1//===- llvm/IR/Metadata.h - Metadata definitions ----------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10/// @file
11/// This file contains the declarations for metadata subclasses.
12/// They represent the different flavors of metadata that live in LLVM.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_IR_METADATA_H
17#define LLVM_IR_METADATA_H
18
19#include "llvm/ADT/ArrayRef.h"
20#include "llvm/ADT/DenseMap.h"
21#include "llvm/ADT/ilist_node.h"
22#include "llvm/ADT/iterator_range.h"
23#include "llvm/IR/Constant.h"
24#include "llvm/IR/MetadataTracking.h"
25#include "llvm/IR/Value.h"
26#include "llvm/Support/ErrorHandling.h"
27#include <type_traits>
28
29namespace llvm {
30
31class LLVMContext;
32class Module;
33class ModuleSlotTracker;
34
35enum LLVMConstants : uint32_t {
36  DEBUG_METADATA_VERSION = 3 // Current debug info version number.
37};
38
39/// \brief Root of the metadata hierarchy.
40///
41/// This is a root class for typeless data in the IR.
42class Metadata {
43  friend class ReplaceableMetadataImpl;
44
45  /// \brief RTTI.
46  const unsigned char SubclassID;
47
48protected:
49  /// \brief Active type of storage.
50  enum StorageType { Uniqued, Distinct, Temporary };
51
52  /// \brief Storage flag for non-uniqued, otherwise unowned, metadata.
53  unsigned Storage : 2;
54  // TODO: expose remaining bits to subclasses.
55
56  unsigned short SubclassData16;
57  unsigned SubclassData32;
58
59public:
60  enum MetadataKind {
61    MDTupleKind,
62    DILocationKind,
63    GenericDINodeKind,
64    DISubrangeKind,
65    DIEnumeratorKind,
66    DIBasicTypeKind,
67    DIDerivedTypeKind,
68    DICompositeTypeKind,
69    DISubroutineTypeKind,
70    DIFileKind,
71    DICompileUnitKind,
72    DISubprogramKind,
73    DILexicalBlockKind,
74    DILexicalBlockFileKind,
75    DINamespaceKind,
76    DIModuleKind,
77    DITemplateTypeParameterKind,
78    DITemplateValueParameterKind,
79    DIGlobalVariableKind,
80    DILocalVariableKind,
81    DIExpressionKind,
82    DIObjCPropertyKind,
83    DIImportedEntityKind,
84    ConstantAsMetadataKind,
85    LocalAsMetadataKind,
86    MDStringKind,
87    DIMacroKind,
88    DIMacroFileKind
89  };
90
91protected:
92  Metadata(unsigned ID, StorageType Storage)
93      : SubclassID(ID), Storage(Storage), SubclassData16(0), SubclassData32(0) {
94  }
95  ~Metadata() = default;
96
97  /// \brief Default handling of a changed operand, which asserts.
98  ///
99  /// If subclasses pass themselves in as owners to a tracking node reference,
100  /// they must provide an implementation of this method.
101  void handleChangedOperand(void *, Metadata *) {
102    llvm_unreachable("Unimplemented in Metadata subclass");
103  }
104
105public:
106  unsigned getMetadataID() const { return SubclassID; }
107
108  /// \brief User-friendly dump.
109  ///
110  /// If \c M is provided, metadata nodes will be numbered canonically;
111  /// otherwise, pointer addresses are substituted.
112  ///
113  /// Note: this uses an explicit overload instead of default arguments so that
114  /// the nullptr version is easy to call from a debugger.
115  ///
116  /// @{
117  void dump() const;
118  void dump(const Module *M) const;
119  /// @}
120
121  /// \brief Print.
122  ///
123  /// Prints definition of \c this.
124  ///
125  /// If \c M is provided, metadata nodes will be numbered canonically;
126  /// otherwise, pointer addresses are substituted.
127  /// @{
128  void print(raw_ostream &OS, const Module *M = nullptr,
129             bool IsForDebug = false) const;
130  void print(raw_ostream &OS, ModuleSlotTracker &MST, const Module *M = nullptr,
131             bool IsForDebug = false) const;
132  /// @}
133
134  /// \brief Print as operand.
135  ///
136  /// Prints reference of \c this.
137  ///
138  /// If \c M is provided, metadata nodes will be numbered canonically;
139  /// otherwise, pointer addresses are substituted.
140  /// @{
141  void printAsOperand(raw_ostream &OS, const Module *M = nullptr) const;
142  void printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
143                      const Module *M = nullptr) const;
144  /// @}
145};
146
147#define HANDLE_METADATA(CLASS) class CLASS;
148#include "llvm/IR/Metadata.def"
149
150// Provide specializations of isa so that we don't need definitions of
151// subclasses to see if the metadata is a subclass.
152#define HANDLE_METADATA_LEAF(CLASS)                                            \
153  template <> struct isa_impl<CLASS, Metadata> {                               \
154    static inline bool doit(const Metadata &MD) {                              \
155      return MD.getMetadataID() == Metadata::CLASS##Kind;                      \
156    }                                                                          \
157  };
158#include "llvm/IR/Metadata.def"
159
160inline raw_ostream &operator<<(raw_ostream &OS, const Metadata &MD) {
161  MD.print(OS);
162  return OS;
163}
164
165/// \brief Metadata wrapper in the Value hierarchy.
166///
167/// A member of the \a Value hierarchy to represent a reference to metadata.
168/// This allows, e.g., instrinsics to have metadata as operands.
169///
170/// Notably, this is the only thing in either hierarchy that is allowed to
171/// reference \a LocalAsMetadata.
172class MetadataAsValue : public Value {
173  friend class ReplaceableMetadataImpl;
174  friend class LLVMContextImpl;
175
176  Metadata *MD;
177
178  MetadataAsValue(Type *Ty, Metadata *MD);
179  ~MetadataAsValue() override;
180
181  /// \brief Drop use of metadata (during teardown).
182  void dropUse() { MD = nullptr; }
183
184public:
185  static MetadataAsValue *get(LLVMContext &Context, Metadata *MD);
186  static MetadataAsValue *getIfExists(LLVMContext &Context, Metadata *MD);
187  Metadata *getMetadata() const { return MD; }
188
189  static bool classof(const Value *V) {
190    return V->getValueID() == MetadataAsValueVal;
191  }
192
193private:
194  void handleChangedMetadata(Metadata *MD);
195  void track();
196  void untrack();
197};
198
199/// \brief Shared implementation of use-lists for replaceable metadata.
200///
201/// Most metadata cannot be RAUW'ed.  This is a shared implementation of
202/// use-lists and associated API for the two that support it (\a ValueAsMetadata
203/// and \a TempMDNode).
204class ReplaceableMetadataImpl {
205  friend class MetadataTracking;
206
207public:
208  typedef MetadataTracking::OwnerTy OwnerTy;
209
210private:
211  LLVMContext &Context;
212  uint64_t NextIndex;
213  SmallDenseMap<void *, std::pair<OwnerTy, uint64_t>, 4> UseMap;
214
215public:
216  ReplaceableMetadataImpl(LLVMContext &Context)
217      : Context(Context), NextIndex(0) {}
218  ~ReplaceableMetadataImpl() {
219    assert(UseMap.empty() && "Cannot destroy in-use replaceable metadata");
220  }
221
222  LLVMContext &getContext() const { return Context; }
223
224  /// \brief Replace all uses of this with MD.
225  ///
226  /// Replace all uses of this with \c MD, which is allowed to be null.
227  void replaceAllUsesWith(Metadata *MD);
228
229  /// \brief Resolve all uses of this.
230  ///
231  /// Resolve all uses of this, turning off RAUW permanently.  If \c
232  /// ResolveUsers, call \a MDNode::resolve() on any users whose last operand
233  /// is resolved.
234  void resolveAllUses(bool ResolveUsers = true);
235
236private:
237  void addRef(void *Ref, OwnerTy Owner);
238  void dropRef(void *Ref);
239  void moveRef(void *Ref, void *New, const Metadata &MD);
240
241  static ReplaceableMetadataImpl *get(Metadata &MD);
242};
243
244/// \brief Value wrapper in the Metadata hierarchy.
245///
246/// This is a custom value handle that allows other metadata to refer to
247/// classes in the Value hierarchy.
248///
249/// Because of full uniquing support, each value is only wrapped by a single \a
250/// ValueAsMetadata object, so the lookup maps are far more efficient than
251/// those using ValueHandleBase.
252class ValueAsMetadata : public Metadata, ReplaceableMetadataImpl {
253  friend class ReplaceableMetadataImpl;
254  friend class LLVMContextImpl;
255
256  Value *V;
257
258  /// \brief Drop users without RAUW (during teardown).
259  void dropUsers() {
260    ReplaceableMetadataImpl::resolveAllUses(/* ResolveUsers */ false);
261  }
262
263protected:
264  ValueAsMetadata(unsigned ID, Value *V)
265      : Metadata(ID, Uniqued), ReplaceableMetadataImpl(V->getContext()), V(V) {
266    assert(V && "Expected valid value");
267  }
268  ~ValueAsMetadata() = default;
269
270public:
271  static ValueAsMetadata *get(Value *V);
272  static ConstantAsMetadata *getConstant(Value *C) {
273    return cast<ConstantAsMetadata>(get(C));
274  }
275  static LocalAsMetadata *getLocal(Value *Local) {
276    return cast<LocalAsMetadata>(get(Local));
277  }
278
279  static ValueAsMetadata *getIfExists(Value *V);
280  static ConstantAsMetadata *getConstantIfExists(Value *C) {
281    return cast_or_null<ConstantAsMetadata>(getIfExists(C));
282  }
283  static LocalAsMetadata *getLocalIfExists(Value *Local) {
284    return cast_or_null<LocalAsMetadata>(getIfExists(Local));
285  }
286
287  Value *getValue() const { return V; }
288  Type *getType() const { return V->getType(); }
289  LLVMContext &getContext() const { return V->getContext(); }
290
291  static void handleDeletion(Value *V);
292  static void handleRAUW(Value *From, Value *To);
293
294protected:
295  /// \brief Handle collisions after \a Value::replaceAllUsesWith().
296  ///
297  /// RAUW isn't supported directly for \a ValueAsMetadata, but if the wrapped
298  /// \a Value gets RAUW'ed and the target already exists, this is used to
299  /// merge the two metadata nodes.
300  void replaceAllUsesWith(Metadata *MD) {
301    ReplaceableMetadataImpl::replaceAllUsesWith(MD);
302  }
303
304public:
305  static bool classof(const Metadata *MD) {
306    return MD->getMetadataID() == LocalAsMetadataKind ||
307           MD->getMetadataID() == ConstantAsMetadataKind;
308  }
309};
310
311class ConstantAsMetadata : public ValueAsMetadata {
312  friend class ValueAsMetadata;
313
314  ConstantAsMetadata(Constant *C)
315      : ValueAsMetadata(ConstantAsMetadataKind, C) {}
316
317public:
318  static ConstantAsMetadata *get(Constant *C) {
319    return ValueAsMetadata::getConstant(C);
320  }
321  static ConstantAsMetadata *getIfExists(Constant *C) {
322    return ValueAsMetadata::getConstantIfExists(C);
323  }
324
325  Constant *getValue() const {
326    return cast<Constant>(ValueAsMetadata::getValue());
327  }
328
329  static bool classof(const Metadata *MD) {
330    return MD->getMetadataID() == ConstantAsMetadataKind;
331  }
332};
333
334class LocalAsMetadata : public ValueAsMetadata {
335  friend class ValueAsMetadata;
336
337  LocalAsMetadata(Value *Local)
338      : ValueAsMetadata(LocalAsMetadataKind, Local) {
339    assert(!isa<Constant>(Local) && "Expected local value");
340  }
341
342public:
343  static LocalAsMetadata *get(Value *Local) {
344    return ValueAsMetadata::getLocal(Local);
345  }
346  static LocalAsMetadata *getIfExists(Value *Local) {
347    return ValueAsMetadata::getLocalIfExists(Local);
348  }
349
350  static bool classof(const Metadata *MD) {
351    return MD->getMetadataID() == LocalAsMetadataKind;
352  }
353};
354
355/// \brief Transitional API for extracting constants from Metadata.
356///
357/// This namespace contains transitional functions for metadata that points to
358/// \a Constants.
359///
360/// In prehistory -- when metadata was a subclass of \a Value -- \a MDNode
361/// operands could refer to any \a Value.  There's was a lot of code like this:
362///
363/// \code
364///     MDNode *N = ...;
365///     auto *CI = dyn_cast<ConstantInt>(N->getOperand(2));
366/// \endcode
367///
368/// Now that \a Value and \a Metadata are in separate hierarchies, maintaining
369/// the semantics for \a isa(), \a cast(), \a dyn_cast() (etc.) requires three
370/// steps: cast in the \a Metadata hierarchy, extraction of the \a Value, and
371/// cast in the \a Value hierarchy.  Besides creating boiler-plate, this
372/// requires subtle control flow changes.
373///
374/// The end-goal is to create a new type of metadata, called (e.g.) \a MDInt,
375/// so that metadata can refer to numbers without traversing a bridge to the \a
376/// Value hierarchy.  In this final state, the code above would look like this:
377///
378/// \code
379///     MDNode *N = ...;
380///     auto *MI = dyn_cast<MDInt>(N->getOperand(2));
381/// \endcode
382///
383/// The API in this namespace supports the transition.  \a MDInt doesn't exist
384/// yet, and even once it does, changing each metadata schema to use it is its
385/// own mini-project.  In the meantime this API prevents us from introducing
386/// complex and bug-prone control flow that will disappear in the end.  In
387/// particular, the above code looks like this:
388///
389/// \code
390///     MDNode *N = ...;
391///     auto *CI = mdconst::dyn_extract<ConstantInt>(N->getOperand(2));
392/// \endcode
393///
394/// The full set of provided functions includes:
395///
396///   mdconst::hasa                <=> isa
397///   mdconst::extract             <=> cast
398///   mdconst::extract_or_null     <=> cast_or_null
399///   mdconst::dyn_extract         <=> dyn_cast
400///   mdconst::dyn_extract_or_null <=> dyn_cast_or_null
401///
402/// The target of the cast must be a subclass of \a Constant.
403namespace mdconst {
404
405namespace detail {
406template <class T> T &make();
407template <class T, class Result> struct HasDereference {
408  typedef char Yes[1];
409  typedef char No[2];
410  template <size_t N> struct SFINAE {};
411
412  template <class U, class V>
413  static Yes &hasDereference(SFINAE<sizeof(static_cast<V>(*make<U>()))> * = 0);
414  template <class U, class V> static No &hasDereference(...);
415
416  static const bool value =
417      sizeof(hasDereference<T, Result>(nullptr)) == sizeof(Yes);
418};
419template <class V, class M> struct IsValidPointer {
420  static const bool value = std::is_base_of<Constant, V>::value &&
421                            HasDereference<M, const Metadata &>::value;
422};
423template <class V, class M> struct IsValidReference {
424  static const bool value = std::is_base_of<Constant, V>::value &&
425                            std::is_convertible<M, const Metadata &>::value;
426};
427} // end namespace detail
428
429/// \brief Check whether Metadata has a Value.
430///
431/// As an analogue to \a isa(), check whether \c MD has an \a Value inside of
432/// type \c X.
433template <class X, class Y>
434inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, bool>::type
435hasa(Y &&MD) {
436  assert(MD && "Null pointer sent into hasa");
437  if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
438    return isa<X>(V->getValue());
439  return false;
440}
441template <class X, class Y>
442inline
443    typename std::enable_if<detail::IsValidReference<X, Y &>::value, bool>::type
444    hasa(Y &MD) {
445  return hasa(&MD);
446}
447
448/// \brief Extract a Value from Metadata.
449///
450/// As an analogue to \a cast(), extract the \a Value subclass \c X from \c MD.
451template <class X, class Y>
452inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
453extract(Y &&MD) {
454  return cast<X>(cast<ConstantAsMetadata>(MD)->getValue());
455}
456template <class X, class Y>
457inline
458    typename std::enable_if<detail::IsValidReference<X, Y &>::value, X *>::type
459    extract(Y &MD) {
460  return extract(&MD);
461}
462
463/// \brief Extract a Value from Metadata, allowing null.
464///
465/// As an analogue to \a cast_or_null(), extract the \a Value subclass \c X
466/// from \c MD, allowing \c MD to be null.
467template <class X, class Y>
468inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
469extract_or_null(Y &&MD) {
470  if (auto *V = cast_or_null<ConstantAsMetadata>(MD))
471    return cast<X>(V->getValue());
472  return nullptr;
473}
474
475/// \brief Extract a Value from Metadata, if any.
476///
477/// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
478/// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
479/// Value it does contain is of the wrong subclass.
480template <class X, class Y>
481inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
482dyn_extract(Y &&MD) {
483  if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
484    return dyn_cast<X>(V->getValue());
485  return nullptr;
486}
487
488/// \brief Extract a Value from Metadata, if any, allowing null.
489///
490/// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
491/// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
492/// Value it does contain is of the wrong subclass, allowing \c MD to be null.
493template <class X, class Y>
494inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
495dyn_extract_or_null(Y &&MD) {
496  if (auto *V = dyn_cast_or_null<ConstantAsMetadata>(MD))
497    return dyn_cast<X>(V->getValue());
498  return nullptr;
499}
500
501} // end namespace mdconst
502
503//===----------------------------------------------------------------------===//
504/// \brief A single uniqued string.
505///
506/// These are used to efficiently contain a byte sequence for metadata.
507/// MDString is always unnamed.
508class MDString : public Metadata {
509  friend class StringMapEntry<MDString>;
510
511  MDString(const MDString &) = delete;
512  MDString &operator=(MDString &&) = delete;
513  MDString &operator=(const MDString &) = delete;
514
515  StringMapEntry<MDString> *Entry;
516  MDString() : Metadata(MDStringKind, Uniqued), Entry(nullptr) {}
517  MDString(MDString &&) : Metadata(MDStringKind, Uniqued) {}
518
519public:
520  static MDString *get(LLVMContext &Context, StringRef Str);
521  static MDString *get(LLVMContext &Context, const char *Str) {
522    return get(Context, Str ? StringRef(Str) : StringRef());
523  }
524
525  StringRef getString() const;
526
527  unsigned getLength() const { return (unsigned)getString().size(); }
528
529  typedef StringRef::iterator iterator;
530
531  /// \brief Pointer to the first byte of the string.
532  iterator begin() const { return getString().begin(); }
533
534  /// \brief Pointer to one byte past the end of the string.
535  iterator end() const { return getString().end(); }
536
537  const unsigned char *bytes_begin() const { return getString().bytes_begin(); }
538  const unsigned char *bytes_end() const { return getString().bytes_end(); }
539
540  /// \brief Methods for support type inquiry through isa, cast, and dyn_cast.
541  static bool classof(const Metadata *MD) {
542    return MD->getMetadataID() == MDStringKind;
543  }
544};
545
546/// \brief A collection of metadata nodes that might be associated with a
547/// memory access used by the alias-analysis infrastructure.
548struct AAMDNodes {
549  explicit AAMDNodes(MDNode *T = nullptr, MDNode *S = nullptr,
550                     MDNode *N = nullptr)
551      : TBAA(T), Scope(S), NoAlias(N) {}
552
553  bool operator==(const AAMDNodes &A) const {
554    return TBAA == A.TBAA && Scope == A.Scope && NoAlias == A.NoAlias;
555  }
556
557  bool operator!=(const AAMDNodes &A) const { return !(*this == A); }
558
559  explicit operator bool() const { return TBAA || Scope || NoAlias; }
560
561  /// \brief The tag for type-based alias analysis.
562  MDNode *TBAA;
563
564  /// \brief The tag for alias scope specification (used with noalias).
565  MDNode *Scope;
566
567  /// \brief The tag specifying the noalias scope.
568  MDNode *NoAlias;
569};
570
571// Specialize DenseMapInfo for AAMDNodes.
572template<>
573struct DenseMapInfo<AAMDNodes> {
574  static inline AAMDNodes getEmptyKey() {
575    return AAMDNodes(DenseMapInfo<MDNode *>::getEmptyKey(),
576                     nullptr, nullptr);
577  }
578  static inline AAMDNodes getTombstoneKey() {
579    return AAMDNodes(DenseMapInfo<MDNode *>::getTombstoneKey(),
580                     nullptr, nullptr);
581  }
582  static unsigned getHashValue(const AAMDNodes &Val) {
583    return DenseMapInfo<MDNode *>::getHashValue(Val.TBAA) ^
584           DenseMapInfo<MDNode *>::getHashValue(Val.Scope) ^
585           DenseMapInfo<MDNode *>::getHashValue(Val.NoAlias);
586  }
587  static bool isEqual(const AAMDNodes &LHS, const AAMDNodes &RHS) {
588    return LHS == RHS;
589  }
590};
591
592/// \brief Tracking metadata reference owned by Metadata.
593///
594/// Similar to \a TrackingMDRef, but it's expected to be owned by an instance
595/// of \a Metadata, which has the option of registering itself for callbacks to
596/// re-unique itself.
597///
598/// In particular, this is used by \a MDNode.
599class MDOperand {
600  MDOperand(MDOperand &&) = delete;
601  MDOperand(const MDOperand &) = delete;
602  MDOperand &operator=(MDOperand &&) = delete;
603  MDOperand &operator=(const MDOperand &) = delete;
604
605  Metadata *MD;
606
607public:
608  MDOperand() : MD(nullptr) {}
609  ~MDOperand() { untrack(); }
610
611  Metadata *get() const { return MD; }
612  operator Metadata *() const { return get(); }
613  Metadata *operator->() const { return get(); }
614  Metadata &operator*() const { return *get(); }
615
616  void reset() {
617    untrack();
618    MD = nullptr;
619  }
620  void reset(Metadata *MD, Metadata *Owner) {
621    untrack();
622    this->MD = MD;
623    track(Owner);
624  }
625
626private:
627  void track(Metadata *Owner) {
628    if (MD) {
629      if (Owner)
630        MetadataTracking::track(this, *MD, *Owner);
631      else
632        MetadataTracking::track(MD);
633    }
634  }
635  void untrack() {
636    assert(static_cast<void *>(this) == &MD && "Expected same address");
637    if (MD)
638      MetadataTracking::untrack(MD);
639  }
640};
641
642template <> struct simplify_type<MDOperand> {
643  typedef Metadata *SimpleType;
644  static SimpleType getSimplifiedValue(MDOperand &MD) { return MD.get(); }
645};
646
647template <> struct simplify_type<const MDOperand> {
648  typedef Metadata *SimpleType;
649  static SimpleType getSimplifiedValue(const MDOperand &MD) { return MD.get(); }
650};
651
652/// \brief Pointer to the context, with optional RAUW support.
653///
654/// Either a raw (non-null) pointer to the \a LLVMContext, or an owned pointer
655/// to \a ReplaceableMetadataImpl (which has a reference to \a LLVMContext).
656class ContextAndReplaceableUses {
657  PointerUnion<LLVMContext *, ReplaceableMetadataImpl *> Ptr;
658
659  ContextAndReplaceableUses() = delete;
660  ContextAndReplaceableUses(ContextAndReplaceableUses &&) = delete;
661  ContextAndReplaceableUses(const ContextAndReplaceableUses &) = delete;
662  ContextAndReplaceableUses &operator=(ContextAndReplaceableUses &&) = delete;
663  ContextAndReplaceableUses &
664  operator=(const ContextAndReplaceableUses &) = delete;
665
666public:
667  ContextAndReplaceableUses(LLVMContext &Context) : Ptr(&Context) {}
668  ContextAndReplaceableUses(
669      std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses)
670      : Ptr(ReplaceableUses.release()) {
671    assert(getReplaceableUses() && "Expected non-null replaceable uses");
672  }
673  ~ContextAndReplaceableUses() { delete getReplaceableUses(); }
674
675  operator LLVMContext &() { return getContext(); }
676
677  /// \brief Whether this contains RAUW support.
678  bool hasReplaceableUses() const {
679    return Ptr.is<ReplaceableMetadataImpl *>();
680  }
681  LLVMContext &getContext() const {
682    if (hasReplaceableUses())
683      return getReplaceableUses()->getContext();
684    return *Ptr.get<LLVMContext *>();
685  }
686  ReplaceableMetadataImpl *getReplaceableUses() const {
687    if (hasReplaceableUses())
688      return Ptr.get<ReplaceableMetadataImpl *>();
689    return nullptr;
690  }
691
692  /// \brief Assign RAUW support to this.
693  ///
694  /// Make this replaceable, taking ownership of \c ReplaceableUses (which must
695  /// not be null).
696  void
697  makeReplaceable(std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses) {
698    assert(ReplaceableUses && "Expected non-null replaceable uses");
699    assert(&ReplaceableUses->getContext() == &getContext() &&
700           "Expected same context");
701    delete getReplaceableUses();
702    Ptr = ReplaceableUses.release();
703  }
704
705  /// \brief Drop RAUW support.
706  ///
707  /// Cede ownership of RAUW support, returning it.
708  std::unique_ptr<ReplaceableMetadataImpl> takeReplaceableUses() {
709    assert(hasReplaceableUses() && "Expected to own replaceable uses");
710    std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses(
711        getReplaceableUses());
712    Ptr = &ReplaceableUses->getContext();
713    return ReplaceableUses;
714  }
715};
716
717struct TempMDNodeDeleter {
718  inline void operator()(MDNode *Node) const;
719};
720
721#define HANDLE_MDNODE_LEAF(CLASS)                                              \
722  typedef std::unique_ptr<CLASS, TempMDNodeDeleter> Temp##CLASS;
723#define HANDLE_MDNODE_BRANCH(CLASS) HANDLE_MDNODE_LEAF(CLASS)
724#include "llvm/IR/Metadata.def"
725
726/// \brief Metadata node.
727///
728/// Metadata nodes can be uniqued, like constants, or distinct.  Temporary
729/// metadata nodes (with full support for RAUW) can be used to delay uniquing
730/// until forward references are known.  The basic metadata node is an \a
731/// MDTuple.
732///
733/// There is limited support for RAUW at construction time.  At construction
734/// time, if any operand is a temporary node (or an unresolved uniqued node,
735/// which indicates a transitive temporary operand), the node itself will be
736/// unresolved.  As soon as all operands become resolved, it will drop RAUW
737/// support permanently.
738///
739/// If an unresolved node is part of a cycle, \a resolveCycles() needs
740/// to be called on some member of the cycle once all temporary nodes have been
741/// replaced.
742class MDNode : public Metadata {
743  friend class ReplaceableMetadataImpl;
744  friend class LLVMContextImpl;
745
746  MDNode(const MDNode &) = delete;
747  void operator=(const MDNode &) = delete;
748  void *operator new(size_t) = delete;
749
750  unsigned NumOperands;
751  unsigned NumUnresolved;
752
753protected:
754  ContextAndReplaceableUses Context;
755
756  void *operator new(size_t Size, unsigned NumOps);
757  void operator delete(void *Mem);
758
759  /// \brief Required by std, but never called.
760  void operator delete(void *, unsigned) {
761    llvm_unreachable("Constructor throws?");
762  }
763
764  /// \brief Required by std, but never called.
765  void operator delete(void *, unsigned, bool) {
766    llvm_unreachable("Constructor throws?");
767  }
768
769  MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
770         ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2 = None);
771  ~MDNode() = default;
772
773  void dropAllReferences();
774
775  MDOperand *mutable_begin() { return mutable_end() - NumOperands; }
776  MDOperand *mutable_end() { return reinterpret_cast<MDOperand *>(this); }
777
778  typedef iterator_range<MDOperand *> mutable_op_range;
779  mutable_op_range mutable_operands() {
780    return mutable_op_range(mutable_begin(), mutable_end());
781  }
782
783public:
784  static inline MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs);
785  static inline MDTuple *getIfExists(LLVMContext &Context,
786                                     ArrayRef<Metadata *> MDs);
787  static inline MDTuple *getDistinct(LLVMContext &Context,
788                                     ArrayRef<Metadata *> MDs);
789  static inline TempMDTuple getTemporary(LLVMContext &Context,
790                                         ArrayRef<Metadata *> MDs);
791
792  /// \brief Create a (temporary) clone of this.
793  TempMDNode clone() const;
794
795  /// \brief Deallocate a node created by getTemporary.
796  ///
797  /// Calls \c replaceAllUsesWith(nullptr) before deleting, so any remaining
798  /// references will be reset.
799  static void deleteTemporary(MDNode *N);
800
801  LLVMContext &getContext() const { return Context.getContext(); }
802
803  /// \brief Replace a specific operand.
804  void replaceOperandWith(unsigned I, Metadata *New);
805
806  /// \brief Check if node is fully resolved.
807  ///
808  /// If \a isTemporary(), this always returns \c false; if \a isDistinct(),
809  /// this always returns \c true.
810  ///
811  /// If \a isUniqued(), returns \c true if this has already dropped RAUW
812  /// support (because all operands are resolved).
813  ///
814  /// As forward declarations are resolved, their containers should get
815  /// resolved automatically.  However, if this (or one of its operands) is
816  /// involved in a cycle, \a resolveCycles() needs to be called explicitly.
817  bool isResolved() const { return !Context.hasReplaceableUses(); }
818
819  bool isUniqued() const { return Storage == Uniqued; }
820  bool isDistinct() const { return Storage == Distinct; }
821  bool isTemporary() const { return Storage == Temporary; }
822
823  /// \brief RAUW a temporary.
824  ///
825  /// \pre \a isTemporary() must be \c true.
826  void replaceAllUsesWith(Metadata *MD) {
827    assert(isTemporary() && "Expected temporary node");
828    assert(!isResolved() && "Expected RAUW support");
829    Context.getReplaceableUses()->replaceAllUsesWith(MD);
830  }
831
832  /// \brief Resolve cycles.
833  ///
834  /// Once all forward declarations have been resolved, force cycles to be
835  /// resolved. If \p MDMaterialized is true, then any temporary metadata
836  /// is ignored, otherwise it asserts when encountering temporary metadata.
837  ///
838  /// \pre No operands (or operands' operands, etc.) have \a isTemporary().
839  void resolveCycles(bool MDMaterialized = true);
840
841  /// \brief Replace a temporary node with a permanent one.
842  ///
843  /// Try to create a uniqued version of \c N -- in place, if possible -- and
844  /// return it.  If \c N cannot be uniqued, return a distinct node instead.
845  template <class T>
846  static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
847  replaceWithPermanent(std::unique_ptr<T, TempMDNodeDeleter> N) {
848    return cast<T>(N.release()->replaceWithPermanentImpl());
849  }
850
851  /// \brief Replace a temporary node with a uniqued one.
852  ///
853  /// Create a uniqued version of \c N -- in place, if possible -- and return
854  /// it.  Takes ownership of the temporary node.
855  ///
856  /// \pre N does not self-reference.
857  template <class T>
858  static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
859  replaceWithUniqued(std::unique_ptr<T, TempMDNodeDeleter> N) {
860    return cast<T>(N.release()->replaceWithUniquedImpl());
861  }
862
863  /// \brief Replace a temporary node with a distinct one.
864  ///
865  /// Create a distinct version of \c N -- in place, if possible -- and return
866  /// it.  Takes ownership of the temporary node.
867  template <class T>
868  static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
869  replaceWithDistinct(std::unique_ptr<T, TempMDNodeDeleter> N) {
870    return cast<T>(N.release()->replaceWithDistinctImpl());
871  }
872
873private:
874  MDNode *replaceWithPermanentImpl();
875  MDNode *replaceWithUniquedImpl();
876  MDNode *replaceWithDistinctImpl();
877
878protected:
879  /// \brief Set an operand.
880  ///
881  /// Sets the operand directly, without worrying about uniquing.
882  void setOperand(unsigned I, Metadata *New);
883
884  void storeDistinctInContext();
885  template <class T, class StoreT>
886  static T *storeImpl(T *N, StorageType Storage, StoreT &Store);
887  template <class T> static T *storeImpl(T *N, StorageType Storage);
888
889private:
890  void handleChangedOperand(void *Ref, Metadata *New);
891
892  void resolve();
893  void resolveAfterOperandChange(Metadata *Old, Metadata *New);
894  void decrementUnresolvedOperandCount();
895  unsigned countUnresolvedOperands();
896
897  /// \brief Mutate this to be "uniqued".
898  ///
899  /// Mutate this so that \a isUniqued().
900  /// \pre \a isTemporary().
901  /// \pre already added to uniquing set.
902  void makeUniqued();
903
904  /// \brief Mutate this to be "distinct".
905  ///
906  /// Mutate this so that \a isDistinct().
907  /// \pre \a isTemporary().
908  void makeDistinct();
909
910  void deleteAsSubclass();
911  MDNode *uniquify();
912  void eraseFromStore();
913
914  template <class NodeTy> struct HasCachedHash;
915  template <class NodeTy>
916  static void dispatchRecalculateHash(NodeTy *N, std::true_type) {
917    N->recalculateHash();
918  }
919  template <class NodeTy>
920  static void dispatchRecalculateHash(NodeTy *, std::false_type) {}
921  template <class NodeTy>
922  static void dispatchResetHash(NodeTy *N, std::true_type) {
923    N->setHash(0);
924  }
925  template <class NodeTy>
926  static void dispatchResetHash(NodeTy *, std::false_type) {}
927
928public:
929  typedef const MDOperand *op_iterator;
930  typedef iterator_range<op_iterator> op_range;
931
932  op_iterator op_begin() const {
933    return const_cast<MDNode *>(this)->mutable_begin();
934  }
935  op_iterator op_end() const {
936    return const_cast<MDNode *>(this)->mutable_end();
937  }
938  op_range operands() const { return op_range(op_begin(), op_end()); }
939
940  const MDOperand &getOperand(unsigned I) const {
941    assert(I < NumOperands && "Out of range");
942    return op_begin()[I];
943  }
944
945  /// \brief Return number of MDNode operands.
946  unsigned getNumOperands() const { return NumOperands; }
947
948  /// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
949  static bool classof(const Metadata *MD) {
950    switch (MD->getMetadataID()) {
951    default:
952      return false;
953#define HANDLE_MDNODE_LEAF(CLASS)                                              \
954  case CLASS##Kind:                                                            \
955    return true;
956#include "llvm/IR/Metadata.def"
957    }
958  }
959
960  /// \brief Check whether MDNode is a vtable access.
961  bool isTBAAVtableAccess() const;
962
963  /// \brief Methods for metadata merging.
964  static MDNode *concatenate(MDNode *A, MDNode *B);
965  static MDNode *intersect(MDNode *A, MDNode *B);
966  static MDNode *getMostGenericTBAA(MDNode *A, MDNode *B);
967  static MDNode *getMostGenericFPMath(MDNode *A, MDNode *B);
968  static MDNode *getMostGenericRange(MDNode *A, MDNode *B);
969  static MDNode *getMostGenericAliasScope(MDNode *A, MDNode *B);
970  static MDNode *getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B);
971
972};
973
974/// \brief Tuple of metadata.
975///
976/// This is the simple \a MDNode arbitrary tuple.  Nodes are uniqued by
977/// default based on their operands.
978class MDTuple : public MDNode {
979  friend class LLVMContextImpl;
980  friend class MDNode;
981
982  MDTuple(LLVMContext &C, StorageType Storage, unsigned Hash,
983          ArrayRef<Metadata *> Vals)
984      : MDNode(C, MDTupleKind, Storage, Vals) {
985    setHash(Hash);
986  }
987  ~MDTuple() { dropAllReferences(); }
988
989  void setHash(unsigned Hash) { SubclassData32 = Hash; }
990  void recalculateHash();
991
992  static MDTuple *getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
993                          StorageType Storage, bool ShouldCreate = true);
994
995  TempMDTuple cloneImpl() const {
996    return getTemporary(getContext(),
997                        SmallVector<Metadata *, 4>(op_begin(), op_end()));
998  }
999
1000public:
1001  /// \brief Get the hash, if any.
1002  unsigned getHash() const { return SubclassData32; }
1003
1004  static MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1005    return getImpl(Context, MDs, Uniqued);
1006  }
1007  static MDTuple *getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1008    return getImpl(Context, MDs, Uniqued, /* ShouldCreate */ false);
1009  }
1010
1011  /// \brief Return a distinct node.
1012  ///
1013  /// Return a distinct node -- i.e., a node that is not uniqued.
1014  static MDTuple *getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1015    return getImpl(Context, MDs, Distinct);
1016  }
1017
1018  /// \brief Return a temporary node.
1019  ///
1020  /// For use in constructing cyclic MDNode structures. A temporary MDNode is
1021  /// not uniqued, may be RAUW'd, and must be manually deleted with
1022  /// deleteTemporary.
1023  static TempMDTuple getTemporary(LLVMContext &Context,
1024                                  ArrayRef<Metadata *> MDs) {
1025    return TempMDTuple(getImpl(Context, MDs, Temporary));
1026  }
1027
1028  /// \brief Return a (temporary) clone of this.
1029  TempMDTuple clone() const { return cloneImpl(); }
1030
1031  static bool classof(const Metadata *MD) {
1032    return MD->getMetadataID() == MDTupleKind;
1033  }
1034};
1035
1036MDTuple *MDNode::get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1037  return MDTuple::get(Context, MDs);
1038}
1039MDTuple *MDNode::getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1040  return MDTuple::getIfExists(Context, MDs);
1041}
1042MDTuple *MDNode::getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1043  return MDTuple::getDistinct(Context, MDs);
1044}
1045TempMDTuple MDNode::getTemporary(LLVMContext &Context,
1046                                 ArrayRef<Metadata *> MDs) {
1047  return MDTuple::getTemporary(Context, MDs);
1048}
1049
1050void TempMDNodeDeleter::operator()(MDNode *Node) const {
1051  MDNode::deleteTemporary(Node);
1052}
1053
1054/// \brief Typed iterator through MDNode operands.
1055///
1056/// An iterator that transforms an \a MDNode::iterator into an iterator over a
1057/// particular Metadata subclass.
1058template <class T>
1059class TypedMDOperandIterator
1060    : std::iterator<std::input_iterator_tag, T *, std::ptrdiff_t, void, T *> {
1061  MDNode::op_iterator I = nullptr;
1062
1063public:
1064  TypedMDOperandIterator() = default;
1065  explicit TypedMDOperandIterator(MDNode::op_iterator I) : I(I) {}
1066  T *operator*() const { return cast_or_null<T>(*I); }
1067  TypedMDOperandIterator &operator++() {
1068    ++I;
1069    return *this;
1070  }
1071  TypedMDOperandIterator operator++(int) {
1072    TypedMDOperandIterator Temp(*this);
1073    ++I;
1074    return Temp;
1075  }
1076  bool operator==(const TypedMDOperandIterator &X) const { return I == X.I; }
1077  bool operator!=(const TypedMDOperandIterator &X) const { return I != X.I; }
1078};
1079
1080/// \brief Typed, array-like tuple of metadata.
1081///
1082/// This is a wrapper for \a MDTuple that makes it act like an array holding a
1083/// particular type of metadata.
1084template <class T> class MDTupleTypedArrayWrapper {
1085  const MDTuple *N = nullptr;
1086
1087public:
1088  MDTupleTypedArrayWrapper() = default;
1089  MDTupleTypedArrayWrapper(const MDTuple *N) : N(N) {}
1090
1091  template <class U>
1092  MDTupleTypedArrayWrapper(
1093      const MDTupleTypedArrayWrapper<U> &Other,
1094      typename std::enable_if<std::is_convertible<U *, T *>::value>::type * =
1095          nullptr)
1096      : N(Other.get()) {}
1097
1098  template <class U>
1099  explicit MDTupleTypedArrayWrapper(
1100      const MDTupleTypedArrayWrapper<U> &Other,
1101      typename std::enable_if<!std::is_convertible<U *, T *>::value>::type * =
1102          nullptr)
1103      : N(Other.get()) {}
1104
1105  explicit operator bool() const { return get(); }
1106  explicit operator MDTuple *() const { return get(); }
1107
1108  MDTuple *get() const { return const_cast<MDTuple *>(N); }
1109  MDTuple *operator->() const { return get(); }
1110  MDTuple &operator*() const { return *get(); }
1111
1112  // FIXME: Fix callers and remove condition on N.
1113  unsigned size() const { return N ? N->getNumOperands() : 0u; }
1114  T *operator[](unsigned I) const { return cast_or_null<T>(N->getOperand(I)); }
1115
1116  // FIXME: Fix callers and remove condition on N.
1117  typedef TypedMDOperandIterator<T> iterator;
1118  iterator begin() const { return N ? iterator(N->op_begin()) : iterator(); }
1119  iterator end() const { return N ? iterator(N->op_end()) : iterator(); }
1120};
1121
1122#define HANDLE_METADATA(CLASS)                                                 \
1123  typedef MDTupleTypedArrayWrapper<CLASS> CLASS##Array;
1124#include "llvm/IR/Metadata.def"
1125
1126//===----------------------------------------------------------------------===//
1127/// \brief A tuple of MDNodes.
1128///
1129/// Despite its name, a NamedMDNode isn't itself an MDNode. NamedMDNodes belong
1130/// to modules, have names, and contain lists of MDNodes.
1131///
1132/// TODO: Inherit from Metadata.
1133class NamedMDNode : public ilist_node<NamedMDNode> {
1134  friend struct ilist_traits<NamedMDNode>;
1135  friend class LLVMContextImpl;
1136  friend class Module;
1137  NamedMDNode(const NamedMDNode &) = delete;
1138
1139  std::string Name;
1140  Module *Parent;
1141  void *Operands; // SmallVector<TrackingMDRef, 4>
1142
1143  void setParent(Module *M) { Parent = M; }
1144
1145  explicit NamedMDNode(const Twine &N);
1146
1147  template<class T1, class T2>
1148  class op_iterator_impl :
1149      public std::iterator<std::bidirectional_iterator_tag, T2> {
1150    const NamedMDNode *Node;
1151    unsigned Idx;
1152    op_iterator_impl(const NamedMDNode *N, unsigned i) : Node(N), Idx(i) { }
1153
1154    friend class NamedMDNode;
1155
1156  public:
1157    op_iterator_impl() : Node(nullptr), Idx(0) { }
1158
1159    bool operator==(const op_iterator_impl &o) const { return Idx == o.Idx; }
1160    bool operator!=(const op_iterator_impl &o) const { return Idx != o.Idx; }
1161    op_iterator_impl &operator++() {
1162      ++Idx;
1163      return *this;
1164    }
1165    op_iterator_impl operator++(int) {
1166      op_iterator_impl tmp(*this);
1167      operator++();
1168      return tmp;
1169    }
1170    op_iterator_impl &operator--() {
1171      --Idx;
1172      return *this;
1173    }
1174    op_iterator_impl operator--(int) {
1175      op_iterator_impl tmp(*this);
1176      operator--();
1177      return tmp;
1178    }
1179
1180    T1 operator*() const { return Node->getOperand(Idx); }
1181  };
1182
1183public:
1184  /// \brief Drop all references and remove the node from parent module.
1185  void eraseFromParent();
1186
1187  /// \brief Remove all uses and clear node vector.
1188  void dropAllReferences();
1189
1190  ~NamedMDNode();
1191
1192  /// \brief Get the module that holds this named metadata collection.
1193  inline Module *getParent() { return Parent; }
1194  inline const Module *getParent() const { return Parent; }
1195
1196  MDNode *getOperand(unsigned i) const;
1197  unsigned getNumOperands() const;
1198  void addOperand(MDNode *M);
1199  void setOperand(unsigned I, MDNode *New);
1200  StringRef getName() const;
1201  void print(raw_ostream &ROS, bool IsForDebug = false) const;
1202  void dump() const;
1203
1204  // ---------------------------------------------------------------------------
1205  // Operand Iterator interface...
1206  //
1207  typedef op_iterator_impl<MDNode *, MDNode> op_iterator;
1208  op_iterator op_begin() { return op_iterator(this, 0); }
1209  op_iterator op_end()   { return op_iterator(this, getNumOperands()); }
1210
1211  typedef op_iterator_impl<const MDNode *, MDNode> const_op_iterator;
1212  const_op_iterator op_begin() const { return const_op_iterator(this, 0); }
1213  const_op_iterator op_end()   const { return const_op_iterator(this, getNumOperands()); }
1214
1215  inline iterator_range<op_iterator>  operands() {
1216    return make_range(op_begin(), op_end());
1217  }
1218  inline iterator_range<const_op_iterator> operands() const {
1219    return make_range(op_begin(), op_end());
1220  }
1221};
1222
1223} // end llvm namespace
1224
1225#endif // LLVM_IR_METADATA_H
1226