ConstantFolding.cpp revision a9203109f4ac95aa7e9624f2838e3d89623ec902
1//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines routines for folding instructions into constants.
11//
12// Also, to supplement the basic VMCore ConstantExpr simplifications,
13// this file defines some additional folding routines that can make use of
14// TargetData information. These functions cannot go in VMCore due to library
15// dependency issues.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Analysis/ConstantFolding.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/Operator.h"
27#include "llvm/Analysis/ValueTracking.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/ADT/SmallVector.h"
30#include "llvm/ADT/StringMap.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/GetElementPtrTypeIterator.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/FEnv.h"
35#include <cerrno>
36#include <cmath>
37using namespace llvm;
38
39//===----------------------------------------------------------------------===//
40// Constant Folding internal helper functions
41//===----------------------------------------------------------------------===//
42
43/// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
44/// TargetData.  This always returns a non-null constant, but it may be a
45/// ConstantExpr if unfoldable.
46static Constant *FoldBitCast(Constant *C, Type *DestTy,
47                             const TargetData &TD) {
48
49  // This only handles casts to vectors currently.
50  VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
51  if (DestVTy == 0)
52    return ConstantExpr::getBitCast(C, DestTy);
53
54  // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
55  // vector so the code below can handle it uniformly.
56  if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
57    Constant *Ops = C; // don't take the address of C!
58    return FoldBitCast(ConstantVector::get(Ops), DestTy, TD);
59  }
60
61  // If this is a bitcast from constant vector -> vector, fold it.
62  ConstantVector *CV = dyn_cast<ConstantVector>(C);
63  if (CV == 0)
64    return ConstantExpr::getBitCast(C, DestTy);
65
66  // If the element types match, VMCore can fold it.
67  unsigned NumDstElt = DestVTy->getNumElements();
68  unsigned NumSrcElt = CV->getNumOperands();
69  if (NumDstElt == NumSrcElt)
70    return ConstantExpr::getBitCast(C, DestTy);
71
72  Type *SrcEltTy = CV->getType()->getElementType();
73  Type *DstEltTy = DestVTy->getElementType();
74
75  // Otherwise, we're changing the number of elements in a vector, which
76  // requires endianness information to do the right thing.  For example,
77  //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
78  // folds to (little endian):
79  //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
80  // and to (big endian):
81  //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
82
83  // First thing is first.  We only want to think about integer here, so if
84  // we have something in FP form, recast it as integer.
85  if (DstEltTy->isFloatingPointTy()) {
86    // Fold to an vector of integers with same size as our FP type.
87    unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
88    Type *DestIVTy =
89      VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
90    // Recursively handle this integer conversion, if possible.
91    C = FoldBitCast(C, DestIVTy, TD);
92    if (!C) return ConstantExpr::getBitCast(C, DestTy);
93
94    // Finally, VMCore can handle this now that #elts line up.
95    return ConstantExpr::getBitCast(C, DestTy);
96  }
97
98  // Okay, we know the destination is integer, if the input is FP, convert
99  // it to integer first.
100  if (SrcEltTy->isFloatingPointTy()) {
101    unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
102    Type *SrcIVTy =
103      VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
104    // Ask VMCore to do the conversion now that #elts line up.
105    C = ConstantExpr::getBitCast(C, SrcIVTy);
106    CV = dyn_cast<ConstantVector>(C);
107    if (!CV)  // If VMCore wasn't able to fold it, bail out.
108      return C;
109  }
110
111  // Now we know that the input and output vectors are both integer vectors
112  // of the same size, and that their #elements is not the same.  Do the
113  // conversion here, which depends on whether the input or output has
114  // more elements.
115  bool isLittleEndian = TD.isLittleEndian();
116
117  SmallVector<Constant*, 32> Result;
118  if (NumDstElt < NumSrcElt) {
119    // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
120    Constant *Zero = Constant::getNullValue(DstEltTy);
121    unsigned Ratio = NumSrcElt/NumDstElt;
122    unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
123    unsigned SrcElt = 0;
124    for (unsigned i = 0; i != NumDstElt; ++i) {
125      // Build each element of the result.
126      Constant *Elt = Zero;
127      unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
128      for (unsigned j = 0; j != Ratio; ++j) {
129        Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(SrcElt++));
130        if (!Src)  // Reject constantexpr elements.
131          return ConstantExpr::getBitCast(C, DestTy);
132
133        // Zero extend the element to the right size.
134        Src = ConstantExpr::getZExt(Src, Elt->getType());
135
136        // Shift it to the right place, depending on endianness.
137        Src = ConstantExpr::getShl(Src,
138                                   ConstantInt::get(Src->getType(), ShiftAmt));
139        ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
140
141        // Mix it in.
142        Elt = ConstantExpr::getOr(Elt, Src);
143      }
144      Result.push_back(Elt);
145    }
146  } else {
147    // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
148    unsigned Ratio = NumDstElt/NumSrcElt;
149    unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
150
151    // Loop over each source value, expanding into multiple results.
152    for (unsigned i = 0; i != NumSrcElt; ++i) {
153      Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(i));
154      if (!Src)  // Reject constantexpr elements.
155        return ConstantExpr::getBitCast(C, DestTy);
156
157      unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
158      for (unsigned j = 0; j != Ratio; ++j) {
159        // Shift the piece of the value into the right place, depending on
160        // endianness.
161        Constant *Elt = ConstantExpr::getLShr(Src,
162                                    ConstantInt::get(Src->getType(), ShiftAmt));
163        ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
164
165        // Truncate and remember this piece.
166        Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
167      }
168    }
169  }
170
171  return ConstantVector::get(Result);
172}
173
174
175/// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
176/// from a global, return the global and the constant.  Because of
177/// constantexprs, this function is recursive.
178static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
179                                       int64_t &Offset, const TargetData &TD) {
180  // Trivial case, constant is the global.
181  if ((GV = dyn_cast<GlobalValue>(C))) {
182    Offset = 0;
183    return true;
184  }
185
186  // Otherwise, if this isn't a constant expr, bail out.
187  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
188  if (!CE) return false;
189
190  // Look through ptr->int and ptr->ptr casts.
191  if (CE->getOpcode() == Instruction::PtrToInt ||
192      CE->getOpcode() == Instruction::BitCast)
193    return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
194
195  // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
196  if (CE->getOpcode() == Instruction::GetElementPtr) {
197    // Cannot compute this if the element type of the pointer is missing size
198    // info.
199    if (!cast<PointerType>(CE->getOperand(0)->getType())
200                 ->getElementType()->isSized())
201      return false;
202
203    // If the base isn't a global+constant, we aren't either.
204    if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
205      return false;
206
207    // Otherwise, add any offset that our operands provide.
208    gep_type_iterator GTI = gep_type_begin(CE);
209    for (User::const_op_iterator i = CE->op_begin() + 1, e = CE->op_end();
210         i != e; ++i, ++GTI) {
211      ConstantInt *CI = dyn_cast<ConstantInt>(*i);
212      if (!CI) return false;  // Index isn't a simple constant?
213      if (CI->isZero()) continue;  // Not adding anything.
214
215      if (StructType *ST = dyn_cast<StructType>(*GTI)) {
216        // N = N + Offset
217        Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
218      } else {
219        SequentialType *SQT = cast<SequentialType>(*GTI);
220        Offset += TD.getTypeAllocSize(SQT->getElementType())*CI->getSExtValue();
221      }
222    }
223    return true;
224  }
225
226  return false;
227}
228
229/// ReadDataFromGlobal - Recursive helper to read bits out of global.  C is the
230/// constant being copied out of. ByteOffset is an offset into C.  CurPtr is the
231/// pointer to copy results into and BytesLeft is the number of bytes left in
232/// the CurPtr buffer.  TD is the target data.
233static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
234                               unsigned char *CurPtr, unsigned BytesLeft,
235                               const TargetData &TD) {
236  assert(ByteOffset <= TD.getTypeAllocSize(C->getType()) &&
237         "Out of range access");
238
239  // If this element is zero or undefined, we can just return since *CurPtr is
240  // zero initialized.
241  if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
242    return true;
243
244  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
245    if (CI->getBitWidth() > 64 ||
246        (CI->getBitWidth() & 7) != 0)
247      return false;
248
249    uint64_t Val = CI->getZExtValue();
250    unsigned IntBytes = unsigned(CI->getBitWidth()/8);
251
252    for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
253      CurPtr[i] = (unsigned char)(Val >> (ByteOffset * 8));
254      ++ByteOffset;
255    }
256    return true;
257  }
258
259  if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
260    if (CFP->getType()->isDoubleTy()) {
261      C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), TD);
262      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
263    }
264    if (CFP->getType()->isFloatTy()){
265      C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), TD);
266      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
267    }
268    return false;
269  }
270
271  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
272    const StructLayout *SL = TD.getStructLayout(CS->getType());
273    unsigned Index = SL->getElementContainingOffset(ByteOffset);
274    uint64_t CurEltOffset = SL->getElementOffset(Index);
275    ByteOffset -= CurEltOffset;
276
277    while (1) {
278      // If the element access is to the element itself and not to tail padding,
279      // read the bytes from the element.
280      uint64_t EltSize = TD.getTypeAllocSize(CS->getOperand(Index)->getType());
281
282      if (ByteOffset < EltSize &&
283          !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
284                              BytesLeft, TD))
285        return false;
286
287      ++Index;
288
289      // Check to see if we read from the last struct element, if so we're done.
290      if (Index == CS->getType()->getNumElements())
291        return true;
292
293      // If we read all of the bytes we needed from this element we're done.
294      uint64_t NextEltOffset = SL->getElementOffset(Index);
295
296      if (BytesLeft <= NextEltOffset-CurEltOffset-ByteOffset)
297        return true;
298
299      // Move to the next element of the struct.
300      CurPtr += NextEltOffset-CurEltOffset-ByteOffset;
301      BytesLeft -= NextEltOffset-CurEltOffset-ByteOffset;
302      ByteOffset = 0;
303      CurEltOffset = NextEltOffset;
304    }
305    // not reached.
306  }
307
308  if (ConstantArray *CA = dyn_cast<ConstantArray>(C)) {
309    uint64_t EltSize = TD.getTypeAllocSize(CA->getType()->getElementType());
310    uint64_t Index = ByteOffset / EltSize;
311    uint64_t Offset = ByteOffset - Index * EltSize;
312    for (; Index != CA->getType()->getNumElements(); ++Index) {
313      if (!ReadDataFromGlobal(CA->getOperand(Index), Offset, CurPtr,
314                              BytesLeft, TD))
315        return false;
316      if (EltSize >= BytesLeft)
317        return true;
318
319      Offset = 0;
320      BytesLeft -= EltSize;
321      CurPtr += EltSize;
322    }
323    return true;
324  }
325
326  if (ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
327    uint64_t EltSize = TD.getTypeAllocSize(CV->getType()->getElementType());
328    uint64_t Index = ByteOffset / EltSize;
329    uint64_t Offset = ByteOffset - Index * EltSize;
330    for (; Index != CV->getType()->getNumElements(); ++Index) {
331      if (!ReadDataFromGlobal(CV->getOperand(Index), Offset, CurPtr,
332                              BytesLeft, TD))
333        return false;
334      if (EltSize >= BytesLeft)
335        return true;
336
337      Offset = 0;
338      BytesLeft -= EltSize;
339      CurPtr += EltSize;
340    }
341    return true;
342  }
343
344  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
345    if (CE->getOpcode() == Instruction::IntToPtr &&
346        CE->getOperand(0)->getType() == TD.getIntPtrType(CE->getContext()))
347        return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
348                                  BytesLeft, TD);
349  }
350
351  // Otherwise, unknown initializer type.
352  return false;
353}
354
355static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
356                                                 const TargetData &TD) {
357  Type *LoadTy = cast<PointerType>(C->getType())->getElementType();
358  IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
359
360  // If this isn't an integer load we can't fold it directly.
361  if (!IntType) {
362    // If this is a float/double load, we can try folding it as an int32/64 load
363    // and then bitcast the result.  This can be useful for union cases.  Note
364    // that address spaces don't matter here since we're not going to result in
365    // an actual new load.
366    Type *MapTy;
367    if (LoadTy->isFloatTy())
368      MapTy = Type::getInt32PtrTy(C->getContext());
369    else if (LoadTy->isDoubleTy())
370      MapTy = Type::getInt64PtrTy(C->getContext());
371    else if (LoadTy->isVectorTy()) {
372      MapTy = IntegerType::get(C->getContext(),
373                               TD.getTypeAllocSizeInBits(LoadTy));
374      MapTy = PointerType::getUnqual(MapTy);
375    } else
376      return 0;
377
378    C = FoldBitCast(C, MapTy, TD);
379    if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, TD))
380      return FoldBitCast(Res, LoadTy, TD);
381    return 0;
382  }
383
384  unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
385  if (BytesLoaded > 32 || BytesLoaded == 0) return 0;
386
387  GlobalValue *GVal;
388  int64_t Offset;
389  if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD))
390    return 0;
391
392  GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
393  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
394      !GV->getInitializer()->getType()->isSized())
395    return 0;
396
397  // If we're loading off the beginning of the global, some bytes may be valid,
398  // but we don't try to handle this.
399  if (Offset < 0) return 0;
400
401  // If we're not accessing anything in this constant, the result is undefined.
402  if (uint64_t(Offset) >= TD.getTypeAllocSize(GV->getInitializer()->getType()))
403    return UndefValue::get(IntType);
404
405  unsigned char RawBytes[32] = {0};
406  if (!ReadDataFromGlobal(GV->getInitializer(), Offset, RawBytes,
407                          BytesLoaded, TD))
408    return 0;
409
410  APInt ResultVal = APInt(IntType->getBitWidth(), RawBytes[BytesLoaded-1]);
411  for (unsigned i = 1; i != BytesLoaded; ++i) {
412    ResultVal <<= 8;
413    ResultVal |= RawBytes[BytesLoaded-1-i];
414  }
415
416  return ConstantInt::get(IntType->getContext(), ResultVal);
417}
418
419/// ConstantFoldLoadFromConstPtr - Return the value that a load from C would
420/// produce if it is constant and determinable.  If this is not determinable,
421/// return null.
422Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
423                                             const TargetData *TD) {
424  // First, try the easy cases:
425  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
426    if (GV->isConstant() && GV->hasDefinitiveInitializer())
427      return GV->getInitializer();
428
429  // If the loaded value isn't a constant expr, we can't handle it.
430  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
431  if (!CE) return 0;
432
433  if (CE->getOpcode() == Instruction::GetElementPtr) {
434    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
435      if (GV->isConstant() && GV->hasDefinitiveInitializer())
436        if (Constant *V =
437             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
438          return V;
439  }
440
441  // Instead of loading constant c string, use corresponding integer value
442  // directly if string length is small enough.
443  std::string Str;
444  if (TD && GetConstantStringInfo(CE, Str) && !Str.empty()) {
445    unsigned StrLen = Str.length();
446    Type *Ty = cast<PointerType>(CE->getType())->getElementType();
447    unsigned NumBits = Ty->getPrimitiveSizeInBits();
448    // Replace load with immediate integer if the result is an integer or fp
449    // value.
450    if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
451        (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
452      APInt StrVal(NumBits, 0);
453      APInt SingleChar(NumBits, 0);
454      if (TD->isLittleEndian()) {
455        for (signed i = StrLen-1; i >= 0; i--) {
456          SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
457          StrVal = (StrVal << 8) | SingleChar;
458        }
459      } else {
460        for (unsigned i = 0; i < StrLen; i++) {
461          SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
462          StrVal = (StrVal << 8) | SingleChar;
463        }
464        // Append NULL at the end.
465        SingleChar = 0;
466        StrVal = (StrVal << 8) | SingleChar;
467      }
468
469      Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
470      if (Ty->isFloatingPointTy())
471        Res = ConstantExpr::getBitCast(Res, Ty);
472      return Res;
473    }
474  }
475
476  // If this load comes from anywhere in a constant global, and if the global
477  // is all undef or zero, we know what it loads.
478  if (GlobalVariable *GV =
479        dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, TD))) {
480    if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
481      Type *ResTy = cast<PointerType>(C->getType())->getElementType();
482      if (GV->getInitializer()->isNullValue())
483        return Constant::getNullValue(ResTy);
484      if (isa<UndefValue>(GV->getInitializer()))
485        return UndefValue::get(ResTy);
486    }
487  }
488
489  // Try hard to fold loads from bitcasted strange and non-type-safe things.  We
490  // currently don't do any of this for big endian systems.  It can be
491  // generalized in the future if someone is interested.
492  if (TD && TD->isLittleEndian())
493    return FoldReinterpretLoadFromConstPtr(CE, *TD);
494  return 0;
495}
496
497static Constant *ConstantFoldLoadInst(const LoadInst *LI, const TargetData *TD){
498  if (LI->isVolatile()) return 0;
499
500  if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
501    return ConstantFoldLoadFromConstPtr(C, TD);
502
503  return 0;
504}
505
506/// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
507/// Attempt to symbolically evaluate the result of a binary operator merging
508/// these together.  If target data info is available, it is provided as TD,
509/// otherwise TD is null.
510static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
511                                           Constant *Op1, const TargetData *TD){
512  // SROA
513
514  // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
515  // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
516  // bits.
517
518
519  // If the constant expr is something like &A[123] - &A[4].f, fold this into a
520  // constant.  This happens frequently when iterating over a global array.
521  if (Opc == Instruction::Sub && TD) {
522    GlobalValue *GV1, *GV2;
523    int64_t Offs1, Offs2;
524
525    if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
526      if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
527          GV1 == GV2) {
528        // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
529        return ConstantInt::get(Op0->getType(), Offs1-Offs2);
530      }
531  }
532
533  return 0;
534}
535
536/// CastGEPIndices - If array indices are not pointer-sized integers,
537/// explicitly cast them so that they aren't implicitly casted by the
538/// getelementptr.
539static Constant *CastGEPIndices(ArrayRef<Constant *> Ops,
540                                Type *ResultTy,
541                                const TargetData *TD) {
542  if (!TD) return 0;
543  Type *IntPtrTy = TD->getIntPtrType(ResultTy->getContext());
544
545  bool Any = false;
546  SmallVector<Constant*, 32> NewIdxs;
547  for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
548    if ((i == 1 ||
549         !isa<StructType>(GetElementPtrInst::getIndexedType(Ops[0]->getType(),
550                                                        Ops.slice(1, i-1)))) &&
551        Ops[i]->getType() != IntPtrTy) {
552      Any = true;
553      NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
554                                                                      true,
555                                                                      IntPtrTy,
556                                                                      true),
557                                              Ops[i], IntPtrTy));
558    } else
559      NewIdxs.push_back(Ops[i]);
560  }
561  if (!Any) return 0;
562
563  Constant *C =
564    ConstantExpr::getGetElementPtr(Ops[0], NewIdxs);
565  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
566    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
567      C = Folded;
568  return C;
569}
570
571/// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
572/// constant expression, do so.
573static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
574                                         Type *ResultTy,
575                                         const TargetData *TD) {
576  Constant *Ptr = Ops[0];
577  if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized())
578    return 0;
579
580  Type *IntPtrTy = TD->getIntPtrType(Ptr->getContext());
581
582  // If this is a constant expr gep that is effectively computing an
583  // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
584  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
585    if (!isa<ConstantInt>(Ops[i])) {
586
587      // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
588      // "inttoptr (sub (ptrtoint Ptr), V)"
589      if (Ops.size() == 2 &&
590          cast<PointerType>(ResultTy)->getElementType()->isIntegerTy(8)) {
591        ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[1]);
592        assert((CE == 0 || CE->getType() == IntPtrTy) &&
593               "CastGEPIndices didn't canonicalize index types!");
594        if (CE && CE->getOpcode() == Instruction::Sub &&
595            CE->getOperand(0)->isNullValue()) {
596          Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
597          Res = ConstantExpr::getSub(Res, CE->getOperand(1));
598          Res = ConstantExpr::getIntToPtr(Res, ResultTy);
599          if (ConstantExpr *ResCE = dyn_cast<ConstantExpr>(Res))
600            Res = ConstantFoldConstantExpression(ResCE, TD);
601          return Res;
602        }
603      }
604      return 0;
605    }
606
607  unsigned BitWidth = TD->getTypeSizeInBits(IntPtrTy);
608  APInt Offset =
609    APInt(BitWidth, TD->getIndexedOffset(Ptr->getType(),
610                                         makeArrayRef((Value **)Ops.data() + 1,
611                                                      Ops.size() - 1)));
612  Ptr = cast<Constant>(Ptr->stripPointerCasts());
613
614  // If this is a GEP of a GEP, fold it all into a single GEP.
615  while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
616    SmallVector<Value *, 4> NestedOps(GEP->op_begin()+1, GEP->op_end());
617
618    // Do not try the incorporate the sub-GEP if some index is not a number.
619    bool AllConstantInt = true;
620    for (unsigned i = 0, e = NestedOps.size(); i != e; ++i)
621      if (!isa<ConstantInt>(NestedOps[i])) {
622        AllConstantInt = false;
623        break;
624      }
625    if (!AllConstantInt)
626      break;
627
628    Ptr = cast<Constant>(GEP->getOperand(0));
629    Offset += APInt(BitWidth,
630                    TD->getIndexedOffset(Ptr->getType(), NestedOps));
631    Ptr = cast<Constant>(Ptr->stripPointerCasts());
632  }
633
634  // If the base value for this address is a literal integer value, fold the
635  // getelementptr to the resulting integer value casted to the pointer type.
636  APInt BasePtr(BitWidth, 0);
637  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
638    if (CE->getOpcode() == Instruction::IntToPtr)
639      if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
640        BasePtr = Base->getValue().zextOrTrunc(BitWidth);
641  if (Ptr->isNullValue() || BasePtr != 0) {
642    Constant *C = ConstantInt::get(Ptr->getContext(), Offset+BasePtr);
643    return ConstantExpr::getIntToPtr(C, ResultTy);
644  }
645
646  // Otherwise form a regular getelementptr. Recompute the indices so that
647  // we eliminate over-indexing of the notional static type array bounds.
648  // This makes it easy to determine if the getelementptr is "inbounds".
649  // Also, this helps GlobalOpt do SROA on GlobalVariables.
650  Type *Ty = Ptr->getType();
651  SmallVector<Constant*, 32> NewIdxs;
652  do {
653    if (SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
654      if (ATy->isPointerTy()) {
655        // The only pointer indexing we'll do is on the first index of the GEP.
656        if (!NewIdxs.empty())
657          break;
658
659        // Only handle pointers to sized types, not pointers to functions.
660        if (!ATy->getElementType()->isSized())
661          return 0;
662      }
663
664      // Determine which element of the array the offset points into.
665      APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
666      IntegerType *IntPtrTy = TD->getIntPtrType(Ty->getContext());
667      if (ElemSize == 0)
668        // The element size is 0. This may be [0 x Ty]*, so just use a zero
669        // index for this level and proceed to the next level to see if it can
670        // accommodate the offset.
671        NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
672      else {
673        // The element size is non-zero divide the offset by the element
674        // size (rounding down), to compute the index at this level.
675        APInt NewIdx = Offset.udiv(ElemSize);
676        Offset -= NewIdx * ElemSize;
677        NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
678      }
679      Ty = ATy->getElementType();
680    } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
681      // Determine which field of the struct the offset points into. The
682      // getZExtValue is at least as safe as the StructLayout API because we
683      // know the offset is within the struct at this point.
684      const StructLayout &SL = *TD->getStructLayout(STy);
685      unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
686      NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
687                                         ElIdx));
688      Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
689      Ty = STy->getTypeAtIndex(ElIdx);
690    } else {
691      // We've reached some non-indexable type.
692      break;
693    }
694  } while (Ty != cast<PointerType>(ResultTy)->getElementType());
695
696  // If we haven't used up the entire offset by descending the static
697  // type, then the offset is pointing into the middle of an indivisible
698  // member, so we can't simplify it.
699  if (Offset != 0)
700    return 0;
701
702  // Create a GEP.
703  Constant *C =
704    ConstantExpr::getGetElementPtr(Ptr, NewIdxs);
705  assert(cast<PointerType>(C->getType())->getElementType() == Ty &&
706         "Computed GetElementPtr has unexpected type!");
707
708  // If we ended up indexing a member with a type that doesn't match
709  // the type of what the original indices indexed, add a cast.
710  if (Ty != cast<PointerType>(ResultTy)->getElementType())
711    C = FoldBitCast(C, ResultTy, *TD);
712
713  return C;
714}
715
716
717
718//===----------------------------------------------------------------------===//
719// Constant Folding public APIs
720//===----------------------------------------------------------------------===//
721
722/// ConstantFoldInstruction - Try to constant fold the specified instruction.
723/// If successful, the constant result is returned, if not, null is returned.
724/// Note that this fails if not all of the operands are constant.  Otherwise,
725/// this function can only fail when attempting to fold instructions like loads
726/// and stores, which have no constant expression form.
727Constant *llvm::ConstantFoldInstruction(Instruction *I, const TargetData *TD) {
728  // Handle PHI nodes quickly here...
729  if (PHINode *PN = dyn_cast<PHINode>(I)) {
730    Constant *CommonValue = 0;
731
732    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
733      Value *Incoming = PN->getIncomingValue(i);
734      // If the incoming value is undef then skip it.  Note that while we could
735      // skip the value if it is equal to the phi node itself we choose not to
736      // because that would break the rule that constant folding only applies if
737      // all operands are constants.
738      if (isa<UndefValue>(Incoming))
739        continue;
740      // If the incoming value is not a constant, or is a different constant to
741      // the one we saw previously, then give up.
742      Constant *C = dyn_cast<Constant>(Incoming);
743      if (!C || (CommonValue && C != CommonValue))
744        return 0;
745      CommonValue = C;
746    }
747
748    // If we reach here, all incoming values are the same constant or undef.
749    return CommonValue ? CommonValue : UndefValue::get(PN->getType());
750  }
751
752  // Scan the operand list, checking to see if they are all constants, if so,
753  // hand off to ConstantFoldInstOperands.
754  SmallVector<Constant*, 8> Ops;
755  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
756    if (Constant *Op = dyn_cast<Constant>(*i))
757      Ops.push_back(Op);
758    else
759      return 0;  // All operands not constant!
760
761  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
762    return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
763                                           TD);
764
765  if (const LoadInst *LI = dyn_cast<LoadInst>(I))
766    return ConstantFoldLoadInst(LI, TD);
767
768  if (InsertValueInst *IVI = dyn_cast<InsertValueInst>(I))
769    return ConstantExpr::getInsertValue(
770                                cast<Constant>(IVI->getAggregateOperand()),
771                                cast<Constant>(IVI->getInsertedValueOperand()),
772                                IVI->getIndices());
773
774  if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I))
775    return ConstantExpr::getExtractValue(
776                                    cast<Constant>(EVI->getAggregateOperand()),
777                                    EVI->getIndices());
778
779  return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Ops, TD);
780}
781
782/// ConstantFoldConstantExpression - Attempt to fold the constant expression
783/// using the specified TargetData.  If successful, the constant result is
784/// result is returned, if not, null is returned.
785Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
786                                               const TargetData *TD) {
787  SmallVector<Constant*, 8> Ops;
788  for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end();
789       i != e; ++i) {
790    Constant *NewC = cast<Constant>(*i);
791    // Recursively fold the ConstantExpr's operands.
792    if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC))
793      NewC = ConstantFoldConstantExpression(NewCE, TD);
794    Ops.push_back(NewC);
795  }
796
797  if (CE->isCompare())
798    return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
799                                           TD);
800  return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(), Ops, TD);
801}
802
803/// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
804/// specified opcode and operands.  If successful, the constant result is
805/// returned, if not, null is returned.  Note that this function can fail when
806/// attempting to fold instructions like loads and stores, which have no
807/// constant expression form.
808///
809/// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
810/// information, due to only being passed an opcode and operands. Constant
811/// folding using this function strips this information.
812///
813Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
814                                         ArrayRef<Constant *> Ops,
815                                         const TargetData *TD) {
816  // Handle easy binops first.
817  if (Instruction::isBinaryOp(Opcode)) {
818    if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
819      if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
820        return C;
821
822    return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
823  }
824
825  switch (Opcode) {
826  default: return 0;
827  case Instruction::ICmp:
828  case Instruction::FCmp: assert(0 && "Invalid for compares");
829  case Instruction::Call:
830    if (Function *F = dyn_cast<Function>(Ops.back()))
831      if (canConstantFoldCallTo(F))
832        return ConstantFoldCall(F, Ops.slice(0, Ops.size() - 1));
833    return 0;
834  case Instruction::PtrToInt:
835    // If the input is a inttoptr, eliminate the pair.  This requires knowing
836    // the width of a pointer, so it can't be done in ConstantExpr::getCast.
837    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
838      if (TD && CE->getOpcode() == Instruction::IntToPtr) {
839        Constant *Input = CE->getOperand(0);
840        unsigned InWidth = Input->getType()->getScalarSizeInBits();
841        if (TD->getPointerSizeInBits() < InWidth) {
842          Constant *Mask =
843            ConstantInt::get(CE->getContext(), APInt::getLowBitsSet(InWidth,
844                                                  TD->getPointerSizeInBits()));
845          Input = ConstantExpr::getAnd(Input, Mask);
846        }
847        // Do a zext or trunc to get to the dest size.
848        return ConstantExpr::getIntegerCast(Input, DestTy, false);
849      }
850    }
851    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
852  case Instruction::IntToPtr:
853    // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
854    // the int size is >= the ptr size.  This requires knowing the width of a
855    // pointer, so it can't be done in ConstantExpr::getCast.
856    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0]))
857      if (TD &&
858          TD->getPointerSizeInBits() <= CE->getType()->getScalarSizeInBits() &&
859          CE->getOpcode() == Instruction::PtrToInt)
860        return FoldBitCast(CE->getOperand(0), DestTy, *TD);
861
862    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
863  case Instruction::Trunc:
864  case Instruction::ZExt:
865  case Instruction::SExt:
866  case Instruction::FPTrunc:
867  case Instruction::FPExt:
868  case Instruction::UIToFP:
869  case Instruction::SIToFP:
870  case Instruction::FPToUI:
871  case Instruction::FPToSI:
872      return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
873  case Instruction::BitCast:
874    if (TD)
875      return FoldBitCast(Ops[0], DestTy, *TD);
876    return ConstantExpr::getBitCast(Ops[0], DestTy);
877  case Instruction::Select:
878    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
879  case Instruction::ExtractElement:
880    return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
881  case Instruction::InsertElement:
882    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
883  case Instruction::ShuffleVector:
884    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
885  case Instruction::GetElementPtr:
886    if (Constant *C = CastGEPIndices(Ops, DestTy, TD))
887      return C;
888    if (Constant *C = SymbolicallyEvaluateGEP(Ops, DestTy, TD))
889      return C;
890
891    return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1));
892  }
893}
894
895/// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
896/// instruction (icmp/fcmp) with the specified operands.  If it fails, it
897/// returns a constant expression of the specified operands.
898///
899Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
900                                                Constant *Ops0, Constant *Ops1,
901                                                const TargetData *TD) {
902  // fold: icmp (inttoptr x), null         -> icmp x, 0
903  // fold: icmp (ptrtoint x), 0            -> icmp x, null
904  // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
905  // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
906  //
907  // ConstantExpr::getCompare cannot do this, because it doesn't have TD
908  // around to know if bit truncation is happening.
909  if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
910    if (TD && Ops1->isNullValue()) {
911      Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
912      if (CE0->getOpcode() == Instruction::IntToPtr) {
913        // Convert the integer value to the right size to ensure we get the
914        // proper extension or truncation.
915        Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
916                                                   IntPtrTy, false);
917        Constant *Null = Constant::getNullValue(C->getType());
918        return ConstantFoldCompareInstOperands(Predicate, C, Null, TD);
919      }
920
921      // Only do this transformation if the int is intptrty in size, otherwise
922      // there is a truncation or extension that we aren't modeling.
923      if (CE0->getOpcode() == Instruction::PtrToInt &&
924          CE0->getType() == IntPtrTy) {
925        Constant *C = CE0->getOperand(0);
926        Constant *Null = Constant::getNullValue(C->getType());
927        return ConstantFoldCompareInstOperands(Predicate, C, Null, TD);
928      }
929    }
930
931    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
932      if (TD && CE0->getOpcode() == CE1->getOpcode()) {
933        Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
934
935        if (CE0->getOpcode() == Instruction::IntToPtr) {
936          // Convert the integer value to the right size to ensure we get the
937          // proper extension or truncation.
938          Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
939                                                      IntPtrTy, false);
940          Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
941                                                      IntPtrTy, false);
942          return ConstantFoldCompareInstOperands(Predicate, C0, C1, TD);
943        }
944
945        // Only do this transformation if the int is intptrty in size, otherwise
946        // there is a truncation or extension that we aren't modeling.
947        if ((CE0->getOpcode() == Instruction::PtrToInt &&
948             CE0->getType() == IntPtrTy &&
949             CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()))
950          return ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0),
951                                                 CE1->getOperand(0), TD);
952      }
953    }
954
955    // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
956    // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
957    if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
958        CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
959      Constant *LHS =
960        ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0), Ops1,TD);
961      Constant *RHS =
962        ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(1), Ops1,TD);
963      unsigned OpC =
964        Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
965      Constant *Ops[] = { LHS, RHS };
966      return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, TD);
967    }
968  }
969
970  return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
971}
972
973
974/// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
975/// getelementptr constantexpr, return the constant value being addressed by the
976/// constant expression, or null if something is funny and we can't decide.
977Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
978                                                       ConstantExpr *CE) {
979  if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType()))
980    return 0;  // Do not allow stepping over the value!
981
982  // Loop over all of the operands, tracking down which value we are
983  // addressing...
984  gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
985  for (++I; I != E; ++I)
986    if (StructType *STy = dyn_cast<StructType>(*I)) {
987      ConstantInt *CU = cast<ConstantInt>(I.getOperand());
988      assert(CU->getZExtValue() < STy->getNumElements() &&
989             "Struct index out of range!");
990      unsigned El = (unsigned)CU->getZExtValue();
991      if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
992        C = CS->getOperand(El);
993      } else if (isa<ConstantAggregateZero>(C)) {
994        C = Constant::getNullValue(STy->getElementType(El));
995      } else if (isa<UndefValue>(C)) {
996        C = UndefValue::get(STy->getElementType(El));
997      } else {
998        return 0;
999      }
1000    } else if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
1001      if (ArrayType *ATy = dyn_cast<ArrayType>(*I)) {
1002        if (CI->getZExtValue() >= ATy->getNumElements())
1003         return 0;
1004        if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
1005          C = CA->getOperand(CI->getZExtValue());
1006        else if (isa<ConstantAggregateZero>(C))
1007          C = Constant::getNullValue(ATy->getElementType());
1008        else if (isa<UndefValue>(C))
1009          C = UndefValue::get(ATy->getElementType());
1010        else
1011          return 0;
1012      } else if (VectorType *VTy = dyn_cast<VectorType>(*I)) {
1013        if (CI->getZExtValue() >= VTy->getNumElements())
1014          return 0;
1015        if (ConstantVector *CP = dyn_cast<ConstantVector>(C))
1016          C = CP->getOperand(CI->getZExtValue());
1017        else if (isa<ConstantAggregateZero>(C))
1018          C = Constant::getNullValue(VTy->getElementType());
1019        else if (isa<UndefValue>(C))
1020          C = UndefValue::get(VTy->getElementType());
1021        else
1022          return 0;
1023      } else {
1024        return 0;
1025      }
1026    } else {
1027      return 0;
1028    }
1029  return C;
1030}
1031
1032
1033//===----------------------------------------------------------------------===//
1034//  Constant Folding for Calls
1035//
1036
1037/// canConstantFoldCallTo - Return true if its even possible to fold a call to
1038/// the specified function.
1039bool
1040llvm::canConstantFoldCallTo(const Function *F) {
1041  switch (F->getIntrinsicID()) {
1042  case Intrinsic::sqrt:
1043  case Intrinsic::powi:
1044  case Intrinsic::bswap:
1045  case Intrinsic::ctpop:
1046  case Intrinsic::ctlz:
1047  case Intrinsic::cttz:
1048  case Intrinsic::sadd_with_overflow:
1049  case Intrinsic::uadd_with_overflow:
1050  case Intrinsic::ssub_with_overflow:
1051  case Intrinsic::usub_with_overflow:
1052  case Intrinsic::smul_with_overflow:
1053  case Intrinsic::umul_with_overflow:
1054  case Intrinsic::convert_from_fp16:
1055  case Intrinsic::convert_to_fp16:
1056  case Intrinsic::x86_sse_cvtss2si:
1057  case Intrinsic::x86_sse_cvtss2si64:
1058  case Intrinsic::x86_sse_cvttss2si:
1059  case Intrinsic::x86_sse_cvttss2si64:
1060  case Intrinsic::x86_sse2_cvtsd2si:
1061  case Intrinsic::x86_sse2_cvtsd2si64:
1062  case Intrinsic::x86_sse2_cvttsd2si:
1063  case Intrinsic::x86_sse2_cvttsd2si64:
1064    return true;
1065  default:
1066    return false;
1067  case 0: break;
1068  }
1069
1070  if (!F->hasName()) return false;
1071  StringRef Name = F->getName();
1072
1073  // In these cases, the check of the length is required.  We don't want to
1074  // return true for a name like "cos\0blah" which strcmp would return equal to
1075  // "cos", but has length 8.
1076  switch (Name[0]) {
1077  default: return false;
1078  case 'a':
1079    return Name == "acos" || Name == "asin" ||
1080      Name == "atan" || Name == "atan2";
1081  case 'c':
1082    return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
1083  case 'e':
1084    return Name == "exp" || Name == "exp2";
1085  case 'f':
1086    return Name == "fabs" || Name == "fmod" || Name == "floor";
1087  case 'l':
1088    return Name == "log" || Name == "log10";
1089  case 'p':
1090    return Name == "pow";
1091  case 's':
1092    return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
1093      Name == "sinf" || Name == "sqrtf";
1094  case 't':
1095    return Name == "tan" || Name == "tanh";
1096  }
1097}
1098
1099static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
1100                                Type *Ty) {
1101  sys::llvm_fenv_clearexcept();
1102  V = NativeFP(V);
1103  if (sys::llvm_fenv_testexcept()) {
1104    sys::llvm_fenv_clearexcept();
1105    return 0;
1106  }
1107
1108  if (Ty->isFloatTy())
1109    return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1110  if (Ty->isDoubleTy())
1111    return ConstantFP::get(Ty->getContext(), APFloat(V));
1112  llvm_unreachable("Can only constant fold float/double");
1113  return 0; // dummy return to suppress warning
1114}
1115
1116static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1117                                      double V, double W, Type *Ty) {
1118  sys::llvm_fenv_clearexcept();
1119  V = NativeFP(V, W);
1120  if (sys::llvm_fenv_testexcept()) {
1121    sys::llvm_fenv_clearexcept();
1122    return 0;
1123  }
1124
1125  if (Ty->isFloatTy())
1126    return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1127  if (Ty->isDoubleTy())
1128    return ConstantFP::get(Ty->getContext(), APFloat(V));
1129  llvm_unreachable("Can only constant fold float/double");
1130  return 0; // dummy return to suppress warning
1131}
1132
1133/// ConstantFoldConvertToInt - Attempt to an SSE floating point to integer
1134/// conversion of a constant floating point. If roundTowardZero is false, the
1135/// default IEEE rounding is used (toward nearest, ties to even). This matches
1136/// the behavior of the non-truncating SSE instructions in the default rounding
1137/// mode. The desired integer type Ty is used to select how many bits are
1138/// available for the result. Returns null if the conversion cannot be
1139/// performed, otherwise returns the Constant value resulting from the
1140/// conversion.
1141static Constant *ConstantFoldConvertToInt(ConstantFP *Op, bool roundTowardZero,
1142                                          Type *Ty) {
1143  assert(Op && "Called with NULL operand");
1144  APFloat Val(Op->getValueAPF());
1145
1146  // All of these conversion intrinsics form an integer of at most 64bits.
1147  unsigned ResultWidth = cast<IntegerType>(Ty)->getBitWidth();
1148  assert(ResultWidth <= 64 &&
1149         "Can only constant fold conversions to 64 and 32 bit ints");
1150
1151  uint64_t UIntVal;
1152  bool isExact = false;
1153  APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1154                                              : APFloat::rmNearestTiesToEven;
1155  APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth,
1156                                                  /*isSigned=*/true, mode,
1157                                                  &isExact);
1158  if (status != APFloat::opOK && status != APFloat::opInexact)
1159    return 0;
1160  return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
1161}
1162
1163/// ConstantFoldCall - Attempt to constant fold a call to the specified function
1164/// with the specified arguments, returning null if unsuccessful.
1165Constant *
1166llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands) {
1167  if (!F->hasName()) return 0;
1168  StringRef Name = F->getName();
1169
1170  Type *Ty = F->getReturnType();
1171  if (Operands.size() == 1) {
1172    if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
1173      if (F->getIntrinsicID() == Intrinsic::convert_to_fp16) {
1174        APFloat Val(Op->getValueAPF());
1175
1176        bool lost = false;
1177        Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
1178
1179        return ConstantInt::get(F->getContext(), Val.bitcastToAPInt());
1180      }
1181
1182      if (!Ty->isFloatTy() && !Ty->isDoubleTy())
1183        return 0;
1184
1185      /// We only fold functions with finite arguments. Folding NaN and inf is
1186      /// likely to be aborted with an exception anyway, and some host libms
1187      /// have known errors raising exceptions.
1188      if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
1189        return 0;
1190
1191      /// Currently APFloat versions of these functions do not exist, so we use
1192      /// the host native double versions.  Float versions are not called
1193      /// directly but for all these it is true (float)(f((double)arg)) ==
1194      /// f(arg).  Long double not supported yet.
1195      double V = Ty->isFloatTy() ? (double)Op->getValueAPF().convertToFloat() :
1196                                     Op->getValueAPF().convertToDouble();
1197      switch (Name[0]) {
1198      case 'a':
1199        if (Name == "acos")
1200          return ConstantFoldFP(acos, V, Ty);
1201        else if (Name == "asin")
1202          return ConstantFoldFP(asin, V, Ty);
1203        else if (Name == "atan")
1204          return ConstantFoldFP(atan, V, Ty);
1205        break;
1206      case 'c':
1207        if (Name == "ceil")
1208          return ConstantFoldFP(ceil, V, Ty);
1209        else if (Name == "cos")
1210          return ConstantFoldFP(cos, V, Ty);
1211        else if (Name == "cosh")
1212          return ConstantFoldFP(cosh, V, Ty);
1213        else if (Name == "cosf")
1214          return ConstantFoldFP(cos, V, Ty);
1215        break;
1216      case 'e':
1217        if (Name == "exp")
1218          return ConstantFoldFP(exp, V, Ty);
1219
1220        if (Name == "exp2") {
1221          // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
1222          // C99 library.
1223          return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
1224        }
1225        break;
1226      case 'f':
1227        if (Name == "fabs")
1228          return ConstantFoldFP(fabs, V, Ty);
1229        else if (Name == "floor")
1230          return ConstantFoldFP(floor, V, Ty);
1231        break;
1232      case 'l':
1233        if (Name == "log" && V > 0)
1234          return ConstantFoldFP(log, V, Ty);
1235        else if (Name == "log10" && V > 0)
1236          return ConstantFoldFP(log10, V, Ty);
1237        else if (F->getIntrinsicID() == Intrinsic::sqrt &&
1238                 (Ty->isFloatTy() || Ty->isDoubleTy())) {
1239          if (V >= -0.0)
1240            return ConstantFoldFP(sqrt, V, Ty);
1241          else // Undefined
1242            return Constant::getNullValue(Ty);
1243        }
1244        break;
1245      case 's':
1246        if (Name == "sin")
1247          return ConstantFoldFP(sin, V, Ty);
1248        else if (Name == "sinh")
1249          return ConstantFoldFP(sinh, V, Ty);
1250        else if (Name == "sqrt" && V >= 0)
1251          return ConstantFoldFP(sqrt, V, Ty);
1252        else if (Name == "sqrtf" && V >= 0)
1253          return ConstantFoldFP(sqrt, V, Ty);
1254        else if (Name == "sinf")
1255          return ConstantFoldFP(sin, V, Ty);
1256        break;
1257      case 't':
1258        if (Name == "tan")
1259          return ConstantFoldFP(tan, V, Ty);
1260        else if (Name == "tanh")
1261          return ConstantFoldFP(tanh, V, Ty);
1262        break;
1263      default:
1264        break;
1265      }
1266      return 0;
1267    }
1268
1269    if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
1270      switch (F->getIntrinsicID()) {
1271      case Intrinsic::bswap:
1272        return ConstantInt::get(F->getContext(), Op->getValue().byteSwap());
1273      case Intrinsic::ctpop:
1274        return ConstantInt::get(Ty, Op->getValue().countPopulation());
1275      case Intrinsic::cttz:
1276        return ConstantInt::get(Ty, Op->getValue().countTrailingZeros());
1277      case Intrinsic::ctlz:
1278        return ConstantInt::get(Ty, Op->getValue().countLeadingZeros());
1279      case Intrinsic::convert_from_fp16: {
1280        APFloat Val(Op->getValue());
1281
1282        bool lost = false;
1283        APFloat::opStatus status =
1284          Val.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &lost);
1285
1286        // Conversion is always precise.
1287        (void)status;
1288        assert(status == APFloat::opOK && !lost &&
1289               "Precision lost during fp16 constfolding");
1290
1291        return ConstantFP::get(F->getContext(), Val);
1292      }
1293      default:
1294        return 0;
1295      }
1296    }
1297
1298    if (ConstantVector *Op = dyn_cast<ConstantVector>(Operands[0])) {
1299      switch (F->getIntrinsicID()) {
1300      default: break;
1301      case Intrinsic::x86_sse_cvtss2si:
1302      case Intrinsic::x86_sse_cvtss2si64:
1303      case Intrinsic::x86_sse2_cvtsd2si:
1304      case Intrinsic::x86_sse2_cvtsd2si64:
1305        if (ConstantFP *FPOp = dyn_cast<ConstantFP>(Op->getOperand(0)))
1306          return ConstantFoldConvertToInt(FPOp, /*roundTowardZero=*/false, Ty);
1307      case Intrinsic::x86_sse_cvttss2si:
1308      case Intrinsic::x86_sse_cvttss2si64:
1309      case Intrinsic::x86_sse2_cvttsd2si:
1310      case Intrinsic::x86_sse2_cvttsd2si64:
1311        if (ConstantFP *FPOp = dyn_cast<ConstantFP>(Op->getOperand(0)))
1312          return ConstantFoldConvertToInt(FPOp, /*roundTowardZero=*/true, Ty);
1313      }
1314    }
1315
1316    if (isa<UndefValue>(Operands[0])) {
1317      if (F->getIntrinsicID() == Intrinsic::bswap)
1318        return Operands[0];
1319      return 0;
1320    }
1321
1322    return 0;
1323  }
1324
1325  if (Operands.size() == 2) {
1326    if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
1327      if (!Ty->isFloatTy() && !Ty->isDoubleTy())
1328        return 0;
1329      double Op1V = Ty->isFloatTy() ?
1330                      (double)Op1->getValueAPF().convertToFloat() :
1331                      Op1->getValueAPF().convertToDouble();
1332      if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
1333        if (Op2->getType() != Op1->getType())
1334          return 0;
1335
1336        double Op2V = Ty->isFloatTy() ?
1337                      (double)Op2->getValueAPF().convertToFloat():
1338                      Op2->getValueAPF().convertToDouble();
1339
1340        if (Name == "pow")
1341          return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1342        if (Name == "fmod")
1343          return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
1344        if (Name == "atan2")
1345          return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
1346      } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
1347        if (F->getIntrinsicID() == Intrinsic::powi && Ty->isFloatTy())
1348          return ConstantFP::get(F->getContext(),
1349                                 APFloat((float)std::pow((float)Op1V,
1350                                                 (int)Op2C->getZExtValue())));
1351        if (F->getIntrinsicID() == Intrinsic::powi && Ty->isDoubleTy())
1352          return ConstantFP::get(F->getContext(),
1353                                 APFloat((double)std::pow((double)Op1V,
1354                                                   (int)Op2C->getZExtValue())));
1355      }
1356      return 0;
1357    }
1358
1359
1360    if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
1361      if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
1362        switch (F->getIntrinsicID()) {
1363        default: break;
1364        case Intrinsic::sadd_with_overflow:
1365        case Intrinsic::uadd_with_overflow:
1366        case Intrinsic::ssub_with_overflow:
1367        case Intrinsic::usub_with_overflow:
1368        case Intrinsic::smul_with_overflow:
1369        case Intrinsic::umul_with_overflow: {
1370          APInt Res;
1371          bool Overflow;
1372          switch (F->getIntrinsicID()) {
1373          default: assert(0 && "Invalid case");
1374          case Intrinsic::sadd_with_overflow:
1375            Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
1376            break;
1377          case Intrinsic::uadd_with_overflow:
1378            Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
1379            break;
1380          case Intrinsic::ssub_with_overflow:
1381            Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
1382            break;
1383          case Intrinsic::usub_with_overflow:
1384            Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
1385            break;
1386          case Intrinsic::smul_with_overflow:
1387            Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
1388            break;
1389          case Intrinsic::umul_with_overflow:
1390            Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow);
1391            break;
1392          }
1393          Constant *Ops[] = {
1394            ConstantInt::get(F->getContext(), Res),
1395            ConstantInt::get(Type::getInt1Ty(F->getContext()), Overflow)
1396          };
1397          return ConstantStruct::get(cast<StructType>(F->getReturnType()), Ops);
1398        }
1399        }
1400      }
1401
1402      return 0;
1403    }
1404    return 0;
1405  }
1406  return 0;
1407}
1408