CriticalAntiDepBreaker.cpp revision 4de099d8ca651e00fa5fac22bace4f4dba2d0292
1//===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the CriticalAntiDepBreaker class, which
11// implements register anti-dependence breaking along a blocks
12// critical path during post-RA scheduler.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "post-RA-sched"
17#include "CriticalAntiDepBreaker.h"
18#include "llvm/CodeGen/MachineBasicBlock.h"
19#include "llvm/CodeGen/MachineFrameInfo.h"
20#include "llvm/Target/TargetMachine.h"
21#include "llvm/Target/TargetRegisterInfo.h"
22#include "llvm/Support/Debug.h"
23#include "llvm/Support/ErrorHandling.h"
24#include "llvm/Support/raw_ostream.h"
25
26using namespace llvm;
27
28CriticalAntiDepBreaker::
29CriticalAntiDepBreaker(MachineFunction& MFi) :
30  AntiDepBreaker(), MF(MFi),
31  MRI(MF.getRegInfo()),
32  TRI(MF.getTarget().getRegisterInfo()),
33  AllocatableSet(TRI->getAllocatableSet(MF))
34{
35}
36
37CriticalAntiDepBreaker::~CriticalAntiDepBreaker() {
38}
39
40void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
41  // Clear out the register class data.
42  std::fill(Classes, array_endof(Classes),
43            static_cast<const TargetRegisterClass *>(0));
44
45  // Initialize the indices to indicate that no registers are live.
46  std::fill(KillIndices, array_endof(KillIndices), ~0u);
47  std::fill(DefIndices, array_endof(DefIndices), BB->size());
48
49  // Clear "do not change" set.
50  KeepRegs.clear();
51
52  bool IsReturnBlock = (!BB->empty() && BB->back().getDesc().isReturn());
53
54  // Determine the live-out physregs for this block.
55  if (IsReturnBlock) {
56    // In a return block, examine the function live-out regs.
57    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
58         E = MRI.liveout_end(); I != E; ++I) {
59      unsigned Reg = *I;
60      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
61      KillIndices[Reg] = BB->size();
62      DefIndices[Reg] = ~0u;
63      // Repeat, for all aliases.
64      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
65        unsigned AliasReg = *Alias;
66        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
67        KillIndices[AliasReg] = BB->size();
68        DefIndices[AliasReg] = ~0u;
69      }
70    }
71  } else {
72    // In a non-return block, examine the live-in regs of all successors.
73    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
74         SE = BB->succ_end(); SI != SE; ++SI)
75      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
76           E = (*SI)->livein_end(); I != E; ++I) {
77        unsigned Reg = *I;
78        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
79        KillIndices[Reg] = BB->size();
80        DefIndices[Reg] = ~0u;
81        // Repeat, for all aliases.
82        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
83          unsigned AliasReg = *Alias;
84          Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
85          KillIndices[AliasReg] = BB->size();
86          DefIndices[AliasReg] = ~0u;
87        }
88      }
89  }
90
91  // Mark live-out callee-saved registers. In a return block this is
92  // all callee-saved registers. In non-return this is any
93  // callee-saved register that is not saved in the prolog.
94  const MachineFrameInfo *MFI = MF.getFrameInfo();
95  BitVector Pristine = MFI->getPristineRegs(BB);
96  for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) {
97    unsigned Reg = *I;
98    if (!IsReturnBlock && !Pristine.test(Reg)) continue;
99    Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
100    KillIndices[Reg] = BB->size();
101    DefIndices[Reg] = ~0u;
102    // Repeat, for all aliases.
103    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
104      unsigned AliasReg = *Alias;
105      Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
106      KillIndices[AliasReg] = BB->size();
107      DefIndices[AliasReg] = ~0u;
108    }
109  }
110}
111
112void CriticalAntiDepBreaker::FinishBlock() {
113  RegRefs.clear();
114  KeepRegs.clear();
115}
116
117void CriticalAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count,
118                                     unsigned InsertPosIndex) {
119  assert(Count < InsertPosIndex && "Instruction index out of expected range!");
120
121  // Any register which was defined within the previous scheduling region
122  // may have been rescheduled and its lifetime may overlap with registers
123  // in ways not reflected in our current liveness state. For each such
124  // register, adjust the liveness state to be conservatively correct.
125  for (unsigned Reg = 0; Reg != TargetRegisterInfo::FirstVirtualRegister; ++Reg)
126    if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
127      assert(KillIndices[Reg] == ~0u && "Clobbered register is live!");
128      // Mark this register to be non-renamable.
129      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
130      // Move the def index to the end of the previous region, to reflect
131      // that the def could theoretically have been scheduled at the end.
132      DefIndices[Reg] = InsertPosIndex;
133    }
134
135  PrescanInstruction(MI);
136  ScanInstruction(MI, Count);
137}
138
139/// CriticalPathStep - Return the next SUnit after SU on the bottom-up
140/// critical path.
141static SDep *CriticalPathStep(SUnit *SU) {
142  SDep *Next = 0;
143  unsigned NextDepth = 0;
144  // Find the predecessor edge with the greatest depth.
145  for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
146       P != PE; ++P) {
147    SUnit *PredSU = P->getSUnit();
148    unsigned PredLatency = P->getLatency();
149    unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
150    // In the case of a latency tie, prefer an anti-dependency edge over
151    // other types of edges.
152    if (NextDepth < PredTotalLatency ||
153        (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
154      NextDepth = PredTotalLatency;
155      Next = &*P;
156    }
157  }
158  return Next;
159}
160
161void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr *MI) {
162  // Scan the register operands for this instruction and update
163  // Classes and RegRefs.
164  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
165    MachineOperand &MO = MI->getOperand(i);
166    if (!MO.isReg()) continue;
167    unsigned Reg = MO.getReg();
168    if (Reg == 0) continue;
169    const TargetRegisterClass *NewRC = 0;
170
171    if (i < MI->getDesc().getNumOperands())
172      NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI);
173
174    // For now, only allow the register to be changed if its register
175    // class is consistent across all uses.
176    if (!Classes[Reg] && NewRC)
177      Classes[Reg] = NewRC;
178    else if (!NewRC || Classes[Reg] != NewRC)
179      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
180
181    // Now check for aliases.
182    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
183      // If an alias of the reg is used during the live range, give up.
184      // Note that this allows us to skip checking if AntiDepReg
185      // overlaps with any of the aliases, among other things.
186      unsigned AliasReg = *Alias;
187      if (Classes[AliasReg]) {
188        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
189        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
190      }
191    }
192
193    // If we're still willing to consider this register, note the reference.
194    if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
195      RegRefs.insert(std::make_pair(Reg, &MO));
196
197    // It's not safe to change register allocation for source operands of
198    // that have special allocation requirements.
199    if (MO.isUse() && MI->getDesc().hasExtraSrcRegAllocReq()) {
200      if (KeepRegs.insert(Reg)) {
201        for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
202             *Subreg; ++Subreg)
203          KeepRegs.insert(*Subreg);
204      }
205    }
206  }
207}
208
209void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI,
210                                             unsigned Count) {
211  // Update liveness.
212  // Proceding upwards, registers that are defed but not used in this
213  // instruction are now dead.
214  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
215    MachineOperand &MO = MI->getOperand(i);
216    if (!MO.isReg()) continue;
217    unsigned Reg = MO.getReg();
218    if (Reg == 0) continue;
219    if (!MO.isDef()) continue;
220    // Ignore two-addr defs.
221    if (MI->isRegTiedToUseOperand(i)) continue;
222
223    DefIndices[Reg] = Count;
224    KillIndices[Reg] = ~0u;
225    assert(((KillIndices[Reg] == ~0u) !=
226            (DefIndices[Reg] == ~0u)) &&
227           "Kill and Def maps aren't consistent for Reg!");
228    KeepRegs.erase(Reg);
229    Classes[Reg] = 0;
230    RegRefs.erase(Reg);
231    // Repeat, for all subregs.
232    for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
233         *Subreg; ++Subreg) {
234      unsigned SubregReg = *Subreg;
235      DefIndices[SubregReg] = Count;
236      KillIndices[SubregReg] = ~0u;
237      KeepRegs.erase(SubregReg);
238      Classes[SubregReg] = 0;
239      RegRefs.erase(SubregReg);
240    }
241    // Conservatively mark super-registers as unusable.
242    for (const unsigned *Super = TRI->getSuperRegisters(Reg);
243         *Super; ++Super) {
244      unsigned SuperReg = *Super;
245      Classes[SuperReg] = reinterpret_cast<TargetRegisterClass *>(-1);
246    }
247  }
248  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
249    MachineOperand &MO = MI->getOperand(i);
250    if (!MO.isReg()) continue;
251    unsigned Reg = MO.getReg();
252    if (Reg == 0) continue;
253    if (!MO.isUse()) continue;
254
255    const TargetRegisterClass *NewRC = 0;
256    if (i < MI->getDesc().getNumOperands())
257      NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI);
258
259    // For now, only allow the register to be changed if its register
260    // class is consistent across all uses.
261    if (!Classes[Reg] && NewRC)
262      Classes[Reg] = NewRC;
263    else if (!NewRC || Classes[Reg] != NewRC)
264      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
265
266    RegRefs.insert(std::make_pair(Reg, &MO));
267
268    // It wasn't previously live but now it is, this is a kill.
269    if (KillIndices[Reg] == ~0u) {
270      KillIndices[Reg] = Count;
271      DefIndices[Reg] = ~0u;
272          assert(((KillIndices[Reg] == ~0u) !=
273                  (DefIndices[Reg] == ~0u)) &&
274               "Kill and Def maps aren't consistent for Reg!");
275    }
276    // Repeat, for all aliases.
277    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
278      unsigned AliasReg = *Alias;
279      if (KillIndices[AliasReg] == ~0u) {
280        KillIndices[AliasReg] = Count;
281        DefIndices[AliasReg] = ~0u;
282      }
283    }
284  }
285}
286
287unsigned
288CriticalAntiDepBreaker::findSuitableFreeRegister(unsigned AntiDepReg,
289                                                 unsigned LastNewReg,
290                                                 const TargetRegisterClass *RC) {
291  for (TargetRegisterClass::iterator R = RC->allocation_order_begin(MF),
292       RE = RC->allocation_order_end(MF); R != RE; ++R) {
293    unsigned NewReg = *R;
294    // Don't replace a register with itself.
295    if (NewReg == AntiDepReg) continue;
296    // Don't replace a register with one that was recently used to repair
297    // an anti-dependence with this AntiDepReg, because that would
298    // re-introduce that anti-dependence.
299    if (NewReg == LastNewReg) continue;
300    // If NewReg is dead and NewReg's most recent def is not before
301    // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
302    assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) &&
303           "Kill and Def maps aren't consistent for AntiDepReg!");
304    assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) &&
305           "Kill and Def maps aren't consistent for NewReg!");
306    if (KillIndices[NewReg] != ~0u ||
307        Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
308        KillIndices[AntiDepReg] > DefIndices[NewReg])
309      continue;
310    return NewReg;
311  }
312
313  // No registers are free and available!
314  return 0;
315}
316
317unsigned CriticalAntiDepBreaker::
318BreakAntiDependencies(std::vector<SUnit>& SUnits,
319                      CandidateMap& Candidates,
320                      MachineBasicBlock::iterator& Begin,
321                      MachineBasicBlock::iterator& End,
322                      unsigned InsertPosIndex) {
323  // The code below assumes that there is at least one instruction,
324  // so just duck out immediately if the block is empty.
325  if (SUnits.empty()) return 0;
326
327  // Find the node at the bottom of the critical path.
328  SUnit *Max = 0;
329  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
330    SUnit *SU = &SUnits[i];
331    if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
332      Max = SU;
333  }
334
335#ifndef NDEBUG
336  {
337    DEBUG(errs() << "Critical path has total latency "
338          << (Max->getDepth() + Max->Latency) << "\n");
339    DEBUG(errs() << "Available regs:");
340    for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
341      if (KillIndices[Reg] == ~0u)
342        DEBUG(errs() << " " << TRI->getName(Reg));
343    }
344    DEBUG(errs() << '\n');
345  }
346#endif
347
348  // Track progress along the critical path through the SUnit graph as we walk
349  // the instructions.
350  SUnit *CriticalPathSU = Max;
351  MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
352
353  // Consider this pattern:
354  //   A = ...
355  //   ... = A
356  //   A = ...
357  //   ... = A
358  //   A = ...
359  //   ... = A
360  //   A = ...
361  //   ... = A
362  // There are three anti-dependencies here, and without special care,
363  // we'd break all of them using the same register:
364  //   A = ...
365  //   ... = A
366  //   B = ...
367  //   ... = B
368  //   B = ...
369  //   ... = B
370  //   B = ...
371  //   ... = B
372  // because at each anti-dependence, B is the first register that
373  // isn't A which is free.  This re-introduces anti-dependencies
374  // at all but one of the original anti-dependencies that we were
375  // trying to break.  To avoid this, keep track of the most recent
376  // register that each register was replaced with, avoid
377  // using it to repair an anti-dependence on the same register.
378  // This lets us produce this:
379  //   A = ...
380  //   ... = A
381  //   B = ...
382  //   ... = B
383  //   C = ...
384  //   ... = C
385  //   B = ...
386  //   ... = B
387  // This still has an anti-dependence on B, but at least it isn't on the
388  // original critical path.
389  //
390  // TODO: If we tracked more than one register here, we could potentially
391  // fix that remaining critical edge too. This is a little more involved,
392  // because unlike the most recent register, less recent registers should
393  // still be considered, though only if no other registers are available.
394  unsigned LastNewReg[TargetRegisterInfo::FirstVirtualRegister] = {};
395
396  // Attempt to break anti-dependence edges on the critical path. Walk the
397  // instructions from the bottom up, tracking information about liveness
398  // as we go to help determine which registers are available.
399  unsigned Broken = 0;
400  unsigned Count = InsertPosIndex - 1;
401  for (MachineBasicBlock::iterator I = End, E = Begin;
402       I != E; --Count) {
403    MachineInstr *MI = --I;
404
405    // Check if this instruction has a dependence on the critical path that
406    // is an anti-dependence that we may be able to break. If it is, set
407    // AntiDepReg to the non-zero register associated with the anti-dependence.
408    //
409    // We limit our attention to the critical path as a heuristic to avoid
410    // breaking anti-dependence edges that aren't going to significantly
411    // impact the overall schedule. There are a limited number of registers
412    // and we want to save them for the important edges.
413    //
414    // TODO: Instructions with multiple defs could have multiple
415    // anti-dependencies. The current code here only knows how to break one
416    // edge per instruction. Note that we'd have to be able to break all of
417    // the anti-dependencies in an instruction in order to be effective.
418    unsigned AntiDepReg = 0;
419    if (MI == CriticalPathMI) {
420      if (SDep *Edge = CriticalPathStep(CriticalPathSU)) {
421        SUnit *NextSU = Edge->getSUnit();
422
423        // Only consider anti-dependence edges.
424        if (Edge->getKind() == SDep::Anti) {
425          AntiDepReg = Edge->getReg();
426          assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
427          if (!AllocatableSet.test(AntiDepReg))
428            // Don't break anti-dependencies on non-allocatable registers.
429            AntiDepReg = 0;
430          else if (KeepRegs.count(AntiDepReg))
431            // Don't break anti-dependencies if an use down below requires
432            // this exact register.
433            AntiDepReg = 0;
434          else {
435            // If the SUnit has other dependencies on the SUnit that it
436            // anti-depends on, don't bother breaking the anti-dependency
437            // since those edges would prevent such units from being
438            // scheduled past each other regardless.
439            //
440            // Also, if there are dependencies on other SUnits with the
441            // same register as the anti-dependency, don't attempt to
442            // break it.
443            for (SUnit::pred_iterator P = CriticalPathSU->Preds.begin(),
444                 PE = CriticalPathSU->Preds.end(); P != PE; ++P)
445              if (P->getSUnit() == NextSU ?
446                    (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
447                    (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
448                AntiDepReg = 0;
449                break;
450              }
451          }
452        }
453        CriticalPathSU = NextSU;
454        CriticalPathMI = CriticalPathSU->getInstr();
455      } else {
456        // We've reached the end of the critical path.
457        CriticalPathSU = 0;
458        CriticalPathMI = 0;
459      }
460    }
461
462    PrescanInstruction(MI);
463
464    if (MI->getDesc().hasExtraDefRegAllocReq())
465      // If this instruction's defs have special allocation requirement, don't
466      // break this anti-dependency.
467      AntiDepReg = 0;
468    else if (AntiDepReg) {
469      // If this instruction has a use of AntiDepReg, breaking it
470      // is invalid.
471      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
472        MachineOperand &MO = MI->getOperand(i);
473        if (!MO.isReg()) continue;
474        unsigned Reg = MO.getReg();
475        if (Reg == 0) continue;
476        if (MO.isUse() && AntiDepReg == Reg) {
477          AntiDepReg = 0;
478          break;
479        }
480      }
481    }
482
483    // Determine AntiDepReg's register class, if it is live and is
484    // consistently used within a single class.
485    const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
486    assert((AntiDepReg == 0 || RC != NULL) &&
487           "Register should be live if it's causing an anti-dependence!");
488    if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
489      AntiDepReg = 0;
490
491    // Look for a suitable register to use to break the anti-depenence.
492    //
493    // TODO: Instead of picking the first free register, consider which might
494    // be the best.
495    if (AntiDepReg != 0) {
496      if (unsigned NewReg = findSuitableFreeRegister(AntiDepReg,
497                                                     LastNewReg[AntiDepReg],
498                                                     RC)) {
499        DEBUG(errs() << "Breaking anti-dependence edge on "
500              << TRI->getName(AntiDepReg)
501              << " with " << RegRefs.count(AntiDepReg) << " references"
502              << " using " << TRI->getName(NewReg) << "!\n");
503
504        // Update the references to the old register to refer to the new
505        // register.
506        std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
507                  std::multimap<unsigned, MachineOperand *>::iterator>
508           Range = RegRefs.equal_range(AntiDepReg);
509        for (std::multimap<unsigned, MachineOperand *>::iterator
510             Q = Range.first, QE = Range.second; Q != QE; ++Q)
511          Q->second->setReg(NewReg);
512
513        // We just went back in time and modified history; the
514        // liveness information for the anti-depenence reg is now
515        // inconsistent. Set the state as if it were dead.
516        Classes[NewReg] = Classes[AntiDepReg];
517        DefIndices[NewReg] = DefIndices[AntiDepReg];
518        KillIndices[NewReg] = KillIndices[AntiDepReg];
519        assert(((KillIndices[NewReg] == ~0u) !=
520                (DefIndices[NewReg] == ~0u)) &&
521             "Kill and Def maps aren't consistent for NewReg!");
522
523        Classes[AntiDepReg] = 0;
524        DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
525        KillIndices[AntiDepReg] = ~0u;
526        assert(((KillIndices[AntiDepReg] == ~0u) !=
527                (DefIndices[AntiDepReg] == ~0u)) &&
528             "Kill and Def maps aren't consistent for AntiDepReg!");
529
530        RegRefs.erase(AntiDepReg);
531        LastNewReg[AntiDepReg] = NewReg;
532        ++Broken;
533      }
534    }
535
536    ScanInstruction(MI, Count);
537  }
538
539  return Broken;
540}
541