ConstantFolding.cpp revision 8cd4efb6a5e51b4e77039c17338f290ca3a8ee92
1//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines routines for folding instructions into constants.
11//
12// Also, to supplement the basic VMCore ConstantExpr simplifications,
13// this file defines some additional folding routines that can make use of
14// TargetData information. These functions cannot go in VMCore due to library
15// dependency issues.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Analysis/ConstantFolding.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/Analysis/ValueTracking.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/StringMap.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/GetElementPtrTypeIterator.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Support/FEnv.h"
34#include <cerrno>
35#include <cmath>
36using namespace llvm;
37
38//===----------------------------------------------------------------------===//
39// Constant Folding internal helper functions
40//===----------------------------------------------------------------------===//
41
42/// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
43/// TargetData.  This always returns a non-null constant, but it may be a
44/// ConstantExpr if unfoldable.
45static Constant *FoldBitCast(Constant *C, const Type *DestTy,
46                             const TargetData &TD) {
47
48  // This only handles casts to vectors currently.
49  const VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
50  if (DestVTy == 0)
51    return ConstantExpr::getBitCast(C, DestTy);
52
53  // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
54  // vector so the code below can handle it uniformly.
55  if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
56    Constant *Ops = C; // don't take the address of C!
57    return FoldBitCast(ConstantVector::get(&Ops, 1), DestTy, TD);
58  }
59
60  // If this is a bitcast from constant vector -> vector, fold it.
61  ConstantVector *CV = dyn_cast<ConstantVector>(C);
62  if (CV == 0)
63    return ConstantExpr::getBitCast(C, DestTy);
64
65  // If the element types match, VMCore can fold it.
66  unsigned NumDstElt = DestVTy->getNumElements();
67  unsigned NumSrcElt = CV->getNumOperands();
68  if (NumDstElt == NumSrcElt)
69    return ConstantExpr::getBitCast(C, DestTy);
70
71  const Type *SrcEltTy = CV->getType()->getElementType();
72  const Type *DstEltTy = DestVTy->getElementType();
73
74  // Otherwise, we're changing the number of elements in a vector, which
75  // requires endianness information to do the right thing.  For example,
76  //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
77  // folds to (little endian):
78  //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
79  // and to (big endian):
80  //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
81
82  // First thing is first.  We only want to think about integer here, so if
83  // we have something in FP form, recast it as integer.
84  if (DstEltTy->isFloatingPointTy()) {
85    // Fold to an vector of integers with same size as our FP type.
86    unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
87    const Type *DestIVTy =
88      VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
89    // Recursively handle this integer conversion, if possible.
90    C = FoldBitCast(C, DestIVTy, TD);
91    if (!C) return ConstantExpr::getBitCast(C, DestTy);
92
93    // Finally, VMCore can handle this now that #elts line up.
94    return ConstantExpr::getBitCast(C, DestTy);
95  }
96
97  // Okay, we know the destination is integer, if the input is FP, convert
98  // it to integer first.
99  if (SrcEltTy->isFloatingPointTy()) {
100    unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
101    const Type *SrcIVTy =
102      VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
103    // Ask VMCore to do the conversion now that #elts line up.
104    C = ConstantExpr::getBitCast(C, SrcIVTy);
105    CV = dyn_cast<ConstantVector>(C);
106    if (!CV)  // If VMCore wasn't able to fold it, bail out.
107      return C;
108  }
109
110  // Now we know that the input and output vectors are both integer vectors
111  // of the same size, and that their #elements is not the same.  Do the
112  // conversion here, which depends on whether the input or output has
113  // more elements.
114  bool isLittleEndian = TD.isLittleEndian();
115
116  SmallVector<Constant*, 32> Result;
117  if (NumDstElt < NumSrcElt) {
118    // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
119    Constant *Zero = Constant::getNullValue(DstEltTy);
120    unsigned Ratio = NumSrcElt/NumDstElt;
121    unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
122    unsigned SrcElt = 0;
123    for (unsigned i = 0; i != NumDstElt; ++i) {
124      // Build each element of the result.
125      Constant *Elt = Zero;
126      unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
127      for (unsigned j = 0; j != Ratio; ++j) {
128        Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(SrcElt++));
129        if (!Src)  // Reject constantexpr elements.
130          return ConstantExpr::getBitCast(C, DestTy);
131
132        // Zero extend the element to the right size.
133        Src = ConstantExpr::getZExt(Src, Elt->getType());
134
135        // Shift it to the right place, depending on endianness.
136        Src = ConstantExpr::getShl(Src,
137                                   ConstantInt::get(Src->getType(), ShiftAmt));
138        ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
139
140        // Mix it in.
141        Elt = ConstantExpr::getOr(Elt, Src);
142      }
143      Result.push_back(Elt);
144    }
145  } else {
146    // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
147    unsigned Ratio = NumDstElt/NumSrcElt;
148    unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
149
150    // Loop over each source value, expanding into multiple results.
151    for (unsigned i = 0; i != NumSrcElt; ++i) {
152      Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(i));
153      if (!Src)  // Reject constantexpr elements.
154        return ConstantExpr::getBitCast(C, DestTy);
155
156      unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
157      for (unsigned j = 0; j != Ratio; ++j) {
158        // Shift the piece of the value into the right place, depending on
159        // endianness.
160        Constant *Elt = ConstantExpr::getLShr(Src,
161                                    ConstantInt::get(Src->getType(), ShiftAmt));
162        ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
163
164        // Truncate and remember this piece.
165        Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
166      }
167    }
168  }
169
170  return ConstantVector::get(Result.data(), Result.size());
171}
172
173
174/// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
175/// from a global, return the global and the constant.  Because of
176/// constantexprs, this function is recursive.
177static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
178                                       int64_t &Offset, const TargetData &TD) {
179  // Trivial case, constant is the global.
180  if ((GV = dyn_cast<GlobalValue>(C))) {
181    Offset = 0;
182    return true;
183  }
184
185  // Otherwise, if this isn't a constant expr, bail out.
186  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
187  if (!CE) return false;
188
189  // Look through ptr->int and ptr->ptr casts.
190  if (CE->getOpcode() == Instruction::PtrToInt ||
191      CE->getOpcode() == Instruction::BitCast)
192    return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
193
194  // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
195  if (CE->getOpcode() == Instruction::GetElementPtr) {
196    // Cannot compute this if the element type of the pointer is missing size
197    // info.
198    if (!cast<PointerType>(CE->getOperand(0)->getType())
199                 ->getElementType()->isSized())
200      return false;
201
202    // If the base isn't a global+constant, we aren't either.
203    if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
204      return false;
205
206    // Otherwise, add any offset that our operands provide.
207    gep_type_iterator GTI = gep_type_begin(CE);
208    for (User::const_op_iterator i = CE->op_begin() + 1, e = CE->op_end();
209         i != e; ++i, ++GTI) {
210      ConstantInt *CI = dyn_cast<ConstantInt>(*i);
211      if (!CI) return false;  // Index isn't a simple constant?
212      if (CI->isZero()) continue;  // Not adding anything.
213
214      if (const StructType *ST = dyn_cast<StructType>(*GTI)) {
215        // N = N + Offset
216        Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
217      } else {
218        const SequentialType *SQT = cast<SequentialType>(*GTI);
219        Offset += TD.getTypeAllocSize(SQT->getElementType())*CI->getSExtValue();
220      }
221    }
222    return true;
223  }
224
225  return false;
226}
227
228/// ReadDataFromGlobal - Recursive helper to read bits out of global.  C is the
229/// constant being copied out of. ByteOffset is an offset into C.  CurPtr is the
230/// pointer to copy results into and BytesLeft is the number of bytes left in
231/// the CurPtr buffer.  TD is the target data.
232static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
233                               unsigned char *CurPtr, unsigned BytesLeft,
234                               const TargetData &TD) {
235  assert(ByteOffset <= TD.getTypeAllocSize(C->getType()) &&
236         "Out of range access");
237
238  // If this element is zero or undefined, we can just return since *CurPtr is
239  // zero initialized.
240  if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
241    return true;
242
243  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
244    if (CI->getBitWidth() > 64 ||
245        (CI->getBitWidth() & 7) != 0)
246      return false;
247
248    uint64_t Val = CI->getZExtValue();
249    unsigned IntBytes = unsigned(CI->getBitWidth()/8);
250
251    for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
252      CurPtr[i] = (unsigned char)(Val >> (ByteOffset * 8));
253      ++ByteOffset;
254    }
255    return true;
256  }
257
258  if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
259    if (CFP->getType()->isDoubleTy()) {
260      C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), TD);
261      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
262    }
263    if (CFP->getType()->isFloatTy()){
264      C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), TD);
265      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
266    }
267    return false;
268  }
269
270  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
271    const StructLayout *SL = TD.getStructLayout(CS->getType());
272    unsigned Index = SL->getElementContainingOffset(ByteOffset);
273    uint64_t CurEltOffset = SL->getElementOffset(Index);
274    ByteOffset -= CurEltOffset;
275
276    while (1) {
277      // If the element access is to the element itself and not to tail padding,
278      // read the bytes from the element.
279      uint64_t EltSize = TD.getTypeAllocSize(CS->getOperand(Index)->getType());
280
281      if (ByteOffset < EltSize &&
282          !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
283                              BytesLeft, TD))
284        return false;
285
286      ++Index;
287
288      // Check to see if we read from the last struct element, if so we're done.
289      if (Index == CS->getType()->getNumElements())
290        return true;
291
292      // If we read all of the bytes we needed from this element we're done.
293      uint64_t NextEltOffset = SL->getElementOffset(Index);
294
295      if (BytesLeft <= NextEltOffset-CurEltOffset-ByteOffset)
296        return true;
297
298      // Move to the next element of the struct.
299      CurPtr += NextEltOffset-CurEltOffset-ByteOffset;
300      BytesLeft -= NextEltOffset-CurEltOffset-ByteOffset;
301      ByteOffset = 0;
302      CurEltOffset = NextEltOffset;
303    }
304    // not reached.
305  }
306
307  if (ConstantArray *CA = dyn_cast<ConstantArray>(C)) {
308    uint64_t EltSize = TD.getTypeAllocSize(CA->getType()->getElementType());
309    uint64_t Index = ByteOffset / EltSize;
310    uint64_t Offset = ByteOffset - Index * EltSize;
311    for (; Index != CA->getType()->getNumElements(); ++Index) {
312      if (!ReadDataFromGlobal(CA->getOperand(Index), Offset, CurPtr,
313                              BytesLeft, TD))
314        return false;
315      if (EltSize >= BytesLeft)
316        return true;
317
318      Offset = 0;
319      BytesLeft -= EltSize;
320      CurPtr += EltSize;
321    }
322    return true;
323  }
324
325  if (ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
326    uint64_t EltSize = TD.getTypeAllocSize(CV->getType()->getElementType());
327    uint64_t Index = ByteOffset / EltSize;
328    uint64_t Offset = ByteOffset - Index * EltSize;
329    for (; Index != CV->getType()->getNumElements(); ++Index) {
330      if (!ReadDataFromGlobal(CV->getOperand(Index), Offset, CurPtr,
331                              BytesLeft, TD))
332        return false;
333      if (EltSize >= BytesLeft)
334        return true;
335
336      Offset = 0;
337      BytesLeft -= EltSize;
338      CurPtr += EltSize;
339    }
340    return true;
341  }
342
343  // Otherwise, unknown initializer type.
344  return false;
345}
346
347static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
348                                                 const TargetData &TD) {
349  const Type *LoadTy = cast<PointerType>(C->getType())->getElementType();
350  const IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
351
352  // If this isn't an integer load we can't fold it directly.
353  if (!IntType) {
354    // If this is a float/double load, we can try folding it as an int32/64 load
355    // and then bitcast the result.  This can be useful for union cases.  Note
356    // that address spaces don't matter here since we're not going to result in
357    // an actual new load.
358    const Type *MapTy;
359    if (LoadTy->isFloatTy())
360      MapTy = Type::getInt32PtrTy(C->getContext());
361    else if (LoadTy->isDoubleTy())
362      MapTy = Type::getInt64PtrTy(C->getContext());
363    else if (LoadTy->isVectorTy()) {
364      MapTy = IntegerType::get(C->getContext(),
365                               TD.getTypeAllocSizeInBits(LoadTy));
366      MapTy = PointerType::getUnqual(MapTy);
367    } else
368      return 0;
369
370    C = FoldBitCast(C, MapTy, TD);
371    if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, TD))
372      return FoldBitCast(Res, LoadTy, TD);
373    return 0;
374  }
375
376  unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
377  if (BytesLoaded > 32 || BytesLoaded == 0) return 0;
378
379  GlobalValue *GVal;
380  int64_t Offset;
381  if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD))
382    return 0;
383
384  GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
385  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
386      !GV->getInitializer()->getType()->isSized())
387    return 0;
388
389  // If we're loading off the beginning of the global, some bytes may be valid,
390  // but we don't try to handle this.
391  if (Offset < 0) return 0;
392
393  // If we're not accessing anything in this constant, the result is undefined.
394  if (uint64_t(Offset) >= TD.getTypeAllocSize(GV->getInitializer()->getType()))
395    return UndefValue::get(IntType);
396
397  unsigned char RawBytes[32] = {0};
398  if (!ReadDataFromGlobal(GV->getInitializer(), Offset, RawBytes,
399                          BytesLoaded, TD))
400    return 0;
401
402  APInt ResultVal = APInt(IntType->getBitWidth(), RawBytes[BytesLoaded-1]);
403  for (unsigned i = 1; i != BytesLoaded; ++i) {
404    ResultVal <<= 8;
405    ResultVal |= RawBytes[BytesLoaded-1-i];
406  }
407
408  return ConstantInt::get(IntType->getContext(), ResultVal);
409}
410
411/// ConstantFoldLoadFromConstPtr - Return the value that a load from C would
412/// produce if it is constant and determinable.  If this is not determinable,
413/// return null.
414Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
415                                             const TargetData *TD) {
416  // First, try the easy cases:
417  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
418    if (GV->isConstant() && GV->hasDefinitiveInitializer())
419      return GV->getInitializer();
420
421  // If the loaded value isn't a constant expr, we can't handle it.
422  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
423  if (!CE) return 0;
424
425  if (CE->getOpcode() == Instruction::GetElementPtr) {
426    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
427      if (GV->isConstant() && GV->hasDefinitiveInitializer())
428        if (Constant *V =
429             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
430          return V;
431  }
432
433  // Instead of loading constant c string, use corresponding integer value
434  // directly if string length is small enough.
435  std::string Str;
436  if (TD && GetConstantStringInfo(CE, Str) && !Str.empty()) {
437    unsigned StrLen = Str.length();
438    const Type *Ty = cast<PointerType>(CE->getType())->getElementType();
439    unsigned NumBits = Ty->getPrimitiveSizeInBits();
440    // Replace load with immediate integer if the result is an integer or fp
441    // value.
442    if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
443        (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
444      APInt StrVal(NumBits, 0);
445      APInt SingleChar(NumBits, 0);
446      if (TD->isLittleEndian()) {
447        for (signed i = StrLen-1; i >= 0; i--) {
448          SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
449          StrVal = (StrVal << 8) | SingleChar;
450        }
451      } else {
452        for (unsigned i = 0; i < StrLen; i++) {
453          SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
454          StrVal = (StrVal << 8) | SingleChar;
455        }
456        // Append NULL at the end.
457        SingleChar = 0;
458        StrVal = (StrVal << 8) | SingleChar;
459      }
460
461      Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
462      if (Ty->isFloatingPointTy())
463        Res = ConstantExpr::getBitCast(Res, Ty);
464      return Res;
465    }
466  }
467
468  // If this load comes from anywhere in a constant global, and if the global
469  // is all undef or zero, we know what it loads.
470  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(CE))){
471    if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
472      const Type *ResTy = cast<PointerType>(C->getType())->getElementType();
473      if (GV->getInitializer()->isNullValue())
474        return Constant::getNullValue(ResTy);
475      if (isa<UndefValue>(GV->getInitializer()))
476        return UndefValue::get(ResTy);
477    }
478  }
479
480  // Try hard to fold loads from bitcasted strange and non-type-safe things.  We
481  // currently don't do any of this for big endian systems.  It can be
482  // generalized in the future if someone is interested.
483  if (TD && TD->isLittleEndian())
484    return FoldReinterpretLoadFromConstPtr(CE, *TD);
485  return 0;
486}
487
488static Constant *ConstantFoldLoadInst(const LoadInst *LI, const TargetData *TD){
489  if (LI->isVolatile()) return 0;
490
491  if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
492    return ConstantFoldLoadFromConstPtr(C, TD);
493
494  return 0;
495}
496
497/// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
498/// Attempt to symbolically evaluate the result of a binary operator merging
499/// these together.  If target data info is available, it is provided as TD,
500/// otherwise TD is null.
501static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
502                                           Constant *Op1, const TargetData *TD){
503  // SROA
504
505  // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
506  // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
507  // bits.
508
509
510  // If the constant expr is something like &A[123] - &A[4].f, fold this into a
511  // constant.  This happens frequently when iterating over a global array.
512  if (Opc == Instruction::Sub && TD) {
513    GlobalValue *GV1, *GV2;
514    int64_t Offs1, Offs2;
515
516    if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
517      if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
518          GV1 == GV2) {
519        // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
520        return ConstantInt::get(Op0->getType(), Offs1-Offs2);
521      }
522  }
523
524  return 0;
525}
526
527/// CastGEPIndices - If array indices are not pointer-sized integers,
528/// explicitly cast them so that they aren't implicitly casted by the
529/// getelementptr.
530static Constant *CastGEPIndices(Constant *const *Ops, unsigned NumOps,
531                                const Type *ResultTy,
532                                const TargetData *TD) {
533  if (!TD) return 0;
534  const Type *IntPtrTy = TD->getIntPtrType(ResultTy->getContext());
535
536  bool Any = false;
537  SmallVector<Constant*, 32> NewIdxs;
538  for (unsigned i = 1; i != NumOps; ++i) {
539    if ((i == 1 ||
540         !isa<StructType>(GetElementPtrInst::getIndexedType(Ops[0]->getType(),
541                                        reinterpret_cast<Value *const *>(Ops+1),
542                                                            i-1))) &&
543        Ops[i]->getType() != IntPtrTy) {
544      Any = true;
545      NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
546                                                                      true,
547                                                                      IntPtrTy,
548                                                                      true),
549                                              Ops[i], IntPtrTy));
550    } else
551      NewIdxs.push_back(Ops[i]);
552  }
553  if (!Any) return 0;
554
555  Constant *C =
556    ConstantExpr::getGetElementPtr(Ops[0], &NewIdxs[0], NewIdxs.size());
557  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
558    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
559      C = Folded;
560  return C;
561}
562
563/// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
564/// constant expression, do so.
565static Constant *SymbolicallyEvaluateGEP(Constant *const *Ops, unsigned NumOps,
566                                         const Type *ResultTy,
567                                         const TargetData *TD) {
568  Constant *Ptr = Ops[0];
569  if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized())
570    return 0;
571
572  unsigned BitWidth =
573    TD->getTypeSizeInBits(TD->getIntPtrType(Ptr->getContext()));
574
575  // If this is a constant expr gep that is effectively computing an
576  // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
577  for (unsigned i = 1; i != NumOps; ++i)
578    if (!isa<ConstantInt>(Ops[i])) {
579
580      // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
581      // "inttoptr (sub (ptrtoint Ptr), V)"
582      if (NumOps == 2 &&
583          cast<PointerType>(ResultTy)->getElementType()->isIntegerTy(8)) {
584        ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[1]);
585        if (CE && CE->getOpcode() == Instruction::Sub &&
586            isa<ConstantInt>(CE->getOperand(0)) &&
587            cast<ConstantInt>(CE->getOperand(0))->isZero()) {
588          Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
589          Res = ConstantExpr::getSub(Res, CE->getOperand(1));
590          Res = ConstantExpr::getIntToPtr(Res, ResultTy);
591          if (ConstantExpr *ResCE = dyn_cast<ConstantExpr>(Res))
592            Res = ConstantFoldConstantExpression(ResCE, TD);
593          return Res;
594        }
595      }
596      return 0;
597    }
598
599  APInt Offset = APInt(BitWidth,
600                       TD->getIndexedOffset(Ptr->getType(),
601                                            (Value**)Ops+1, NumOps-1));
602  Ptr = cast<Constant>(Ptr->stripPointerCasts());
603
604  // If this is a GEP of a GEP, fold it all into a single GEP.
605  while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
606    SmallVector<Value *, 4> NestedOps(GEP->op_begin()+1, GEP->op_end());
607
608    // Do not try the incorporate the sub-GEP if some index is not a number.
609    bool AllConstantInt = true;
610    for (unsigned i = 0, e = NestedOps.size(); i != e; ++i)
611      if (!isa<ConstantInt>(NestedOps[i])) {
612        AllConstantInt = false;
613        break;
614      }
615    if (!AllConstantInt)
616      break;
617
618    Ptr = cast<Constant>(GEP->getOperand(0));
619    Offset += APInt(BitWidth,
620                    TD->getIndexedOffset(Ptr->getType(),
621                                         (Value**)NestedOps.data(),
622                                         NestedOps.size()));
623    Ptr = cast<Constant>(Ptr->stripPointerCasts());
624  }
625
626  // If the base value for this address is a literal integer value, fold the
627  // getelementptr to the resulting integer value casted to the pointer type.
628  APInt BasePtr(BitWidth, 0);
629  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
630    if (CE->getOpcode() == Instruction::IntToPtr)
631      if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
632        BasePtr = Base->getValue().zextOrTrunc(BitWidth);
633  if (Ptr->isNullValue() || BasePtr != 0) {
634    Constant *C = ConstantInt::get(Ptr->getContext(), Offset+BasePtr);
635    return ConstantExpr::getIntToPtr(C, ResultTy);
636  }
637
638  // Otherwise form a regular getelementptr. Recompute the indices so that
639  // we eliminate over-indexing of the notional static type array bounds.
640  // This makes it easy to determine if the getelementptr is "inbounds".
641  // Also, this helps GlobalOpt do SROA on GlobalVariables.
642  const Type *Ty = Ptr->getType();
643  SmallVector<Constant*, 32> NewIdxs;
644  do {
645    if (const SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
646      if (ATy->isPointerTy()) {
647        // The only pointer indexing we'll do is on the first index of the GEP.
648        if (!NewIdxs.empty())
649          break;
650
651        // Only handle pointers to sized types, not pointers to functions.
652        if (!ATy->getElementType()->isSized())
653          return 0;
654      }
655
656      // Determine which element of the array the offset points into.
657      APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
658      const IntegerType *IntPtrTy = TD->getIntPtrType(Ty->getContext());
659      if (ElemSize == 0)
660        // The element size is 0. This may be [0 x Ty]*, so just use a zero
661        // index for this level and proceed to the next level to see if it can
662        // accommodate the offset.
663        NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
664      else {
665        // The element size is non-zero divide the offset by the element
666        // size (rounding down), to compute the index at this level.
667        APInt NewIdx = Offset.udiv(ElemSize);
668        Offset -= NewIdx * ElemSize;
669        NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
670      }
671      Ty = ATy->getElementType();
672    } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
673      // Determine which field of the struct the offset points into. The
674      // getZExtValue is at least as safe as the StructLayout API because we
675      // know the offset is within the struct at this point.
676      const StructLayout &SL = *TD->getStructLayout(STy);
677      unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
678      NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
679                                         ElIdx));
680      Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
681      Ty = STy->getTypeAtIndex(ElIdx);
682    } else {
683      // We've reached some non-indexable type.
684      break;
685    }
686  } while (Ty != cast<PointerType>(ResultTy)->getElementType());
687
688  // If we haven't used up the entire offset by descending the static
689  // type, then the offset is pointing into the middle of an indivisible
690  // member, so we can't simplify it.
691  if (Offset != 0)
692    return 0;
693
694  // Create a GEP.
695  Constant *C =
696    ConstantExpr::getGetElementPtr(Ptr, &NewIdxs[0], NewIdxs.size());
697  assert(cast<PointerType>(C->getType())->getElementType() == Ty &&
698         "Computed GetElementPtr has unexpected type!");
699
700  // If we ended up indexing a member with a type that doesn't match
701  // the type of what the original indices indexed, add a cast.
702  if (Ty != cast<PointerType>(ResultTy)->getElementType())
703    C = FoldBitCast(C, ResultTy, *TD);
704
705  return C;
706}
707
708
709
710//===----------------------------------------------------------------------===//
711// Constant Folding public APIs
712//===----------------------------------------------------------------------===//
713
714/// ConstantFoldInstruction - Try to constant fold the specified instruction.
715/// If successful, the constant result is returned, if not, null is returned.
716/// Note that this fails if not all of the operands are constant.  Otherwise,
717/// this function can only fail when attempting to fold instructions like loads
718/// and stores, which have no constant expression form.
719Constant *llvm::ConstantFoldInstruction(Instruction *I, const TargetData *TD) {
720  // Handle PHI nodes quickly here...
721  if (PHINode *PN = dyn_cast<PHINode>(I)) {
722    Constant *CommonValue = 0;
723
724    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
725      Value *Incoming = PN->getIncomingValue(i);
726      // If the incoming value is undef then skip it.  Note that while we could
727      // skip the value if it is equal to the phi node itself we choose not to
728      // because that would break the rule that constant folding only applies if
729      // all operands are constants.
730      if (isa<UndefValue>(Incoming))
731        continue;
732      // If the incoming value is not a constant, or is a different constant to
733      // the one we saw previously, then give up.
734      Constant *C = dyn_cast<Constant>(Incoming);
735      if (!C || (CommonValue && C != CommonValue))
736        return 0;
737      CommonValue = C;
738    }
739
740    // If we reach here, all incoming values are the same constant or undef.
741    return CommonValue ? CommonValue : UndefValue::get(PN->getType());
742  }
743
744  // Scan the operand list, checking to see if they are all constants, if so,
745  // hand off to ConstantFoldInstOperands.
746  SmallVector<Constant*, 8> Ops;
747  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
748    if (Constant *Op = dyn_cast<Constant>(*i))
749      Ops.push_back(Op);
750    else
751      return 0;  // All operands not constant!
752
753  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
754    return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
755                                           TD);
756
757  if (const LoadInst *LI = dyn_cast<LoadInst>(I))
758    return ConstantFoldLoadInst(LI, TD);
759
760  if (InsertValueInst *IVI = dyn_cast<InsertValueInst>(I))
761    return ConstantExpr::getInsertValue(
762                                cast<Constant>(IVI->getAggregateOperand()),
763                                cast<Constant>(IVI->getInsertedValueOperand()),
764                                IVI->idx_begin(), IVI->getNumIndices());
765
766  if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I))
767    return ConstantExpr::getExtractValue(
768                                    cast<Constant>(EVI->getAggregateOperand()),
769                                    EVI->idx_begin(), EVI->getNumIndices());
770
771  return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
772                                  Ops.data(), Ops.size(), TD);
773}
774
775/// ConstantFoldConstantExpression - Attempt to fold the constant expression
776/// using the specified TargetData.  If successful, the constant result is
777/// result is returned, if not, null is returned.
778Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
779                                               const TargetData *TD) {
780  SmallVector<Constant*, 8> Ops;
781  for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end();
782       i != e; ++i) {
783    Constant *NewC = cast<Constant>(*i);
784    // Recursively fold the ConstantExpr's operands.
785    if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC))
786      NewC = ConstantFoldConstantExpression(NewCE, TD);
787    Ops.push_back(NewC);
788  }
789
790  if (CE->isCompare())
791    return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
792                                           TD);
793  return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(),
794                                  Ops.data(), Ops.size(), TD);
795}
796
797/// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
798/// specified opcode and operands.  If successful, the constant result is
799/// returned, if not, null is returned.  Note that this function can fail when
800/// attempting to fold instructions like loads and stores, which have no
801/// constant expression form.
802///
803/// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
804/// information, due to only being passed an opcode and operands. Constant
805/// folding using this function strips this information.
806///
807Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
808                                         Constant* const* Ops, unsigned NumOps,
809                                         const TargetData *TD) {
810  // Handle easy binops first.
811  if (Instruction::isBinaryOp(Opcode)) {
812    if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
813      if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
814        return C;
815
816    return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
817  }
818
819  switch (Opcode) {
820  default: return 0;
821  case Instruction::ICmp:
822  case Instruction::FCmp: assert(0 && "Invalid for compares");
823  case Instruction::Call:
824    if (Function *F = dyn_cast<Function>(Ops[NumOps - 1]))
825      if (canConstantFoldCallTo(F))
826        return ConstantFoldCall(F, Ops, NumOps - 1);
827    return 0;
828  case Instruction::PtrToInt:
829    // If the input is a inttoptr, eliminate the pair.  This requires knowing
830    // the width of a pointer, so it can't be done in ConstantExpr::getCast.
831    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
832      if (TD && CE->getOpcode() == Instruction::IntToPtr) {
833        Constant *Input = CE->getOperand(0);
834        unsigned InWidth = Input->getType()->getScalarSizeInBits();
835        if (TD->getPointerSizeInBits() < InWidth) {
836          Constant *Mask =
837            ConstantInt::get(CE->getContext(), APInt::getLowBitsSet(InWidth,
838                                                  TD->getPointerSizeInBits()));
839          Input = ConstantExpr::getAnd(Input, Mask);
840        }
841        // Do a zext or trunc to get to the dest size.
842        return ConstantExpr::getIntegerCast(Input, DestTy, false);
843      }
844    }
845    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
846  case Instruction::IntToPtr:
847    // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
848    // the int size is >= the ptr size.  This requires knowing the width of a
849    // pointer, so it can't be done in ConstantExpr::getCast.
850    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0]))
851      if (TD &&
852          TD->getPointerSizeInBits() <= CE->getType()->getScalarSizeInBits() &&
853          CE->getOpcode() == Instruction::PtrToInt)
854        return FoldBitCast(CE->getOperand(0), DestTy, *TD);
855
856    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
857  case Instruction::Trunc:
858  case Instruction::ZExt:
859  case Instruction::SExt:
860  case Instruction::FPTrunc:
861  case Instruction::FPExt:
862  case Instruction::UIToFP:
863  case Instruction::SIToFP:
864  case Instruction::FPToUI:
865  case Instruction::FPToSI:
866      return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
867  case Instruction::BitCast:
868    if (TD)
869      return FoldBitCast(Ops[0], DestTy, *TD);
870    return ConstantExpr::getBitCast(Ops[0], DestTy);
871  case Instruction::Select:
872    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
873  case Instruction::ExtractElement:
874    return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
875  case Instruction::InsertElement:
876    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
877  case Instruction::ShuffleVector:
878    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
879  case Instruction::GetElementPtr:
880    if (Constant *C = CastGEPIndices(Ops, NumOps, DestTy, TD))
881      return C;
882    if (Constant *C = SymbolicallyEvaluateGEP(Ops, NumOps, DestTy, TD))
883      return C;
884
885    return ConstantExpr::getGetElementPtr(Ops[0], Ops+1, NumOps-1);
886  }
887}
888
889/// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
890/// instruction (icmp/fcmp) with the specified operands.  If it fails, it
891/// returns a constant expression of the specified operands.
892///
893Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
894                                                Constant *Ops0, Constant *Ops1,
895                                                const TargetData *TD) {
896  // fold: icmp (inttoptr x), null         -> icmp x, 0
897  // fold: icmp (ptrtoint x), 0            -> icmp x, null
898  // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
899  // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
900  //
901  // ConstantExpr::getCompare cannot do this, because it doesn't have TD
902  // around to know if bit truncation is happening.
903  if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
904    if (TD && Ops1->isNullValue()) {
905      const Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
906      if (CE0->getOpcode() == Instruction::IntToPtr) {
907        // Convert the integer value to the right size to ensure we get the
908        // proper extension or truncation.
909        Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
910                                                   IntPtrTy, false);
911        Constant *Null = Constant::getNullValue(C->getType());
912        return ConstantFoldCompareInstOperands(Predicate, C, Null, TD);
913      }
914
915      // Only do this transformation if the int is intptrty in size, otherwise
916      // there is a truncation or extension that we aren't modeling.
917      if (CE0->getOpcode() == Instruction::PtrToInt &&
918          CE0->getType() == IntPtrTy) {
919        Constant *C = CE0->getOperand(0);
920        Constant *Null = Constant::getNullValue(C->getType());
921        return ConstantFoldCompareInstOperands(Predicate, C, Null, TD);
922      }
923    }
924
925    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
926      if (TD && CE0->getOpcode() == CE1->getOpcode()) {
927        const Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
928
929        if (CE0->getOpcode() == Instruction::IntToPtr) {
930          // Convert the integer value to the right size to ensure we get the
931          // proper extension or truncation.
932          Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
933                                                      IntPtrTy, false);
934          Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
935                                                      IntPtrTy, false);
936          return ConstantFoldCompareInstOperands(Predicate, C0, C1, TD);
937        }
938
939        // Only do this transformation if the int is intptrty in size, otherwise
940        // there is a truncation or extension that we aren't modeling.
941        if ((CE0->getOpcode() == Instruction::PtrToInt &&
942             CE0->getType() == IntPtrTy &&
943             CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()))
944          return ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0),
945                                                 CE1->getOperand(0), TD);
946      }
947    }
948
949    // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
950    // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
951    if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
952        CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
953      Constant *LHS =
954        ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0), Ops1,TD);
955      Constant *RHS =
956        ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(1), Ops1,TD);
957      unsigned OpC =
958        Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
959      Constant *Ops[] = { LHS, RHS };
960      return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, 2, TD);
961    }
962  }
963
964  return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
965}
966
967
968/// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
969/// getelementptr constantexpr, return the constant value being addressed by the
970/// constant expression, or null if something is funny and we can't decide.
971Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
972                                                       ConstantExpr *CE) {
973  if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType()))
974    return 0;  // Do not allow stepping over the value!
975
976  // Loop over all of the operands, tracking down which value we are
977  // addressing...
978  gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
979  for (++I; I != E; ++I)
980    if (const StructType *STy = dyn_cast<StructType>(*I)) {
981      ConstantInt *CU = cast<ConstantInt>(I.getOperand());
982      assert(CU->getZExtValue() < STy->getNumElements() &&
983             "Struct index out of range!");
984      unsigned El = (unsigned)CU->getZExtValue();
985      if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
986        C = CS->getOperand(El);
987      } else if (isa<ConstantAggregateZero>(C)) {
988        C = Constant::getNullValue(STy->getElementType(El));
989      } else if (isa<UndefValue>(C)) {
990        C = UndefValue::get(STy->getElementType(El));
991      } else {
992        return 0;
993      }
994    } else if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
995      if (const ArrayType *ATy = dyn_cast<ArrayType>(*I)) {
996        if (CI->getZExtValue() >= ATy->getNumElements())
997         return 0;
998        if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
999          C = CA->getOperand(CI->getZExtValue());
1000        else if (isa<ConstantAggregateZero>(C))
1001          C = Constant::getNullValue(ATy->getElementType());
1002        else if (isa<UndefValue>(C))
1003          C = UndefValue::get(ATy->getElementType());
1004        else
1005          return 0;
1006      } else if (const VectorType *VTy = dyn_cast<VectorType>(*I)) {
1007        if (CI->getZExtValue() >= VTy->getNumElements())
1008          return 0;
1009        if (ConstantVector *CP = dyn_cast<ConstantVector>(C))
1010          C = CP->getOperand(CI->getZExtValue());
1011        else if (isa<ConstantAggregateZero>(C))
1012          C = Constant::getNullValue(VTy->getElementType());
1013        else if (isa<UndefValue>(C))
1014          C = UndefValue::get(VTy->getElementType());
1015        else
1016          return 0;
1017      } else {
1018        return 0;
1019      }
1020    } else {
1021      return 0;
1022    }
1023  return C;
1024}
1025
1026
1027//===----------------------------------------------------------------------===//
1028//  Constant Folding for Calls
1029//
1030
1031/// canConstantFoldCallTo - Return true if its even possible to fold a call to
1032/// the specified function.
1033bool
1034llvm::canConstantFoldCallTo(const Function *F) {
1035  switch (F->getIntrinsicID()) {
1036  case Intrinsic::sqrt:
1037  case Intrinsic::powi:
1038  case Intrinsic::bswap:
1039  case Intrinsic::ctpop:
1040  case Intrinsic::ctlz:
1041  case Intrinsic::cttz:
1042  case Intrinsic::uadd_with_overflow:
1043  case Intrinsic::usub_with_overflow:
1044  case Intrinsic::sadd_with_overflow:
1045  case Intrinsic::ssub_with_overflow:
1046  case Intrinsic::smul_with_overflow:
1047  case Intrinsic::convert_from_fp16:
1048  case Intrinsic::convert_to_fp16:
1049    return true;
1050  default:
1051    return false;
1052  case 0: break;
1053  }
1054
1055  if (!F->hasName()) return false;
1056  StringRef Name = F->getName();
1057
1058  // In these cases, the check of the length is required.  We don't want to
1059  // return true for a name like "cos\0blah" which strcmp would return equal to
1060  // "cos", but has length 8.
1061  switch (Name[0]) {
1062  default: return false;
1063  case 'a':
1064    return Name == "acos" || Name == "asin" ||
1065      Name == "atan" || Name == "atan2";
1066  case 'c':
1067    return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
1068  case 'e':
1069    return Name == "exp";
1070  case 'f':
1071    return Name == "fabs" || Name == "fmod" || Name == "floor";
1072  case 'l':
1073    return Name == "log" || Name == "log10";
1074  case 'p':
1075    return Name == "pow";
1076  case 's':
1077    return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
1078      Name == "sinf" || Name == "sqrtf";
1079  case 't':
1080    return Name == "tan" || Name == "tanh";
1081  }
1082}
1083
1084static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
1085                                const Type *Ty) {
1086  sys::llvm_fenv_clearexcept();
1087  V = NativeFP(V);
1088  if (sys::llvm_fenv_testexcept()) {
1089    sys::llvm_fenv_clearexcept();
1090    return 0;
1091  }
1092
1093  if (Ty->isFloatTy())
1094    return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1095  if (Ty->isDoubleTy())
1096    return ConstantFP::get(Ty->getContext(), APFloat(V));
1097  llvm_unreachable("Can only constant fold float/double");
1098  return 0; // dummy return to suppress warning
1099}
1100
1101static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1102                                      double V, double W, const Type *Ty) {
1103  sys::llvm_fenv_clearexcept();
1104  V = NativeFP(V, W);
1105  if (sys::llvm_fenv_testexcept()) {
1106    sys::llvm_fenv_clearexcept();
1107    return 0;
1108  }
1109
1110  if (Ty->isFloatTy())
1111    return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1112  if (Ty->isDoubleTy())
1113    return ConstantFP::get(Ty->getContext(), APFloat(V));
1114  llvm_unreachable("Can only constant fold float/double");
1115  return 0; // dummy return to suppress warning
1116}
1117
1118/// ConstantFoldCall - Attempt to constant fold a call to the specified function
1119/// with the specified arguments, returning null if unsuccessful.
1120Constant *
1121llvm::ConstantFoldCall(Function *F,
1122                       Constant *const *Operands, unsigned NumOperands) {
1123  if (!F->hasName()) return 0;
1124  StringRef Name = F->getName();
1125
1126  const Type *Ty = F->getReturnType();
1127  if (NumOperands == 1) {
1128    if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
1129      if (Name == "llvm.convert.to.fp16") {
1130        APFloat Val(Op->getValueAPF());
1131
1132        bool lost = false;
1133        Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
1134
1135        return ConstantInt::get(F->getContext(), Val.bitcastToAPInt());
1136      }
1137
1138      if (!Ty->isFloatTy() && !Ty->isDoubleTy())
1139        return 0;
1140
1141      /// We only fold functions with finite arguments. Folding NaN and inf is
1142      /// likely to be aborted with an exception anyway, and some host libms
1143      /// have known errors raising exceptions.
1144      if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
1145        return 0;
1146
1147      /// Currently APFloat versions of these functions do not exist, so we use
1148      /// the host native double versions.  Float versions are not called
1149      /// directly but for all these it is true (float)(f((double)arg)) ==
1150      /// f(arg).  Long double not supported yet.
1151      double V = Ty->isFloatTy() ? (double)Op->getValueAPF().convertToFloat() :
1152                                     Op->getValueAPF().convertToDouble();
1153      switch (Name[0]) {
1154      case 'a':
1155        if (Name == "acos")
1156          return ConstantFoldFP(acos, V, Ty);
1157        else if (Name == "asin")
1158          return ConstantFoldFP(asin, V, Ty);
1159        else if (Name == "atan")
1160          return ConstantFoldFP(atan, V, Ty);
1161        break;
1162      case 'c':
1163        if (Name == "ceil")
1164          return ConstantFoldFP(ceil, V, Ty);
1165        else if (Name == "cos")
1166          return ConstantFoldFP(cos, V, Ty);
1167        else if (Name == "cosh")
1168          return ConstantFoldFP(cosh, V, Ty);
1169        else if (Name == "cosf")
1170          return ConstantFoldFP(cos, V, Ty);
1171        break;
1172      case 'e':
1173        if (Name == "exp")
1174          return ConstantFoldFP(exp, V, Ty);
1175        break;
1176      case 'f':
1177        if (Name == "fabs")
1178          return ConstantFoldFP(fabs, V, Ty);
1179        else if (Name == "floor")
1180          return ConstantFoldFP(floor, V, Ty);
1181        break;
1182      case 'l':
1183        if (Name == "log" && V > 0)
1184          return ConstantFoldFP(log, V, Ty);
1185        else if (Name == "log10" && V > 0)
1186          return ConstantFoldFP(log10, V, Ty);
1187        else if (Name == "llvm.sqrt.f32" ||
1188                 Name == "llvm.sqrt.f64") {
1189          if (V >= -0.0)
1190            return ConstantFoldFP(sqrt, V, Ty);
1191          else // Undefined
1192            return Constant::getNullValue(Ty);
1193        }
1194        break;
1195      case 's':
1196        if (Name == "sin")
1197          return ConstantFoldFP(sin, V, Ty);
1198        else if (Name == "sinh")
1199          return ConstantFoldFP(sinh, V, Ty);
1200        else if (Name == "sqrt" && V >= 0)
1201          return ConstantFoldFP(sqrt, V, Ty);
1202        else if (Name == "sqrtf" && V >= 0)
1203          return ConstantFoldFP(sqrt, V, Ty);
1204        else if (Name == "sinf")
1205          return ConstantFoldFP(sin, V, Ty);
1206        break;
1207      case 't':
1208        if (Name == "tan")
1209          return ConstantFoldFP(tan, V, Ty);
1210        else if (Name == "tanh")
1211          return ConstantFoldFP(tanh, V, Ty);
1212        break;
1213      default:
1214        break;
1215      }
1216      return 0;
1217    }
1218
1219
1220    if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
1221      if (Name.startswith("llvm.bswap"))
1222        return ConstantInt::get(F->getContext(), Op->getValue().byteSwap());
1223      else if (Name.startswith("llvm.ctpop"))
1224        return ConstantInt::get(Ty, Op->getValue().countPopulation());
1225      else if (Name.startswith("llvm.cttz"))
1226        return ConstantInt::get(Ty, Op->getValue().countTrailingZeros());
1227      else if (Name.startswith("llvm.ctlz"))
1228        return ConstantInt::get(Ty, Op->getValue().countLeadingZeros());
1229      else if (Name == "llvm.convert.from.fp16") {
1230        APFloat Val(Op->getValue());
1231
1232        bool lost = false;
1233        APFloat::opStatus status =
1234          Val.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &lost);
1235
1236        // Conversion is always precise.
1237        (void)status;
1238        assert(status == APFloat::opOK && !lost &&
1239               "Precision lost during fp16 constfolding");
1240
1241        return ConstantFP::get(F->getContext(), Val);
1242      }
1243      return 0;
1244    }
1245
1246    if (isa<UndefValue>(Operands[0])) {
1247      if (Name.startswith("llvm.bswap"))
1248        return Operands[0];
1249      return 0;
1250    }
1251
1252    return 0;
1253  }
1254
1255  if (NumOperands == 2) {
1256    if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
1257      if (!Ty->isFloatTy() && !Ty->isDoubleTy())
1258        return 0;
1259      double Op1V = Ty->isFloatTy() ?
1260                      (double)Op1->getValueAPF().convertToFloat() :
1261                      Op1->getValueAPF().convertToDouble();
1262      if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
1263        if (Op2->getType() != Op1->getType())
1264          return 0;
1265
1266        double Op2V = Ty->isFloatTy() ?
1267                      (double)Op2->getValueAPF().convertToFloat():
1268                      Op2->getValueAPF().convertToDouble();
1269
1270        if (Name == "pow")
1271          return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1272        if (Name == "fmod")
1273          return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
1274        if (Name == "atan2")
1275          return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
1276      } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
1277        if (Name == "llvm.powi.f32")
1278          return ConstantFP::get(F->getContext(),
1279                                 APFloat((float)std::pow((float)Op1V,
1280                                                 (int)Op2C->getZExtValue())));
1281        if (Name == "llvm.powi.f64")
1282          return ConstantFP::get(F->getContext(),
1283                                 APFloat((double)std::pow((double)Op1V,
1284                                                   (int)Op2C->getZExtValue())));
1285      }
1286      return 0;
1287    }
1288
1289
1290    if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
1291      if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
1292        switch (F->getIntrinsicID()) {
1293        default: break;
1294        case Intrinsic::sadd_with_overflow:
1295        case Intrinsic::uadd_with_overflow:
1296        case Intrinsic::ssub_with_overflow:
1297        case Intrinsic::usub_with_overflow:
1298        case Intrinsic::smul_with_overflow: {
1299          APInt Res;
1300          bool Overflow;
1301          switch (F->getIntrinsicID()) {
1302          default: assert(0 && "Invalid case");
1303          case Intrinsic::sadd_with_overflow:
1304            Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
1305            break;
1306          case Intrinsic::uadd_with_overflow:
1307            Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
1308            break;
1309          case Intrinsic::ssub_with_overflow:
1310            Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
1311            break;
1312          case Intrinsic::usub_with_overflow:
1313            Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
1314            break;
1315          case Intrinsic::smul_with_overflow:
1316            Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
1317            break;
1318          }
1319          Constant *Ops[] = {
1320            ConstantInt::get(F->getContext(), Res),
1321            ConstantInt::get(Type::getInt1Ty(F->getContext()), Overflow)
1322          };
1323          return ConstantStruct::get(F->getContext(), Ops, 2, false);
1324        }
1325        }
1326      }
1327
1328      return 0;
1329    }
1330    return 0;
1331  }
1332  return 0;
1333}
1334