ConstantFolding.cpp revision 07cf79ef537caff6d39145f190a28a336e629b6f
1//===-- ConstantFolding.cpp - Analyze constant folding possibilities ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions determines the possibility of performing constant
11// folding.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ConstantFolding.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Function.h"
19#include "llvm/GlobalVariable.h"
20#include "llvm/Instructions.h"
21#include "llvm/Intrinsics.h"
22#include "llvm/LLVMContext.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/StringMap.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Support/GetElementPtrTypeIterator.h"
27#include "llvm/Support/MathExtras.h"
28#include <cerrno>
29#include <cmath>
30using namespace llvm;
31
32//===----------------------------------------------------------------------===//
33// Constant Folding internal helper functions
34//===----------------------------------------------------------------------===//
35
36/// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
37/// from a global, return the global and the constant.  Because of
38/// constantexprs, this function is recursive.
39static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
40                                       int64_t &Offset, const TargetData &TD) {
41  // Trivial case, constant is the global.
42  if ((GV = dyn_cast<GlobalValue>(C))) {
43    Offset = 0;
44    return true;
45  }
46
47  // Otherwise, if this isn't a constant expr, bail out.
48  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
49  if (!CE) return false;
50
51  // Look through ptr->int and ptr->ptr casts.
52  if (CE->getOpcode() == Instruction::PtrToInt ||
53      CE->getOpcode() == Instruction::BitCast)
54    return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
55
56  // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
57  if (CE->getOpcode() == Instruction::GetElementPtr) {
58    // Cannot compute this if the element type of the pointer is missing size
59    // info.
60    if (!cast<PointerType>(CE->getOperand(0)->getType())
61                 ->getElementType()->isSized())
62      return false;
63
64    // If the base isn't a global+constant, we aren't either.
65    if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
66      return false;
67
68    // Otherwise, add any offset that our operands provide.
69    gep_type_iterator GTI = gep_type_begin(CE);
70    for (User::const_op_iterator i = CE->op_begin() + 1, e = CE->op_end();
71         i != e; ++i, ++GTI) {
72      ConstantInt *CI = dyn_cast<ConstantInt>(*i);
73      if (!CI) return false;  // Index isn't a simple constant?
74      if (CI->getZExtValue() == 0) continue;  // Not adding anything.
75
76      if (const StructType *ST = dyn_cast<StructType>(*GTI)) {
77        // N = N + Offset
78        Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
79      } else {
80        const SequentialType *SQT = cast<SequentialType>(*GTI);
81        Offset += TD.getTypeAllocSize(SQT->getElementType())*CI->getSExtValue();
82      }
83    }
84    return true;
85  }
86
87  return false;
88}
89
90
91/// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
92/// Attempt to symbolically evaluate the result of a binary operator merging
93/// these together.  If target data info is available, it is provided as TD,
94/// otherwise TD is null.
95static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
96                                           Constant *Op1, const TargetData *TD,
97                                           LLVMContext *Context){
98  // SROA
99
100  // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
101  // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
102  // bits.
103
104
105  // If the constant expr is something like &A[123] - &A[4].f, fold this into a
106  // constant.  This happens frequently when iterating over a global array.
107  if (Opc == Instruction::Sub && TD) {
108    GlobalValue *GV1, *GV2;
109    int64_t Offs1, Offs2;
110
111    if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
112      if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
113          GV1 == GV2) {
114        // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
115        return Context->getConstantInt(Op0->getType(), Offs1-Offs2);
116      }
117  }
118
119  return 0;
120}
121
122/// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
123/// constant expression, do so.
124static Constant *SymbolicallyEvaluateGEP(Constant* const* Ops, unsigned NumOps,
125                                         const Type *ResultTy,
126                                         LLVMContext *Context,
127                                         const TargetData *TD) {
128  Constant *Ptr = Ops[0];
129  if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized())
130    return 0;
131
132  uint64_t BasePtr = 0;
133  if (!Ptr->isNullValue()) {
134    // If this is a inttoptr from a constant int, we can fold this as the base,
135    // otherwise we can't.
136    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
137      if (CE->getOpcode() == Instruction::IntToPtr)
138        if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
139          BasePtr = Base->getZExtValue();
140
141    if (BasePtr == 0)
142      return 0;
143  }
144
145  // If this is a constant expr gep that is effectively computing an
146  // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
147  for (unsigned i = 1; i != NumOps; ++i)
148    if (!isa<ConstantInt>(Ops[i]))
149      return false;
150
151  uint64_t Offset = TD->getIndexedOffset(Ptr->getType(),
152                                         (Value**)Ops+1, NumOps-1);
153  Constant *C = Context->getConstantInt(TD->getIntPtrType(), Offset+BasePtr);
154  return Context->getConstantExprIntToPtr(C, ResultTy);
155}
156
157/// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
158/// targetdata.  Return 0 if unfoldable.
159static Constant *FoldBitCast(Constant *C, const Type *DestTy,
160                             const TargetData &TD, LLVMContext *Context) {
161  // If this is a bitcast from constant vector -> vector, fold it.
162  if (ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
163    if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
164      // If the element types match, VMCore can fold it.
165      unsigned NumDstElt = DestVTy->getNumElements();
166      unsigned NumSrcElt = CV->getNumOperands();
167      if (NumDstElt == NumSrcElt)
168        return 0;
169
170      const Type *SrcEltTy = CV->getType()->getElementType();
171      const Type *DstEltTy = DestVTy->getElementType();
172
173      // Otherwise, we're changing the number of elements in a vector, which
174      // requires endianness information to do the right thing.  For example,
175      //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
176      // folds to (little endian):
177      //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
178      // and to (big endian):
179      //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
180
181      // First thing is first.  We only want to think about integer here, so if
182      // we have something in FP form, recast it as integer.
183      if (DstEltTy->isFloatingPoint()) {
184        // Fold to an vector of integers with same size as our FP type.
185        unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
186        const Type *DestIVTy = Context->getVectorType(
187                                   Context->getIntegerType(FPWidth), NumDstElt);
188        // Recursively handle this integer conversion, if possible.
189        C = FoldBitCast(C, DestIVTy, TD, Context);
190        if (!C) return 0;
191
192        // Finally, VMCore can handle this now that #elts line up.
193        return Context->getConstantExprBitCast(C, DestTy);
194      }
195
196      // Okay, we know the destination is integer, if the input is FP, convert
197      // it to integer first.
198      if (SrcEltTy->isFloatingPoint()) {
199        unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
200        const Type *SrcIVTy = Context->getVectorType(
201                                   Context->getIntegerType(FPWidth), NumSrcElt);
202        // Ask VMCore to do the conversion now that #elts line up.
203        C = Context->getConstantExprBitCast(C, SrcIVTy);
204        CV = dyn_cast<ConstantVector>(C);
205        if (!CV) return 0;  // If VMCore wasn't able to fold it, bail out.
206      }
207
208      // Now we know that the input and output vectors are both integer vectors
209      // of the same size, and that their #elements is not the same.  Do the
210      // conversion here, which depends on whether the input or output has
211      // more elements.
212      bool isLittleEndian = TD.isLittleEndian();
213
214      SmallVector<Constant*, 32> Result;
215      if (NumDstElt < NumSrcElt) {
216        // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
217        Constant *Zero = Context->getNullValue(DstEltTy);
218        unsigned Ratio = NumSrcElt/NumDstElt;
219        unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
220        unsigned SrcElt = 0;
221        for (unsigned i = 0; i != NumDstElt; ++i) {
222          // Build each element of the result.
223          Constant *Elt = Zero;
224          unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
225          for (unsigned j = 0; j != Ratio; ++j) {
226            Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(SrcElt++));
227            if (!Src) return 0;  // Reject constantexpr elements.
228
229            // Zero extend the element to the right size.
230            Src = Context->getConstantExprZExt(Src, Elt->getType());
231
232            // Shift it to the right place, depending on endianness.
233            Src = Context->getConstantExprShl(Src,
234                             Context->getConstantInt(Src->getType(), ShiftAmt));
235            ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
236
237            // Mix it in.
238            Elt = Context->getConstantExprOr(Elt, Src);
239          }
240          Result.push_back(Elt);
241        }
242      } else {
243        // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
244        unsigned Ratio = NumDstElt/NumSrcElt;
245        unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
246
247        // Loop over each source value, expanding into multiple results.
248        for (unsigned i = 0; i != NumSrcElt; ++i) {
249          Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(i));
250          if (!Src) return 0;  // Reject constantexpr elements.
251
252          unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
253          for (unsigned j = 0; j != Ratio; ++j) {
254            // Shift the piece of the value into the right place, depending on
255            // endianness.
256            Constant *Elt = Context->getConstantExprLShr(Src,
257                            Context->getConstantInt(Src->getType(), ShiftAmt));
258            ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
259
260            // Truncate and remember this piece.
261            Result.push_back(Context->getConstantExprTrunc(Elt, DstEltTy));
262          }
263        }
264      }
265
266      return Context->getConstantVector(Result.data(), Result.size());
267    }
268  }
269
270  return 0;
271}
272
273
274//===----------------------------------------------------------------------===//
275// Constant Folding public APIs
276//===----------------------------------------------------------------------===//
277
278
279/// ConstantFoldInstruction - Attempt to constant fold the specified
280/// instruction.  If successful, the constant result is returned, if not, null
281/// is returned.  Note that this function can only fail when attempting to fold
282/// instructions like loads and stores, which have no constant expression form.
283///
284Constant *llvm::ConstantFoldInstruction(Instruction *I, LLVMContext *Context,
285                                        const TargetData *TD) {
286  if (PHINode *PN = dyn_cast<PHINode>(I)) {
287    if (PN->getNumIncomingValues() == 0)
288      return Context->getUndef(PN->getType());
289
290    Constant *Result = dyn_cast<Constant>(PN->getIncomingValue(0));
291    if (Result == 0) return 0;
292
293    // Handle PHI nodes specially here...
294    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
295      if (PN->getIncomingValue(i) != Result && PN->getIncomingValue(i) != PN)
296        return 0;   // Not all the same incoming constants...
297
298    // If we reach here, all incoming values are the same constant.
299    return Result;
300  }
301
302  // Scan the operand list, checking to see if they are all constants, if so,
303  // hand off to ConstantFoldInstOperands.
304  SmallVector<Constant*, 8> Ops;
305  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
306    if (Constant *Op = dyn_cast<Constant>(*i))
307      Ops.push_back(Op);
308    else
309      return 0;  // All operands not constant!
310
311  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
312    return ConstantFoldCompareInstOperands(CI->getPredicate(),
313                                           Ops.data(), Ops.size(),
314                                           Context, TD);
315  else
316    return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
317                                    Ops.data(), Ops.size(), Context, TD);
318}
319
320/// ConstantFoldConstantExpression - Attempt to fold the constant expression
321/// using the specified TargetData.  If successful, the constant result is
322/// result is returned, if not, null is returned.
323Constant *llvm::ConstantFoldConstantExpression(ConstantExpr *CE,
324                                               LLVMContext *Context,
325                                               const TargetData *TD) {
326  SmallVector<Constant*, 8> Ops;
327  for (User::op_iterator i = CE->op_begin(), e = CE->op_end(); i != e; ++i)
328    Ops.push_back(cast<Constant>(*i));
329
330  if (CE->isCompare())
331    return ConstantFoldCompareInstOperands(CE->getPredicate(),
332                                           Ops.data(), Ops.size(),
333                                           Context, TD);
334  else
335    return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(),
336                                    Ops.data(), Ops.size(), Context, TD);
337}
338
339/// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
340/// specified opcode and operands.  If successful, the constant result is
341/// returned, if not, null is returned.  Note that this function can fail when
342/// attempting to fold instructions like loads and stores, which have no
343/// constant expression form.
344///
345Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
346                                         Constant* const* Ops, unsigned NumOps,
347                                         LLVMContext *Context,
348                                         const TargetData *TD) {
349  // Handle easy binops first.
350  if (Instruction::isBinaryOp(Opcode)) {
351    if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
352      if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD,
353                                                  Context))
354        return C;
355
356    return Context->getConstantExpr(Opcode, Ops[0], Ops[1]);
357  }
358
359  switch (Opcode) {
360  default: return 0;
361  case Instruction::Call:
362    if (Function *F = dyn_cast<Function>(Ops[0]))
363      if (canConstantFoldCallTo(F))
364        return ConstantFoldCall(F, Ops+1, NumOps-1);
365    return 0;
366  case Instruction::ICmp:
367  case Instruction::FCmp:
368  case Instruction::VICmp:
369  case Instruction::VFCmp:
370    assert(0 &&"This function is invalid for compares: no predicate specified");
371  case Instruction::PtrToInt:
372    // If the input is a inttoptr, eliminate the pair.  This requires knowing
373    // the width of a pointer, so it can't be done in ConstantExpr::getCast.
374    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
375      if (TD && CE->getOpcode() == Instruction::IntToPtr) {
376        Constant *Input = CE->getOperand(0);
377        unsigned InWidth = Input->getType()->getScalarSizeInBits();
378        if (TD->getPointerSizeInBits() < InWidth) {
379          Constant *Mask =
380            Context->getConstantInt(APInt::getLowBitsSet(InWidth,
381                                                  TD->getPointerSizeInBits()));
382          Input = Context->getConstantExprAnd(Input, Mask);
383        }
384        // Do a zext or trunc to get to the dest size.
385        return Context->getConstantExprIntegerCast(Input, DestTy, false);
386      }
387    }
388    return Context->getConstantExprCast(Opcode, Ops[0], DestTy);
389  case Instruction::IntToPtr:
390    // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
391    // the int size is >= the ptr size.  This requires knowing the width of a
392    // pointer, so it can't be done in ConstantExpr::getCast.
393    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
394      if (TD &&
395          TD->getPointerSizeInBits() <=
396          CE->getType()->getScalarSizeInBits()) {
397        if (CE->getOpcode() == Instruction::PtrToInt) {
398          Constant *Input = CE->getOperand(0);
399          Constant *C = FoldBitCast(Input, DestTy, *TD, Context);
400          return C ? C : Context->getConstantExprBitCast(Input, DestTy);
401        }
402        // If there's a constant offset added to the integer value before
403        // it is casted back to a pointer, see if the expression can be
404        // converted into a GEP.
405        if (CE->getOpcode() == Instruction::Add)
406          if (ConstantInt *L = dyn_cast<ConstantInt>(CE->getOperand(0)))
407            if (ConstantExpr *R = dyn_cast<ConstantExpr>(CE->getOperand(1)))
408              if (R->getOpcode() == Instruction::PtrToInt)
409                if (GlobalVariable *GV =
410                      dyn_cast<GlobalVariable>(R->getOperand(0))) {
411                  const PointerType *GVTy = cast<PointerType>(GV->getType());
412                  if (const ArrayType *AT =
413                        dyn_cast<ArrayType>(GVTy->getElementType())) {
414                    const Type *ElTy = AT->getElementType();
415                    uint64_t AllocSize = TD->getTypeAllocSize(ElTy);
416                    APInt PSA(L->getValue().getBitWidth(), AllocSize);
417                    if (ElTy == cast<PointerType>(DestTy)->getElementType() &&
418                        L->getValue().urem(PSA) == 0) {
419                      APInt ElemIdx = L->getValue().udiv(PSA);
420                      if (ElemIdx.ult(APInt(ElemIdx.getBitWidth(),
421                                            AT->getNumElements()))) {
422                        Constant *Index[] = {
423                          Context->getNullValue(CE->getType()),
424                          Context->getConstantInt(ElemIdx)
425                        };
426                        return
427                        Context->getConstantExprGetElementPtr(GV, &Index[0], 2);
428                      }
429                    }
430                  }
431                }
432      }
433    }
434    return Context->getConstantExprCast(Opcode, Ops[0], DestTy);
435  case Instruction::Trunc:
436  case Instruction::ZExt:
437  case Instruction::SExt:
438  case Instruction::FPTrunc:
439  case Instruction::FPExt:
440  case Instruction::UIToFP:
441  case Instruction::SIToFP:
442  case Instruction::FPToUI:
443  case Instruction::FPToSI:
444      return Context->getConstantExprCast(Opcode, Ops[0], DestTy);
445  case Instruction::BitCast:
446    if (TD)
447      if (Constant *C = FoldBitCast(Ops[0], DestTy, *TD, Context))
448        return C;
449    return Context->getConstantExprBitCast(Ops[0], DestTy);
450  case Instruction::Select:
451    return Context->getConstantExprSelect(Ops[0], Ops[1], Ops[2]);
452  case Instruction::ExtractElement:
453    return Context->getConstantExprExtractElement(Ops[0], Ops[1]);
454  case Instruction::InsertElement:
455    return Context->getConstantExprInsertElement(Ops[0], Ops[1], Ops[2]);
456  case Instruction::ShuffleVector:
457    return Context->getConstantExprShuffleVector(Ops[0], Ops[1], Ops[2]);
458  case Instruction::GetElementPtr:
459    if (Constant *C = SymbolicallyEvaluateGEP(Ops, NumOps, DestTy, Context, TD))
460      return C;
461
462    return Context->getConstantExprGetElementPtr(Ops[0], Ops+1, NumOps-1);
463  }
464}
465
466/// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
467/// instruction (icmp/fcmp) with the specified operands.  If it fails, it
468/// returns a constant expression of the specified operands.
469///
470Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
471                                                Constant*const * Ops,
472                                                unsigned NumOps,
473                                                LLVMContext *Context,
474                                                const TargetData *TD) {
475  // fold: icmp (inttoptr x), null         -> icmp x, 0
476  // fold: icmp (ptrtoint x), 0            -> icmp x, null
477  // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
478  // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
479  //
480  // ConstantExpr::getCompare cannot do this, because it doesn't have TD
481  // around to know if bit truncation is happening.
482  if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops[0])) {
483    if (TD && Ops[1]->isNullValue()) {
484      const Type *IntPtrTy = TD->getIntPtrType();
485      if (CE0->getOpcode() == Instruction::IntToPtr) {
486        // Convert the integer value to the right size to ensure we get the
487        // proper extension or truncation.
488        Constant *C = Context->getConstantExprIntegerCast(CE0->getOperand(0),
489                                                   IntPtrTy, false);
490        Constant *NewOps[] = { C, Context->getNullValue(C->getType()) };
491        return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
492                                               Context, TD);
493      }
494
495      // Only do this transformation if the int is intptrty in size, otherwise
496      // there is a truncation or extension that we aren't modeling.
497      if (CE0->getOpcode() == Instruction::PtrToInt &&
498          CE0->getType() == IntPtrTy) {
499        Constant *C = CE0->getOperand(0);
500        Constant *NewOps[] = { C, Context->getNullValue(C->getType()) };
501        // FIXME!
502        return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
503                                               Context, TD);
504      }
505    }
506
507    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops[1])) {
508      if (TD && CE0->getOpcode() == CE1->getOpcode()) {
509        const Type *IntPtrTy = TD->getIntPtrType();
510
511        if (CE0->getOpcode() == Instruction::IntToPtr) {
512          // Convert the integer value to the right size to ensure we get the
513          // proper extension or truncation.
514          Constant *C0 = Context->getConstantExprIntegerCast(CE0->getOperand(0),
515                                                      IntPtrTy, false);
516          Constant *C1 = Context->getConstantExprIntegerCast(CE1->getOperand(0),
517                                                      IntPtrTy, false);
518          Constant *NewOps[] = { C0, C1 };
519          return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
520                                                 Context, TD);
521        }
522
523        // Only do this transformation if the int is intptrty in size, otherwise
524        // there is a truncation or extension that we aren't modeling.
525        if ((CE0->getOpcode() == Instruction::PtrToInt &&
526             CE0->getType() == IntPtrTy &&
527             CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType())) {
528          Constant *NewOps[] = {
529            CE0->getOperand(0), CE1->getOperand(0)
530          };
531          return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
532                                                 Context, TD);
533        }
534      }
535    }
536  }
537  return Context->getConstantExprCompare(Predicate, Ops[0], Ops[1]);
538}
539
540
541/// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
542/// getelementptr constantexpr, return the constant value being addressed by the
543/// constant expression, or null if something is funny and we can't decide.
544Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
545                                                       ConstantExpr *CE,
546                                                       LLVMContext *Context) {
547  if (CE->getOperand(1) != Context->getNullValue(CE->getOperand(1)->getType()))
548    return 0;  // Do not allow stepping over the value!
549
550  // Loop over all of the operands, tracking down which value we are
551  // addressing...
552  gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
553  for (++I; I != E; ++I)
554    if (const StructType *STy = dyn_cast<StructType>(*I)) {
555      ConstantInt *CU = cast<ConstantInt>(I.getOperand());
556      assert(CU->getZExtValue() < STy->getNumElements() &&
557             "Struct index out of range!");
558      unsigned El = (unsigned)CU->getZExtValue();
559      if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
560        C = CS->getOperand(El);
561      } else if (isa<ConstantAggregateZero>(C)) {
562        C = Context->getNullValue(STy->getElementType(El));
563      } else if (isa<UndefValue>(C)) {
564        C = Context->getUndef(STy->getElementType(El));
565      } else {
566        return 0;
567      }
568    } else if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
569      if (const ArrayType *ATy = dyn_cast<ArrayType>(*I)) {
570        if (CI->getZExtValue() >= ATy->getNumElements())
571         return 0;
572        if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
573          C = CA->getOperand(CI->getZExtValue());
574        else if (isa<ConstantAggregateZero>(C))
575          C = Context->getNullValue(ATy->getElementType());
576        else if (isa<UndefValue>(C))
577          C = Context->getUndef(ATy->getElementType());
578        else
579          return 0;
580      } else if (const VectorType *PTy = dyn_cast<VectorType>(*I)) {
581        if (CI->getZExtValue() >= PTy->getNumElements())
582          return 0;
583        if (ConstantVector *CP = dyn_cast<ConstantVector>(C))
584          C = CP->getOperand(CI->getZExtValue());
585        else if (isa<ConstantAggregateZero>(C))
586          C = Context->getNullValue(PTy->getElementType());
587        else if (isa<UndefValue>(C))
588          C = Context->getUndef(PTy->getElementType());
589        else
590          return 0;
591      } else {
592        return 0;
593      }
594    } else {
595      return 0;
596    }
597  return C;
598}
599
600
601//===----------------------------------------------------------------------===//
602//  Constant Folding for Calls
603//
604
605/// canConstantFoldCallTo - Return true if its even possible to fold a call to
606/// the specified function.
607bool
608llvm::canConstantFoldCallTo(const Function *F) {
609  switch (F->getIntrinsicID()) {
610  case Intrinsic::sqrt:
611  case Intrinsic::powi:
612  case Intrinsic::bswap:
613  case Intrinsic::ctpop:
614  case Intrinsic::ctlz:
615  case Intrinsic::cttz:
616    return true;
617  default: break;
618  }
619
620  if (!F->hasName()) return false;
621  const char *Str = F->getNameStart();
622  unsigned Len = F->getNameLen();
623
624  // In these cases, the check of the length is required.  We don't want to
625  // return true for a name like "cos\0blah" which strcmp would return equal to
626  // "cos", but has length 8.
627  switch (Str[0]) {
628  default: return false;
629  case 'a':
630    if (Len == 4)
631      return !strcmp(Str, "acos") || !strcmp(Str, "asin") ||
632             !strcmp(Str, "atan");
633    else if (Len == 5)
634      return !strcmp(Str, "atan2");
635    return false;
636  case 'c':
637    if (Len == 3)
638      return !strcmp(Str, "cos");
639    else if (Len == 4)
640      return !strcmp(Str, "ceil") || !strcmp(Str, "cosf") ||
641             !strcmp(Str, "cosh");
642    return false;
643  case 'e':
644    if (Len == 3)
645      return !strcmp(Str, "exp");
646    return false;
647  case 'f':
648    if (Len == 4)
649      return !strcmp(Str, "fabs") || !strcmp(Str, "fmod");
650    else if (Len == 5)
651      return !strcmp(Str, "floor");
652    return false;
653    break;
654  case 'l':
655    if (Len == 3 && !strcmp(Str, "log"))
656      return true;
657    if (Len == 5 && !strcmp(Str, "log10"))
658      return true;
659    return false;
660  case 'p':
661    if (Len == 3 && !strcmp(Str, "pow"))
662      return true;
663    return false;
664  case 's':
665    if (Len == 3)
666      return !strcmp(Str, "sin");
667    if (Len == 4)
668      return !strcmp(Str, "sinh") || !strcmp(Str, "sqrt") ||
669             !strcmp(Str, "sinf");
670    if (Len == 5)
671      return !strcmp(Str, "sqrtf");
672    return false;
673  case 't':
674    if (Len == 3 && !strcmp(Str, "tan"))
675      return true;
676    else if (Len == 4 && !strcmp(Str, "tanh"))
677      return true;
678    return false;
679  }
680}
681
682static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
683                                const Type *Ty, LLVMContext *Context) {
684  errno = 0;
685  V = NativeFP(V);
686  if (errno != 0) {
687    errno = 0;
688    return 0;
689  }
690
691  if (Ty == Type::FloatTy)
692    return Context->getConstantFP(APFloat((float)V));
693  if (Ty == Type::DoubleTy)
694    return Context->getConstantFP(APFloat(V));
695  assert(0 && "Can only constant fold float/double");
696  return 0; // dummy return to suppress warning
697}
698
699static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
700                                      double V, double W,
701                                      const Type *Ty,
702                                      LLVMContext *Context) {
703  errno = 0;
704  V = NativeFP(V, W);
705  if (errno != 0) {
706    errno = 0;
707    return 0;
708  }
709
710  if (Ty == Type::FloatTy)
711    return Context->getConstantFP(APFloat((float)V));
712  if (Ty == Type::DoubleTy)
713    return Context->getConstantFP(APFloat(V));
714  assert(0 && "Can only constant fold float/double");
715  return 0; // dummy return to suppress warning
716}
717
718/// ConstantFoldCall - Attempt to constant fold a call to the specified function
719/// with the specified arguments, returning null if unsuccessful.
720
721Constant *
722llvm::ConstantFoldCall(Function *F,
723                       Constant* const* Operands, unsigned NumOperands) {
724  if (!F->hasName()) return 0;
725  LLVMContext *Context = F->getContext();
726  const char *Str = F->getNameStart();
727  unsigned Len = F->getNameLen();
728
729  const Type *Ty = F->getReturnType();
730  if (NumOperands == 1) {
731    if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
732      if (Ty!=Type::FloatTy && Ty!=Type::DoubleTy)
733        return 0;
734      /// Currently APFloat versions of these functions do not exist, so we use
735      /// the host native double versions.  Float versions are not called
736      /// directly but for all these it is true (float)(f((double)arg)) ==
737      /// f(arg).  Long double not supported yet.
738      double V = Ty==Type::FloatTy ? (double)Op->getValueAPF().convertToFloat():
739                                     Op->getValueAPF().convertToDouble();
740      switch (Str[0]) {
741      case 'a':
742        if (Len == 4 && !strcmp(Str, "acos"))
743          return ConstantFoldFP(acos, V, Ty, Context);
744        else if (Len == 4 && !strcmp(Str, "asin"))
745          return ConstantFoldFP(asin, V, Ty, Context);
746        else if (Len == 4 && !strcmp(Str, "atan"))
747          return ConstantFoldFP(atan, V, Ty, Context);
748        break;
749      case 'c':
750        if (Len == 4 && !strcmp(Str, "ceil"))
751          return ConstantFoldFP(ceil, V, Ty, Context);
752        else if (Len == 3 && !strcmp(Str, "cos"))
753          return ConstantFoldFP(cos, V, Ty, Context);
754        else if (Len == 4 && !strcmp(Str, "cosh"))
755          return ConstantFoldFP(cosh, V, Ty, Context);
756        else if (Len == 4 && !strcmp(Str, "cosf"))
757          return ConstantFoldFP(cos, V, Ty, Context);
758        break;
759      case 'e':
760        if (Len == 3 && !strcmp(Str, "exp"))
761          return ConstantFoldFP(exp, V, Ty, Context);
762        break;
763      case 'f':
764        if (Len == 4 && !strcmp(Str, "fabs"))
765          return ConstantFoldFP(fabs, V, Ty, Context);
766        else if (Len == 5 && !strcmp(Str, "floor"))
767          return ConstantFoldFP(floor, V, Ty, Context);
768        break;
769      case 'l':
770        if (Len == 3 && !strcmp(Str, "log") && V > 0)
771          return ConstantFoldFP(log, V, Ty, Context);
772        else if (Len == 5 && !strcmp(Str, "log10") && V > 0)
773          return ConstantFoldFP(log10, V, Ty, Context);
774        else if (!strcmp(Str, "llvm.sqrt.f32") ||
775                 !strcmp(Str, "llvm.sqrt.f64")) {
776          if (V >= -0.0)
777            return ConstantFoldFP(sqrt, V, Ty, Context);
778          else // Undefined
779            return Context->getNullValue(Ty);
780        }
781        break;
782      case 's':
783        if (Len == 3 && !strcmp(Str, "sin"))
784          return ConstantFoldFP(sin, V, Ty, Context);
785        else if (Len == 4 && !strcmp(Str, "sinh"))
786          return ConstantFoldFP(sinh, V, Ty, Context);
787        else if (Len == 4 && !strcmp(Str, "sqrt") && V >= 0)
788          return ConstantFoldFP(sqrt, V, Ty, Context);
789        else if (Len == 5 && !strcmp(Str, "sqrtf") && V >= 0)
790          return ConstantFoldFP(sqrt, V, Ty, Context);
791        else if (Len == 4 && !strcmp(Str, "sinf"))
792          return ConstantFoldFP(sin, V, Ty, Context);
793        break;
794      case 't':
795        if (Len == 3 && !strcmp(Str, "tan"))
796          return ConstantFoldFP(tan, V, Ty, Context);
797        else if (Len == 4 && !strcmp(Str, "tanh"))
798          return ConstantFoldFP(tanh, V, Ty, Context);
799        break;
800      default:
801        break;
802      }
803    } else if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
804      if (Len > 11 && !memcmp(Str, "llvm.bswap", 10))
805        return Context->getConstantInt(Op->getValue().byteSwap());
806      else if (Len > 11 && !memcmp(Str, "llvm.ctpop", 10))
807        return Context->getConstantInt(Ty, Op->getValue().countPopulation());
808      else if (Len > 10 && !memcmp(Str, "llvm.cttz", 9))
809        return Context->getConstantInt(Ty, Op->getValue().countTrailingZeros());
810      else if (Len > 10 && !memcmp(Str, "llvm.ctlz", 9))
811        return Context->getConstantInt(Ty, Op->getValue().countLeadingZeros());
812    }
813  } else if (NumOperands == 2) {
814    if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
815      if (Ty!=Type::FloatTy && Ty!=Type::DoubleTy)
816        return 0;
817      double Op1V = Ty==Type::FloatTy ?
818                      (double)Op1->getValueAPF().convertToFloat():
819                      Op1->getValueAPF().convertToDouble();
820      if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
821        double Op2V = Ty==Type::FloatTy ?
822                      (double)Op2->getValueAPF().convertToFloat():
823                      Op2->getValueAPF().convertToDouble();
824
825        if (Len == 3 && !strcmp(Str, "pow")) {
826          return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty, Context);
827        } else if (Len == 4 && !strcmp(Str, "fmod")) {
828          return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty, Context);
829        } else if (Len == 5 && !strcmp(Str, "atan2")) {
830          return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty, Context);
831        }
832      } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
833        if (!strcmp(Str, "llvm.powi.f32")) {
834          return Context->getConstantFP(APFloat((float)std::pow((float)Op1V,
835                                                 (int)Op2C->getZExtValue())));
836        } else if (!strcmp(Str, "llvm.powi.f64")) {
837          return Context->getConstantFP(APFloat((double)std::pow((double)Op1V,
838                                                 (int)Op2C->getZExtValue())));
839        }
840      }
841    }
842  }
843  return 0;
844}
845
846