ConstantFolding.cpp revision e56a94ef91009ddb8d8b68783ff1650bcad3b326
1//===-- ConstantFolding.cpp - Analyze constant folding possibilities ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions determines the possibility of performing constant
11// folding.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ConstantFolding.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Function.h"
19#include "llvm/GlobalVariable.h"
20#include "llvm/Instructions.h"
21#include "llvm/Intrinsics.h"
22#include "llvm/LLVMContext.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/StringMap.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/GetElementPtrTypeIterator.h"
28#include "llvm/Support/MathExtras.h"
29#include <cerrno>
30#include <cmath>
31using namespace llvm;
32
33//===----------------------------------------------------------------------===//
34// Constant Folding internal helper functions
35//===----------------------------------------------------------------------===//
36
37/// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
38/// from a global, return the global and the constant.  Because of
39/// constantexprs, this function is recursive.
40static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
41                                       int64_t &Offset, const TargetData &TD) {
42  // Trivial case, constant is the global.
43  if ((GV = dyn_cast<GlobalValue>(C))) {
44    Offset = 0;
45    return true;
46  }
47
48  // Otherwise, if this isn't a constant expr, bail out.
49  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
50  if (!CE) return false;
51
52  // Look through ptr->int and ptr->ptr casts.
53  if (CE->getOpcode() == Instruction::PtrToInt ||
54      CE->getOpcode() == Instruction::BitCast)
55    return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
56
57  // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
58  if (CE->getOpcode() == Instruction::GetElementPtr) {
59    // Cannot compute this if the element type of the pointer is missing size
60    // info.
61    if (!cast<PointerType>(CE->getOperand(0)->getType())
62                 ->getElementType()->isSized())
63      return false;
64
65    // If the base isn't a global+constant, we aren't either.
66    if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
67      return false;
68
69    // Otherwise, add any offset that our operands provide.
70    gep_type_iterator GTI = gep_type_begin(CE);
71    for (User::const_op_iterator i = CE->op_begin() + 1, e = CE->op_end();
72         i != e; ++i, ++GTI) {
73      ConstantInt *CI = dyn_cast<ConstantInt>(*i);
74      if (!CI) return false;  // Index isn't a simple constant?
75      if (CI->getZExtValue() == 0) continue;  // Not adding anything.
76
77      if (const StructType *ST = dyn_cast<StructType>(*GTI)) {
78        // N = N + Offset
79        Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
80      } else {
81        const SequentialType *SQT = cast<SequentialType>(*GTI);
82        Offset += TD.getTypeAllocSize(SQT->getElementType())*CI->getSExtValue();
83      }
84    }
85    return true;
86  }
87
88  return false;
89}
90
91
92/// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
93/// Attempt to symbolically evaluate the result of a binary operator merging
94/// these together.  If target data info is available, it is provided as TD,
95/// otherwise TD is null.
96static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
97                                           Constant *Op1, const TargetData *TD,
98                                           LLVMContext &Context){
99  // SROA
100
101  // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
102  // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
103  // bits.
104
105
106  // If the constant expr is something like &A[123] - &A[4].f, fold this into a
107  // constant.  This happens frequently when iterating over a global array.
108  if (Opc == Instruction::Sub && TD) {
109    GlobalValue *GV1, *GV2;
110    int64_t Offs1, Offs2;
111
112    if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
113      if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
114          GV1 == GV2) {
115        // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
116        return ConstantInt::get(Op0->getType(), Offs1-Offs2);
117      }
118  }
119
120  return 0;
121}
122
123/// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
124/// constant expression, do so.
125static Constant *SymbolicallyEvaluateGEP(Constant* const* Ops, unsigned NumOps,
126                                         const Type *ResultTy,
127                                         LLVMContext &Context,
128                                         const TargetData *TD) {
129  Constant *Ptr = Ops[0];
130  if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized())
131    return 0;
132
133  unsigned BitWidth = TD->getTypeSizeInBits(TD->getIntPtrType(Context));
134  APInt BasePtr(BitWidth, 0);
135  bool BaseIsInt = true;
136  if (!Ptr->isNullValue()) {
137    // If this is a inttoptr from a constant int, we can fold this as the base,
138    // otherwise we can't.
139    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
140      if (CE->getOpcode() == Instruction::IntToPtr)
141        if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0))) {
142          BasePtr = Base->getValue();
143          BasePtr.zextOrTrunc(BitWidth);
144        }
145
146    if (BasePtr == 0)
147      BaseIsInt = false;
148  }
149
150  // If this is a constant expr gep that is effectively computing an
151  // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
152  for (unsigned i = 1; i != NumOps; ++i)
153    if (!isa<ConstantInt>(Ops[i]))
154      return 0;
155
156  APInt Offset = APInt(BitWidth,
157                       TD->getIndexedOffset(Ptr->getType(),
158                                            (Value**)Ops+1, NumOps-1));
159  // If the base value for this address is a literal integer value, fold the
160  // getelementptr to the resulting integer value casted to the pointer type.
161  if (BaseIsInt) {
162    Constant *C = ConstantInt::get(Context, Offset+BasePtr);
163    return ConstantExpr::getIntToPtr(C, ResultTy);
164  }
165
166  // Otherwise form a regular getelementptr. Recompute the indices so that
167  // we eliminate over-indexing of the notional static type array bounds.
168  // This makes it easy to determine if the getelementptr is "inbounds".
169  // Also, this helps GlobalOpt do SROA on GlobalVariables.
170  const Type *Ty = Ptr->getType();
171  SmallVector<Constant*, 32> NewIdxs;
172  do {
173    if (const SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
174      // The only pointer indexing we'll do is on the first index of the GEP.
175      if (isa<PointerType>(ATy) && !NewIdxs.empty())
176        break;
177      // Determine which element of the array the offset points into.
178      APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
179      if (ElemSize == 0)
180        return 0;
181      APInt NewIdx = Offset.udiv(ElemSize);
182      Offset -= NewIdx * ElemSize;
183      NewIdxs.push_back(ConstantInt::get(TD->getIntPtrType(Context), NewIdx));
184      Ty = ATy->getElementType();
185    } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
186      // Determine which field of the struct the offset points into. The
187      // getZExtValue is at least as safe as the StructLayout API because we
188      // know the offset is within the struct at this point.
189      const StructLayout &SL = *TD->getStructLayout(STy);
190      unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
191      NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Context), ElIdx));
192      Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
193      Ty = STy->getTypeAtIndex(ElIdx);
194    } else {
195      // We've reached some non-indexable type.
196      break;
197    }
198  } while (Ty != cast<PointerType>(ResultTy)->getElementType());
199
200  // If we haven't used up the entire offset by descending the static
201  // type, then the offset is pointing into the middle of an indivisible
202  // member, so we can't simplify it.
203  if (Offset != 0)
204    return 0;
205
206  // Create the GEP constant expr.
207  Constant *C = ConstantExpr::getGetElementPtr(Ptr,
208                                               &NewIdxs[0], NewIdxs.size());
209  assert(cast<PointerType>(C->getType())->getElementType() == Ty &&
210         "Computed GetElementPtr has unexpected type!");
211
212  // If the base is the start of a GlobalVariable and all the array indices
213  // remain in their static bounds, the GEP is inbounds. We can check that
214  // all indices are in bounds by just checking the first index only
215  // because we've just normalized all the indices. We can mutate the
216  // Constant in place because we've proven that the indices are in bounds,
217  // so they'll always be in bounds.
218  if (isa<GlobalVariable>(Ptr) && NewIdxs[0]->isNullValue())
219    if (GEPOperator *GEP = dyn_cast<GEPOperator>(C))
220      GEP->setIsInBounds(true);
221
222  // If we ended up indexing a member with a type that doesn't match
223  // the type of what the original indices indexed, add a cast.
224  if (Ty != cast<PointerType>(ResultTy)->getElementType())
225    C = ConstantExpr::getBitCast(C, ResultTy);
226
227  return C;
228}
229
230/// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
231/// targetdata.  Return 0 if unfoldable.
232static Constant *FoldBitCast(Constant *C, const Type *DestTy,
233                             const TargetData &TD, LLVMContext &Context) {
234  // If this is a bitcast from constant vector -> vector, fold it.
235  if (ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
236    if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
237      // If the element types match, VMCore can fold it.
238      unsigned NumDstElt = DestVTy->getNumElements();
239      unsigned NumSrcElt = CV->getNumOperands();
240      if (NumDstElt == NumSrcElt)
241        return 0;
242
243      const Type *SrcEltTy = CV->getType()->getElementType();
244      const Type *DstEltTy = DestVTy->getElementType();
245
246      // Otherwise, we're changing the number of elements in a vector, which
247      // requires endianness information to do the right thing.  For example,
248      //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
249      // folds to (little endian):
250      //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
251      // and to (big endian):
252      //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
253
254      // First thing is first.  We only want to think about integer here, so if
255      // we have something in FP form, recast it as integer.
256      if (DstEltTy->isFloatingPoint()) {
257        // Fold to an vector of integers with same size as our FP type.
258        unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
259        const Type *DestIVTy = VectorType::get(
260                                 IntegerType::get(Context, FPWidth), NumDstElt);
261        // Recursively handle this integer conversion, if possible.
262        C = FoldBitCast(C, DestIVTy, TD, Context);
263        if (!C) return 0;
264
265        // Finally, VMCore can handle this now that #elts line up.
266        return ConstantExpr::getBitCast(C, DestTy);
267      }
268
269      // Okay, we know the destination is integer, if the input is FP, convert
270      // it to integer first.
271      if (SrcEltTy->isFloatingPoint()) {
272        unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
273        const Type *SrcIVTy = VectorType::get(
274                                 IntegerType::get(Context, FPWidth), NumSrcElt);
275        // Ask VMCore to do the conversion now that #elts line up.
276        C = ConstantExpr::getBitCast(C, SrcIVTy);
277        CV = dyn_cast<ConstantVector>(C);
278        if (!CV) return 0;  // If VMCore wasn't able to fold it, bail out.
279      }
280
281      // Now we know that the input and output vectors are both integer vectors
282      // of the same size, and that their #elements is not the same.  Do the
283      // conversion here, which depends on whether the input or output has
284      // more elements.
285      bool isLittleEndian = TD.isLittleEndian();
286
287      SmallVector<Constant*, 32> Result;
288      if (NumDstElt < NumSrcElt) {
289        // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
290        Constant *Zero = Constant::getNullValue(DstEltTy);
291        unsigned Ratio = NumSrcElt/NumDstElt;
292        unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
293        unsigned SrcElt = 0;
294        for (unsigned i = 0; i != NumDstElt; ++i) {
295          // Build each element of the result.
296          Constant *Elt = Zero;
297          unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
298          for (unsigned j = 0; j != Ratio; ++j) {
299            Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(SrcElt++));
300            if (!Src) return 0;  // Reject constantexpr elements.
301
302            // Zero extend the element to the right size.
303            Src = ConstantExpr::getZExt(Src, Elt->getType());
304
305            // Shift it to the right place, depending on endianness.
306            Src = ConstantExpr::getShl(Src,
307                             ConstantInt::get(Src->getType(), ShiftAmt));
308            ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
309
310            // Mix it in.
311            Elt = ConstantExpr::getOr(Elt, Src);
312          }
313          Result.push_back(Elt);
314        }
315      } else {
316        // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
317        unsigned Ratio = NumDstElt/NumSrcElt;
318        unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
319
320        // Loop over each source value, expanding into multiple results.
321        for (unsigned i = 0; i != NumSrcElt; ++i) {
322          Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(i));
323          if (!Src) return 0;  // Reject constantexpr elements.
324
325          unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
326          for (unsigned j = 0; j != Ratio; ++j) {
327            // Shift the piece of the value into the right place, depending on
328            // endianness.
329            Constant *Elt = ConstantExpr::getLShr(Src,
330                            ConstantInt::get(Src->getType(), ShiftAmt));
331            ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
332
333            // Truncate and remember this piece.
334            Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
335          }
336        }
337      }
338
339      return ConstantVector::get(Result.data(), Result.size());
340    }
341  }
342
343  return 0;
344}
345
346
347//===----------------------------------------------------------------------===//
348// Constant Folding public APIs
349//===----------------------------------------------------------------------===//
350
351
352/// ConstantFoldInstruction - Attempt to constant fold the specified
353/// instruction.  If successful, the constant result is returned, if not, null
354/// is returned.  Note that this function can only fail when attempting to fold
355/// instructions like loads and stores, which have no constant expression form.
356///
357Constant *llvm::ConstantFoldInstruction(Instruction *I, LLVMContext &Context,
358                                        const TargetData *TD) {
359  if (PHINode *PN = dyn_cast<PHINode>(I)) {
360    if (PN->getNumIncomingValues() == 0)
361      return UndefValue::get(PN->getType());
362
363    Constant *Result = dyn_cast<Constant>(PN->getIncomingValue(0));
364    if (Result == 0) return 0;
365
366    // Handle PHI nodes specially here...
367    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
368      if (PN->getIncomingValue(i) != Result && PN->getIncomingValue(i) != PN)
369        return 0;   // Not all the same incoming constants...
370
371    // If we reach here, all incoming values are the same constant.
372    return Result;
373  }
374
375  // Scan the operand list, checking to see if they are all constants, if so,
376  // hand off to ConstantFoldInstOperands.
377  SmallVector<Constant*, 8> Ops;
378  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
379    if (Constant *Op = dyn_cast<Constant>(*i))
380      Ops.push_back(Op);
381    else
382      return 0;  // All operands not constant!
383
384  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
385    return ConstantFoldCompareInstOperands(CI->getPredicate(),
386                                           Ops.data(), Ops.size(),
387                                           Context, TD);
388  else
389    return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
390                                    Ops.data(), Ops.size(), Context, TD);
391}
392
393/// ConstantFoldConstantExpression - Attempt to fold the constant expression
394/// using the specified TargetData.  If successful, the constant result is
395/// result is returned, if not, null is returned.
396Constant *llvm::ConstantFoldConstantExpression(ConstantExpr *CE,
397                                               LLVMContext &Context,
398                                               const TargetData *TD) {
399  SmallVector<Constant*, 8> Ops;
400  for (User::op_iterator i = CE->op_begin(), e = CE->op_end(); i != e; ++i)
401    Ops.push_back(cast<Constant>(*i));
402
403  if (CE->isCompare())
404    return ConstantFoldCompareInstOperands(CE->getPredicate(),
405                                           Ops.data(), Ops.size(),
406                                           Context, TD);
407  else
408    return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(),
409                                    Ops.data(), Ops.size(), Context, TD);
410}
411
412/// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
413/// specified opcode and operands.  If successful, the constant result is
414/// returned, if not, null is returned.  Note that this function can fail when
415/// attempting to fold instructions like loads and stores, which have no
416/// constant expression form.
417///
418Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
419                                         Constant* const* Ops, unsigned NumOps,
420                                         LLVMContext &Context,
421                                         const TargetData *TD) {
422  // Handle easy binops first.
423  if (Instruction::isBinaryOp(Opcode)) {
424    if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
425      if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD,
426                                                  Context))
427        return C;
428
429    return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
430  }
431
432  switch (Opcode) {
433  default: return 0;
434  case Instruction::Call:
435    if (Function *F = dyn_cast<Function>(Ops[0]))
436      if (canConstantFoldCallTo(F))
437        return ConstantFoldCall(F, Ops+1, NumOps-1);
438    return 0;
439  case Instruction::ICmp:
440  case Instruction::FCmp:
441    llvm_unreachable("This function is invalid for compares: no predicate specified");
442  case Instruction::PtrToInt:
443    // If the input is a inttoptr, eliminate the pair.  This requires knowing
444    // the width of a pointer, so it can't be done in ConstantExpr::getCast.
445    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
446      if (TD && CE->getOpcode() == Instruction::IntToPtr) {
447        Constant *Input = CE->getOperand(0);
448        unsigned InWidth = Input->getType()->getScalarSizeInBits();
449        if (TD->getPointerSizeInBits() < InWidth) {
450          Constant *Mask =
451            ConstantInt::get(Context, APInt::getLowBitsSet(InWidth,
452                                                  TD->getPointerSizeInBits()));
453          Input = ConstantExpr::getAnd(Input, Mask);
454        }
455        // Do a zext or trunc to get to the dest size.
456        return ConstantExpr::getIntegerCast(Input, DestTy, false);
457      }
458    }
459    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
460  case Instruction::IntToPtr:
461    // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
462    // the int size is >= the ptr size.  This requires knowing the width of a
463    // pointer, so it can't be done in ConstantExpr::getCast.
464    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
465      if (TD &&
466          TD->getPointerSizeInBits() <=
467          CE->getType()->getScalarSizeInBits()) {
468        if (CE->getOpcode() == Instruction::PtrToInt) {
469          Constant *Input = CE->getOperand(0);
470          Constant *C = FoldBitCast(Input, DestTy, *TD, Context);
471          return C ? C : ConstantExpr::getBitCast(Input, DestTy);
472        }
473        // If there's a constant offset added to the integer value before
474        // it is casted back to a pointer, see if the expression can be
475        // converted into a GEP.
476        if (CE->getOpcode() == Instruction::Add)
477          if (ConstantInt *L = dyn_cast<ConstantInt>(CE->getOperand(0)))
478            if (ConstantExpr *R = dyn_cast<ConstantExpr>(CE->getOperand(1)))
479              if (R->getOpcode() == Instruction::PtrToInt)
480                if (GlobalVariable *GV =
481                      dyn_cast<GlobalVariable>(R->getOperand(0))) {
482                  const PointerType *GVTy = cast<PointerType>(GV->getType());
483                  if (const ArrayType *AT =
484                        dyn_cast<ArrayType>(GVTy->getElementType())) {
485                    const Type *ElTy = AT->getElementType();
486                    uint64_t AllocSize = TD->getTypeAllocSize(ElTy);
487                    APInt PSA(L->getValue().getBitWidth(), AllocSize);
488                    if (ElTy == cast<PointerType>(DestTy)->getElementType() &&
489                        L->getValue().urem(PSA) == 0) {
490                      APInt ElemIdx = L->getValue().udiv(PSA);
491                      if (ElemIdx.ult(APInt(ElemIdx.getBitWidth(),
492                                            AT->getNumElements()))) {
493                        Constant *Index[] = {
494                          Constant::getNullValue(CE->getType()),
495                          ConstantInt::get(Context, ElemIdx)
496                        };
497                        return
498                        ConstantExpr::getGetElementPtr(GV, &Index[0], 2);
499                      }
500                    }
501                  }
502                }
503      }
504    }
505    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
506  case Instruction::Trunc:
507  case Instruction::ZExt:
508  case Instruction::SExt:
509  case Instruction::FPTrunc:
510  case Instruction::FPExt:
511  case Instruction::UIToFP:
512  case Instruction::SIToFP:
513  case Instruction::FPToUI:
514  case Instruction::FPToSI:
515      return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
516  case Instruction::BitCast:
517    if (TD)
518      if (Constant *C = FoldBitCast(Ops[0], DestTy, *TD, Context))
519        return C;
520    return ConstantExpr::getBitCast(Ops[0], DestTy);
521  case Instruction::Select:
522    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
523  case Instruction::ExtractElement:
524    return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
525  case Instruction::InsertElement:
526    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
527  case Instruction::ShuffleVector:
528    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
529  case Instruction::GetElementPtr:
530    if (Constant *C = SymbolicallyEvaluateGEP(Ops, NumOps, DestTy, Context, TD))
531      return C;
532
533    return ConstantExpr::getGetElementPtr(Ops[0], Ops+1, NumOps-1);
534  }
535}
536
537/// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
538/// instruction (icmp/fcmp) with the specified operands.  If it fails, it
539/// returns a constant expression of the specified operands.
540///
541Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
542                                                Constant*const * Ops,
543                                                unsigned NumOps,
544                                                LLVMContext &Context,
545                                                const TargetData *TD) {
546  // fold: icmp (inttoptr x), null         -> icmp x, 0
547  // fold: icmp (ptrtoint x), 0            -> icmp x, null
548  // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
549  // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
550  //
551  // ConstantExpr::getCompare cannot do this, because it doesn't have TD
552  // around to know if bit truncation is happening.
553  if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops[0])) {
554    if (TD && Ops[1]->isNullValue()) {
555      const Type *IntPtrTy = TD->getIntPtrType(Context);
556      if (CE0->getOpcode() == Instruction::IntToPtr) {
557        // Convert the integer value to the right size to ensure we get the
558        // proper extension or truncation.
559        Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
560                                                   IntPtrTy, false);
561        Constant *NewOps[] = { C, Constant::getNullValue(C->getType()) };
562        return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
563                                               Context, TD);
564      }
565
566      // Only do this transformation if the int is intptrty in size, otherwise
567      // there is a truncation or extension that we aren't modeling.
568      if (CE0->getOpcode() == Instruction::PtrToInt &&
569          CE0->getType() == IntPtrTy) {
570        Constant *C = CE0->getOperand(0);
571        Constant *NewOps[] = { C, Constant::getNullValue(C->getType()) };
572        // FIXME!
573        return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
574                                               Context, TD);
575      }
576    }
577
578    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops[1])) {
579      if (TD && CE0->getOpcode() == CE1->getOpcode()) {
580        const Type *IntPtrTy = TD->getIntPtrType(Context);
581
582        if (CE0->getOpcode() == Instruction::IntToPtr) {
583          // Convert the integer value to the right size to ensure we get the
584          // proper extension or truncation.
585          Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
586                                                      IntPtrTy, false);
587          Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
588                                                      IntPtrTy, false);
589          Constant *NewOps[] = { C0, C1 };
590          return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
591                                                 Context, TD);
592        }
593
594        // Only do this transformation if the int is intptrty in size, otherwise
595        // there is a truncation or extension that we aren't modeling.
596        if ((CE0->getOpcode() == Instruction::PtrToInt &&
597             CE0->getType() == IntPtrTy &&
598             CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType())) {
599          Constant *NewOps[] = {
600            CE0->getOperand(0), CE1->getOperand(0)
601          };
602          return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
603                                                 Context, TD);
604        }
605      }
606    }
607  }
608  return ConstantExpr::getCompare(Predicate, Ops[0], Ops[1]);
609}
610
611
612/// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
613/// getelementptr constantexpr, return the constant value being addressed by the
614/// constant expression, or null if something is funny and we can't decide.
615Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
616                                                       ConstantExpr *CE,
617                                                       LLVMContext &Context) {
618  if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType()))
619    return 0;  // Do not allow stepping over the value!
620
621  // Loop over all of the operands, tracking down which value we are
622  // addressing...
623  gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
624  for (++I; I != E; ++I)
625    if (const StructType *STy = dyn_cast<StructType>(*I)) {
626      ConstantInt *CU = cast<ConstantInt>(I.getOperand());
627      assert(CU->getZExtValue() < STy->getNumElements() &&
628             "Struct index out of range!");
629      unsigned El = (unsigned)CU->getZExtValue();
630      if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
631        C = CS->getOperand(El);
632      } else if (isa<ConstantAggregateZero>(C)) {
633        C = Constant::getNullValue(STy->getElementType(El));
634      } else if (isa<UndefValue>(C)) {
635        C = UndefValue::get(STy->getElementType(El));
636      } else {
637        return 0;
638      }
639    } else if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
640      if (const ArrayType *ATy = dyn_cast<ArrayType>(*I)) {
641        if (CI->getZExtValue() >= ATy->getNumElements())
642         return 0;
643        if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
644          C = CA->getOperand(CI->getZExtValue());
645        else if (isa<ConstantAggregateZero>(C))
646          C = Constant::getNullValue(ATy->getElementType());
647        else if (isa<UndefValue>(C))
648          C = UndefValue::get(ATy->getElementType());
649        else
650          return 0;
651      } else if (const VectorType *PTy = dyn_cast<VectorType>(*I)) {
652        if (CI->getZExtValue() >= PTy->getNumElements())
653          return 0;
654        if (ConstantVector *CP = dyn_cast<ConstantVector>(C))
655          C = CP->getOperand(CI->getZExtValue());
656        else if (isa<ConstantAggregateZero>(C))
657          C = Constant::getNullValue(PTy->getElementType());
658        else if (isa<UndefValue>(C))
659          C = UndefValue::get(PTy->getElementType());
660        else
661          return 0;
662      } else {
663        return 0;
664      }
665    } else {
666      return 0;
667    }
668  return C;
669}
670
671
672//===----------------------------------------------------------------------===//
673//  Constant Folding for Calls
674//
675
676/// canConstantFoldCallTo - Return true if its even possible to fold a call to
677/// the specified function.
678bool
679llvm::canConstantFoldCallTo(const Function *F) {
680  switch (F->getIntrinsicID()) {
681  case Intrinsic::sqrt:
682  case Intrinsic::powi:
683  case Intrinsic::bswap:
684  case Intrinsic::ctpop:
685  case Intrinsic::ctlz:
686  case Intrinsic::cttz:
687    return true;
688  default: break;
689  }
690
691  if (!F->hasName()) return false;
692  StringRef Name = F->getName();
693
694  // In these cases, the check of the length is required.  We don't want to
695  // return true for a name like "cos\0blah" which strcmp would return equal to
696  // "cos", but has length 8.
697  switch (Name[0]) {
698  default: return false;
699  case 'a':
700    return Name == "acos" || Name == "asin" ||
701      Name == "atan" || Name == "atan2";
702  case 'c':
703    return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
704  case 'e':
705    return Name == "exp";
706  case 'f':
707    return Name == "fabs" || Name == "fmod" || Name == "floor";
708  case 'l':
709    return Name == "log" || Name == "log10";
710  case 'p':
711    return Name == "pow";
712  case 's':
713    return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
714      Name == "sinf" || Name == "sqrtf";
715  case 't':
716    return Name == "tan" || Name == "tanh";
717  }
718}
719
720static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
721                                const Type *Ty, LLVMContext &Context) {
722  errno = 0;
723  V = NativeFP(V);
724  if (errno != 0) {
725    errno = 0;
726    return 0;
727  }
728
729  if (Ty == Type::getFloatTy(Context))
730    return ConstantFP::get(Context, APFloat((float)V));
731  if (Ty == Type::getDoubleTy(Context))
732    return ConstantFP::get(Context, APFloat(V));
733  llvm_unreachable("Can only constant fold float/double");
734  return 0; // dummy return to suppress warning
735}
736
737static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
738                                      double V, double W,
739                                      const Type *Ty,
740                                      LLVMContext &Context) {
741  errno = 0;
742  V = NativeFP(V, W);
743  if (errno != 0) {
744    errno = 0;
745    return 0;
746  }
747
748  if (Ty == Type::getFloatTy(Context))
749    return ConstantFP::get(Context, APFloat((float)V));
750  if (Ty == Type::getDoubleTy(Context))
751    return ConstantFP::get(Context, APFloat(V));
752  llvm_unreachable("Can only constant fold float/double");
753  return 0; // dummy return to suppress warning
754}
755
756/// ConstantFoldCall - Attempt to constant fold a call to the specified function
757/// with the specified arguments, returning null if unsuccessful.
758
759Constant *
760llvm::ConstantFoldCall(Function *F,
761                       Constant* const* Operands, unsigned NumOperands) {
762  if (!F->hasName()) return 0;
763  LLVMContext &Context = F->getContext();
764  StringRef Name = F->getName();
765
766  const Type *Ty = F->getReturnType();
767  if (NumOperands == 1) {
768    if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
769      if (Ty!=Type::getFloatTy(F->getContext()) &&
770          Ty!=Type::getDoubleTy(Context))
771        return 0;
772      /// Currently APFloat versions of these functions do not exist, so we use
773      /// the host native double versions.  Float versions are not called
774      /// directly but for all these it is true (float)(f((double)arg)) ==
775      /// f(arg).  Long double not supported yet.
776      double V = Ty==Type::getFloatTy(F->getContext()) ?
777                                     (double)Op->getValueAPF().convertToFloat():
778                                     Op->getValueAPF().convertToDouble();
779      switch (Name[0]) {
780      case 'a':
781        if (Name == "acos")
782          return ConstantFoldFP(acos, V, Ty, Context);
783        else if (Name == "asin")
784          return ConstantFoldFP(asin, V, Ty, Context);
785        else if (Name == "atan")
786          return ConstantFoldFP(atan, V, Ty, Context);
787        break;
788      case 'c':
789        if (Name == "ceil")
790          return ConstantFoldFP(ceil, V, Ty, Context);
791        else if (Name == "cos")
792          return ConstantFoldFP(cos, V, Ty, Context);
793        else if (Name == "cosh")
794          return ConstantFoldFP(cosh, V, Ty, Context);
795        else if (Name == "cosf")
796          return ConstantFoldFP(cos, V, Ty, Context);
797        break;
798      case 'e':
799        if (Name == "exp")
800          return ConstantFoldFP(exp, V, Ty, Context);
801        break;
802      case 'f':
803        if (Name == "fabs")
804          return ConstantFoldFP(fabs, V, Ty, Context);
805        else if (Name == "floor")
806          return ConstantFoldFP(floor, V, Ty, Context);
807        break;
808      case 'l':
809        if (Name == "log" && V > 0)
810          return ConstantFoldFP(log, V, Ty, Context);
811        else if (Name == "log10" && V > 0)
812          return ConstantFoldFP(log10, V, Ty, Context);
813        else if (Name == "llvm.sqrt.f32" ||
814                 Name == "llvm.sqrt.f64") {
815          if (V >= -0.0)
816            return ConstantFoldFP(sqrt, V, Ty, Context);
817          else // Undefined
818            return Constant::getNullValue(Ty);
819        }
820        break;
821      case 's':
822        if (Name == "sin")
823          return ConstantFoldFP(sin, V, Ty, Context);
824        else if (Name == "sinh")
825          return ConstantFoldFP(sinh, V, Ty, Context);
826        else if (Name == "sqrt" && V >= 0)
827          return ConstantFoldFP(sqrt, V, Ty, Context);
828        else if (Name == "sqrtf" && V >= 0)
829          return ConstantFoldFP(sqrt, V, Ty, Context);
830        else if (Name == "sinf")
831          return ConstantFoldFP(sin, V, Ty, Context);
832        break;
833      case 't':
834        if (Name == "tan")
835          return ConstantFoldFP(tan, V, Ty, Context);
836        else if (Name == "tanh")
837          return ConstantFoldFP(tanh, V, Ty, Context);
838        break;
839      default:
840        break;
841      }
842    } else if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
843      if (Name.startswith("llvm.bswap"))
844        return ConstantInt::get(Context, Op->getValue().byteSwap());
845      else if (Name.startswith("llvm.ctpop"))
846        return ConstantInt::get(Ty, Op->getValue().countPopulation());
847      else if (Name.startswith("llvm.cttz"))
848        return ConstantInt::get(Ty, Op->getValue().countTrailingZeros());
849      else if (Name.startswith("llvm.ctlz"))
850        return ConstantInt::get(Ty, Op->getValue().countLeadingZeros());
851    }
852  } else if (NumOperands == 2) {
853    if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
854      if (Ty!=Type::getFloatTy(F->getContext()) &&
855          Ty!=Type::getDoubleTy(Context))
856        return 0;
857      double Op1V = Ty==Type::getFloatTy(F->getContext()) ?
858                      (double)Op1->getValueAPF().convertToFloat():
859                      Op1->getValueAPF().convertToDouble();
860      if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
861        double Op2V = Ty==Type::getFloatTy(F->getContext()) ?
862                      (double)Op2->getValueAPF().convertToFloat():
863                      Op2->getValueAPF().convertToDouble();
864
865        if (Name == "pow") {
866          return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty, Context);
867        } else if (Name == "fmod") {
868          return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty, Context);
869        } else if (Name == "atan2") {
870          return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty, Context);
871        }
872      } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
873        if (Name == "llvm.powi.f32") {
874          return ConstantFP::get(Context, APFloat((float)std::pow((float)Op1V,
875                                                 (int)Op2C->getZExtValue())));
876        } else if (Name == "llvm.powi.f64") {
877          return ConstantFP::get(Context, APFloat((double)std::pow((double)Op1V,
878                                                 (int)Op2C->getZExtValue())));
879        }
880      }
881    }
882  }
883  return 0;
884}
885
886