ConstantFolding.cpp revision 80f495aab0b1103b880196191af56f1d1c473ea1
1//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines routines for folding instructions into constants.
11//
12// Also, to supplement the basic IR ConstantExpr simplifications,
13// this file defines some additional folding routines that can make use of
14// DataLayout information. These functions cannot go in IR due to library
15// dependency issues.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Analysis/ConstantFolding.h"
20#include "llvm/ADT/SmallPtrSet.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/StringMap.h"
23#include "llvm/Analysis/ValueTracking.h"
24#include "llvm/IR/Constants.h"
25#include "llvm/IR/DataLayout.h"
26#include "llvm/IR/DerivedTypes.h"
27#include "llvm/IR/Function.h"
28#include "llvm/IR/GlobalVariable.h"
29#include "llvm/IR/Instructions.h"
30#include "llvm/IR/Intrinsics.h"
31#include "llvm/IR/Operator.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/FEnv.h"
34#include "llvm/Support/GetElementPtrTypeIterator.h"
35#include "llvm/Support/MathExtras.h"
36#include "llvm/Target/TargetLibraryInfo.h"
37#include <cerrno>
38#include <cmath>
39using namespace llvm;
40
41//===----------------------------------------------------------------------===//
42// Constant Folding internal helper functions
43//===----------------------------------------------------------------------===//
44
45/// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
46/// DataLayout.  This always returns a non-null constant, but it may be a
47/// ConstantExpr if unfoldable.
48static Constant *FoldBitCast(Constant *C, Type *DestTy,
49                             const DataLayout &TD) {
50  // Catch the obvious splat cases.
51  if (C->isNullValue() && !DestTy->isX86_MMXTy())
52    return Constant::getNullValue(DestTy);
53  if (C->isAllOnesValue() && !DestTy->isX86_MMXTy())
54    return Constant::getAllOnesValue(DestTy);
55
56  // Handle a vector->integer cast.
57  if (IntegerType *IT = dyn_cast<IntegerType>(DestTy)) {
58    VectorType *VTy = dyn_cast<VectorType>(C->getType());
59    if (VTy == 0)
60      return ConstantExpr::getBitCast(C, DestTy);
61
62    unsigned NumSrcElts = VTy->getNumElements();
63    Type *SrcEltTy = VTy->getElementType();
64
65    // If the vector is a vector of floating point, convert it to vector of int
66    // to simplify things.
67    if (SrcEltTy->isFloatingPointTy()) {
68      unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
69      Type *SrcIVTy =
70        VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
71      // Ask IR to do the conversion now that #elts line up.
72      C = ConstantExpr::getBitCast(C, SrcIVTy);
73    }
74
75    ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
76    if (CDV == 0)
77      return ConstantExpr::getBitCast(C, DestTy);
78
79    // Now that we know that the input value is a vector of integers, just shift
80    // and insert them into our result.
81    unsigned BitShift = TD.getTypeAllocSizeInBits(SrcEltTy);
82    APInt Result(IT->getBitWidth(), 0);
83    for (unsigned i = 0; i != NumSrcElts; ++i) {
84      Result <<= BitShift;
85      if (TD.isLittleEndian())
86        Result |= CDV->getElementAsInteger(NumSrcElts-i-1);
87      else
88        Result |= CDV->getElementAsInteger(i);
89    }
90
91    return ConstantInt::get(IT, Result);
92  }
93
94  // The code below only handles casts to vectors currently.
95  VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
96  if (DestVTy == 0)
97    return ConstantExpr::getBitCast(C, DestTy);
98
99  // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
100  // vector so the code below can handle it uniformly.
101  if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
102    Constant *Ops = C; // don't take the address of C!
103    return FoldBitCast(ConstantVector::get(Ops), DestTy, TD);
104  }
105
106  // If this is a bitcast from constant vector -> vector, fold it.
107  if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
108    return ConstantExpr::getBitCast(C, DestTy);
109
110  // If the element types match, IR can fold it.
111  unsigned NumDstElt = DestVTy->getNumElements();
112  unsigned NumSrcElt = C->getType()->getVectorNumElements();
113  if (NumDstElt == NumSrcElt)
114    return ConstantExpr::getBitCast(C, DestTy);
115
116  Type *SrcEltTy = C->getType()->getVectorElementType();
117  Type *DstEltTy = DestVTy->getElementType();
118
119  // Otherwise, we're changing the number of elements in a vector, which
120  // requires endianness information to do the right thing.  For example,
121  //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
122  // folds to (little endian):
123  //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
124  // and to (big endian):
125  //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
126
127  // First thing is first.  We only want to think about integer here, so if
128  // we have something in FP form, recast it as integer.
129  if (DstEltTy->isFloatingPointTy()) {
130    // Fold to an vector of integers with same size as our FP type.
131    unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
132    Type *DestIVTy =
133      VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
134    // Recursively handle this integer conversion, if possible.
135    C = FoldBitCast(C, DestIVTy, TD);
136
137    // Finally, IR can handle this now that #elts line up.
138    return ConstantExpr::getBitCast(C, DestTy);
139  }
140
141  // Okay, we know the destination is integer, if the input is FP, convert
142  // it to integer first.
143  if (SrcEltTy->isFloatingPointTy()) {
144    unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
145    Type *SrcIVTy =
146      VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
147    // Ask IR to do the conversion now that #elts line up.
148    C = ConstantExpr::getBitCast(C, SrcIVTy);
149    // If IR wasn't able to fold it, bail out.
150    if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector.
151        !isa<ConstantDataVector>(C))
152      return C;
153  }
154
155  // Now we know that the input and output vectors are both integer vectors
156  // of the same size, and that their #elements is not the same.  Do the
157  // conversion here, which depends on whether the input or output has
158  // more elements.
159  bool isLittleEndian = TD.isLittleEndian();
160
161  SmallVector<Constant*, 32> Result;
162  if (NumDstElt < NumSrcElt) {
163    // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
164    Constant *Zero = Constant::getNullValue(DstEltTy);
165    unsigned Ratio = NumSrcElt/NumDstElt;
166    unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
167    unsigned SrcElt = 0;
168    for (unsigned i = 0; i != NumDstElt; ++i) {
169      // Build each element of the result.
170      Constant *Elt = Zero;
171      unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
172      for (unsigned j = 0; j != Ratio; ++j) {
173        Constant *Src =dyn_cast<ConstantInt>(C->getAggregateElement(SrcElt++));
174        if (!Src)  // Reject constantexpr elements.
175          return ConstantExpr::getBitCast(C, DestTy);
176
177        // Zero extend the element to the right size.
178        Src = ConstantExpr::getZExt(Src, Elt->getType());
179
180        // Shift it to the right place, depending on endianness.
181        Src = ConstantExpr::getShl(Src,
182                                   ConstantInt::get(Src->getType(), ShiftAmt));
183        ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
184
185        // Mix it in.
186        Elt = ConstantExpr::getOr(Elt, Src);
187      }
188      Result.push_back(Elt);
189    }
190    return ConstantVector::get(Result);
191  }
192
193  // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
194  unsigned Ratio = NumDstElt/NumSrcElt;
195  unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
196
197  // Loop over each source value, expanding into multiple results.
198  for (unsigned i = 0; i != NumSrcElt; ++i) {
199    Constant *Src = dyn_cast<ConstantInt>(C->getAggregateElement(i));
200    if (!Src)  // Reject constantexpr elements.
201      return ConstantExpr::getBitCast(C, DestTy);
202
203    unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
204    for (unsigned j = 0; j != Ratio; ++j) {
205      // Shift the piece of the value into the right place, depending on
206      // endianness.
207      Constant *Elt = ConstantExpr::getLShr(Src,
208                                  ConstantInt::get(Src->getType(), ShiftAmt));
209      ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
210
211      // Truncate and remember this piece.
212      Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
213    }
214  }
215
216  return ConstantVector::get(Result);
217}
218
219
220/// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
221/// from a global, return the global and the constant.  Because of
222/// constantexprs, this function is recursive.
223static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
224                                       APInt &Offset, const DataLayout &TD) {
225  // Trivial case, constant is the global.
226  if ((GV = dyn_cast<GlobalValue>(C))) {
227    Offset.clearAllBits();
228    return true;
229  }
230
231  // Otherwise, if this isn't a constant expr, bail out.
232  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
233  if (!CE) return false;
234
235  // Look through ptr->int and ptr->ptr casts.
236  if (CE->getOpcode() == Instruction::PtrToInt ||
237      CE->getOpcode() == Instruction::BitCast)
238    return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
239
240  // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
241  if (GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
242    // If the base isn't a global+constant, we aren't either.
243    if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
244      return false;
245
246    // Otherwise, add any offset that our operands provide.
247    return GEP->accumulateConstantOffset(TD, Offset);
248  }
249
250  return false;
251}
252
253/// ReadDataFromGlobal - Recursive helper to read bits out of global.  C is the
254/// constant being copied out of. ByteOffset is an offset into C.  CurPtr is the
255/// pointer to copy results into and BytesLeft is the number of bytes left in
256/// the CurPtr buffer.  TD is the target data.
257static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
258                               unsigned char *CurPtr, unsigned BytesLeft,
259                               const DataLayout &TD) {
260  assert(ByteOffset <= TD.getTypeAllocSize(C->getType()) &&
261         "Out of range access");
262
263  // If this element is zero or undefined, we can just return since *CurPtr is
264  // zero initialized.
265  if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
266    return true;
267
268  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
269    if (CI->getBitWidth() > 64 ||
270        (CI->getBitWidth() & 7) != 0)
271      return false;
272
273    uint64_t Val = CI->getZExtValue();
274    unsigned IntBytes = unsigned(CI->getBitWidth()/8);
275
276    for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
277      int n = ByteOffset;
278      if (!TD.isLittleEndian())
279        n = IntBytes - n - 1;
280      CurPtr[i] = (unsigned char)(Val >> (n * 8));
281      ++ByteOffset;
282    }
283    return true;
284  }
285
286  if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
287    if (CFP->getType()->isDoubleTy()) {
288      C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), TD);
289      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
290    }
291    if (CFP->getType()->isFloatTy()){
292      C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), TD);
293      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
294    }
295    if (CFP->getType()->isHalfTy()){
296      C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), TD);
297      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
298    }
299    return false;
300  }
301
302  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
303    const StructLayout *SL = TD.getStructLayout(CS->getType());
304    unsigned Index = SL->getElementContainingOffset(ByteOffset);
305    uint64_t CurEltOffset = SL->getElementOffset(Index);
306    ByteOffset -= CurEltOffset;
307
308    while (1) {
309      // If the element access is to the element itself and not to tail padding,
310      // read the bytes from the element.
311      uint64_t EltSize = TD.getTypeAllocSize(CS->getOperand(Index)->getType());
312
313      if (ByteOffset < EltSize &&
314          !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
315                              BytesLeft, TD))
316        return false;
317
318      ++Index;
319
320      // Check to see if we read from the last struct element, if so we're done.
321      if (Index == CS->getType()->getNumElements())
322        return true;
323
324      // If we read all of the bytes we needed from this element we're done.
325      uint64_t NextEltOffset = SL->getElementOffset(Index);
326
327      if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
328        return true;
329
330      // Move to the next element of the struct.
331      CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
332      BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
333      ByteOffset = 0;
334      CurEltOffset = NextEltOffset;
335    }
336    // not reached.
337  }
338
339  if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
340      isa<ConstantDataSequential>(C)) {
341    Type *EltTy = C->getType()->getSequentialElementType();
342    uint64_t EltSize = TD.getTypeAllocSize(EltTy);
343    uint64_t Index = ByteOffset / EltSize;
344    uint64_t Offset = ByteOffset - Index * EltSize;
345    uint64_t NumElts;
346    if (ArrayType *AT = dyn_cast<ArrayType>(C->getType()))
347      NumElts = AT->getNumElements();
348    else
349      NumElts = C->getType()->getVectorNumElements();
350
351    for (; Index != NumElts; ++Index) {
352      if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
353                              BytesLeft, TD))
354        return false;
355
356      uint64_t BytesWritten = EltSize - Offset;
357      assert(BytesWritten <= EltSize && "Not indexing into this element?");
358      if (BytesWritten >= BytesLeft)
359        return true;
360
361      Offset = 0;
362      BytesLeft -= BytesWritten;
363      CurPtr += BytesWritten;
364    }
365    return true;
366  }
367
368  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
369    if (CE->getOpcode() == Instruction::IntToPtr &&
370        CE->getOperand(0)->getType() == TD.getIntPtrType(CE->getType())) {
371      return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
372                                BytesLeft, TD);
373    }
374  }
375
376  // Otherwise, unknown initializer type.
377  return false;
378}
379
380static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
381                                                 const DataLayout &TD) {
382  PointerType *PTy = cast<PointerType>(C->getType());
383  Type *LoadTy = PTy->getElementType();
384  IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
385
386  // If this isn't an integer load we can't fold it directly.
387  if (!IntType) {
388    unsigned AS = PTy->getAddressSpace();
389
390    // If this is a float/double load, we can try folding it as an int32/64 load
391    // and then bitcast the result.  This can be useful for union cases.  Note
392    // that address spaces don't matter here since we're not going to result in
393    // an actual new load.
394    Type *MapTy;
395    if (LoadTy->isHalfTy())
396      MapTy = Type::getInt16PtrTy(C->getContext(), AS);
397    else if (LoadTy->isFloatTy())
398      MapTy = Type::getInt32PtrTy(C->getContext(), AS);
399    else if (LoadTy->isDoubleTy())
400      MapTy = Type::getInt64PtrTy(C->getContext(), AS);
401    else if (LoadTy->isVectorTy()) {
402      MapTy = PointerType::getIntNPtrTy(C->getContext(),
403                                        TD.getTypeAllocSizeInBits(LoadTy),
404                                        AS);
405    } else
406      return 0;
407
408    C = FoldBitCast(C, MapTy, TD);
409    if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, TD))
410      return FoldBitCast(Res, LoadTy, TD);
411    return 0;
412  }
413
414  unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
415  if (BytesLoaded > 32 || BytesLoaded == 0)
416    return 0;
417
418  GlobalValue *GVal;
419  APInt Offset(TD.getPointerTypeSizeInBits(PTy), 0);
420  if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD))
421    return 0;
422
423  GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
424  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
425      !GV->getInitializer()->getType()->isSized())
426    return 0;
427
428  // If we're loading off the beginning of the global, some bytes may be valid,
429  // but we don't try to handle this.
430  if (Offset.isNegative())
431    return 0;
432
433  // If we're not accessing anything in this constant, the result is undefined.
434  if (Offset.getZExtValue() >=
435      TD.getTypeAllocSize(GV->getInitializer()->getType()))
436    return UndefValue::get(IntType);
437
438  unsigned char RawBytes[32] = {0};
439  if (!ReadDataFromGlobal(GV->getInitializer(), Offset.getZExtValue(), RawBytes,
440                          BytesLoaded, TD))
441    return 0;
442
443  APInt ResultVal = APInt(IntType->getBitWidth(), 0);
444  if (TD.isLittleEndian()) {
445    ResultVal = RawBytes[BytesLoaded - 1];
446    for (unsigned i = 1; i != BytesLoaded; ++i) {
447      ResultVal <<= 8;
448      ResultVal |= RawBytes[BytesLoaded - 1 - i];
449    }
450  } else {
451    ResultVal = RawBytes[0];
452    for (unsigned i = 1; i != BytesLoaded; ++i) {
453      ResultVal <<= 8;
454      ResultVal |= RawBytes[i];
455    }
456  }
457
458  return ConstantInt::get(IntType->getContext(), ResultVal);
459}
460
461/// ConstantFoldLoadFromConstPtr - Return the value that a load from C would
462/// produce if it is constant and determinable.  If this is not determinable,
463/// return null.
464Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
465                                             const DataLayout *TD) {
466  // First, try the easy cases:
467  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
468    if (GV->isConstant() && GV->hasDefinitiveInitializer())
469      return GV->getInitializer();
470
471  // If the loaded value isn't a constant expr, we can't handle it.
472  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
473  if (!CE)
474    return 0;
475
476  if (CE->getOpcode() == Instruction::GetElementPtr) {
477    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
478      if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
479        if (Constant *V =
480             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
481          return V;
482      }
483    }
484  }
485
486  // Instead of loading constant c string, use corresponding integer value
487  // directly if string length is small enough.
488  StringRef Str;
489  if (TD && getConstantStringInfo(CE, Str) && !Str.empty()) {
490    unsigned StrLen = Str.size();
491    Type *Ty = cast<PointerType>(CE->getType())->getElementType();
492    unsigned NumBits = Ty->getPrimitiveSizeInBits();
493    // Replace load with immediate integer if the result is an integer or fp
494    // value.
495    if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
496        (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
497      APInt StrVal(NumBits, 0);
498      APInt SingleChar(NumBits, 0);
499      if (TD->isLittleEndian()) {
500        for (signed i = StrLen-1; i >= 0; i--) {
501          SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
502          StrVal = (StrVal << 8) | SingleChar;
503        }
504      } else {
505        for (unsigned i = 0; i < StrLen; i++) {
506          SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
507          StrVal = (StrVal << 8) | SingleChar;
508        }
509        // Append NULL at the end.
510        SingleChar = 0;
511        StrVal = (StrVal << 8) | SingleChar;
512      }
513
514      Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
515      if (Ty->isFloatingPointTy())
516        Res = ConstantExpr::getBitCast(Res, Ty);
517      return Res;
518    }
519  }
520
521  // If this load comes from anywhere in a constant global, and if the global
522  // is all undef or zero, we know what it loads.
523  if (GlobalVariable *GV =
524        dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, TD))) {
525    if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
526      Type *ResTy = cast<PointerType>(C->getType())->getElementType();
527      if (GV->getInitializer()->isNullValue())
528        return Constant::getNullValue(ResTy);
529      if (isa<UndefValue>(GV->getInitializer()))
530        return UndefValue::get(ResTy);
531    }
532  }
533
534  // Try hard to fold loads from bitcasted strange and non-type-safe things.
535  if (TD)
536    return FoldReinterpretLoadFromConstPtr(CE, *TD);
537  return 0;
538}
539
540static Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout *TD){
541  if (LI->isVolatile()) return 0;
542
543  if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
544    return ConstantFoldLoadFromConstPtr(C, TD);
545
546  return 0;
547}
548
549/// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
550/// Attempt to symbolically evaluate the result of a binary operator merging
551/// these together.  If target data info is available, it is provided as DL,
552/// otherwise DL is null.
553static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
554                                           Constant *Op1, const DataLayout *DL){
555  // SROA
556
557  // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
558  // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
559  // bits.
560
561
562  if (Opc == Instruction::And && DL) {
563    unsigned BitWidth = DL->getTypeSizeInBits(Op0->getType()->getScalarType());
564    APInt KnownZero0(BitWidth, 0), KnownOne0(BitWidth, 0);
565    APInt KnownZero1(BitWidth, 0), KnownOne1(BitWidth, 0);
566    ComputeMaskedBits(Op0, KnownZero0, KnownOne0, DL);
567    ComputeMaskedBits(Op1, KnownZero1, KnownOne1, DL);
568    if ((KnownOne1 | KnownZero0).isAllOnesValue()) {
569      // All the bits of Op0 that the 'and' could be masking are already zero.
570      return Op0;
571    }
572    if ((KnownOne0 | KnownZero1).isAllOnesValue()) {
573      // All the bits of Op1 that the 'and' could be masking are already zero.
574      return Op1;
575    }
576
577    APInt KnownZero = KnownZero0 | KnownZero1;
578    APInt KnownOne = KnownOne0 & KnownOne1;
579    if ((KnownZero | KnownOne).isAllOnesValue()) {
580      return ConstantInt::get(Op0->getType(), KnownOne);
581    }
582  }
583
584  // If the constant expr is something like &A[123] - &A[4].f, fold this into a
585  // constant.  This happens frequently when iterating over a global array.
586  if (Opc == Instruction::Sub && DL) {
587    GlobalValue *GV1, *GV2;
588    unsigned PtrSize = DL->getPointerSizeInBits();
589    unsigned OpSize = DL->getTypeSizeInBits(Op0->getType());
590    APInt Offs1(PtrSize, 0), Offs2(PtrSize, 0);
591
592    if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *DL))
593      if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *DL) &&
594          GV1 == GV2) {
595        // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
596        // PtrToInt may change the bitwidth so we have convert to the right size
597        // first.
598        return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
599                                                Offs2.zextOrTrunc(OpSize));
600      }
601  }
602
603  return 0;
604}
605
606/// CastGEPIndices - If array indices are not pointer-sized integers,
607/// explicitly cast them so that they aren't implicitly casted by the
608/// getelementptr.
609static Constant *CastGEPIndices(ArrayRef<Constant *> Ops,
610                                Type *ResultTy, const DataLayout *TD,
611                                const TargetLibraryInfo *TLI) {
612  if (!TD)
613    return 0;
614
615  Type *IntPtrTy = TD->getIntPtrType(ResultTy);
616
617  bool Any = false;
618  SmallVector<Constant*, 32> NewIdxs;
619  for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
620    if ((i == 1 ||
621         !isa<StructType>(GetElementPtrInst::getIndexedType(
622                            Ops[0]->getType(),
623                            Ops.slice(1, i - 1)))) &&
624        Ops[i]->getType() != IntPtrTy) {
625      Any = true;
626      NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
627                                                                      true,
628                                                                      IntPtrTy,
629                                                                      true),
630                                              Ops[i], IntPtrTy));
631    } else
632      NewIdxs.push_back(Ops[i]);
633  }
634
635  if (!Any)
636    return 0;
637
638  Constant *C = ConstantExpr::getGetElementPtr(Ops[0], NewIdxs);
639  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
640    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
641      C = Folded;
642  }
643
644  return C;
645}
646
647/// Strip the pointer casts, but preserve the address space information.
648static Constant* StripPtrCastKeepAS(Constant* Ptr) {
649  assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
650  PointerType *OldPtrTy = cast<PointerType>(Ptr->getType());
651  Ptr = cast<Constant>(Ptr->stripPointerCasts());
652  PointerType *NewPtrTy = cast<PointerType>(Ptr->getType());
653
654  // Preserve the address space number of the pointer.
655  if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
656    NewPtrTy = NewPtrTy->getElementType()->getPointerTo(
657      OldPtrTy->getAddressSpace());
658    Ptr = ConstantExpr::getBitCast(Ptr, NewPtrTy);
659  }
660  return Ptr;
661}
662
663/// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
664/// constant expression, do so.
665static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
666                                         Type *ResultTy, const DataLayout *TD,
667                                         const TargetLibraryInfo *TLI) {
668  Constant *Ptr = Ops[0];
669  if (!TD || !Ptr->getType()->getPointerElementType()->isSized() ||
670      !Ptr->getType()->isPointerTy())
671    return 0;
672
673  Type *IntPtrTy = TD->getIntPtrType(Ptr->getType());
674  Type *ResultElementTy = ResultTy->getPointerElementType();
675
676  // If this is a constant expr gep that is effectively computing an
677  // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
678  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
679    if (!isa<ConstantInt>(Ops[i])) {
680
681      // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
682      // "inttoptr (sub (ptrtoint Ptr), V)"
683      if (Ops.size() == 2 && ResultElementTy->isIntegerTy(8)) {
684        ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[1]);
685        assert((CE == 0 || CE->getType() == IntPtrTy) &&
686               "CastGEPIndices didn't canonicalize index types!");
687        if (CE && CE->getOpcode() == Instruction::Sub &&
688            CE->getOperand(0)->isNullValue()) {
689          Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
690          Res = ConstantExpr::getSub(Res, CE->getOperand(1));
691          Res = ConstantExpr::getIntToPtr(Res, ResultTy);
692          if (ConstantExpr *ResCE = dyn_cast<ConstantExpr>(Res))
693            Res = ConstantFoldConstantExpression(ResCE, TD, TLI);
694          return Res;
695        }
696      }
697      return 0;
698    }
699
700  unsigned BitWidth = TD->getTypeSizeInBits(IntPtrTy);
701  APInt Offset =
702    APInt(BitWidth, TD->getIndexedOffset(Ptr->getType(),
703                                         makeArrayRef((Value *const*)
704                                                        Ops.data() + 1,
705                                                      Ops.size() - 1)));
706  Ptr = StripPtrCastKeepAS(Ptr);
707
708  // If this is a GEP of a GEP, fold it all into a single GEP.
709  while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
710    SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end());
711
712    // Do not try the incorporate the sub-GEP if some index is not a number.
713    bool AllConstantInt = true;
714    for (unsigned i = 0, e = NestedOps.size(); i != e; ++i)
715      if (!isa<ConstantInt>(NestedOps[i])) {
716        AllConstantInt = false;
717        break;
718      }
719    if (!AllConstantInt)
720      break;
721
722    Ptr = cast<Constant>(GEP->getOperand(0));
723    Offset += APInt(BitWidth,
724                    TD->getIndexedOffset(Ptr->getType(), NestedOps));
725    Ptr = StripPtrCastKeepAS(Ptr);
726  }
727
728  // If the base value for this address is a literal integer value, fold the
729  // getelementptr to the resulting integer value casted to the pointer type.
730  APInt BasePtr(BitWidth, 0);
731  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
732    if (CE->getOpcode() == Instruction::IntToPtr) {
733      if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
734        BasePtr = Base->getValue().zextOrTrunc(BitWidth);
735    }
736  }
737
738  if (Ptr->isNullValue() || BasePtr != 0) {
739    Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
740    return ConstantExpr::getIntToPtr(C, ResultTy);
741  }
742
743  // Otherwise form a regular getelementptr. Recompute the indices so that
744  // we eliminate over-indexing of the notional static type array bounds.
745  // This makes it easy to determine if the getelementptr is "inbounds".
746  // Also, this helps GlobalOpt do SROA on GlobalVariables.
747  Type *Ty = Ptr->getType();
748  assert(Ty->isPointerTy() && "Forming regular GEP of non-pointer type");
749  SmallVector<Constant *, 32> NewIdxs;
750
751  do {
752    if (SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
753      if (ATy->isPointerTy()) {
754        // The only pointer indexing we'll do is on the first index of the GEP.
755        if (!NewIdxs.empty())
756          break;
757
758        // Only handle pointers to sized types, not pointers to functions.
759        if (!ATy->getElementType()->isSized())
760          return 0;
761      }
762
763      // Determine which element of the array the offset points into.
764      APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
765      if (ElemSize == 0)
766        // The element size is 0. This may be [0 x Ty]*, so just use a zero
767        // index for this level and proceed to the next level to see if it can
768        // accommodate the offset.
769        NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
770      else {
771        // The element size is non-zero divide the offset by the element
772        // size (rounding down), to compute the index at this level.
773        APInt NewIdx = Offset.udiv(ElemSize);
774        Offset -= NewIdx * ElemSize;
775        NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
776      }
777      Ty = ATy->getElementType();
778    } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
779      // If we end up with an offset that isn't valid for this struct type, we
780      // can't re-form this GEP in a regular form, so bail out. The pointer
781      // operand likely went through casts that are necessary to make the GEP
782      // sensible.
783      const StructLayout &SL = *TD->getStructLayout(STy);
784      if (Offset.uge(SL.getSizeInBytes()))
785        break;
786
787      // Determine which field of the struct the offset points into. The
788      // getZExtValue is fine as we've already ensured that the offset is
789      // within the range representable by the StructLayout API.
790      unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
791      NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
792                                         ElIdx));
793      Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
794      Ty = STy->getTypeAtIndex(ElIdx);
795    } else {
796      // We've reached some non-indexable type.
797      break;
798    }
799  } while (Ty != ResultElementTy);
800
801  // If we haven't used up the entire offset by descending the static
802  // type, then the offset is pointing into the middle of an indivisible
803  // member, so we can't simplify it.
804  if (Offset != 0)
805    return 0;
806
807  // Create a GEP.
808  Constant *C = ConstantExpr::getGetElementPtr(Ptr, NewIdxs);
809  assert(C->getType()->getPointerElementType() == Ty &&
810         "Computed GetElementPtr has unexpected type!");
811
812  // If we ended up indexing a member with a type that doesn't match
813  // the type of what the original indices indexed, add a cast.
814  if (Ty != ResultElementTy)
815    C = FoldBitCast(C, ResultTy, *TD);
816
817  return C;
818}
819
820
821
822//===----------------------------------------------------------------------===//
823// Constant Folding public APIs
824//===----------------------------------------------------------------------===//
825
826/// ConstantFoldInstruction - Try to constant fold the specified instruction.
827/// If successful, the constant result is returned, if not, null is returned.
828/// Note that this fails if not all of the operands are constant.  Otherwise,
829/// this function can only fail when attempting to fold instructions like loads
830/// and stores, which have no constant expression form.
831Constant *llvm::ConstantFoldInstruction(Instruction *I,
832                                        const DataLayout *TD,
833                                        const TargetLibraryInfo *TLI) {
834  // Handle PHI nodes quickly here...
835  if (PHINode *PN = dyn_cast<PHINode>(I)) {
836    Constant *CommonValue = 0;
837
838    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
839      Value *Incoming = PN->getIncomingValue(i);
840      // If the incoming value is undef then skip it.  Note that while we could
841      // skip the value if it is equal to the phi node itself we choose not to
842      // because that would break the rule that constant folding only applies if
843      // all operands are constants.
844      if (isa<UndefValue>(Incoming))
845        continue;
846      // If the incoming value is not a constant, then give up.
847      Constant *C = dyn_cast<Constant>(Incoming);
848      if (!C)
849        return 0;
850      // Fold the PHI's operands.
851      if (ConstantExpr *NewC = dyn_cast<ConstantExpr>(C))
852        C = ConstantFoldConstantExpression(NewC, TD, TLI);
853      // If the incoming value is a different constant to
854      // the one we saw previously, then give up.
855      if (CommonValue && C != CommonValue)
856        return 0;
857      CommonValue = C;
858    }
859
860
861    // If we reach here, all incoming values are the same constant or undef.
862    return CommonValue ? CommonValue : UndefValue::get(PN->getType());
863  }
864
865  // Scan the operand list, checking to see if they are all constants, if so,
866  // hand off to ConstantFoldInstOperands.
867  SmallVector<Constant*, 8> Ops;
868  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
869    Constant *Op = dyn_cast<Constant>(*i);
870    if (!Op)
871      return 0;  // All operands not constant!
872
873    // Fold the Instruction's operands.
874    if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(Op))
875      Op = ConstantFoldConstantExpression(NewCE, TD, TLI);
876
877    Ops.push_back(Op);
878  }
879
880  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
881    return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
882                                           TD, TLI);
883
884  if (const LoadInst *LI = dyn_cast<LoadInst>(I))
885    return ConstantFoldLoadInst(LI, TD);
886
887  if (InsertValueInst *IVI = dyn_cast<InsertValueInst>(I)) {
888    return ConstantExpr::getInsertValue(
889                                cast<Constant>(IVI->getAggregateOperand()),
890                                cast<Constant>(IVI->getInsertedValueOperand()),
891                                IVI->getIndices());
892  }
893
894  if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I)) {
895    return ConstantExpr::getExtractValue(
896                                    cast<Constant>(EVI->getAggregateOperand()),
897                                    EVI->getIndices());
898  }
899
900  return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Ops, TD, TLI);
901}
902
903static Constant *
904ConstantFoldConstantExpressionImpl(const ConstantExpr *CE, const DataLayout *TD,
905                                   const TargetLibraryInfo *TLI,
906                                   SmallPtrSet<ConstantExpr *, 4> &FoldedOps) {
907  SmallVector<Constant *, 8> Ops;
908  for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end(); i != e;
909       ++i) {
910    Constant *NewC = cast<Constant>(*i);
911    // Recursively fold the ConstantExpr's operands. If we have already folded
912    // a ConstantExpr, we don't have to process it again.
913    if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC)) {
914      if (FoldedOps.insert(NewCE))
915        NewC = ConstantFoldConstantExpressionImpl(NewCE, TD, TLI, FoldedOps);
916    }
917    Ops.push_back(NewC);
918  }
919
920  if (CE->isCompare())
921    return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
922                                           TD, TLI);
923  return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(), Ops, TD, TLI);
924}
925
926/// ConstantFoldConstantExpression - Attempt to fold the constant expression
927/// using the specified DataLayout.  If successful, the constant result is
928/// result is returned, if not, null is returned.
929Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
930                                               const DataLayout *TD,
931                                               const TargetLibraryInfo *TLI) {
932  SmallPtrSet<ConstantExpr *, 4> FoldedOps;
933  return ConstantFoldConstantExpressionImpl(CE, TD, TLI, FoldedOps);
934}
935
936/// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
937/// specified opcode and operands.  If successful, the constant result is
938/// returned, if not, null is returned.  Note that this function can fail when
939/// attempting to fold instructions like loads and stores, which have no
940/// constant expression form.
941///
942/// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
943/// information, due to only being passed an opcode and operands. Constant
944/// folding using this function strips this information.
945///
946Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
947                                         ArrayRef<Constant *> Ops,
948                                         const DataLayout *TD,
949                                         const TargetLibraryInfo *TLI) {
950  // Handle easy binops first.
951  if (Instruction::isBinaryOp(Opcode)) {
952    if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1])) {
953      if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
954        return C;
955    }
956
957    return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
958  }
959
960  switch (Opcode) {
961  default: return 0;
962  case Instruction::ICmp:
963  case Instruction::FCmp: llvm_unreachable("Invalid for compares");
964  case Instruction::Call:
965    if (Function *F = dyn_cast<Function>(Ops.back()))
966      if (canConstantFoldCallTo(F))
967        return ConstantFoldCall(F, Ops.slice(0, Ops.size() - 1), TLI);
968    return 0;
969  case Instruction::PtrToInt:
970    // If the input is a inttoptr, eliminate the pair.  This requires knowing
971    // the width of a pointer, so it can't be done in ConstantExpr::getCast.
972    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
973      if (TD && CE->getOpcode() == Instruction::IntToPtr) {
974        Constant *Input = CE->getOperand(0);
975        unsigned InWidth = Input->getType()->getScalarSizeInBits();
976        if (TD->getPointerTypeSizeInBits(CE->getType()) < InWidth) {
977          Constant *Mask =
978            ConstantInt::get(CE->getContext(), APInt::getLowBitsSet(InWidth,
979                                                  TD->getPointerSizeInBits()));
980          Input = ConstantExpr::getAnd(Input, Mask);
981        }
982        // Do a zext or trunc to get to the dest size.
983        return ConstantExpr::getIntegerCast(Input, DestTy, false);
984      }
985    }
986    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
987  case Instruction::IntToPtr:
988    // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
989    // the int size is >= the ptr size.  This requires knowing the width of a
990    // pointer, so it can't be done in ConstantExpr::getCast.
991    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
992      if (TD && CE->getOpcode() == Instruction::PtrToInt) {
993        Constant *SrcPtr = CE->getOperand(0);
994        unsigned SrcPtrSize = TD->getPointerTypeSizeInBits(SrcPtr->getType());
995        unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
996
997        if (MidIntSize >= SrcPtrSize) {
998          unsigned DestPtrSize = TD->getPointerTypeSizeInBits(DestTy);
999          if (SrcPtrSize == DestPtrSize)
1000            return FoldBitCast(CE->getOperand(0), DestTy, *TD);
1001        }
1002      }
1003    }
1004
1005    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
1006  case Instruction::Trunc:
1007  case Instruction::ZExt:
1008  case Instruction::SExt:
1009  case Instruction::FPTrunc:
1010  case Instruction::FPExt:
1011  case Instruction::UIToFP:
1012  case Instruction::SIToFP:
1013  case Instruction::FPToUI:
1014  case Instruction::FPToSI:
1015      return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
1016  case Instruction::BitCast:
1017    if (TD)
1018      return FoldBitCast(Ops[0], DestTy, *TD);
1019    return ConstantExpr::getBitCast(Ops[0], DestTy);
1020  case Instruction::Select:
1021    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1022  case Instruction::ExtractElement:
1023    return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1024  case Instruction::InsertElement:
1025    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1026  case Instruction::ShuffleVector:
1027    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
1028  case Instruction::GetElementPtr:
1029    if (Constant *C = CastGEPIndices(Ops, DestTy, TD, TLI))
1030      return C;
1031    if (Constant *C = SymbolicallyEvaluateGEP(Ops, DestTy, TD, TLI))
1032      return C;
1033
1034    return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1));
1035  }
1036}
1037
1038/// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
1039/// instruction (icmp/fcmp) with the specified operands.  If it fails, it
1040/// returns a constant expression of the specified operands.
1041///
1042Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
1043                                                Constant *Ops0, Constant *Ops1,
1044                                                const DataLayout *TD,
1045                                                const TargetLibraryInfo *TLI) {
1046  // fold: icmp (inttoptr x), null         -> icmp x, 0
1047  // fold: icmp (ptrtoint x), 0            -> icmp x, null
1048  // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1049  // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1050  //
1051  // ConstantExpr::getCompare cannot do this, because it doesn't have TD
1052  // around to know if bit truncation is happening.
1053  if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1054    if (TD && Ops1->isNullValue()) {
1055      if (CE0->getOpcode() == Instruction::IntToPtr) {
1056        Type *IntPtrTy = TD->getIntPtrType(CE0->getType());
1057        // Convert the integer value to the right size to ensure we get the
1058        // proper extension or truncation.
1059        Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1060                                                   IntPtrTy, false);
1061        Constant *Null = Constant::getNullValue(C->getType());
1062        return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
1063      }
1064
1065      // Only do this transformation if the int is intptrty in size, otherwise
1066      // there is a truncation or extension that we aren't modeling.
1067      if (CE0->getOpcode() == Instruction::PtrToInt) {
1068        Type *IntPtrTy = TD->getIntPtrType(CE0->getOperand(0)->getType());
1069        if (CE0->getType() == IntPtrTy) {
1070          Constant *C = CE0->getOperand(0);
1071          Constant *Null = Constant::getNullValue(C->getType());
1072          return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
1073        }
1074      }
1075    }
1076
1077    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1078      if (TD && CE0->getOpcode() == CE1->getOpcode()) {
1079        if (CE0->getOpcode() == Instruction::IntToPtr) {
1080          Type *IntPtrTy = TD->getIntPtrType(CE0->getType());
1081
1082          // Convert the integer value to the right size to ensure we get the
1083          // proper extension or truncation.
1084          Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1085                                                      IntPtrTy, false);
1086          Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
1087                                                      IntPtrTy, false);
1088          return ConstantFoldCompareInstOperands(Predicate, C0, C1, TD, TLI);
1089        }
1090
1091        // Only do this transformation if the int is intptrty in size, otherwise
1092        // there is a truncation or extension that we aren't modeling.
1093        if (CE0->getOpcode() == Instruction::PtrToInt) {
1094          Type *IntPtrTy = TD->getIntPtrType(CE0->getOperand(0)->getType());
1095          if (CE0->getType() == IntPtrTy &&
1096              CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1097            return ConstantFoldCompareInstOperands(Predicate,
1098                                                   CE0->getOperand(0),
1099                                                   CE1->getOperand(0),
1100                                                   TD,
1101                                                   TLI);
1102          }
1103        }
1104      }
1105    }
1106
1107    // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
1108    // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
1109    if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
1110        CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
1111      Constant *LHS =
1112        ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0), Ops1,
1113                                        TD, TLI);
1114      Constant *RHS =
1115        ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(1), Ops1,
1116                                        TD, TLI);
1117      unsigned OpC =
1118        Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1119      Constant *Ops[] = { LHS, RHS };
1120      return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, TD, TLI);
1121    }
1122  }
1123
1124  return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
1125}
1126
1127
1128/// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
1129/// getelementptr constantexpr, return the constant value being addressed by the
1130/// constant expression, or null if something is funny and we can't decide.
1131Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
1132                                                       ConstantExpr *CE) {
1133  if (!CE->getOperand(1)->isNullValue())
1134    return 0;  // Do not allow stepping over the value!
1135
1136  // Loop over all of the operands, tracking down which value we are
1137  // addressing.
1138  for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
1139    C = C->getAggregateElement(CE->getOperand(i));
1140    if (C == 0)
1141      return 0;
1142  }
1143  return C;
1144}
1145
1146/// ConstantFoldLoadThroughGEPIndices - Given a constant and getelementptr
1147/// indices (with an *implied* zero pointer index that is not in the list),
1148/// return the constant value being addressed by a virtual load, or null if
1149/// something is funny and we can't decide.
1150Constant *llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
1151                                                  ArrayRef<Constant*> Indices) {
1152  // Loop over all of the operands, tracking down which value we are
1153  // addressing.
1154  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1155    C = C->getAggregateElement(Indices[i]);
1156    if (C == 0)
1157      return 0;
1158  }
1159  return C;
1160}
1161
1162
1163//===----------------------------------------------------------------------===//
1164//  Constant Folding for Calls
1165//
1166
1167/// canConstantFoldCallTo - Return true if its even possible to fold a call to
1168/// the specified function.
1169bool llvm::canConstantFoldCallTo(const Function *F) {
1170  switch (F->getIntrinsicID()) {
1171  case Intrinsic::fabs:
1172  case Intrinsic::log:
1173  case Intrinsic::log2:
1174  case Intrinsic::log10:
1175  case Intrinsic::exp:
1176  case Intrinsic::exp2:
1177  case Intrinsic::floor:
1178  case Intrinsic::sqrt:
1179  case Intrinsic::pow:
1180  case Intrinsic::powi:
1181  case Intrinsic::bswap:
1182  case Intrinsic::ctpop:
1183  case Intrinsic::ctlz:
1184  case Intrinsic::cttz:
1185  case Intrinsic::sadd_with_overflow:
1186  case Intrinsic::uadd_with_overflow:
1187  case Intrinsic::ssub_with_overflow:
1188  case Intrinsic::usub_with_overflow:
1189  case Intrinsic::smul_with_overflow:
1190  case Intrinsic::umul_with_overflow:
1191  case Intrinsic::convert_from_fp16:
1192  case Intrinsic::convert_to_fp16:
1193  case Intrinsic::x86_sse_cvtss2si:
1194  case Intrinsic::x86_sse_cvtss2si64:
1195  case Intrinsic::x86_sse_cvttss2si:
1196  case Intrinsic::x86_sse_cvttss2si64:
1197  case Intrinsic::x86_sse2_cvtsd2si:
1198  case Intrinsic::x86_sse2_cvtsd2si64:
1199  case Intrinsic::x86_sse2_cvttsd2si:
1200  case Intrinsic::x86_sse2_cvttsd2si64:
1201    return true;
1202  default:
1203    return false;
1204  case 0: break;
1205  }
1206
1207  if (!F->hasName())
1208    return false;
1209  StringRef Name = F->getName();
1210
1211  // In these cases, the check of the length is required.  We don't want to
1212  // return true for a name like "cos\0blah" which strcmp would return equal to
1213  // "cos", but has length 8.
1214  switch (Name[0]) {
1215  default: return false;
1216  case 'a':
1217    return Name == "acos" || Name == "asin" || Name == "atan" || Name =="atan2";
1218  case 'c':
1219    return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
1220  case 'e':
1221    return Name == "exp" || Name == "exp2";
1222  case 'f':
1223    return Name == "fabs" || Name == "fmod" || Name == "floor";
1224  case 'l':
1225    return Name == "log" || Name == "log10";
1226  case 'p':
1227    return Name == "pow";
1228  case 's':
1229    return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
1230      Name == "sinf" || Name == "sqrtf";
1231  case 't':
1232    return Name == "tan" || Name == "tanh";
1233  }
1234}
1235
1236static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
1237                                Type *Ty) {
1238  sys::llvm_fenv_clearexcept();
1239  V = NativeFP(V);
1240  if (sys::llvm_fenv_testexcept()) {
1241    sys::llvm_fenv_clearexcept();
1242    return 0;
1243  }
1244
1245  if (Ty->isHalfTy()) {
1246    APFloat APF(V);
1247    bool unused;
1248    APF.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &unused);
1249    return ConstantFP::get(Ty->getContext(), APF);
1250  }
1251  if (Ty->isFloatTy())
1252    return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1253  if (Ty->isDoubleTy())
1254    return ConstantFP::get(Ty->getContext(), APFloat(V));
1255  llvm_unreachable("Can only constant fold half/float/double");
1256}
1257
1258static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1259                                      double V, double W, Type *Ty) {
1260  sys::llvm_fenv_clearexcept();
1261  V = NativeFP(V, W);
1262  if (sys::llvm_fenv_testexcept()) {
1263    sys::llvm_fenv_clearexcept();
1264    return 0;
1265  }
1266
1267  if (Ty->isHalfTy()) {
1268    APFloat APF(V);
1269    bool unused;
1270    APF.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &unused);
1271    return ConstantFP::get(Ty->getContext(), APF);
1272  }
1273  if (Ty->isFloatTy())
1274    return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1275  if (Ty->isDoubleTy())
1276    return ConstantFP::get(Ty->getContext(), APFloat(V));
1277  llvm_unreachable("Can only constant fold half/float/double");
1278}
1279
1280/// ConstantFoldConvertToInt - Attempt to an SSE floating point to integer
1281/// conversion of a constant floating point. If roundTowardZero is false, the
1282/// default IEEE rounding is used (toward nearest, ties to even). This matches
1283/// the behavior of the non-truncating SSE instructions in the default rounding
1284/// mode. The desired integer type Ty is used to select how many bits are
1285/// available for the result. Returns null if the conversion cannot be
1286/// performed, otherwise returns the Constant value resulting from the
1287/// conversion.
1288static Constant *ConstantFoldConvertToInt(const APFloat &Val,
1289                                          bool roundTowardZero, Type *Ty) {
1290  // All of these conversion intrinsics form an integer of at most 64bits.
1291  unsigned ResultWidth = Ty->getIntegerBitWidth();
1292  assert(ResultWidth <= 64 &&
1293         "Can only constant fold conversions to 64 and 32 bit ints");
1294
1295  uint64_t UIntVal;
1296  bool isExact = false;
1297  APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1298                                              : APFloat::rmNearestTiesToEven;
1299  APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth,
1300                                                  /*isSigned=*/true, mode,
1301                                                  &isExact);
1302  if (status != APFloat::opOK && status != APFloat::opInexact)
1303    return 0;
1304  return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
1305}
1306
1307/// ConstantFoldCall - Attempt to constant fold a call to the specified function
1308/// with the specified arguments, returning null if unsuccessful.
1309Constant *
1310llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
1311                       const TargetLibraryInfo *TLI) {
1312  if (!F->hasName())
1313    return 0;
1314  StringRef Name = F->getName();
1315
1316  Type *Ty = F->getReturnType();
1317  if (Operands.size() == 1) {
1318    if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
1319      if (F->getIntrinsicID() == Intrinsic::convert_to_fp16) {
1320        APFloat Val(Op->getValueAPF());
1321
1322        bool lost = false;
1323        Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
1324
1325        return ConstantInt::get(F->getContext(), Val.bitcastToAPInt());
1326      }
1327      if (!TLI)
1328        return 0;
1329
1330      if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
1331        return 0;
1332
1333      /// We only fold functions with finite arguments. Folding NaN and inf is
1334      /// likely to be aborted with an exception anyway, and some host libms
1335      /// have known errors raising exceptions.
1336      if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
1337        return 0;
1338
1339      /// Currently APFloat versions of these functions do not exist, so we use
1340      /// the host native double versions.  Float versions are not called
1341      /// directly but for all these it is true (float)(f((double)arg)) ==
1342      /// f(arg).  Long double not supported yet.
1343      double V;
1344      if (Ty->isFloatTy())
1345        V = Op->getValueAPF().convertToFloat();
1346      else if (Ty->isDoubleTy())
1347        V = Op->getValueAPF().convertToDouble();
1348      else {
1349        bool unused;
1350        APFloat APF = Op->getValueAPF();
1351        APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused);
1352        V = APF.convertToDouble();
1353      }
1354
1355      switch (F->getIntrinsicID()) {
1356        default: break;
1357        case Intrinsic::fabs:
1358          return ConstantFoldFP(fabs, V, Ty);
1359#if HAVE_LOG2
1360        case Intrinsic::log2:
1361          return ConstantFoldFP(log2, V, Ty);
1362#endif
1363#if HAVE_LOG
1364        case Intrinsic::log:
1365          return ConstantFoldFP(log, V, Ty);
1366#endif
1367#if HAVE_LOG10
1368        case Intrinsic::log10:
1369          return ConstantFoldFP(log10, V, Ty);
1370#endif
1371#if HAVE_EXP
1372        case Intrinsic::exp:
1373          return ConstantFoldFP(exp, V, Ty);
1374#endif
1375#if HAVE_EXP2
1376        case Intrinsic::exp2:
1377          return ConstantFoldFP(exp2, V, Ty);
1378#endif
1379        case Intrinsic::floor:
1380          return ConstantFoldFP(floor, V, Ty);
1381      }
1382
1383      switch (Name[0]) {
1384      case 'a':
1385        if (Name == "acos" && TLI->has(LibFunc::acos))
1386          return ConstantFoldFP(acos, V, Ty);
1387        else if (Name == "asin" && TLI->has(LibFunc::asin))
1388          return ConstantFoldFP(asin, V, Ty);
1389        else if (Name == "atan" && TLI->has(LibFunc::atan))
1390          return ConstantFoldFP(atan, V, Ty);
1391        break;
1392      case 'c':
1393        if (Name == "ceil" && TLI->has(LibFunc::ceil))
1394          return ConstantFoldFP(ceil, V, Ty);
1395        else if (Name == "cos" && TLI->has(LibFunc::cos))
1396          return ConstantFoldFP(cos, V, Ty);
1397        else if (Name == "cosh" && TLI->has(LibFunc::cosh))
1398          return ConstantFoldFP(cosh, V, Ty);
1399        else if (Name == "cosf" && TLI->has(LibFunc::cosf))
1400          return ConstantFoldFP(cos, V, Ty);
1401        break;
1402      case 'e':
1403        if (Name == "exp" && TLI->has(LibFunc::exp))
1404          return ConstantFoldFP(exp, V, Ty);
1405
1406        if (Name == "exp2" && TLI->has(LibFunc::exp2)) {
1407          // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
1408          // C99 library.
1409          return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
1410        }
1411        break;
1412      case 'f':
1413        if (Name == "fabs" && TLI->has(LibFunc::fabs))
1414          return ConstantFoldFP(fabs, V, Ty);
1415        else if (Name == "floor" && TLI->has(LibFunc::floor))
1416          return ConstantFoldFP(floor, V, Ty);
1417        break;
1418      case 'l':
1419        if (Name == "log" && V > 0 && TLI->has(LibFunc::log))
1420          return ConstantFoldFP(log, V, Ty);
1421        else if (Name == "log10" && V > 0 && TLI->has(LibFunc::log10))
1422          return ConstantFoldFP(log10, V, Ty);
1423        else if (F->getIntrinsicID() == Intrinsic::sqrt &&
1424                 (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())) {
1425          if (V >= -0.0)
1426            return ConstantFoldFP(sqrt, V, Ty);
1427          else // Undefined
1428            return Constant::getNullValue(Ty);
1429        }
1430        break;
1431      case 's':
1432        if (Name == "sin" && TLI->has(LibFunc::sin))
1433          return ConstantFoldFP(sin, V, Ty);
1434        else if (Name == "sinh" && TLI->has(LibFunc::sinh))
1435          return ConstantFoldFP(sinh, V, Ty);
1436        else if (Name == "sqrt" && V >= 0 && TLI->has(LibFunc::sqrt))
1437          return ConstantFoldFP(sqrt, V, Ty);
1438        else if (Name == "sqrtf" && V >= 0 && TLI->has(LibFunc::sqrtf))
1439          return ConstantFoldFP(sqrt, V, Ty);
1440        else if (Name == "sinf" && TLI->has(LibFunc::sinf))
1441          return ConstantFoldFP(sin, V, Ty);
1442        break;
1443      case 't':
1444        if (Name == "tan" && TLI->has(LibFunc::tan))
1445          return ConstantFoldFP(tan, V, Ty);
1446        else if (Name == "tanh" && TLI->has(LibFunc::tanh))
1447          return ConstantFoldFP(tanh, V, Ty);
1448        break;
1449      default:
1450        break;
1451      }
1452      return 0;
1453    }
1454
1455    if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
1456      switch (F->getIntrinsicID()) {
1457      case Intrinsic::bswap:
1458        return ConstantInt::get(F->getContext(), Op->getValue().byteSwap());
1459      case Intrinsic::ctpop:
1460        return ConstantInt::get(Ty, Op->getValue().countPopulation());
1461      case Intrinsic::convert_from_fp16: {
1462        APFloat Val(APFloat::IEEEhalf, Op->getValue());
1463
1464        bool lost = false;
1465        APFloat::opStatus status =
1466          Val.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &lost);
1467
1468        // Conversion is always precise.
1469        (void)status;
1470        assert(status == APFloat::opOK && !lost &&
1471               "Precision lost during fp16 constfolding");
1472
1473        return ConstantFP::get(F->getContext(), Val);
1474      }
1475      default:
1476        return 0;
1477      }
1478    }
1479
1480    // Support ConstantVector in case we have an Undef in the top.
1481    if (isa<ConstantVector>(Operands[0]) ||
1482        isa<ConstantDataVector>(Operands[0])) {
1483      Constant *Op = cast<Constant>(Operands[0]);
1484      switch (F->getIntrinsicID()) {
1485      default: break;
1486      case Intrinsic::x86_sse_cvtss2si:
1487      case Intrinsic::x86_sse_cvtss2si64:
1488      case Intrinsic::x86_sse2_cvtsd2si:
1489      case Intrinsic::x86_sse2_cvtsd2si64:
1490        if (ConstantFP *FPOp =
1491              dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
1492          return ConstantFoldConvertToInt(FPOp->getValueAPF(),
1493                                          /*roundTowardZero=*/false, Ty);
1494      case Intrinsic::x86_sse_cvttss2si:
1495      case Intrinsic::x86_sse_cvttss2si64:
1496      case Intrinsic::x86_sse2_cvttsd2si:
1497      case Intrinsic::x86_sse2_cvttsd2si64:
1498        if (ConstantFP *FPOp =
1499              dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
1500          return ConstantFoldConvertToInt(FPOp->getValueAPF(),
1501                                          /*roundTowardZero=*/true, Ty);
1502      }
1503    }
1504
1505    if (isa<UndefValue>(Operands[0])) {
1506      if (F->getIntrinsicID() == Intrinsic::bswap)
1507        return Operands[0];
1508      return 0;
1509    }
1510
1511    return 0;
1512  }
1513
1514  if (Operands.size() == 2) {
1515    if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
1516      if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
1517        return 0;
1518      double Op1V;
1519      if (Ty->isFloatTy())
1520        Op1V = Op1->getValueAPF().convertToFloat();
1521      else if (Ty->isDoubleTy())
1522        Op1V = Op1->getValueAPF().convertToDouble();
1523      else {
1524        bool unused;
1525        APFloat APF = Op1->getValueAPF();
1526        APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused);
1527        Op1V = APF.convertToDouble();
1528      }
1529
1530      if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
1531        if (Op2->getType() != Op1->getType())
1532          return 0;
1533
1534        double Op2V;
1535        if (Ty->isFloatTy())
1536          Op2V = Op2->getValueAPF().convertToFloat();
1537        else if (Ty->isDoubleTy())
1538          Op2V = Op2->getValueAPF().convertToDouble();
1539        else {
1540          bool unused;
1541          APFloat APF = Op2->getValueAPF();
1542          APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused);
1543          Op2V = APF.convertToDouble();
1544        }
1545
1546        if (F->getIntrinsicID() == Intrinsic::pow) {
1547          return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1548        }
1549        if (!TLI)
1550          return 0;
1551        if (Name == "pow" && TLI->has(LibFunc::pow))
1552          return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1553        if (Name == "fmod" && TLI->has(LibFunc::fmod))
1554          return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
1555        if (Name == "atan2" && TLI->has(LibFunc::atan2))
1556          return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
1557      } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
1558        if (F->getIntrinsicID() == Intrinsic::powi && Ty->isHalfTy())
1559          return ConstantFP::get(F->getContext(),
1560                                 APFloat((float)std::pow((float)Op1V,
1561                                                 (int)Op2C->getZExtValue())));
1562        if (F->getIntrinsicID() == Intrinsic::powi && Ty->isFloatTy())
1563          return ConstantFP::get(F->getContext(),
1564                                 APFloat((float)std::pow((float)Op1V,
1565                                                 (int)Op2C->getZExtValue())));
1566        if (F->getIntrinsicID() == Intrinsic::powi && Ty->isDoubleTy())
1567          return ConstantFP::get(F->getContext(),
1568                                 APFloat((double)std::pow((double)Op1V,
1569                                                   (int)Op2C->getZExtValue())));
1570      }
1571      return 0;
1572    }
1573
1574    if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
1575      if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
1576        switch (F->getIntrinsicID()) {
1577        default: break;
1578        case Intrinsic::sadd_with_overflow:
1579        case Intrinsic::uadd_with_overflow:
1580        case Intrinsic::ssub_with_overflow:
1581        case Intrinsic::usub_with_overflow:
1582        case Intrinsic::smul_with_overflow:
1583        case Intrinsic::umul_with_overflow: {
1584          APInt Res;
1585          bool Overflow;
1586          switch (F->getIntrinsicID()) {
1587          default: llvm_unreachable("Invalid case");
1588          case Intrinsic::sadd_with_overflow:
1589            Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
1590            break;
1591          case Intrinsic::uadd_with_overflow:
1592            Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
1593            break;
1594          case Intrinsic::ssub_with_overflow:
1595            Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
1596            break;
1597          case Intrinsic::usub_with_overflow:
1598            Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
1599            break;
1600          case Intrinsic::smul_with_overflow:
1601            Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
1602            break;
1603          case Intrinsic::umul_with_overflow:
1604            Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow);
1605            break;
1606          }
1607          Constant *Ops[] = {
1608            ConstantInt::get(F->getContext(), Res),
1609            ConstantInt::get(Type::getInt1Ty(F->getContext()), Overflow)
1610          };
1611          return ConstantStruct::get(cast<StructType>(F->getReturnType()), Ops);
1612        }
1613        case Intrinsic::cttz:
1614          if (Op2->isOne() && Op1->isZero()) // cttz(0, 1) is undef.
1615            return UndefValue::get(Ty);
1616          return ConstantInt::get(Ty, Op1->getValue().countTrailingZeros());
1617        case Intrinsic::ctlz:
1618          if (Op2->isOne() && Op1->isZero()) // ctlz(0, 1) is undef.
1619            return UndefValue::get(Ty);
1620          return ConstantInt::get(Ty, Op1->getValue().countLeadingZeros());
1621        }
1622      }
1623
1624      return 0;
1625    }
1626    return 0;
1627  }
1628  return 0;
1629}
1630