("is NULL", Describe(m));
934  EXPECT_EQ("isn't NULL", DescribeNegation(m));
935}
936
937// Tests that NotNull() matches any non-NULL pointer of any type.
938TEST(NotNullTest, MatchesNonNullPointer) {
939  Matcher<int*> m1 = NotNull();
940  int* p1 = NULL;
941  int n = 0;
942  EXPECT_FALSE(m1.Matches(p1));
943  EXPECT_TRUE(m1.Matches(&n));
944
945  Matcher<const char*> m2 = NotNull();
946  const char* p2 = NULL;
947  EXPECT_FALSE(m2.Matches(p2));
948  EXPECT_TRUE(m2.Matches("hi"));
949}
950
951TEST(NotNullTest, LinkedPtr) {
952  const Matcher<linked_ptr<int> > m = NotNull();
953  const linked_ptr<int> null_p;
954  const linked_ptr<int> non_null_p(new int);
955
956  EXPECT_FALSE(m.Matches(null_p));
957  EXPECT_TRUE(m.Matches(non_null_p));
958}
959
960TEST(NotNullTest, ReferenceToConstLinkedPtr) {
961  const Matcher<const linked_ptr<double>&> m = NotNull();
962  const linked_ptr<double> null_p;
963  const linked_ptr<double> non_null_p(new double);
964
965  EXPECT_FALSE(m.Matches(null_p));
966  EXPECT_TRUE(m.Matches(non_null_p));
967}
968
969TEST(NotNullTest, ReferenceToConstScopedPtr) {
970  const Matcher<const scoped_ptr<double>&> m = NotNull();
971  const scoped_ptr<double> null_p;
972  const scoped_ptr<double> non_null_p(new double);
973
974  EXPECT_FALSE(m.Matches(null_p));
975  EXPECT_TRUE(m.Matches(non_null_p));
976}
977
978// Tests that NotNull() describes itself properly.
979TEST(NotNullTest, CanDescribeSelf) {
980  Matcher<int*> m = NotNull();
981  EXPECT_EQ("isn't NULL", Describe(m));
982}
983
984// Tests that Ref(variable) matches an argument that references
985// 'variable'.
986TEST(RefTest, MatchesSameVariable) {
987  int a = 0;
988  int b = 0;
989  Matcher<int&> m = Ref(a);
990  EXPECT_TRUE(m.Matches(a));
991  EXPECT_FALSE(m.Matches(b));
992}
993
994// Tests that Ref(variable) describes itself properly.
995TEST(RefTest, CanDescribeSelf) {
996  int n = 5;
997  Matcher<int&> m = Ref(n);
998  stringstream ss;
999  ss << "references the variable @" << &n << " 5";
1000  EXPECT_EQ(string(ss.str()), Describe(m));
1001}
1002
1003// Test that Ref(non_const_varialbe) can be used as a matcher for a
1004// const reference.
1005TEST(RefTest, CanBeUsedAsMatcherForConstReference) {
1006  int a = 0;
1007  int b = 0;
1008  Matcher<const int&> m = Ref(a);
1009  EXPECT_TRUE(m.Matches(a));
1010  EXPECT_FALSE(m.Matches(b));
1011}
1012
1013// Tests that Ref(variable) is covariant, i.e. Ref(derived) can be
1014// used wherever Ref(base) can be used (Ref(derived) is a sub-type
1015// of Ref(base), but not vice versa.
1016
1017TEST(RefTest, IsCovariant) {
1018  Base base, base2;
1019  Derived derived;
1020  Matcher<const Base&> m1 = Ref(base);
1021  EXPECT_TRUE(m1.Matches(base));
1022  EXPECT_FALSE(m1.Matches(base2));
1023  EXPECT_FALSE(m1.Matches(derived));
1024
1025  m1 = Ref(derived);
1026  EXPECT_TRUE(m1.Matches(derived));
1027  EXPECT_FALSE(m1.Matches(base));
1028  EXPECT_FALSE(m1.Matches(base2));
1029}
1030
1031TEST(RefTest, ExplainsResult) {
1032  int n = 0;
1033  EXPECT_THAT(Explain(Matcher<const int&>(Ref(n)), n),
1034              StartsWith("which is located @"));
1035
1036  int m = 0;
1037  EXPECT_THAT(Explain(Matcher<const int&>(Ref(n)), m),
1038              StartsWith("which is located @"));
1039}
1040
1041// Tests string comparison matchers.
1042
1043TEST(StrEqTest, MatchesEqualString) {
1044  Matcher<const char*> m = StrEq(string("Hello"));
1045  EXPECT_TRUE(m.Matches("Hello"));
1046  EXPECT_FALSE(m.Matches("hello"));
1047  EXPECT_FALSE(m.Matches(NULL));
1048
1049  Matcher<const string&> m2 = StrEq("Hello");
1050  EXPECT_TRUE(m2.Matches("Hello"));
1051  EXPECT_FALSE(m2.Matches("Hi"));
1052}
1053
1054TEST(StrEqTest, CanDescribeSelf) {
1055  Matcher<string> m = StrEq("Hi-\'\"?\\\a\b\f\n\r\t\v\xD3");
1056  EXPECT_EQ("is equal to \"Hi-\'\\\"?\\\\\\a\\b\\f\\n\\r\\t\\v\\xD3\"",
1057      Describe(m));
1058
1059  string str("01204500800");
1060  str[3] = '\0';
1061  Matcher<string> m2 = StrEq(str);
1062  EXPECT_EQ("is equal to \"012\\04500800\"", Describe(m2));
1063  str[0] = str[6] = str[7] = str[9] = str[10] = '\0';
1064  Matcher<string> m3 = StrEq(str);
1065  EXPECT_EQ("is equal to \"\\012\\045\\0\\08\\0\\0\"", Describe(m3));
1066}
1067
1068TEST(StrNeTest, MatchesUnequalString) {
1069  Matcher<const char*> m = StrNe("Hello");
1070  EXPECT_TRUE(m.Matches(""));
1071  EXPECT_TRUE(m.Matches(NULL));
1072  EXPECT_FALSE(m.Matches("Hello"));
1073
1074  Matcher<string> m2 = StrNe(string("Hello"));
1075  EXPECT_TRUE(m2.Matches("hello"));
1076  EXPECT_FALSE(m2.Matches("Hello"));
1077}
1078
1079TEST(StrNeTest, CanDescribeSelf) {
1080  Matcher<const char*> m = StrNe("Hi");
1081  EXPECT_EQ("isn't equal to \"Hi\"", Describe(m));
1082}
1083
1084TEST(StrCaseEqTest, MatchesEqualStringIgnoringCase) {
1085  Matcher<const char*> m = StrCaseEq(string("Hello"));
1086  EXPECT_TRUE(m.Matches("Hello"));
1087  EXPECT_TRUE(m.Matches("hello"));
1088  EXPECT_FALSE(m.Matches("Hi"));
1089  EXPECT_FALSE(m.Matches(NULL));
1090
1091  Matcher<const string&> m2 = StrCaseEq("Hello");
1092  EXPECT_TRUE(m2.Matches("hello"));
1093  EXPECT_FALSE(m2.Matches("Hi"));
1094}
1095
1096TEST(StrCaseEqTest, MatchesEqualStringWith0IgnoringCase) {
1097  string str1("oabocdooeoo");
1098  string str2("OABOCDOOEOO");
1099  Matcher<const string&> m0 = StrCaseEq(str1);
1100  EXPECT_FALSE(m0.Matches(str2 + string(1, '\0')));
1101
1102  str1[3] = str2[3] = '\0';
1103  Matcher<const string&> m1 = StrCaseEq(str1);
1104  EXPECT_TRUE(m1.Matches(str2));
1105
1106  str1[0] = str1[6] = str1[7] = str1[10] = '\0';
1107  str2[0] = str2[6] = str2[7] = str2[10] = '\0';
1108  Matcher<const string&> m2 = StrCaseEq(str1);
1109  str1[9] = str2[9] = '\0';
1110  EXPECT_FALSE(m2.Matches(str2));
1111
1112  Matcher<const string&> m3 = StrCaseEq(str1);
1113  EXPECT_TRUE(m3.Matches(str2));
1114
1115  EXPECT_FALSE(m3.Matches(str2 + "x"));
1116  str2.append(1, '\0');
1117  EXPECT_FALSE(m3.Matches(str2));
1118  EXPECT_FALSE(m3.Matches(string(str2, 0, 9)));
1119}
1120
1121TEST(StrCaseEqTest, CanDescribeSelf) {
1122  Matcher<string> m = StrCaseEq("Hi");
1123  EXPECT_EQ("is equal to (ignoring case) \"Hi\"", Describe(m));
1124}
1125
1126TEST(StrCaseNeTest, MatchesUnequalStringIgnoringCase) {
1127  Matcher<const char*> m = StrCaseNe("Hello");
1128  EXPECT_TRUE(m.Matches("Hi"));
1129  EXPECT_TRUE(m.Matches(NULL));
1130  EXPECT_FALSE(m.Matches("Hello"));
1131  EXPECT_FALSE(m.Matches("hello"));
1132
1133  Matcher<string> m2 = StrCaseNe(string("Hello"));
1134  EXPECT_TRUE(m2.Matches(""));
1135  EXPECT_FALSE(m2.Matches("Hello"));
1136}
1137
1138TEST(StrCaseNeTest, CanDescribeSelf) {
1139  Matcher<const char*> m = StrCaseNe("Hi");
1140  EXPECT_EQ("isn't equal to (ignoring case) \"Hi\"", Describe(m));
1141}
1142
1143// Tests that HasSubstr() works for matching string-typed values.
1144TEST(HasSubstrTest, WorksForStringClasses) {
1145  const Matcher<string> m1 = HasSubstr("foo");
1146  EXPECT_TRUE(m1.Matches(string("I love food.")));
1147  EXPECT_FALSE(m1.Matches(string("tofo")));
1148
1149  const Matcher<const std::string&> m2 = HasSubstr("foo");
1150  EXPECT_TRUE(m2.Matches(std::string("I love food.")));
1151  EXPECT_FALSE(m2.Matches(std::string("tofo")));
1152}
1153
1154// Tests that HasSubstr() works for matching C-string-typed values.
1155TEST(HasSubstrTest, WorksForCStrings) {
1156  const Matcher<char*> m1 = HasSubstr("foo");
1157  EXPECT_TRUE(m1.Matches(const_cast<char*>("I love food.")));
1158  EXPECT_FALSE(m1.Matches(const_cast<char*>("tofo")));
1159  EXPECT_FALSE(m1.Matches(NULL));
1160
1161  const Matcher<const char*> m2 = HasSubstr("foo");
1162  EXPECT_TRUE(m2.Matches("I love food."));
1163  EXPECT_FALSE(m2.Matches("tofo"));
1164  EXPECT_FALSE(m2.Matches(NULL));
1165}
1166
1167// Tests that HasSubstr(s) describes itself properly.
1168TEST(HasSubstrTest, CanDescribeSelf) {
1169  Matcher<string> m = HasSubstr("foo\n\"");
1170  EXPECT_EQ("has substring \"foo\\n\\\"\"", Describe(m));
1171}
1172
1173TEST(KeyTest, CanDescribeSelf) {
1174  Matcher<const pair<std::string, int>&> m = Key("foo");
1175  EXPECT_EQ("has a key that is equal to \"foo\"", Describe(m));
1176  EXPECT_EQ("doesn't have a key that is equal to \"foo\"", DescribeNegation(m));
1177}
1178
1179TEST(KeyTest, ExplainsResult) {
1180  Matcher<pair<int, bool> > m = Key(GreaterThan(10));
1181  EXPECT_EQ("whose first field is a value which is 5 less than 10",
1182            Explain(m, make_pair(5, true)));
1183  EXPECT_EQ("whose first field is a value which is 5 more than 10",
1184            Explain(m, make_pair(15, true)));
1185}
1186
1187TEST(KeyTest, MatchesCorrectly) {
1188  pair<int, std::string> p(25, "foo");
1189  EXPECT_THAT(p, Key(25));
1190  EXPECT_THAT(p, Not(Key(42)));
1191  EXPECT_THAT(p, Key(Ge(20)));
1192  EXPECT_THAT(p, Not(Key(Lt(25))));
1193}
1194
1195TEST(KeyTest, SafelyCastsInnerMatcher) {
1196  Matcher<int> is_positive = Gt(0);
1197  Matcher<int> is_negative = Lt(0);
1198  pair<char, bool> p('a', true);
1199  EXPECT_THAT(p, Key(is_positive));
1200  EXPECT_THAT(p, Not(Key(is_negative)));
1201}
1202
1203TEST(KeyTest, InsideContainsUsingMap) {
1204  map<int, char> container;
1205  container.insert(make_pair(1, 'a'));
1206  container.insert(make_pair(2, 'b'));
1207  container.insert(make_pair(4, 'c'));
1208  EXPECT_THAT(container, Contains(Key(1)));
1209  EXPECT_THAT(container, Not(Contains(Key(3))));
1210}
1211
1212TEST(KeyTest, InsideContainsUsingMultimap) {
1213  multimap<int, char> container;
1214  container.insert(make_pair(1, 'a'));
1215  container.insert(make_pair(2, 'b'));
1216  container.insert(make_pair(4, 'c'));
1217
1218  EXPECT_THAT(container, Not(Contains(Key(25))));
1219  container.insert(make_pair(25, 'd'));
1220  EXPECT_THAT(container, Contains(Key(25)));
1221  container.insert(make_pair(25, 'e'));
1222  EXPECT_THAT(container, Contains(Key(25)));
1223
1224  EXPECT_THAT(container, Contains(Key(1)));
1225  EXPECT_THAT(container, Not(Contains(Key(3))));
1226}
1227
1228TEST(PairTest, Typing) {
1229  // Test verifies the following type conversions can be compiled.
1230  Matcher<const pair<const char*, int>&> m1 = Pair("foo", 42);
1231  Matcher<const pair<const char*, int> > m2 = Pair("foo", 42);
1232  Matcher<pair<const char*, int> > m3 = Pair("foo", 42);
1233
1234  Matcher<pair<int, const std::string> > m4 = Pair(25, "42");
1235  Matcher<pair<const std::string, int> > m5 = Pair("25", 42);
1236}
1237
1238TEST(PairTest, CanDescribeSelf) {
1239  Matcher<const pair<std::string, int>&> m1 = Pair("foo", 42);
1240  EXPECT_EQ("has a first field that is equal to \"foo\""
1241            ", and has a second field that is equal to 42",
1242            Describe(m1));
1243  EXPECT_EQ("has a first field that isn't equal to \"foo\""
1244            ", or has a second field that isn't equal to 42",
1245            DescribeNegation(m1));
1246  // Double and triple negation (1 or 2 times not and description of negation).
1247  Matcher<const pair<int, int>&> m2 = Not(Pair(Not(13), 42));
1248  EXPECT_EQ("has a first field that isn't equal to 13"
1249            ", and has a second field that is equal to 42",
1250            DescribeNegation(m2));
1251}
1252
1253TEST(PairTest, CanExplainMatchResultTo) {
1254  // If neither field matches, Pair() should explain about the first
1255  // field.
1256  const Matcher<pair<int, int> > m = Pair(GreaterThan(0), GreaterThan(0));
1257  EXPECT_EQ("whose first field does not match, which is 1 less than 0",
1258            Explain(m, make_pair(-1, -2)));
1259
1260  // If the first field matches but the second doesn't, Pair() should
1261  // explain about the second field.
1262  EXPECT_EQ("whose second field does not match, which is 2 less than 0",
1263            Explain(m, make_pair(1, -2)));
1264
1265  // If the first field doesn't match but the second does, Pair()
1266  // should explain about the first field.
1267  EXPECT_EQ("whose first field does not match, which is 1 less than 0",
1268            Explain(m, make_pair(-1, 2)));
1269
1270  // If both fields match, Pair() should explain about them both.
1271  EXPECT_EQ("whose both fields match, where the first field is a value "
1272            "which is 1 more than 0, and the second field is a value "
1273            "which is 2 more than 0",
1274            Explain(m, make_pair(1, 2)));
1275
1276  // If only the first match has an explanation, only this explanation should
1277  // be printed.
1278  const Matcher<pair<int, int> > explain_first = Pair(GreaterThan(0), 0);
1279  EXPECT_EQ("whose both fields match, where the first field is a value "
1280            "which is 1 more than 0",
1281            Explain(explain_first, make_pair(1, 0)));
1282
1283  // If only the second match has an explanation, only this explanation should
1284  // be printed.
1285  const Matcher<pair<int, int> > explain_second = Pair(0, GreaterThan(0));
1286  EXPECT_EQ("whose both fields match, where the second field is a value "
1287            "which is 1 more than 0",
1288            Explain(explain_second, make_pair(0, 1)));
1289}
1290
1291TEST(PairTest, MatchesCorrectly) {
1292  pair<int, std::string> p(25, "foo");
1293
1294  // Both fields match.
1295  EXPECT_THAT(p, Pair(25, "foo"));
1296  EXPECT_THAT(p, Pair(Ge(20), HasSubstr("o")));
1297
1298  // 'first' doesnt' match, but 'second' matches.
1299  EXPECT_THAT(p, Not(Pair(42, "foo")));
1300  EXPECT_THAT(p, Not(Pair(Lt(25), "foo")));
1301
1302  // 'first' matches, but 'second' doesn't match.
1303  EXPECT_THAT(p, Not(Pair(25, "bar")));
1304  EXPECT_THAT(p, Not(Pair(25, Not("foo"))));
1305
1306  // Neither field matches.
1307  EXPECT_THAT(p, Not(Pair(13, "bar")));
1308  EXPECT_THAT(p, Not(Pair(Lt(13), HasSubstr("a"))));
1309}
1310
1311TEST(PairTest, SafelyCastsInnerMatchers) {
1312  Matcher<int> is_positive = Gt(0);
1313  Matcher<int> is_negative = Lt(0);
1314  pair<char, bool> p('a', true);
1315  EXPECT_THAT(p, Pair(is_positive, _));
1316  EXPECT_THAT(p, Not(Pair(is_negative, _)));
1317  EXPECT_THAT(p, Pair(_, is_positive));
1318  EXPECT_THAT(p, Not(Pair(_, is_negative)));
1319}
1320
1321TEST(PairTest, InsideContainsUsingMap) {
1322  map<int, char> container;
1323  container.insert(make_pair(1, 'a'));
1324  container.insert(make_pair(2, 'b'));
1325  container.insert(make_pair(4, 'c'));
1326  EXPECT_THAT(container, Contains(Pair(1, 'a')));
1327  EXPECT_THAT(container, Contains(Pair(1, _)));
1328  EXPECT_THAT(container, Contains(Pair(_, 'a')));
1329  EXPECT_THAT(container, Not(Contains(Pair(3, _))));
1330}
1331
1332// Tests StartsWith(s).
1333
1334TEST(StartsWithTest, MatchesStringWithGivenPrefix) {
1335  const Matcher<const char*> m1 = StartsWith(string(""));
1336  EXPECT_TRUE(m1.Matches("Hi"));
1337  EXPECT_TRUE(m1.Matches(""));
1338  EXPECT_FALSE(m1.Matches(NULL));
1339
1340  const Matcher<const string&> m2 = StartsWith("Hi");
1341  EXPECT_TRUE(m2.Matches("Hi"));
1342  EXPECT_TRUE(m2.Matches("Hi Hi!"));
1343  EXPECT_TRUE(m2.Matches("High"));
1344  EXPECT_FALSE(m2.Matches("H"));
1345  EXPECT_FALSE(m2.Matches(" Hi"));
1346}
1347
1348TEST(StartsWithTest, CanDescribeSelf) {
1349  Matcher<const std::string> m = StartsWith("Hi");
1350  EXPECT_EQ("starts with \"Hi\"", Describe(m));
1351}
1352
1353// Tests EndsWith(s).
1354
1355TEST(EndsWithTest, MatchesStringWithGivenSuffix) {
1356  const Matcher<const char*> m1 = EndsWith("");
1357  EXPECT_TRUE(m1.Matches("Hi"));
1358  EXPECT_TRUE(m1.Matches(""));
1359  EXPECT_FALSE(m1.Matches(NULL));
1360
1361  const Matcher<const string&> m2 = EndsWith(string("Hi"));
1362  EXPECT_TRUE(m2.Matches("Hi"));
1363  EXPECT_TRUE(m2.Matches("Wow Hi Hi"));
1364  EXPECT_TRUE(m2.Matches("Super Hi"));
1365  EXPECT_FALSE(m2.Matches("i"));
1366  EXPECT_FALSE(m2.Matches("Hi "));
1367}
1368
1369TEST(EndsWithTest, CanDescribeSelf) {
1370  Matcher<const std::string> m = EndsWith("Hi");
1371  EXPECT_EQ("ends with \"Hi\"", Describe(m));
1372}
1373
1374// Tests MatchesRegex().
1375
1376TEST(MatchesRegexTest, MatchesStringMatchingGivenRegex) {
1377  const Matcher<const char*> m1 = MatchesRegex("a.*z");
1378  EXPECT_TRUE(m1.Matches("az"));
1379  EXPECT_TRUE(m1.Matches("abcz"));
1380  EXPECT_FALSE(m1.Matches(NULL));
1381
1382  const Matcher<const string&> m2 = MatchesRegex(new RE("a.*z"));
1383  EXPECT_TRUE(m2.Matches("azbz"));
1384  EXPECT_FALSE(m2.Matches("az1"));
1385  EXPECT_FALSE(m2.Matches("1az"));
1386}
1387
1388TEST(MatchesRegexTest, CanDescribeSelf) {
1389  Matcher<const std::string> m1 = MatchesRegex(string("Hi.*"));
1390  EXPECT_EQ("matches regular expression \"Hi.*\"", Describe(m1));
1391
1392  Matcher<const char*> m2 = MatchesRegex(new RE("a.*"));
1393  EXPECT_EQ("matches regular expression \"a.*\"", Describe(m2));
1394}
1395
1396// Tests ContainsRegex().
1397
1398TEST(ContainsRegexTest, MatchesStringContainingGivenRegex) {
1399  const Matcher<const char*> m1 = ContainsRegex(string("a.*z"));
1400  EXPECT_TRUE(m1.Matches("az"));
1401  EXPECT_TRUE(m1.Matches("0abcz1"));
1402  EXPECT_FALSE(m1.Matches(NULL));
1403
1404  const Matcher<const string&> m2 = ContainsRegex(new RE("a.*z"));
1405  EXPECT_TRUE(m2.Matches("azbz"));
1406  EXPECT_TRUE(m2.Matches("az1"));
1407  EXPECT_FALSE(m2.Matches("1a"));
1408}
1409
1410TEST(ContainsRegexTest, CanDescribeSelf) {
1411  Matcher<const std::string> m1 = ContainsRegex("Hi.*");
1412  EXPECT_EQ("contains regular expression \"Hi.*\"", Describe(m1));
1413
1414  Matcher<const char*> m2 = ContainsRegex(new RE("a.*"));
1415  EXPECT_EQ("contains regular expression \"a.*\"", Describe(m2));
1416}
1417
1418// Tests for wide strings.
1419#if GTEST_HAS_STD_WSTRING
1420TEST(StdWideStrEqTest, MatchesEqual) {
1421  Matcher<const wchar_t*> m = StrEq(::std::wstring(L"Hello"));
1422  EXPECT_TRUE(m.Matches(L"Hello"));
1423  EXPECT_FALSE(m.Matches(L"hello"));
1424  EXPECT_FALSE(m.Matches(NULL));
1425
1426  Matcher<const ::std::wstring&> m2 = StrEq(L"Hello");
1427  EXPECT_TRUE(m2.Matches(L"Hello"));
1428  EXPECT_FALSE(m2.Matches(L"Hi"));
1429
1430  Matcher<const ::std::wstring&> m3 = StrEq(L"\xD3\x576\x8D3\xC74D");
1431  EXPECT_TRUE(m3.Matches(L"\xD3\x576\x8D3\xC74D"));
1432  EXPECT_FALSE(m3.Matches(L"\xD3\x576\x8D3\xC74E"));
1433
1434  ::std::wstring str(L"01204500800");
1435  str[3] = L'\0';
1436  Matcher<const ::std::wstring&> m4 = StrEq(str);
1437  EXPECT_TRUE(m4.Matches(str));
1438  str[0] = str[6] = str[7] = str[9] = str[10] = L'\0';
1439  Matcher<const ::std::wstring&> m5 = StrEq(str);
1440  EXPECT_TRUE(m5.Matches(str));
1441}
1442
1443TEST(StdWideStrEqTest, CanDescribeSelf) {
1444  Matcher< ::std::wstring> m = StrEq(L"Hi-\'\"?\\\a\b\f\n\r\t\v");
1445  EXPECT_EQ("is equal to L\"Hi-\'\\\"?\\\\\\a\\b\\f\\n\\r\\t\\v\"",
1446    Describe(m));
1447
1448  Matcher< ::std::wstring> m2 = StrEq(L"\xD3\x576\x8D3\xC74D");
1449  EXPECT_EQ("is equal to L\"\\xD3\\x576\\x8D3\\xC74D\"",
1450    Describe(m2));
1451
1452  ::std::wstring str(L"01204500800");
1453  str[3] = L'\0';
1454  Matcher<const ::std::wstring&> m4 = StrEq(str);
1455  EXPECT_EQ("is equal to L\"012\\04500800\"", Describe(m4));
1456  str[0] = str[6] = str[7] = str[9] = str[10] = L'\0';
1457  Matcher<const ::std::wstring&> m5 = StrEq(str);
1458  EXPECT_EQ("is equal to L\"\\012\\045\\0\\08\\0\\0\"", Describe(m5));
1459}
1460
1461TEST(StdWideStrNeTest, MatchesUnequalString) {
1462  Matcher<const wchar_t*> m = StrNe(L"Hello");
1463  EXPECT_TRUE(m.Matches(L""));
1464  EXPECT_TRUE(m.Matches(NULL));
1465  EXPECT_FALSE(m.Matches(L"Hello"));
1466
1467  Matcher< ::std::wstring> m2 = StrNe(::std::wstring(L"Hello"));
1468  EXPECT_TRUE(m2.Matches(L"hello"));
1469  EXPECT_FALSE(m2.Matches(L"Hello"));
1470}
1471
1472TEST(StdWideStrNeTest, CanDescribeSelf) {
1473  Matcher<const wchar_t*> m = StrNe(L"Hi");
1474  EXPECT_EQ("isn't equal to L\"Hi\"", Describe(m));
1475}
1476
1477TEST(StdWideStrCaseEqTest, MatchesEqualStringIgnoringCase) {
1478  Matcher<const wchar_t*> m = StrCaseEq(::std::wstring(L"Hello"));
1479  EXPECT_TRUE(m.Matches(L"Hello"));
1480  EXPECT_TRUE(m.Matches(L"hello"));
1481  EXPECT_FALSE(m.Matches(L"Hi"));
1482  EXPECT_FALSE(m.Matches(NULL));
1483
1484  Matcher<const ::std::wstring&> m2 = StrCaseEq(L"Hello");
1485  EXPECT_TRUE(m2.Matches(L"hello"));
1486  EXPECT_FALSE(m2.Matches(L"Hi"));
1487}
1488
1489TEST(StdWideStrCaseEqTest, MatchesEqualStringWith0IgnoringCase) {
1490  ::std::wstring str1(L"oabocdooeoo");
1491  ::std::wstring str2(L"OABOCDOOEOO");
1492  Matcher<const ::std::wstring&> m0 = StrCaseEq(str1);
1493  EXPECT_FALSE(m0.Matches(str2 + ::std::wstring(1, L'\0')));
1494
1495  str1[3] = str2[3] = L'\0';
1496  Matcher<const ::std::wstring&> m1 = StrCaseEq(str1);
1497  EXPECT_TRUE(m1.Matches(str2));
1498
1499  str1[0] = str1[6] = str1[7] = str1[10] = L'\0';
1500  str2[0] = str2[6] = str2[7] = str2[10] = L'\0';
1501  Matcher<const ::std::wstring&> m2 = StrCaseEq(str1);
1502  str1[9] = str2[9] = L'\0';
1503  EXPECT_FALSE(m2.Matches(str2));
1504
1505  Matcher<const ::std::wstring&> m3 = StrCaseEq(str1);
1506  EXPECT_TRUE(m3.Matches(str2));
1507
1508  EXPECT_FALSE(m3.Matches(str2 + L"x"));
1509  str2.append(1, L'\0');
1510  EXPECT_FALSE(m3.Matches(str2));
1511  EXPECT_FALSE(m3.Matches(::std::wstring(str2, 0, 9)));
1512}
1513
1514TEST(StdWideStrCaseEqTest, CanDescribeSelf) {
1515  Matcher< ::std::wstring> m = StrCaseEq(L"Hi");
1516  EXPECT_EQ("is equal to (ignoring case) L\"Hi\"", Describe(m));
1517}
1518
1519TEST(StdWideStrCaseNeTest, MatchesUnequalStringIgnoringCase) {
1520  Matcher<const wchar_t*> m = StrCaseNe(L"Hello");
1521  EXPECT_TRUE(m.Matches(L"Hi"));
1522  EXPECT_TRUE(m.Matches(NULL));
1523  EXPECT_FALSE(m.Matches(L"Hello"));
1524  EXPECT_FALSE(m.Matches(L"hello"));
1525
1526  Matcher< ::std::wstring> m2 = StrCaseNe(::std::wstring(L"Hello"));
1527  EXPECT_TRUE(m2.Matches(L""));
1528  EXPECT_FALSE(m2.Matches(L"Hello"));
1529}
1530
1531TEST(StdWideStrCaseNeTest, CanDescribeSelf) {
1532  Matcher<const wchar_t*> m = StrCaseNe(L"Hi");
1533  EXPECT_EQ("isn't equal to (ignoring case) L\"Hi\"", Describe(m));
1534}
1535
1536// Tests that HasSubstr() works for matching wstring-typed values.
1537TEST(StdWideHasSubstrTest, WorksForStringClasses) {
1538  const Matcher< ::std::wstring> m1 = HasSubstr(L"foo");
1539  EXPECT_TRUE(m1.Matches(::std::wstring(L"I love food.")));
1540  EXPECT_FALSE(m1.Matches(::std::wstring(L"tofo")));
1541
1542  const Matcher<const ::std::wstring&> m2 = HasSubstr(L"foo");
1543  EXPECT_TRUE(m2.Matches(::std::wstring(L"I love food.")));
1544  EXPECT_FALSE(m2.Matches(::std::wstring(L"tofo")));
1545}
1546
1547// Tests that HasSubstr() works for matching C-wide-string-typed values.
1548TEST(StdWideHasSubstrTest, WorksForCStrings) {
1549  const Matcher<wchar_t*> m1 = HasSubstr(L"foo");
1550  EXPECT_TRUE(m1.Matches(const_cast<wchar_t*>(L"I love food.")));
1551  EXPECT_FALSE(m1.Matches(const_cast<wchar_t*>(L"tofo")));
1552  EXPECT_FALSE(m1.Matches(NULL));
1553
1554  const Matcher<const wchar_t*> m2 = HasSubstr(L"foo");
1555  EXPECT_TRUE(m2.Matches(L"I love food."));
1556  EXPECT_FALSE(m2.Matches(L"tofo"));
1557  EXPECT_FALSE(m2.Matches(NULL));
1558}
1559
1560// Tests that HasSubstr(s) describes itself properly.
1561TEST(StdWideHasSubstrTest, CanDescribeSelf) {
1562  Matcher< ::std::wstring> m = HasSubstr(L"foo\n\"");
1563  EXPECT_EQ("has substring L\"foo\\n\\\"\"", Describe(m));
1564}
1565
1566// Tests StartsWith(s).
1567
1568TEST(StdWideStartsWithTest, MatchesStringWithGivenPrefix) {
1569  const Matcher<const wchar_t*> m1 = StartsWith(::std::wstring(L""));
1570  EXPECT_TRUE(m1.Matches(L"Hi"));
1571  EXPECT_TRUE(m1.Matches(L""));
1572  EXPECT_FALSE(m1.Matches(NULL));
1573
1574  const Matcher<const ::std::wstring&> m2 = StartsWith(L"Hi");
1575  EXPECT_TRUE(m2.Matches(L"Hi"));
1576  EXPECT_TRUE(m2.Matches(L"Hi Hi!"));
1577  EXPECT_TRUE(m2.Matches(L"High"));
1578  EXPECT_FALSE(m2.Matches(L"H"));
1579  EXPECT_FALSE(m2.Matches(L" Hi"));
1580}
1581
1582TEST(StdWideStartsWithTest, CanDescribeSelf) {
1583  Matcher<const ::std::wstring> m = StartsWith(L"Hi");
1584  EXPECT_EQ("starts with L\"Hi\"", Describe(m));
1585}
1586
1587// Tests EndsWith(s).
1588
1589TEST(StdWideEndsWithTest, MatchesStringWithGivenSuffix) {
1590  const Matcher<const wchar_t*> m1 = EndsWith(L"");
1591  EXPECT_TRUE(m1.Matches(L"Hi"));
1592  EXPECT_TRUE(m1.Matches(L""));
1593  EXPECT_FALSE(m1.Matches(NULL));
1594
1595  const Matcher<const ::std::wstring&> m2 = EndsWith(::std::wstring(L"Hi"));
1596  EXPECT_TRUE(m2.Matches(L"Hi"));
1597  EXPECT_TRUE(m2.Matches(L"Wow Hi Hi"));
1598  EXPECT_TRUE(m2.Matches(L"Super Hi"));
1599  EXPECT_FALSE(m2.Matches(L"i"));
1600  EXPECT_FALSE(m2.Matches(L"Hi "));
1601}
1602
1603TEST(StdWideEndsWithTest, CanDescribeSelf) {
1604  Matcher<const ::std::wstring> m = EndsWith(L"Hi");
1605  EXPECT_EQ("ends with L\"Hi\"", Describe(m));
1606}
1607
1608#endif  // GTEST_HAS_STD_WSTRING
1609
1610#if GTEST_HAS_GLOBAL_WSTRING
1611TEST(GlobalWideStrEqTest, MatchesEqual) {
1612  Matcher<const wchar_t*> m = StrEq(::wstring(L"Hello"));
1613  EXPECT_TRUE(m.Matches(L"Hello"));
1614  EXPECT_FALSE(m.Matches(L"hello"));
1615  EXPECT_FALSE(m.Matches(NULL));
1616
1617  Matcher<const ::wstring&> m2 = StrEq(L"Hello");
1618  EXPECT_TRUE(m2.Matches(L"Hello"));
1619  EXPECT_FALSE(m2.Matches(L"Hi"));
1620
1621  Matcher<const ::wstring&> m3 = StrEq(L"\xD3\x576\x8D3\xC74D");
1622  EXPECT_TRUE(m3.Matches(L"\xD3\x576\x8D3\xC74D"));
1623  EXPECT_FALSE(m3.Matches(L"\xD3\x576\x8D3\xC74E"));
1624
1625  ::wstring str(L"01204500800");
1626  str[3] = L'\0';
1627  Matcher<const ::wstring&> m4 = StrEq(str);
1628  EXPECT_TRUE(m4.Matches(str));
1629  str[0] = str[6] = str[7] = str[9] = str[10] = L'\0';
1630  Matcher<const ::wstring&> m5 = StrEq(str);
1631  EXPECT_TRUE(m5.Matches(str));
1632}
1633
1634TEST(GlobalWideStrEqTest, CanDescribeSelf) {
1635  Matcher< ::wstring> m = StrEq(L"Hi-\'\"?\\\a\b\f\n\r\t\v");
1636  EXPECT_EQ("is equal to L\"Hi-\'\\\"?\\\\\\a\\b\\f\\n\\r\\t\\v\"",
1637    Describe(m));
1638
1639  Matcher< ::wstring> m2 = StrEq(L"\xD3\x576\x8D3\xC74D");
1640  EXPECT_EQ("is equal to L\"\\xD3\\x576\\x8D3\\xC74D\"",
1641    Describe(m2));
1642
1643  ::wstring str(L"01204500800");
1644  str[3] = L'\0';
1645  Matcher<const ::wstring&> m4 = StrEq(str);
1646  EXPECT_EQ("is equal to L\"012\\04500800\"", Describe(m4));
1647  str[0] = str[6] = str[7] = str[9] = str[10] = L'\0';
1648  Matcher<const ::wstring&> m5 = StrEq(str);
1649  EXPECT_EQ("is equal to L\"\\012\\045\\0\\08\\0\\0\"", Describe(m5));
1650}
1651
1652TEST(GlobalWideStrNeTest, MatchesUnequalString) {
1653  Matcher<const wchar_t*> m = StrNe(L"Hello");
1654  EXPECT_TRUE(m.Matches(L""));
1655  EXPECT_TRUE(m.Matches(NULL));
1656  EXPECT_FALSE(m.Matches(L"Hello"));
1657
1658  Matcher< ::wstring> m2 = StrNe(::wstring(L"Hello"));
1659  EXPECT_TRUE(m2.Matches(L"hello"));
1660  EXPECT_FALSE(m2.Matches(L"Hello"));
1661}
1662
1663TEST(GlobalWideStrNeTest, CanDescribeSelf) {
1664  Matcher<const wchar_t*> m = StrNe(L"Hi");
1665  EXPECT_EQ("isn't equal to L\"Hi\"", Describe(m));
1666}
1667
1668TEST(GlobalWideStrCaseEqTest, MatchesEqualStringIgnoringCase) {
1669  Matcher<const wchar_t*> m = StrCaseEq(::wstring(L"Hello"));
1670  EXPECT_TRUE(m.Matches(L"Hello"));
1671  EXPECT_TRUE(m.Matches(L"hello"));
1672  EXPECT_FALSE(m.Matches(L"Hi"));
1673  EXPECT_FALSE(m.Matches(NULL));
1674
1675  Matcher<const ::wstring&> m2 = StrCaseEq(L"Hello");
1676  EXPECT_TRUE(m2.Matches(L"hello"));
1677  EXPECT_FALSE(m2.Matches(L"Hi"));
1678}
1679
1680TEST(GlobalWideStrCaseEqTest, MatchesEqualStringWith0IgnoringCase) {
1681  ::wstring str1(L"oabocdooeoo");
1682  ::wstring str2(L"OABOCDOOEOO");
1683  Matcher<const ::wstring&> m0 = StrCaseEq(str1);
1684  EXPECT_FALSE(m0.Matches(str2 + ::wstring(1, L'\0')));
1685
1686  str1[3] = str2[3] = L'\0';
1687  Matcher<const ::wstring&> m1 = StrCaseEq(str1);
1688  EXPECT_TRUE(m1.Matches(str2));
1689
1690  str1[0] = str1[6] = str1[7] = str1[10] = L'\0';
1691  str2[0] = str2[6] = str2[7] = str2[10] = L'\0';
1692  Matcher<const ::wstring&> m2 = StrCaseEq(str1);
1693  str1[9] = str2[9] = L'\0';
1694  EXPECT_FALSE(m2.Matches(str2));
1695
1696  Matcher<const ::wstring&> m3 = StrCaseEq(str1);
1697  EXPECT_TRUE(m3.Matches(str2));
1698
1699  EXPECT_FALSE(m3.Matches(str2 + L"x"));
1700  str2.append(1, L'\0');
1701  EXPECT_FALSE(m3.Matches(str2));
1702  EXPECT_FALSE(m3.Matches(::wstring(str2, 0, 9)));
1703}
1704
1705TEST(GlobalWideStrCaseEqTest, CanDescribeSelf) {
1706  Matcher< ::wstring> m = StrCaseEq(L"Hi");
1707  EXPECT_EQ("is equal to (ignoring case) L\"Hi\"", Describe(m));
1708}
1709
1710TEST(GlobalWideStrCaseNeTest, MatchesUnequalStringIgnoringCase) {
1711  Matcher<const wchar_t*> m = StrCaseNe(L"Hello");
1712  EXPECT_TRUE(m.Matches(L"Hi"));
1713  EXPECT_TRUE(m.Matches(NULL));
1714  EXPECT_FALSE(m.Matches(L"Hello"));
1715  EXPECT_FALSE(m.Matches(L"hello"));
1716
1717  Matcher< ::wstring> m2 = StrCaseNe(::wstring(L"Hello"));
1718  EXPECT_TRUE(m2.Matches(L""));
1719  EXPECT_FALSE(m2.Matches(L"Hello"));
1720}
1721
1722TEST(GlobalWideStrCaseNeTest, CanDescribeSelf) {
1723  Matcher<const wchar_t*> m = StrCaseNe(L"Hi");
1724  EXPECT_EQ("isn't equal to (ignoring case) L\"Hi\"", Describe(m));
1725}
1726
1727// Tests that HasSubstr() works for matching wstring-typed values.
1728TEST(GlobalWideHasSubstrTest, WorksForStringClasses) {
1729  const Matcher< ::wstring> m1 = HasSubstr(L"foo");
1730  EXPECT_TRUE(m1.Matches(::wstring(L"I love food.")));
1731  EXPECT_FALSE(m1.Matches(::wstring(L"tofo")));
1732
1733  const Matcher<const ::wstring&> m2 = HasSubstr(L"foo");
1734  EXPECT_TRUE(m2.Matches(::wstring(L"I love food.")));
1735  EXPECT_FALSE(m2.Matches(::wstring(L"tofo")));
1736}
1737
1738// Tests that HasSubstr() works for matching C-wide-string-typed values.
1739TEST(GlobalWideHasSubstrTest, WorksForCStrings) {
1740  const Matcher<wchar_t*> m1 = HasSubstr(L"foo");
1741  EXPECT_TRUE(m1.Matches(const_cast<wchar_t*>(L"I love food.")));
1742  EXPECT_FALSE(m1.Matches(const_cast<wchar_t*>(L"tofo")));
1743  EXPECT_FALSE(m1.Matches(NULL));
1744
1745  const Matcher<const wchar_t*> m2 = HasSubstr(L"foo");
1746  EXPECT_TRUE(m2.Matches(L"I love food."));
1747  EXPECT_FALSE(m2.Matches(L"tofo"));
1748  EXPECT_FALSE(m2.Matches(NULL));
1749}
1750
1751// Tests that HasSubstr(s) describes itself properly.
1752TEST(GlobalWideHasSubstrTest, CanDescribeSelf) {
1753  Matcher< ::wstring> m = HasSubstr(L"foo\n\"");
1754  EXPECT_EQ("has substring L\"foo\\n\\\"\"", Describe(m));
1755}
1756
1757// Tests StartsWith(s).
1758
1759TEST(GlobalWideStartsWithTest, MatchesStringWithGivenPrefix) {
1760  const Matcher<const wchar_t*> m1 = StartsWith(::wstring(L""));
1761  EXPECT_TRUE(m1.Matches(L"Hi"));
1762  EXPECT_TRUE(m1.Matches(L""));
1763  EXPECT_FALSE(m1.Matches(NULL));
1764
1765  const Matcher<const ::wstring&> m2 = StartsWith(L"Hi");
1766  EXPECT_TRUE(m2.Matches(L"Hi"));
1767  EXPECT_TRUE(m2.Matches(L"Hi Hi!"));
1768  EXPECT_TRUE(m2.Matches(L"High"));
1769  EXPECT_FALSE(m2.Matches(L"H"));
1770  EXPECT_FALSE(m2.Matches(L" Hi"));
1771}
1772
1773TEST(GlobalWideStartsWithTest, CanDescribeSelf) {
1774  Matcher<const ::wstring> m = StartsWith(L"Hi");
1775  EXPECT_EQ("starts with L\"Hi\"", Describe(m));
1776}
1777
1778// Tests EndsWith(s).
1779
1780TEST(GlobalWideEndsWithTest, MatchesStringWithGivenSuffix) {
1781  const Matcher<const wchar_t*> m1 = EndsWith(L"");
1782  EXPECT_TRUE(m1.Matches(L"Hi"));
1783  EXPECT_TRUE(m1.Matches(L""));
1784  EXPECT_FALSE(m1.Matches(NULL));
1785
1786  const Matcher<const ::wstring&> m2 = EndsWith(::wstring(L"Hi"));
1787  EXPECT_TRUE(m2.Matches(L"Hi"));
1788  EXPECT_TRUE(m2.Matches(L"Wow Hi Hi"));
1789  EXPECT_TRUE(m2.Matches(L"Super Hi"));
1790  EXPECT_FALSE(m2.Matches(L"i"));
1791  EXPECT_FALSE(m2.Matches(L"Hi "));
1792}
1793
1794TEST(GlobalWideEndsWithTest, CanDescribeSelf) {
1795  Matcher<const ::wstring> m = EndsWith(L"Hi");
1796  EXPECT_EQ("ends with L\"Hi\"", Describe(m));
1797}
1798
1799#endif  // GTEST_HAS_GLOBAL_WSTRING
1800
1801
1802typedef ::std::tr1::tuple<long, int> Tuple2;  // NOLINT
1803
1804// Tests that Eq() matches a 2-tuple where the first field == the
1805// second field.
1806TEST(Eq2Test, MatchesEqualArguments) {
1807  Matcher<const Tuple2&> m = Eq();
1808  EXPECT_TRUE(m.Matches(Tuple2(5L, 5)));
1809  EXPECT_FALSE(m.Matches(Tuple2(5L, 6)));
1810}
1811
1812// Tests that Eq() describes itself properly.
1813TEST(Eq2Test, CanDescribeSelf) {
1814  Matcher<const Tuple2&> m = Eq();
1815  EXPECT_EQ("are an equal pair", Describe(m));
1816}
1817
1818// Tests that Ge() matches a 2-tuple where the first field >= the
1819// second field.
1820TEST(Ge2Test, MatchesGreaterThanOrEqualArguments) {
1821  Matcher<const Tuple2&> m = Ge();
1822  EXPECT_TRUE(m.Matches(Tuple2(5L, 4)));
1823  EXPECT_TRUE(m.Matches(Tuple2(5L, 5)));
1824  EXPECT_FALSE(m.Matches(Tuple2(5L, 6)));
1825}
1826
1827// Tests that Ge() describes itself properly.
1828TEST(Ge2Test, CanDescribeSelf) {
1829  Matcher<const Tuple2&> m = Ge();
1830  EXPECT_EQ("are a pair where the first >= the second", Describe(m));
1831}
1832
1833// Tests that Gt() matches a 2-tuple where the first field > the
1834// second field.
1835TEST(Gt2Test, MatchesGreaterThanArguments) {
1836  Matcher<const Tuple2&> m = Gt();
1837  EXPECT_TRUE(m.Matches(Tuple2(5L, 4)));
1838  EXPECT_FALSE(m.Matches(Tuple2(5L, 5)));
1839  EXPECT_FALSE(m.Matches(Tuple2(5L, 6)));
1840}
1841
1842// Tests that Gt() describes itself properly.
1843TEST(Gt2Test, CanDescribeSelf) {
1844  Matcher<const Tuple2&> m = Gt();
1845  EXPECT_EQ("are a pair where the first > the second", Describe(m));
1846}
1847
1848// Tests that Le() matches a 2-tuple where the first field <= the
1849// second field.
1850TEST(Le2Test, MatchesLessThanOrEqualArguments) {
1851  Matcher<const Tuple2&> m = Le();
1852  EXPECT_TRUE(m.Matches(Tuple2(5L, 6)));
1853  EXPECT_TRUE(m.Matches(Tuple2(5L, 5)));
1854  EXPECT_FALSE(m.Matches(Tuple2(5L, 4)));
1855}
1856
1857// Tests that Le() describes itself properly.
1858TEST(Le2Test, CanDescribeSelf) {
1859  Matcher<const Tuple2&> m = Le();
1860  EXPECT_EQ("are a pair where the first <= the second", Describe(m));
1861}
1862
1863// Tests that Lt() matches a 2-tuple where the first field < the
1864// second field.
1865TEST(Lt2Test, MatchesLessThanArguments) {
1866  Matcher<const Tuple2&> m = Lt();
1867  EXPECT_TRUE(m.Matches(Tuple2(5L, 6)));
1868  EXPECT_FALSE(m.Matches(Tuple2(5L, 5)));
1869  EXPECT_FALSE(m.Matches(Tuple2(5L, 4)));
1870}
1871
1872// Tests that Lt() describes itself properly.
1873TEST(Lt2Test, CanDescribeSelf) {
1874  Matcher<const Tuple2&> m = Lt();
1875  EXPECT_EQ("are a pair where the first < the second", Describe(m));
1876}
1877
1878// Tests that Ne() matches a 2-tuple where the first field != the
1879// second field.
1880TEST(Ne2Test, MatchesUnequalArguments) {
1881  Matcher<const Tuple2&> m = Ne();
1882  EXPECT_TRUE(m.Matches(Tuple2(5L, 6)));
1883  EXPECT_TRUE(m.Matches(Tuple2(5L, 4)));
1884  EXPECT_FALSE(m.Matches(Tuple2(5L, 5)));
1885}
1886
1887// Tests that Ne() describes itself properly.
1888TEST(Ne2Test, CanDescribeSelf) {
1889  Matcher<const Tuple2&> m = Ne();
1890  EXPECT_EQ("are an unequal pair", Describe(m));
1891}
1892
1893// Tests that Not(m) matches any value that doesn't match m.
1894TEST(NotTest, NegatesMatcher) {
1895  Matcher<int> m;
1896  m = Not(Eq(2));
1897  EXPECT_TRUE(m.Matches(3));
1898  EXPECT_FALSE(m.Matches(2));
1899}
1900
1901// Tests that Not(m) describes itself properly.
1902TEST(NotTest, CanDescribeSelf) {
1903  Matcher<int> m = Not(Eq(5));
1904  EXPECT_EQ("isn't equal to 5", Describe(m));
1905}
1906
1907// Tests that monomorphic matchers are safely cast by the Not matcher.
1908TEST(NotTest, NotMatcherSafelyCastsMonomorphicMatchers) {
1909  // greater_than_5 is a monomorphic matcher.
1910  Matcher<int> greater_than_5 = Gt(5);
1911
1912  Matcher<const int&> m = Not(greater_than_5);
1913  Matcher<int&> m2 = Not(greater_than_5);
1914  Matcher<int&> m3 = Not(m);
1915}
1916
1917// Helper to allow easy testing of AllOf matchers with num parameters.
1918void AllOfMatches(int num, const Matcher<int>& m) {
1919  SCOPED_TRACE(Describe(m));
1920  EXPECT_TRUE(m.Matches(0));
1921  for (int i = 1; i <= num; ++i) {
1922    EXPECT_FALSE(m.Matches(i));
1923  }
1924  EXPECT_TRUE(m.Matches(num + 1));
1925}
1926
1927// Tests that AllOf(m1, ..., mn) matches any value that matches all of
1928// the given matchers.
1929TEST(AllOfTest, MatchesWhenAllMatch) {
1930  Matcher<int> m;
1931  m = AllOf(Le(2), Ge(1));
1932  EXPECT_TRUE(m.Matches(1));
1933  EXPECT_TRUE(m.Matches(2));
1934  EXPECT_FALSE(m.Matches(0));
1935  EXPECT_FALSE(m.Matches(3));
1936
1937  m = AllOf(Gt(0), Ne(1), Ne(2));
1938  EXPECT_TRUE(m.Matches(3));
1939  EXPECT_FALSE(m.Matches(2));
1940  EXPECT_FALSE(m.Matches(1));
1941  EXPECT_FALSE(m.Matches(0));
1942
1943  m = AllOf(Gt(0), Ne(1), Ne(2), Ne(3));
1944  EXPECT_TRUE(m.Matches(4));
1945  EXPECT_FALSE(m.Matches(3));
1946  EXPECT_FALSE(m.Matches(2));
1947  EXPECT_FALSE(m.Matches(1));
1948  EXPECT_FALSE(m.Matches(0));
1949
1950  m = AllOf(Ge(0), Lt(10), Ne(3), Ne(5), Ne(7));
1951  EXPECT_TRUE(m.Matches(0));
1952  EXPECT_TRUE(m.Matches(1));
1953  EXPECT_FALSE(m.Matches(3));
1954
1955  // The following tests for varying number of sub-matchers. Due to the way
1956  // the sub-matchers are handled it is enough to test every sub-matcher once
1957  // with sub-matchers using the same matcher type. Varying matcher types are
1958  // checked for above.
1959  AllOfMatches(2, AllOf(Ne(1), Ne(2)));
1960  AllOfMatches(3, AllOf(Ne(1), Ne(2), Ne(3)));
1961  AllOfMatches(4, AllOf(Ne(1), Ne(2), Ne(3), Ne(4)));
1962  AllOfMatches(5, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5)));
1963  AllOfMatches(6, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6)));
1964  AllOfMatches(7, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7)));
1965  AllOfMatches(8, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7),
1966                        Ne(8)));
1967  AllOfMatches(9, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7),
1968                        Ne(8), Ne(9)));
1969  AllOfMatches(10, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7), Ne(8),
1970                         Ne(9), Ne(10)));
1971}
1972
1973// Tests that AllOf(m1, ..., mn) describes itself properly.
1974TEST(AllOfTest, CanDescribeSelf) {
1975  Matcher<int> m;
1976  m = AllOf(Le(2), Ge(1));
1977  EXPECT_EQ("(is <= 2) and (is >= 1)", Describe(m));
1978
1979  m = AllOf(Gt(0), Ne(1), Ne(2));
1980  EXPECT_EQ("(is > 0) and "
1981            "((isn't equal to 1) and "
1982            "(isn't equal to 2))",
1983            Describe(m));
1984
1985
1986  m = AllOf(Gt(0), Ne(1), Ne(2), Ne(3));
1987  EXPECT_EQ("((is > 0) and "
1988            "(isn't equal to 1)) and "
1989            "((isn't equal to 2) and "
1990            "(isn't equal to 3))",
1991            Describe(m));
1992
1993
1994  m = AllOf(Ge(0), Lt(10), Ne(3), Ne(5), Ne(7));
1995  EXPECT_EQ("((is >= 0) and "
1996            "(is < 10)) and "
1997            "((isn't equal to 3) and "
1998            "((isn't equal to 5) and "
1999            "(isn't equal to 7)))",
2000            Describe(m));
2001}
2002
2003// Tests that AllOf(m1, ..., mn) describes its negation properly.
2004TEST(AllOfTest, CanDescribeNegation) {
2005  Matcher<int> m;
2006  m = AllOf(Le(2), Ge(1));
2007  EXPECT_EQ("(isn't <= 2) or "
2008            "(isn't >= 1)",
2009            DescribeNegation(m));
2010
2011  m = AllOf(Gt(0), Ne(1), Ne(2));
2012  EXPECT_EQ("(isn't > 0) or "
2013            "((is equal to 1) or "
2014            "(is equal to 2))",
2015            DescribeNegation(m));
2016
2017
2018  m = AllOf(Gt(0), Ne(1), Ne(2), Ne(3));
2019  EXPECT_EQ("((isn't > 0) or "
2020            "(is equal to 1)) or "
2021            "((is equal to 2) or "
2022            "(is equal to 3))",
2023            DescribeNegation(m));
2024
2025
2026  m = AllOf(Ge(0), Lt(10), Ne(3), Ne(5), Ne(7));
2027  EXPECT_EQ("((isn't >= 0) or "
2028            "(isn't < 10)) or "
2029            "((is equal to 3) or "
2030            "((is equal to 5) or "
2031            "(is equal to 7)))",
2032            DescribeNegation(m));
2033}
2034
2035// Tests that monomorphic matchers are safely cast by the AllOf matcher.
2036TEST(AllOfTest, AllOfMatcherSafelyCastsMonomorphicMatchers) {
2037  // greater_than_5 and less_than_10 are monomorphic matchers.
2038  Matcher<int> greater_than_5 = Gt(5);
2039  Matcher<int> less_than_10 = Lt(10);
2040
2041  Matcher<const int&> m = AllOf(greater_than_5, less_than_10);
2042  Matcher<int&> m2 = AllOf(greater_than_5, less_than_10);
2043  Matcher<int&> m3 = AllOf(greater_than_5, m2);
2044
2045  // Tests that BothOf works when composing itself.
2046  Matcher<const int&> m4 = AllOf(greater_than_5, less_than_10, less_than_10);
2047  Matcher<int&> m5 = AllOf(greater_than_5, less_than_10, less_than_10);
2048}
2049
2050TEST(AllOfTest, ExplainsResult) {
2051  Matcher<int> m;
2052
2053  // Successful match.  Both matchers need to explain.  The second
2054  // matcher doesn't give an explanation, so only the first matcher's
2055  // explanation is printed.
2056  m = AllOf(GreaterThan(10), Lt(30));
2057  EXPECT_EQ("which is 15 more than 10", Explain(m, 25));
2058
2059  // Successful match.  Both matchers need to explain.
2060  m = AllOf(GreaterThan(10), GreaterThan(20));
2061  EXPECT_EQ("which is 20 more than 10, and which is 10 more than 20",
2062            Explain(m, 30));
2063
2064  // Successful match.  All matchers need to explain.  The second
2065  // matcher doesn't given an explanation.
2066  m = AllOf(GreaterThan(10), Lt(30), GreaterThan(20));
2067  EXPECT_EQ("which is 15 more than 10, and which is 5 more than 20",
2068            Explain(m, 25));
2069
2070  // Successful match.  All matchers need to explain.
2071  m = AllOf(GreaterThan(10), GreaterThan(20), GreaterThan(30));
2072  EXPECT_EQ("which is 30 more than 10, and which is 20 more than 20, "
2073            "and which is 10 more than 30",
2074            Explain(m, 40));
2075
2076  // Failed match.  The first matcher, which failed, needs to
2077  // explain.
2078  m = AllOf(GreaterThan(10), GreaterThan(20));
2079  EXPECT_EQ("which is 5 less than 10", Explain(m, 5));
2080
2081  // Failed match.  The second matcher, which failed, needs to
2082  // explain.  Since it doesn't given an explanation, nothing is
2083  // printed.
2084  m = AllOf(GreaterThan(10), Lt(30));
2085  EXPECT_EQ("", Explain(m, 40));
2086
2087  // Failed match.  The second matcher, which failed, needs to
2088  // explain.
2089  m = AllOf(GreaterThan(10), GreaterThan(20));
2090  EXPECT_EQ("which is 5 less than 20", Explain(m, 15));
2091}
2092
2093// Helper to allow easy testing of AnyOf matchers with num parameters.
2094void AnyOfMatches(int num, const Matcher<int>& m) {
2095  SCOPED_TRACE(Describe(m));
2096  EXPECT_FALSE(m.Matches(0));
2097  for (int i = 1; i <= num; ++i) {
2098    EXPECT_TRUE(m.Matches(i));
2099  }
2100  EXPECT_FALSE(m.Matches(num + 1));
2101}
2102
2103// Tests that AnyOf(m1, ..., mn) matches any value that matches at
2104// least one of the given matchers.
2105TEST(AnyOfTest, MatchesWhenAnyMatches) {
2106  Matcher<int> m;
2107  m = AnyOf(Le(1), Ge(3));
2108  EXPECT_TRUE(m.Matches(1));
2109  EXPECT_TRUE(m.Matches(4));
2110  EXPECT_FALSE(m.Matches(2));
2111
2112  m = AnyOf(Lt(0), Eq(1), Eq(2));
2113  EXPECT_TRUE(m.Matches(-1));
2114  EXPECT_TRUE(m.Matches(1));
2115  EXPECT_TRUE(m.Matches(2));
2116  EXPECT_FALSE(m.Matches(0));
2117
2118  m = AnyOf(Lt(0), Eq(1), Eq(2), Eq(3));
2119  EXPECT_TRUE(m.Matches(-1));
2120  EXPECT_TRUE(m.Matches(1));
2121  EXPECT_TRUE(m.Matches(2));
2122  EXPECT_TRUE(m.Matches(3));
2123  EXPECT_FALSE(m.Matches(0));
2124
2125  m = AnyOf(Le(0), Gt(10), 3, 5, 7);
2126  EXPECT_TRUE(m.Matches(0));
2127  EXPECT_TRUE(m.Matches(11));
2128  EXPECT_TRUE(m.Matches(3));
2129  EXPECT_FALSE(m.Matches(2));
2130
2131  // The following tests for varying number of sub-matchers. Due to the way
2132  // the sub-matchers are handled it is enough to test every sub-matcher once
2133  // with sub-matchers using the same matcher type. Varying matcher types are
2134  // checked for above.
2135  AnyOfMatches(2, AnyOf(1, 2));
2136  AnyOfMatches(3, AnyOf(1, 2, 3));
2137  AnyOfMatches(4, AnyOf(1, 2, 3, 4));
2138  AnyOfMatches(5, AnyOf(1, 2, 3, 4, 5));
2139  AnyOfMatches(6, AnyOf(1, 2, 3, 4, 5, 6));
2140  AnyOfMatches(7, AnyOf(1, 2, 3, 4, 5, 6, 7));
2141  AnyOfMatches(8, AnyOf(1, 2, 3, 4, 5, 6, 7, 8));
2142  AnyOfMatches(9, AnyOf(1, 2, 3, 4, 5, 6, 7, 8, 9));
2143  AnyOfMatches(10, AnyOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10));
2144}
2145
2146// Tests that AnyOf(m1, ..., mn) describes itself properly.
2147TEST(AnyOfTest, CanDescribeSelf) {
2148  Matcher<int> m;
2149  m = AnyOf(Le(1), Ge(3));
2150  EXPECT_EQ("(is <= 1) or (is >= 3)",
2151            Describe(m));
2152
2153  m = AnyOf(Lt(0), Eq(1), Eq(2));
2154  EXPECT_EQ("(is < 0) or "
2155            "((is equal to 1) or (is equal to 2))",
2156            Describe(m));
2157
2158  m = AnyOf(Lt(0), Eq(1), Eq(2), Eq(3));
2159  EXPECT_EQ("((is < 0) or "
2160            "(is equal to 1)) or "
2161            "((is equal to 2) or "
2162            "(is equal to 3))",
2163            Describe(m));
2164
2165  m = AnyOf(Le(0), Gt(10), 3, 5, 7);
2166  EXPECT_EQ("((is <= 0) or "
2167            "(is > 10)) or "
2168            "((is equal to 3) or "
2169            "((is equal to 5) or "
2170            "(is equal to 7)))",
2171            Describe(m));
2172}
2173
2174// Tests that AnyOf(m1, ..., mn) describes its negation properly.
2175TEST(AnyOfTest, CanDescribeNegation) {
2176  Matcher<int> m;
2177  m = AnyOf(Le(1), Ge(3));
2178  EXPECT_EQ("(isn't <= 1) and (isn't >= 3)",
2179            DescribeNegation(m));
2180
2181  m = AnyOf(Lt(0), Eq(1), Eq(2));
2182  EXPECT_EQ("(isn't < 0) and "
2183            "((isn't equal to 1) and (isn't equal to 2))",
2184            DescribeNegation(m));
2185
2186  m = AnyOf(Lt(0), Eq(1), Eq(2), Eq(3));
2187  EXPECT_EQ("((isn't < 0) and "
2188            "(isn't equal to 1)) and "
2189            "((isn't equal to 2) and "
2190            "(isn't equal to 3))",
2191            DescribeNegation(m));
2192
2193  m = AnyOf(Le(0), Gt(10), 3, 5, 7);
2194  EXPECT_EQ("((isn't <= 0) and "
2195            "(isn't > 10)) and "
2196            "((isn't equal to 3) and "
2197            "((isn't equal to 5) and "
2198            "(isn't equal to 7)))",
2199            DescribeNegation(m));
2200}
2201
2202// Tests that monomorphic matchers are safely cast by the AnyOf matcher.
2203TEST(AnyOfTest, AnyOfMatcherSafelyCastsMonomorphicMatchers) {
2204  // greater_than_5 and less_than_10 are monomorphic matchers.
2205  Matcher<int> greater_than_5 = Gt(5);
2206  Matcher<int> less_than_10 = Lt(10);
2207
2208  Matcher<const int&> m = AnyOf(greater_than_5, less_than_10);
2209  Matcher<int&> m2 = AnyOf(greater_than_5, less_than_10);
2210  Matcher<int&> m3 = AnyOf(greater_than_5, m2);
2211
2212  // Tests that EitherOf works when composing itself.
2213  Matcher<const int&> m4 = AnyOf(greater_than_5, less_than_10, less_than_10);
2214  Matcher<int&> m5 = AnyOf(greater_than_5, less_than_10, less_than_10);
2215}
2216
2217TEST(AnyOfTest, ExplainsResult) {
2218  Matcher<int> m;
2219
2220  // Failed match.  Both matchers need to explain.  The second
2221  // matcher doesn't give an explanation, so only the first matcher's
2222  // explanation is printed.
2223  m = AnyOf(GreaterThan(10), Lt(0));
2224  EXPECT_EQ("which is 5 less than 10", Explain(m, 5));
2225
2226  // Failed match.  Both matchers need to explain.
2227  m = AnyOf(GreaterThan(10), GreaterThan(20));
2228  EXPECT_EQ("which is 5 less than 10, and which is 15 less than 20",
2229            Explain(m, 5));
2230
2231  // Failed match.  All matchers need to explain.  The second
2232  // matcher doesn't given an explanation.
2233  m = AnyOf(GreaterThan(10), Gt(20), GreaterThan(30));
2234  EXPECT_EQ("which is 5 less than 10, and which is 25 less than 30",
2235            Explain(m, 5));
2236
2237  // Failed match.  All matchers need to explain.
2238  m = AnyOf(GreaterThan(10), GreaterThan(20), GreaterThan(30));
2239  EXPECT_EQ("which is 5 less than 10, and which is 15 less than 20, "
2240            "and which is 25 less than 30",
2241            Explain(m, 5));
2242
2243  // Successful match.  The first matcher, which succeeded, needs to
2244  // explain.
2245  m = AnyOf(GreaterThan(10), GreaterThan(20));
2246  EXPECT_EQ("which is 5 more than 10", Explain(m, 15));
2247
2248  // Successful match.  The second matcher, which succeeded, needs to
2249  // explain.  Since it doesn't given an explanation, nothing is
2250  // printed.
2251  m = AnyOf(GreaterThan(10), Lt(30));
2252  EXPECT_EQ("", Explain(m, 0));
2253
2254  // Successful match.  The second matcher, which succeeded, needs to
2255  // explain.
2256  m = AnyOf(GreaterThan(30), GreaterThan(20));
2257  EXPECT_EQ("which is 5 more than 20", Explain(m, 25));
2258}
2259
2260// The following predicate function and predicate functor are for
2261// testing the Truly(predicate) matcher.
2262
2263// Returns non-zero if the input is positive.  Note that the return
2264// type of this function is not bool.  It's OK as Truly() accepts any
2265// unary function or functor whose return type can be implicitly
2266// converted to bool.
2267int IsPositive(double x) {
2268  return x > 0 ? 1 : 0;
2269}
2270
2271// This functor returns true if the input is greater than the given
2272// number.
2273class IsGreaterThan {
2274 public:
2275  explicit IsGreaterThan(int threshold) : threshold_(threshold) {}
2276
2277  bool operator()(int n) const { return n > threshold_; }
2278
2279 private:
2280  int threshold_;
2281};
2282
2283// For testing Truly().
2284const int foo = 0;
2285
2286// This predicate returns true iff the argument references foo and has
2287// a zero value.
2288bool ReferencesFooAndIsZero(const int& n) {
2289  return (&n == &foo) && (n == 0);
2290}
2291
2292// Tests that Truly(predicate) matches what satisfies the given
2293// predicate.
2294TEST(TrulyTest, MatchesWhatSatisfiesThePredicate) {
2295  Matcher<double> m = Truly(IsPositive);
2296  EXPECT_TRUE(m.Matches(2.0));
2297  EXPECT_FALSE(m.Matches(-1.5));
2298}
2299
2300// Tests that Truly(predicate_functor) works too.
2301TEST(TrulyTest, CanBeUsedWithFunctor) {
2302  Matcher<int> m = Truly(IsGreaterThan(5));
2303  EXPECT_TRUE(m.Matches(6));
2304  EXPECT_FALSE(m.Matches(4));
2305}
2306
2307// A class that can be implicitly converted to bool.
2308class ConvertibleToBool {
2309 public:
2310  explicit ConvertibleToBool(int number) : number_(number) {}
2311  operator bool() const { return number_ != 0; }
2312
2313 private:
2314  int number_;
2315};
2316
2317ConvertibleToBool IsNotZero(int number) {
2318  return ConvertibleToBool(number);
2319}
2320
2321// Tests that the predicate used in Truly() may return a class that's
2322// implicitly convertible to bool, even when the class has no
2323// operator!().
2324TEST(TrulyTest, PredicateCanReturnAClassConvertibleToBool) {
2325  Matcher<int> m = Truly(IsNotZero);
2326  EXPECT_TRUE(m.Matches(1));
2327  EXPECT_FALSE(m.Matches(0));
2328}
2329
2330// Tests that Truly(predicate) can describe itself properly.
2331TEST(TrulyTest, CanDescribeSelf) {
2332  Matcher<double> m = Truly(IsPositive);
2333  EXPECT_EQ("satisfies the given predicate",
2334            Describe(m));
2335}
2336
2337// Tests that Truly(predicate) works when the matcher takes its
2338// argument by reference.
2339TEST(TrulyTest, WorksForByRefArguments) {
2340  Matcher<const int&> m = Truly(ReferencesFooAndIsZero);
2341  EXPECT_TRUE(m.Matches(foo));
2342  int n = 0;
2343  EXPECT_FALSE(m.Matches(n));
2344}
2345
2346// Tests that Matches(m) is a predicate satisfied by whatever that
2347// matches matcher m.
2348TEST(MatchesTest, IsSatisfiedByWhatMatchesTheMatcher) {
2349  EXPECT_TRUE(Matches(Ge(0))(1));
2350  EXPECT_FALSE(Matches(Eq('a'))('b'));
2351}
2352
2353// Tests that Matches(m) works when the matcher takes its argument by
2354// reference.
2355TEST(MatchesTest, WorksOnByRefArguments) {
2356  int m = 0, n = 0;
2357  EXPECT_TRUE(Matches(AllOf(Ref(n), Eq(0)))(n));
2358  EXPECT_FALSE(Matches(Ref(m))(n));
2359}
2360
2361// Tests that a Matcher on non-reference type can be used in
2362// Matches().
2363TEST(MatchesTest, WorksWithMatcherOnNonRefType) {
2364  Matcher<int> eq5 = Eq(5);
2365  EXPECT_TRUE(Matches(eq5)(5));
2366  EXPECT_FALSE(Matches(eq5)(2));
2367}
2368
2369// Tests Value(value, matcher).  Since Value() is a simple wrapper for
2370// Matches(), which has been tested already, we don't spend a lot of
2371// effort on testing Value().
2372TEST(ValueTest, WorksWithPolymorphicMatcher) {
2373  EXPECT_TRUE(Value("hi", StartsWith("h")));
2374  EXPECT_FALSE(Value(5, Gt(10)));
2375}
2376
2377TEST(ValueTest, WorksWithMonomorphicMatcher) {
2378  const Matcher<int> is_zero = Eq(0);
2379  EXPECT_TRUE(Value(0, is_zero));
2380  EXPECT_FALSE(Value('a', is_zero));
2381
2382  int n = 0;
2383  const Matcher<const int&> ref_n = Ref(n);
2384  EXPECT_TRUE(Value(n, ref_n));
2385  EXPECT_FALSE(Value(1, ref_n));
2386}
2387
2388TEST(ExplainMatchResultTest, WorksWithPolymorphicMatcher) {
2389  StringMatchResultListener listener1;
2390  EXPECT_TRUE(ExplainMatchResult(PolymorphicIsEven(), 42, &listener1));
2391  EXPECT_EQ("% 2 == 0", listener1.str());
2392
2393  StringMatchResultListener listener2;
2394  EXPECT_FALSE(ExplainMatchResult(Ge(42), 1.5, &listener2));
2395  EXPECT_EQ("", listener2.str());
2396}
2397
2398TEST(ExplainMatchResultTest, WorksWithMonomorphicMatcher) {
2399  const Matcher<int> is_even = PolymorphicIsEven();
2400  StringMatchResultListener listener1;
2401  EXPECT_TRUE(ExplainMatchResult(is_even, 42, &listener1));
2402  EXPECT_EQ("% 2 == 0", listener1.str());
2403
2404  const Matcher<const double&> is_zero = Eq(0);
2405  StringMatchResultListener listener2;
2406  EXPECT_FALSE(ExplainMatchResult(is_zero, 1.5, &listener2));
2407  EXPECT_EQ("", listener2.str());
2408}
2409
2410MATCHER_P(Really, inner_matcher, "") {
2411  return ExplainMatchResult(inner_matcher, arg, result_listener);
2412}
2413
2414TEST(ExplainMatchResultTest, WorksInsideMATCHER) {
2415  EXPECT_THAT(0, Really(Eq(0)));
2416}
2417
2418TEST(AllArgsTest, WorksForTuple) {
2419  EXPECT_THAT(make_tuple(1, 2L), AllArgs(Lt()));
2420  EXPECT_THAT(make_tuple(2L, 1), Not(AllArgs(Lt())));
2421}
2422
2423TEST(AllArgsTest, WorksForNonTuple) {
2424  EXPECT_THAT(42, AllArgs(Gt(0)));
2425  EXPECT_THAT('a', Not(AllArgs(Eq('b'))));
2426}
2427
2428class AllArgsHelper {
2429 public:
2430  AllArgsHelper() {}
2431
2432  MOCK_METHOD2(Helper, int(char x, int y));
2433
2434 private:
2435  GTEST_DISALLOW_COPY_AND_ASSIGN_(AllArgsHelper);
2436};
2437
2438TEST(AllArgsTest, WorksInWithClause) {
2439  AllArgsHelper helper;
2440  ON_CALL(helper, Helper(_, _))
2441      .With(AllArgs(Lt()))
2442      .WillByDefault(Return(1));
2443  EXPECT_CALL(helper, Helper(_, _));
2444  EXPECT_CALL(helper, Helper(_, _))
2445      .With(AllArgs(Gt()))
2446      .WillOnce(Return(2));
2447
2448  EXPECT_EQ(1, helper.Helper('\1', 2));
2449  EXPECT_EQ(2, helper.Helper('a', 1));
2450}
2451
2452// Tests that ASSERT_THAT() and EXPECT_THAT() work when the value
2453// matches the matcher.
2454TEST(MatcherAssertionTest, WorksWhenMatcherIsSatisfied) {
2455  ASSERT_THAT(5, Ge(2)) << "This should succeed.";
2456  ASSERT_THAT("Foo", EndsWith("oo"));
2457  EXPECT_THAT(2, AllOf(Le(7), Ge(0))) << "This should succeed too.";
2458  EXPECT_THAT("Hello", StartsWith("Hell"));
2459}
2460
2461// Tests that ASSERT_THAT() and EXPECT_THAT() work when the value
2462// doesn't match the matcher.
2463TEST(MatcherAssertionTest, WorksWhenMatcherIsNotSatisfied) {
2464  // 'n' must be static as it is used in an EXPECT_FATAL_FAILURE(),
2465  // which cannot reference auto variables.
2466  static unsigned short n;  // NOLINT
2467  n = 5;
2468
2469  // VC++ prior to version 8.0 SP1 has a bug where it will not see any
2470  // functions declared in the namespace scope from within nested classes.
2471  // EXPECT/ASSERT_(NON)FATAL_FAILURE macros use nested classes so that all
2472  // namespace-level functions invoked inside them need to be explicitly
2473  // resolved.
2474  EXPECT_FATAL_FAILURE(ASSERT_THAT(n, ::testing::Gt(10)),
2475                       "Value of: n\n"
2476                       "Expected: is > 10\n"
2477                       "  Actual: 5" + OfType("unsigned short"));
2478  n = 0;
2479  EXPECT_NONFATAL_FAILURE(
2480      EXPECT_THAT(n, ::testing::AllOf(::testing::Le(7), ::testing::Ge(5))),
2481      "Value of: n\n"
2482      "Expected: (is <= 7) and (is >= 5)\n"
2483      "  Actual: 0" + OfType("unsigned short"));
2484}
2485
2486// Tests that ASSERT_THAT() and EXPECT_THAT() work when the argument
2487// has a reference type.
2488TEST(MatcherAssertionTest, WorksForByRefArguments) {
2489  // We use a static variable here as EXPECT_FATAL_FAILURE() cannot
2490  // reference auto variables.
2491  static int n;
2492  n = 0;
2493  EXPECT_THAT(n, AllOf(Le(7), Ref(n)));
2494  EXPECT_FATAL_FAILURE(ASSERT_THAT(n, ::testing::Not(::testing::Ref(n))),
2495                       "Value of: n\n"
2496                       "Expected: does not reference the variable @");
2497  // Tests the "Actual" part.
2498  EXPECT_FATAL_FAILURE(ASSERT_THAT(n, ::testing::Not(::testing::Ref(n))),
2499                       "Actual: 0" + OfType("int") + ", which is located @");
2500}
2501
2502#if !GTEST_OS_SYMBIAN
2503// Tests that ASSERT_THAT() and EXPECT_THAT() work when the matcher is
2504// monomorphic.
2505
2506// ASSERT_THAT("hello", starts_with_he) fails to compile with Nokia's
2507// Symbian compiler: it tries to compile
2508// template<T, U> class MatcherCastImpl { ...
2509//   virtual bool MatchAndExplain(T x, ...) const {
2510//     return source_matcher_.MatchAndExplain(static_cast<U>(x), ...);
2511// with U == string and T == const char*
2512// With ASSERT_THAT("hello"...) changed to ASSERT_THAT(string("hello") ... )
2513// the compiler silently crashes with no output.
2514// If MatcherCastImpl is changed to use U(x) instead of static_cast<U>(x)
2515// the code compiles but the converted string is bogus.
2516TEST(MatcherAssertionTest, WorksForMonomorphicMatcher) {
2517  Matcher<const char*> starts_with_he = StartsWith("he");
2518  ASSERT_THAT("hello", starts_with_he);
2519
2520  Matcher<const string&> ends_with_ok = EndsWith("ok");
2521  ASSERT_THAT("book", ends_with_ok);
2522  const string bad = "bad";
2523  EXPECT_NONFATAL_FAILURE(EXPECT_THAT(bad, ends_with_ok),
2524                          "Value of: bad\n"
2525                          "Expected: ends with \"ok\"\n"
2526                          "  Actual: \"bad\"");
2527  Matcher<int> is_greater_than_5 = Gt(5);
2528  EXPECT_NONFATAL_FAILURE(EXPECT_THAT(5, is_greater_than_5),
2529                          "Value of: 5\n"
2530                          "Expected: is > 5\n"
2531                          "  Actual: 5" + OfType("int"));
2532}
2533#endif  // !GTEST_OS_SYMBIAN
2534
2535// Tests floating-point matchers.
2536template <typename RawType>
2537class FloatingPointTest : public testing::Test {
2538 protected:
2539  typedef typename testing::internal::FloatingPoint<RawType> Floating;
2540  typedef typename Floating::Bits Bits;
2541
2542  virtual void SetUp() {
2543    const size_t max_ulps = Floating::kMaxUlps;
2544
2545    // The bits that represent 0.0.
2546    const Bits zero_bits = Floating(0).bits();
2547
2548    // Makes some numbers close to 0.0.
2549    close_to_positive_zero_ = Floating::ReinterpretBits(zero_bits + max_ulps/2);
2550    close_to_negative_zero_ = -Floating::ReinterpretBits(
2551        zero_bits + max_ulps - max_ulps/2);
2552    further_from_negative_zero_ = -Floating::ReinterpretBits(
2553        zero_bits + max_ulps + 1 - max_ulps/2);
2554
2555    // The bits that represent 1.0.
2556    const Bits one_bits = Floating(1).bits();
2557
2558    // Makes some numbers close to 1.0.
2559    close_to_one_ = Floating::ReinterpretBits(one_bits + max_ulps);
2560    further_from_one_ = Floating::ReinterpretBits(one_bits + max_ulps + 1);
2561
2562    // +infinity.
2563    infinity_ = Floating::Infinity();
2564
2565    // The bits that represent +infinity.
2566    const Bits infinity_bits = Floating(infinity_).bits();
2567
2568    // Makes some numbers close to infinity.
2569    close_to_infinity_ = Floating::ReinterpretBits(infinity_bits - max_ulps);
2570    further_from_infinity_ = Floating::ReinterpretBits(
2571        infinity_bits - max_ulps - 1);
2572
2573    // Makes some NAN's.
2574    nan1_ = Floating::ReinterpretBits(Floating::kExponentBitMask | 1);
2575    nan2_ = Floating::ReinterpretBits(Floating::kExponentBitMask | 200);
2576  }
2577
2578  void TestSize() {
2579    EXPECT_EQ(sizeof(RawType), sizeof(Bits));
2580  }
2581
2582  // A battery of tests for FloatingEqMatcher::Matches.
2583  // matcher_maker is a pointer to a function which creates a FloatingEqMatcher.
2584  void TestMatches(
2585      testing::internal::FloatingEqMatcher<RawType> (*matcher_maker)(RawType)) {
2586    Matcher<RawType> m1 = matcher_maker(0.0);
2587    EXPECT_TRUE(m1.Matches(-0.0));
2588    EXPECT_TRUE(m1.Matches(close_to_positive_zero_));
2589    EXPECT_TRUE(m1.Matches(close_to_negative_zero_));
2590    EXPECT_FALSE(m1.Matches(1.0));
2591
2592    Matcher<RawType> m2 = matcher_maker(close_to_positive_zero_);
2593    EXPECT_FALSE(m2.Matches(further_from_negative_zero_));
2594
2595    Matcher<RawType> m3 = matcher_maker(1.0);
2596    EXPECT_TRUE(m3.Matches(close_to_one_));
2597    EXPECT_FALSE(m3.Matches(further_from_one_));
2598
2599    // Test commutativity: matcher_maker(0.0).Matches(1.0) was tested above.
2600    EXPECT_FALSE(m3.Matches(0.0));
2601
2602    Matcher<RawType> m4 = matcher_maker(-infinity_);
2603    EXPECT_TRUE(m4.Matches(-close_to_infinity_));
2604
2605    Matcher<RawType> m5 = matcher_maker(infinity_);
2606    EXPECT_TRUE(m5.Matches(close_to_infinity_));
2607
2608    // This is interesting as the representations of infinity_ and nan1_
2609    // are only 1 DLP apart.
2610    EXPECT_FALSE(m5.Matches(nan1_));
2611
2612    // matcher_maker can produce a Matcher<const RawType&>, which is needed in
2613    // some cases.
2614    Matcher<const RawType&> m6 = matcher_maker(0.0);
2615    EXPECT_TRUE(m6.Matches(-0.0));
2616    EXPECT_TRUE(m6.Matches(close_to_positive_zero_));
2617    EXPECT_FALSE(m6.Matches(1.0));
2618
2619    // matcher_maker can produce a Matcher<RawType&>, which is needed in some
2620    // cases.
2621    Matcher<RawType&> m7 = matcher_maker(0.0);
2622    RawType x = 0.0;
2623    EXPECT_TRUE(m7.Matches(x));
2624    x = 0.01f;
2625    EXPECT_FALSE(m7.Matches(x));
2626  }
2627
2628  // Pre-calculated numbers to be used by the tests.
2629
2630  static RawType close_to_positive_zero_;
2631  static RawType close_to_negative_zero_;
2632  static RawType further_from_negative_zero_;
2633
2634  static RawType close_to_one_;
2635  static RawType further_from_one_;
2636
2637  static RawType infinity_;
2638  static RawType close_to_infinity_;
2639  static RawType further_from_infinity_;
2640
2641  static RawType nan1_;
2642  static RawType nan2_;
2643};
2644
2645template <typename RawType>
2646RawType FloatingPointTest<RawType>::close_to_positive_zero_;
2647
2648template <typename RawType>
2649RawType FloatingPointTest<RawType>::close_to_negative_zero_;
2650
2651template <typename RawType>
2652RawType FloatingPointTest<RawType>::further_from_negative_zero_;
2653
2654template <typename RawType>
2655RawType FloatingPointTest<RawType>::close_to_one_;
2656
2657template <typename RawType>
2658RawType FloatingPointTest<RawType>::further_from_one_;
2659
2660template <typename RawType>
2661RawType FloatingPointTest<RawType>::infinity_;
2662
2663template <typename RawType>
2664RawType FloatingPointTest<RawType>::close_to_infinity_;
2665
2666template <typename RawType>
2667RawType FloatingPointTest<RawType>::further_from_infinity_;
2668
2669template <typename RawType>
2670RawType FloatingPointTest<RawType>::nan1_;
2671
2672template <typename RawType>
2673RawType FloatingPointTest<RawType>::nan2_;
2674
2675// Instantiate FloatingPointTest for testing floats.
2676typedef FloatingPointTest<float> FloatTest;
2677
2678TEST_F(FloatTest, FloatEqApproximatelyMatchesFloats) {
2679  TestMatches(&FloatEq);
2680}
2681
2682TEST_F(FloatTest, NanSensitiveFloatEqApproximatelyMatchesFloats) {
2683  TestMatches(&NanSensitiveFloatEq);
2684}
2685
2686TEST_F(FloatTest, FloatEqCannotMatchNaN) {
2687  // FloatEq never matches NaN.
2688  Matcher<float> m = FloatEq(nan1_);
2689  EXPECT_FALSE(m.Matches(nan1_));
2690  EXPECT_FALSE(m.Matches(nan2_));
2691  EXPECT_FALSE(m.Matches(1.0));
2692}
2693
2694TEST_F(FloatTest, NanSensitiveFloatEqCanMatchNaN) {
2695  // NanSensitiveFloatEq will match NaN.
2696  Matcher<float> m = NanSensitiveFloatEq(nan1_);
2697  EXPECT_TRUE(m.Matches(nan1_));
2698  EXPECT_TRUE(m.Matches(nan2_));
2699  EXPECT_FALSE(m.Matches(1.0));
2700}
2701
2702TEST_F(FloatTest, FloatEqCanDescribeSelf) {
2703  Matcher<float> m1 = FloatEq(2.0f);
2704  EXPECT_EQ("is approximately 2", Describe(m1));
2705  EXPECT_EQ("isn't approximately 2", DescribeNegation(m1));
2706
2707  Matcher<float> m2 = FloatEq(0.5f);
2708  EXPECT_EQ("is approximately 0.5", Describe(m2));
2709  EXPECT_EQ("isn't approximately 0.5", DescribeNegation(m2));
2710
2711  Matcher<float> m3 = FloatEq(nan1_);
2712  EXPECT_EQ("never matches", Describe(m3));
2713  EXPECT_EQ("is anything", DescribeNegation(m3));
2714}
2715
2716TEST_F(FloatTest, NanSensitiveFloatEqCanDescribeSelf) {
2717  Matcher<float> m1 = NanSensitiveFloatEq(2.0f);
2718  EXPECT_EQ("is approximately 2", Describe(m1));
2719  EXPECT_EQ("isn't approximately 2", DescribeNegation(m1));
2720
2721  Matcher<float> m2 = NanSensitiveFloatEq(0.5f);
2722  EXPECT_EQ("is approximately 0.5", Describe(m2));
2723  EXPECT_EQ("isn't approximately 0.5", DescribeNegation(m2));
2724
2725  Matcher<float> m3 = NanSensitiveFloatEq(nan1_);
2726  EXPECT_EQ("is NaN", Describe(m3));
2727  EXPECT_EQ("isn't NaN", DescribeNegation(m3));
2728}
2729
2730// Instantiate FloatingPointTest for testing doubles.
2731typedef FloatingPointTest<double> DoubleTest;
2732
2733TEST_F(DoubleTest, DoubleEqApproximatelyMatchesDoubles) {
2734  TestMatches(&DoubleEq);
2735}
2736
2737TEST_F(DoubleTest, NanSensitiveDoubleEqApproximatelyMatchesDoubles) {
2738  TestMatches(&NanSensitiveDoubleEq);
2739}
2740
2741TEST_F(DoubleTest, DoubleEqCannotMatchNaN) {
2742  // DoubleEq never matches NaN.
2743  Matcher<double> m = DoubleEq(nan1_);
2744  EXPECT_FALSE(m.Matches(nan1_));
2745  EXPECT_FALSE(m.Matches(nan2_));
2746  EXPECT_FALSE(m.Matches(1.0));
2747}
2748
2749TEST_F(DoubleTest, NanSensitiveDoubleEqCanMatchNaN) {
2750  // NanSensitiveDoubleEq will match NaN.
2751  Matcher<double> m = NanSensitiveDoubleEq(nan1_);
2752  EXPECT_TRUE(m.Matches(nan1_));
2753  EXPECT_TRUE(m.Matches(nan2_));
2754  EXPECT_FALSE(m.Matches(1.0));
2755}
2756
2757TEST_F(DoubleTest, DoubleEqCanDescribeSelf) {
2758  Matcher<double> m1 = DoubleEq(2.0);
2759  EXPECT_EQ("is approximately 2", Describe(m1));
2760  EXPECT_EQ("isn't approximately 2", DescribeNegation(m1));
2761
2762  Matcher<double> m2 = DoubleEq(0.5);
2763  EXPECT_EQ("is approximately 0.5", Describe(m2));
2764  EXPECT_EQ("isn't approximately 0.5", DescribeNegation(m2));
2765
2766  Matcher<double> m3 = DoubleEq(nan1_);
2767  EXPECT_EQ("never matches", Describe(m3));
2768  EXPECT_EQ("is anything", DescribeNegation(m3));
2769}
2770
2771TEST_F(DoubleTest, NanSensitiveDoubleEqCanDescribeSelf) {
2772  Matcher<double> m1 = NanSensitiveDoubleEq(2.0);
2773  EXPECT_EQ("is approximately 2", Describe(m1));
2774  EXPECT_EQ("isn't approximately 2", DescribeNegation(m1));
2775
2776  Matcher<double> m2 = NanSensitiveDoubleEq(0.5);
2777  EXPECT_EQ("is approximately 0.5", Describe(m2));
2778  EXPECT_EQ("isn't approximately 0.5", DescribeNegation(m2));
2779
2780  Matcher<double> m3 = NanSensitiveDoubleEq(nan1_);
2781  EXPECT_EQ("is NaN", Describe(m3));
2782  EXPECT_EQ("isn't NaN", DescribeNegation(m3));
2783}
2784
2785TEST(PointeeTest, RawPointer) {
2786  const Matcher<int*> m = Pointee(Ge(0));
2787
2788  int n = 1;
2789  EXPECT_TRUE(m.Matches(&n));
2790  n = -1;
2791  EXPECT_FALSE(m.Matches(&n));
2792  EXPECT_FALSE(m.Matches(NULL));
2793}
2794
2795TEST(PointeeTest, RawPointerToConst) {
2796  const Matcher<const double*> m = Pointee(Ge(0));
2797
2798  double x = 1;
2799  EXPECT_TRUE(m.Matches(&x));
2800  x = -1;
2801  EXPECT_FALSE(m.Matches(&x));
2802  EXPECT_FALSE(m.Matches(NULL));
2803}
2804
2805TEST(PointeeTest, ReferenceToConstRawPointer) {
2806  const Matcher<int* const &> m = Pointee(Ge(0));
2807
2808  int n = 1;
2809  EXPECT_TRUE(m.Matches(&n));
2810  n = -1;
2811  EXPECT_FALSE(m.Matches(&n));
2812  EXPECT_FALSE(m.Matches(NULL));
2813}
2814
2815TEST(PointeeTest, ReferenceToNonConstRawPointer) {
2816  const Matcher<double* &> m = Pointee(Ge(0));
2817
2818  double x = 1.0;
2819  double* p = &x;
2820  EXPECT_TRUE(m.Matches(p));
2821  x = -1;
2822  EXPECT_FALSE(m.Matches(p));
2823  p = NULL;
2824  EXPECT_FALSE(m.Matches(p));
2825}
2826
2827// Minimal const-propagating pointer.
2828template <typename T>
2829class ConstPropagatingPtr {
2830 public:
2831  typedef T element_type;
2832
2833  ConstPropagatingPtr() : val_() {}
2834  explicit ConstPropagatingPtr(T* t) : val_(t) {}
2835  ConstPropagatingPtr(const ConstPropagatingPtr& other) : val_(other.val_) {}
2836
2837  T* get() { return val_; }
2838  T& operator*() { return *val_; }
2839  // Most smart pointers return non-const T* and T& from the next methods.
2840  const T* get() const { return val_; }
2841  const T& operator*() const { return *val_; }
2842
2843 private:
2844  T* val_;
2845};
2846
2847TEST(PointeeTest, WorksWithConstPropagatingPointers) {
2848  const Matcher< ConstPropagatingPtr<int> > m = Pointee(Lt(5));
2849  int three = 3;
2850  const ConstPropagatingPtr<int> co(&three);
2851  ConstPropagatingPtr<int> o(&three);
2852  EXPECT_TRUE(m.Matches(o));
2853  EXPECT_TRUE(m.Matches(co));
2854  *o = 6;
2855  EXPECT_FALSE(m.Matches(o));
2856  EXPECT_FALSE(m.Matches(ConstPropagatingPtr<int>()));
2857}
2858
2859TEST(PointeeTest, NeverMatchesNull) {
2860  const Matcher<const char*> m = Pointee(_);
2861  EXPECT_FALSE(m.Matches(NULL));
2862}
2863
2864// Tests that we can write Pointee(value) instead of Pointee(Eq(value)).
2865TEST(PointeeTest, MatchesAgainstAValue) {
2866  const Matcher<int*> m = Pointee(5);
2867
2868  int n = 5;
2869  EXPECT_TRUE(m.Matches(&n));
2870  n = -1;
2871  EXPECT_FALSE(m.Matches(&n));
2872  EXPECT_FALSE(m.Matches(NULL));
2873}
2874
2875TEST(PointeeTest, CanDescribeSelf) {
2876  const Matcher<int*> m = Pointee(Gt(3));
2877  EXPECT_EQ("points to a value that is > 3", Describe(m));
2878  EXPECT_EQ("does not point to a value that is > 3",
2879            DescribeNegation(m));
2880}
2881
2882TEST(PointeeTest, CanExplainMatchResult) {
2883  const Matcher<const string*> m = Pointee(StartsWith("Hi"));
2884
2885  EXPECT_EQ("", Explain(m, static_cast<const string*>(NULL)));
2886
2887  const Matcher<long*> m2 = Pointee(GreaterThan(1));  // NOLINT
2888  long n = 3;  // NOLINT
2889  EXPECT_EQ("which points to 3" + OfType("long") + ", which is 2 more than 1",
2890            Explain(m2, &n));
2891}
2892
2893TEST(PointeeTest, AlwaysExplainsPointee) {
2894  const Matcher<int*> m = Pointee(0);
2895  int n = 42;
2896  EXPECT_EQ("which points to 42" + OfType("int"), Explain(m, &n));
2897}
2898
2899// An uncopyable class.
2900class Uncopyable {
2901 public:
2902  explicit Uncopyable(int a_value) : value_(a_value) {}
2903
2904  int value() const { return value_; }
2905 private:
2906  const int value_;
2907  GTEST_DISALLOW_COPY_AND_ASSIGN_(Uncopyable);
2908};
2909
2910// Returns true iff x.value() is positive.
2911bool ValueIsPositive(const Uncopyable& x) { return x.value() > 0; }
2912
2913// A user-defined struct for testing Field().
2914struct AStruct {
2915  AStruct() : x(0), y(1.0), z(5), p(NULL) {}
2916  AStruct(const AStruct& rhs)
2917      : x(rhs.x), y(rhs.y), z(rhs.z.value()), p(rhs.p) {}
2918
2919  int x;           // A non-const field.
2920  const double y;  // A const field.
2921  Uncopyable z;    // An uncopyable field.
2922  const char* p;   // A pointer field.
2923
2924 private:
2925  GTEST_DISALLOW_ASSIGN_(AStruct);
2926};
2927
2928// A derived struct for testing Field().
2929struct DerivedStruct : public AStruct {
2930  char ch;
2931
2932 private:
2933  GTEST_DISALLOW_ASSIGN_(DerivedStruct);
2934};
2935
2936// Tests that Field(&Foo::field, ...) works when field is non-const.
2937TEST(FieldTest, WorksForNonConstField) {
2938  Matcher<AStruct> m = Field(&AStruct::x, Ge(0));
2939
2940  AStruct a;
2941  EXPECT_TRUE(m.Matches(a));
2942  a.x = -1;
2943  EXPECT_FALSE(m.Matches(a));
2944}
2945
2946// Tests that Field(&Foo::field, ...) works when field is const.
2947TEST(FieldTest, WorksForConstField) {
2948  AStruct a;
2949
2950  Matcher<AStruct> m = Field(&AStruct::y, Ge(0.0));
2951  EXPECT_TRUE(m.Matches(a));
2952  m = Field(&AStruct::y, Le(0.0));
2953  EXPECT_FALSE(m.Matches(a));
2954}
2955
2956// Tests that Field(&Foo::field, ...) works when field is not copyable.
2957TEST(FieldTest, WorksForUncopyableField) {
2958  AStruct a;
2959
2960  Matcher<AStruct> m = Field(&AStruct::z, Truly(ValueIsPositive));
2961  EXPECT_TRUE(m.Matches(a));
2962  m = Field(&AStruct::z, Not(Truly(ValueIsPositive)));
2963  EXPECT_FALSE(m.Matches(a));
2964}
2965
2966// Tests that Field(&Foo::field, ...) works when field is a pointer.
2967TEST(FieldTest, WorksForPointerField) {
2968  // Matching against NULL.
2969  Matcher<AStruct> m = Field(&AStruct::p, static_cast<const char*>(NULL));
2970  AStruct a;
2971  EXPECT_TRUE(m.Matches(a));
2972  a.p = "hi";
2973  EXPECT_FALSE(m.Matches(a));
2974
2975  // Matching a pointer that is not NULL.
2976  m = Field(&AStruct::p, StartsWith("hi"));
2977  a.p = "hill";
2978  EXPECT_TRUE(m.Matches(a));
2979  a.p = "hole";
2980  EXPECT_FALSE(m.Matches(a));
2981}
2982
2983// Tests that Field() works when the object is passed by reference.
2984TEST(FieldTest, WorksForByRefArgument) {
2985  Matcher<const AStruct&> m = Field(&AStruct::x, Ge(0));
2986
2987  AStruct a;
2988  EXPECT_TRUE(m.Matches(a));
2989  a.x = -1;
2990  EXPECT_FALSE(m.Matches(a));
2991}
2992
2993// Tests that Field(&Foo::field, ...) works when the argument's type
2994// is a sub-type of Foo.
2995TEST(FieldTest, WorksForArgumentOfSubType) {
2996  // Note that the matcher expects DerivedStruct but we say AStruct
2997  // inside Field().
2998  Matcher<const DerivedStruct&> m = Field(&AStruct::x, Ge(0));
2999
3000  DerivedStruct d;
3001  EXPECT_TRUE(m.Matches(d));
3002  d.x = -1;
3003  EXPECT_FALSE(m.Matches(d));
3004}
3005
3006// Tests that Field(&Foo::field, m) works when field's type and m's
3007// argument type are compatible but not the same.
3008TEST(FieldTest, WorksForCompatibleMatcherType) {
3009  // The field is an int, but the inner matcher expects a signed char.
3010  Matcher<const AStruct&> m = Field(&AStruct::x,
3011                                    Matcher<signed char>(Ge(0)));
3012
3013  AStruct a;
3014  EXPECT_TRUE(m.Matches(a));
3015  a.x = -1;
3016  EXPECT_FALSE(m.Matches(a));
3017}
3018
3019// Tests that Field() can describe itself.
3020TEST(FieldTest, CanDescribeSelf) {
3021  Matcher<const AStruct&> m = Field(&AStruct::x, Ge(0));
3022
3023  EXPECT_EQ("is an object whose given field is >= 0", Describe(m));
3024  EXPECT_EQ("is an object whose given field isn't >= 0", DescribeNegation(m));
3025}
3026
3027// Tests that Field() can explain the match result.
3028TEST(FieldTest, CanExplainMatchResult) {
3029  Matcher<const AStruct&> m = Field(&AStruct::x, Ge(0));
3030
3031  AStruct a;
3032  a.x = 1;
3033  EXPECT_EQ("whose given field is 1" + OfType("int"), Explain(m, a));
3034
3035  m = Field(&AStruct::x, GreaterThan(0));
3036  EXPECT_EQ(
3037      "whose given field is 1" + OfType("int") + ", which is 1 more than 0",
3038      Explain(m, a));
3039}
3040
3041// Tests that Field() works when the argument is a pointer to const.
3042TEST(FieldForPointerTest, WorksForPointerToConst) {
3043  Matcher<const AStruct*> m = Field(&AStruct::x, Ge(0));
3044
3045  AStruct a;
3046  EXPECT_TRUE(m.Matches(&a));
3047  a.x = -1;
3048  EXPECT_FALSE(m.Matches(&a));
3049}
3050
3051// Tests that Field() works when the argument is a pointer to non-const.
3052TEST(FieldForPointerTest, WorksForPointerToNonConst) {
3053  Matcher<AStruct*> m = Field(&AStruct::x, Ge(0));
3054
3055  AStruct a;
3056  EXPECT_TRUE(m.Matches(&a));
3057  a.x = -1;
3058  EXPECT_FALSE(m.Matches(&a));
3059}
3060
3061// Tests that Field() works when the argument is a reference to a const pointer.
3062TEST(FieldForPointerTest, WorksForReferenceToConstPointer) {
3063  Matcher<AStruct* const&> m = Field(&AStruct::x, Ge(0));
3064
3065  AStruct a;
3066  EXPECT_TRUE(m.Matches(&a));
3067  a.x = -1;
3068  EXPECT_FALSE(m.Matches(&a));
3069}
3070
3071// Tests that Field() does not match the NULL pointer.
3072TEST(FieldForPointerTest, DoesNotMatchNull) {
3073  Matcher<const AStruct*> m = Field(&AStruct::x, _);
3074  EXPECT_FALSE(m.Matches(NULL));
3075}
3076
3077// Tests that Field(&Foo::field, ...) works when the argument's type
3078// is a sub-type of const Foo*.
3079TEST(FieldForPointerTest, WorksForArgumentOfSubType) {
3080  // Note that the matcher expects DerivedStruct but we say AStruct
3081  // inside Field().
3082  Matcher<DerivedStruct*> m = Field(&AStruct::x, Ge(0));
3083
3084  DerivedStruct d;
3085  EXPECT_TRUE(m.Matches(&d));
3086  d.x = -1;
3087  EXPECT_FALSE(m.Matches(&d));
3088}
3089
3090// Tests that Field() can describe itself when used to match a pointer.
3091TEST(FieldForPointerTest, CanDescribeSelf) {
3092  Matcher<const AStruct*> m = Field(&AStruct::x, Ge(0));
3093
3094  EXPECT_EQ("is an object whose given field is >= 0", Describe(m));
3095  EXPECT_EQ("is an object whose given field isn't >= 0", DescribeNegation(m));
3096}
3097
3098// Tests that Field() can explain the result of matching a pointer.
3099TEST(FieldForPointerTest, CanExplainMatchResult) {
3100  Matcher<const AStruct*> m = Field(&AStruct::x, Ge(0));
3101
3102  AStruct a;
3103  a.x = 1;
3104  EXPECT_EQ("", Explain(m, static_cast<const AStruct*>(NULL)));
3105  EXPECT_EQ("which points to an object whose given field is 1" + OfType("int"),
3106            Explain(m, &a));
3107
3108  m = Field(&AStruct::x, GreaterThan(0));
3109  EXPECT_EQ("which points to an object whose given field is 1" + OfType("int") +
3110            ", which is 1 more than 0", Explain(m, &a));
3111}
3112
3113// A user-defined class for testing Property().
3114class AClass {
3115 public:
3116  AClass() : n_(0) {}
3117
3118  // A getter that returns a non-reference.
3119  int n() const { return n_; }
3120
3121  void set_n(int new_n) { n_ = new_n; }
3122
3123  // A getter that returns a reference to const.
3124  const string& s() const { return s_; }
3125
3126  void set_s(const string& new_s) { s_ = new_s; }
3127
3128  // A getter that returns a reference to non-const.
3129  double& x() const { return x_; }
3130 private:
3131  int n_;
3132  string s_;
3133
3134  static double x_;
3135};
3136
3137double AClass::x_ = 0.0;
3138
3139// A derived class for testing Property().
3140class DerivedClass : public AClass {
3141 private:
3142  int k_;
3143};
3144
3145// Tests that Property(&Foo::property, ...) works when property()
3146// returns a non-reference.
3147TEST(PropertyTest, WorksForNonReferenceProperty) {
3148  Matcher<const AClass&> m = Property(&AClass::n, Ge(0));
3149
3150  AClass a;
3151  a.set_n(1);
3152  EXPECT_TRUE(m.Matches(a));
3153
3154  a.set_n(-1);
3155  EXPECT_FALSE(m.Matches(a));
3156}
3157
3158// Tests that Property(&Foo::property, ...) works when property()
3159// returns a reference to const.
3160TEST(PropertyTest, WorksForReferenceToConstProperty) {
3161  Matcher<const AClass&> m = Property(&AClass::s, StartsWith("hi"));
3162
3163  AClass a;
3164  a.set_s("hill");
3165  EXPECT_TRUE(m.Matches(a));
3166
3167  a.set_s("hole");
3168  EXPECT_FALSE(m.Matches(a));
3169}
3170
3171// Tests that Property(&Foo::property, ...) works when property()
3172// returns a reference to non-const.
3173TEST(PropertyTest, WorksForReferenceToNonConstProperty) {
3174  double x = 0.0;
3175  AClass a;
3176
3177  Matcher<const AClass&> m = Property(&AClass::x, Ref(x));
3178  EXPECT_FALSE(m.Matches(a));
3179
3180  m = Property(&AClass::x, Not(Ref(x)));
3181  EXPECT_TRUE(m.Matches(a));
3182}
3183
3184// Tests that Property(&Foo::property, ...) works when the argument is
3185// passed by value.
3186TEST(PropertyTest, WorksForByValueArgument) {
3187  Matcher<AClass> m = Property(&AClass::s, StartsWith("hi"));
3188
3189  AClass a;
3190  a.set_s("hill");
3191  EXPECT_TRUE(m.Matches(a));
3192
3193  a.set_s("hole");
3194  EXPECT_FALSE(m.Matches(a));
3195}
3196
3197// Tests that Property(&Foo::property, ...) works when the argument's
3198// type is a sub-type of Foo.
3199TEST(PropertyTest, WorksForArgumentOfSubType) {
3200  // The matcher expects a DerivedClass, but inside the Property() we
3201  // say AClass.
3202  Matcher<const DerivedClass&> m = Property(&AClass::n, Ge(0));
3203
3204  DerivedClass d;
3205  d.set_n(1);
3206  EXPECT_TRUE(m.Matches(d));
3207
3208  d.set_n(-1);
3209  EXPECT_FALSE(m.Matches(d));
3210}
3211
3212// Tests that Property(&Foo::property, m) works when property()'s type
3213// and m's argument type are compatible but different.
3214TEST(PropertyTest, WorksForCompatibleMatcherType) {
3215  // n() returns an int but the inner matcher expects a signed char.
3216  Matcher<const AClass&> m = Property(&AClass::n,
3217                                      Matcher<signed char>(Ge(0)));
3218
3219  AClass a;
3220  EXPECT_TRUE(m.Matches(a));
3221  a.set_n(-1);
3222  EXPECT_FALSE(m.Matches(a));
3223}
3224
3225// Tests that Property() can describe itself.
3226TEST(PropertyTest, CanDescribeSelf) {
3227  Matcher<const AClass&> m = Property(&AClass::n, Ge(0));
3228
3229  EXPECT_EQ("is an object whose given property is >= 0", Describe(m));
3230  EXPECT_EQ("is an object whose given property isn't >= 0",
3231            DescribeNegation(m));
3232}
3233
3234// Tests that Property() can explain the match result.
3235TEST(PropertyTest, CanExplainMatchResult) {
3236  Matcher<const AClass&> m = Property(&AClass::n, Ge(0));
3237
3238  AClass a;
3239  a.set_n(1);
3240  EXPECT_EQ("whose given property is 1" + OfType("int"), Explain(m, a));
3241
3242  m = Property(&AClass::n, GreaterThan(0));
3243  EXPECT_EQ(
3244      "whose given property is 1" + OfType("int") + ", which is 1 more than 0",
3245      Explain(m, a));
3246}
3247
3248// Tests that Property() works when the argument is a pointer to const.
3249TEST(PropertyForPointerTest, WorksForPointerToConst) {
3250  Matcher<const AClass*> m = Property(&AClass::n, Ge(0));
3251
3252  AClass a;
3253  a.set_n(1);
3254  EXPECT_TRUE(m.Matches(&a));
3255
3256  a.set_n(-1);
3257  EXPECT_FALSE(m.Matches(&a));
3258}
3259
3260// Tests that Property() works when the argument is a pointer to non-const.
3261TEST(PropertyForPointerTest, WorksForPointerToNonConst) {
3262  Matcher<AClass*> m = Property(&AClass::s, StartsWith("hi"));
3263
3264  AClass a;
3265  a.set_s("hill");
3266  EXPECT_TRUE(m.Matches(&a));
3267
3268  a.set_s("hole");
3269  EXPECT_FALSE(m.Matches(&a));
3270}
3271
3272// Tests that Property() works when the argument is a reference to a
3273// const pointer.
3274TEST(PropertyForPointerTest, WorksForReferenceToConstPointer) {
3275  Matcher<AClass* const&> m = Property(&AClass::s, StartsWith("hi"));
3276
3277  AClass a;
3278  a.set_s("hill");
3279  EXPECT_TRUE(m.Matches(&a));
3280
3281  a.set_s("hole");
3282  EXPECT_FALSE(m.Matches(&a));
3283}
3284
3285// Tests that Property() does not match the NULL pointer.
3286TEST(PropertyForPointerTest, WorksForReferenceToNonConstProperty) {
3287  Matcher<const AClass*> m = Property(&AClass::x, _);
3288  EXPECT_FALSE(m.Matches(NULL));
3289}
3290
3291// Tests that Property(&Foo::property, ...) works when the argument's
3292// type is a sub-type of const Foo*.
3293TEST(PropertyForPointerTest, WorksForArgumentOfSubType) {
3294  // The matcher expects a DerivedClass, but inside the Property() we
3295  // say AClass.
3296  Matcher<const DerivedClass*> m = Property(&AClass::n, Ge(0));
3297
3298  DerivedClass d;
3299  d.set_n(1);
3300  EXPECT_TRUE(m.Matches(&d));
3301
3302  d.set_n(-1);
3303  EXPECT_FALSE(m.Matches(&d));
3304}
3305
3306// Tests that Property() can describe itself when used to match a pointer.
3307TEST(PropertyForPointerTest, CanDescribeSelf) {
3308  Matcher<const AClass*> m = Property(&AClass::n, Ge(0));
3309
3310  EXPECT_EQ("is an object whose given property is >= 0", Describe(m));
3311  EXPECT_EQ("is an object whose given property isn't >= 0",
3312            DescribeNegation(m));
3313}
3314
3315// Tests that Property() can explain the result of matching a pointer.
3316TEST(PropertyForPointerTest, CanExplainMatchResult) {
3317  Matcher<const AClass*> m = Property(&AClass::n, Ge(0));
3318
3319  AClass a;
3320  a.set_n(1);
3321  EXPECT_EQ("", Explain(m, static_cast<const AClass*>(NULL)));
3322  EXPECT_EQ(
3323      "which points to an object whose given property is 1" + OfType("int"),
3324      Explain(m, &a));
3325
3326  m = Property(&AClass::n, GreaterThan(0));
3327  EXPECT_EQ("which points to an object whose given property is 1" +
3328            OfType("int") + ", which is 1 more than 0",
3329            Explain(m, &a));
3330}
3331
3332// Tests ResultOf.
3333
3334// Tests that ResultOf(f, ...) compiles and works as expected when f is a
3335// function pointer.
3336string IntToStringFunction(int input) { return input == 1 ? "foo" : "bar"; }
3337
3338TEST(ResultOfTest, WorksForFunctionPointers) {
3339  Matcher<int> matcher = ResultOf(&IntToStringFunction, Eq(string("foo")));
3340
3341  EXPECT_TRUE(matcher.Matches(1));
3342  EXPECT_FALSE(matcher.Matches(2));
3343}
3344
3345// Tests that ResultOf() can describe itself.
3346TEST(ResultOfTest, CanDescribeItself) {
3347  Matcher<int> matcher = ResultOf(&IntToStringFunction, StrEq("foo"));
3348
3349  EXPECT_EQ("is mapped by the given callable to a value that "
3350            "is equal to \"foo\"", Describe(matcher));
3351  EXPECT_EQ("is mapped by the given callable to a value that "
3352            "isn't equal to \"foo\"", DescribeNegation(matcher));
3353}
3354
3355// Tests that ResultOf() can explain the match result.
3356int IntFunction(int input) { return input == 42 ? 80 : 90; }
3357
3358TEST(ResultOfTest, CanExplainMatchResult) {
3359  Matcher<int> matcher = ResultOf(&IntFunction, Ge(85));
3360  EXPECT_EQ("which is mapped by the given callable to 90" + OfType("int"),
3361            Explain(matcher, 36));
3362
3363  matcher = ResultOf(&IntFunction, GreaterThan(85));
3364  EXPECT_EQ("which is mapped by the given callable to 90" + OfType("int") +
3365            ", which is 5 more than 85", Explain(matcher, 36));
3366}
3367
3368// Tests that ResultOf(f, ...) compiles and works as expected when f(x)
3369// returns a non-reference.
3370TEST(ResultOfTest, WorksForNonReferenceResults) {
3371  Matcher<int> matcher = ResultOf(&IntFunction, Eq(80));
3372
3373  EXPECT_TRUE(matcher.Matches(42));
3374  EXPECT_FALSE(matcher.Matches(36));
3375}
3376
3377// Tests that ResultOf(f, ...) compiles and works as expected when f(x)
3378// returns a reference to non-const.
3379double& DoubleFunction(double& input) { return input; }  // NOLINT
3380
3381Uncopyable& RefUncopyableFunction(Uncopyable& obj) {  // NOLINT
3382  return obj;
3383}
3384
3385TEST(ResultOfTest, WorksForReferenceToNonConstResults) {
3386  double x = 3.14;
3387  double x2 = x;
3388  Matcher<double&> matcher = ResultOf(&DoubleFunction, Ref(x));
3389
3390  EXPECT_TRUE(matcher.Matches(x));
3391  EXPECT_FALSE(matcher.Matches(x2));
3392
3393  // Test that ResultOf works with uncopyable objects
3394  Uncopyable obj(0);
3395  Uncopyable obj2(0);
3396  Matcher<Uncopyable&> matcher2 =
3397      ResultOf(&RefUncopyableFunction, Ref(obj));
3398
3399  EXPECT_TRUE(matcher2.Matches(obj));
3400  EXPECT_FALSE(matcher2.Matches(obj2));
3401}
3402
3403// Tests that ResultOf(f, ...) compiles and works as expected when f(x)
3404// returns a reference to const.
3405const string& StringFunction(const string& input) { return input; }
3406
3407TEST(ResultOfTest, WorksForReferenceToConstResults) {
3408  string s = "foo";
3409  string s2 = s;
3410  Matcher<const string&> matcher = ResultOf(&StringFunction, Ref(s));
3411
3412  EXPECT_TRUE(matcher.Matches(s));
3413  EXPECT_FALSE(matcher.Matches(s2));
3414}
3415
3416// Tests that ResultOf(f, m) works when f(x) and m's
3417// argument types are compatible but different.
3418TEST(ResultOfTest, WorksForCompatibleMatcherTypes) {
3419  // IntFunction() returns int but the inner matcher expects a signed char.
3420  Matcher<int> matcher = ResultOf(IntFunction, Matcher<signed char>(Ge(85)));
3421
3422  EXPECT_TRUE(matcher.Matches(36));
3423  EXPECT_FALSE(matcher.Matches(42));
3424}
3425
3426// Tests that the program aborts when ResultOf is passed
3427// a NULL function pointer.
3428TEST(ResultOfDeathTest, DiesOnNullFunctionPointers) {
3429  EXPECT_DEATH_IF_SUPPORTED(
3430      ResultOf(static_cast<string(*)(int dummy)>(NULL), Eq(string("foo"))),
3431               "NULL function pointer is passed into ResultOf\\(\\)\\.");
3432}
3433
3434// Tests that ResultOf(f, ...) compiles and works as expected when f is a
3435// function reference.
3436TEST(ResultOfTest, WorksForFunctionReferences) {
3437  Matcher<int> matcher = ResultOf(IntToStringFunction, StrEq("foo"));
3438  EXPECT_TRUE(matcher.Matches(1));
3439  EXPECT_FALSE(matcher.Matches(2));
3440}
3441
3442// Tests that ResultOf(f, ...) compiles and works as expected when f is a
3443// function object.
3444struct Functor : public ::std::unary_function<int, string> {
3445  result_type operator()(argument_type input) const {
3446    return IntToStringFunction(input);
3447  }
3448};
3449
3450TEST(ResultOfTest, WorksForFunctors) {
3451  Matcher<int> matcher = ResultOf(Functor(), Eq(string("foo")));
3452
3453  EXPECT_TRUE(matcher.Matches(1));
3454  EXPECT_FALSE(matcher.Matches(2));
3455}
3456
3457// Tests that ResultOf(f, ...) compiles and works as expected when f is a
3458// functor with more then one operator() defined. ResultOf() must work
3459// for each defined operator().
3460struct PolymorphicFunctor {
3461  typedef int result_type;
3462  int operator()(int n) { return n; }
3463  int operator()(const char* s) { return static_cast<int>(strlen(s)); }
3464};
3465
3466TEST(ResultOfTest, WorksForPolymorphicFunctors) {
3467  Matcher<int> matcher_int = ResultOf(PolymorphicFunctor(), Ge(5));
3468
3469  EXPECT_TRUE(matcher_int.Matches(10));
3470  EXPECT_FALSE(matcher_int.Matches(2));
3471
3472  Matcher<const char*> matcher_string = ResultOf(PolymorphicFunctor(), Ge(5));
3473
3474  EXPECT_TRUE(matcher_string.Matches("long string"));
3475  EXPECT_FALSE(matcher_string.Matches("shrt"));
3476}
3477
3478const int* ReferencingFunction(const int& n) { return &n; }
3479
3480struct ReferencingFunctor {
3481  typedef const int* result_type;
3482  result_type operator()(const int& n) { return &n; }
3483};
3484
3485TEST(ResultOfTest, WorksForReferencingCallables) {
3486  const int n = 1;
3487  const int n2 = 1;
3488  Matcher<const int&> matcher2 = ResultOf(ReferencingFunction, Eq(&n));
3489  EXPECT_TRUE(matcher2.Matches(n));
3490  EXPECT_FALSE(matcher2.Matches(n2));
3491
3492  Matcher<const int&> matcher3 = ResultOf(ReferencingFunctor(), Eq(&n));
3493  EXPECT_TRUE(matcher3.Matches(n));
3494  EXPECT_FALSE(matcher3.Matches(n2));
3495}
3496
3497class DivisibleByImpl {
3498 public:
3499  explicit DivisibleByImpl(int a_divider) : divider_(a_divider) {}
3500
3501  // For testing using ExplainMatchResultTo() with polymorphic matchers.
3502  template <typename T>
3503  bool MatchAndExplain(const T& n, MatchResultListener* listener) const {
3504    *listener << "which is " << (n % divider_) << " modulo "
3505              << divider_;
3506    return (n % divider_) == 0;
3507  }
3508
3509  void DescribeTo(ostream* os) const {
3510    *os << "is divisible by " << divider_;
3511  }
3512
3513  void DescribeNegationTo(ostream* os) const {
3514    *os << "is not divisible by " << divider_;
3515  }
3516
3517  void set_divider(int a_divider) { divider_ = a_divider; }
3518  int divider() const { return divider_; }
3519
3520 private:
3521  int divider_;
3522};
3523
3524PolymorphicMatcher<DivisibleByImpl> DivisibleBy(int n) {
3525  return MakePolymorphicMatcher(DivisibleByImpl(n));
3526}
3527
3528// Tests that when AllOf() fails, only the first failing matcher is
3529// asked to explain why.
3530TEST(ExplainMatchResultTest, AllOf_False_False) {
3531  const Matcher<int> m = AllOf(DivisibleBy(4), DivisibleBy(3));
3532  EXPECT_EQ("which is 1 modulo 4", Explain(m, 5));
3533}
3534
3535// Tests that when AllOf() fails, only the first failing matcher is
3536// asked to explain why.
3537TEST(ExplainMatchResultTest, AllOf_False_True) {
3538  const Matcher<int> m = AllOf(DivisibleBy(4), DivisibleBy(3));
3539  EXPECT_EQ("which is 2 modulo 4", Explain(m, 6));
3540}
3541
3542// Tests that when AllOf() fails, only the first failing matcher is
3543// asked to explain why.
3544TEST(ExplainMatchResultTest, AllOf_True_False) {
3545  const Matcher<int> m = AllOf(Ge(1), DivisibleBy(3));
3546  EXPECT_EQ("which is 2 modulo 3", Explain(m, 5));
3547}
3548
3549// Tests that when AllOf() succeeds, all matchers are asked to explain
3550// why.
3551TEST(ExplainMatchResultTest, AllOf_True_True) {
3552  const Matcher<int> m = AllOf(DivisibleBy(2), DivisibleBy(3));
3553  EXPECT_EQ("which is 0 modulo 2, and which is 0 modulo 3", Explain(m, 6));
3554}
3555
3556TEST(ExplainMatchResultTest, AllOf_True_True_2) {
3557  const Matcher<int> m = AllOf(Ge(2), Le(3));
3558  EXPECT_EQ("", Explain(m, 2));
3559}
3560
3561TEST(ExplainmatcherResultTest, MonomorphicMatcher) {
3562  const Matcher<int> m = GreaterThan(5);
3563  EXPECT_EQ("which is 1 more than 5", Explain(m, 6));
3564}
3565
3566// The following two tests verify that values without a public copy
3567// ctor can be used as arguments to matchers like Eq(), Ge(), and etc
3568// with the help of ByRef().
3569
3570class NotCopyable {
3571 public:
3572  explicit NotCopyable(int a_value) : value_(a_value) {}
3573
3574  int value() const { return value_; }
3575
3576  bool operator==(const NotCopyable& rhs) const {
3577    return value() == rhs.value();
3578  }
3579
3580  bool operator>=(const NotCopyable& rhs) const {
3581    return value() >= rhs.value();
3582  }
3583 private:
3584  int value_;
3585
3586  GTEST_DISALLOW_COPY_AND_ASSIGN_(NotCopyable);
3587};
3588
3589TEST(ByRefTest, AllowsNotCopyableConstValueInMatchers) {
3590  const NotCopyable const_value1(1);
3591  const Matcher<const NotCopyable&> m = Eq(ByRef(const_value1));
3592
3593  const NotCopyable n1(1), n2(2);
3594  EXPECT_TRUE(m.Matches(n1));
3595  EXPECT_FALSE(m.Matches(n2));
3596}
3597
3598TEST(ByRefTest, AllowsNotCopyableValueInMatchers) {
3599  NotCopyable value2(2);
3600  const Matcher<NotCopyable&> m = Ge(ByRef(value2));
3601
3602  NotCopyable n1(1), n2(2);
3603  EXPECT_FALSE(m.Matches(n1));
3604  EXPECT_TRUE(m.Matches(n2));
3605}
3606
3607#if GTEST_HAS_TYPED_TEST
3608// Tests ContainerEq with different container types, and
3609// different element types.
3610
3611template <typename T>
3612class ContainerEqTest : public testing::Test {};
3613
3614typedef testing::Types<
3615    set<int>,
3616    vector<size_t>,
3617    multiset<size_t>,
3618    list<int> >
3619    ContainerEqTestTypes;
3620
3621TYPED_TEST_CASE(ContainerEqTest, ContainerEqTestTypes);
3622
3623// Tests that the filled container is equal to itself.
3624TYPED_TEST(ContainerEqTest, EqualsSelf) {
3625  static const int vals[] = {1, 1, 2, 3, 5, 8};
3626  TypeParam my_set(vals, vals + 6);
3627  const Matcher<TypeParam> m = ContainerEq(my_set);
3628  EXPECT_TRUE(m.Matches(my_set));
3629  EXPECT_EQ("", Explain(m, my_set));
3630}
3631
3632// Tests that missing values are reported.
3633TYPED_TEST(ContainerEqTest, ValueMissing) {
3634  static const int vals[] = {1, 1, 2, 3, 5, 8};
3635  static const int test_vals[] = {2, 1, 8, 5};
3636  TypeParam my_set(vals, vals + 6);
3637  TypeParam test_set(test_vals, test_vals + 4);
3638  const Matcher<TypeParam> m = ContainerEq(my_set);
3639  EXPECT_FALSE(m.Matches(test_set));
3640  EXPECT_EQ("which doesn't have these expected elements: 3",
3641            Explain(m, test_set));
3642}
3643
3644// Tests that added values are reported.
3645TYPED_TEST(ContainerEqTest, ValueAdded) {
3646  static const int vals[] = {1, 1, 2, 3, 5, 8};
3647  static const int test_vals[] = {1, 2, 3, 5, 8, 46};
3648  TypeParam my_set(vals, vals + 6);
3649  TypeParam test_set(test_vals, test_vals + 6);
3650  const Matcher<const TypeParam&> m = ContainerEq(my_set);
3651  EXPECT_FALSE(m.Matches(test_set));
3652  EXPECT_EQ("which has these unexpected elements: 46", Explain(m, test_set));
3653}
3654
3655// Tests that added and missing values are reported together.
3656TYPED_TEST(ContainerEqTest, ValueAddedAndRemoved) {
3657  static const int vals[] = {1, 1, 2, 3, 5, 8};
3658  static const int test_vals[] = {1, 2, 3, 8, 46};
3659  TypeParam my_set(vals, vals + 6);
3660  TypeParam test_set(test_vals, test_vals + 5);
3661  const Matcher<TypeParam> m = ContainerEq(my_set);
3662  EXPECT_FALSE(m.Matches(test_set));
3663  EXPECT_EQ("which has these unexpected elements: 46,\n"
3664            "and doesn't have these expected elements: 5",
3665            Explain(m, test_set));
3666}
3667
3668// Tests duplicated value -- expect no explanation.
3669TYPED_TEST(ContainerEqTest, DuplicateDifference) {
3670  static const int vals[] = {1, 1, 2, 3, 5, 8};
3671  static const int test_vals[] = {1, 2, 3, 5, 8};
3672  TypeParam my_set(vals, vals + 6);
3673  TypeParam test_set(test_vals, test_vals + 5);
3674  const Matcher<const TypeParam&> m = ContainerEq(my_set);
3675  // Depending on the container, match may be true or false
3676  // But in any case there should be no explanation.
3677  EXPECT_EQ("", Explain(m, test_set));
3678}
3679#endif  // GTEST_HAS_TYPED_TEST
3680
3681// Tests that mutliple missing values are reported.
3682// Using just vector here, so order is predicatble.
3683TEST(ContainerEqExtraTest, MultipleValuesMissing) {
3684  static const int vals[] = {1, 1, 2, 3, 5, 8};
3685  static const int test_vals[] = {2, 1, 5};
3686  vector<int> my_set(vals, vals + 6);
3687  vector<int> test_set(test_vals, test_vals + 3);
3688  const Matcher<vector<int> > m = ContainerEq(my_set);
3689  EXPECT_FALSE(m.Matches(test_set));
3690  EXPECT_EQ("which doesn't have these expected elements: 3, 8",
3691            Explain(m, test_set));
3692}
3693
3694// Tests that added values are reported.
3695// Using just vector here, so order is predicatble.
3696TEST(ContainerEqExtraTest, MultipleValuesAdded) {
3697  static const int vals[] = {1, 1, 2, 3, 5, 8};
3698  static const int test_vals[] = {1, 2, 92, 3, 5, 8, 46};
3699  list<size_t> my_set(vals, vals + 6);
3700  list<size_t> test_set(test_vals, test_vals + 7);
3701  const Matcher<const list<size_t>&> m = ContainerEq(my_set);
3702  EXPECT_FALSE(m.Matches(test_set));
3703  EXPECT_EQ("which has these unexpected elements: 92, 46",
3704            Explain(m, test_set));
3705}
3706
3707// Tests that added and missing values are reported together.
3708TEST(ContainerEqExtraTest, MultipleValuesAddedAndRemoved) {
3709  static const int vals[] = {1, 1, 2, 3, 5, 8};
3710  static const int test_vals[] = {1, 2, 3, 92, 46};
3711  list<size_t> my_set(vals, vals + 6);
3712  list<size_t> test_set(test_vals, test_vals + 5);
3713  const Matcher<const list<size_t> > m = ContainerEq(my_set);
3714  EXPECT_FALSE(m.Matches(test_set));
3715  EXPECT_EQ("which has these unexpected elements: 92, 46,\n"
3716            "and doesn't have these expected elements: 5, 8",
3717            Explain(m, test_set));
3718}
3719
3720// Tests to see that duplicate elements are detected,
3721// but (as above) not reported in the explanation.
3722TEST(ContainerEqExtraTest, MultiSetOfIntDuplicateDifference) {
3723  static const int vals[] = {1, 1, 2, 3, 5, 8};
3724  static const int test_vals[] = {1, 2, 3, 5, 8};
3725  vector<int> my_set(vals, vals + 6);
3726  vector<int> test_set(test_vals, test_vals + 5);
3727  const Matcher<vector<int> > m = ContainerEq(my_set);
3728  EXPECT_TRUE(m.Matches(my_set));
3729  EXPECT_FALSE(m.Matches(test_set));
3730  // There is nothing to report when both sets contain all the same values.
3731  EXPECT_EQ("", Explain(m, test_set));
3732}
3733
3734// Tests that ContainerEq works for non-trivial associative containers,
3735// like maps.
3736TEST(ContainerEqExtraTest, WorksForMaps) {
3737  map<int, std::string> my_map;
3738  my_map[0] = "a";
3739  my_map[1] = "b";
3740
3741  map<int, std::string> test_map;
3742  test_map[0] = "aa";
3743  test_map[1] = "b";
3744
3745  const Matcher<const map<int, std::string>&> m = ContainerEq(my_map);
3746  EXPECT_TRUE(m.Matches(my_map));
3747  EXPECT_FALSE(m.Matches(test_map));
3748
3749  EXPECT_EQ("which has these unexpected elements: (0, \"aa\"),\n"
3750            "and doesn't have these expected elements: (0, \"a\")",
3751            Explain(m, test_map));
3752}
3753
3754TEST(ContainerEqExtraTest, WorksForNativeArray) {
3755  int a1[] = { 1, 2, 3 };
3756  int a2[] = { 1, 2, 3 };
3757  int b[] = { 1, 2, 4 };
3758
3759  EXPECT_THAT(a1, ContainerEq(a2));
3760  EXPECT_THAT(a1, Not(ContainerEq(b)));
3761}
3762
3763TEST(ContainerEqExtraTest, WorksForTwoDimensionalNativeArray) {
3764  const char a1[][3] = { "hi", "lo" };
3765  const char a2[][3] = { "hi", "lo" };
3766  const char b[][3] = { "lo", "hi" };
3767
3768  // Tests using ContainerEq() in the first dimension.
3769  EXPECT_THAT(a1, ContainerEq(a2));
3770  EXPECT_THAT(a1, Not(ContainerEq(b)));
3771
3772  // Tests using ContainerEq() in the second dimension.
3773  EXPECT_THAT(a1, ElementsAre(ContainerEq(a2[0]), ContainerEq(a2[1])));
3774  EXPECT_THAT(a1, ElementsAre(Not(ContainerEq(b[0])), ContainerEq(a2[1])));
3775}
3776
3777TEST(ContainerEqExtraTest, WorksForNativeArrayAsTuple) {
3778  const int a1[] = { 1, 2, 3 };
3779  const int a2[] = { 1, 2, 3 };
3780  const int b[] = { 1, 2, 3, 4 };
3781
3782  const int* const p1 = a1;
3783  EXPECT_THAT(make_tuple(p1, 3), ContainerEq(a2));
3784  EXPECT_THAT(make_tuple(p1, 3), Not(ContainerEq(b)));
3785
3786  const int c[] = { 1, 3, 2 };
3787  EXPECT_THAT(make_tuple(p1, 3), Not(ContainerEq(c)));
3788}
3789
3790TEST(ContainerEqExtraTest, CopiesNativeArrayParameter) {
3791  std::string a1[][3] = {
3792    { "hi", "hello", "ciao" },
3793    { "bye", "see you", "ciao" }
3794  };
3795
3796  std::string a2[][3] = {
3797    { "hi", "hello", "ciao" },
3798    { "bye", "see you", "ciao" }
3799  };
3800
3801  const Matcher<const std::string(&)[2][3]> m = ContainerEq(a2);
3802  EXPECT_THAT(a1, m);
3803
3804  a2[0][0] = "ha";
3805  EXPECT_THAT(a1, m);
3806}
3807
3808TEST(WhenSortedByTest, WorksForEmptyContainer) {
3809  const vector<int> numbers;
3810  EXPECT_THAT(numbers, WhenSortedBy(less<int>(), ElementsAre()));
3811  EXPECT_THAT(numbers, Not(WhenSortedBy(less<int>(), ElementsAre(1))));
3812}
3813
3814TEST(WhenSortedByTest, WorksForNonEmptyContainer) {
3815  vector<unsigned> numbers;
3816  numbers.push_back(3);
3817  numbers.push_back(1);
3818  numbers.push_back(2);
3819  numbers.push_back(2);
3820  EXPECT_THAT(numbers, WhenSortedBy(greater<unsigned>(),
3821                                    ElementsAre(3, 2, 2, 1)));
3822  EXPECT_THAT(numbers, Not(WhenSortedBy(greater<unsigned>(),
3823                                        ElementsAre(1, 2, 2, 3))));
3824}
3825
3826TEST(WhenSortedByTest, WorksForNonVectorContainer) {
3827  list<string> words;
3828  words.push_back("say");
3829  words.push_back("hello");
3830  words.push_back("world");
3831  EXPECT_THAT(words, WhenSortedBy(less<string>(),
3832                                  ElementsAre("hello", "say", "world")));
3833  EXPECT_THAT(words, Not(WhenSortedBy(less<string>(),
3834                                      ElementsAre("say", "hello", "world"))));
3835}
3836
3837TEST(WhenSortedByTest, WorksForNativeArray) {
3838  const int numbers[] = { 1, 3, 2, 4 };
3839  const int sorted_numbers[] = { 1, 2, 3, 4 };
3840  EXPECT_THAT(numbers, WhenSortedBy(less<int>(), ElementsAre(1, 2, 3, 4)));
3841  EXPECT_THAT(numbers, WhenSortedBy(less<int>(),
3842                                    ElementsAreArray(sorted_numbers)));
3843  EXPECT_THAT(numbers, Not(WhenSortedBy(less<int>(), ElementsAre(1, 3, 2, 4))));
3844}
3845
3846TEST(WhenSortedByTest, CanDescribeSelf) {
3847  const Matcher<vector<int> > m = WhenSortedBy(less<int>(), ElementsAre(1, 2));
3848  EXPECT_EQ("(when sorted) has 2 elements where\n"
3849            "element #0 is equal to 1,\n"
3850            "element #1 is equal to 2",
3851            Describe(m));
3852  EXPECT_EQ("(when sorted) doesn't have 2 elements, or\n"
3853            "element #0 isn't equal to 1, or\n"
3854            "element #1 isn't equal to 2",
3855            DescribeNegation(m));
3856}
3857
3858TEST(WhenSortedByTest, ExplainsMatchResult) {
3859  const int a[] = { 2, 1 };
3860  EXPECT_EQ("which is { 1, 2 } when sorted, whose element #0 doesn't match",
3861            Explain(WhenSortedBy(less<int>(), ElementsAre(2, 3)), a));
3862  EXPECT_EQ("which is { 1, 2 } when sorted",
3863            Explain(WhenSortedBy(less<int>(), ElementsAre(1, 2)), a));
3864}
3865
3866// WhenSorted() is a simple wrapper on WhenSortedBy().  Hence we don't
3867// need to test it as exhaustively as we test the latter.
3868
3869TEST(WhenSortedTest, WorksForEmptyContainer) {
3870  const vector<int> numbers;
3871  EXPECT_THAT(numbers, WhenSorted(ElementsAre()));
3872  EXPECT_THAT(numbers, Not(WhenSorted(ElementsAre(1))));
3873}
3874
3875TEST(WhenSortedTest, WorksForNonEmptyContainer) {
3876  list<string> words;
3877  words.push_back("3");
3878  words.push_back("1");
3879  words.push_back("2");
3880  words.push_back("2");
3881  EXPECT_THAT(words, WhenSorted(ElementsAre("1", "2", "2", "3")));
3882  EXPECT_THAT(words, Not(WhenSorted(ElementsAre("3", "1", "2", "2"))));
3883}
3884
3885// Tests IsReadableTypeName().
3886
3887TEST(IsReadableTypeNameTest, ReturnsTrueForShortNames) {
3888  EXPECT_TRUE(IsReadableTypeName("int"));
3889  EXPECT_TRUE(IsReadableTypeName("const unsigned char*"));
3890  EXPECT_TRUE(IsReadableTypeName("MyMap<int, void*>"));
3891  EXPECT_TRUE(IsReadableTypeName("void (*)(int, bool)"));
3892}
3893
3894TEST(IsReadableTypeNameTest, ReturnsTrueForLongNonTemplateNonFunctionNames) {
3895  EXPECT_TRUE(IsReadableTypeName("my_long_namespace::MyClassName"));
3896  EXPECT_TRUE(IsReadableTypeName("int [5][6][7][8][9][10][11]"));
3897  EXPECT_TRUE(IsReadableTypeName("my_namespace::MyOuterClass::MyInnerClass"));
3898}
3899
3900TEST(IsReadableTypeNameTest, ReturnsFalseForLongTemplateNames) {
3901  EXPECT_FALSE(
3902      IsReadableTypeName("basic_string<char, std::char_traits<char> >"));
3903  EXPECT_FALSE(IsReadableTypeName("std::vector<int, std::alloc_traits<int> >"));
3904}
3905
3906TEST(IsReadableTypeNameTest, ReturnsFalseForLongFunctionTypeNames) {
3907  EXPECT_FALSE(IsReadableTypeName("void (&)(int, bool, char, float)"));
3908}
3909
3910// Tests JoinAsTuple().
3911
3912TEST(JoinAsTupleTest, JoinsEmptyTuple) {
3913  EXPECT_EQ("", JoinAsTuple(Strings()));
3914}
3915
3916TEST(JoinAsTupleTest, JoinsOneTuple) {
3917  const char* fields[] = { "1" };
3918  EXPECT_EQ("1", JoinAsTuple(Strings(fields, fields + 1)));
3919}
3920
3921TEST(JoinAsTupleTest, JoinsTwoTuple) {
3922  const char* fields[] = { "1", "a" };
3923  EXPECT_EQ("(1, a)", JoinAsTuple(Strings(fields, fields + 2)));
3924}
3925
3926TEST(JoinAsTupleTest, JoinsTenTuple) {
3927  const char* fields[] = { "1", "2", "3", "4", "5", "6", "7", "8", "9", "10" };
3928  EXPECT_EQ("(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)",
3929            JoinAsTuple(Strings(fields, fields + 10)));
3930}
3931
3932// Tests FormatMatcherDescription().
3933
3934TEST(FormatMatcherDescriptionTest, WorksForEmptyDescription) {
3935  EXPECT_EQ("is even",
3936            FormatMatcherDescription(false, "IsEven", Strings()));
3937  EXPECT_EQ("not (is even)",
3938            FormatMatcherDescription(true, "IsEven", Strings()));
3939
3940  const char* params[] = { "5" };
3941  EXPECT_EQ("equals 5",
3942            FormatMatcherDescription(false, "Equals",
3943                                     Strings(params, params + 1)));
3944
3945  const char* params2[] = { "5", "8" };
3946  EXPECT_EQ("is in range (5, 8)",
3947            FormatMatcherDescription(false, "IsInRange",
3948                                     Strings(params2, params2 + 2)));
3949}
3950
3951// Tests PolymorphicMatcher::mutable_impl().
3952TEST(PolymorphicMatcherTest, CanAccessMutableImpl) {
3953  PolymorphicMatcher<DivisibleByImpl> m(DivisibleByImpl(42));
3954  DivisibleByImpl& impl = m.mutable_impl();
3955  EXPECT_EQ(42, impl.divider());
3956
3957  impl.set_divider(0);
3958  EXPECT_EQ(0, m.mutable_impl().divider());
3959}
3960
3961// Tests PolymorphicMatcher::impl().
3962TEST(PolymorphicMatcherTest, CanAccessImpl) {
3963  const PolymorphicMatcher<DivisibleByImpl> m(DivisibleByImpl(42));
3964  const DivisibleByImpl& impl = m.impl();
3965  EXPECT_EQ(42, impl.divider());
3966}
3967
3968TEST(MatcherTupleTest, ExplainsMatchFailure) {
3969  stringstream ss1;
3970  ExplainMatchFailureTupleTo(make_tuple(Matcher<char>(Eq('a')), GreaterThan(5)),
3971                             make_tuple('a', 10), &ss1);
3972  EXPECT_EQ("", ss1.str());  // Successful match.
3973
3974  stringstream ss2;
3975  ExplainMatchFailureTupleTo(make_tuple(GreaterThan(5), Matcher<char>(Eq('a'))),
3976                             make_tuple(2, 'b'), &ss2);
3977  EXPECT_EQ("  Expected arg #0: is > 5\n"
3978            "           Actual: 2, which is 3 less than 5\n"
3979            "  Expected arg #1: is equal to 'a' (97, 0x61)\n"
3980            "           Actual: 'b' (98, 0x62)\n",
3981            ss2.str());  // Failed match where both arguments need explanation.
3982
3983  stringstream ss3;
3984  ExplainMatchFailureTupleTo(make_tuple(GreaterThan(5), Matcher<char>(Eq('a'))),
3985                             make_tuple(2, 'a'), &ss3);
3986  EXPECT_EQ("  Expected arg #0: is > 5\n"
3987            "           Actual: 2, which is 3 less than 5\n",
3988            ss3.str());  // Failed match where only one argument needs
3989                         // explanation.
3990}
3991
3992// Tests Each().
3993
3994TEST(EachTest, ExplainsMatchResultCorrectly) {
3995  set<int> a;  // empty
3996
3997  Matcher<set<int> > m = Each(2);
3998  EXPECT_EQ("", Explain(m, a));
3999
4000  Matcher<const int(&)[1]> n = Each(1);  // NOLINT
4001
4002  const int b[1] = { 1 };
4003  EXPECT_EQ("", Explain(n, b));
4004
4005  n = Each(3);
4006  EXPECT_EQ("whose element #0 doesn't match", Explain(n, b));
4007
4008  a.insert(1);
4009  a.insert(2);
4010  a.insert(3);
4011  m = Each(GreaterThan(0));
4012  EXPECT_EQ("", Explain(m, a));
4013
4014  m = Each(GreaterThan(10));
4015  EXPECT_EQ("whose element #0 doesn't match, which is 9 less than 10",
4016            Explain(m, a));
4017}
4018
4019TEST(EachTest, DescribesItselfCorrectly) {
4020  Matcher<vector<int> > m = Each(1);
4021  EXPECT_EQ("only contains elements that is equal to 1", Describe(m));
4022
4023  Matcher<vector<int> > m2 = Not(m);
4024  EXPECT_EQ("contains some element that isn't equal to 1", Describe(m2));
4025}
4026
4027TEST(EachTest, MatchesVectorWhenAllElementsMatch) {
4028  vector<int> some_vector;
4029  EXPECT_THAT(some_vector, Each(1));
4030  some_vector.push_back(3);
4031  EXPECT_THAT(some_vector, Not(Each(1)));
4032  EXPECT_THAT(some_vector, Each(3));
4033  some_vector.push_back(1);
4034  some_vector.push_back(2);
4035  EXPECT_THAT(some_vector, Not(Each(3)));
4036  EXPECT_THAT(some_vector, Each(Lt(3.5)));
4037
4038  vector<string> another_vector;
4039  another_vector.push_back("fee");
4040  EXPECT_THAT(another_vector, Each(string("fee")));
4041  another_vector.push_back("fie");
4042  another_vector.push_back("foe");
4043  another_vector.push_back("fum");
4044  EXPECT_THAT(another_vector, Not(Each(string("fee"))));
4045}
4046
4047TEST(EachTest, MatchesMapWhenAllElementsMatch) {
4048  map<const char*, int> my_map;
4049  const char* bar = "a string";
4050  my_map[bar] = 2;
4051  EXPECT_THAT(my_map, Each(make_pair(bar, 2)));
4052
4053  map<string, int> another_map;
4054  EXPECT_THAT(another_map, Each(make_pair(string("fee"), 1)));
4055  another_map["fee"] = 1;
4056  EXPECT_THAT(another_map, Each(make_pair(string("fee"), 1)));
4057  another_map["fie"] = 2;
4058  another_map["foe"] = 3;
4059  another_map["fum"] = 4;
4060  EXPECT_THAT(another_map, Not(Each(make_pair(string("fee"), 1))));
4061  EXPECT_THAT(another_map, Not(Each(make_pair(string("fum"), 1))));
4062  EXPECT_THAT(another_map, Each(Pair(_, Gt(0))));
4063}
4064
4065TEST(EachTest, AcceptsMatcher) {
4066  const int a[] = { 1, 2, 3 };
4067  EXPECT_THAT(a, Each(Gt(0)));
4068  EXPECT_THAT(a, Not(Each(Gt(1))));
4069}
4070
4071TEST(EachTest, WorksForNativeArrayAsTuple) {
4072  const int a[] = { 1, 2 };
4073  const int* const pointer = a;
4074  EXPECT_THAT(make_tuple(pointer, 2), Each(Gt(0)));
4075  EXPECT_THAT(make_tuple(pointer, 2), Not(Each(Gt(1))));
4076}
4077
4078// For testing Pointwise().
4079class IsHalfOfMatcher {
4080 public:
4081  template <typename T1, typename T2>
4082  bool MatchAndExplain(const tuple<T1, T2>& a_pair,
4083                       MatchResultListener* listener) const {
4084    if (get<0>(a_pair) == get<1>(a_pair)/2) {
4085      *listener << "where the second is " << get<1>(a_pair);
4086      return true;
4087    } else {
4088      *listener << "where the second/2 is " << get<1>(a_pair)/2;
4089      return false;
4090    }
4091  }
4092
4093  void DescribeTo(ostream* os) const {
4094    *os << "are a pair where the first is half of the second";
4095  }
4096
4097  void DescribeNegationTo(ostream* os) const {
4098    *os << "are a pair where the first isn't half of the second";
4099  }
4100};
4101
4102PolymorphicMatcher<IsHalfOfMatcher> IsHalfOf() {
4103  return MakePolymorphicMatcher(IsHalfOfMatcher());
4104}
4105
4106TEST(PointwiseTest, DescribesSelf) {
4107  vector<int> rhs;
4108  rhs.push_back(1);
4109  rhs.push_back(2);
4110  rhs.push_back(3);
4111  const Matcher<const vector<int>&> m = Pointwise(IsHalfOf(), rhs);
4112  EXPECT_EQ("contains 3 values, where each value and its corresponding value "
4113            "in { 1, 2, 3 } are a pair where the first is half of the second",
4114            Describe(m));
4115  EXPECT_EQ("doesn't contain exactly 3 values, or contains a value x at some "
4116            "index i where x and the i-th value of { 1, 2, 3 } are a pair "
4117            "where the first isn't half of the second",
4118            DescribeNegation(m));
4119}
4120
4121TEST(PointwiseTest, MakesCopyOfRhs) {
4122  list<signed char> rhs;
4123  rhs.push_back(2);
4124  rhs.push_back(4);
4125
4126  int lhs[] = { 1, 2 };
4127  const Matcher<const int (&)[2]> m = Pointwise(IsHalfOf(), rhs);
4128  EXPECT_THAT(lhs, m);
4129
4130  // Changing rhs now shouldn't affect m, which made a copy of rhs.
4131  rhs.push_back(6);
4132  EXPECT_THAT(lhs, m);
4133}
4134
4135TEST(PointwiseTest, WorksForLhsNativeArray) {
4136  const int lhs[] = { 1, 2, 3 };
4137  vector<int> rhs;
4138  rhs.push_back(2);
4139  rhs.push_back(4);
4140  rhs.push_back(6);
4141  EXPECT_THAT(lhs, Pointwise(Lt(), rhs));
4142  EXPECT_THAT(lhs, Not(Pointwise(Gt(), rhs)));
4143}
4144
4145TEST(PointwiseTest, WorksForRhsNativeArray) {
4146  const int rhs[] = { 1, 2, 3 };
4147  vector<int> lhs;
4148  lhs.push_back(2);
4149  lhs.push_back(4);
4150  lhs.push_back(6);
4151  EXPECT_THAT(lhs, Pointwise(Gt(), rhs));
4152  EXPECT_THAT(lhs, Not(Pointwise(Lt(), rhs)));
4153}
4154
4155TEST(PointwiseTest, RejectsWrongSize) {
4156  const double lhs[2] = { 1, 2 };
4157  const int rhs[1] = { 0 };
4158  EXPECT_THAT(lhs, Not(Pointwise(Gt(), rhs)));
4159  EXPECT_EQ("which contains 2 values",
4160            Explain(Pointwise(Gt(), rhs), lhs));
4161
4162  const int rhs2[3] = { 0, 1, 2 };
4163  EXPECT_THAT(lhs, Not(Pointwise(Gt(), rhs2)));
4164}
4165
4166TEST(PointwiseTest, RejectsWrongContent) {
4167  const double lhs[3] = { 1, 2, 3 };
4168  const int rhs[3] = { 2, 6, 4 };
4169  EXPECT_THAT(lhs, Not(Pointwise(IsHalfOf(), rhs)));
4170  EXPECT_EQ("where the value pair (2, 6) at index #1 don't match, "
4171            "where the second/2 is 3",
4172            Explain(Pointwise(IsHalfOf(), rhs), lhs));
4173}
4174
4175TEST(PointwiseTest, AcceptsCorrectContent) {
4176  const double lhs[3] = { 1, 2, 3 };
4177  const int rhs[3] = { 2, 4, 6 };
4178  EXPECT_THAT(lhs, Pointwise(IsHalfOf(), rhs));
4179  EXPECT_EQ("", Explain(Pointwise(IsHalfOf(), rhs), lhs));
4180}
4181
4182TEST(PointwiseTest, AllowsMonomorphicInnerMatcher) {
4183  const double lhs[3] = { 1, 2, 3 };
4184  const int rhs[3] = { 2, 4, 6 };
4185  const Matcher<tuple<const double&, const int&> > m1 = IsHalfOf();
4186  EXPECT_THAT(lhs, Pointwise(m1, rhs));
4187  EXPECT_EQ("", Explain(Pointwise(m1, rhs), lhs));
4188
4189  // This type works as a tuple<const double&, const int&> can be
4190  // implicitly cast to tuple<double, int>.
4191  const Matcher<tuple<double, int> > m2 = IsHalfOf();
4192  EXPECT_THAT(lhs, Pointwise(m2, rhs));
4193  EXPECT_EQ("", Explain(Pointwise(m2, rhs), lhs));
4194}
4195
4196}  // namespace gmock_matchers_test
4197}  // namespace testing
4198