Loads.cpp revision ebe69fe11e48d322045d5949c83283927a0d790b
1//===- Loads.cpp - Local load analysis ------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines simple local analyses for load instructions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Analysis/Loads.h"
15#include "llvm/Analysis/AliasAnalysis.h"
16#include "llvm/Analysis/ValueTracking.h"
17#include "llvm/IR/DataLayout.h"
18#include "llvm/IR/GlobalAlias.h"
19#include "llvm/IR/GlobalVariable.h"
20#include "llvm/IR/IntrinsicInst.h"
21#include "llvm/IR/LLVMContext.h"
22#include "llvm/IR/Operator.h"
23using namespace llvm;
24
25/// \brief Test if A and B will obviously have the same value.
26///
27/// This includes recognizing that %t0 and %t1 will have the same
28/// value in code like this:
29/// \code
30///   %t0 = getelementptr \@a, 0, 3
31///   store i32 0, i32* %t0
32///   %t1 = getelementptr \@a, 0, 3
33///   %t2 = load i32* %t1
34/// \endcode
35///
36static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
37  // Test if the values are trivially equivalent.
38  if (A == B)
39    return true;
40
41  // Test if the values come from identical arithmetic instructions.
42  // Use isIdenticalToWhenDefined instead of isIdenticalTo because
43  // this function is only used when one address use dominates the
44  // other, which means that they'll always either have the same
45  // value or one of them will have an undefined value.
46  if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) ||
47      isa<GetElementPtrInst>(A))
48    if (const Instruction *BI = dyn_cast<Instruction>(B))
49      if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
50        return true;
51
52  // Otherwise they may not be equivalent.
53  return false;
54}
55
56/// \brief Check if executing a load of this pointer value cannot trap.
57///
58/// If it is not obviously safe to load from the specified pointer, we do
59/// a quick local scan of the basic block containing \c ScanFrom, to determine
60/// if the address is already accessed.
61///
62/// This uses the pointee type to determine how many bytes need to be safe to
63/// load from the pointer.
64bool llvm::isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom,
65                                       unsigned Align, const DataLayout *DL) {
66  int64_t ByteOffset = 0;
67  Value *Base = V;
68  Base = GetPointerBaseWithConstantOffset(V, ByteOffset, DL);
69
70  if (ByteOffset < 0) // out of bounds
71    return false;
72
73  Type *BaseType = nullptr;
74  unsigned BaseAlign = 0;
75  if (const AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
76    // An alloca is safe to load from as load as it is suitably aligned.
77    BaseType = AI->getAllocatedType();
78    BaseAlign = AI->getAlignment();
79  } else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
80    // Global variables are not necessarily safe to load from if they are
81    // overridden. Their size may change or they may be weak and require a test
82    // to determine if they were in fact provided.
83    if (!GV->mayBeOverridden()) {
84      BaseType = GV->getType()->getElementType();
85      BaseAlign = GV->getAlignment();
86    }
87  }
88
89  PointerType *AddrTy = cast<PointerType>(V->getType());
90  uint64_t LoadSize = DL ? DL->getTypeStoreSize(AddrTy->getElementType()) : 0;
91
92  // If we found a base allocated type from either an alloca or global variable,
93  // try to see if we are definitively within the allocated region. We need to
94  // know the size of the base type and the loaded type to do anything in this
95  // case, so only try this when we have the DataLayout available.
96  if (BaseType && BaseType->isSized() && DL) {
97    if (BaseAlign == 0)
98      BaseAlign = DL->getPrefTypeAlignment(BaseType);
99
100    if (Align <= BaseAlign) {
101      // Check if the load is within the bounds of the underlying object.
102      if (ByteOffset + LoadSize <= DL->getTypeAllocSize(BaseType) &&
103          (Align == 0 || (ByteOffset % Align) == 0))
104        return true;
105    }
106  }
107
108  // Otherwise, be a little bit aggressive by scanning the local block where we
109  // want to check to see if the pointer is already being loaded or stored
110  // from/to.  If so, the previous load or store would have already trapped,
111  // so there is no harm doing an extra load (also, CSE will later eliminate
112  // the load entirely).
113  BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
114
115  // We can at least always strip pointer casts even though we can't use the
116  // base here.
117  V = V->stripPointerCasts();
118
119  while (BBI != E) {
120    --BBI;
121
122    // If we see a free or a call which may write to memory (i.e. which might do
123    // a free) the pointer could be marked invalid.
124    if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
125        !isa<DbgInfoIntrinsic>(BBI))
126      return false;
127
128    Value *AccessedPtr;
129    if (LoadInst *LI = dyn_cast<LoadInst>(BBI))
130      AccessedPtr = LI->getPointerOperand();
131    else if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
132      AccessedPtr = SI->getPointerOperand();
133    else
134      continue;
135
136    // Handle trivial cases even w/o DataLayout or other work.
137    if (AccessedPtr == V)
138      return true;
139
140    if (!DL)
141      continue;
142
143    auto *AccessedTy = cast<PointerType>(AccessedPtr->getType());
144    if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) &&
145        LoadSize <= DL->getTypeStoreSize(AccessedTy->getElementType()))
146      return true;
147  }
148  return false;
149}
150
151/// \brief Scan the ScanBB block backwards to see if we have the value at the
152/// memory address *Ptr locally available within a small number of instructions.
153///
154/// The scan starts from \c ScanFrom. \c MaxInstsToScan specifies the maximum
155/// instructions to scan in the block. If it is set to \c 0, it will scan the whole
156/// block.
157///
158/// If the value is available, this function returns it. If not, it returns the
159/// iterator for the last validated instruction that the value would be live
160/// through. If we scanned the entire block and didn't find something that
161/// invalidates \c *Ptr or provides it, \c ScanFrom is left at the last
162/// instruction processed and this returns null.
163///
164/// You can also optionally specify an alias analysis implementation, which
165/// makes this more precise.
166///
167/// If \c AATags is non-null and a load or store is found, the AA tags from the
168/// load or store are recorded there. If there are no AA tags or if no access is
169/// found, it is left unmodified.
170Value *llvm::FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB,
171                                      BasicBlock::iterator &ScanFrom,
172                                      unsigned MaxInstsToScan,
173                                      AliasAnalysis *AA, AAMDNodes *AATags) {
174  if (MaxInstsToScan == 0)
175    MaxInstsToScan = ~0U;
176
177  Type *AccessTy = cast<PointerType>(Ptr->getType())->getElementType();
178
179  // Try to get the DataLayout for this module. This may be null, in which case
180  // the optimizations will be limited.
181  const DataLayout *DL = ScanBB->getDataLayout();
182
183  // Try to get the store size for the type.
184  uint64_t AccessSize = DL ? DL->getTypeStoreSize(AccessTy)
185                           : AA ? AA->getTypeStoreSize(AccessTy) : 0;
186
187  Value *StrippedPtr = Ptr->stripPointerCasts();
188
189  while (ScanFrom != ScanBB->begin()) {
190    // We must ignore debug info directives when counting (otherwise they
191    // would affect codegen).
192    Instruction *Inst = --ScanFrom;
193    if (isa<DbgInfoIntrinsic>(Inst))
194      continue;
195
196    // Restore ScanFrom to expected value in case next test succeeds
197    ScanFrom++;
198
199    // Don't scan huge blocks.
200    if (MaxInstsToScan-- == 0)
201      return nullptr;
202
203    --ScanFrom;
204    // If this is a load of Ptr, the loaded value is available.
205    // (This is true even if the load is volatile or atomic, although
206    // those cases are unlikely.)
207    if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
208      if (AreEquivalentAddressValues(
209              LI->getPointerOperand()->stripPointerCasts(), StrippedPtr) &&
210          CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) {
211        if (AATags)
212          LI->getAAMetadata(*AATags);
213        return LI;
214      }
215
216    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
217      Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
218      // If this is a store through Ptr, the value is available!
219      // (This is true even if the store is volatile or atomic, although
220      // those cases are unlikely.)
221      if (AreEquivalentAddressValues(StorePtr, StrippedPtr) &&
222          CastInst::isBitOrNoopPointerCastable(SI->getValueOperand()->getType(),
223                                               AccessTy, DL)) {
224        if (AATags)
225          SI->getAAMetadata(*AATags);
226        return SI->getOperand(0);
227      }
228
229      // If both StrippedPtr and StorePtr reach all the way to an alloca or
230      // global and they are different, ignore the store. This is a trivial form
231      // of alias analysis that is important for reg2mem'd code.
232      if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) &&
233          (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) &&
234          StrippedPtr != StorePtr)
235        continue;
236
237      // If we have alias analysis and it says the store won't modify the loaded
238      // value, ignore the store.
239      if (AA &&
240          (AA->getModRefInfo(SI, StrippedPtr, AccessSize) &
241           AliasAnalysis::Mod) == 0)
242        continue;
243
244      // Otherwise the store that may or may not alias the pointer, bail out.
245      ++ScanFrom;
246      return nullptr;
247    }
248
249    // If this is some other instruction that may clobber Ptr, bail out.
250    if (Inst->mayWriteToMemory()) {
251      // If alias analysis claims that it really won't modify the load,
252      // ignore it.
253      if (AA &&
254          (AA->getModRefInfo(Inst, StrippedPtr, AccessSize) &
255           AliasAnalysis::Mod) == 0)
256        continue;
257
258      // May modify the pointer, bail out.
259      ++ScanFrom;
260      return nullptr;
261    }
262  }
263
264  // Got to the start of the block, we didn't find it, but are done for this
265  // block.
266  return nullptr;
267}
268