ConstantFolding.cpp revision 4c5e43da7792f75567b693105cc53e3f1992ad98
1//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines routines for folding instructions into constants.
11//
12// Also, to supplement the basic IR ConstantExpr simplifications,
13// this file defines some additional folding routines that can make use of
14// DataLayout information. These functions cannot go in IR due to library
15// dependency issues.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Analysis/ConstantFolding.h"
20#include "llvm/ADT/SmallPtrSet.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/StringMap.h"
23#include "llvm/Analysis/TargetLibraryInfo.h"
24#include "llvm/Analysis/ValueTracking.h"
25#include "llvm/Config/config.h"
26#include "llvm/IR/Constants.h"
27#include "llvm/IR/DataLayout.h"
28#include "llvm/IR/DerivedTypes.h"
29#include "llvm/IR/Function.h"
30#include "llvm/IR/GetElementPtrTypeIterator.h"
31#include "llvm/IR/GlobalVariable.h"
32#include "llvm/IR/Instructions.h"
33#include "llvm/IR/Intrinsics.h"
34#include "llvm/IR/Operator.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/MathExtras.h"
37#include <cerrno>
38#include <cmath>
39
40#ifdef HAVE_FENV_H
41#include <fenv.h>
42#endif
43
44using namespace llvm;
45
46//===----------------------------------------------------------------------===//
47// Constant Folding internal helper functions
48//===----------------------------------------------------------------------===//
49
50/// Constant fold bitcast, symbolically evaluating it with DataLayout.
51/// This always returns a non-null constant, but it may be a
52/// ConstantExpr if unfoldable.
53static Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
54  // Catch the obvious splat cases.
55  if (C->isNullValue() && !DestTy->isX86_MMXTy())
56    return Constant::getNullValue(DestTy);
57  if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() &&
58      !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types!
59    return Constant::getAllOnesValue(DestTy);
60
61  // Handle a vector->integer cast.
62  if (IntegerType *IT = dyn_cast<IntegerType>(DestTy)) {
63    VectorType *VTy = dyn_cast<VectorType>(C->getType());
64    if (!VTy)
65      return ConstantExpr::getBitCast(C, DestTy);
66
67    unsigned NumSrcElts = VTy->getNumElements();
68    Type *SrcEltTy = VTy->getElementType();
69
70    // If the vector is a vector of floating point, convert it to vector of int
71    // to simplify things.
72    if (SrcEltTy->isFloatingPointTy()) {
73      unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
74      Type *SrcIVTy =
75        VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
76      // Ask IR to do the conversion now that #elts line up.
77      C = ConstantExpr::getBitCast(C, SrcIVTy);
78    }
79
80    ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
81    if (!CDV)
82      return ConstantExpr::getBitCast(C, DestTy);
83
84    // Now that we know that the input value is a vector of integers, just shift
85    // and insert them into our result.
86    unsigned BitShift = DL.getTypeAllocSizeInBits(SrcEltTy);
87    APInt Result(IT->getBitWidth(), 0);
88    for (unsigned i = 0; i != NumSrcElts; ++i) {
89      Result <<= BitShift;
90      if (DL.isLittleEndian())
91        Result |= CDV->getElementAsInteger(NumSrcElts-i-1);
92      else
93        Result |= CDV->getElementAsInteger(i);
94    }
95
96    return ConstantInt::get(IT, Result);
97  }
98
99  // The code below only handles casts to vectors currently.
100  VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
101  if (!DestVTy)
102    return ConstantExpr::getBitCast(C, DestTy);
103
104  // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
105  // vector so the code below can handle it uniformly.
106  if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
107    Constant *Ops = C; // don't take the address of C!
108    return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
109  }
110
111  // If this is a bitcast from constant vector -> vector, fold it.
112  if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
113    return ConstantExpr::getBitCast(C, DestTy);
114
115  // If the element types match, IR can fold it.
116  unsigned NumDstElt = DestVTy->getNumElements();
117  unsigned NumSrcElt = C->getType()->getVectorNumElements();
118  if (NumDstElt == NumSrcElt)
119    return ConstantExpr::getBitCast(C, DestTy);
120
121  Type *SrcEltTy = C->getType()->getVectorElementType();
122  Type *DstEltTy = DestVTy->getElementType();
123
124  // Otherwise, we're changing the number of elements in a vector, which
125  // requires endianness information to do the right thing.  For example,
126  //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
127  // folds to (little endian):
128  //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
129  // and to (big endian):
130  //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
131
132  // First thing is first.  We only want to think about integer here, so if
133  // we have something in FP form, recast it as integer.
134  if (DstEltTy->isFloatingPointTy()) {
135    // Fold to an vector of integers with same size as our FP type.
136    unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
137    Type *DestIVTy =
138      VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
139    // Recursively handle this integer conversion, if possible.
140    C = FoldBitCast(C, DestIVTy, DL);
141
142    // Finally, IR can handle this now that #elts line up.
143    return ConstantExpr::getBitCast(C, DestTy);
144  }
145
146  // Okay, we know the destination is integer, if the input is FP, convert
147  // it to integer first.
148  if (SrcEltTy->isFloatingPointTy()) {
149    unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
150    Type *SrcIVTy =
151      VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
152    // Ask IR to do the conversion now that #elts line up.
153    C = ConstantExpr::getBitCast(C, SrcIVTy);
154    // If IR wasn't able to fold it, bail out.
155    if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector.
156        !isa<ConstantDataVector>(C))
157      return C;
158  }
159
160  // Now we know that the input and output vectors are both integer vectors
161  // of the same size, and that their #elements is not the same.  Do the
162  // conversion here, which depends on whether the input or output has
163  // more elements.
164  bool isLittleEndian = DL.isLittleEndian();
165
166  SmallVector<Constant*, 32> Result;
167  if (NumDstElt < NumSrcElt) {
168    // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
169    Constant *Zero = Constant::getNullValue(DstEltTy);
170    unsigned Ratio = NumSrcElt/NumDstElt;
171    unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
172    unsigned SrcElt = 0;
173    for (unsigned i = 0; i != NumDstElt; ++i) {
174      // Build each element of the result.
175      Constant *Elt = Zero;
176      unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
177      for (unsigned j = 0; j != Ratio; ++j) {
178        Constant *Src =dyn_cast<ConstantInt>(C->getAggregateElement(SrcElt++));
179        if (!Src)  // Reject constantexpr elements.
180          return ConstantExpr::getBitCast(C, DestTy);
181
182        // Zero extend the element to the right size.
183        Src = ConstantExpr::getZExt(Src, Elt->getType());
184
185        // Shift it to the right place, depending on endianness.
186        Src = ConstantExpr::getShl(Src,
187                                   ConstantInt::get(Src->getType(), ShiftAmt));
188        ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
189
190        // Mix it in.
191        Elt = ConstantExpr::getOr(Elt, Src);
192      }
193      Result.push_back(Elt);
194    }
195    return ConstantVector::get(Result);
196  }
197
198  // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
199  unsigned Ratio = NumDstElt/NumSrcElt;
200  unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
201
202  // Loop over each source value, expanding into multiple results.
203  for (unsigned i = 0; i != NumSrcElt; ++i) {
204    Constant *Src = dyn_cast<ConstantInt>(C->getAggregateElement(i));
205    if (!Src)  // Reject constantexpr elements.
206      return ConstantExpr::getBitCast(C, DestTy);
207
208    unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
209    for (unsigned j = 0; j != Ratio; ++j) {
210      // Shift the piece of the value into the right place, depending on
211      // endianness.
212      Constant *Elt = ConstantExpr::getLShr(Src,
213                                  ConstantInt::get(Src->getType(), ShiftAmt));
214      ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
215
216      // Truncate the element to an integer with the same pointer size and
217      // convert the element back to a pointer using a inttoptr.
218      if (DstEltTy->isPointerTy()) {
219        IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
220        Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
221        Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
222        continue;
223      }
224
225      // Truncate and remember this piece.
226      Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
227    }
228  }
229
230  return ConstantVector::get(Result);
231}
232
233
234/// If this constant is a constant offset from a global, return the global and
235/// the constant. Because of constantexprs, this function is recursive.
236static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
237                                       APInt &Offset, const DataLayout &DL) {
238  // Trivial case, constant is the global.
239  if ((GV = dyn_cast<GlobalValue>(C))) {
240    unsigned BitWidth = DL.getPointerTypeSizeInBits(GV->getType());
241    Offset = APInt(BitWidth, 0);
242    return true;
243  }
244
245  // Otherwise, if this isn't a constant expr, bail out.
246  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
247  if (!CE) return false;
248
249  // Look through ptr->int and ptr->ptr casts.
250  if (CE->getOpcode() == Instruction::PtrToInt ||
251      CE->getOpcode() == Instruction::BitCast ||
252      CE->getOpcode() == Instruction::AddrSpaceCast)
253    return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL);
254
255  // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
256  GEPOperator *GEP = dyn_cast<GEPOperator>(CE);
257  if (!GEP)
258    return false;
259
260  unsigned BitWidth = DL.getPointerTypeSizeInBits(GEP->getType());
261  APInt TmpOffset(BitWidth, 0);
262
263  // If the base isn't a global+constant, we aren't either.
264  if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL))
265    return false;
266
267  // Otherwise, add any offset that our operands provide.
268  if (!GEP->accumulateConstantOffset(DL, TmpOffset))
269    return false;
270
271  Offset = TmpOffset;
272  return true;
273}
274
275/// Recursive helper to read bits out of global. C is the constant being copied
276/// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
277/// results into and BytesLeft is the number of bytes left in
278/// the CurPtr buffer. DL is the DataLayout.
279static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
280                               unsigned char *CurPtr, unsigned BytesLeft,
281                               const DataLayout &DL) {
282  assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
283         "Out of range access");
284
285  // If this element is zero or undefined, we can just return since *CurPtr is
286  // zero initialized.
287  if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
288    return true;
289
290  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
291    if (CI->getBitWidth() > 64 ||
292        (CI->getBitWidth() & 7) != 0)
293      return false;
294
295    uint64_t Val = CI->getZExtValue();
296    unsigned IntBytes = unsigned(CI->getBitWidth()/8);
297
298    for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
299      int n = ByteOffset;
300      if (!DL.isLittleEndian())
301        n = IntBytes - n - 1;
302      CurPtr[i] = (unsigned char)(Val >> (n * 8));
303      ++ByteOffset;
304    }
305    return true;
306  }
307
308  if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
309    if (CFP->getType()->isDoubleTy()) {
310      C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
311      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
312    }
313    if (CFP->getType()->isFloatTy()){
314      C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
315      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
316    }
317    if (CFP->getType()->isHalfTy()){
318      C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
319      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
320    }
321    return false;
322  }
323
324  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
325    const StructLayout *SL = DL.getStructLayout(CS->getType());
326    unsigned Index = SL->getElementContainingOffset(ByteOffset);
327    uint64_t CurEltOffset = SL->getElementOffset(Index);
328    ByteOffset -= CurEltOffset;
329
330    while (1) {
331      // If the element access is to the element itself and not to tail padding,
332      // read the bytes from the element.
333      uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
334
335      if (ByteOffset < EltSize &&
336          !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
337                              BytesLeft, DL))
338        return false;
339
340      ++Index;
341
342      // Check to see if we read from the last struct element, if so we're done.
343      if (Index == CS->getType()->getNumElements())
344        return true;
345
346      // If we read all of the bytes we needed from this element we're done.
347      uint64_t NextEltOffset = SL->getElementOffset(Index);
348
349      if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
350        return true;
351
352      // Move to the next element of the struct.
353      CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
354      BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
355      ByteOffset = 0;
356      CurEltOffset = NextEltOffset;
357    }
358    // not reached.
359  }
360
361  if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
362      isa<ConstantDataSequential>(C)) {
363    Type *EltTy = C->getType()->getSequentialElementType();
364    uint64_t EltSize = DL.getTypeAllocSize(EltTy);
365    uint64_t Index = ByteOffset / EltSize;
366    uint64_t Offset = ByteOffset - Index * EltSize;
367    uint64_t NumElts;
368    if (ArrayType *AT = dyn_cast<ArrayType>(C->getType()))
369      NumElts = AT->getNumElements();
370    else
371      NumElts = C->getType()->getVectorNumElements();
372
373    for (; Index != NumElts; ++Index) {
374      if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
375                              BytesLeft, DL))
376        return false;
377
378      uint64_t BytesWritten = EltSize - Offset;
379      assert(BytesWritten <= EltSize && "Not indexing into this element?");
380      if (BytesWritten >= BytesLeft)
381        return true;
382
383      Offset = 0;
384      BytesLeft -= BytesWritten;
385      CurPtr += BytesWritten;
386    }
387    return true;
388  }
389
390  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
391    if (CE->getOpcode() == Instruction::IntToPtr &&
392        CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
393      return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
394                                BytesLeft, DL);
395    }
396  }
397
398  // Otherwise, unknown initializer type.
399  return false;
400}
401
402static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
403                                                 const DataLayout &DL) {
404  PointerType *PTy = cast<PointerType>(C->getType());
405  Type *LoadTy = PTy->getElementType();
406  IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
407
408  // If this isn't an integer load we can't fold it directly.
409  if (!IntType) {
410    unsigned AS = PTy->getAddressSpace();
411
412    // If this is a float/double load, we can try folding it as an int32/64 load
413    // and then bitcast the result.  This can be useful for union cases.  Note
414    // that address spaces don't matter here since we're not going to result in
415    // an actual new load.
416    Type *MapTy;
417    if (LoadTy->isHalfTy())
418      MapTy = Type::getInt16PtrTy(C->getContext(), AS);
419    else if (LoadTy->isFloatTy())
420      MapTy = Type::getInt32PtrTy(C->getContext(), AS);
421    else if (LoadTy->isDoubleTy())
422      MapTy = Type::getInt64PtrTy(C->getContext(), AS);
423    else if (LoadTy->isVectorTy()) {
424      MapTy = PointerType::getIntNPtrTy(C->getContext(),
425                                        DL.getTypeAllocSizeInBits(LoadTy), AS);
426    } else
427      return nullptr;
428
429    C = FoldBitCast(C, MapTy, DL);
430    if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, DL))
431      return FoldBitCast(Res, LoadTy, DL);
432    return nullptr;
433  }
434
435  unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
436  if (BytesLoaded > 32 || BytesLoaded == 0)
437    return nullptr;
438
439  GlobalValue *GVal;
440  APInt Offset;
441  if (!IsConstantOffsetFromGlobal(C, GVal, Offset, DL))
442    return nullptr;
443
444  GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
445  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
446      !GV->getInitializer()->getType()->isSized())
447    return nullptr;
448
449  // If we're loading off the beginning of the global, some bytes may be valid,
450  // but we don't try to handle this.
451  if (Offset.isNegative())
452    return nullptr;
453
454  // If we're not accessing anything in this constant, the result is undefined.
455  if (Offset.getZExtValue() >=
456      DL.getTypeAllocSize(GV->getInitializer()->getType()))
457    return UndefValue::get(IntType);
458
459  unsigned char RawBytes[32] = {0};
460  if (!ReadDataFromGlobal(GV->getInitializer(), Offset.getZExtValue(), RawBytes,
461                          BytesLoaded, DL))
462    return nullptr;
463
464  APInt ResultVal = APInt(IntType->getBitWidth(), 0);
465  if (DL.isLittleEndian()) {
466    ResultVal = RawBytes[BytesLoaded - 1];
467    for (unsigned i = 1; i != BytesLoaded; ++i) {
468      ResultVal <<= 8;
469      ResultVal |= RawBytes[BytesLoaded - 1 - i];
470    }
471  } else {
472    ResultVal = RawBytes[0];
473    for (unsigned i = 1; i != BytesLoaded; ++i) {
474      ResultVal <<= 8;
475      ResultVal |= RawBytes[i];
476    }
477  }
478
479  return ConstantInt::get(IntType->getContext(), ResultVal);
480}
481
482static Constant *ConstantFoldLoadThroughBitcast(ConstantExpr *CE,
483                                                const DataLayout &DL) {
484  auto *DestPtrTy = dyn_cast<PointerType>(CE->getType());
485  if (!DestPtrTy)
486    return nullptr;
487  Type *DestTy = DestPtrTy->getElementType();
488
489  Constant *C = ConstantFoldLoadFromConstPtr(CE->getOperand(0), DL);
490  if (!C)
491    return nullptr;
492
493  do {
494    Type *SrcTy = C->getType();
495
496    // If the type sizes are the same and a cast is legal, just directly
497    // cast the constant.
498    if (DL.getTypeSizeInBits(DestTy) == DL.getTypeSizeInBits(SrcTy)) {
499      Instruction::CastOps Cast = Instruction::BitCast;
500      // If we are going from a pointer to int or vice versa, we spell the cast
501      // differently.
502      if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
503        Cast = Instruction::IntToPtr;
504      else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
505        Cast = Instruction::PtrToInt;
506
507      if (CastInst::castIsValid(Cast, C, DestTy))
508        return ConstantExpr::getCast(Cast, C, DestTy);
509    }
510
511    // If this isn't an aggregate type, there is nothing we can do to drill down
512    // and find a bitcastable constant.
513    if (!SrcTy->isAggregateType())
514      return nullptr;
515
516    // We're simulating a load through a pointer that was bitcast to point to
517    // a different type, so we can try to walk down through the initial
518    // elements of an aggregate to see if some part of th e aggregate is
519    // castable to implement the "load" semantic model.
520    C = C->getAggregateElement(0u);
521  } while (C);
522
523  return nullptr;
524}
525
526/// Return the value that a load from C would produce if it is constant and
527/// determinable. If this is not determinable, return null.
528Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
529                                             const DataLayout &DL) {
530  // First, try the easy cases:
531  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
532    if (GV->isConstant() && GV->hasDefinitiveInitializer())
533      return GV->getInitializer();
534
535  // If the loaded value isn't a constant expr, we can't handle it.
536  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
537  if (!CE)
538    return nullptr;
539
540  if (CE->getOpcode() == Instruction::GetElementPtr) {
541    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
542      if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
543        if (Constant *V =
544             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
545          return V;
546      }
547    }
548  }
549
550  if (CE->getOpcode() == Instruction::BitCast)
551    if (Constant *LoadedC = ConstantFoldLoadThroughBitcast(CE, DL))
552      return LoadedC;
553
554  // Instead of loading constant c string, use corresponding integer value
555  // directly if string length is small enough.
556  StringRef Str;
557  if (getConstantStringInfo(CE, Str) && !Str.empty()) {
558    unsigned StrLen = Str.size();
559    Type *Ty = cast<PointerType>(CE->getType())->getElementType();
560    unsigned NumBits = Ty->getPrimitiveSizeInBits();
561    // Replace load with immediate integer if the result is an integer or fp
562    // value.
563    if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
564        (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
565      APInt StrVal(NumBits, 0);
566      APInt SingleChar(NumBits, 0);
567      if (DL.isLittleEndian()) {
568        for (signed i = StrLen-1; i >= 0; i--) {
569          SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
570          StrVal = (StrVal << 8) | SingleChar;
571        }
572      } else {
573        for (unsigned i = 0; i < StrLen; i++) {
574          SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
575          StrVal = (StrVal << 8) | SingleChar;
576        }
577        // Append NULL at the end.
578        SingleChar = 0;
579        StrVal = (StrVal << 8) | SingleChar;
580      }
581
582      Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
583      if (Ty->isFloatingPointTy())
584        Res = ConstantExpr::getBitCast(Res, Ty);
585      return Res;
586    }
587  }
588
589  // If this load comes from anywhere in a constant global, and if the global
590  // is all undef or zero, we know what it loads.
591  if (GlobalVariable *GV =
592          dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, DL))) {
593    if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
594      Type *ResTy = cast<PointerType>(C->getType())->getElementType();
595      if (GV->getInitializer()->isNullValue())
596        return Constant::getNullValue(ResTy);
597      if (isa<UndefValue>(GV->getInitializer()))
598        return UndefValue::get(ResTy);
599    }
600  }
601
602  // Try hard to fold loads from bitcasted strange and non-type-safe things.
603  return FoldReinterpretLoadFromConstPtr(CE, DL);
604}
605
606static Constant *ConstantFoldLoadInst(const LoadInst *LI,
607                                      const DataLayout &DL) {
608  if (LI->isVolatile()) return nullptr;
609
610  if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
611    return ConstantFoldLoadFromConstPtr(C, DL);
612
613  return nullptr;
614}
615
616/// One of Op0/Op1 is a constant expression.
617/// Attempt to symbolically evaluate the result of a binary operator merging
618/// these together.  If target data info is available, it is provided as DL,
619/// otherwise DL is null.
620static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
621                                           Constant *Op1,
622                                           const DataLayout &DL) {
623  // SROA
624
625  // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
626  // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
627  // bits.
628
629  if (Opc == Instruction::And) {
630    unsigned BitWidth = DL.getTypeSizeInBits(Op0->getType()->getScalarType());
631    APInt KnownZero0(BitWidth, 0), KnownOne0(BitWidth, 0);
632    APInt KnownZero1(BitWidth, 0), KnownOne1(BitWidth, 0);
633    computeKnownBits(Op0, KnownZero0, KnownOne0, DL);
634    computeKnownBits(Op1, KnownZero1, KnownOne1, DL);
635    if ((KnownOne1 | KnownZero0).isAllOnesValue()) {
636      // All the bits of Op0 that the 'and' could be masking are already zero.
637      return Op0;
638    }
639    if ((KnownOne0 | KnownZero1).isAllOnesValue()) {
640      // All the bits of Op1 that the 'and' could be masking are already zero.
641      return Op1;
642    }
643
644    APInt KnownZero = KnownZero0 | KnownZero1;
645    APInt KnownOne = KnownOne0 & KnownOne1;
646    if ((KnownZero | KnownOne).isAllOnesValue()) {
647      return ConstantInt::get(Op0->getType(), KnownOne);
648    }
649  }
650
651  // If the constant expr is something like &A[123] - &A[4].f, fold this into a
652  // constant.  This happens frequently when iterating over a global array.
653  if (Opc == Instruction::Sub) {
654    GlobalValue *GV1, *GV2;
655    APInt Offs1, Offs2;
656
657    if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
658      if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
659        unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
660
661        // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
662        // PtrToInt may change the bitwidth so we have convert to the right size
663        // first.
664        return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
665                                                Offs2.zextOrTrunc(OpSize));
666      }
667  }
668
669  return nullptr;
670}
671
672/// If array indices are not pointer-sized integers, explicitly cast them so
673/// that they aren't implicitly casted by the getelementptr.
674static Constant *CastGEPIndices(ArrayRef<Constant *> Ops, Type *ResultTy,
675                                const DataLayout &DL,
676                                const TargetLibraryInfo *TLI) {
677  Type *IntPtrTy = DL.getIntPtrType(ResultTy);
678
679  bool Any = false;
680  SmallVector<Constant*, 32> NewIdxs;
681  for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
682    if ((i == 1 ||
683         !isa<StructType>(GetElementPtrInst::getIndexedType(
684                            Ops[0]->getType(),
685                            Ops.slice(1, i - 1)))) &&
686        Ops[i]->getType() != IntPtrTy) {
687      Any = true;
688      NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
689                                                                      true,
690                                                                      IntPtrTy,
691                                                                      true),
692                                              Ops[i], IntPtrTy));
693    } else
694      NewIdxs.push_back(Ops[i]);
695  }
696
697  if (!Any)
698    return nullptr;
699
700  Constant *C = ConstantExpr::getGetElementPtr(Ops[0], NewIdxs);
701  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
702    if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
703      C = Folded;
704  }
705
706  return C;
707}
708
709/// Strip the pointer casts, but preserve the address space information.
710static Constant* StripPtrCastKeepAS(Constant* Ptr) {
711  assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
712  PointerType *OldPtrTy = cast<PointerType>(Ptr->getType());
713  Ptr = Ptr->stripPointerCasts();
714  PointerType *NewPtrTy = cast<PointerType>(Ptr->getType());
715
716  // Preserve the address space number of the pointer.
717  if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
718    NewPtrTy = NewPtrTy->getElementType()->getPointerTo(
719      OldPtrTy->getAddressSpace());
720    Ptr = ConstantExpr::getPointerCast(Ptr, NewPtrTy);
721  }
722  return Ptr;
723}
724
725/// If we can symbolically evaluate the GEP constant expression, do so.
726static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
727                                         Type *ResultTy, const DataLayout &DL,
728                                         const TargetLibraryInfo *TLI) {
729  Constant *Ptr = Ops[0];
730  if (!Ptr->getType()->getPointerElementType()->isSized() ||
731      !Ptr->getType()->isPointerTy())
732    return nullptr;
733
734  Type *IntPtrTy = DL.getIntPtrType(Ptr->getType());
735  Type *ResultElementTy = ResultTy->getPointerElementType();
736
737  // If this is a constant expr gep that is effectively computing an
738  // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
739  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
740    if (!isa<ConstantInt>(Ops[i])) {
741
742      // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
743      // "inttoptr (sub (ptrtoint Ptr), V)"
744      if (Ops.size() == 2 && ResultElementTy->isIntegerTy(8)) {
745        ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[1]);
746        assert((!CE || CE->getType() == IntPtrTy) &&
747               "CastGEPIndices didn't canonicalize index types!");
748        if (CE && CE->getOpcode() == Instruction::Sub &&
749            CE->getOperand(0)->isNullValue()) {
750          Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
751          Res = ConstantExpr::getSub(Res, CE->getOperand(1));
752          Res = ConstantExpr::getIntToPtr(Res, ResultTy);
753          if (ConstantExpr *ResCE = dyn_cast<ConstantExpr>(Res))
754            Res = ConstantFoldConstantExpression(ResCE, DL, TLI);
755          return Res;
756        }
757      }
758      return nullptr;
759    }
760
761  unsigned BitWidth = DL.getTypeSizeInBits(IntPtrTy);
762  APInt Offset =
763      APInt(BitWidth,
764            DL.getIndexedOffset(
765                Ptr->getType(),
766                makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1)));
767  Ptr = StripPtrCastKeepAS(Ptr);
768
769  // If this is a GEP of a GEP, fold it all into a single GEP.
770  while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
771    SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end());
772
773    // Do not try the incorporate the sub-GEP if some index is not a number.
774    bool AllConstantInt = true;
775    for (unsigned i = 0, e = NestedOps.size(); i != e; ++i)
776      if (!isa<ConstantInt>(NestedOps[i])) {
777        AllConstantInt = false;
778        break;
779      }
780    if (!AllConstantInt)
781      break;
782
783    Ptr = cast<Constant>(GEP->getOperand(0));
784    Offset += APInt(BitWidth, DL.getIndexedOffset(Ptr->getType(), NestedOps));
785    Ptr = StripPtrCastKeepAS(Ptr);
786  }
787
788  // If the base value for this address is a literal integer value, fold the
789  // getelementptr to the resulting integer value casted to the pointer type.
790  APInt BasePtr(BitWidth, 0);
791  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
792    if (CE->getOpcode() == Instruction::IntToPtr) {
793      if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
794        BasePtr = Base->getValue().zextOrTrunc(BitWidth);
795    }
796  }
797
798  if (Ptr->isNullValue() || BasePtr != 0) {
799    Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
800    return ConstantExpr::getIntToPtr(C, ResultTy);
801  }
802
803  // Otherwise form a regular getelementptr. Recompute the indices so that
804  // we eliminate over-indexing of the notional static type array bounds.
805  // This makes it easy to determine if the getelementptr is "inbounds".
806  // Also, this helps GlobalOpt do SROA on GlobalVariables.
807  Type *Ty = Ptr->getType();
808  assert(Ty->isPointerTy() && "Forming regular GEP of non-pointer type");
809  SmallVector<Constant *, 32> NewIdxs;
810
811  do {
812    if (SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
813      if (ATy->isPointerTy()) {
814        // The only pointer indexing we'll do is on the first index of the GEP.
815        if (!NewIdxs.empty())
816          break;
817
818        // Only handle pointers to sized types, not pointers to functions.
819        if (!ATy->getElementType()->isSized())
820          return nullptr;
821      }
822
823      // Determine which element of the array the offset points into.
824      APInt ElemSize(BitWidth, DL.getTypeAllocSize(ATy->getElementType()));
825      if (ElemSize == 0)
826        // The element size is 0. This may be [0 x Ty]*, so just use a zero
827        // index for this level and proceed to the next level to see if it can
828        // accommodate the offset.
829        NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
830      else {
831        // The element size is non-zero divide the offset by the element
832        // size (rounding down), to compute the index at this level.
833        APInt NewIdx = Offset.udiv(ElemSize);
834        Offset -= NewIdx * ElemSize;
835        NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
836      }
837      Ty = ATy->getElementType();
838    } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
839      // If we end up with an offset that isn't valid for this struct type, we
840      // can't re-form this GEP in a regular form, so bail out. The pointer
841      // operand likely went through casts that are necessary to make the GEP
842      // sensible.
843      const StructLayout &SL = *DL.getStructLayout(STy);
844      if (Offset.uge(SL.getSizeInBytes()))
845        break;
846
847      // Determine which field of the struct the offset points into. The
848      // getZExtValue is fine as we've already ensured that the offset is
849      // within the range representable by the StructLayout API.
850      unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
851      NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
852                                         ElIdx));
853      Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
854      Ty = STy->getTypeAtIndex(ElIdx);
855    } else {
856      // We've reached some non-indexable type.
857      break;
858    }
859  } while (Ty != ResultElementTy);
860
861  // If we haven't used up the entire offset by descending the static
862  // type, then the offset is pointing into the middle of an indivisible
863  // member, so we can't simplify it.
864  if (Offset != 0)
865    return nullptr;
866
867  // Create a GEP.
868  Constant *C = ConstantExpr::getGetElementPtr(Ptr, NewIdxs);
869  assert(C->getType()->getPointerElementType() == Ty &&
870         "Computed GetElementPtr has unexpected type!");
871
872  // If we ended up indexing a member with a type that doesn't match
873  // the type of what the original indices indexed, add a cast.
874  if (Ty != ResultElementTy)
875    C = FoldBitCast(C, ResultTy, DL);
876
877  return C;
878}
879
880
881
882//===----------------------------------------------------------------------===//
883// Constant Folding public APIs
884//===----------------------------------------------------------------------===//
885
886/// Try to constant fold the specified instruction.
887/// If successful, the constant result is returned, if not, null is returned.
888/// Note that this fails if not all of the operands are constant.  Otherwise,
889/// this function can only fail when attempting to fold instructions like loads
890/// and stores, which have no constant expression form.
891Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
892                                        const TargetLibraryInfo *TLI) {
893  // Handle PHI nodes quickly here...
894  if (PHINode *PN = dyn_cast<PHINode>(I)) {
895    Constant *CommonValue = nullptr;
896
897    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
898      Value *Incoming = PN->getIncomingValue(i);
899      // If the incoming value is undef then skip it.  Note that while we could
900      // skip the value if it is equal to the phi node itself we choose not to
901      // because that would break the rule that constant folding only applies if
902      // all operands are constants.
903      if (isa<UndefValue>(Incoming))
904        continue;
905      // If the incoming value is not a constant, then give up.
906      Constant *C = dyn_cast<Constant>(Incoming);
907      if (!C)
908        return nullptr;
909      // Fold the PHI's operands.
910      if (ConstantExpr *NewC = dyn_cast<ConstantExpr>(C))
911        C = ConstantFoldConstantExpression(NewC, DL, TLI);
912      // If the incoming value is a different constant to
913      // the one we saw previously, then give up.
914      if (CommonValue && C != CommonValue)
915        return nullptr;
916      CommonValue = C;
917    }
918
919
920    // If we reach here, all incoming values are the same constant or undef.
921    return CommonValue ? CommonValue : UndefValue::get(PN->getType());
922  }
923
924  // Scan the operand list, checking to see if they are all constants, if so,
925  // hand off to ConstantFoldInstOperands.
926  SmallVector<Constant*, 8> Ops;
927  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
928    Constant *Op = dyn_cast<Constant>(*i);
929    if (!Op)
930      return nullptr;  // All operands not constant!
931
932    // Fold the Instruction's operands.
933    if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(Op))
934      Op = ConstantFoldConstantExpression(NewCE, DL, TLI);
935
936    Ops.push_back(Op);
937  }
938
939  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
940    return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
941                                           DL, TLI);
942
943  if (const LoadInst *LI = dyn_cast<LoadInst>(I))
944    return ConstantFoldLoadInst(LI, DL);
945
946  if (InsertValueInst *IVI = dyn_cast<InsertValueInst>(I)) {
947    return ConstantExpr::getInsertValue(
948                                cast<Constant>(IVI->getAggregateOperand()),
949                                cast<Constant>(IVI->getInsertedValueOperand()),
950                                IVI->getIndices());
951  }
952
953  if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I)) {
954    return ConstantExpr::getExtractValue(
955                                    cast<Constant>(EVI->getAggregateOperand()),
956                                    EVI->getIndices());
957  }
958
959  return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Ops, DL, TLI);
960}
961
962static Constant *
963ConstantFoldConstantExpressionImpl(const ConstantExpr *CE, const DataLayout &DL,
964                                   const TargetLibraryInfo *TLI,
965                                   SmallPtrSetImpl<ConstantExpr *> &FoldedOps) {
966  SmallVector<Constant *, 8> Ops;
967  for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end(); i != e;
968       ++i) {
969    Constant *NewC = cast<Constant>(*i);
970    // Recursively fold the ConstantExpr's operands. If we have already folded
971    // a ConstantExpr, we don't have to process it again.
972    if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC)) {
973      if (FoldedOps.insert(NewCE).second)
974        NewC = ConstantFoldConstantExpressionImpl(NewCE, DL, TLI, FoldedOps);
975    }
976    Ops.push_back(NewC);
977  }
978
979  if (CE->isCompare())
980    return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
981                                           DL, TLI);
982  return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(), Ops, DL, TLI);
983}
984
985/// Attempt to fold the constant expression
986/// using the specified DataLayout.  If successful, the constant result is
987/// result is returned, if not, null is returned.
988Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
989                                               const DataLayout &DL,
990                                               const TargetLibraryInfo *TLI) {
991  SmallPtrSet<ConstantExpr *, 4> FoldedOps;
992  return ConstantFoldConstantExpressionImpl(CE, DL, TLI, FoldedOps);
993}
994
995/// Attempt to constant fold an instruction with the
996/// specified opcode and operands.  If successful, the constant result is
997/// returned, if not, null is returned.  Note that this function can fail when
998/// attempting to fold instructions like loads and stores, which have no
999/// constant expression form.
1000///
1001/// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
1002/// information, due to only being passed an opcode and operands. Constant
1003/// folding using this function strips this information.
1004///
1005Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
1006                                         ArrayRef<Constant *> Ops,
1007                                         const DataLayout &DL,
1008                                         const TargetLibraryInfo *TLI) {
1009  // Handle easy binops first.
1010  if (Instruction::isBinaryOp(Opcode)) {
1011    if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1])) {
1012      if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], DL))
1013        return C;
1014    }
1015
1016    return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
1017  }
1018
1019  switch (Opcode) {
1020  default: return nullptr;
1021  case Instruction::ICmp:
1022  case Instruction::FCmp: llvm_unreachable("Invalid for compares");
1023  case Instruction::Call:
1024    if (Function *F = dyn_cast<Function>(Ops.back()))
1025      if (canConstantFoldCallTo(F))
1026        return ConstantFoldCall(F, Ops.slice(0, Ops.size() - 1), TLI);
1027    return nullptr;
1028  case Instruction::PtrToInt:
1029    // If the input is a inttoptr, eliminate the pair.  This requires knowing
1030    // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1031    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
1032      if (CE->getOpcode() == Instruction::IntToPtr) {
1033        Constant *Input = CE->getOperand(0);
1034        unsigned InWidth = Input->getType()->getScalarSizeInBits();
1035        unsigned PtrWidth = DL.getPointerTypeSizeInBits(CE->getType());
1036        if (PtrWidth < InWidth) {
1037          Constant *Mask =
1038            ConstantInt::get(CE->getContext(),
1039                             APInt::getLowBitsSet(InWidth, PtrWidth));
1040          Input = ConstantExpr::getAnd(Input, Mask);
1041        }
1042        // Do a zext or trunc to get to the dest size.
1043        return ConstantExpr::getIntegerCast(Input, DestTy, false);
1044      }
1045    }
1046    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
1047  case Instruction::IntToPtr:
1048    // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1049    // the int size is >= the ptr size and the address spaces are the same.
1050    // This requires knowing the width of a pointer, so it can't be done in
1051    // ConstantExpr::getCast.
1052    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
1053      if (CE->getOpcode() == Instruction::PtrToInt) {
1054        Constant *SrcPtr = CE->getOperand(0);
1055        unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
1056        unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1057
1058        if (MidIntSize >= SrcPtrSize) {
1059          unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
1060          if (SrcAS == DestTy->getPointerAddressSpace())
1061            return FoldBitCast(CE->getOperand(0), DestTy, DL);
1062        }
1063      }
1064    }
1065
1066    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
1067  case Instruction::Trunc:
1068  case Instruction::ZExt:
1069  case Instruction::SExt:
1070  case Instruction::FPTrunc:
1071  case Instruction::FPExt:
1072  case Instruction::UIToFP:
1073  case Instruction::SIToFP:
1074  case Instruction::FPToUI:
1075  case Instruction::FPToSI:
1076  case Instruction::AddrSpaceCast:
1077      return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
1078  case Instruction::BitCast:
1079    return FoldBitCast(Ops[0], DestTy, DL);
1080  case Instruction::Select:
1081    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1082  case Instruction::ExtractElement:
1083    return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1084  case Instruction::InsertElement:
1085    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1086  case Instruction::ShuffleVector:
1087    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
1088  case Instruction::GetElementPtr:
1089    if (Constant *C = CastGEPIndices(Ops, DestTy, DL, TLI))
1090      return C;
1091    if (Constant *C = SymbolicallyEvaluateGEP(Ops, DestTy, DL, TLI))
1092      return C;
1093
1094    return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1));
1095  }
1096}
1097
1098/// Attempt to constant fold a compare
1099/// instruction (icmp/fcmp) with the specified operands.  If it fails, it
1100/// returns a constant expression of the specified operands.
1101Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
1102                                                Constant *Ops0, Constant *Ops1,
1103                                                const DataLayout &DL,
1104                                                const TargetLibraryInfo *TLI) {
1105  // fold: icmp (inttoptr x), null         -> icmp x, 0
1106  // fold: icmp (ptrtoint x), 0            -> icmp x, null
1107  // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1108  // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1109  //
1110  // FIXME: The following comment is out of data and the DataLayout is here now.
1111  // ConstantExpr::getCompare cannot do this, because it doesn't have DL
1112  // around to know if bit truncation is happening.
1113  if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1114    if (Ops1->isNullValue()) {
1115      if (CE0->getOpcode() == Instruction::IntToPtr) {
1116        Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1117        // Convert the integer value to the right size to ensure we get the
1118        // proper extension or truncation.
1119        Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1120                                                   IntPtrTy, false);
1121        Constant *Null = Constant::getNullValue(C->getType());
1122        return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1123      }
1124
1125      // Only do this transformation if the int is intptrty in size, otherwise
1126      // there is a truncation or extension that we aren't modeling.
1127      if (CE0->getOpcode() == Instruction::PtrToInt) {
1128        Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1129        if (CE0->getType() == IntPtrTy) {
1130          Constant *C = CE0->getOperand(0);
1131          Constant *Null = Constant::getNullValue(C->getType());
1132          return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1133        }
1134      }
1135    }
1136
1137    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1138      if (CE0->getOpcode() == CE1->getOpcode()) {
1139        if (CE0->getOpcode() == Instruction::IntToPtr) {
1140          Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1141
1142          // Convert the integer value to the right size to ensure we get the
1143          // proper extension or truncation.
1144          Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1145                                                      IntPtrTy, false);
1146          Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
1147                                                      IntPtrTy, false);
1148          return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
1149        }
1150
1151        // Only do this transformation if the int is intptrty in size, otherwise
1152        // there is a truncation or extension that we aren't modeling.
1153        if (CE0->getOpcode() == Instruction::PtrToInt) {
1154          Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1155          if (CE0->getType() == IntPtrTy &&
1156              CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1157            return ConstantFoldCompareInstOperands(
1158                Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
1159          }
1160        }
1161      }
1162    }
1163
1164    // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
1165    // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
1166    if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
1167        CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
1168      Constant *LHS = ConstantFoldCompareInstOperands(
1169          Predicate, CE0->getOperand(0), Ops1, DL, TLI);
1170      Constant *RHS = ConstantFoldCompareInstOperands(
1171          Predicate, CE0->getOperand(1), Ops1, DL, TLI);
1172      unsigned OpC =
1173        Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1174      Constant *Ops[] = { LHS, RHS };
1175      return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, DL, TLI);
1176    }
1177  }
1178
1179  return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
1180}
1181
1182
1183/// Given a constant and a getelementptr constantexpr, return the constant value
1184/// being addressed by the constant expression, or null if something is funny
1185/// and we can't decide.
1186Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
1187                                                       ConstantExpr *CE) {
1188  if (!CE->getOperand(1)->isNullValue())
1189    return nullptr;  // Do not allow stepping over the value!
1190
1191  // Loop over all of the operands, tracking down which value we are
1192  // addressing.
1193  for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
1194    C = C->getAggregateElement(CE->getOperand(i));
1195    if (!C)
1196      return nullptr;
1197  }
1198  return C;
1199}
1200
1201/// Given a constant and getelementptr indices (with an *implied* zero pointer
1202/// index that is not in the list), return the constant value being addressed by
1203/// a virtual load, or null if something is funny and we can't decide.
1204Constant *llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
1205                                                  ArrayRef<Constant*> Indices) {
1206  // Loop over all of the operands, tracking down which value we are
1207  // addressing.
1208  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1209    C = C->getAggregateElement(Indices[i]);
1210    if (!C)
1211      return nullptr;
1212  }
1213  return C;
1214}
1215
1216
1217//===----------------------------------------------------------------------===//
1218//  Constant Folding for Calls
1219//
1220
1221/// Return true if it's even possible to fold a call to the specified function.
1222bool llvm::canConstantFoldCallTo(const Function *F) {
1223  switch (F->getIntrinsicID()) {
1224  case Intrinsic::fabs:
1225  case Intrinsic::minnum:
1226  case Intrinsic::maxnum:
1227  case Intrinsic::log:
1228  case Intrinsic::log2:
1229  case Intrinsic::log10:
1230  case Intrinsic::exp:
1231  case Intrinsic::exp2:
1232  case Intrinsic::floor:
1233  case Intrinsic::ceil:
1234  case Intrinsic::sqrt:
1235  case Intrinsic::pow:
1236  case Intrinsic::powi:
1237  case Intrinsic::bswap:
1238  case Intrinsic::ctpop:
1239  case Intrinsic::ctlz:
1240  case Intrinsic::cttz:
1241  case Intrinsic::fma:
1242  case Intrinsic::fmuladd:
1243  case Intrinsic::copysign:
1244  case Intrinsic::round:
1245  case Intrinsic::sadd_with_overflow:
1246  case Intrinsic::uadd_with_overflow:
1247  case Intrinsic::ssub_with_overflow:
1248  case Intrinsic::usub_with_overflow:
1249  case Intrinsic::smul_with_overflow:
1250  case Intrinsic::umul_with_overflow:
1251  case Intrinsic::convert_from_fp16:
1252  case Intrinsic::convert_to_fp16:
1253  case Intrinsic::x86_sse_cvtss2si:
1254  case Intrinsic::x86_sse_cvtss2si64:
1255  case Intrinsic::x86_sse_cvttss2si:
1256  case Intrinsic::x86_sse_cvttss2si64:
1257  case Intrinsic::x86_sse2_cvtsd2si:
1258  case Intrinsic::x86_sse2_cvtsd2si64:
1259  case Intrinsic::x86_sse2_cvttsd2si:
1260  case Intrinsic::x86_sse2_cvttsd2si64:
1261    return true;
1262  default:
1263    return false;
1264  case 0: break;
1265  }
1266
1267  if (!F->hasName())
1268    return false;
1269  StringRef Name = F->getName();
1270
1271  // In these cases, the check of the length is required.  We don't want to
1272  // return true for a name like "cos\0blah" which strcmp would return equal to
1273  // "cos", but has length 8.
1274  switch (Name[0]) {
1275  default: return false;
1276  case 'a':
1277    return Name == "acos" || Name == "asin" || Name == "atan" || Name =="atan2";
1278  case 'c':
1279    return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
1280  case 'e':
1281    return Name == "exp" || Name == "exp2";
1282  case 'f':
1283    return Name == "fabs" || Name == "fmod" || Name == "floor";
1284  case 'l':
1285    return Name == "log" || Name == "log10";
1286  case 'p':
1287    return Name == "pow";
1288  case 's':
1289    return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
1290      Name == "sinf" || Name == "sqrtf";
1291  case 't':
1292    return Name == "tan" || Name == "tanh";
1293  }
1294}
1295
1296static Constant *GetConstantFoldFPValue(double V, Type *Ty) {
1297  if (Ty->isHalfTy()) {
1298    APFloat APF(V);
1299    bool unused;
1300    APF.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &unused);
1301    return ConstantFP::get(Ty->getContext(), APF);
1302  }
1303  if (Ty->isFloatTy())
1304    return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1305  if (Ty->isDoubleTy())
1306    return ConstantFP::get(Ty->getContext(), APFloat(V));
1307  llvm_unreachable("Can only constant fold half/float/double");
1308
1309}
1310
1311namespace {
1312/// Clear the floating-point exception state.
1313static inline void llvm_fenv_clearexcept() {
1314#if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
1315  feclearexcept(FE_ALL_EXCEPT);
1316#endif
1317  errno = 0;
1318}
1319
1320/// Test if a floating-point exception was raised.
1321static inline bool llvm_fenv_testexcept() {
1322  int errno_val = errno;
1323  if (errno_val == ERANGE || errno_val == EDOM)
1324    return true;
1325#if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
1326  if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
1327    return true;
1328#endif
1329  return false;
1330}
1331} // End namespace
1332
1333static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
1334                                Type *Ty) {
1335  llvm_fenv_clearexcept();
1336  V = NativeFP(V);
1337  if (llvm_fenv_testexcept()) {
1338    llvm_fenv_clearexcept();
1339    return nullptr;
1340  }
1341
1342  return GetConstantFoldFPValue(V, Ty);
1343}
1344
1345static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1346                                      double V, double W, Type *Ty) {
1347  llvm_fenv_clearexcept();
1348  V = NativeFP(V, W);
1349  if (llvm_fenv_testexcept()) {
1350    llvm_fenv_clearexcept();
1351    return nullptr;
1352  }
1353
1354  return GetConstantFoldFPValue(V, Ty);
1355}
1356
1357/// Attempt to fold an SSE floating point to integer conversion of a constant
1358/// floating point. If roundTowardZero is false, the default IEEE rounding is
1359/// used (toward nearest, ties to even). This matches the behavior of the
1360/// non-truncating SSE instructions in the default rounding mode. The desired
1361/// integer type Ty is used to select how many bits are available for the
1362/// result. Returns null if the conversion cannot be performed, otherwise
1363/// returns the Constant value resulting from the conversion.
1364static Constant *ConstantFoldConvertToInt(const APFloat &Val,
1365                                          bool roundTowardZero, Type *Ty) {
1366  // All of these conversion intrinsics form an integer of at most 64bits.
1367  unsigned ResultWidth = Ty->getIntegerBitWidth();
1368  assert(ResultWidth <= 64 &&
1369         "Can only constant fold conversions to 64 and 32 bit ints");
1370
1371  uint64_t UIntVal;
1372  bool isExact = false;
1373  APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1374                                              : APFloat::rmNearestTiesToEven;
1375  APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth,
1376                                                  /*isSigned=*/true, mode,
1377                                                  &isExact);
1378  if (status != APFloat::opOK && status != APFloat::opInexact)
1379    return nullptr;
1380  return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
1381}
1382
1383static double getValueAsDouble(ConstantFP *Op) {
1384  Type *Ty = Op->getType();
1385
1386  if (Ty->isFloatTy())
1387    return Op->getValueAPF().convertToFloat();
1388
1389  if (Ty->isDoubleTy())
1390    return Op->getValueAPF().convertToDouble();
1391
1392  bool unused;
1393  APFloat APF = Op->getValueAPF();
1394  APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused);
1395  return APF.convertToDouble();
1396}
1397
1398static Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID,
1399                                        Type *Ty, ArrayRef<Constant *> Operands,
1400                                        const TargetLibraryInfo *TLI) {
1401  if (Operands.size() == 1) {
1402    if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
1403      if (IntrinsicID == Intrinsic::convert_to_fp16) {
1404        APFloat Val(Op->getValueAPF());
1405
1406        bool lost = false;
1407        Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
1408
1409        return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
1410      }
1411
1412      if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
1413        return nullptr;
1414
1415      if (IntrinsicID == Intrinsic::round) {
1416        APFloat V = Op->getValueAPF();
1417        V.roundToIntegral(APFloat::rmNearestTiesToAway);
1418        return ConstantFP::get(Ty->getContext(), V);
1419      }
1420
1421      /// We only fold functions with finite arguments. Folding NaN and inf is
1422      /// likely to be aborted with an exception anyway, and some host libms
1423      /// have known errors raising exceptions.
1424      if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
1425        return nullptr;
1426
1427      /// Currently APFloat versions of these functions do not exist, so we use
1428      /// the host native double versions.  Float versions are not called
1429      /// directly but for all these it is true (float)(f((double)arg)) ==
1430      /// f(arg).  Long double not supported yet.
1431      double V = getValueAsDouble(Op);
1432
1433      switch (IntrinsicID) {
1434        default: break;
1435        case Intrinsic::fabs:
1436          return ConstantFoldFP(fabs, V, Ty);
1437        case Intrinsic::log2:
1438          return ConstantFoldFP(log2, V, Ty);
1439        case Intrinsic::log:
1440          return ConstantFoldFP(log, V, Ty);
1441        case Intrinsic::log10:
1442          return ConstantFoldFP(log10, V, Ty);
1443        case Intrinsic::exp:
1444          return ConstantFoldFP(exp, V, Ty);
1445        case Intrinsic::exp2:
1446          return ConstantFoldFP(exp2, V, Ty);
1447        case Intrinsic::floor:
1448          return ConstantFoldFP(floor, V, Ty);
1449        case Intrinsic::ceil:
1450          return ConstantFoldFP(ceil, V, Ty);
1451      }
1452
1453      if (!TLI)
1454        return nullptr;
1455
1456      switch (Name[0]) {
1457      case 'a':
1458        if (Name == "acos" && TLI->has(LibFunc::acos))
1459          return ConstantFoldFP(acos, V, Ty);
1460        else if (Name == "asin" && TLI->has(LibFunc::asin))
1461          return ConstantFoldFP(asin, V, Ty);
1462        else if (Name == "atan" && TLI->has(LibFunc::atan))
1463          return ConstantFoldFP(atan, V, Ty);
1464        break;
1465      case 'c':
1466        if (Name == "ceil" && TLI->has(LibFunc::ceil))
1467          return ConstantFoldFP(ceil, V, Ty);
1468        else if (Name == "cos" && TLI->has(LibFunc::cos))
1469          return ConstantFoldFP(cos, V, Ty);
1470        else if (Name == "cosh" && TLI->has(LibFunc::cosh))
1471          return ConstantFoldFP(cosh, V, Ty);
1472        else if (Name == "cosf" && TLI->has(LibFunc::cosf))
1473          return ConstantFoldFP(cos, V, Ty);
1474        break;
1475      case 'e':
1476        if (Name == "exp" && TLI->has(LibFunc::exp))
1477          return ConstantFoldFP(exp, V, Ty);
1478
1479        if (Name == "exp2" && TLI->has(LibFunc::exp2)) {
1480          // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
1481          // C99 library.
1482          return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
1483        }
1484        break;
1485      case 'f':
1486        if (Name == "fabs" && TLI->has(LibFunc::fabs))
1487          return ConstantFoldFP(fabs, V, Ty);
1488        else if (Name == "floor" && TLI->has(LibFunc::floor))
1489          return ConstantFoldFP(floor, V, Ty);
1490        break;
1491      case 'l':
1492        if (Name == "log" && V > 0 && TLI->has(LibFunc::log))
1493          return ConstantFoldFP(log, V, Ty);
1494        else if (Name == "log10" && V > 0 && TLI->has(LibFunc::log10))
1495          return ConstantFoldFP(log10, V, Ty);
1496        else if (IntrinsicID == Intrinsic::sqrt &&
1497                 (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())) {
1498          if (V >= -0.0)
1499            return ConstantFoldFP(sqrt, V, Ty);
1500          else {
1501            // Unlike the sqrt definitions in C/C++, POSIX, and IEEE-754 - which
1502            // all guarantee or favor returning NaN - the square root of a
1503            // negative number is not defined for the LLVM sqrt intrinsic.
1504            // This is because the intrinsic should only be emitted in place of
1505            // libm's sqrt function when using "no-nans-fp-math".
1506            return UndefValue::get(Ty);
1507          }
1508        }
1509        break;
1510      case 's':
1511        if (Name == "sin" && TLI->has(LibFunc::sin))
1512          return ConstantFoldFP(sin, V, Ty);
1513        else if (Name == "sinh" && TLI->has(LibFunc::sinh))
1514          return ConstantFoldFP(sinh, V, Ty);
1515        else if (Name == "sqrt" && V >= 0 && TLI->has(LibFunc::sqrt))
1516          return ConstantFoldFP(sqrt, V, Ty);
1517        else if (Name == "sqrtf" && V >= 0 && TLI->has(LibFunc::sqrtf))
1518          return ConstantFoldFP(sqrt, V, Ty);
1519        else if (Name == "sinf" && TLI->has(LibFunc::sinf))
1520          return ConstantFoldFP(sin, V, Ty);
1521        break;
1522      case 't':
1523        if (Name == "tan" && TLI->has(LibFunc::tan))
1524          return ConstantFoldFP(tan, V, Ty);
1525        else if (Name == "tanh" && TLI->has(LibFunc::tanh))
1526          return ConstantFoldFP(tanh, V, Ty);
1527        break;
1528      default:
1529        break;
1530      }
1531      return nullptr;
1532    }
1533
1534    if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
1535      switch (IntrinsicID) {
1536      case Intrinsic::bswap:
1537        return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
1538      case Intrinsic::ctpop:
1539        return ConstantInt::get(Ty, Op->getValue().countPopulation());
1540      case Intrinsic::convert_from_fp16: {
1541        APFloat Val(APFloat::IEEEhalf, Op->getValue());
1542
1543        bool lost = false;
1544        APFloat::opStatus status =
1545          Val.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &lost);
1546
1547        // Conversion is always precise.
1548        (void)status;
1549        assert(status == APFloat::opOK && !lost &&
1550               "Precision lost during fp16 constfolding");
1551
1552        return ConstantFP::get(Ty->getContext(), Val);
1553      }
1554      default:
1555        return nullptr;
1556      }
1557    }
1558
1559    // Support ConstantVector in case we have an Undef in the top.
1560    if (isa<ConstantVector>(Operands[0]) ||
1561        isa<ConstantDataVector>(Operands[0])) {
1562      Constant *Op = cast<Constant>(Operands[0]);
1563      switch (IntrinsicID) {
1564      default: break;
1565      case Intrinsic::x86_sse_cvtss2si:
1566      case Intrinsic::x86_sse_cvtss2si64:
1567      case Intrinsic::x86_sse2_cvtsd2si:
1568      case Intrinsic::x86_sse2_cvtsd2si64:
1569        if (ConstantFP *FPOp =
1570              dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
1571          return ConstantFoldConvertToInt(FPOp->getValueAPF(),
1572                                          /*roundTowardZero=*/false, Ty);
1573      case Intrinsic::x86_sse_cvttss2si:
1574      case Intrinsic::x86_sse_cvttss2si64:
1575      case Intrinsic::x86_sse2_cvttsd2si:
1576      case Intrinsic::x86_sse2_cvttsd2si64:
1577        if (ConstantFP *FPOp =
1578              dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
1579          return ConstantFoldConvertToInt(FPOp->getValueAPF(),
1580                                          /*roundTowardZero=*/true, Ty);
1581      }
1582    }
1583
1584    if (isa<UndefValue>(Operands[0])) {
1585      if (IntrinsicID == Intrinsic::bswap)
1586        return Operands[0];
1587      return nullptr;
1588    }
1589
1590    return nullptr;
1591  }
1592
1593  if (Operands.size() == 2) {
1594    if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
1595      if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
1596        return nullptr;
1597      double Op1V = getValueAsDouble(Op1);
1598
1599      if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
1600        if (Op2->getType() != Op1->getType())
1601          return nullptr;
1602
1603        double Op2V = getValueAsDouble(Op2);
1604        if (IntrinsicID == Intrinsic::pow) {
1605          return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1606        }
1607        if (IntrinsicID == Intrinsic::copysign) {
1608          APFloat V1 = Op1->getValueAPF();
1609          APFloat V2 = Op2->getValueAPF();
1610          V1.copySign(V2);
1611          return ConstantFP::get(Ty->getContext(), V1);
1612        }
1613
1614        if (IntrinsicID == Intrinsic::minnum) {
1615          const APFloat &C1 = Op1->getValueAPF();
1616          const APFloat &C2 = Op2->getValueAPF();
1617          return ConstantFP::get(Ty->getContext(), minnum(C1, C2));
1618        }
1619
1620        if (IntrinsicID == Intrinsic::maxnum) {
1621          const APFloat &C1 = Op1->getValueAPF();
1622          const APFloat &C2 = Op2->getValueAPF();
1623          return ConstantFP::get(Ty->getContext(), maxnum(C1, C2));
1624        }
1625
1626        if (!TLI)
1627          return nullptr;
1628        if (Name == "pow" && TLI->has(LibFunc::pow))
1629          return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1630        if (Name == "fmod" && TLI->has(LibFunc::fmod))
1631          return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
1632        if (Name == "atan2" && TLI->has(LibFunc::atan2))
1633          return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
1634      } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
1635        if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
1636          return ConstantFP::get(Ty->getContext(),
1637                                 APFloat((float)std::pow((float)Op1V,
1638                                                 (int)Op2C->getZExtValue())));
1639        if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
1640          return ConstantFP::get(Ty->getContext(),
1641                                 APFloat((float)std::pow((float)Op1V,
1642                                                 (int)Op2C->getZExtValue())));
1643        if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
1644          return ConstantFP::get(Ty->getContext(),
1645                                 APFloat((double)std::pow((double)Op1V,
1646                                                   (int)Op2C->getZExtValue())));
1647      }
1648      return nullptr;
1649    }
1650
1651    if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
1652      if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
1653        switch (IntrinsicID) {
1654        default: break;
1655        case Intrinsic::sadd_with_overflow:
1656        case Intrinsic::uadd_with_overflow:
1657        case Intrinsic::ssub_with_overflow:
1658        case Intrinsic::usub_with_overflow:
1659        case Intrinsic::smul_with_overflow:
1660        case Intrinsic::umul_with_overflow: {
1661          APInt Res;
1662          bool Overflow;
1663          switch (IntrinsicID) {
1664          default: llvm_unreachable("Invalid case");
1665          case Intrinsic::sadd_with_overflow:
1666            Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
1667            break;
1668          case Intrinsic::uadd_with_overflow:
1669            Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
1670            break;
1671          case Intrinsic::ssub_with_overflow:
1672            Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
1673            break;
1674          case Intrinsic::usub_with_overflow:
1675            Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
1676            break;
1677          case Intrinsic::smul_with_overflow:
1678            Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
1679            break;
1680          case Intrinsic::umul_with_overflow:
1681            Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow);
1682            break;
1683          }
1684          Constant *Ops[] = {
1685            ConstantInt::get(Ty->getContext(), Res),
1686            ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
1687          };
1688          return ConstantStruct::get(cast<StructType>(Ty), Ops);
1689        }
1690        case Intrinsic::cttz:
1691          if (Op2->isOne() && Op1->isZero()) // cttz(0, 1) is undef.
1692            return UndefValue::get(Ty);
1693          return ConstantInt::get(Ty, Op1->getValue().countTrailingZeros());
1694        case Intrinsic::ctlz:
1695          if (Op2->isOne() && Op1->isZero()) // ctlz(0, 1) is undef.
1696            return UndefValue::get(Ty);
1697          return ConstantInt::get(Ty, Op1->getValue().countLeadingZeros());
1698        }
1699      }
1700
1701      return nullptr;
1702    }
1703    return nullptr;
1704  }
1705
1706  if (Operands.size() != 3)
1707    return nullptr;
1708
1709  if (const ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
1710    if (const ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
1711      if (const ConstantFP *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
1712        switch (IntrinsicID) {
1713        default: break;
1714        case Intrinsic::fma:
1715        case Intrinsic::fmuladd: {
1716          APFloat V = Op1->getValueAPF();
1717          APFloat::opStatus s = V.fusedMultiplyAdd(Op2->getValueAPF(),
1718                                                   Op3->getValueAPF(),
1719                                                   APFloat::rmNearestTiesToEven);
1720          if (s != APFloat::opInvalidOp)
1721            return ConstantFP::get(Ty->getContext(), V);
1722
1723          return nullptr;
1724        }
1725        }
1726      }
1727    }
1728  }
1729
1730  return nullptr;
1731}
1732
1733static Constant *ConstantFoldVectorCall(StringRef Name, unsigned IntrinsicID,
1734                                        VectorType *VTy,
1735                                        ArrayRef<Constant *> Operands,
1736                                        const TargetLibraryInfo *TLI) {
1737  SmallVector<Constant *, 4> Result(VTy->getNumElements());
1738  SmallVector<Constant *, 4> Lane(Operands.size());
1739  Type *Ty = VTy->getElementType();
1740
1741  for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
1742    // Gather a column of constants.
1743    for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
1744      Constant *Agg = Operands[J]->getAggregateElement(I);
1745      if (!Agg)
1746        return nullptr;
1747
1748      Lane[J] = Agg;
1749    }
1750
1751    // Use the regular scalar folding to simplify this column.
1752    Constant *Folded = ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI);
1753    if (!Folded)
1754      return nullptr;
1755    Result[I] = Folded;
1756  }
1757
1758  return ConstantVector::get(Result);
1759}
1760
1761/// Attempt to constant fold a call to the specified function
1762/// with the specified arguments, returning null if unsuccessful.
1763Constant *
1764llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
1765                       const TargetLibraryInfo *TLI) {
1766  if (!F->hasName())
1767    return nullptr;
1768  StringRef Name = F->getName();
1769
1770  Type *Ty = F->getReturnType();
1771
1772  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1773    return ConstantFoldVectorCall(Name, F->getIntrinsicID(), VTy, Operands, TLI);
1774
1775  return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI);
1776}
1777