BitcodeReader.cpp revision e54abc90fe9942ef3902040a7ac475ce0c369dc9
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines the BitcodeReader class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "BitcodeReader.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/InlineAsm.h"
19#include "llvm/Instructions.h"
20#include "llvm/LLVMContext.h"
21#include "llvm/MDNode.h"
22#include "llvm/Module.h"
23#include "llvm/Operator.h"
24#include "llvm/AutoUpgrade.h"
25#include "llvm/ADT/SmallString.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Support/MemoryBuffer.h"
29#include "llvm/OperandTraits.h"
30using namespace llvm;
31
32void BitcodeReader::FreeState() {
33  delete Buffer;
34  Buffer = 0;
35  std::vector<PATypeHolder>().swap(TypeList);
36  ValueList.clear();
37
38  std::vector<AttrListPtr>().swap(MAttributes);
39  std::vector<BasicBlock*>().swap(FunctionBBs);
40  std::vector<Function*>().swap(FunctionsWithBodies);
41  DeferredFunctionInfo.clear();
42}
43
44//===----------------------------------------------------------------------===//
45//  Helper functions to implement forward reference resolution, etc.
46//===----------------------------------------------------------------------===//
47
48/// ConvertToString - Convert a string from a record into an std::string, return
49/// true on failure.
50template<typename StrTy>
51static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
52                            StrTy &Result) {
53  if (Idx > Record.size())
54    return true;
55
56  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
57    Result += (char)Record[i];
58  return false;
59}
60
61static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
62  switch (Val) {
63  default: // Map unknown/new linkages to external
64  case 0:  return GlobalValue::ExternalLinkage;
65  case 1:  return GlobalValue::WeakAnyLinkage;
66  case 2:  return GlobalValue::AppendingLinkage;
67  case 3:  return GlobalValue::InternalLinkage;
68  case 4:  return GlobalValue::LinkOnceAnyLinkage;
69  case 5:  return GlobalValue::DLLImportLinkage;
70  case 6:  return GlobalValue::DLLExportLinkage;
71  case 7:  return GlobalValue::ExternalWeakLinkage;
72  case 8:  return GlobalValue::CommonLinkage;
73  case 9:  return GlobalValue::PrivateLinkage;
74  case 10: return GlobalValue::WeakODRLinkage;
75  case 11: return GlobalValue::LinkOnceODRLinkage;
76  case 12: return GlobalValue::AvailableExternallyLinkage;
77  case 13: return GlobalValue::LinkerPrivateLinkage;
78  }
79}
80
81static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
82  switch (Val) {
83  default: // Map unknown visibilities to default.
84  case 0: return GlobalValue::DefaultVisibility;
85  case 1: return GlobalValue::HiddenVisibility;
86  case 2: return GlobalValue::ProtectedVisibility;
87  }
88}
89
90static int GetDecodedCastOpcode(unsigned Val) {
91  switch (Val) {
92  default: return -1;
93  case bitc::CAST_TRUNC   : return Instruction::Trunc;
94  case bitc::CAST_ZEXT    : return Instruction::ZExt;
95  case bitc::CAST_SEXT    : return Instruction::SExt;
96  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
97  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
98  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
99  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
100  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
101  case bitc::CAST_FPEXT   : return Instruction::FPExt;
102  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
103  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
104  case bitc::CAST_BITCAST : return Instruction::BitCast;
105  }
106}
107static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
108  switch (Val) {
109  default: return -1;
110  case bitc::BINOP_ADD:
111    return Ty->isFPOrFPVector() ? Instruction::FAdd : Instruction::Add;
112  case bitc::BINOP_SUB:
113    return Ty->isFPOrFPVector() ? Instruction::FSub : Instruction::Sub;
114  case bitc::BINOP_MUL:
115    return Ty->isFPOrFPVector() ? Instruction::FMul : Instruction::Mul;
116  case bitc::BINOP_UDIV: return Instruction::UDiv;
117  case bitc::BINOP_SDIV:
118    return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv;
119  case bitc::BINOP_UREM: return Instruction::URem;
120  case bitc::BINOP_SREM:
121    return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem;
122  case bitc::BINOP_SHL:  return Instruction::Shl;
123  case bitc::BINOP_LSHR: return Instruction::LShr;
124  case bitc::BINOP_ASHR: return Instruction::AShr;
125  case bitc::BINOP_AND:  return Instruction::And;
126  case bitc::BINOP_OR:   return Instruction::Or;
127  case bitc::BINOP_XOR:  return Instruction::Xor;
128  }
129}
130
131namespace llvm {
132namespace {
133  /// @brief A class for maintaining the slot number definition
134  /// as a placeholder for the actual definition for forward constants defs.
135  class ConstantPlaceHolder : public ConstantExpr {
136    ConstantPlaceHolder();                       // DO NOT IMPLEMENT
137    void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
138  public:
139    // allocate space for exactly one operand
140    void *operator new(size_t s) {
141      return User::operator new(s, 1);
142    }
143    explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context)
144      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
145      Op<0>() = Context.getUndef(Type::Int32Ty);
146    }
147
148    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
149    static inline bool classof(const ConstantPlaceHolder *) { return true; }
150    static bool classof(const Value *V) {
151      return isa<ConstantExpr>(V) &&
152             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
153    }
154
155
156    /// Provide fast operand accessors
157    //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
158  };
159}
160
161// FIXME: can we inherit this from ConstantExpr?
162template <>
163struct OperandTraits<ConstantPlaceHolder> : FixedNumOperandTraits<1> {
164};
165}
166
167
168void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
169  if (Idx == size()) {
170    push_back(V);
171    return;
172  }
173
174  if (Idx >= size())
175    resize(Idx+1);
176
177  WeakVH &OldV = ValuePtrs[Idx];
178  if (OldV == 0) {
179    OldV = V;
180    return;
181  }
182
183  // Handle constants and non-constants (e.g. instrs) differently for
184  // efficiency.
185  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
186    ResolveConstants.push_back(std::make_pair(PHC, Idx));
187    OldV = V;
188  } else {
189    // If there was a forward reference to this value, replace it.
190    Value *PrevVal = OldV;
191    OldV->replaceAllUsesWith(V);
192    delete PrevVal;
193  }
194}
195
196
197Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
198                                                    const Type *Ty) {
199  if (Idx >= size())
200    resize(Idx + 1);
201
202  if (Value *V = ValuePtrs[Idx]) {
203    assert(Ty == V->getType() && "Type mismatch in constant table!");
204    return cast<Constant>(V);
205  }
206
207  // Create and return a placeholder, which will later be RAUW'd.
208  Constant *C = new ConstantPlaceHolder(Ty, Context);
209  ValuePtrs[Idx] = C;
210  return C;
211}
212
213Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
214  if (Idx >= size())
215    resize(Idx + 1);
216
217  if (Value *V = ValuePtrs[Idx]) {
218    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
219    return V;
220  }
221
222  // No type specified, must be invalid reference.
223  if (Ty == 0) return 0;
224
225  // Create and return a placeholder, which will later be RAUW'd.
226  Value *V = new Argument(Ty);
227  ValuePtrs[Idx] = V;
228  return V;
229}
230
231/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
232/// resolves any forward references.  The idea behind this is that we sometimes
233/// get constants (such as large arrays) which reference *many* forward ref
234/// constants.  Replacing each of these causes a lot of thrashing when
235/// building/reuniquing the constant.  Instead of doing this, we look at all the
236/// uses and rewrite all the place holders at once for any constant that uses
237/// a placeholder.
238void BitcodeReaderValueList::ResolveConstantForwardRefs() {
239  // Sort the values by-pointer so that they are efficient to look up with a
240  // binary search.
241  std::sort(ResolveConstants.begin(), ResolveConstants.end());
242
243  SmallVector<Constant*, 64> NewOps;
244
245  while (!ResolveConstants.empty()) {
246    Value *RealVal = operator[](ResolveConstants.back().second);
247    Constant *Placeholder = ResolveConstants.back().first;
248    ResolveConstants.pop_back();
249
250    // Loop over all users of the placeholder, updating them to reference the
251    // new value.  If they reference more than one placeholder, update them all
252    // at once.
253    while (!Placeholder->use_empty()) {
254      Value::use_iterator UI = Placeholder->use_begin();
255
256      // If the using object isn't uniqued, just update the operands.  This
257      // handles instructions and initializers for global variables.
258      if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) {
259        UI.getUse().set(RealVal);
260        continue;
261      }
262
263      // Otherwise, we have a constant that uses the placeholder.  Replace that
264      // constant with a new constant that has *all* placeholder uses updated.
265      Constant *UserC = cast<Constant>(*UI);
266      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
267           I != E; ++I) {
268        Value *NewOp;
269        if (!isa<ConstantPlaceHolder>(*I)) {
270          // Not a placeholder reference.
271          NewOp = *I;
272        } else if (*I == Placeholder) {
273          // Common case is that it just references this one placeholder.
274          NewOp = RealVal;
275        } else {
276          // Otherwise, look up the placeholder in ResolveConstants.
277          ResolveConstantsTy::iterator It =
278            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
279                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
280                                                            0));
281          assert(It != ResolveConstants.end() && It->first == *I);
282          NewOp = operator[](It->second);
283        }
284
285        NewOps.push_back(cast<Constant>(NewOp));
286      }
287
288      // Make the new constant.
289      Constant *NewC;
290      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
291        NewC = Context.getConstantArray(UserCA->getType(), &NewOps[0],
292                                        NewOps.size());
293      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
294        NewC = Context.getConstantStruct(&NewOps[0], NewOps.size(),
295                                         UserCS->getType()->isPacked());
296      } else if (isa<ConstantVector>(UserC)) {
297        NewC = Context.getConstantVector(&NewOps[0], NewOps.size());
298      } else {
299        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
300        NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
301                                                          NewOps.size());
302      }
303
304      UserC->replaceAllUsesWith(NewC);
305      UserC->destroyConstant();
306      NewOps.clear();
307    }
308
309    // Update all ValueHandles, they should be the only users at this point.
310    Placeholder->replaceAllUsesWith(RealVal);
311    delete Placeholder;
312  }
313}
314
315
316const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
317  // If the TypeID is in range, return it.
318  if (ID < TypeList.size())
319    return TypeList[ID].get();
320  if (!isTypeTable) return 0;
321
322  // The type table allows forward references.  Push as many Opaque types as
323  // needed to get up to ID.
324  while (TypeList.size() <= ID)
325    TypeList.push_back(Context.getOpaqueType());
326  return TypeList.back().get();
327}
328
329//===----------------------------------------------------------------------===//
330//  Functions for parsing blocks from the bitcode file
331//===----------------------------------------------------------------------===//
332
333bool BitcodeReader::ParseAttributeBlock() {
334  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
335    return Error("Malformed block record");
336
337  if (!MAttributes.empty())
338    return Error("Multiple PARAMATTR blocks found!");
339
340  SmallVector<uint64_t, 64> Record;
341
342  SmallVector<AttributeWithIndex, 8> Attrs;
343
344  // Read all the records.
345  while (1) {
346    unsigned Code = Stream.ReadCode();
347    if (Code == bitc::END_BLOCK) {
348      if (Stream.ReadBlockEnd())
349        return Error("Error at end of PARAMATTR block");
350      return false;
351    }
352
353    if (Code == bitc::ENTER_SUBBLOCK) {
354      // No known subblocks, always skip them.
355      Stream.ReadSubBlockID();
356      if (Stream.SkipBlock())
357        return Error("Malformed block record");
358      continue;
359    }
360
361    if (Code == bitc::DEFINE_ABBREV) {
362      Stream.ReadAbbrevRecord();
363      continue;
364    }
365
366    // Read a record.
367    Record.clear();
368    switch (Stream.ReadRecord(Code, Record)) {
369    default:  // Default behavior: ignore.
370      break;
371    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
372      if (Record.size() & 1)
373        return Error("Invalid ENTRY record");
374
375      // FIXME : Remove this autoupgrade code in LLVM 3.0.
376      // If Function attributes are using index 0 then transfer them
377      // to index ~0. Index 0 is used for return value attributes but used to be
378      // used for function attributes.
379      Attributes RetAttribute = Attribute::None;
380      Attributes FnAttribute = Attribute::None;
381      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
382        // FIXME: remove in LLVM 3.0
383        // The alignment is stored as a 16-bit raw value from bits 31--16.
384        // We shift the bits above 31 down by 11 bits.
385
386        unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
387        if (Alignment && !isPowerOf2_32(Alignment))
388          return Error("Alignment is not a power of two.");
389
390        Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
391        if (Alignment)
392          ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
393        ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
394        Record[i+1] = ReconstitutedAttr;
395
396        if (Record[i] == 0)
397          RetAttribute = Record[i+1];
398        else if (Record[i] == ~0U)
399          FnAttribute = Record[i+1];
400      }
401
402      unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
403                              Attribute::ReadOnly|Attribute::ReadNone);
404
405      if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
406          (RetAttribute & OldRetAttrs) != 0) {
407        if (FnAttribute == Attribute::None) { // add a slot so they get added.
408          Record.push_back(~0U);
409          Record.push_back(0);
410        }
411
412        FnAttribute  |= RetAttribute & OldRetAttrs;
413        RetAttribute &= ~OldRetAttrs;
414      }
415
416      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
417        if (Record[i] == 0) {
418          if (RetAttribute != Attribute::None)
419            Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
420        } else if (Record[i] == ~0U) {
421          if (FnAttribute != Attribute::None)
422            Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
423        } else if (Record[i+1] != Attribute::None)
424          Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
425      }
426
427      MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
428      Attrs.clear();
429      break;
430    }
431    }
432  }
433}
434
435
436bool BitcodeReader::ParseTypeTable() {
437  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
438    return Error("Malformed block record");
439
440  if (!TypeList.empty())
441    return Error("Multiple TYPE_BLOCKs found!");
442
443  SmallVector<uint64_t, 64> Record;
444  unsigned NumRecords = 0;
445
446  // Read all the records for this type table.
447  while (1) {
448    unsigned Code = Stream.ReadCode();
449    if (Code == bitc::END_BLOCK) {
450      if (NumRecords != TypeList.size())
451        return Error("Invalid type forward reference in TYPE_BLOCK");
452      if (Stream.ReadBlockEnd())
453        return Error("Error at end of type table block");
454      return false;
455    }
456
457    if (Code == bitc::ENTER_SUBBLOCK) {
458      // No known subblocks, always skip them.
459      Stream.ReadSubBlockID();
460      if (Stream.SkipBlock())
461        return Error("Malformed block record");
462      continue;
463    }
464
465    if (Code == bitc::DEFINE_ABBREV) {
466      Stream.ReadAbbrevRecord();
467      continue;
468    }
469
470    // Read a record.
471    Record.clear();
472    const Type *ResultTy = 0;
473    switch (Stream.ReadRecord(Code, Record)) {
474    default:  // Default behavior: unknown type.
475      ResultTy = 0;
476      break;
477    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
478      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
479      // type list.  This allows us to reserve space.
480      if (Record.size() < 1)
481        return Error("Invalid TYPE_CODE_NUMENTRY record");
482      TypeList.reserve(Record[0]);
483      continue;
484    case bitc::TYPE_CODE_VOID:      // VOID
485      ResultTy = Type::VoidTy;
486      break;
487    case bitc::TYPE_CODE_FLOAT:     // FLOAT
488      ResultTy = Type::FloatTy;
489      break;
490    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
491      ResultTy = Type::DoubleTy;
492      break;
493    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
494      ResultTy = Type::X86_FP80Ty;
495      break;
496    case bitc::TYPE_CODE_FP128:     // FP128
497      ResultTy = Type::FP128Ty;
498      break;
499    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
500      ResultTy = Type::PPC_FP128Ty;
501      break;
502    case bitc::TYPE_CODE_LABEL:     // LABEL
503      ResultTy = Type::LabelTy;
504      break;
505    case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
506      ResultTy = 0;
507      break;
508    case bitc::TYPE_CODE_METADATA:  // METADATA
509      ResultTy = Type::MetadataTy;
510      break;
511    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
512      if (Record.size() < 1)
513        return Error("Invalid Integer type record");
514
515      ResultTy = Context.getIntegerType(Record[0]);
516      break;
517    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
518                                    //          [pointee type, address space]
519      if (Record.size() < 1)
520        return Error("Invalid POINTER type record");
521      unsigned AddressSpace = 0;
522      if (Record.size() == 2)
523        AddressSpace = Record[1];
524      ResultTy = Context.getPointerType(getTypeByID(Record[0], true),
525                                        AddressSpace);
526      break;
527    }
528    case bitc::TYPE_CODE_FUNCTION: {
529      // FIXME: attrid is dead, remove it in LLVM 3.0
530      // FUNCTION: [vararg, attrid, retty, paramty x N]
531      if (Record.size() < 3)
532        return Error("Invalid FUNCTION type record");
533      std::vector<const Type*> ArgTys;
534      for (unsigned i = 3, e = Record.size(); i != e; ++i)
535        ArgTys.push_back(getTypeByID(Record[i], true));
536
537      ResultTy = Context.getFunctionType(getTypeByID(Record[2], true), ArgTys,
538                                   Record[0]);
539      break;
540    }
541    case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
542      if (Record.size() < 1)
543        return Error("Invalid STRUCT type record");
544      std::vector<const Type*> EltTys;
545      for (unsigned i = 1, e = Record.size(); i != e; ++i)
546        EltTys.push_back(getTypeByID(Record[i], true));
547      ResultTy = Context.getStructType(EltTys, Record[0]);
548      break;
549    }
550    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
551      if (Record.size() < 2)
552        return Error("Invalid ARRAY type record");
553      ResultTy = Context.getArrayType(getTypeByID(Record[1], true), Record[0]);
554      break;
555    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
556      if (Record.size() < 2)
557        return Error("Invalid VECTOR type record");
558      ResultTy = Context.getVectorType(getTypeByID(Record[1], true), Record[0]);
559      break;
560    }
561
562    if (NumRecords == TypeList.size()) {
563      // If this is a new type slot, just append it.
564      TypeList.push_back(ResultTy ? ResultTy : Context.getOpaqueType());
565      ++NumRecords;
566    } else if (ResultTy == 0) {
567      // Otherwise, this was forward referenced, so an opaque type was created,
568      // but the result type is actually just an opaque.  Leave the one we
569      // created previously.
570      ++NumRecords;
571    } else {
572      // Otherwise, this was forward referenced, so an opaque type was created.
573      // Resolve the opaque type to the real type now.
574      assert(NumRecords < TypeList.size() && "Typelist imbalance");
575      const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
576
577      // Don't directly push the new type on the Tab. Instead we want to replace
578      // the opaque type we previously inserted with the new concrete value. The
579      // refinement from the abstract (opaque) type to the new type causes all
580      // uses of the abstract type to use the concrete type (NewTy). This will
581      // also cause the opaque type to be deleted.
582      const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
583
584      // This should have replaced the old opaque type with the new type in the
585      // value table... or with a preexisting type that was already in the
586      // system.  Let's just make sure it did.
587      assert(TypeList[NumRecords-1].get() != OldTy &&
588             "refineAbstractType didn't work!");
589    }
590  }
591}
592
593
594bool BitcodeReader::ParseTypeSymbolTable() {
595  if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
596    return Error("Malformed block record");
597
598  SmallVector<uint64_t, 64> Record;
599
600  // Read all the records for this type table.
601  std::string TypeName;
602  while (1) {
603    unsigned Code = Stream.ReadCode();
604    if (Code == bitc::END_BLOCK) {
605      if (Stream.ReadBlockEnd())
606        return Error("Error at end of type symbol table block");
607      return false;
608    }
609
610    if (Code == bitc::ENTER_SUBBLOCK) {
611      // No known subblocks, always skip them.
612      Stream.ReadSubBlockID();
613      if (Stream.SkipBlock())
614        return Error("Malformed block record");
615      continue;
616    }
617
618    if (Code == bitc::DEFINE_ABBREV) {
619      Stream.ReadAbbrevRecord();
620      continue;
621    }
622
623    // Read a record.
624    Record.clear();
625    switch (Stream.ReadRecord(Code, Record)) {
626    default:  // Default behavior: unknown type.
627      break;
628    case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
629      if (ConvertToString(Record, 1, TypeName))
630        return Error("Invalid TST_ENTRY record");
631      unsigned TypeID = Record[0];
632      if (TypeID >= TypeList.size())
633        return Error("Invalid Type ID in TST_ENTRY record");
634
635      TheModule->addTypeName(TypeName, TypeList[TypeID].get());
636      TypeName.clear();
637      break;
638    }
639  }
640}
641
642bool BitcodeReader::ParseValueSymbolTable() {
643  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
644    return Error("Malformed block record");
645
646  SmallVector<uint64_t, 64> Record;
647
648  // Read all the records for this value table.
649  SmallString<128> ValueName;
650  while (1) {
651    unsigned Code = Stream.ReadCode();
652    if (Code == bitc::END_BLOCK) {
653      if (Stream.ReadBlockEnd())
654        return Error("Error at end of value symbol table block");
655      return false;
656    }
657    if (Code == bitc::ENTER_SUBBLOCK) {
658      // No known subblocks, always skip them.
659      Stream.ReadSubBlockID();
660      if (Stream.SkipBlock())
661        return Error("Malformed block record");
662      continue;
663    }
664
665    if (Code == bitc::DEFINE_ABBREV) {
666      Stream.ReadAbbrevRecord();
667      continue;
668    }
669
670    // Read a record.
671    Record.clear();
672    switch (Stream.ReadRecord(Code, Record)) {
673    default:  // Default behavior: unknown type.
674      break;
675    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
676      if (ConvertToString(Record, 1, ValueName))
677        return Error("Invalid VST_ENTRY record");
678      unsigned ValueID = Record[0];
679      if (ValueID >= ValueList.size())
680        return Error("Invalid Value ID in VST_ENTRY record");
681      Value *V = ValueList[ValueID];
682
683      V->setName(&ValueName[0], ValueName.size());
684      ValueName.clear();
685      break;
686    }
687    case bitc::VST_CODE_BBENTRY: {
688      if (ConvertToString(Record, 1, ValueName))
689        return Error("Invalid VST_BBENTRY record");
690      BasicBlock *BB = getBasicBlock(Record[0]);
691      if (BB == 0)
692        return Error("Invalid BB ID in VST_BBENTRY record");
693
694      BB->setName(&ValueName[0], ValueName.size());
695      ValueName.clear();
696      break;
697    }
698    }
699  }
700}
701
702bool BitcodeReader::ParseMetadata() {
703  unsigned NextValueNo = ValueList.size();
704
705  if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
706    return Error("Malformed block record");
707
708  SmallVector<uint64_t, 64> Record;
709
710  // Read all the records.
711  while (1) {
712    unsigned Code = Stream.ReadCode();
713    if (Code == bitc::END_BLOCK) {
714      if (Stream.ReadBlockEnd())
715        return Error("Error at end of PARAMATTR block");
716      return false;
717    }
718
719    if (Code == bitc::ENTER_SUBBLOCK) {
720      // No known subblocks, always skip them.
721      Stream.ReadSubBlockID();
722      if (Stream.SkipBlock())
723        return Error("Malformed block record");
724      continue;
725    }
726
727    if (Code == bitc::DEFINE_ABBREV) {
728      Stream.ReadAbbrevRecord();
729      continue;
730    }
731
732    // Read a record.
733    Record.clear();
734    switch (Stream.ReadRecord(Code, Record)) {
735    default:  // Default behavior: ignore.
736      break;
737    case bitc::METADATA_STRING: {
738      unsigned MDStringLength = Record.size();
739      SmallString<8> String;
740      String.resize(MDStringLength);
741      for (unsigned i = 0; i != MDStringLength; ++i)
742        String[i] = Record[i];
743      Value *V =
744        Context.getMDString(String.c_str(), String.c_str() + MDStringLength);
745      ValueList.AssignValue(V, NextValueNo++);
746      break;
747    }
748    }
749  }
750}
751
752/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
753/// the LSB for dense VBR encoding.
754static uint64_t DecodeSignRotatedValue(uint64_t V) {
755  if ((V & 1) == 0)
756    return V >> 1;
757  if (V != 1)
758    return -(V >> 1);
759  // There is no such thing as -0 with integers.  "-0" really means MININT.
760  return 1ULL << 63;
761}
762
763/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
764/// values and aliases that we can.
765bool BitcodeReader::ResolveGlobalAndAliasInits() {
766  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
767  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
768
769  GlobalInitWorklist.swap(GlobalInits);
770  AliasInitWorklist.swap(AliasInits);
771
772  while (!GlobalInitWorklist.empty()) {
773    unsigned ValID = GlobalInitWorklist.back().second;
774    if (ValID >= ValueList.size()) {
775      // Not ready to resolve this yet, it requires something later in the file.
776      GlobalInits.push_back(GlobalInitWorklist.back());
777    } else {
778      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
779        GlobalInitWorklist.back().first->setInitializer(C);
780      else
781        return Error("Global variable initializer is not a constant!");
782    }
783    GlobalInitWorklist.pop_back();
784  }
785
786  while (!AliasInitWorklist.empty()) {
787    unsigned ValID = AliasInitWorklist.back().second;
788    if (ValID >= ValueList.size()) {
789      AliasInits.push_back(AliasInitWorklist.back());
790    } else {
791      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
792        AliasInitWorklist.back().first->setAliasee(C);
793      else
794        return Error("Alias initializer is not a constant!");
795    }
796    AliasInitWorklist.pop_back();
797  }
798  return false;
799}
800
801static void SetOptimizationFlags(Value *V, uint64_t Flags) {
802  if (OverflowingBinaryOperator *OBO =
803        dyn_cast<OverflowingBinaryOperator>(V)) {
804    if (Flags & (1 << bitc::OBO_NO_SIGNED_OVERFLOW))
805      OBO->setHasNoSignedOverflow(true);
806    if (Flags & (1 << bitc::OBO_NO_UNSIGNED_OVERFLOW))
807      OBO->setHasNoUnsignedOverflow(true);
808  } else if (SDivOperator *Div = dyn_cast<SDivOperator>(V)) {
809    if (Flags & (1 << bitc::SDIV_EXACT))
810      Div->setIsExact(true);
811  }
812}
813
814bool BitcodeReader::ParseConstants() {
815  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
816    return Error("Malformed block record");
817
818  SmallVector<uint64_t, 64> Record;
819
820  // Read all the records for this value table.
821  const Type *CurTy = Type::Int32Ty;
822  unsigned NextCstNo = ValueList.size();
823  while (1) {
824    unsigned Code = Stream.ReadCode();
825    if (Code == bitc::END_BLOCK)
826      break;
827
828    if (Code == bitc::ENTER_SUBBLOCK) {
829      // No known subblocks, always skip them.
830      Stream.ReadSubBlockID();
831      if (Stream.SkipBlock())
832        return Error("Malformed block record");
833      continue;
834    }
835
836    if (Code == bitc::DEFINE_ABBREV) {
837      Stream.ReadAbbrevRecord();
838      continue;
839    }
840
841    // Read a record.
842    Record.clear();
843    Value *V = 0;
844    unsigned BitCode = Stream.ReadRecord(Code, Record);
845    switch (BitCode) {
846    default:  // Default behavior: unknown constant
847    case bitc::CST_CODE_UNDEF:     // UNDEF
848      V = Context.getUndef(CurTy);
849      break;
850    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
851      if (Record.empty())
852        return Error("Malformed CST_SETTYPE record");
853      if (Record[0] >= TypeList.size())
854        return Error("Invalid Type ID in CST_SETTYPE record");
855      CurTy = TypeList[Record[0]];
856      continue;  // Skip the ValueList manipulation.
857    case bitc::CST_CODE_NULL:      // NULL
858      V = Context.getNullValue(CurTy);
859      break;
860    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
861      if (!isa<IntegerType>(CurTy) || Record.empty())
862        return Error("Invalid CST_INTEGER record");
863      V = Context.getConstantInt(CurTy, DecodeSignRotatedValue(Record[0]));
864      break;
865    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
866      if (!isa<IntegerType>(CurTy) || Record.empty())
867        return Error("Invalid WIDE_INTEGER record");
868
869      unsigned NumWords = Record.size();
870      SmallVector<uint64_t, 8> Words;
871      Words.resize(NumWords);
872      for (unsigned i = 0; i != NumWords; ++i)
873        Words[i] = DecodeSignRotatedValue(Record[i]);
874      V = Context.getConstantInt(APInt(cast<IntegerType>(CurTy)->getBitWidth(),
875                                 NumWords, &Words[0]));
876      break;
877    }
878    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
879      if (Record.empty())
880        return Error("Invalid FLOAT record");
881      if (CurTy == Type::FloatTy)
882        V = Context.getConstantFP(APFloat(APInt(32, (uint32_t)Record[0])));
883      else if (CurTy == Type::DoubleTy)
884        V = Context.getConstantFP(APFloat(APInt(64, Record[0])));
885      else if (CurTy == Type::X86_FP80Ty) {
886        // Bits are not stored the same way as a normal i80 APInt, compensate.
887        uint64_t Rearrange[2];
888        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
889        Rearrange[1] = Record[0] >> 48;
890        V = Context.getConstantFP(APFloat(APInt(80, 2, Rearrange)));
891      } else if (CurTy == Type::FP128Ty)
892        V = Context.getConstantFP(APFloat(APInt(128, 2, &Record[0]), true));
893      else if (CurTy == Type::PPC_FP128Ty)
894        V = Context.getConstantFP(APFloat(APInt(128, 2, &Record[0])));
895      else
896        V = Context.getUndef(CurTy);
897      break;
898    }
899
900    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
901      if (Record.empty())
902        return Error("Invalid CST_AGGREGATE record");
903
904      unsigned Size = Record.size();
905      std::vector<Constant*> Elts;
906
907      if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
908        for (unsigned i = 0; i != Size; ++i)
909          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
910                                                     STy->getElementType(i)));
911        V = Context.getConstantStruct(STy, Elts);
912      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
913        const Type *EltTy = ATy->getElementType();
914        for (unsigned i = 0; i != Size; ++i)
915          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
916        V = Context.getConstantArray(ATy, Elts);
917      } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
918        const Type *EltTy = VTy->getElementType();
919        for (unsigned i = 0; i != Size; ++i)
920          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
921        V = Context.getConstantVector(Elts);
922      } else {
923        V = Context.getUndef(CurTy);
924      }
925      break;
926    }
927    case bitc::CST_CODE_STRING: { // STRING: [values]
928      if (Record.empty())
929        return Error("Invalid CST_AGGREGATE record");
930
931      const ArrayType *ATy = cast<ArrayType>(CurTy);
932      const Type *EltTy = ATy->getElementType();
933
934      unsigned Size = Record.size();
935      std::vector<Constant*> Elts;
936      for (unsigned i = 0; i != Size; ++i)
937        Elts.push_back(Context.getConstantInt(EltTy, Record[i]));
938      V = Context.getConstantArray(ATy, Elts);
939      break;
940    }
941    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
942      if (Record.empty())
943        return Error("Invalid CST_AGGREGATE record");
944
945      const ArrayType *ATy = cast<ArrayType>(CurTy);
946      const Type *EltTy = ATy->getElementType();
947
948      unsigned Size = Record.size();
949      std::vector<Constant*> Elts;
950      for (unsigned i = 0; i != Size; ++i)
951        Elts.push_back(Context.getConstantInt(EltTy, Record[i]));
952      Elts.push_back(Context.getNullValue(EltTy));
953      V = Context.getConstantArray(ATy, Elts);
954      break;
955    }
956    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
957      if (Record.size() < 3) return Error("Invalid CE_BINOP record");
958      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
959      if (Opc < 0) {
960        V = Context.getUndef(CurTy);  // Unknown binop.
961      } else {
962        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
963        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
964        V = Context.getConstantExpr(Opc, LHS, RHS);
965      }
966      if (Record.size() >= 4)
967        SetOptimizationFlags(V, Record[3]);
968      break;
969    }
970    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
971      if (Record.size() < 3) return Error("Invalid CE_CAST record");
972      int Opc = GetDecodedCastOpcode(Record[0]);
973      if (Opc < 0) {
974        V = Context.getUndef(CurTy);  // Unknown cast.
975      } else {
976        const Type *OpTy = getTypeByID(Record[1]);
977        if (!OpTy) return Error("Invalid CE_CAST record");
978        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
979        V = Context.getConstantExprCast(Opc, Op, CurTy);
980      }
981      break;
982    }
983    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
984      if (Record.size() & 1) return Error("Invalid CE_GEP record");
985      SmallVector<Constant*, 16> Elts;
986      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
987        const Type *ElTy = getTypeByID(Record[i]);
988        if (!ElTy) return Error("Invalid CE_GEP record");
989        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
990      }
991      V = Context.getConstantExprGetElementPtr(Elts[0], &Elts[1],
992                                               Elts.size()-1);
993      break;
994    }
995    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
996      if (Record.size() < 3) return Error("Invalid CE_SELECT record");
997      V = Context.getConstantExprSelect(ValueList.getConstantFwdRef(Record[0],
998                                                              Type::Int1Ty),
999                                  ValueList.getConstantFwdRef(Record[1],CurTy),
1000                                  ValueList.getConstantFwdRef(Record[2],CurTy));
1001      break;
1002    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1003      if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1004      const VectorType *OpTy =
1005        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1006      if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1007      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1008      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty);
1009      V = Context.getConstantExprExtractElement(Op0, Op1);
1010      break;
1011    }
1012    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1013      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1014      if (Record.size() < 3 || OpTy == 0)
1015        return Error("Invalid CE_INSERTELT record");
1016      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1017      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1018                                                  OpTy->getElementType());
1019      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty);
1020      V = Context.getConstantExprInsertElement(Op0, Op1, Op2);
1021      break;
1022    }
1023    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1024      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1025      if (Record.size() < 3 || OpTy == 0)
1026        return Error("Invalid CE_SHUFFLEVEC record");
1027      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1028      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1029      const Type *ShufTy = Context.getVectorType(Type::Int32Ty,
1030                                                 OpTy->getNumElements());
1031      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1032      V = Context.getConstantExprShuffleVector(Op0, Op1, Op2);
1033      break;
1034    }
1035    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1036      const VectorType *RTy = dyn_cast<VectorType>(CurTy);
1037      const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0]));
1038      if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1039        return Error("Invalid CE_SHUFVEC_EX record");
1040      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1041      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1042      const Type *ShufTy = Context.getVectorType(Type::Int32Ty,
1043                                                 RTy->getNumElements());
1044      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1045      V = Context.getConstantExprShuffleVector(Op0, Op1, Op2);
1046      break;
1047    }
1048    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1049      if (Record.size() < 4) return Error("Invalid CE_CMP record");
1050      const Type *OpTy = getTypeByID(Record[0]);
1051      if (OpTy == 0) return Error("Invalid CE_CMP record");
1052      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1053      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1054
1055      if (OpTy->isFloatingPoint())
1056        V = Context.getConstantExprFCmp(Record[3], Op0, Op1);
1057      else
1058        V = Context.getConstantExprICmp(Record[3], Op0, Op1);
1059      break;
1060    }
1061    case bitc::CST_CODE_INLINEASM: {
1062      if (Record.size() < 2) return Error("Invalid INLINEASM record");
1063      std::string AsmStr, ConstrStr;
1064      bool HasSideEffects = Record[0];
1065      unsigned AsmStrSize = Record[1];
1066      if (2+AsmStrSize >= Record.size())
1067        return Error("Invalid INLINEASM record");
1068      unsigned ConstStrSize = Record[2+AsmStrSize];
1069      if (3+AsmStrSize+ConstStrSize > Record.size())
1070        return Error("Invalid INLINEASM record");
1071
1072      for (unsigned i = 0; i != AsmStrSize; ++i)
1073        AsmStr += (char)Record[2+i];
1074      for (unsigned i = 0; i != ConstStrSize; ++i)
1075        ConstrStr += (char)Record[3+AsmStrSize+i];
1076      const PointerType *PTy = cast<PointerType>(CurTy);
1077      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1078                         AsmStr, ConstrStr, HasSideEffects);
1079      break;
1080    }
1081    case bitc::CST_CODE_MDNODE: {
1082      if (Record.empty() || Record.size() % 2 == 1)
1083        return Error("Invalid CST_MDNODE record");
1084
1085      unsigned Size = Record.size();
1086      SmallVector<Value*, 8> Elts;
1087      for (unsigned i = 0; i != Size; i += 2) {
1088        const Type *Ty = getTypeByID(Record[i], false);
1089        if (Ty != Type::VoidTy)
1090          Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
1091        else
1092          Elts.push_back(NULL);
1093      }
1094      V = Context.getMDNode(&Elts[0], Elts.size());
1095      break;
1096    }
1097    }
1098
1099    ValueList.AssignValue(V, NextCstNo);
1100    ++NextCstNo;
1101  }
1102
1103  if (NextCstNo != ValueList.size())
1104    return Error("Invalid constant reference!");
1105
1106  if (Stream.ReadBlockEnd())
1107    return Error("Error at end of constants block");
1108
1109  // Once all the constants have been read, go through and resolve forward
1110  // references.
1111  ValueList.ResolveConstantForwardRefs();
1112  return false;
1113}
1114
1115/// RememberAndSkipFunctionBody - When we see the block for a function body,
1116/// remember where it is and then skip it.  This lets us lazily deserialize the
1117/// functions.
1118bool BitcodeReader::RememberAndSkipFunctionBody() {
1119  // Get the function we are talking about.
1120  if (FunctionsWithBodies.empty())
1121    return Error("Insufficient function protos");
1122
1123  Function *Fn = FunctionsWithBodies.back();
1124  FunctionsWithBodies.pop_back();
1125
1126  // Save the current stream state.
1127  uint64_t CurBit = Stream.GetCurrentBitNo();
1128  DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage());
1129
1130  // Set the functions linkage to GhostLinkage so we know it is lazily
1131  // deserialized.
1132  Fn->setLinkage(GlobalValue::GhostLinkage);
1133
1134  // Skip over the function block for now.
1135  if (Stream.SkipBlock())
1136    return Error("Malformed block record");
1137  return false;
1138}
1139
1140bool BitcodeReader::ParseModule(const std::string &ModuleID) {
1141  // Reject multiple MODULE_BLOCK's in a single bitstream.
1142  if (TheModule)
1143    return Error("Multiple MODULE_BLOCKs in same stream");
1144
1145  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1146    return Error("Malformed block record");
1147
1148  // Otherwise, create the module.
1149  TheModule = new Module(ModuleID, Context);
1150
1151  SmallVector<uint64_t, 64> Record;
1152  std::vector<std::string> SectionTable;
1153  std::vector<std::string> GCTable;
1154
1155  // Read all the records for this module.
1156  while (!Stream.AtEndOfStream()) {
1157    unsigned Code = Stream.ReadCode();
1158    if (Code == bitc::END_BLOCK) {
1159      if (Stream.ReadBlockEnd())
1160        return Error("Error at end of module block");
1161
1162      // Patch the initializers for globals and aliases up.
1163      ResolveGlobalAndAliasInits();
1164      if (!GlobalInits.empty() || !AliasInits.empty())
1165        return Error("Malformed global initializer set");
1166      if (!FunctionsWithBodies.empty())
1167        return Error("Too few function bodies found");
1168
1169      // Look for intrinsic functions which need to be upgraded at some point
1170      for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1171           FI != FE; ++FI) {
1172        Function* NewFn;
1173        if (UpgradeIntrinsicFunction(FI, NewFn))
1174          UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1175      }
1176
1177      // Force deallocation of memory for these vectors to favor the client that
1178      // want lazy deserialization.
1179      std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1180      std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1181      std::vector<Function*>().swap(FunctionsWithBodies);
1182      return false;
1183    }
1184
1185    if (Code == bitc::ENTER_SUBBLOCK) {
1186      switch (Stream.ReadSubBlockID()) {
1187      default:  // Skip unknown content.
1188        if (Stream.SkipBlock())
1189          return Error("Malformed block record");
1190        break;
1191      case bitc::BLOCKINFO_BLOCK_ID:
1192        if (Stream.ReadBlockInfoBlock())
1193          return Error("Malformed BlockInfoBlock");
1194        break;
1195      case bitc::PARAMATTR_BLOCK_ID:
1196        if (ParseAttributeBlock())
1197          return true;
1198        break;
1199      case bitc::TYPE_BLOCK_ID:
1200        if (ParseTypeTable())
1201          return true;
1202        break;
1203      case bitc::TYPE_SYMTAB_BLOCK_ID:
1204        if (ParseTypeSymbolTable())
1205          return true;
1206        break;
1207      case bitc::VALUE_SYMTAB_BLOCK_ID:
1208        if (ParseValueSymbolTable())
1209          return true;
1210        break;
1211      case bitc::CONSTANTS_BLOCK_ID:
1212        if (ParseConstants() || ResolveGlobalAndAliasInits())
1213          return true;
1214        break;
1215      case bitc::METADATA_BLOCK_ID:
1216        if (ParseMetadata())
1217          return true;
1218        break;
1219      case bitc::FUNCTION_BLOCK_ID:
1220        // If this is the first function body we've seen, reverse the
1221        // FunctionsWithBodies list.
1222        if (!HasReversedFunctionsWithBodies) {
1223          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1224          HasReversedFunctionsWithBodies = true;
1225        }
1226
1227        if (RememberAndSkipFunctionBody())
1228          return true;
1229        break;
1230      }
1231      continue;
1232    }
1233
1234    if (Code == bitc::DEFINE_ABBREV) {
1235      Stream.ReadAbbrevRecord();
1236      continue;
1237    }
1238
1239    // Read a record.
1240    switch (Stream.ReadRecord(Code, Record)) {
1241    default: break;  // Default behavior, ignore unknown content.
1242    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1243      if (Record.size() < 1)
1244        return Error("Malformed MODULE_CODE_VERSION");
1245      // Only version #0 is supported so far.
1246      if (Record[0] != 0)
1247        return Error("Unknown bitstream version!");
1248      break;
1249    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1250      std::string S;
1251      if (ConvertToString(Record, 0, S))
1252        return Error("Invalid MODULE_CODE_TRIPLE record");
1253      TheModule->setTargetTriple(S);
1254      break;
1255    }
1256    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1257      std::string S;
1258      if (ConvertToString(Record, 0, S))
1259        return Error("Invalid MODULE_CODE_DATALAYOUT record");
1260      TheModule->setDataLayout(S);
1261      break;
1262    }
1263    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1264      std::string S;
1265      if (ConvertToString(Record, 0, S))
1266        return Error("Invalid MODULE_CODE_ASM record");
1267      TheModule->setModuleInlineAsm(S);
1268      break;
1269    }
1270    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1271      std::string S;
1272      if (ConvertToString(Record, 0, S))
1273        return Error("Invalid MODULE_CODE_DEPLIB record");
1274      TheModule->addLibrary(S);
1275      break;
1276    }
1277    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1278      std::string S;
1279      if (ConvertToString(Record, 0, S))
1280        return Error("Invalid MODULE_CODE_SECTIONNAME record");
1281      SectionTable.push_back(S);
1282      break;
1283    }
1284    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1285      std::string S;
1286      if (ConvertToString(Record, 0, S))
1287        return Error("Invalid MODULE_CODE_GCNAME record");
1288      GCTable.push_back(S);
1289      break;
1290    }
1291    // GLOBALVAR: [pointer type, isconst, initid,
1292    //             linkage, alignment, section, visibility, threadlocal]
1293    case bitc::MODULE_CODE_GLOBALVAR: {
1294      if (Record.size() < 6)
1295        return Error("Invalid MODULE_CODE_GLOBALVAR record");
1296      const Type *Ty = getTypeByID(Record[0]);
1297      if (!isa<PointerType>(Ty))
1298        return Error("Global not a pointer type!");
1299      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1300      Ty = cast<PointerType>(Ty)->getElementType();
1301
1302      bool isConstant = Record[1];
1303      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1304      unsigned Alignment = (1 << Record[4]) >> 1;
1305      std::string Section;
1306      if (Record[5]) {
1307        if (Record[5]-1 >= SectionTable.size())
1308          return Error("Invalid section ID");
1309        Section = SectionTable[Record[5]-1];
1310      }
1311      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1312      if (Record.size() > 6)
1313        Visibility = GetDecodedVisibility(Record[6]);
1314      bool isThreadLocal = false;
1315      if (Record.size() > 7)
1316        isThreadLocal = Record[7];
1317
1318      GlobalVariable *NewGV =
1319        new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1320                           isThreadLocal, AddressSpace);
1321      NewGV->setAlignment(Alignment);
1322      if (!Section.empty())
1323        NewGV->setSection(Section);
1324      NewGV->setVisibility(Visibility);
1325      NewGV->setThreadLocal(isThreadLocal);
1326
1327      ValueList.push_back(NewGV);
1328
1329      // Remember which value to use for the global initializer.
1330      if (unsigned InitID = Record[2])
1331        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1332      break;
1333    }
1334    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1335    //             alignment, section, visibility, gc]
1336    case bitc::MODULE_CODE_FUNCTION: {
1337      if (Record.size() < 8)
1338        return Error("Invalid MODULE_CODE_FUNCTION record");
1339      const Type *Ty = getTypeByID(Record[0]);
1340      if (!isa<PointerType>(Ty))
1341        return Error("Function not a pointer type!");
1342      const FunctionType *FTy =
1343        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1344      if (!FTy)
1345        return Error("Function not a pointer to function type!");
1346
1347      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1348                                        "", TheModule);
1349
1350      Func->setCallingConv(Record[1]);
1351      bool isProto = Record[2];
1352      Func->setLinkage(GetDecodedLinkage(Record[3]));
1353      Func->setAttributes(getAttributes(Record[4]));
1354
1355      Func->setAlignment((1 << Record[5]) >> 1);
1356      if (Record[6]) {
1357        if (Record[6]-1 >= SectionTable.size())
1358          return Error("Invalid section ID");
1359        Func->setSection(SectionTable[Record[6]-1]);
1360      }
1361      Func->setVisibility(GetDecodedVisibility(Record[7]));
1362      if (Record.size() > 8 && Record[8]) {
1363        if (Record[8]-1 > GCTable.size())
1364          return Error("Invalid GC ID");
1365        Func->setGC(GCTable[Record[8]-1].c_str());
1366      }
1367      ValueList.push_back(Func);
1368
1369      // If this is a function with a body, remember the prototype we are
1370      // creating now, so that we can match up the body with them later.
1371      if (!isProto)
1372        FunctionsWithBodies.push_back(Func);
1373      break;
1374    }
1375    // ALIAS: [alias type, aliasee val#, linkage]
1376    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1377    case bitc::MODULE_CODE_ALIAS: {
1378      if (Record.size() < 3)
1379        return Error("Invalid MODULE_ALIAS record");
1380      const Type *Ty = getTypeByID(Record[0]);
1381      if (!isa<PointerType>(Ty))
1382        return Error("Function not a pointer type!");
1383
1384      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1385                                           "", 0, TheModule);
1386      // Old bitcode files didn't have visibility field.
1387      if (Record.size() > 3)
1388        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1389      ValueList.push_back(NewGA);
1390      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1391      break;
1392    }
1393    /// MODULE_CODE_PURGEVALS: [numvals]
1394    case bitc::MODULE_CODE_PURGEVALS:
1395      // Trim down the value list to the specified size.
1396      if (Record.size() < 1 || Record[0] > ValueList.size())
1397        return Error("Invalid MODULE_PURGEVALS record");
1398      ValueList.shrinkTo(Record[0]);
1399      break;
1400    }
1401    Record.clear();
1402  }
1403
1404  return Error("Premature end of bitstream");
1405}
1406
1407bool BitcodeReader::ParseBitcode() {
1408  TheModule = 0;
1409
1410  if (Buffer->getBufferSize() & 3)
1411    return Error("Bitcode stream should be a multiple of 4 bytes in length");
1412
1413  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1414  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1415
1416  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1417  // The magic number is 0x0B17C0DE stored in little endian.
1418  if (isBitcodeWrapper(BufPtr, BufEnd))
1419    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1420      return Error("Invalid bitcode wrapper header");
1421
1422  StreamFile.init(BufPtr, BufEnd);
1423  Stream.init(StreamFile);
1424
1425  // Sniff for the signature.
1426  if (Stream.Read(8) != 'B' ||
1427      Stream.Read(8) != 'C' ||
1428      Stream.Read(4) != 0x0 ||
1429      Stream.Read(4) != 0xC ||
1430      Stream.Read(4) != 0xE ||
1431      Stream.Read(4) != 0xD)
1432    return Error("Invalid bitcode signature");
1433
1434  // We expect a number of well-defined blocks, though we don't necessarily
1435  // need to understand them all.
1436  while (!Stream.AtEndOfStream()) {
1437    unsigned Code = Stream.ReadCode();
1438
1439    if (Code != bitc::ENTER_SUBBLOCK)
1440      return Error("Invalid record at top-level");
1441
1442    unsigned BlockID = Stream.ReadSubBlockID();
1443
1444    // We only know the MODULE subblock ID.
1445    switch (BlockID) {
1446    case bitc::BLOCKINFO_BLOCK_ID:
1447      if (Stream.ReadBlockInfoBlock())
1448        return Error("Malformed BlockInfoBlock");
1449      break;
1450    case bitc::MODULE_BLOCK_ID:
1451      if (ParseModule(Buffer->getBufferIdentifier()))
1452        return true;
1453      break;
1454    default:
1455      if (Stream.SkipBlock())
1456        return Error("Malformed block record");
1457      break;
1458    }
1459  }
1460
1461  return false;
1462}
1463
1464
1465/// ParseFunctionBody - Lazily parse the specified function body block.
1466bool BitcodeReader::ParseFunctionBody(Function *F) {
1467  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1468    return Error("Malformed block record");
1469
1470  unsigned ModuleValueListSize = ValueList.size();
1471
1472  // Add all the function arguments to the value table.
1473  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1474    ValueList.push_back(I);
1475
1476  unsigned NextValueNo = ValueList.size();
1477  BasicBlock *CurBB = 0;
1478  unsigned CurBBNo = 0;
1479
1480  // Read all the records.
1481  SmallVector<uint64_t, 64> Record;
1482  while (1) {
1483    unsigned Code = Stream.ReadCode();
1484    if (Code == bitc::END_BLOCK) {
1485      if (Stream.ReadBlockEnd())
1486        return Error("Error at end of function block");
1487      break;
1488    }
1489
1490    if (Code == bitc::ENTER_SUBBLOCK) {
1491      switch (Stream.ReadSubBlockID()) {
1492      default:  // Skip unknown content.
1493        if (Stream.SkipBlock())
1494          return Error("Malformed block record");
1495        break;
1496      case bitc::CONSTANTS_BLOCK_ID:
1497        if (ParseConstants()) return true;
1498        NextValueNo = ValueList.size();
1499        break;
1500      case bitc::VALUE_SYMTAB_BLOCK_ID:
1501        if (ParseValueSymbolTable()) return true;
1502        break;
1503      }
1504      continue;
1505    }
1506
1507    if (Code == bitc::DEFINE_ABBREV) {
1508      Stream.ReadAbbrevRecord();
1509      continue;
1510    }
1511
1512    // Read a record.
1513    Record.clear();
1514    Instruction *I = 0;
1515    unsigned BitCode = Stream.ReadRecord(Code, Record);
1516    switch (BitCode) {
1517    default: // Default behavior: reject
1518      return Error("Unknown instruction");
1519    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1520      if (Record.size() < 1 || Record[0] == 0)
1521        return Error("Invalid DECLAREBLOCKS record");
1522      // Create all the basic blocks for the function.
1523      FunctionBBs.resize(Record[0]);
1524      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1525        FunctionBBs[i] = BasicBlock::Create("", F);
1526      CurBB = FunctionBBs[0];
1527      continue;
1528
1529    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1530      unsigned OpNum = 0;
1531      Value *LHS, *RHS;
1532      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1533          getValue(Record, OpNum, LHS->getType(), RHS) ||
1534          OpNum+1 > Record.size())
1535        return Error("Invalid BINOP record");
1536
1537      int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
1538      if (Opc == -1) return Error("Invalid BINOP record");
1539      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1540      if (OpNum < Record.size())
1541        SetOptimizationFlags(I, Record[3]);
1542      break;
1543    }
1544    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1545      unsigned OpNum = 0;
1546      Value *Op;
1547      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1548          OpNum+2 != Record.size())
1549        return Error("Invalid CAST record");
1550
1551      const Type *ResTy = getTypeByID(Record[OpNum]);
1552      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1553      if (Opc == -1 || ResTy == 0)
1554        return Error("Invalid CAST record");
1555      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1556      break;
1557    }
1558    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1559      unsigned OpNum = 0;
1560      Value *BasePtr;
1561      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1562        return Error("Invalid GEP record");
1563
1564      SmallVector<Value*, 16> GEPIdx;
1565      while (OpNum != Record.size()) {
1566        Value *Op;
1567        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1568          return Error("Invalid GEP record");
1569        GEPIdx.push_back(Op);
1570      }
1571
1572      I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1573      break;
1574    }
1575
1576    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1577                                       // EXTRACTVAL: [opty, opval, n x indices]
1578      unsigned OpNum = 0;
1579      Value *Agg;
1580      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1581        return Error("Invalid EXTRACTVAL record");
1582
1583      SmallVector<unsigned, 4> EXTRACTVALIdx;
1584      for (unsigned RecSize = Record.size();
1585           OpNum != RecSize; ++OpNum) {
1586        uint64_t Index = Record[OpNum];
1587        if ((unsigned)Index != Index)
1588          return Error("Invalid EXTRACTVAL index");
1589        EXTRACTVALIdx.push_back((unsigned)Index);
1590      }
1591
1592      I = ExtractValueInst::Create(Agg,
1593                                   EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1594      break;
1595    }
1596
1597    case bitc::FUNC_CODE_INST_INSERTVAL: {
1598                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
1599      unsigned OpNum = 0;
1600      Value *Agg;
1601      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1602        return Error("Invalid INSERTVAL record");
1603      Value *Val;
1604      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1605        return Error("Invalid INSERTVAL record");
1606
1607      SmallVector<unsigned, 4> INSERTVALIdx;
1608      for (unsigned RecSize = Record.size();
1609           OpNum != RecSize; ++OpNum) {
1610        uint64_t Index = Record[OpNum];
1611        if ((unsigned)Index != Index)
1612          return Error("Invalid INSERTVAL index");
1613        INSERTVALIdx.push_back((unsigned)Index);
1614      }
1615
1616      I = InsertValueInst::Create(Agg, Val,
1617                                  INSERTVALIdx.begin(), INSERTVALIdx.end());
1618      break;
1619    }
1620
1621    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
1622      // obsolete form of select
1623      // handles select i1 ... in old bitcode
1624      unsigned OpNum = 0;
1625      Value *TrueVal, *FalseVal, *Cond;
1626      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1627          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1628          getValue(Record, OpNum, Type::Int1Ty, Cond))
1629        return Error("Invalid SELECT record");
1630
1631      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1632      break;
1633    }
1634
1635    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
1636      // new form of select
1637      // handles select i1 or select [N x i1]
1638      unsigned OpNum = 0;
1639      Value *TrueVal, *FalseVal, *Cond;
1640      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1641          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1642          getValueTypePair(Record, OpNum, NextValueNo, Cond))
1643        return Error("Invalid SELECT record");
1644
1645      // select condition can be either i1 or [N x i1]
1646      if (const VectorType* vector_type =
1647          dyn_cast<const VectorType>(Cond->getType())) {
1648        // expect <n x i1>
1649        if (vector_type->getElementType() != Type::Int1Ty)
1650          return Error("Invalid SELECT condition type");
1651      } else {
1652        // expect i1
1653        if (Cond->getType() != Type::Int1Ty)
1654          return Error("Invalid SELECT condition type");
1655      }
1656
1657      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1658      break;
1659    }
1660
1661    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
1662      unsigned OpNum = 0;
1663      Value *Vec, *Idx;
1664      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1665          getValue(Record, OpNum, Type::Int32Ty, Idx))
1666        return Error("Invalid EXTRACTELT record");
1667      I = new ExtractElementInst(Vec, Idx);
1668      break;
1669    }
1670
1671    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
1672      unsigned OpNum = 0;
1673      Value *Vec, *Elt, *Idx;
1674      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1675          getValue(Record, OpNum,
1676                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
1677          getValue(Record, OpNum, Type::Int32Ty, Idx))
1678        return Error("Invalid INSERTELT record");
1679      I = InsertElementInst::Create(Vec, Elt, Idx);
1680      break;
1681    }
1682
1683    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
1684      unsigned OpNum = 0;
1685      Value *Vec1, *Vec2, *Mask;
1686      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
1687          getValue(Record, OpNum, Vec1->getType(), Vec2))
1688        return Error("Invalid SHUFFLEVEC record");
1689
1690      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
1691        return Error("Invalid SHUFFLEVEC record");
1692      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
1693      break;
1694    }
1695
1696    case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
1697      // Old form of ICmp/FCmp returning bool
1698      // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
1699      // both legal on vectors but had different behaviour.
1700    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
1701      // FCmp/ICmp returning bool or vector of bool
1702
1703      unsigned OpNum = 0;
1704      Value *LHS, *RHS;
1705      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1706          getValue(Record, OpNum, LHS->getType(), RHS) ||
1707          OpNum+1 != Record.size())
1708        return Error("Invalid CMP record");
1709
1710      if (LHS->getType()->isFPOrFPVector())
1711        I = new FCmpInst(Context, (FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1712      else
1713        I = new ICmpInst(Context, (ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1714      break;
1715    }
1716
1717    case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
1718      if (Record.size() != 2)
1719        return Error("Invalid GETRESULT record");
1720      unsigned OpNum = 0;
1721      Value *Op;
1722      getValueTypePair(Record, OpNum, NextValueNo, Op);
1723      unsigned Index = Record[1];
1724      I = ExtractValueInst::Create(Op, Index);
1725      break;
1726    }
1727
1728    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
1729      {
1730        unsigned Size = Record.size();
1731        if (Size == 0) {
1732          I = ReturnInst::Create();
1733          break;
1734        }
1735
1736        unsigned OpNum = 0;
1737        SmallVector<Value *,4> Vs;
1738        do {
1739          Value *Op = NULL;
1740          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1741            return Error("Invalid RET record");
1742          Vs.push_back(Op);
1743        } while(OpNum != Record.size());
1744
1745        const Type *ReturnType = F->getReturnType();
1746        if (Vs.size() > 1 ||
1747            (isa<StructType>(ReturnType) &&
1748             (Vs.empty() || Vs[0]->getType() != ReturnType))) {
1749          Value *RV = Context.getUndef(ReturnType);
1750          for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
1751            I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
1752            CurBB->getInstList().push_back(I);
1753            ValueList.AssignValue(I, NextValueNo++);
1754            RV = I;
1755          }
1756          I = ReturnInst::Create(RV);
1757          break;
1758        }
1759
1760        I = ReturnInst::Create(Vs[0]);
1761        break;
1762      }
1763    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
1764      if (Record.size() != 1 && Record.size() != 3)
1765        return Error("Invalid BR record");
1766      BasicBlock *TrueDest = getBasicBlock(Record[0]);
1767      if (TrueDest == 0)
1768        return Error("Invalid BR record");
1769
1770      if (Record.size() == 1)
1771        I = BranchInst::Create(TrueDest);
1772      else {
1773        BasicBlock *FalseDest = getBasicBlock(Record[1]);
1774        Value *Cond = getFnValueByID(Record[2], Type::Int1Ty);
1775        if (FalseDest == 0 || Cond == 0)
1776          return Error("Invalid BR record");
1777        I = BranchInst::Create(TrueDest, FalseDest, Cond);
1778      }
1779      break;
1780    }
1781    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, opval, n, n x ops]
1782      if (Record.size() < 3 || (Record.size() & 1) == 0)
1783        return Error("Invalid SWITCH record");
1784      const Type *OpTy = getTypeByID(Record[0]);
1785      Value *Cond = getFnValueByID(Record[1], OpTy);
1786      BasicBlock *Default = getBasicBlock(Record[2]);
1787      if (OpTy == 0 || Cond == 0 || Default == 0)
1788        return Error("Invalid SWITCH record");
1789      unsigned NumCases = (Record.size()-3)/2;
1790      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
1791      for (unsigned i = 0, e = NumCases; i != e; ++i) {
1792        ConstantInt *CaseVal =
1793          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
1794        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
1795        if (CaseVal == 0 || DestBB == 0) {
1796          delete SI;
1797          return Error("Invalid SWITCH record!");
1798        }
1799        SI->addCase(CaseVal, DestBB);
1800      }
1801      I = SI;
1802      break;
1803    }
1804
1805    case bitc::FUNC_CODE_INST_INVOKE: {
1806      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
1807      if (Record.size() < 4) return Error("Invalid INVOKE record");
1808      AttrListPtr PAL = getAttributes(Record[0]);
1809      unsigned CCInfo = Record[1];
1810      BasicBlock *NormalBB = getBasicBlock(Record[2]);
1811      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
1812
1813      unsigned OpNum = 4;
1814      Value *Callee;
1815      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
1816        return Error("Invalid INVOKE record");
1817
1818      const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
1819      const FunctionType *FTy = !CalleeTy ? 0 :
1820        dyn_cast<FunctionType>(CalleeTy->getElementType());
1821
1822      // Check that the right number of fixed parameters are here.
1823      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
1824          Record.size() < OpNum+FTy->getNumParams())
1825        return Error("Invalid INVOKE record");
1826
1827      SmallVector<Value*, 16> Ops;
1828      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
1829        Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
1830        if (Ops.back() == 0) return Error("Invalid INVOKE record");
1831      }
1832
1833      if (!FTy->isVarArg()) {
1834        if (Record.size() != OpNum)
1835          return Error("Invalid INVOKE record");
1836      } else {
1837        // Read type/value pairs for varargs params.
1838        while (OpNum != Record.size()) {
1839          Value *Op;
1840          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1841            return Error("Invalid INVOKE record");
1842          Ops.push_back(Op);
1843        }
1844      }
1845
1846      I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
1847                             Ops.begin(), Ops.end());
1848      cast<InvokeInst>(I)->setCallingConv(CCInfo);
1849      cast<InvokeInst>(I)->setAttributes(PAL);
1850      break;
1851    }
1852    case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
1853      I = new UnwindInst();
1854      break;
1855    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
1856      I = new UnreachableInst();
1857      break;
1858    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
1859      if (Record.size() < 1 || ((Record.size()-1)&1))
1860        return Error("Invalid PHI record");
1861      const Type *Ty = getTypeByID(Record[0]);
1862      if (!Ty) return Error("Invalid PHI record");
1863
1864      PHINode *PN = PHINode::Create(Ty);
1865      PN->reserveOperandSpace((Record.size()-1)/2);
1866
1867      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
1868        Value *V = getFnValueByID(Record[1+i], Ty);
1869        BasicBlock *BB = getBasicBlock(Record[2+i]);
1870        if (!V || !BB) return Error("Invalid PHI record");
1871        PN->addIncoming(V, BB);
1872      }
1873      I = PN;
1874      break;
1875    }
1876
1877    case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
1878      if (Record.size() < 3)
1879        return Error("Invalid MALLOC record");
1880      const PointerType *Ty =
1881        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1882      Value *Size = getFnValueByID(Record[1], Type::Int32Ty);
1883      unsigned Align = Record[2];
1884      if (!Ty || !Size) return Error("Invalid MALLOC record");
1885      I = new MallocInst(Ty->getElementType(), Size, (1 << Align) >> 1);
1886      break;
1887    }
1888    case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
1889      unsigned OpNum = 0;
1890      Value *Op;
1891      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1892          OpNum != Record.size())
1893        return Error("Invalid FREE record");
1894      I = new FreeInst(Op);
1895      break;
1896    }
1897    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align]
1898      if (Record.size() < 3)
1899        return Error("Invalid ALLOCA record");
1900      const PointerType *Ty =
1901        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1902      Value *Size = getFnValueByID(Record[1], Type::Int32Ty);
1903      unsigned Align = Record[2];
1904      if (!Ty || !Size) return Error("Invalid ALLOCA record");
1905      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
1906      break;
1907    }
1908    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
1909      unsigned OpNum = 0;
1910      Value *Op;
1911      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1912          OpNum+2 != Record.size())
1913        return Error("Invalid LOAD record");
1914
1915      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1916      break;
1917    }
1918    case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
1919      unsigned OpNum = 0;
1920      Value *Val, *Ptr;
1921      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
1922          getValue(Record, OpNum,
1923                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
1924          OpNum+2 != Record.size())
1925        return Error("Invalid STORE record");
1926
1927      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1928      break;
1929    }
1930    case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
1931      // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
1932      unsigned OpNum = 0;
1933      Value *Val, *Ptr;
1934      if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
1935          getValue(Record, OpNum,
1936                   Context.getPointerTypeUnqual(Val->getType()), Ptr)||
1937          OpNum+2 != Record.size())
1938        return Error("Invalid STORE record");
1939
1940      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1941      break;
1942    }
1943    case bitc::FUNC_CODE_INST_CALL: {
1944      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
1945      if (Record.size() < 3)
1946        return Error("Invalid CALL record");
1947
1948      AttrListPtr PAL = getAttributes(Record[0]);
1949      unsigned CCInfo = Record[1];
1950
1951      unsigned OpNum = 2;
1952      Value *Callee;
1953      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
1954        return Error("Invalid CALL record");
1955
1956      const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
1957      const FunctionType *FTy = 0;
1958      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
1959      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
1960        return Error("Invalid CALL record");
1961
1962      SmallVector<Value*, 16> Args;
1963      // Read the fixed params.
1964      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
1965        if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
1966          Args.push_back(getBasicBlock(Record[OpNum]));
1967        else
1968          Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
1969        if (Args.back() == 0) return Error("Invalid CALL record");
1970      }
1971
1972      // Read type/value pairs for varargs params.
1973      if (!FTy->isVarArg()) {
1974        if (OpNum != Record.size())
1975          return Error("Invalid CALL record");
1976      } else {
1977        while (OpNum != Record.size()) {
1978          Value *Op;
1979          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1980            return Error("Invalid CALL record");
1981          Args.push_back(Op);
1982        }
1983      }
1984
1985      I = CallInst::Create(Callee, Args.begin(), Args.end());
1986      cast<CallInst>(I)->setCallingConv(CCInfo>>1);
1987      cast<CallInst>(I)->setTailCall(CCInfo & 1);
1988      cast<CallInst>(I)->setAttributes(PAL);
1989      break;
1990    }
1991    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
1992      if (Record.size() < 3)
1993        return Error("Invalid VAARG record");
1994      const Type *OpTy = getTypeByID(Record[0]);
1995      Value *Op = getFnValueByID(Record[1], OpTy);
1996      const Type *ResTy = getTypeByID(Record[2]);
1997      if (!OpTy || !Op || !ResTy)
1998        return Error("Invalid VAARG record");
1999      I = new VAArgInst(Op, ResTy);
2000      break;
2001    }
2002    }
2003
2004    // Add instruction to end of current BB.  If there is no current BB, reject
2005    // this file.
2006    if (CurBB == 0) {
2007      delete I;
2008      return Error("Invalid instruction with no BB");
2009    }
2010    CurBB->getInstList().push_back(I);
2011
2012    // If this was a terminator instruction, move to the next block.
2013    if (isa<TerminatorInst>(I)) {
2014      ++CurBBNo;
2015      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2016    }
2017
2018    // Non-void values get registered in the value table for future use.
2019    if (I && I->getType() != Type::VoidTy)
2020      ValueList.AssignValue(I, NextValueNo++);
2021  }
2022
2023  // Check the function list for unresolved values.
2024  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2025    if (A->getParent() == 0) {
2026      // We found at least one unresolved value.  Nuke them all to avoid leaks.
2027      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2028        if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) {
2029          A->replaceAllUsesWith(Context.getUndef(A->getType()));
2030          delete A;
2031        }
2032      }
2033      return Error("Never resolved value found in function!");
2034    }
2035  }
2036
2037  // Trim the value list down to the size it was before we parsed this function.
2038  ValueList.shrinkTo(ModuleValueListSize);
2039  std::vector<BasicBlock*>().swap(FunctionBBs);
2040
2041  return false;
2042}
2043
2044//===----------------------------------------------------------------------===//
2045// ModuleProvider implementation
2046//===----------------------------------------------------------------------===//
2047
2048
2049bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) {
2050  // If it already is material, ignore the request.
2051  if (!F->hasNotBeenReadFromBitcode()) return false;
2052
2053  DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII =
2054    DeferredFunctionInfo.find(F);
2055  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2056
2057  // Move the bit stream to the saved position of the deferred function body and
2058  // restore the real linkage type for the function.
2059  Stream.JumpToBit(DFII->second.first);
2060  F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second);
2061
2062  if (ParseFunctionBody(F)) {
2063    if (ErrInfo) *ErrInfo = ErrorString;
2064    return true;
2065  }
2066
2067  // Upgrade any old intrinsic calls in the function.
2068  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2069       E = UpgradedIntrinsics.end(); I != E; ++I) {
2070    if (I->first != I->second) {
2071      for (Value::use_iterator UI = I->first->use_begin(),
2072           UE = I->first->use_end(); UI != UE; ) {
2073        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2074          UpgradeIntrinsicCall(CI, I->second);
2075      }
2076    }
2077  }
2078
2079  return false;
2080}
2081
2082void BitcodeReader::dematerializeFunction(Function *F) {
2083  // If this function isn't materialized, or if it is a proto, this is a noop.
2084  if (F->hasNotBeenReadFromBitcode() || F->isDeclaration())
2085    return;
2086
2087  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2088
2089  // Just forget the function body, we can remat it later.
2090  F->deleteBody();
2091  F->setLinkage(GlobalValue::GhostLinkage);
2092}
2093
2094
2095Module *BitcodeReader::materializeModule(std::string *ErrInfo) {
2096  // Iterate over the module, deserializing any functions that are still on
2097  // disk.
2098  for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2099       F != E; ++F)
2100    if (F->hasNotBeenReadFromBitcode() &&
2101        materializeFunction(F, ErrInfo))
2102      return 0;
2103
2104  // Upgrade any intrinsic calls that slipped through (should not happen!) and
2105  // delete the old functions to clean up. We can't do this unless the entire
2106  // module is materialized because there could always be another function body
2107  // with calls to the old function.
2108  for (std::vector<std::pair<Function*, Function*> >::iterator I =
2109       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2110    if (I->first != I->second) {
2111      for (Value::use_iterator UI = I->first->use_begin(),
2112           UE = I->first->use_end(); UI != UE; ) {
2113        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2114          UpgradeIntrinsicCall(CI, I->second);
2115      }
2116      if (!I->first->use_empty())
2117        I->first->replaceAllUsesWith(I->second);
2118      I->first->eraseFromParent();
2119    }
2120  }
2121  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2122
2123  return TheModule;
2124}
2125
2126
2127/// This method is provided by the parent ModuleProvde class and overriden
2128/// here. It simply releases the module from its provided and frees up our
2129/// state.
2130/// @brief Release our hold on the generated module
2131Module *BitcodeReader::releaseModule(std::string *ErrInfo) {
2132  // Since we're losing control of this Module, we must hand it back complete
2133  Module *M = ModuleProvider::releaseModule(ErrInfo);
2134  FreeState();
2135  return M;
2136}
2137
2138
2139//===----------------------------------------------------------------------===//
2140// External interface
2141//===----------------------------------------------------------------------===//
2142
2143/// getBitcodeModuleProvider - lazy function-at-a-time loading from a file.
2144///
2145ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer,
2146                                               LLVMContext& Context,
2147                                               std::string *ErrMsg) {
2148  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2149  if (R->ParseBitcode()) {
2150    if (ErrMsg)
2151      *ErrMsg = R->getErrorString();
2152
2153    // Don't let the BitcodeReader dtor delete 'Buffer'.
2154    R->releaseMemoryBuffer();
2155    delete R;
2156    return 0;
2157  }
2158  return R;
2159}
2160
2161/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2162/// If an error occurs, return null and fill in *ErrMsg if non-null.
2163Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2164                               std::string *ErrMsg){
2165  BitcodeReader *R;
2166  R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, Context,
2167                                                           ErrMsg));
2168  if (!R) return 0;
2169
2170  // Read in the entire module.
2171  Module *M = R->materializeModule(ErrMsg);
2172
2173  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2174  // there was an error.
2175  R->releaseMemoryBuffer();
2176
2177  // If there was no error, tell ModuleProvider not to delete it when its dtor
2178  // is run.
2179  if (M)
2180    M = R->releaseModule(ErrMsg);
2181
2182  delete R;
2183  return M;
2184}
2185