jdmainct.c revision 49967cdb30edd0479a1719eedc1dace5ba078d3f
1/*
2 * jdmainct.c
3 *
4 * Copyright (C) 1994-1996, Thomas G. Lane.
5 * Copyright (C) 2010, D. R. Commander.
6 * This file is part of the Independent JPEG Group's software.
7 * For conditions of distribution and use, see the accompanying README file.
8 *
9 * This file contains the main buffer controller for decompression.
10 * The main buffer lies between the JPEG decompressor proper and the
11 * post-processor; it holds downsampled data in the JPEG colorspace.
12 *
13 * Note that this code is bypassed in raw-data mode, since the application
14 * supplies the equivalent of the main buffer in that case.
15 */
16
17#define JPEG_INTERNALS
18#include "jinclude.h"
19#include "jpeglib.h"
20#include "jpegcomp.h"
21
22
23/*
24 * In the current system design, the main buffer need never be a full-image
25 * buffer; any full-height buffers will be found inside the coefficient or
26 * postprocessing controllers.  Nonetheless, the main controller is not
27 * trivial.  Its responsibility is to provide context rows for upsampling/
28 * rescaling, and doing this in an efficient fashion is a bit tricky.
29 *
30 * Postprocessor input data is counted in "row groups".  A row group
31 * is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size)
32 * sample rows of each component.  (We require DCT_scaled_size values to be
33 * chosen such that these numbers are integers.  In practice DCT_scaled_size
34 * values will likely be powers of two, so we actually have the stronger
35 * condition that DCT_scaled_size / min_DCT_scaled_size is an integer.)
36 * Upsampling will typically produce max_v_samp_factor pixel rows from each
37 * row group (times any additional scale factor that the upsampler is
38 * applying).
39 *
40 * The coefficient controller will deliver data to us one iMCU row at a time;
41 * each iMCU row contains v_samp_factor * DCT_scaled_size sample rows, or
42 * exactly min_DCT_scaled_size row groups.  (This amount of data corresponds
43 * to one row of MCUs when the image is fully interleaved.)  Note that the
44 * number of sample rows varies across components, but the number of row
45 * groups does not.  Some garbage sample rows may be included in the last iMCU
46 * row at the bottom of the image.
47 *
48 * Depending on the vertical scaling algorithm used, the upsampler may need
49 * access to the sample row(s) above and below its current input row group.
50 * The upsampler is required to set need_context_rows TRUE at global selection
51 * time if so.  When need_context_rows is FALSE, this controller can simply
52 * obtain one iMCU row at a time from the coefficient controller and dole it
53 * out as row groups to the postprocessor.
54 *
55 * When need_context_rows is TRUE, this controller guarantees that the buffer
56 * passed to postprocessing contains at least one row group's worth of samples
57 * above and below the row group(s) being processed.  Note that the context
58 * rows "above" the first passed row group appear at negative row offsets in
59 * the passed buffer.  At the top and bottom of the image, the required
60 * context rows are manufactured by duplicating the first or last real sample
61 * row; this avoids having special cases in the upsampling inner loops.
62 *
63 * The amount of context is fixed at one row group just because that's a
64 * convenient number for this controller to work with.  The existing
65 * upsamplers really only need one sample row of context.  An upsampler
66 * supporting arbitrary output rescaling might wish for more than one row
67 * group of context when shrinking the image; tough, we don't handle that.
68 * (This is justified by the assumption that downsizing will be handled mostly
69 * by adjusting the DCT_scaled_size values, so that the actual scale factor at
70 * the upsample step needn't be much less than one.)
71 *
72 * To provide the desired context, we have to retain the last two row groups
73 * of one iMCU row while reading in the next iMCU row.  (The last row group
74 * can't be processed until we have another row group for its below-context,
75 * and so we have to save the next-to-last group too for its above-context.)
76 * We could do this most simply by copying data around in our buffer, but
77 * that'd be very slow.  We can avoid copying any data by creating a rather
78 * strange pointer structure.  Here's how it works.  We allocate a workspace
79 * consisting of M+2 row groups (where M = min_DCT_scaled_size is the number
80 * of row groups per iMCU row).  We create two sets of redundant pointers to
81 * the workspace.  Labeling the physical row groups 0 to M+1, the synthesized
82 * pointer lists look like this:
83 *                   M+1                          M-1
84 * master pointer --> 0         master pointer --> 0
85 *                    1                            1
86 *                   ...                          ...
87 *                   M-3                          M-3
88 *                   M-2                           M
89 *                   M-1                          M+1
90 *                    M                           M-2
91 *                   M+1                          M-1
92 *                    0                            0
93 * We read alternate iMCU rows using each master pointer; thus the last two
94 * row groups of the previous iMCU row remain un-overwritten in the workspace.
95 * The pointer lists are set up so that the required context rows appear to
96 * be adjacent to the proper places when we pass the pointer lists to the
97 * upsampler.
98 *
99 * The above pictures describe the normal state of the pointer lists.
100 * At top and bottom of the image, we diddle the pointer lists to duplicate
101 * the first or last sample row as necessary (this is cheaper than copying
102 * sample rows around).
103 *
104 * This scheme breaks down if M < 2, ie, min_DCT_scaled_size is 1.  In that
105 * situation each iMCU row provides only one row group so the buffering logic
106 * must be different (eg, we must read two iMCU rows before we can emit the
107 * first row group).  For now, we simply do not support providing context
108 * rows when min_DCT_scaled_size is 1.  That combination seems unlikely to
109 * be worth providing --- if someone wants a 1/8th-size preview, they probably
110 * want it quick and dirty, so a context-free upsampler is sufficient.
111 */
112
113
114/* Private buffer controller object */
115
116typedef struct {
117  struct jpeg_d_main_controller pub; /* public fields */
118
119  /* Pointer to allocated workspace (M or M+2 row groups). */
120  JSAMPARRAY buffer[MAX_COMPONENTS];
121
122  boolean buffer_full;		/* Have we gotten an iMCU row from decoder? */
123  JDIMENSION rowgroup_ctr;	/* counts row groups output to postprocessor */
124
125  /* Remaining fields are only used in the context case. */
126
127  /* These are the master pointers to the funny-order pointer lists. */
128  JSAMPIMAGE xbuffer[2];	/* pointers to weird pointer lists */
129
130  int whichptr;			/* indicates which pointer set is now in use */
131  int context_state;		/* process_data state machine status */
132  JDIMENSION rowgroups_avail;	/* row groups available to postprocessor */
133  JDIMENSION iMCU_row_ctr;	/* counts iMCU rows to detect image top/bot */
134} my_main_controller;
135
136typedef my_main_controller * my_main_ptr;
137
138/* context_state values: */
139#define CTX_PREPARE_FOR_IMCU	0	/* need to prepare for MCU row */
140#define CTX_PROCESS_IMCU	1	/* feeding iMCU to postprocessor */
141#define CTX_POSTPONED_ROW	2	/* feeding postponed row group */
142
143
144/* Forward declarations */
145METHODDEF(void) process_data_simple_main
146	JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
147	     JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
148METHODDEF(void) process_data_context_main
149	JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
150	     JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
151#ifdef QUANT_2PASS_SUPPORTED
152METHODDEF(void) process_data_crank_post
153	JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
154	     JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
155#endif
156
157
158LOCAL(void)
159alloc_funny_pointers (j_decompress_ptr cinfo)
160/* Allocate space for the funny pointer lists.
161 * This is done only once, not once per pass.
162 */
163{
164  my_main_ptr main = (my_main_ptr) cinfo->main;
165  int ci, rgroup;
166  int M = cinfo->_min_DCT_scaled_size;
167  jpeg_component_info *compptr;
168  JSAMPARRAY xbuf;
169
170  /* Get top-level space for component array pointers.
171   * We alloc both arrays with one call to save a few cycles.
172   */
173  main->xbuffer[0] = (JSAMPIMAGE)
174    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
175				cinfo->num_components * 2 * SIZEOF(JSAMPARRAY));
176  main->xbuffer[1] = main->xbuffer[0] + cinfo->num_components;
177
178  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
179       ci++, compptr++) {
180    rgroup = (compptr->v_samp_factor * compptr->_DCT_scaled_size) /
181      cinfo->_min_DCT_scaled_size; /* height of a row group of component */
182    /* Get space for pointer lists --- M+4 row groups in each list.
183     * We alloc both pointer lists with one call to save a few cycles.
184     */
185    xbuf = (JSAMPARRAY)
186      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
187				  2 * (rgroup * (M + 4)) * SIZEOF(JSAMPROW));
188    xbuf += rgroup;		/* want one row group at negative offsets */
189    main->xbuffer[0][ci] = xbuf;
190    xbuf += rgroup * (M + 4);
191    main->xbuffer[1][ci] = xbuf;
192  }
193}
194
195
196LOCAL(void)
197make_funny_pointers (j_decompress_ptr cinfo)
198/* Create the funny pointer lists discussed in the comments above.
199 * The actual workspace is already allocated (in main->buffer),
200 * and the space for the pointer lists is allocated too.
201 * This routine just fills in the curiously ordered lists.
202 * This will be repeated at the beginning of each pass.
203 */
204{
205  my_main_ptr main = (my_main_ptr) cinfo->main;
206  int ci, i, rgroup;
207  int M = cinfo->_min_DCT_scaled_size;
208  jpeg_component_info *compptr;
209  JSAMPARRAY buf, xbuf0, xbuf1;
210
211  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
212       ci++, compptr++) {
213    rgroup = (compptr->v_samp_factor * compptr->_DCT_scaled_size) /
214      cinfo->_min_DCT_scaled_size; /* height of a row group of component */
215    xbuf0 = main->xbuffer[0][ci];
216    xbuf1 = main->xbuffer[1][ci];
217    /* First copy the workspace pointers as-is */
218    buf = main->buffer[ci];
219    for (i = 0; i < rgroup * (M + 2); i++) {
220      xbuf0[i] = xbuf1[i] = buf[i];
221    }
222    /* In the second list, put the last four row groups in swapped order */
223    for (i = 0; i < rgroup * 2; i++) {
224      xbuf1[rgroup*(M-2) + i] = buf[rgroup*M + i];
225      xbuf1[rgroup*M + i] = buf[rgroup*(M-2) + i];
226    }
227    /* The wraparound pointers at top and bottom will be filled later
228     * (see set_wraparound_pointers, below).  Initially we want the "above"
229     * pointers to duplicate the first actual data line.  This only needs
230     * to happen in xbuffer[0].
231     */
232    for (i = 0; i < rgroup; i++) {
233      xbuf0[i - rgroup] = xbuf0[0];
234    }
235  }
236}
237
238
239LOCAL(void)
240set_wraparound_pointers (j_decompress_ptr cinfo)
241/* Set up the "wraparound" pointers at top and bottom of the pointer lists.
242 * This changes the pointer list state from top-of-image to the normal state.
243 */
244{
245  my_main_ptr main = (my_main_ptr) cinfo->main;
246  int ci, i, rgroup;
247  int M = cinfo->_min_DCT_scaled_size;
248  jpeg_component_info *compptr;
249  JSAMPARRAY xbuf0, xbuf1;
250
251  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
252       ci++, compptr++) {
253    rgroup = (compptr->v_samp_factor * compptr->_DCT_scaled_size) /
254      cinfo->_min_DCT_scaled_size; /* height of a row group of component */
255    xbuf0 = main->xbuffer[0][ci];
256    xbuf1 = main->xbuffer[1][ci];
257    for (i = 0; i < rgroup; i++) {
258      xbuf0[i - rgroup] = xbuf0[rgroup*(M+1) + i];
259      xbuf1[i - rgroup] = xbuf1[rgroup*(M+1) + i];
260      xbuf0[rgroup*(M+2) + i] = xbuf0[i];
261      xbuf1[rgroup*(M+2) + i] = xbuf1[i];
262    }
263  }
264}
265
266
267LOCAL(void)
268set_bottom_pointers (j_decompress_ptr cinfo)
269/* Change the pointer lists to duplicate the last sample row at the bottom
270 * of the image.  whichptr indicates which xbuffer holds the final iMCU row.
271 * Also sets rowgroups_avail to indicate number of nondummy row groups in row.
272 */
273{
274  my_main_ptr main = (my_main_ptr) cinfo->main;
275  int ci, i, rgroup, iMCUheight, rows_left;
276  jpeg_component_info *compptr;
277  JSAMPARRAY xbuf;
278
279  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
280       ci++, compptr++) {
281    /* Count sample rows in one iMCU row and in one row group */
282    iMCUheight = compptr->v_samp_factor * compptr->_DCT_scaled_size;
283    rgroup = iMCUheight / cinfo->_min_DCT_scaled_size;
284    /* Count nondummy sample rows remaining for this component */
285    rows_left = (int) (compptr->downsampled_height % (JDIMENSION) iMCUheight);
286    if (rows_left == 0) rows_left = iMCUheight;
287    /* Count nondummy row groups.  Should get same answer for each component,
288     * so we need only do it once.
289     */
290    if (ci == 0) {
291      main->rowgroups_avail = (JDIMENSION) ((rows_left-1) / rgroup + 1);
292    }
293    /* Duplicate the last real sample row rgroup*2 times; this pads out the
294     * last partial rowgroup and ensures at least one full rowgroup of context.
295     */
296    xbuf = main->xbuffer[main->whichptr][ci];
297    for (i = 0; i < rgroup * 2; i++) {
298      xbuf[rows_left + i] = xbuf[rows_left-1];
299    }
300  }
301}
302
303
304/*
305 * Initialize for a processing pass.
306 */
307
308METHODDEF(void)
309start_pass_main (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
310{
311  my_main_ptr main = (my_main_ptr) cinfo->main;
312
313  switch (pass_mode) {
314  case JBUF_PASS_THRU:
315    if (cinfo->upsample->need_context_rows) {
316      main->pub.process_data = process_data_context_main;
317      make_funny_pointers(cinfo); /* Create the xbuffer[] lists */
318      main->whichptr = 0;	/* Read first iMCU row into xbuffer[0] */
319      main->context_state = CTX_PREPARE_FOR_IMCU;
320      main->iMCU_row_ctr = 0;
321    } else {
322      /* Simple case with no context needed */
323      main->pub.process_data = process_data_simple_main;
324    }
325    main->buffer_full = FALSE;	/* Mark buffer empty */
326    main->rowgroup_ctr = 0;
327    break;
328#ifdef QUANT_2PASS_SUPPORTED
329  case JBUF_CRANK_DEST:
330    /* For last pass of 2-pass quantization, just crank the postprocessor */
331    main->pub.process_data = process_data_crank_post;
332    break;
333#endif
334  default:
335    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
336    break;
337  }
338}
339
340
341/*
342 * Process some data.
343 * This handles the simple case where no context is required.
344 */
345
346METHODDEF(void)
347process_data_simple_main (j_decompress_ptr cinfo,
348			  JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
349			  JDIMENSION out_rows_avail)
350{
351  my_main_ptr main = (my_main_ptr) cinfo->main;
352  JDIMENSION rowgroups_avail;
353
354  /* Read input data if we haven't filled the main buffer yet */
355  if (! main->buffer_full) {
356    if (! (*cinfo->coef->decompress_data) (cinfo, main->buffer))
357      return;			/* suspension forced, can do nothing more */
358    main->buffer_full = TRUE;	/* OK, we have an iMCU row to work with */
359  }
360
361  /* There are always min_DCT_scaled_size row groups in an iMCU row. */
362  rowgroups_avail = (JDIMENSION) cinfo->_min_DCT_scaled_size;
363  /* Note: at the bottom of the image, we may pass extra garbage row groups
364   * to the postprocessor.  The postprocessor has to check for bottom
365   * of image anyway (at row resolution), so no point in us doing it too.
366   */
367
368  /* Feed the postprocessor */
369  (*cinfo->post->post_process_data) (cinfo, main->buffer,
370				     &main->rowgroup_ctr, rowgroups_avail,
371				     output_buf, out_row_ctr, out_rows_avail);
372
373  /* Has postprocessor consumed all the data yet? If so, mark buffer empty */
374  if (main->rowgroup_ctr >= rowgroups_avail) {
375    main->buffer_full = FALSE;
376    main->rowgroup_ctr = 0;
377  }
378}
379
380
381/*
382 * Process some data.
383 * This handles the case where context rows must be provided.
384 */
385
386METHODDEF(void)
387process_data_context_main (j_decompress_ptr cinfo,
388			   JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
389			   JDIMENSION out_rows_avail)
390{
391  my_main_ptr main = (my_main_ptr) cinfo->main;
392
393  /* Read input data if we haven't filled the main buffer yet */
394  if (! main->buffer_full) {
395    if (! (*cinfo->coef->decompress_data) (cinfo,
396					   main->xbuffer[main->whichptr]))
397      return;			/* suspension forced, can do nothing more */
398    main->buffer_full = TRUE;	/* OK, we have an iMCU row to work with */
399    main->iMCU_row_ctr++;	/* count rows received */
400  }
401
402  /* Postprocessor typically will not swallow all the input data it is handed
403   * in one call (due to filling the output buffer first).  Must be prepared
404   * to exit and restart.  This switch lets us keep track of how far we got.
405   * Note that each case falls through to the next on successful completion.
406   */
407  switch (main->context_state) {
408  case CTX_POSTPONED_ROW:
409    /* Call postprocessor using previously set pointers for postponed row */
410    (*cinfo->post->post_process_data) (cinfo, main->xbuffer[main->whichptr],
411			&main->rowgroup_ctr, main->rowgroups_avail,
412			output_buf, out_row_ctr, out_rows_avail);
413    if (main->rowgroup_ctr < main->rowgroups_avail)
414      return;			/* Need to suspend */
415    main->context_state = CTX_PREPARE_FOR_IMCU;
416    if (*out_row_ctr >= out_rows_avail)
417      return;			/* Postprocessor exactly filled output buf */
418    /*FALLTHROUGH*/
419  case CTX_PREPARE_FOR_IMCU:
420    /* Prepare to process first M-1 row groups of this iMCU row */
421    main->rowgroup_ctr = 0;
422    main->rowgroups_avail = (JDIMENSION) (cinfo->_min_DCT_scaled_size - 1);
423    /* Check for bottom of image: if so, tweak pointers to "duplicate"
424     * the last sample row, and adjust rowgroups_avail to ignore padding rows.
425     */
426    if (main->iMCU_row_ctr == cinfo->total_iMCU_rows)
427      set_bottom_pointers(cinfo);
428    main->context_state = CTX_PROCESS_IMCU;
429    /*FALLTHROUGH*/
430  case CTX_PROCESS_IMCU:
431    /* Call postprocessor using previously set pointers */
432    (*cinfo->post->post_process_data) (cinfo, main->xbuffer[main->whichptr],
433			&main->rowgroup_ctr, main->rowgroups_avail,
434			output_buf, out_row_ctr, out_rows_avail);
435    if (main->rowgroup_ctr < main->rowgroups_avail)
436      return;			/* Need to suspend */
437    /* After the first iMCU, change wraparound pointers to normal state */
438    if (main->iMCU_row_ctr == 1)
439      set_wraparound_pointers(cinfo);
440    /* Prepare to load new iMCU row using other xbuffer list */
441    main->whichptr ^= 1;	/* 0=>1 or 1=>0 */
442    main->buffer_full = FALSE;
443    /* Still need to process last row group of this iMCU row, */
444    /* which is saved at index M+1 of the other xbuffer */
445    main->rowgroup_ctr = (JDIMENSION) (cinfo->_min_DCT_scaled_size + 1);
446    main->rowgroups_avail = (JDIMENSION) (cinfo->_min_DCT_scaled_size + 2);
447    main->context_state = CTX_POSTPONED_ROW;
448  }
449}
450
451
452/*
453 * Process some data.
454 * Final pass of two-pass quantization: just call the postprocessor.
455 * Source data will be the postprocessor controller's internal buffer.
456 */
457
458#ifdef QUANT_2PASS_SUPPORTED
459
460METHODDEF(void)
461process_data_crank_post (j_decompress_ptr cinfo,
462			 JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
463			 JDIMENSION out_rows_avail)
464{
465  (*cinfo->post->post_process_data) (cinfo, (JSAMPIMAGE) NULL,
466				     (JDIMENSION *) NULL, (JDIMENSION) 0,
467				     output_buf, out_row_ctr, out_rows_avail);
468}
469
470#endif /* QUANT_2PASS_SUPPORTED */
471
472
473/*
474 * Initialize main buffer controller.
475 */
476
477GLOBAL(void)
478jinit_d_main_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
479{
480  my_main_ptr main;
481  int ci, rgroup, ngroups;
482  jpeg_component_info *compptr;
483
484  main = (my_main_ptr)
485    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
486				SIZEOF(my_main_controller));
487  cinfo->main = (struct jpeg_d_main_controller *) main;
488  main->pub.start_pass = start_pass_main;
489
490  if (need_full_buffer)		/* shouldn't happen */
491    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
492
493  /* Allocate the workspace.
494   * ngroups is the number of row groups we need.
495   */
496  if (cinfo->upsample->need_context_rows) {
497    if (cinfo->_min_DCT_scaled_size < 2) /* unsupported, see comments above */
498      ERREXIT(cinfo, JERR_NOTIMPL);
499    alloc_funny_pointers(cinfo); /* Alloc space for xbuffer[] lists */
500    ngroups = cinfo->_min_DCT_scaled_size + 2;
501  } else {
502    ngroups = cinfo->_min_DCT_scaled_size;
503  }
504
505  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
506       ci++, compptr++) {
507    rgroup = (compptr->v_samp_factor * compptr->_DCT_scaled_size) /
508      cinfo->_min_DCT_scaled_size; /* height of a row group of component */
509    main->buffer[ci] = (*cinfo->mem->alloc_sarray)
510			((j_common_ptr) cinfo, JPOOL_IMAGE,
511			 compptr->width_in_blocks * compptr->_DCT_scaled_size,
512			 (JDIMENSION) (rgroup * ngroups));
513  }
514}
515