ConstantFolding.cpp revision cda9706cb74a65d2feb2175613cb0fe46acc5aa2
1//===-- ConstantFolding.cpp - Analyze constant folding possibilities ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions determines the possibility of performing constant
11// folding.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ConstantFolding.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Function.h"
19#include "llvm/GlobalVariable.h"
20#include "llvm/Instructions.h"
21#include "llvm/Intrinsics.h"
22#include "llvm/LLVMContext.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/StringMap.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/GetElementPtrTypeIterator.h"
28#include "llvm/Support/MathExtras.h"
29#include <cerrno>
30#include <cmath>
31using namespace llvm;
32
33//===----------------------------------------------------------------------===//
34// Constant Folding internal helper functions
35//===----------------------------------------------------------------------===//
36
37/// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
38/// from a global, return the global and the constant.  Because of
39/// constantexprs, this function is recursive.
40static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
41                                       int64_t &Offset, const TargetData &TD) {
42  // Trivial case, constant is the global.
43  if ((GV = dyn_cast<GlobalValue>(C))) {
44    Offset = 0;
45    return true;
46  }
47
48  // Otherwise, if this isn't a constant expr, bail out.
49  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
50  if (!CE) return false;
51
52  // Look through ptr->int and ptr->ptr casts.
53  if (CE->getOpcode() == Instruction::PtrToInt ||
54      CE->getOpcode() == Instruction::BitCast)
55    return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
56
57  // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
58  if (CE->getOpcode() == Instruction::GetElementPtr) {
59    // Cannot compute this if the element type of the pointer is missing size
60    // info.
61    if (!cast<PointerType>(CE->getOperand(0)->getType())
62                 ->getElementType()->isSized())
63      return false;
64
65    // If the base isn't a global+constant, we aren't either.
66    if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
67      return false;
68
69    // Otherwise, add any offset that our operands provide.
70    gep_type_iterator GTI = gep_type_begin(CE);
71    for (User::const_op_iterator i = CE->op_begin() + 1, e = CE->op_end();
72         i != e; ++i, ++GTI) {
73      ConstantInt *CI = dyn_cast<ConstantInt>(*i);
74      if (!CI) return false;  // Index isn't a simple constant?
75      if (CI->getZExtValue() == 0) continue;  // Not adding anything.
76
77      if (const StructType *ST = dyn_cast<StructType>(*GTI)) {
78        // N = N + Offset
79        Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
80      } else {
81        const SequentialType *SQT = cast<SequentialType>(*GTI);
82        Offset += TD.getTypeAllocSize(SQT->getElementType())*CI->getSExtValue();
83      }
84    }
85    return true;
86  }
87
88  return false;
89}
90
91
92/// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
93/// Attempt to symbolically evaluate the result of a binary operator merging
94/// these together.  If target data info is available, it is provided as TD,
95/// otherwise TD is null.
96static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
97                                           Constant *Op1, const TargetData *TD,
98                                           LLVMContext &Context){
99  // SROA
100
101  // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
102  // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
103  // bits.
104
105
106  // If the constant expr is something like &A[123] - &A[4].f, fold this into a
107  // constant.  This happens frequently when iterating over a global array.
108  if (Opc == Instruction::Sub && TD) {
109    GlobalValue *GV1, *GV2;
110    int64_t Offs1, Offs2;
111
112    if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
113      if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
114          GV1 == GV2) {
115        // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
116        return ConstantInt::get(Op0->getType(), Offs1-Offs2);
117      }
118  }
119
120  return 0;
121}
122
123/// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
124/// constant expression, do so.
125static Constant *SymbolicallyEvaluateGEP(Constant* const* Ops, unsigned NumOps,
126                                         const Type *ResultTy,
127                                         LLVMContext &Context,
128                                         const TargetData *TD) {
129  Constant *Ptr = Ops[0];
130  if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized())
131    return 0;
132
133  unsigned BitWidth = TD->getTypeSizeInBits(TD->getIntPtrType(Context));
134  APInt BasePtr(BitWidth, 0);
135  bool BaseIsInt = true;
136  if (!Ptr->isNullValue()) {
137    // If this is a inttoptr from a constant int, we can fold this as the base,
138    // otherwise we can't.
139    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
140      if (CE->getOpcode() == Instruction::IntToPtr)
141        if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
142          BasePtr = Base->getValue();
143
144    if (BasePtr == 0)
145      BaseIsInt = false;
146  }
147
148  // If this is a constant expr gep that is effectively computing an
149  // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
150  for (unsigned i = 1; i != NumOps; ++i)
151    if (!isa<ConstantInt>(Ops[i]))
152      return 0;
153
154  APInt Offset = APInt(BitWidth,
155                       TD->getIndexedOffset(Ptr->getType(),
156                                            (Value**)Ops+1, NumOps-1));
157  // If the base value for this address is a literal integer value, fold the
158  // getelementptr to the resulting integer value casted to the pointer type.
159  if (BaseIsInt) {
160    Constant *C = ConstantInt::get(Context, Offset+BasePtr);
161    return ConstantExpr::getIntToPtr(C, ResultTy);
162  }
163
164  // Otherwise form a regular getelementptr. Recompute the indices so that
165  // we eliminate over-indexing of the notional static type array bounds.
166  // This makes it easy to determine if the getelementptr is "inbounds".
167  // Also, this helps GlobalOpt do SROA on GlobalVariables.
168  const Type *Ty = Ptr->getType();
169  SmallVector<Constant*, 32> NewIdxs;
170  do {
171    if (const SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
172      // The only pointer indexing we'll do is on the first index of the GEP.
173      if (isa<PointerType>(ATy) && ATy != Ptr->getType())
174        break;
175      // Determine which element of the array the offset points into.
176      APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
177      if (ElemSize == 0)
178        return 0;
179      APInt NewIdx = Offset.udiv(ElemSize);
180      Offset -= NewIdx * ElemSize;
181      NewIdxs.push_back(ConstantInt::get(TD->getIntPtrType(Context), NewIdx));
182      Ty = ATy->getElementType();
183    } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
184      // Determine which field of the struct the offset points into. The
185      // getZExtValue is at least as safe as the StructLayout API because we
186      // know the offset is within the struct at this point.
187      const StructLayout &SL = *TD->getStructLayout(STy);
188      unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
189      NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Context), ElIdx));
190      Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
191      Ty = STy->getTypeAtIndex(ElIdx);
192    } else {
193      // We've reached some non-indexable type.
194      break;
195    }
196  } while (Ty != cast<PointerType>(ResultTy)->getElementType());
197
198  // If we haven't used up the entire offset by descending the static
199  // type, then the offset is pointing into the middle of an indivisible
200  // member, so we can't simplify it.
201  if (Offset != 0)
202    return 0;
203
204  // If the base is the start of a GlobalVariable and all the array indices
205  // remain in their static bounds, the GEP is inbounds. We can check that
206  // all indices are in bounds by just checking the first index only
207  // because we've just normalized all the indices.
208  Constant *C = isa<GlobalVariable>(Ptr) && NewIdxs[0]->isNullValue() ?
209    ConstantExpr::getInBoundsGetElementPtr(Ptr, &NewIdxs[0], NewIdxs.size()) :
210    ConstantExpr::getGetElementPtr(Ptr, &NewIdxs[0], NewIdxs.size());
211  assert(cast<PointerType>(C->getType())->getElementType() == Ty &&
212         "Computed GetElementPtr has unexpected type!");
213
214  // If we ended up indexing a member with a type that doesn't match
215  // the type of what the original indices indexed, add a cast.
216  if (Ty != cast<PointerType>(ResultTy)->getElementType())
217    C = ConstantExpr::getBitCast(C, ResultTy);
218
219  return C;
220}
221
222/// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
223/// targetdata.  Return 0 if unfoldable.
224static Constant *FoldBitCast(Constant *C, const Type *DestTy,
225                             const TargetData &TD, LLVMContext &Context) {
226  // If this is a bitcast from constant vector -> vector, fold it.
227  if (ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
228    if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
229      // If the element types match, VMCore can fold it.
230      unsigned NumDstElt = DestVTy->getNumElements();
231      unsigned NumSrcElt = CV->getNumOperands();
232      if (NumDstElt == NumSrcElt)
233        return 0;
234
235      const Type *SrcEltTy = CV->getType()->getElementType();
236      const Type *DstEltTy = DestVTy->getElementType();
237
238      // Otherwise, we're changing the number of elements in a vector, which
239      // requires endianness information to do the right thing.  For example,
240      //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
241      // folds to (little endian):
242      //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
243      // and to (big endian):
244      //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
245
246      // First thing is first.  We only want to think about integer here, so if
247      // we have something in FP form, recast it as integer.
248      if (DstEltTy->isFloatingPoint()) {
249        // Fold to an vector of integers with same size as our FP type.
250        unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
251        const Type *DestIVTy = VectorType::get(
252                                 IntegerType::get(Context, FPWidth), NumDstElt);
253        // Recursively handle this integer conversion, if possible.
254        C = FoldBitCast(C, DestIVTy, TD, Context);
255        if (!C) return 0;
256
257        // Finally, VMCore can handle this now that #elts line up.
258        return ConstantExpr::getBitCast(C, DestTy);
259      }
260
261      // Okay, we know the destination is integer, if the input is FP, convert
262      // it to integer first.
263      if (SrcEltTy->isFloatingPoint()) {
264        unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
265        const Type *SrcIVTy = VectorType::get(
266                                 IntegerType::get(Context, FPWidth), NumSrcElt);
267        // Ask VMCore to do the conversion now that #elts line up.
268        C = ConstantExpr::getBitCast(C, SrcIVTy);
269        CV = dyn_cast<ConstantVector>(C);
270        if (!CV) return 0;  // If VMCore wasn't able to fold it, bail out.
271      }
272
273      // Now we know that the input and output vectors are both integer vectors
274      // of the same size, and that their #elements is not the same.  Do the
275      // conversion here, which depends on whether the input or output has
276      // more elements.
277      bool isLittleEndian = TD.isLittleEndian();
278
279      SmallVector<Constant*, 32> Result;
280      if (NumDstElt < NumSrcElt) {
281        // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
282        Constant *Zero = Constant::getNullValue(DstEltTy);
283        unsigned Ratio = NumSrcElt/NumDstElt;
284        unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
285        unsigned SrcElt = 0;
286        for (unsigned i = 0; i != NumDstElt; ++i) {
287          // Build each element of the result.
288          Constant *Elt = Zero;
289          unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
290          for (unsigned j = 0; j != Ratio; ++j) {
291            Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(SrcElt++));
292            if (!Src) return 0;  // Reject constantexpr elements.
293
294            // Zero extend the element to the right size.
295            Src = ConstantExpr::getZExt(Src, Elt->getType());
296
297            // Shift it to the right place, depending on endianness.
298            Src = ConstantExpr::getShl(Src,
299                             ConstantInt::get(Src->getType(), ShiftAmt));
300            ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
301
302            // Mix it in.
303            Elt = ConstantExpr::getOr(Elt, Src);
304          }
305          Result.push_back(Elt);
306        }
307      } else {
308        // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
309        unsigned Ratio = NumDstElt/NumSrcElt;
310        unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
311
312        // Loop over each source value, expanding into multiple results.
313        for (unsigned i = 0; i != NumSrcElt; ++i) {
314          Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(i));
315          if (!Src) return 0;  // Reject constantexpr elements.
316
317          unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
318          for (unsigned j = 0; j != Ratio; ++j) {
319            // Shift the piece of the value into the right place, depending on
320            // endianness.
321            Constant *Elt = ConstantExpr::getLShr(Src,
322                            ConstantInt::get(Src->getType(), ShiftAmt));
323            ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
324
325            // Truncate and remember this piece.
326            Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
327          }
328        }
329      }
330
331      return ConstantVector::get(Result.data(), Result.size());
332    }
333  }
334
335  return 0;
336}
337
338
339//===----------------------------------------------------------------------===//
340// Constant Folding public APIs
341//===----------------------------------------------------------------------===//
342
343
344/// ConstantFoldInstruction - Attempt to constant fold the specified
345/// instruction.  If successful, the constant result is returned, if not, null
346/// is returned.  Note that this function can only fail when attempting to fold
347/// instructions like loads and stores, which have no constant expression form.
348///
349Constant *llvm::ConstantFoldInstruction(Instruction *I, LLVMContext &Context,
350                                        const TargetData *TD) {
351  if (PHINode *PN = dyn_cast<PHINode>(I)) {
352    if (PN->getNumIncomingValues() == 0)
353      return UndefValue::get(PN->getType());
354
355    Constant *Result = dyn_cast<Constant>(PN->getIncomingValue(0));
356    if (Result == 0) return 0;
357
358    // Handle PHI nodes specially here...
359    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
360      if (PN->getIncomingValue(i) != Result && PN->getIncomingValue(i) != PN)
361        return 0;   // Not all the same incoming constants...
362
363    // If we reach here, all incoming values are the same constant.
364    return Result;
365  }
366
367  // Scan the operand list, checking to see if they are all constants, if so,
368  // hand off to ConstantFoldInstOperands.
369  SmallVector<Constant*, 8> Ops;
370  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
371    if (Constant *Op = dyn_cast<Constant>(*i))
372      Ops.push_back(Op);
373    else
374      return 0;  // All operands not constant!
375
376  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
377    return ConstantFoldCompareInstOperands(CI->getPredicate(),
378                                           Ops.data(), Ops.size(),
379                                           Context, TD);
380  else
381    return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
382                                    Ops.data(), Ops.size(), Context, TD);
383}
384
385/// ConstantFoldConstantExpression - Attempt to fold the constant expression
386/// using the specified TargetData.  If successful, the constant result is
387/// result is returned, if not, null is returned.
388Constant *llvm::ConstantFoldConstantExpression(ConstantExpr *CE,
389                                               LLVMContext &Context,
390                                               const TargetData *TD) {
391  SmallVector<Constant*, 8> Ops;
392  for (User::op_iterator i = CE->op_begin(), e = CE->op_end(); i != e; ++i)
393    Ops.push_back(cast<Constant>(*i));
394
395  if (CE->isCompare())
396    return ConstantFoldCompareInstOperands(CE->getPredicate(),
397                                           Ops.data(), Ops.size(),
398                                           Context, TD);
399  else
400    return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(),
401                                    Ops.data(), Ops.size(), Context, TD);
402}
403
404/// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
405/// specified opcode and operands.  If successful, the constant result is
406/// returned, if not, null is returned.  Note that this function can fail when
407/// attempting to fold instructions like loads and stores, which have no
408/// constant expression form.
409///
410Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
411                                         Constant* const* Ops, unsigned NumOps,
412                                         LLVMContext &Context,
413                                         const TargetData *TD) {
414  // Handle easy binops first.
415  if (Instruction::isBinaryOp(Opcode)) {
416    if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
417      if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD,
418                                                  Context))
419        return C;
420
421    return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
422  }
423
424  switch (Opcode) {
425  default: return 0;
426  case Instruction::Call:
427    if (Function *F = dyn_cast<Function>(Ops[0]))
428      if (canConstantFoldCallTo(F))
429        return ConstantFoldCall(F, Ops+1, NumOps-1);
430    return 0;
431  case Instruction::ICmp:
432  case Instruction::FCmp:
433    llvm_unreachable("This function is invalid for compares: no predicate specified");
434  case Instruction::PtrToInt:
435    // If the input is a inttoptr, eliminate the pair.  This requires knowing
436    // the width of a pointer, so it can't be done in ConstantExpr::getCast.
437    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
438      if (TD && CE->getOpcode() == Instruction::IntToPtr) {
439        Constant *Input = CE->getOperand(0);
440        unsigned InWidth = Input->getType()->getScalarSizeInBits();
441        if (TD->getPointerSizeInBits() < InWidth) {
442          Constant *Mask =
443            ConstantInt::get(Context, APInt::getLowBitsSet(InWidth,
444                                                  TD->getPointerSizeInBits()));
445          Input = ConstantExpr::getAnd(Input, Mask);
446        }
447        // Do a zext or trunc to get to the dest size.
448        return ConstantExpr::getIntegerCast(Input, DestTy, false);
449      }
450    }
451    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
452  case Instruction::IntToPtr:
453    // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
454    // the int size is >= the ptr size.  This requires knowing the width of a
455    // pointer, so it can't be done in ConstantExpr::getCast.
456    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
457      if (TD &&
458          TD->getPointerSizeInBits() <=
459          CE->getType()->getScalarSizeInBits()) {
460        if (CE->getOpcode() == Instruction::PtrToInt) {
461          Constant *Input = CE->getOperand(0);
462          Constant *C = FoldBitCast(Input, DestTy, *TD, Context);
463          return C ? C : ConstantExpr::getBitCast(Input, DestTy);
464        }
465        // If there's a constant offset added to the integer value before
466        // it is casted back to a pointer, see if the expression can be
467        // converted into a GEP.
468        if (CE->getOpcode() == Instruction::Add)
469          if (ConstantInt *L = dyn_cast<ConstantInt>(CE->getOperand(0)))
470            if (ConstantExpr *R = dyn_cast<ConstantExpr>(CE->getOperand(1)))
471              if (R->getOpcode() == Instruction::PtrToInt)
472                if (GlobalVariable *GV =
473                      dyn_cast<GlobalVariable>(R->getOperand(0))) {
474                  const PointerType *GVTy = cast<PointerType>(GV->getType());
475                  if (const ArrayType *AT =
476                        dyn_cast<ArrayType>(GVTy->getElementType())) {
477                    const Type *ElTy = AT->getElementType();
478                    uint64_t AllocSize = TD->getTypeAllocSize(ElTy);
479                    APInt PSA(L->getValue().getBitWidth(), AllocSize);
480                    if (ElTy == cast<PointerType>(DestTy)->getElementType() &&
481                        L->getValue().urem(PSA) == 0) {
482                      APInt ElemIdx = L->getValue().udiv(PSA);
483                      if (ElemIdx.ult(APInt(ElemIdx.getBitWidth(),
484                                            AT->getNumElements()))) {
485                        Constant *Index[] = {
486                          Constant::getNullValue(CE->getType()),
487                          ConstantInt::get(Context, ElemIdx)
488                        };
489                        return
490                        ConstantExpr::getGetElementPtr(GV, &Index[0], 2);
491                      }
492                    }
493                  }
494                }
495      }
496    }
497    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
498  case Instruction::Trunc:
499  case Instruction::ZExt:
500  case Instruction::SExt:
501  case Instruction::FPTrunc:
502  case Instruction::FPExt:
503  case Instruction::UIToFP:
504  case Instruction::SIToFP:
505  case Instruction::FPToUI:
506  case Instruction::FPToSI:
507      return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
508  case Instruction::BitCast:
509    if (TD)
510      if (Constant *C = FoldBitCast(Ops[0], DestTy, *TD, Context))
511        return C;
512    return ConstantExpr::getBitCast(Ops[0], DestTy);
513  case Instruction::Select:
514    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
515  case Instruction::ExtractElement:
516    return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
517  case Instruction::InsertElement:
518    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
519  case Instruction::ShuffleVector:
520    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
521  case Instruction::GetElementPtr:
522    if (Constant *C = SymbolicallyEvaluateGEP(Ops, NumOps, DestTy, Context, TD))
523      return C;
524
525    return ConstantExpr::getGetElementPtr(Ops[0], Ops+1, NumOps-1);
526  }
527}
528
529/// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
530/// instruction (icmp/fcmp) with the specified operands.  If it fails, it
531/// returns a constant expression of the specified operands.
532///
533Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
534                                                Constant*const * Ops,
535                                                unsigned NumOps,
536                                                LLVMContext &Context,
537                                                const TargetData *TD) {
538  // fold: icmp (inttoptr x), null         -> icmp x, 0
539  // fold: icmp (ptrtoint x), 0            -> icmp x, null
540  // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
541  // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
542  //
543  // ConstantExpr::getCompare cannot do this, because it doesn't have TD
544  // around to know if bit truncation is happening.
545  if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops[0])) {
546    if (TD && Ops[1]->isNullValue()) {
547      const Type *IntPtrTy = TD->getIntPtrType(Context);
548      if (CE0->getOpcode() == Instruction::IntToPtr) {
549        // Convert the integer value to the right size to ensure we get the
550        // proper extension or truncation.
551        Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
552                                                   IntPtrTy, false);
553        Constant *NewOps[] = { C, Constant::getNullValue(C->getType()) };
554        return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
555                                               Context, TD);
556      }
557
558      // Only do this transformation if the int is intptrty in size, otherwise
559      // there is a truncation or extension that we aren't modeling.
560      if (CE0->getOpcode() == Instruction::PtrToInt &&
561          CE0->getType() == IntPtrTy) {
562        Constant *C = CE0->getOperand(0);
563        Constant *NewOps[] = { C, Constant::getNullValue(C->getType()) };
564        // FIXME!
565        return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
566                                               Context, TD);
567      }
568    }
569
570    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops[1])) {
571      if (TD && CE0->getOpcode() == CE1->getOpcode()) {
572        const Type *IntPtrTy = TD->getIntPtrType(Context);
573
574        if (CE0->getOpcode() == Instruction::IntToPtr) {
575          // Convert the integer value to the right size to ensure we get the
576          // proper extension or truncation.
577          Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
578                                                      IntPtrTy, false);
579          Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
580                                                      IntPtrTy, false);
581          Constant *NewOps[] = { C0, C1 };
582          return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
583                                                 Context, TD);
584        }
585
586        // Only do this transformation if the int is intptrty in size, otherwise
587        // there is a truncation or extension that we aren't modeling.
588        if ((CE0->getOpcode() == Instruction::PtrToInt &&
589             CE0->getType() == IntPtrTy &&
590             CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType())) {
591          Constant *NewOps[] = {
592            CE0->getOperand(0), CE1->getOperand(0)
593          };
594          return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
595                                                 Context, TD);
596        }
597      }
598    }
599  }
600  return ConstantExpr::getCompare(Predicate, Ops[0], Ops[1]);
601}
602
603
604/// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
605/// getelementptr constantexpr, return the constant value being addressed by the
606/// constant expression, or null if something is funny and we can't decide.
607Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
608                                                       ConstantExpr *CE,
609                                                       LLVMContext &Context) {
610  if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType()))
611    return 0;  // Do not allow stepping over the value!
612
613  // Loop over all of the operands, tracking down which value we are
614  // addressing...
615  gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
616  for (++I; I != E; ++I)
617    if (const StructType *STy = dyn_cast<StructType>(*I)) {
618      ConstantInt *CU = cast<ConstantInt>(I.getOperand());
619      assert(CU->getZExtValue() < STy->getNumElements() &&
620             "Struct index out of range!");
621      unsigned El = (unsigned)CU->getZExtValue();
622      if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
623        C = CS->getOperand(El);
624      } else if (isa<ConstantAggregateZero>(C)) {
625        C = Constant::getNullValue(STy->getElementType(El));
626      } else if (isa<UndefValue>(C)) {
627        C = UndefValue::get(STy->getElementType(El));
628      } else {
629        return 0;
630      }
631    } else if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
632      if (const ArrayType *ATy = dyn_cast<ArrayType>(*I)) {
633        if (CI->getZExtValue() >= ATy->getNumElements())
634         return 0;
635        if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
636          C = CA->getOperand(CI->getZExtValue());
637        else if (isa<ConstantAggregateZero>(C))
638          C = Constant::getNullValue(ATy->getElementType());
639        else if (isa<UndefValue>(C))
640          C = UndefValue::get(ATy->getElementType());
641        else
642          return 0;
643      } else if (const VectorType *PTy = dyn_cast<VectorType>(*I)) {
644        if (CI->getZExtValue() >= PTy->getNumElements())
645          return 0;
646        if (ConstantVector *CP = dyn_cast<ConstantVector>(C))
647          C = CP->getOperand(CI->getZExtValue());
648        else if (isa<ConstantAggregateZero>(C))
649          C = Constant::getNullValue(PTy->getElementType());
650        else if (isa<UndefValue>(C))
651          C = UndefValue::get(PTy->getElementType());
652        else
653          return 0;
654      } else {
655        return 0;
656      }
657    } else {
658      return 0;
659    }
660  return C;
661}
662
663
664//===----------------------------------------------------------------------===//
665//  Constant Folding for Calls
666//
667
668/// canConstantFoldCallTo - Return true if its even possible to fold a call to
669/// the specified function.
670bool
671llvm::canConstantFoldCallTo(const Function *F) {
672  switch (F->getIntrinsicID()) {
673  case Intrinsic::sqrt:
674  case Intrinsic::powi:
675  case Intrinsic::bswap:
676  case Intrinsic::ctpop:
677  case Intrinsic::ctlz:
678  case Intrinsic::cttz:
679    return true;
680  default: break;
681  }
682
683  if (!F->hasName()) return false;
684  StringRef Name = F->getName();
685
686  // In these cases, the check of the length is required.  We don't want to
687  // return true for a name like "cos\0blah" which strcmp would return equal to
688  // "cos", but has length 8.
689  switch (Name[0]) {
690  default: return false;
691  case 'a':
692    return Name == "acos" || Name == "asin" ||
693      Name == "atan" || Name == "atan2";
694  case 'c':
695    return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
696  case 'e':
697    return Name == "exp";
698  case 'f':
699    return Name == "fabs" || Name == "fmod" || Name == "floor";
700  case 'l':
701    return Name == "log" || Name == "log10";
702  case 'p':
703    return Name == "pow";
704  case 's':
705    return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
706      Name == "sinf" || Name == "sqrtf";
707  case 't':
708    return Name == "tan" || Name == "tanh";
709  }
710}
711
712static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
713                                const Type *Ty, LLVMContext &Context) {
714  errno = 0;
715  V = NativeFP(V);
716  if (errno != 0) {
717    errno = 0;
718    return 0;
719  }
720
721  if (Ty == Type::getFloatTy(Context))
722    return ConstantFP::get(Context, APFloat((float)V));
723  if (Ty == Type::getDoubleTy(Context))
724    return ConstantFP::get(Context, APFloat(V));
725  llvm_unreachable("Can only constant fold float/double");
726  return 0; // dummy return to suppress warning
727}
728
729static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
730                                      double V, double W,
731                                      const Type *Ty,
732                                      LLVMContext &Context) {
733  errno = 0;
734  V = NativeFP(V, W);
735  if (errno != 0) {
736    errno = 0;
737    return 0;
738  }
739
740  if (Ty == Type::getFloatTy(Context))
741    return ConstantFP::get(Context, APFloat((float)V));
742  if (Ty == Type::getDoubleTy(Context))
743    return ConstantFP::get(Context, APFloat(V));
744  llvm_unreachable("Can only constant fold float/double");
745  return 0; // dummy return to suppress warning
746}
747
748/// ConstantFoldCall - Attempt to constant fold a call to the specified function
749/// with the specified arguments, returning null if unsuccessful.
750
751Constant *
752llvm::ConstantFoldCall(Function *F,
753                       Constant* const* Operands, unsigned NumOperands) {
754  if (!F->hasName()) return 0;
755  LLVMContext &Context = F->getContext();
756  StringRef Name = F->getName();
757
758  const Type *Ty = F->getReturnType();
759  if (NumOperands == 1) {
760    if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
761      if (Ty!=Type::getFloatTy(F->getContext()) &&
762          Ty!=Type::getDoubleTy(Context))
763        return 0;
764      /// Currently APFloat versions of these functions do not exist, so we use
765      /// the host native double versions.  Float versions are not called
766      /// directly but for all these it is true (float)(f((double)arg)) ==
767      /// f(arg).  Long double not supported yet.
768      double V = Ty==Type::getFloatTy(F->getContext()) ?
769                                     (double)Op->getValueAPF().convertToFloat():
770                                     Op->getValueAPF().convertToDouble();
771      switch (Name[0]) {
772      case 'a':
773        if (Name == "acos")
774          return ConstantFoldFP(acos, V, Ty, Context);
775        else if (Name == "asin")
776          return ConstantFoldFP(asin, V, Ty, Context);
777        else if (Name == "atan")
778          return ConstantFoldFP(atan, V, Ty, Context);
779        break;
780      case 'c':
781        if (Name == "ceil")
782          return ConstantFoldFP(ceil, V, Ty, Context);
783        else if (Name == "cos")
784          return ConstantFoldFP(cos, V, Ty, Context);
785        else if (Name == "cosh")
786          return ConstantFoldFP(cosh, V, Ty, Context);
787        else if (Name == "cosf")
788          return ConstantFoldFP(cos, V, Ty, Context);
789        break;
790      case 'e':
791        if (Name == "exp")
792          return ConstantFoldFP(exp, V, Ty, Context);
793        break;
794      case 'f':
795        if (Name == "fabs")
796          return ConstantFoldFP(fabs, V, Ty, Context);
797        else if (Name == "floor")
798          return ConstantFoldFP(floor, V, Ty, Context);
799        break;
800      case 'l':
801        if (Name == "log" && V > 0)
802          return ConstantFoldFP(log, V, Ty, Context);
803        else if (Name == "log10" && V > 0)
804          return ConstantFoldFP(log10, V, Ty, Context);
805        else if (Name == "llvm.sqrt.f32" ||
806                 Name == "llvm.sqrt.f64") {
807          if (V >= -0.0)
808            return ConstantFoldFP(sqrt, V, Ty, Context);
809          else // Undefined
810            return Constant::getNullValue(Ty);
811        }
812        break;
813      case 's':
814        if (Name == "sin")
815          return ConstantFoldFP(sin, V, Ty, Context);
816        else if (Name == "sinh")
817          return ConstantFoldFP(sinh, V, Ty, Context);
818        else if (Name == "sqrt" && V >= 0)
819          return ConstantFoldFP(sqrt, V, Ty, Context);
820        else if (Name == "sqrtf" && V >= 0)
821          return ConstantFoldFP(sqrt, V, Ty, Context);
822        else if (Name == "sinf")
823          return ConstantFoldFP(sin, V, Ty, Context);
824        break;
825      case 't':
826        if (Name == "tan")
827          return ConstantFoldFP(tan, V, Ty, Context);
828        else if (Name == "tanh")
829          return ConstantFoldFP(tanh, V, Ty, Context);
830        break;
831      default:
832        break;
833      }
834    } else if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
835      if (Name.startswith("llvm.bswap"))
836        return ConstantInt::get(Context, Op->getValue().byteSwap());
837      else if (Name.startswith("llvm.ctpop"))
838        return ConstantInt::get(Ty, Op->getValue().countPopulation());
839      else if (Name.startswith("llvm.cttz"))
840        return ConstantInt::get(Ty, Op->getValue().countTrailingZeros());
841      else if (Name.startswith("llvm.ctlz"))
842        return ConstantInt::get(Ty, Op->getValue().countLeadingZeros());
843    }
844  } else if (NumOperands == 2) {
845    if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
846      if (Ty!=Type::getFloatTy(F->getContext()) &&
847          Ty!=Type::getDoubleTy(Context))
848        return 0;
849      double Op1V = Ty==Type::getFloatTy(F->getContext()) ?
850                      (double)Op1->getValueAPF().convertToFloat():
851                      Op1->getValueAPF().convertToDouble();
852      if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
853        double Op2V = Ty==Type::getFloatTy(F->getContext()) ?
854                      (double)Op2->getValueAPF().convertToFloat():
855                      Op2->getValueAPF().convertToDouble();
856
857        if (Name == "pow") {
858          return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty, Context);
859        } else if (Name == "fmod") {
860          return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty, Context);
861        } else if (Name == "atan2") {
862          return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty, Context);
863        }
864      } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
865        if (Name == "llvm.powi.f32") {
866          return ConstantFP::get(Context, APFloat((float)std::pow((float)Op1V,
867                                                 (int)Op2C->getZExtValue())));
868        } else if (Name == "llvm.powi.f64") {
869          return ConstantFP::get(Context, APFloat((double)std::pow((double)Op1V,
870                                                 (int)Op2C->getZExtValue())));
871        }
872      }
873    }
874  }
875  return 0;
876}
877
878