LegalizeDAG.cpp revision 071c62fad0b25ad4131e7f984173a796c1e63f61
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/CodeGen/MachineFunction.h"
16#include "llvm/CodeGen/MachineFrameInfo.h"
17#include "llvm/CodeGen/MachineJumpTableInfo.h"
18#include "llvm/CodeGen/MachineModuleInfo.h"
19#include "llvm/CodeGen/DwarfWriter.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/CodeGen/PseudoSourceValue.h"
22#include "llvm/Target/TargetFrameInfo.h"
23#include "llvm/Target/TargetLowering.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Target/TargetOptions.h"
27#include "llvm/Target/TargetSubtarget.h"
28#include "llvm/CallingConv.h"
29#include "llvm/Constants.h"
30#include "llvm/DerivedTypes.h"
31#include "llvm/Function.h"
32#include "llvm/GlobalVariable.h"
33#include "llvm/LLVMContext.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/Support/raw_ostream.h"
39#include "llvm/ADT/DenseMap.h"
40#include "llvm/ADT/SmallVector.h"
41#include "llvm/ADT/SmallPtrSet.h"
42#include <map>
43using namespace llvm;
44
45//===----------------------------------------------------------------------===//
46/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
47/// hacks on it until the target machine can handle it.  This involves
48/// eliminating value sizes the machine cannot handle (promoting small sizes to
49/// large sizes or splitting up large values into small values) as well as
50/// eliminating operations the machine cannot handle.
51///
52/// This code also does a small amount of optimization and recognition of idioms
53/// as part of its processing.  For example, if a target does not support a
54/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
55/// will attempt merge setcc and brc instructions into brcc's.
56///
57namespace {
58class SelectionDAGLegalize {
59  TargetLowering &TLI;
60  SelectionDAG &DAG;
61  CodeGenOpt::Level OptLevel;
62
63  // Libcall insertion helpers.
64
65  /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
66  /// legalized.  We use this to ensure that calls are properly serialized
67  /// against each other, including inserted libcalls.
68  SDValue LastCALLSEQ_END;
69
70  /// IsLegalizingCall - This member is used *only* for purposes of providing
71  /// helpful assertions that a libcall isn't created while another call is
72  /// being legalized (which could lead to non-serialized call sequences).
73  bool IsLegalizingCall;
74
75  enum LegalizeAction {
76    Legal,      // The target natively supports this operation.
77    Promote,    // This operation should be executed in a larger type.
78    Expand      // Try to expand this to other ops, otherwise use a libcall.
79  };
80
81  /// ValueTypeActions - This is a bitvector that contains two bits for each
82  /// value type, where the two bits correspond to the LegalizeAction enum.
83  /// This can be queried with "getTypeAction(VT)".
84  TargetLowering::ValueTypeActionImpl ValueTypeActions;
85
86  /// LegalizedNodes - For nodes that are of legal width, and that have more
87  /// than one use, this map indicates what regularized operand to use.  This
88  /// allows us to avoid legalizing the same thing more than once.
89  DenseMap<SDValue, SDValue> LegalizedNodes;
90
91  void AddLegalizedOperand(SDValue From, SDValue To) {
92    LegalizedNodes.insert(std::make_pair(From, To));
93    // If someone requests legalization of the new node, return itself.
94    if (From != To)
95      LegalizedNodes.insert(std::make_pair(To, To));
96  }
97
98public:
99  SelectionDAGLegalize(SelectionDAG &DAG, CodeGenOpt::Level ol);
100
101  /// getTypeAction - Return how we should legalize values of this type, either
102  /// it is already legal or we need to expand it into multiple registers of
103  /// smaller integer type, or we need to promote it to a larger type.
104  LegalizeAction getTypeAction(EVT VT) const {
105    return
106        (LegalizeAction)ValueTypeActions.getTypeAction(*DAG.getContext(), VT);
107  }
108
109  /// isTypeLegal - Return true if this type is legal on this target.
110  ///
111  bool isTypeLegal(EVT VT) const {
112    return getTypeAction(VT) == Legal;
113  }
114
115  void LegalizeDAG();
116
117private:
118  /// LegalizeOp - We know that the specified value has a legal type.
119  /// Recursively ensure that the operands have legal types, then return the
120  /// result.
121  SDValue LegalizeOp(SDValue O);
122
123  SDValue OptimizeFloatStore(StoreSDNode *ST);
124
125  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
126  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
127  /// is necessary to spill the vector being inserted into to memory, perform
128  /// the insert there, and then read the result back.
129  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
130                                         SDValue Idx, DebugLoc dl);
131  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
132                                  SDValue Idx, DebugLoc dl);
133
134  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
135  /// performs the same shuffe in terms of order or result bytes, but on a type
136  /// whose vector element type is narrower than the original shuffle type.
137  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
138  SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
139                                     SDValue N1, SDValue N2,
140                                     SmallVectorImpl<int> &Mask) const;
141
142  bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
143                                    SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
144
145  void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
146                             DebugLoc dl);
147
148  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
149  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
150                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
151                          RTLIB::Libcall Call_PPCF128);
152  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
153                           RTLIB::Libcall Call_I8,
154                           RTLIB::Libcall Call_I16,
155                           RTLIB::Libcall Call_I32,
156                           RTLIB::Libcall Call_I64,
157                           RTLIB::Libcall Call_I128);
158
159  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl);
160  SDValue ExpandBUILD_VECTOR(SDNode *Node);
161  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
162  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
163                                SmallVectorImpl<SDValue> &Results);
164  SDValue ExpandFCOPYSIGN(SDNode *Node);
165  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
166                               DebugLoc dl);
167  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
168                                DebugLoc dl);
169  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
170                                DebugLoc dl);
171
172  SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
173  SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
174
175  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
176  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
177
178  void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
179  void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
180};
181}
182
183/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
184/// performs the same shuffe in terms of order or result bytes, but on a type
185/// whose vector element type is narrower than the original shuffle type.
186/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
187SDValue
188SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT,  DebugLoc dl,
189                                                 SDValue N1, SDValue N2,
190                                             SmallVectorImpl<int> &Mask) const {
191  unsigned NumMaskElts = VT.getVectorNumElements();
192  unsigned NumDestElts = NVT.getVectorNumElements();
193  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
194
195  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
196
197  if (NumEltsGrowth == 1)
198    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
199
200  SmallVector<int, 8> NewMask;
201  for (unsigned i = 0; i != NumMaskElts; ++i) {
202    int Idx = Mask[i];
203    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
204      if (Idx < 0)
205        NewMask.push_back(-1);
206      else
207        NewMask.push_back(Idx * NumEltsGrowth + j);
208    }
209  }
210  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
211  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
212  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
213}
214
215SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag,
216                                           CodeGenOpt::Level ol)
217  : TLI(dag.getTargetLoweringInfo()), DAG(dag), OptLevel(ol),
218    ValueTypeActions(TLI.getValueTypeActions()) {
219  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
220         "Too many value types for ValueTypeActions to hold!");
221}
222
223void SelectionDAGLegalize::LegalizeDAG() {
224  LastCALLSEQ_END = DAG.getEntryNode();
225  IsLegalizingCall = false;
226
227  // The legalize process is inherently a bottom-up recursive process (users
228  // legalize their uses before themselves).  Given infinite stack space, we
229  // could just start legalizing on the root and traverse the whole graph.  In
230  // practice however, this causes us to run out of stack space on large basic
231  // blocks.  To avoid this problem, compute an ordering of the nodes where each
232  // node is only legalized after all of its operands are legalized.
233  DAG.AssignTopologicalOrder();
234  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
235       E = prior(DAG.allnodes_end()); I != llvm::next(E); ++I)
236    LegalizeOp(SDValue(I, 0));
237
238  // Finally, it's possible the root changed.  Get the new root.
239  SDValue OldRoot = DAG.getRoot();
240  assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
241  DAG.setRoot(LegalizedNodes[OldRoot]);
242
243  LegalizedNodes.clear();
244
245  // Remove dead nodes now.
246  DAG.RemoveDeadNodes();
247}
248
249
250/// FindCallEndFromCallStart - Given a chained node that is part of a call
251/// sequence, find the CALLSEQ_END node that terminates the call sequence.
252static SDNode *FindCallEndFromCallStart(SDNode *Node) {
253  if (Node->getOpcode() == ISD::CALLSEQ_END)
254    return Node;
255  if (Node->use_empty())
256    return 0;   // No CallSeqEnd
257
258  // The chain is usually at the end.
259  SDValue TheChain(Node, Node->getNumValues()-1);
260  if (TheChain.getValueType() != MVT::Other) {
261    // Sometimes it's at the beginning.
262    TheChain = SDValue(Node, 0);
263    if (TheChain.getValueType() != MVT::Other) {
264      // Otherwise, hunt for it.
265      for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
266        if (Node->getValueType(i) == MVT::Other) {
267          TheChain = SDValue(Node, i);
268          break;
269        }
270
271      // Otherwise, we walked into a node without a chain.
272      if (TheChain.getValueType() != MVT::Other)
273        return 0;
274    }
275  }
276
277  for (SDNode::use_iterator UI = Node->use_begin(),
278       E = Node->use_end(); UI != E; ++UI) {
279
280    // Make sure to only follow users of our token chain.
281    SDNode *User = *UI;
282    for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
283      if (User->getOperand(i) == TheChain)
284        if (SDNode *Result = FindCallEndFromCallStart(User))
285          return Result;
286  }
287  return 0;
288}
289
290/// FindCallStartFromCallEnd - Given a chained node that is part of a call
291/// sequence, find the CALLSEQ_START node that initiates the call sequence.
292static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
293  assert(Node && "Didn't find callseq_start for a call??");
294  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
295
296  assert(Node->getOperand(0).getValueType() == MVT::Other &&
297         "Node doesn't have a token chain argument!");
298  return FindCallStartFromCallEnd(Node->getOperand(0).getNode());
299}
300
301/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
302/// see if any uses can reach Dest.  If no dest operands can get to dest,
303/// legalize them, legalize ourself, and return false, otherwise, return true.
304///
305/// Keep track of the nodes we fine that actually do lead to Dest in
306/// NodesLeadingTo.  This avoids retraversing them exponential number of times.
307///
308bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
309                                     SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
310  if (N == Dest) return true;  // N certainly leads to Dest :)
311
312  // If we've already processed this node and it does lead to Dest, there is no
313  // need to reprocess it.
314  if (NodesLeadingTo.count(N)) return true;
315
316  // If the first result of this node has been already legalized, then it cannot
317  // reach N.
318  if (LegalizedNodes.count(SDValue(N, 0))) return false;
319
320  // Okay, this node has not already been legalized.  Check and legalize all
321  // operands.  If none lead to Dest, then we can legalize this node.
322  bool OperandsLeadToDest = false;
323  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
324    OperandsLeadToDest |=     // If an operand leads to Dest, so do we.
325      LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest, NodesLeadingTo);
326
327  if (OperandsLeadToDest) {
328    NodesLeadingTo.insert(N);
329    return true;
330  }
331
332  // Okay, this node looks safe, legalize it and return false.
333  LegalizeOp(SDValue(N, 0));
334  return false;
335}
336
337/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
338/// a load from the constant pool.
339static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
340                                SelectionDAG &DAG, const TargetLowering &TLI) {
341  bool Extend = false;
342  DebugLoc dl = CFP->getDebugLoc();
343
344  // If a FP immediate is precise when represented as a float and if the
345  // target can do an extending load from float to double, we put it into
346  // the constant pool as a float, even if it's is statically typed as a
347  // double.  This shrinks FP constants and canonicalizes them for targets where
348  // an FP extending load is the same cost as a normal load (such as on the x87
349  // fp stack or PPC FP unit).
350  EVT VT = CFP->getValueType(0);
351  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
352  if (!UseCP) {
353    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
354    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
355                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
356  }
357
358  EVT OrigVT = VT;
359  EVT SVT = VT;
360  while (SVT != MVT::f32) {
361    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
362    if (CFP->isValueValidForType(SVT, CFP->getValueAPF()) &&
363        // Only do this if the target has a native EXTLOAD instruction from
364        // smaller type.
365        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
366        TLI.ShouldShrinkFPConstant(OrigVT)) {
367      const Type *SType = SVT.getTypeForEVT(*DAG.getContext());
368      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
369      VT = SVT;
370      Extend = true;
371    }
372  }
373
374  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
375  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
376  if (Extend)
377    return DAG.getExtLoad(ISD::EXTLOAD, dl,
378                          OrigVT, DAG.getEntryNode(),
379                          CPIdx, PseudoSourceValue::getConstantPool(),
380                          0, VT, false, Alignment);
381  return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
382                     PseudoSourceValue::getConstantPool(), 0, false, Alignment);
383}
384
385/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
386static
387SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
388                             const TargetLowering &TLI) {
389  SDValue Chain = ST->getChain();
390  SDValue Ptr = ST->getBasePtr();
391  SDValue Val = ST->getValue();
392  EVT VT = Val.getValueType();
393  int Alignment = ST->getAlignment();
394  int SVOffset = ST->getSrcValueOffset();
395  DebugLoc dl = ST->getDebugLoc();
396  if (ST->getMemoryVT().isFloatingPoint() ||
397      ST->getMemoryVT().isVector()) {
398    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
399    if (TLI.isTypeLegal(intVT)) {
400      // Expand to a bitconvert of the value to the integer type of the
401      // same size, then a (misaligned) int store.
402      // FIXME: Does not handle truncating floating point stores!
403      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, intVT, Val);
404      return DAG.getStore(Chain, dl, Result, Ptr, ST->getSrcValue(),
405                          SVOffset, ST->isVolatile(), Alignment);
406    } else {
407      // Do a (aligned) store to a stack slot, then copy from the stack slot
408      // to the final destination using (unaligned) integer loads and stores.
409      EVT StoredVT = ST->getMemoryVT();
410      EVT RegVT =
411        TLI.getRegisterType(*DAG.getContext(), EVT::getIntegerVT(*DAG.getContext(), StoredVT.getSizeInBits()));
412      unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
413      unsigned RegBytes = RegVT.getSizeInBits() / 8;
414      unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
415
416      // Make sure the stack slot is also aligned for the register type.
417      SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
418
419      // Perform the original store, only redirected to the stack slot.
420      SDValue Store = DAG.getTruncStore(Chain, dl,
421                                        Val, StackPtr, NULL, 0, StoredVT);
422      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
423      SmallVector<SDValue, 8> Stores;
424      unsigned Offset = 0;
425
426      // Do all but one copies using the full register width.
427      for (unsigned i = 1; i < NumRegs; i++) {
428        // Load one integer register's worth from the stack slot.
429        SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, NULL, 0);
430        // Store it to the final location.  Remember the store.
431        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
432                                      ST->getSrcValue(), SVOffset + Offset,
433                                      ST->isVolatile(),
434                                      MinAlign(ST->getAlignment(), Offset)));
435        // Increment the pointers.
436        Offset += RegBytes;
437        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
438                               Increment);
439        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
440      }
441
442      // The last store may be partial.  Do a truncating store.  On big-endian
443      // machines this requires an extending load from the stack slot to ensure
444      // that the bits are in the right place.
445      EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
446
447      // Load from the stack slot.
448      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
449                                    NULL, 0, MemVT);
450
451      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
452                                         ST->getSrcValue(), SVOffset + Offset,
453                                         MemVT, ST->isVolatile(),
454                                         MinAlign(ST->getAlignment(), Offset)));
455      // The order of the stores doesn't matter - say it with a TokenFactor.
456      return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
457                         Stores.size());
458    }
459  }
460  assert(ST->getMemoryVT().isInteger() &&
461         !ST->getMemoryVT().isVector() &&
462         "Unaligned store of unknown type.");
463  // Get the half-size VT
464  EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
465  int NumBits = NewStoredVT.getSizeInBits();
466  int IncrementSize = NumBits / 8;
467
468  // Divide the stored value in two parts.
469  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
470  SDValue Lo = Val;
471  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
472
473  // Store the two parts
474  SDValue Store1, Store2;
475  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
476                             ST->getSrcValue(), SVOffset, NewStoredVT,
477                             ST->isVolatile(), Alignment);
478  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
479                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
480  Alignment = MinAlign(Alignment, IncrementSize);
481  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
482                             ST->getSrcValue(), SVOffset + IncrementSize,
483                             NewStoredVT, ST->isVolatile(), Alignment);
484
485  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
486}
487
488/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
489static
490SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
491                            const TargetLowering &TLI) {
492  int SVOffset = LD->getSrcValueOffset();
493  SDValue Chain = LD->getChain();
494  SDValue Ptr = LD->getBasePtr();
495  EVT VT = LD->getValueType(0);
496  EVT LoadedVT = LD->getMemoryVT();
497  DebugLoc dl = LD->getDebugLoc();
498  if (VT.isFloatingPoint() || VT.isVector()) {
499    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
500    if (TLI.isTypeLegal(intVT)) {
501      // Expand to a (misaligned) integer load of the same size,
502      // then bitconvert to floating point or vector.
503      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getSrcValue(),
504                                    SVOffset, LD->isVolatile(),
505                                    LD->getAlignment());
506      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, LoadedVT, newLoad);
507      if (VT.isFloatingPoint() && LoadedVT != VT)
508        Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
509
510      SDValue Ops[] = { Result, Chain };
511      return DAG.getMergeValues(Ops, 2, dl);
512    } else {
513      // Copy the value to a (aligned) stack slot using (unaligned) integer
514      // loads and stores, then do a (aligned) load from the stack slot.
515      EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
516      unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
517      unsigned RegBytes = RegVT.getSizeInBits() / 8;
518      unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
519
520      // Make sure the stack slot is also aligned for the register type.
521      SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
522
523      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
524      SmallVector<SDValue, 8> Stores;
525      SDValue StackPtr = StackBase;
526      unsigned Offset = 0;
527
528      // Do all but one copies using the full register width.
529      for (unsigned i = 1; i < NumRegs; i++) {
530        // Load one integer register's worth from the original location.
531        SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, LD->getSrcValue(),
532                                   SVOffset + Offset, LD->isVolatile(),
533                                   MinAlign(LD->getAlignment(), Offset));
534        // Follow the load with a store to the stack slot.  Remember the store.
535        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
536                                      NULL, 0));
537        // Increment the pointers.
538        Offset += RegBytes;
539        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
540        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
541                               Increment);
542      }
543
544      // The last copy may be partial.  Do an extending load.
545      EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 8 * (LoadedBytes - Offset));
546      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
547                                    LD->getSrcValue(), SVOffset + Offset,
548                                    MemVT, LD->isVolatile(),
549                                    MinAlign(LD->getAlignment(), Offset));
550      // Follow the load with a store to the stack slot.  Remember the store.
551      // On big-endian machines this requires a truncating store to ensure
552      // that the bits end up in the right place.
553      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
554                                         NULL, 0, MemVT));
555
556      // The order of the stores doesn't matter - say it with a TokenFactor.
557      SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
558                               Stores.size());
559
560      // Finally, perform the original load only redirected to the stack slot.
561      Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
562                            NULL, 0, LoadedVT);
563
564      // Callers expect a MERGE_VALUES node.
565      SDValue Ops[] = { Load, TF };
566      return DAG.getMergeValues(Ops, 2, dl);
567    }
568  }
569  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
570         "Unaligned load of unsupported type.");
571
572  // Compute the new VT that is half the size of the old one.  This is an
573  // integer MVT.
574  unsigned NumBits = LoadedVT.getSizeInBits();
575  EVT NewLoadedVT;
576  NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
577  NumBits >>= 1;
578
579  unsigned Alignment = LD->getAlignment();
580  unsigned IncrementSize = NumBits / 8;
581  ISD::LoadExtType HiExtType = LD->getExtensionType();
582
583  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
584  if (HiExtType == ISD::NON_EXTLOAD)
585    HiExtType = ISD::ZEXTLOAD;
586
587  // Load the value in two parts
588  SDValue Lo, Hi;
589  if (TLI.isLittleEndian()) {
590    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
591                        SVOffset, NewLoadedVT, LD->isVolatile(), Alignment);
592    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
593                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
594    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
595                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
596                        MinAlign(Alignment, IncrementSize));
597  } else {
598    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
599                        SVOffset, NewLoadedVT, LD->isVolatile(), Alignment);
600    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
601                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
602    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
603                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
604                        MinAlign(Alignment, IncrementSize));
605  }
606
607  // aggregate the two parts
608  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
609  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
610  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
611
612  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
613                             Hi.getValue(1));
614
615  SDValue Ops[] = { Result, TF };
616  return DAG.getMergeValues(Ops, 2, dl);
617}
618
619/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
620/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
621/// is necessary to spill the vector being inserted into to memory, perform
622/// the insert there, and then read the result back.
623SDValue SelectionDAGLegalize::
624PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
625                               DebugLoc dl) {
626  SDValue Tmp1 = Vec;
627  SDValue Tmp2 = Val;
628  SDValue Tmp3 = Idx;
629
630  // If the target doesn't support this, we have to spill the input vector
631  // to a temporary stack slot, update the element, then reload it.  This is
632  // badness.  We could also load the value into a vector register (either
633  // with a "move to register" or "extload into register" instruction, then
634  // permute it into place, if the idx is a constant and if the idx is
635  // supported by the target.
636  EVT VT    = Tmp1.getValueType();
637  EVT EltVT = VT.getVectorElementType();
638  EVT IdxVT = Tmp3.getValueType();
639  EVT PtrVT = TLI.getPointerTy();
640  SDValue StackPtr = DAG.CreateStackTemporary(VT);
641
642  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
643
644  // Store the vector.
645  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
646                            PseudoSourceValue::getFixedStack(SPFI), 0);
647
648  // Truncate or zero extend offset to target pointer type.
649  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
650  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
651  // Add the offset to the index.
652  unsigned EltSize = EltVT.getSizeInBits()/8;
653  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
654  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
655  // Store the scalar value.
656  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2,
657                         PseudoSourceValue::getFixedStack(SPFI), 0, EltVT);
658  // Load the updated vector.
659  return DAG.getLoad(VT, dl, Ch, StackPtr,
660                     PseudoSourceValue::getFixedStack(SPFI), 0);
661}
662
663
664SDValue SelectionDAGLegalize::
665ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
666  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
667    // SCALAR_TO_VECTOR requires that the type of the value being inserted
668    // match the element type of the vector being created, except for
669    // integers in which case the inserted value can be over width.
670    EVT EltVT = Vec.getValueType().getVectorElementType();
671    if (Val.getValueType() == EltVT ||
672        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
673      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
674                                  Vec.getValueType(), Val);
675
676      unsigned NumElts = Vec.getValueType().getVectorNumElements();
677      // We generate a shuffle of InVec and ScVec, so the shuffle mask
678      // should be 0,1,2,3,4,5... with the appropriate element replaced with
679      // elt 0 of the RHS.
680      SmallVector<int, 8> ShufOps;
681      for (unsigned i = 0; i != NumElts; ++i)
682        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
683
684      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
685                                  &ShufOps[0]);
686    }
687  }
688  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
689}
690
691SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
692  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
693  // FIXME: We shouldn't do this for TargetConstantFP's.
694  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
695  // to phase ordering between legalized code and the dag combiner.  This
696  // probably means that we need to integrate dag combiner and legalizer
697  // together.
698  // We generally can't do this one for long doubles.
699  SDValue Tmp1 = ST->getChain();
700  SDValue Tmp2 = ST->getBasePtr();
701  SDValue Tmp3;
702  int SVOffset = ST->getSrcValueOffset();
703  unsigned Alignment = ST->getAlignment();
704  bool isVolatile = ST->isVolatile();
705  DebugLoc dl = ST->getDebugLoc();
706  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
707    if (CFP->getValueType(0) == MVT::f32 &&
708        getTypeAction(MVT::i32) == Legal) {
709      Tmp3 = DAG.getConstant(CFP->getValueAPF().
710                                      bitcastToAPInt().zextOrTrunc(32),
711                              MVT::i32);
712      return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
713                          SVOffset, isVolatile, Alignment);
714    } else if (CFP->getValueType(0) == MVT::f64) {
715      // If this target supports 64-bit registers, do a single 64-bit store.
716      if (getTypeAction(MVT::i64) == Legal) {
717        Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
718                                  zextOrTrunc(64), MVT::i64);
719        return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
720                            SVOffset, isVolatile, Alignment);
721      } else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) {
722        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
723        // stores.  If the target supports neither 32- nor 64-bits, this
724        // xform is certainly not worth it.
725        const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
726        SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32);
727        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
728        if (TLI.isBigEndian()) std::swap(Lo, Hi);
729
730        Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(),
731                          SVOffset, isVolatile, Alignment);
732        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
733                            DAG.getIntPtrConstant(4));
734        Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), SVOffset+4,
735                          isVolatile, MinAlign(Alignment, 4U));
736
737        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
738      }
739    }
740  }
741  return SDValue();
742}
743
744/// LegalizeOp - We know that the specified value has a legal type, and
745/// that its operands are legal.  Now ensure that the operation itself
746/// is legal, recursively ensuring that the operands' operations remain
747/// legal.
748SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
749  if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
750    return Op;
751
752  SDNode *Node = Op.getNode();
753  DebugLoc dl = Node->getDebugLoc();
754
755  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
756    assert(getTypeAction(Node->getValueType(i)) == Legal &&
757           "Unexpected illegal type!");
758
759  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
760    assert((isTypeLegal(Node->getOperand(i).getValueType()) ||
761            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
762           "Unexpected illegal type!");
763
764  // Note that LegalizeOp may be reentered even from single-use nodes, which
765  // means that we always must cache transformed nodes.
766  DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
767  if (I != LegalizedNodes.end()) return I->second;
768
769  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
770  SDValue Result = Op;
771  bool isCustom = false;
772
773  // Figure out the correct action; the way to query this varies by opcode
774  TargetLowering::LegalizeAction Action;
775  bool SimpleFinishLegalizing = true;
776  switch (Node->getOpcode()) {
777  case ISD::INTRINSIC_W_CHAIN:
778  case ISD::INTRINSIC_WO_CHAIN:
779  case ISD::INTRINSIC_VOID:
780  case ISD::VAARG:
781  case ISD::STACKSAVE:
782    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
783    break;
784  case ISD::SINT_TO_FP:
785  case ISD::UINT_TO_FP:
786  case ISD::EXTRACT_VECTOR_ELT:
787    Action = TLI.getOperationAction(Node->getOpcode(),
788                                    Node->getOperand(0).getValueType());
789    break;
790  case ISD::FP_ROUND_INREG:
791  case ISD::SIGN_EXTEND_INREG: {
792    EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
793    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
794    break;
795  }
796  case ISD::SELECT_CC:
797  case ISD::SETCC:
798  case ISD::BR_CC: {
799    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
800                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
801    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
802    EVT OpVT = Node->getOperand(CompareOperand).getValueType();
803    ISD::CondCode CCCode =
804        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
805    Action = TLI.getCondCodeAction(CCCode, OpVT);
806    if (Action == TargetLowering::Legal) {
807      if (Node->getOpcode() == ISD::SELECT_CC)
808        Action = TLI.getOperationAction(Node->getOpcode(),
809                                        Node->getValueType(0));
810      else
811        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
812    }
813    break;
814  }
815  case ISD::LOAD:
816  case ISD::STORE:
817    // FIXME: Model these properly.  LOAD and STORE are complicated, and
818    // STORE expects the unlegalized operand in some cases.
819    SimpleFinishLegalizing = false;
820    break;
821  case ISD::CALLSEQ_START:
822  case ISD::CALLSEQ_END:
823    // FIXME: This shouldn't be necessary.  These nodes have special properties
824    // dealing with the recursive nature of legalization.  Removing this
825    // special case should be done as part of making LegalizeDAG non-recursive.
826    SimpleFinishLegalizing = false;
827    break;
828  case ISD::EXTRACT_ELEMENT:
829  case ISD::FLT_ROUNDS_:
830  case ISD::SADDO:
831  case ISD::SSUBO:
832  case ISD::UADDO:
833  case ISD::USUBO:
834  case ISD::SMULO:
835  case ISD::UMULO:
836  case ISD::FPOWI:
837  case ISD::MERGE_VALUES:
838  case ISD::EH_RETURN:
839  case ISD::FRAME_TO_ARGS_OFFSET:
840    // These operations lie about being legal: when they claim to be legal,
841    // they should actually be expanded.
842    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
843    if (Action == TargetLowering::Legal)
844      Action = TargetLowering::Expand;
845    break;
846  case ISD::TRAMPOLINE:
847  case ISD::FRAMEADDR:
848  case ISD::RETURNADDR:
849    // These operations lie about being legal: when they claim to be legal,
850    // they should actually be custom-lowered.
851    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
852    if (Action == TargetLowering::Legal)
853      Action = TargetLowering::Custom;
854    break;
855  case ISD::BUILD_VECTOR:
856    // A weird case: legalization for BUILD_VECTOR never legalizes the
857    // operands!
858    // FIXME: This really sucks... changing it isn't semantically incorrect,
859    // but it massively pessimizes the code for floating-point BUILD_VECTORs
860    // because ConstantFP operands get legalized into constant pool loads
861    // before the BUILD_VECTOR code can see them.  It doesn't usually bite,
862    // though, because BUILD_VECTORS usually get lowered into other nodes
863    // which get legalized properly.
864    SimpleFinishLegalizing = false;
865    break;
866  default:
867    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
868      Action = TargetLowering::Legal;
869    } else {
870      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
871    }
872    break;
873  }
874
875  if (SimpleFinishLegalizing) {
876    SmallVector<SDValue, 8> Ops, ResultVals;
877    for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
878      Ops.push_back(LegalizeOp(Node->getOperand(i)));
879    switch (Node->getOpcode()) {
880    default: break;
881    case ISD::BR:
882    case ISD::BRIND:
883    case ISD::BR_JT:
884    case ISD::BR_CC:
885    case ISD::BRCOND:
886      // Branches tweak the chain to include LastCALLSEQ_END
887      Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0],
888                            LastCALLSEQ_END);
889      Ops[0] = LegalizeOp(Ops[0]);
890      LastCALLSEQ_END = DAG.getEntryNode();
891      break;
892    case ISD::SHL:
893    case ISD::SRL:
894    case ISD::SRA:
895    case ISD::ROTL:
896    case ISD::ROTR:
897      // Legalizing shifts/rotates requires adjusting the shift amount
898      // to the appropriate width.
899      if (!Ops[1].getValueType().isVector())
900        Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[1]));
901      break;
902    case ISD::SRL_PARTS:
903    case ISD::SRA_PARTS:
904    case ISD::SHL_PARTS:
905      // Legalizing shifts/rotates requires adjusting the shift amount
906      // to the appropriate width.
907      if (!Ops[2].getValueType().isVector())
908        Ops[2] = LegalizeOp(DAG.getShiftAmountOperand(Ops[2]));
909      break;
910    }
911
912    Result = DAG.UpdateNodeOperands(Result.getValue(0), Ops.data(),
913                                    Ops.size());
914    switch (Action) {
915    case TargetLowering::Legal:
916      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
917        ResultVals.push_back(Result.getValue(i));
918      break;
919    case TargetLowering::Custom:
920      // FIXME: The handling for custom lowering with multiple results is
921      // a complete mess.
922      Tmp1 = TLI.LowerOperation(Result, DAG);
923      if (Tmp1.getNode()) {
924        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
925          if (e == 1)
926            ResultVals.push_back(Tmp1);
927          else
928            ResultVals.push_back(Tmp1.getValue(i));
929        }
930        break;
931      }
932
933      // FALL THROUGH
934    case TargetLowering::Expand:
935      ExpandNode(Result.getNode(), ResultVals);
936      break;
937    case TargetLowering::Promote:
938      PromoteNode(Result.getNode(), ResultVals);
939      break;
940    }
941    if (!ResultVals.empty()) {
942      for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) {
943        if (ResultVals[i] != SDValue(Node, i))
944          ResultVals[i] = LegalizeOp(ResultVals[i]);
945        AddLegalizedOperand(SDValue(Node, i), ResultVals[i]);
946      }
947      return ResultVals[Op.getResNo()];
948    }
949  }
950
951  switch (Node->getOpcode()) {
952  default:
953#ifndef NDEBUG
954    dbgs() << "NODE: ";
955    Node->dump( &DAG);
956    dbgs() << "\n";
957#endif
958    llvm_unreachable("Do not know how to legalize this operator!");
959
960  case ISD::BUILD_VECTOR:
961    switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
962    default: llvm_unreachable("This action is not supported yet!");
963    case TargetLowering::Custom:
964      Tmp3 = TLI.LowerOperation(Result, DAG);
965      if (Tmp3.getNode()) {
966        Result = Tmp3;
967        break;
968      }
969      // FALLTHROUGH
970    case TargetLowering::Expand:
971      Result = ExpandBUILD_VECTOR(Result.getNode());
972      break;
973    }
974    break;
975  case ISD::CALLSEQ_START: {
976    SDNode *CallEnd = FindCallEndFromCallStart(Node);
977
978    // Recursively Legalize all of the inputs of the call end that do not lead
979    // to this call start.  This ensures that any libcalls that need be inserted
980    // are inserted *before* the CALLSEQ_START.
981    {SmallPtrSet<SDNode*, 32> NodesLeadingTo;
982    for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
983      LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node,
984                                   NodesLeadingTo);
985    }
986
987    // Now that we legalized all of the inputs (which may have inserted
988    // libcalls) create the new CALLSEQ_START node.
989    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
990
991    // Merge in the last call, to ensure that this call start after the last
992    // call ended.
993    if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) {
994      Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
995                         Tmp1, LastCALLSEQ_END);
996      Tmp1 = LegalizeOp(Tmp1);
997    }
998
999    // Do not try to legalize the target-specific arguments (#1+).
1000    if (Tmp1 != Node->getOperand(0)) {
1001      SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1002      Ops[0] = Tmp1;
1003      Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1004    }
1005
1006    // Remember that the CALLSEQ_START is legalized.
1007    AddLegalizedOperand(Op.getValue(0), Result);
1008    if (Node->getNumValues() == 2)    // If this has a flag result, remember it.
1009      AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
1010
1011    // Now that the callseq_start and all of the non-call nodes above this call
1012    // sequence have been legalized, legalize the call itself.  During this
1013    // process, no libcalls can/will be inserted, guaranteeing that no calls
1014    // can overlap.
1015    assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!");
1016    // Note that we are selecting this call!
1017    LastCALLSEQ_END = SDValue(CallEnd, 0);
1018    IsLegalizingCall = true;
1019
1020    // Legalize the call, starting from the CALLSEQ_END.
1021    LegalizeOp(LastCALLSEQ_END);
1022    assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!");
1023    return Result;
1024  }
1025  case ISD::CALLSEQ_END:
1026    // If the CALLSEQ_START node hasn't been legalized first, legalize it.  This
1027    // will cause this node to be legalized as well as handling libcalls right.
1028    if (LastCALLSEQ_END.getNode() != Node) {
1029      LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0));
1030      DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
1031      assert(I != LegalizedNodes.end() &&
1032             "Legalizing the call start should have legalized this node!");
1033      return I->second;
1034    }
1035
1036    // Otherwise, the call start has been legalized and everything is going
1037    // according to plan.  Just legalize ourselves normally here.
1038    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1039    // Do not try to legalize the target-specific arguments (#1+), except for
1040    // an optional flag input.
1041    if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){
1042      if (Tmp1 != Node->getOperand(0)) {
1043        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1044        Ops[0] = Tmp1;
1045        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1046      }
1047    } else {
1048      Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
1049      if (Tmp1 != Node->getOperand(0) ||
1050          Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
1051        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1052        Ops[0] = Tmp1;
1053        Ops.back() = Tmp2;
1054        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1055      }
1056    }
1057    assert(IsLegalizingCall && "Call sequence imbalance between start/end?");
1058    // This finishes up call legalization.
1059    IsLegalizingCall = false;
1060
1061    // If the CALLSEQ_END node has a flag, remember that we legalized it.
1062    AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1063    if (Node->getNumValues() == 2)
1064      AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1065    return Result.getValue(Op.getResNo());
1066  case ISD::LOAD: {
1067    LoadSDNode *LD = cast<LoadSDNode>(Node);
1068    Tmp1 = LegalizeOp(LD->getChain());   // Legalize the chain.
1069    Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
1070
1071    ISD::LoadExtType ExtType = LD->getExtensionType();
1072    if (ExtType == ISD::NON_EXTLOAD) {
1073      EVT VT = Node->getValueType(0);
1074      Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1075      Tmp3 = Result.getValue(0);
1076      Tmp4 = Result.getValue(1);
1077
1078      switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1079      default: llvm_unreachable("This action is not supported yet!");
1080      case TargetLowering::Legal:
1081        // If this is an unaligned load and the target doesn't support it,
1082        // expand it.
1083        if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1084          const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1085          unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1086          if (LD->getAlignment() < ABIAlignment){
1087            Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1088                                         DAG, TLI);
1089            Tmp3 = Result.getOperand(0);
1090            Tmp4 = Result.getOperand(1);
1091            Tmp3 = LegalizeOp(Tmp3);
1092            Tmp4 = LegalizeOp(Tmp4);
1093          }
1094        }
1095        break;
1096      case TargetLowering::Custom:
1097        Tmp1 = TLI.LowerOperation(Tmp3, DAG);
1098        if (Tmp1.getNode()) {
1099          Tmp3 = LegalizeOp(Tmp1);
1100          Tmp4 = LegalizeOp(Tmp1.getValue(1));
1101        }
1102        break;
1103      case TargetLowering::Promote: {
1104        // Only promote a load of vector type to another.
1105        assert(VT.isVector() && "Cannot promote this load!");
1106        // Change base type to a different vector type.
1107        EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
1108
1109        Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1110                           LD->getSrcValueOffset(),
1111                           LD->isVolatile(), LD->getAlignment());
1112        Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp1));
1113        Tmp4 = LegalizeOp(Tmp1.getValue(1));
1114        break;
1115      }
1116      }
1117      // Since loads produce two values, make sure to remember that we
1118      // legalized both of them.
1119      AddLegalizedOperand(SDValue(Node, 0), Tmp3);
1120      AddLegalizedOperand(SDValue(Node, 1), Tmp4);
1121      return Op.getResNo() ? Tmp4 : Tmp3;
1122    } else {
1123      EVT SrcVT = LD->getMemoryVT();
1124      unsigned SrcWidth = SrcVT.getSizeInBits();
1125      int SVOffset = LD->getSrcValueOffset();
1126      unsigned Alignment = LD->getAlignment();
1127      bool isVolatile = LD->isVolatile();
1128
1129      if (SrcWidth != SrcVT.getStoreSizeInBits() &&
1130          // Some targets pretend to have an i1 loading operation, and actually
1131          // load an i8.  This trick is correct for ZEXTLOAD because the top 7
1132          // bits are guaranteed to be zero; it helps the optimizers understand
1133          // that these bits are zero.  It is also useful for EXTLOAD, since it
1134          // tells the optimizers that those bits are undefined.  It would be
1135          // nice to have an effective generic way of getting these benefits...
1136          // Until such a way is found, don't insist on promoting i1 here.
1137          (SrcVT != MVT::i1 ||
1138           TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
1139        // Promote to a byte-sized load if not loading an integral number of
1140        // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
1141        unsigned NewWidth = SrcVT.getStoreSizeInBits();
1142        EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
1143        SDValue Ch;
1144
1145        // The extra bits are guaranteed to be zero, since we stored them that
1146        // way.  A zext load from NVT thus automatically gives zext from SrcVT.
1147
1148        ISD::LoadExtType NewExtType =
1149          ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
1150
1151        Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
1152                                Tmp1, Tmp2, LD->getSrcValue(), SVOffset,
1153                                NVT, isVolatile, Alignment);
1154
1155        Ch = Result.getValue(1); // The chain.
1156
1157        if (ExtType == ISD::SEXTLOAD)
1158          // Having the top bits zero doesn't help when sign extending.
1159          Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1160                               Result.getValueType(),
1161                               Result, DAG.getValueType(SrcVT));
1162        else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
1163          // All the top bits are guaranteed to be zero - inform the optimizers.
1164          Result = DAG.getNode(ISD::AssertZext, dl,
1165                               Result.getValueType(), Result,
1166                               DAG.getValueType(SrcVT));
1167
1168        Tmp1 = LegalizeOp(Result);
1169        Tmp2 = LegalizeOp(Ch);
1170      } else if (SrcWidth & (SrcWidth - 1)) {
1171        // If not loading a power-of-2 number of bits, expand as two loads.
1172        assert(!SrcVT.isVector() && "Unsupported extload!");
1173        unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1174        assert(RoundWidth < SrcWidth);
1175        unsigned ExtraWidth = SrcWidth - RoundWidth;
1176        assert(ExtraWidth < RoundWidth);
1177        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1178               "Load size not an integral number of bytes!");
1179        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1180        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1181        SDValue Lo, Hi, Ch;
1182        unsigned IncrementSize;
1183
1184        if (TLI.isLittleEndian()) {
1185          // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1186          // Load the bottom RoundWidth bits.
1187          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1188                              Node->getValueType(0), Tmp1, Tmp2,
1189                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1190                              Alignment);
1191
1192          // Load the remaining ExtraWidth bits.
1193          IncrementSize = RoundWidth / 8;
1194          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1195                             DAG.getIntPtrConstant(IncrementSize));
1196          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1197                              LD->getSrcValue(), SVOffset + IncrementSize,
1198                              ExtraVT, isVolatile,
1199                              MinAlign(Alignment, IncrementSize));
1200
1201          // Build a factor node to remember that this load is independent of the
1202          // other one.
1203          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1204                           Hi.getValue(1));
1205
1206          // Move the top bits to the right place.
1207          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1208                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1209
1210          // Join the hi and lo parts.
1211          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1212        } else {
1213          // Big endian - avoid unaligned loads.
1214          // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1215          // Load the top RoundWidth bits.
1216          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1217                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1218                              Alignment);
1219
1220          // Load the remaining ExtraWidth bits.
1221          IncrementSize = RoundWidth / 8;
1222          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1223                             DAG.getIntPtrConstant(IncrementSize));
1224          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1225                              Node->getValueType(0), Tmp1, Tmp2,
1226                              LD->getSrcValue(), SVOffset + IncrementSize,
1227                              ExtraVT, isVolatile,
1228                              MinAlign(Alignment, IncrementSize));
1229
1230          // Build a factor node to remember that this load is independent of the
1231          // other one.
1232          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1233                           Hi.getValue(1));
1234
1235          // Move the top bits to the right place.
1236          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1237                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1238
1239          // Join the hi and lo parts.
1240          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1241        }
1242
1243        Tmp1 = LegalizeOp(Result);
1244        Tmp2 = LegalizeOp(Ch);
1245      } else {
1246        switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1247        default: llvm_unreachable("This action is not supported yet!");
1248        case TargetLowering::Custom:
1249          isCustom = true;
1250          // FALLTHROUGH
1251        case TargetLowering::Legal:
1252          Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1253          Tmp1 = Result.getValue(0);
1254          Tmp2 = Result.getValue(1);
1255
1256          if (isCustom) {
1257            Tmp3 = TLI.LowerOperation(Result, DAG);
1258            if (Tmp3.getNode()) {
1259              Tmp1 = LegalizeOp(Tmp3);
1260              Tmp2 = LegalizeOp(Tmp3.getValue(1));
1261            }
1262          } else {
1263            // If this is an unaligned load and the target doesn't support it,
1264            // expand it.
1265            if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1266              const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1267              unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1268              if (LD->getAlignment() < ABIAlignment){
1269                Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1270                                             DAG, TLI);
1271                Tmp1 = Result.getOperand(0);
1272                Tmp2 = Result.getOperand(1);
1273                Tmp1 = LegalizeOp(Tmp1);
1274                Tmp2 = LegalizeOp(Tmp2);
1275              }
1276            }
1277          }
1278          break;
1279        case TargetLowering::Expand:
1280          // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND
1281          // f128 = EXTLOAD {f32,f64} too
1282          if ((SrcVT == MVT::f32 && (Node->getValueType(0) == MVT::f64 ||
1283                                     Node->getValueType(0) == MVT::f128)) ||
1284              (SrcVT == MVT::f64 && Node->getValueType(0) == MVT::f128)) {
1285            SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1286                                       LD->getSrcValueOffset(),
1287                                       LD->isVolatile(), LD->getAlignment());
1288            Result = DAG.getNode(ISD::FP_EXTEND, dl,
1289                                 Node->getValueType(0), Load);
1290            Tmp1 = LegalizeOp(Result);  // Relegalize new nodes.
1291            Tmp2 = LegalizeOp(Load.getValue(1));
1292            break;
1293          }
1294          assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!");
1295          // Turn the unsupported load into an EXTLOAD followed by an explicit
1296          // zero/sign extend inreg.
1297          Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1298                                  Tmp1, Tmp2, LD->getSrcValue(),
1299                                  LD->getSrcValueOffset(), SrcVT,
1300                                  LD->isVolatile(), LD->getAlignment());
1301          SDValue ValRes;
1302          if (ExtType == ISD::SEXTLOAD)
1303            ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1304                                 Result.getValueType(),
1305                                 Result, DAG.getValueType(SrcVT));
1306          else
1307            ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
1308          Tmp1 = LegalizeOp(ValRes);  // Relegalize new nodes.
1309          Tmp2 = LegalizeOp(Result.getValue(1));  // Relegalize new nodes.
1310          break;
1311        }
1312      }
1313
1314      // Since loads produce two values, make sure to remember that we legalized
1315      // both of them.
1316      AddLegalizedOperand(SDValue(Node, 0), Tmp1);
1317      AddLegalizedOperand(SDValue(Node, 1), Tmp2);
1318      return Op.getResNo() ? Tmp2 : Tmp1;
1319    }
1320  }
1321  case ISD::STORE: {
1322    StoreSDNode *ST = cast<StoreSDNode>(Node);
1323    Tmp1 = LegalizeOp(ST->getChain());    // Legalize the chain.
1324    Tmp2 = LegalizeOp(ST->getBasePtr());  // Legalize the pointer.
1325    int SVOffset = ST->getSrcValueOffset();
1326    unsigned Alignment = ST->getAlignment();
1327    bool isVolatile = ST->isVolatile();
1328
1329    if (!ST->isTruncatingStore()) {
1330      if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
1331        Result = SDValue(OptStore, 0);
1332        break;
1333      }
1334
1335      {
1336        Tmp3 = LegalizeOp(ST->getValue());
1337        Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1338                                        ST->getOffset());
1339
1340        EVT VT = Tmp3.getValueType();
1341        switch (TLI.getOperationAction(ISD::STORE, VT)) {
1342        default: llvm_unreachable("This action is not supported yet!");
1343        case TargetLowering::Legal:
1344          // If this is an unaligned store and the target doesn't support it,
1345          // expand it.
1346          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1347            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1348            unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1349            if (ST->getAlignment() < ABIAlignment)
1350              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1351                                            DAG, TLI);
1352          }
1353          break;
1354        case TargetLowering::Custom:
1355          Tmp1 = TLI.LowerOperation(Result, DAG);
1356          if (Tmp1.getNode()) Result = Tmp1;
1357          break;
1358        case TargetLowering::Promote:
1359          assert(VT.isVector() && "Unknown legal promote case!");
1360          Tmp3 = DAG.getNode(ISD::BIT_CONVERT, dl,
1361                             TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1362          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1363                                ST->getSrcValue(), SVOffset, isVolatile,
1364                                Alignment);
1365          break;
1366        }
1367        break;
1368      }
1369    } else {
1370      Tmp3 = LegalizeOp(ST->getValue());
1371
1372      EVT StVT = ST->getMemoryVT();
1373      unsigned StWidth = StVT.getSizeInBits();
1374
1375      if (StWidth != StVT.getStoreSizeInBits()) {
1376        // Promote to a byte-sized store with upper bits zero if not
1377        // storing an integral number of bytes.  For example, promote
1378        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1379        EVT NVT = EVT::getIntegerVT(*DAG.getContext(), StVT.getStoreSizeInBits());
1380        Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1381        Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1382                                   SVOffset, NVT, isVolatile, Alignment);
1383      } else if (StWidth & (StWidth - 1)) {
1384        // If not storing a power-of-2 number of bits, expand as two stores.
1385        assert(!StVT.isVector() && "Unsupported truncstore!");
1386        unsigned RoundWidth = 1 << Log2_32(StWidth);
1387        assert(RoundWidth < StWidth);
1388        unsigned ExtraWidth = StWidth - RoundWidth;
1389        assert(ExtraWidth < RoundWidth);
1390        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1391               "Store size not an integral number of bytes!");
1392        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1393        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1394        SDValue Lo, Hi;
1395        unsigned IncrementSize;
1396
1397        if (TLI.isLittleEndian()) {
1398          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1399          // Store the bottom RoundWidth bits.
1400          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1401                                 SVOffset, RoundVT,
1402                                 isVolatile, Alignment);
1403
1404          // Store the remaining ExtraWidth bits.
1405          IncrementSize = RoundWidth / 8;
1406          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1407                             DAG.getIntPtrConstant(IncrementSize));
1408          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1409                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1410          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1411                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1412                                 MinAlign(Alignment, IncrementSize));
1413        } else {
1414          // Big endian - avoid unaligned stores.
1415          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1416          // Store the top RoundWidth bits.
1417          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1418                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1419          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1420                                 SVOffset, RoundVT, isVolatile, Alignment);
1421
1422          // Store the remaining ExtraWidth bits.
1423          IncrementSize = RoundWidth / 8;
1424          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1425                             DAG.getIntPtrConstant(IncrementSize));
1426          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1427                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1428                                 MinAlign(Alignment, IncrementSize));
1429        }
1430
1431        // The order of the stores doesn't matter.
1432        Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1433      } else {
1434        if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
1435            Tmp2 != ST->getBasePtr())
1436          Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1437                                          ST->getOffset());
1438
1439        switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1440        default: llvm_unreachable("This action is not supported yet!");
1441        case TargetLowering::Legal:
1442          // If this is an unaligned store and the target doesn't support it,
1443          // expand it.
1444          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1445            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1446            unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1447            if (ST->getAlignment() < ABIAlignment)
1448              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1449                                            DAG, TLI);
1450          }
1451          break;
1452        case TargetLowering::Custom:
1453          Result = TLI.LowerOperation(Result, DAG);
1454          break;
1455        case Expand:
1456          // TRUNCSTORE:i16 i32 -> STORE i16
1457          assert(isTypeLegal(StVT) && "Do not know how to expand this store!");
1458          Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1459          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1460                                SVOffset, isVolatile, Alignment);
1461          break;
1462        }
1463      }
1464    }
1465    break;
1466  }
1467  }
1468  assert(Result.getValueType() == Op.getValueType() &&
1469         "Bad legalization!");
1470
1471  // Make sure that the generated code is itself legal.
1472  if (Result != Op)
1473    Result = LegalizeOp(Result);
1474
1475  // Note that LegalizeOp may be reentered even from single-use nodes, which
1476  // means that we always must cache transformed nodes.
1477  AddLegalizedOperand(Op, Result);
1478  return Result;
1479}
1480
1481SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1482  SDValue Vec = Op.getOperand(0);
1483  SDValue Idx = Op.getOperand(1);
1484  DebugLoc dl = Op.getDebugLoc();
1485  // Store the value to a temporary stack slot, then LOAD the returned part.
1486  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1487  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0);
1488
1489  // Add the offset to the index.
1490  unsigned EltSize =
1491      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1492  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1493                    DAG.getConstant(EltSize, Idx.getValueType()));
1494
1495  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1496    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1497  else
1498    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1499
1500  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1501
1502  if (Op.getValueType().isVector())
1503    return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, NULL, 0);
1504  else
1505    return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1506                          NULL, 0, Vec.getValueType().getVectorElementType());
1507}
1508
1509SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1510  // We can't handle this case efficiently.  Allocate a sufficiently
1511  // aligned object on the stack, store each element into it, then load
1512  // the result as a vector.
1513  // Create the stack frame object.
1514  EVT VT = Node->getValueType(0);
1515  EVT OpVT = Node->getOperand(0).getValueType();
1516  EVT EltVT = VT.getVectorElementType();
1517  DebugLoc dl = Node->getDebugLoc();
1518  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1519  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1520  const Value *SV = PseudoSourceValue::getFixedStack(FI);
1521
1522  // Emit a store of each element to the stack slot.
1523  SmallVector<SDValue, 8> Stores;
1524  unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1525  // Store (in the right endianness) the elements to memory.
1526  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1527    // Ignore undef elements.
1528    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1529
1530    unsigned Offset = TypeByteSize*i;
1531
1532    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1533    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1534
1535    // If EltVT smaller than OpVT, only store the bits necessary.
1536    if (!OpVT.isVector() && EltVT.bitsLT(OpVT)) {
1537      Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1538                          Node->getOperand(i), Idx, SV, Offset, EltVT));
1539    } else
1540      Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
1541                                    Node->getOperand(i), Idx, SV, Offset));
1542  }
1543
1544  SDValue StoreChain;
1545  if (!Stores.empty())    // Not all undef elements?
1546    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1547                             &Stores[0], Stores.size());
1548  else
1549    StoreChain = DAG.getEntryNode();
1550
1551  // Result is a load from the stack slot.
1552  return DAG.getLoad(VT, dl, StoreChain, FIPtr, SV, 0);
1553}
1554
1555SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1556  DebugLoc dl = Node->getDebugLoc();
1557  SDValue Tmp1 = Node->getOperand(0);
1558  SDValue Tmp2 = Node->getOperand(1);
1559  assert((Tmp2.getValueType() == MVT::f32 ||
1560          Tmp2.getValueType() == MVT::f64) &&
1561          "Ugly special-cased code!");
1562  // Get the sign bit of the RHS.
1563  SDValue SignBit;
1564  EVT IVT = Tmp2.getValueType() == MVT::f64 ? MVT::i64 : MVT::i32;
1565  if (isTypeLegal(IVT)) {
1566    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2);
1567  } else {
1568    assert(isTypeLegal(TLI.getPointerTy()) &&
1569            (TLI.getPointerTy() == MVT::i32 ||
1570            TLI.getPointerTy() == MVT::i64) &&
1571            "Legal type for load?!");
1572    SDValue StackPtr = DAG.CreateStackTemporary(Tmp2.getValueType());
1573    SDValue StorePtr = StackPtr, LoadPtr = StackPtr;
1574    SDValue Ch =
1575        DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StorePtr, NULL, 0);
1576    if (Tmp2.getValueType() == MVT::f64 && TLI.isLittleEndian())
1577      LoadPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(),
1578                            LoadPtr, DAG.getIntPtrConstant(4));
1579    SignBit = DAG.getExtLoad(ISD::SEXTLOAD, dl, TLI.getPointerTy(),
1580                              Ch, LoadPtr, NULL, 0, MVT::i32);
1581  }
1582  SignBit =
1583      DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1584                    SignBit, DAG.getConstant(0, SignBit.getValueType()),
1585                    ISD::SETLT);
1586  // Get the absolute value of the result.
1587  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1588  // Select between the nabs and abs value based on the sign bit of
1589  // the input.
1590  return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1591                     DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1592                     AbsVal);
1593}
1594
1595void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1596                                           SmallVectorImpl<SDValue> &Results) {
1597  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1598  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1599          " not tell us which reg is the stack pointer!");
1600  DebugLoc dl = Node->getDebugLoc();
1601  EVT VT = Node->getValueType(0);
1602  SDValue Tmp1 = SDValue(Node, 0);
1603  SDValue Tmp2 = SDValue(Node, 1);
1604  SDValue Tmp3 = Node->getOperand(2);
1605  SDValue Chain = Tmp1.getOperand(0);
1606
1607  // Chain the dynamic stack allocation so that it doesn't modify the stack
1608  // pointer when other instructions are using the stack.
1609  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1610
1611  SDValue Size  = Tmp2.getOperand(1);
1612  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1613  Chain = SP.getValue(1);
1614  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1615  unsigned StackAlign =
1616    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
1617  if (Align > StackAlign)
1618    SP = DAG.getNode(ISD::AND, dl, VT, SP,
1619                      DAG.getConstant(-(uint64_t)Align, VT));
1620  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1621  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1622
1623  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1624                            DAG.getIntPtrConstant(0, true), SDValue());
1625
1626  Results.push_back(Tmp1);
1627  Results.push_back(Tmp2);
1628}
1629
1630/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1631/// condition code CC on the current target. This routine expands SETCC with
1632/// illegal condition code into AND / OR of multiple SETCC values.
1633void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1634                                                 SDValue &LHS, SDValue &RHS,
1635                                                 SDValue &CC,
1636                                                 DebugLoc dl) {
1637  EVT OpVT = LHS.getValueType();
1638  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1639  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1640  default: llvm_unreachable("Unknown condition code action!");
1641  case TargetLowering::Legal:
1642    // Nothing to do.
1643    break;
1644  case TargetLowering::Expand: {
1645    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1646    unsigned Opc = 0;
1647    switch (CCCode) {
1648    default: llvm_unreachable("Don't know how to expand this condition!");
1649    case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1650    case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1651    case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1652    case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1653    case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1654    case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1655    case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1656    case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1657    case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1658    case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1659    case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1660    case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1661    // FIXME: Implement more expansions.
1662    }
1663
1664    SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1665    SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1666    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1667    RHS = SDValue();
1668    CC  = SDValue();
1669    break;
1670  }
1671  }
1672}
1673
1674/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1675/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1676/// a load from the stack slot to DestVT, extending it if needed.
1677/// The resultant code need not be legal.
1678SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1679                                               EVT SlotVT,
1680                                               EVT DestVT,
1681                                               DebugLoc dl) {
1682  // Create the stack frame object.
1683  unsigned SrcAlign =
1684    TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
1685                                              getTypeForEVT(*DAG.getContext()));
1686  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1687
1688  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1689  int SPFI = StackPtrFI->getIndex();
1690  const Value *SV = PseudoSourceValue::getFixedStack(SPFI);
1691
1692  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1693  unsigned SlotSize = SlotVT.getSizeInBits();
1694  unsigned DestSize = DestVT.getSizeInBits();
1695  unsigned DestAlign =
1696    TLI.getTargetData()->getPrefTypeAlignment(DestVT.getTypeForEVT(*DAG.getContext()));
1697
1698  // Emit a store to the stack slot.  Use a truncstore if the input value is
1699  // later than DestVT.
1700  SDValue Store;
1701
1702  if (SrcSize > SlotSize)
1703    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1704                              SV, 0, SlotVT, false, SrcAlign);
1705  else {
1706    assert(SrcSize == SlotSize && "Invalid store");
1707    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1708                         SV, 0, false, SrcAlign);
1709  }
1710
1711  // Result is a load from the stack slot.
1712  if (SlotSize == DestSize)
1713    return DAG.getLoad(DestVT, dl, Store, FIPtr, SV, 0, false, DestAlign);
1714
1715  assert(SlotSize < DestSize && "Unknown extension!");
1716  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, SV, 0, SlotVT,
1717                        false, DestAlign);
1718}
1719
1720SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1721  DebugLoc dl = Node->getDebugLoc();
1722  // Create a vector sized/aligned stack slot, store the value to element #0,
1723  // then load the whole vector back out.
1724  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1725
1726  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1727  int SPFI = StackPtrFI->getIndex();
1728
1729  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1730                                 StackPtr,
1731                                 PseudoSourceValue::getFixedStack(SPFI), 0,
1732                                 Node->getValueType(0).getVectorElementType());
1733  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1734                     PseudoSourceValue::getFixedStack(SPFI), 0);
1735}
1736
1737
1738/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1739/// support the operation, but do support the resultant vector type.
1740SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1741  unsigned NumElems = Node->getNumOperands();
1742  SDValue Value1, Value2;
1743  DebugLoc dl = Node->getDebugLoc();
1744  EVT VT = Node->getValueType(0);
1745  EVT OpVT = Node->getOperand(0).getValueType();
1746  EVT EltVT = VT.getVectorElementType();
1747
1748  // If the only non-undef value is the low element, turn this into a
1749  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1750  bool isOnlyLowElement = true;
1751  bool MoreThanTwoValues = false;
1752  bool isConstant = true;
1753  for (unsigned i = 0; i < NumElems; ++i) {
1754    SDValue V = Node->getOperand(i);
1755    if (V.getOpcode() == ISD::UNDEF)
1756      continue;
1757    if (i > 0)
1758      isOnlyLowElement = false;
1759    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1760      isConstant = false;
1761
1762    if (!Value1.getNode()) {
1763      Value1 = V;
1764    } else if (!Value2.getNode()) {
1765      if (V != Value1)
1766        Value2 = V;
1767    } else if (V != Value1 && V != Value2) {
1768      MoreThanTwoValues = true;
1769    }
1770  }
1771
1772  if (!Value1.getNode())
1773    return DAG.getUNDEF(VT);
1774
1775  if (isOnlyLowElement)
1776    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1777
1778  // If all elements are constants, create a load from the constant pool.
1779  if (isConstant) {
1780    std::vector<Constant*> CV;
1781    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1782      if (ConstantFPSDNode *V =
1783          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1784        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1785      } else if (ConstantSDNode *V =
1786                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1787        if (OpVT==EltVT)
1788          CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1789        else {
1790          // If OpVT and EltVT don't match, EltVT is not legal and the
1791          // element values have been promoted/truncated earlier.  Undo this;
1792          // we don't want a v16i8 to become a v16i32 for example.
1793          const ConstantInt *CI = V->getConstantIntValue();
1794          CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1795                                        CI->getZExtValue()));
1796        }
1797      } else {
1798        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1799        const Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1800        CV.push_back(UndefValue::get(OpNTy));
1801      }
1802    }
1803    Constant *CP = ConstantVector::get(CV);
1804    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1805    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1806    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1807                       PseudoSourceValue::getConstantPool(), 0,
1808                       false, Alignment);
1809  }
1810
1811  if (!MoreThanTwoValues) {
1812    SmallVector<int, 8> ShuffleVec(NumElems, -1);
1813    for (unsigned i = 0; i < NumElems; ++i) {
1814      SDValue V = Node->getOperand(i);
1815      if (V.getOpcode() == ISD::UNDEF)
1816        continue;
1817      ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1818    }
1819    if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1820      // Get the splatted value into the low element of a vector register.
1821      SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1822      SDValue Vec2;
1823      if (Value2.getNode())
1824        Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1825      else
1826        Vec2 = DAG.getUNDEF(VT);
1827
1828      // Return shuffle(LowValVec, undef, <0,0,0,0>)
1829      return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1830    }
1831  }
1832
1833  // Otherwise, we can't handle this case efficiently.
1834  return ExpandVectorBuildThroughStack(Node);
1835}
1836
1837// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
1838// does not fit into a register, return the lo part and set the hi part to the
1839// by-reg argument.  If it does fit into a single register, return the result
1840// and leave the Hi part unset.
1841SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1842                                            bool isSigned) {
1843  assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
1844  // The input chain to this libcall is the entry node of the function.
1845  // Legalizing the call will automatically add the previous call to the
1846  // dependence.
1847  SDValue InChain = DAG.getEntryNode();
1848
1849  TargetLowering::ArgListTy Args;
1850  TargetLowering::ArgListEntry Entry;
1851  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1852    EVT ArgVT = Node->getOperand(i).getValueType();
1853    const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1854    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1855    Entry.isSExt = isSigned;
1856    Entry.isZExt = !isSigned;
1857    Args.push_back(Entry);
1858  }
1859  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1860                                         TLI.getPointerTy());
1861
1862  // Splice the libcall in wherever FindInputOutputChains tells us to.
1863  const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1864  std::pair<SDValue, SDValue> CallInfo =
1865    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1866                    0, TLI.getLibcallCallingConv(LC), false,
1867                    /*isReturnValueUsed=*/true,
1868                    Callee, Args, DAG,
1869                    Node->getDebugLoc(), DAG.GetOrdering(Node));
1870
1871  // Legalize the call sequence, starting with the chain.  This will advance
1872  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
1873  // was added by LowerCallTo (guaranteeing proper serialization of calls).
1874  LegalizeOp(CallInfo.second);
1875  return CallInfo.first;
1876}
1877
1878SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
1879                                              RTLIB::Libcall Call_F32,
1880                                              RTLIB::Libcall Call_F64,
1881                                              RTLIB::Libcall Call_F80,
1882                                              RTLIB::Libcall Call_PPCF128) {
1883  RTLIB::Libcall LC;
1884  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1885  default: llvm_unreachable("Unexpected request for libcall!");
1886  case MVT::f32: LC = Call_F32; break;
1887  case MVT::f64: LC = Call_F64; break;
1888  case MVT::f80: LC = Call_F80; break;
1889  case MVT::ppcf128: LC = Call_PPCF128; break;
1890  }
1891  return ExpandLibCall(LC, Node, false);
1892}
1893
1894SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
1895                                               RTLIB::Libcall Call_I8,
1896                                               RTLIB::Libcall Call_I16,
1897                                               RTLIB::Libcall Call_I32,
1898                                               RTLIB::Libcall Call_I64,
1899                                               RTLIB::Libcall Call_I128) {
1900  RTLIB::Libcall LC;
1901  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1902  default: llvm_unreachable("Unexpected request for libcall!");
1903  case MVT::i8:   LC = Call_I8; break;
1904  case MVT::i16:  LC = Call_I16; break;
1905  case MVT::i32:  LC = Call_I32; break;
1906  case MVT::i64:  LC = Call_I64; break;
1907  case MVT::i128: LC = Call_I128; break;
1908  }
1909  return ExpandLibCall(LC, Node, isSigned);
1910}
1911
1912/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
1913/// INT_TO_FP operation of the specified operand when the target requests that
1914/// we expand it.  At this point, we know that the result and operand types are
1915/// legal for the target.
1916SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
1917                                                   SDValue Op0,
1918                                                   EVT DestVT,
1919                                                   DebugLoc dl) {
1920  if (Op0.getValueType() == MVT::i32) {
1921    // simple 32-bit [signed|unsigned] integer to float/double expansion
1922
1923    // Get the stack frame index of a 8 byte buffer.
1924    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
1925
1926    // word offset constant for Hi/Lo address computation
1927    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
1928    // set up Hi and Lo (into buffer) address based on endian
1929    SDValue Hi = StackSlot;
1930    SDValue Lo = DAG.getNode(ISD::ADD, dl,
1931                             TLI.getPointerTy(), StackSlot, WordOff);
1932    if (TLI.isLittleEndian())
1933      std::swap(Hi, Lo);
1934
1935    // if signed map to unsigned space
1936    SDValue Op0Mapped;
1937    if (isSigned) {
1938      // constant used to invert sign bit (signed to unsigned mapping)
1939      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
1940      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
1941    } else {
1942      Op0Mapped = Op0;
1943    }
1944    // store the lo of the constructed double - based on integer input
1945    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
1946                                  Op0Mapped, Lo, NULL, 0);
1947    // initial hi portion of constructed double
1948    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
1949    // store the hi of the constructed double - biased exponent
1950    SDValue Store2=DAG.getStore(Store1, dl, InitialHi, Hi, NULL, 0);
1951    // load the constructed double
1952    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, NULL, 0);
1953    // FP constant to bias correct the final result
1954    SDValue Bias = DAG.getConstantFP(isSigned ?
1955                                     BitsToDouble(0x4330000080000000ULL) :
1956                                     BitsToDouble(0x4330000000000000ULL),
1957                                     MVT::f64);
1958    // subtract the bias
1959    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
1960    // final result
1961    SDValue Result;
1962    // handle final rounding
1963    if (DestVT == MVT::f64) {
1964      // do nothing
1965      Result = Sub;
1966    } else if (DestVT.bitsLT(MVT::f64)) {
1967      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
1968                           DAG.getIntPtrConstant(0));
1969    } else if (DestVT.bitsGT(MVT::f64)) {
1970      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
1971    }
1972    return Result;
1973  }
1974  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
1975  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
1976
1977  SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
1978                                 Op0, DAG.getConstant(0, Op0.getValueType()),
1979                                 ISD::SETLT);
1980  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
1981  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
1982                                    SignSet, Four, Zero);
1983
1984  // If the sign bit of the integer is set, the large number will be treated
1985  // as a negative number.  To counteract this, the dynamic code adds an
1986  // offset depending on the data type.
1987  uint64_t FF;
1988  switch (Op0.getValueType().getSimpleVT().SimpleTy) {
1989  default: llvm_unreachable("Unsupported integer type!");
1990  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
1991  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
1992  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
1993  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
1994  }
1995  if (TLI.isLittleEndian()) FF <<= 32;
1996  Constant *FudgeFactor = ConstantInt::get(
1997                                       Type::getInt64Ty(*DAG.getContext()), FF);
1998
1999  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2000  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2001  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2002  Alignment = std::min(Alignment, 4u);
2003  SDValue FudgeInReg;
2004  if (DestVT == MVT::f32)
2005    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2006                             PseudoSourceValue::getConstantPool(), 0,
2007                             false, Alignment);
2008  else {
2009    FudgeInReg =
2010      LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2011                                DAG.getEntryNode(), CPIdx,
2012                                PseudoSourceValue::getConstantPool(), 0,
2013                                MVT::f32, false, Alignment));
2014  }
2015
2016  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2017}
2018
2019/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2020/// *INT_TO_FP operation of the specified operand when the target requests that
2021/// we promote it.  At this point, we know that the result and operand types are
2022/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2023/// operation that takes a larger input.
2024SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2025                                                    EVT DestVT,
2026                                                    bool isSigned,
2027                                                    DebugLoc dl) {
2028  // First step, figure out the appropriate *INT_TO_FP operation to use.
2029  EVT NewInTy = LegalOp.getValueType();
2030
2031  unsigned OpToUse = 0;
2032
2033  // Scan for the appropriate larger type to use.
2034  while (1) {
2035    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2036    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2037
2038    // If the target supports SINT_TO_FP of this type, use it.
2039    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2040      OpToUse = ISD::SINT_TO_FP;
2041      break;
2042    }
2043    if (isSigned) continue;
2044
2045    // If the target supports UINT_TO_FP of this type, use it.
2046    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2047      OpToUse = ISD::UINT_TO_FP;
2048      break;
2049    }
2050
2051    // Otherwise, try a larger type.
2052  }
2053
2054  // Okay, we found the operation and type to use.  Zero extend our input to the
2055  // desired type then run the operation on it.
2056  return DAG.getNode(OpToUse, dl, DestVT,
2057                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2058                                 dl, NewInTy, LegalOp));
2059}
2060
2061/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2062/// FP_TO_*INT operation of the specified operand when the target requests that
2063/// we promote it.  At this point, we know that the result and operand types are
2064/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2065/// operation that returns a larger result.
2066SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2067                                                    EVT DestVT,
2068                                                    bool isSigned,
2069                                                    DebugLoc dl) {
2070  // First step, figure out the appropriate FP_TO*INT operation to use.
2071  EVT NewOutTy = DestVT;
2072
2073  unsigned OpToUse = 0;
2074
2075  // Scan for the appropriate larger type to use.
2076  while (1) {
2077    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2078    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2079
2080    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2081      OpToUse = ISD::FP_TO_SINT;
2082      break;
2083    }
2084
2085    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2086      OpToUse = ISD::FP_TO_UINT;
2087      break;
2088    }
2089
2090    // Otherwise, try a larger type.
2091  }
2092
2093
2094  // Okay, we found the operation and type to use.
2095  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2096
2097  // Truncate the result of the extended FP_TO_*INT operation to the desired
2098  // size.
2099  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2100}
2101
2102/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2103///
2104SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2105  EVT VT = Op.getValueType();
2106  EVT SHVT = TLI.getShiftAmountTy();
2107  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2108  switch (VT.getSimpleVT().SimpleTy) {
2109  default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2110  case MVT::i16:
2111    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2112    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2113    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2114  case MVT::i32:
2115    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2116    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2117    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2118    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2119    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2120    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2121    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2122    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2123    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2124  case MVT::i64:
2125    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2126    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2127    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2128    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2129    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2130    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2131    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2132    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2133    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2134    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2135    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2136    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2137    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2138    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2139    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2140    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2141    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2142    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2143    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2144    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2145    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2146  }
2147}
2148
2149/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2150///
2151SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2152                                             DebugLoc dl) {
2153  switch (Opc) {
2154  default: llvm_unreachable("Cannot expand this yet!");
2155  case ISD::CTPOP: {
2156    static const uint64_t mask[6] = {
2157      0x5555555555555555ULL, 0x3333333333333333ULL,
2158      0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
2159      0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
2160    };
2161    EVT VT = Op.getValueType();
2162    EVT ShVT = TLI.getShiftAmountTy();
2163    unsigned len = VT.getSizeInBits();
2164    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2165      //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8])
2166      unsigned EltSize = VT.isVector() ?
2167        VT.getVectorElementType().getSizeInBits() : len;
2168      SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT);
2169      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2170      Op = DAG.getNode(ISD::ADD, dl, VT,
2171                       DAG.getNode(ISD::AND, dl, VT, Op, Tmp2),
2172                       DAG.getNode(ISD::AND, dl, VT,
2173                                   DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3),
2174                                   Tmp2));
2175    }
2176    return Op;
2177  }
2178  case ISD::CTLZ: {
2179    // for now, we do this:
2180    // x = x | (x >> 1);
2181    // x = x | (x >> 2);
2182    // ...
2183    // x = x | (x >>16);
2184    // x = x | (x >>32); // for 64-bit input
2185    // return popcount(~x);
2186    //
2187    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2188    EVT VT = Op.getValueType();
2189    EVT ShVT = TLI.getShiftAmountTy();
2190    unsigned len = VT.getSizeInBits();
2191    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2192      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2193      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2194                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2195    }
2196    Op = DAG.getNOT(dl, Op, VT);
2197    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2198  }
2199  case ISD::CTTZ: {
2200    // for now, we use: { return popcount(~x & (x - 1)); }
2201    // unless the target has ctlz but not ctpop, in which case we use:
2202    // { return 32 - nlz(~x & (x-1)); }
2203    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2204    EVT VT = Op.getValueType();
2205    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2206                               DAG.getNOT(dl, Op, VT),
2207                               DAG.getNode(ISD::SUB, dl, VT, Op,
2208                                           DAG.getConstant(1, VT)));
2209    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2210    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2211        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2212      return DAG.getNode(ISD::SUB, dl, VT,
2213                         DAG.getConstant(VT.getSizeInBits(), VT),
2214                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2215    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2216  }
2217  }
2218}
2219
2220void SelectionDAGLegalize::ExpandNode(SDNode *Node,
2221                                      SmallVectorImpl<SDValue> &Results) {
2222  DebugLoc dl = Node->getDebugLoc();
2223  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2224  switch (Node->getOpcode()) {
2225  case ISD::CTPOP:
2226  case ISD::CTLZ:
2227  case ISD::CTTZ:
2228    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2229    Results.push_back(Tmp1);
2230    break;
2231  case ISD::BSWAP:
2232    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2233    break;
2234  case ISD::FRAMEADDR:
2235  case ISD::RETURNADDR:
2236  case ISD::FRAME_TO_ARGS_OFFSET:
2237    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2238    break;
2239  case ISD::FLT_ROUNDS_:
2240    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2241    break;
2242  case ISD::EH_RETURN:
2243  case ISD::EH_LABEL:
2244  case ISD::PREFETCH:
2245  case ISD::MEMBARRIER:
2246  case ISD::VAEND:
2247    Results.push_back(Node->getOperand(0));
2248    break;
2249  case ISD::DYNAMIC_STACKALLOC:
2250    ExpandDYNAMIC_STACKALLOC(Node, Results);
2251    break;
2252  case ISD::MERGE_VALUES:
2253    for (unsigned i = 0; i < Node->getNumValues(); i++)
2254      Results.push_back(Node->getOperand(i));
2255    break;
2256  case ISD::UNDEF: {
2257    EVT VT = Node->getValueType(0);
2258    if (VT.isInteger())
2259      Results.push_back(DAG.getConstant(0, VT));
2260    else if (VT.isFloatingPoint())
2261      Results.push_back(DAG.getConstantFP(0, VT));
2262    else
2263      llvm_unreachable("Unknown value type!");
2264    break;
2265  }
2266  case ISD::TRAP: {
2267    // If this operation is not supported, lower it to 'abort()' call
2268    TargetLowering::ArgListTy Args;
2269    std::pair<SDValue, SDValue> CallResult =
2270      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2271                      false, false, false, false, 0, CallingConv::C, false,
2272                      /*isReturnValueUsed=*/true,
2273                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2274                      Args, DAG, dl, DAG.GetOrdering(Node));
2275    Results.push_back(CallResult.second);
2276    break;
2277  }
2278  case ISD::FP_ROUND:
2279  case ISD::BIT_CONVERT:
2280    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2281                            Node->getValueType(0), dl);
2282    Results.push_back(Tmp1);
2283    break;
2284  case ISD::FP_EXTEND:
2285    Tmp1 = EmitStackConvert(Node->getOperand(0),
2286                            Node->getOperand(0).getValueType(),
2287                            Node->getValueType(0), dl);
2288    Results.push_back(Tmp1);
2289    break;
2290  case ISD::SIGN_EXTEND_INREG: {
2291    // NOTE: we could fall back on load/store here too for targets without
2292    // SAR.  However, it is doubtful that any exist.
2293    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2294    EVT VT = Node->getValueType(0);
2295    EVT ShiftAmountTy = TLI.getShiftAmountTy();
2296    if (VT.isVector())
2297      ShiftAmountTy = VT;
2298    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
2299                        ExtraVT.getScalarType().getSizeInBits();
2300    SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy);
2301    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2302                       Node->getOperand(0), ShiftCst);
2303    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2304    Results.push_back(Tmp1);
2305    break;
2306  }
2307  case ISD::FP_ROUND_INREG: {
2308    // The only way we can lower this is to turn it into a TRUNCSTORE,
2309    // EXTLOAD pair, targetting a temporary location (a stack slot).
2310
2311    // NOTE: there is a choice here between constantly creating new stack
2312    // slots and always reusing the same one.  We currently always create
2313    // new ones, as reuse may inhibit scheduling.
2314    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2315    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2316                            Node->getValueType(0), dl);
2317    Results.push_back(Tmp1);
2318    break;
2319  }
2320  case ISD::SINT_TO_FP:
2321  case ISD::UINT_TO_FP:
2322    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2323                                Node->getOperand(0), Node->getValueType(0), dl);
2324    Results.push_back(Tmp1);
2325    break;
2326  case ISD::FP_TO_UINT: {
2327    SDValue True, False;
2328    EVT VT =  Node->getOperand(0).getValueType();
2329    EVT NVT = Node->getValueType(0);
2330    const uint64_t zero[] = {0, 0};
2331    APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2332    APInt x = APInt::getSignBit(NVT.getSizeInBits());
2333    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2334    Tmp1 = DAG.getConstantFP(apf, VT);
2335    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2336                        Node->getOperand(0),
2337                        Tmp1, ISD::SETLT);
2338    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2339    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2340                        DAG.getNode(ISD::FSUB, dl, VT,
2341                                    Node->getOperand(0), Tmp1));
2342    False = DAG.getNode(ISD::XOR, dl, NVT, False,
2343                        DAG.getConstant(x, NVT));
2344    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2345    Results.push_back(Tmp1);
2346    break;
2347  }
2348  case ISD::VAARG: {
2349    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2350    EVT VT = Node->getValueType(0);
2351    Tmp1 = Node->getOperand(0);
2352    Tmp2 = Node->getOperand(1);
2353    SDValue VAList = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0);
2354    // Increment the pointer, VAList, to the next vaarg
2355    Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2356                       DAG.getConstant(TLI.getTargetData()->
2357                                       getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
2358                                       TLI.getPointerTy()));
2359    // Store the incremented VAList to the legalized pointer
2360    Tmp3 = DAG.getStore(VAList.getValue(1), dl, Tmp3, Tmp2, V, 0);
2361    // Load the actual argument out of the pointer VAList
2362    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, NULL, 0));
2363    Results.push_back(Results[0].getValue(1));
2364    break;
2365  }
2366  case ISD::VACOPY: {
2367    // This defaults to loading a pointer from the input and storing it to the
2368    // output, returning the chain.
2369    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2370    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2371    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2372                       Node->getOperand(2), VS, 0);
2373    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), VD, 0);
2374    Results.push_back(Tmp1);
2375    break;
2376  }
2377  case ISD::EXTRACT_VECTOR_ELT:
2378    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2379      // This must be an access of the only element.  Return it.
2380      Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0),
2381                         Node->getOperand(0));
2382    else
2383      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2384    Results.push_back(Tmp1);
2385    break;
2386  case ISD::EXTRACT_SUBVECTOR:
2387    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2388    break;
2389  case ISD::CONCAT_VECTORS: {
2390    Results.push_back(ExpandVectorBuildThroughStack(Node));
2391    break;
2392  }
2393  case ISD::SCALAR_TO_VECTOR:
2394    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2395    break;
2396  case ISD::INSERT_VECTOR_ELT:
2397    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2398                                              Node->getOperand(1),
2399                                              Node->getOperand(2), dl));
2400    break;
2401  case ISD::VECTOR_SHUFFLE: {
2402    SmallVector<int, 8> Mask;
2403    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
2404
2405    EVT VT = Node->getValueType(0);
2406    EVT EltVT = VT.getVectorElementType();
2407    unsigned NumElems = VT.getVectorNumElements();
2408    SmallVector<SDValue, 8> Ops;
2409    for (unsigned i = 0; i != NumElems; ++i) {
2410      if (Mask[i] < 0) {
2411        Ops.push_back(DAG.getUNDEF(EltVT));
2412        continue;
2413      }
2414      unsigned Idx = Mask[i];
2415      if (Idx < NumElems)
2416        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2417                                  Node->getOperand(0),
2418                                  DAG.getIntPtrConstant(Idx)));
2419      else
2420        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2421                                  Node->getOperand(1),
2422                                  DAG.getIntPtrConstant(Idx - NumElems)));
2423    }
2424    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
2425    Results.push_back(Tmp1);
2426    break;
2427  }
2428  case ISD::EXTRACT_ELEMENT: {
2429    EVT OpTy = Node->getOperand(0).getValueType();
2430    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2431      // 1 -> Hi
2432      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2433                         DAG.getConstant(OpTy.getSizeInBits()/2,
2434                                         TLI.getShiftAmountTy()));
2435      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2436    } else {
2437      // 0 -> Lo
2438      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2439                         Node->getOperand(0));
2440    }
2441    Results.push_back(Tmp1);
2442    break;
2443  }
2444  case ISD::STACKSAVE:
2445    // Expand to CopyFromReg if the target set
2446    // StackPointerRegisterToSaveRestore.
2447    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2448      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
2449                                           Node->getValueType(0)));
2450      Results.push_back(Results[0].getValue(1));
2451    } else {
2452      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
2453      Results.push_back(Node->getOperand(0));
2454    }
2455    break;
2456  case ISD::STACKRESTORE:
2457    // Expand to CopyToReg if the target set
2458    // StackPointerRegisterToSaveRestore.
2459    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2460      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
2461                                         Node->getOperand(1)));
2462    } else {
2463      Results.push_back(Node->getOperand(0));
2464    }
2465    break;
2466  case ISD::FCOPYSIGN:
2467    Results.push_back(ExpandFCOPYSIGN(Node));
2468    break;
2469  case ISD::FNEG:
2470    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
2471    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
2472    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
2473                       Node->getOperand(0));
2474    Results.push_back(Tmp1);
2475    break;
2476  case ISD::FABS: {
2477    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
2478    EVT VT = Node->getValueType(0);
2479    Tmp1 = Node->getOperand(0);
2480    Tmp2 = DAG.getConstantFP(0.0, VT);
2481    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
2482                        Tmp1, Tmp2, ISD::SETUGT);
2483    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
2484    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
2485    Results.push_back(Tmp1);
2486    break;
2487  }
2488  case ISD::FSQRT:
2489    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
2490                                      RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
2491    break;
2492  case ISD::FSIN:
2493    Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
2494                                      RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
2495    break;
2496  case ISD::FCOS:
2497    Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
2498                                      RTLIB::COS_F80, RTLIB::COS_PPCF128));
2499    break;
2500  case ISD::FLOG:
2501    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
2502                                      RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
2503    break;
2504  case ISD::FLOG2:
2505    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
2506                                      RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
2507    break;
2508  case ISD::FLOG10:
2509    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
2510                                      RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
2511    break;
2512  case ISD::FEXP:
2513    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
2514                                      RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
2515    break;
2516  case ISD::FEXP2:
2517    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
2518                                      RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
2519    break;
2520  case ISD::FTRUNC:
2521    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
2522                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
2523    break;
2524  case ISD::FFLOOR:
2525    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
2526                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
2527    break;
2528  case ISD::FCEIL:
2529    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
2530                                      RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
2531    break;
2532  case ISD::FRINT:
2533    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
2534                                      RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
2535    break;
2536  case ISD::FNEARBYINT:
2537    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
2538                                      RTLIB::NEARBYINT_F64,
2539                                      RTLIB::NEARBYINT_F80,
2540                                      RTLIB::NEARBYINT_PPCF128));
2541    break;
2542  case ISD::FPOWI:
2543    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
2544                                      RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
2545    break;
2546  case ISD::FPOW:
2547    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
2548                                      RTLIB::POW_F80, RTLIB::POW_PPCF128));
2549    break;
2550  case ISD::FDIV:
2551    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
2552                                      RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
2553    break;
2554  case ISD::FREM:
2555    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
2556                                      RTLIB::REM_F80, RTLIB::REM_PPCF128));
2557    break;
2558  case ISD::ConstantFP: {
2559    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
2560    // Check to see if this FP immediate is already legal.
2561    // If this is a legal constant, turn it into a TargetConstantFP node.
2562    if (TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
2563      Results.push_back(SDValue(Node, 0));
2564    else
2565      Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI));
2566    break;
2567  }
2568  case ISD::EHSELECTION: {
2569    unsigned Reg = TLI.getExceptionSelectorRegister();
2570    assert(Reg && "Can't expand to unknown register!");
2571    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
2572                                         Node->getValueType(0)));
2573    Results.push_back(Results[0].getValue(1));
2574    break;
2575  }
2576  case ISD::EXCEPTIONADDR: {
2577    unsigned Reg = TLI.getExceptionAddressRegister();
2578    assert(Reg && "Can't expand to unknown register!");
2579    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
2580                                         Node->getValueType(0)));
2581    Results.push_back(Results[0].getValue(1));
2582    break;
2583  }
2584  case ISD::SUB: {
2585    EVT VT = Node->getValueType(0);
2586    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
2587           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
2588           "Don't know how to expand this subtraction!");
2589    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
2590               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
2591    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
2592    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
2593    break;
2594  }
2595  case ISD::UREM:
2596  case ISD::SREM: {
2597    EVT VT = Node->getValueType(0);
2598    SDVTList VTs = DAG.getVTList(VT, VT);
2599    bool isSigned = Node->getOpcode() == ISD::SREM;
2600    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
2601    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2602    Tmp2 = Node->getOperand(0);
2603    Tmp3 = Node->getOperand(1);
2604    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
2605      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
2606    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
2607      // X % Y -> X-X/Y*Y
2608      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
2609      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
2610      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
2611    } else if (isSigned) {
2612      Tmp1 = ExpandIntLibCall(Node, true,
2613                              RTLIB::SREM_I8,
2614                              RTLIB::SREM_I16, RTLIB::SREM_I32,
2615                              RTLIB::SREM_I64, RTLIB::SREM_I128);
2616    } else {
2617      Tmp1 = ExpandIntLibCall(Node, false,
2618                              RTLIB::UREM_I8,
2619                              RTLIB::UREM_I16, RTLIB::UREM_I32,
2620                              RTLIB::UREM_I64, RTLIB::UREM_I128);
2621    }
2622    Results.push_back(Tmp1);
2623    break;
2624  }
2625  case ISD::UDIV:
2626  case ISD::SDIV: {
2627    bool isSigned = Node->getOpcode() == ISD::SDIV;
2628    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2629    EVT VT = Node->getValueType(0);
2630    SDVTList VTs = DAG.getVTList(VT, VT);
2631    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT))
2632      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
2633                         Node->getOperand(1));
2634    else if (isSigned)
2635      Tmp1 = ExpandIntLibCall(Node, true,
2636                              RTLIB::SDIV_I8,
2637                              RTLIB::SDIV_I16, RTLIB::SDIV_I32,
2638                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
2639    else
2640      Tmp1 = ExpandIntLibCall(Node, false,
2641                              RTLIB::UDIV_I8,
2642                              RTLIB::UDIV_I16, RTLIB::UDIV_I32,
2643                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
2644    Results.push_back(Tmp1);
2645    break;
2646  }
2647  case ISD::MULHU:
2648  case ISD::MULHS: {
2649    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
2650                                                              ISD::SMUL_LOHI;
2651    EVT VT = Node->getValueType(0);
2652    SDVTList VTs = DAG.getVTList(VT, VT);
2653    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
2654           "If this wasn't legal, it shouldn't have been created!");
2655    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
2656                       Node->getOperand(1));
2657    Results.push_back(Tmp1.getValue(1));
2658    break;
2659  }
2660  case ISD::MUL: {
2661    EVT VT = Node->getValueType(0);
2662    SDVTList VTs = DAG.getVTList(VT, VT);
2663    // See if multiply or divide can be lowered using two-result operations.
2664    // We just need the low half of the multiply; try both the signed
2665    // and unsigned forms. If the target supports both SMUL_LOHI and
2666    // UMUL_LOHI, form a preference by checking which forms of plain
2667    // MULH it supports.
2668    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
2669    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
2670    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
2671    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
2672    unsigned OpToUse = 0;
2673    if (HasSMUL_LOHI && !HasMULHS) {
2674      OpToUse = ISD::SMUL_LOHI;
2675    } else if (HasUMUL_LOHI && !HasMULHU) {
2676      OpToUse = ISD::UMUL_LOHI;
2677    } else if (HasSMUL_LOHI) {
2678      OpToUse = ISD::SMUL_LOHI;
2679    } else if (HasUMUL_LOHI) {
2680      OpToUse = ISD::UMUL_LOHI;
2681    }
2682    if (OpToUse) {
2683      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
2684                                    Node->getOperand(1)));
2685      break;
2686    }
2687    Tmp1 = ExpandIntLibCall(Node, false,
2688                            RTLIB::MUL_I8,
2689                            RTLIB::MUL_I16, RTLIB::MUL_I32,
2690                            RTLIB::MUL_I64, RTLIB::MUL_I128);
2691    Results.push_back(Tmp1);
2692    break;
2693  }
2694  case ISD::SADDO:
2695  case ISD::SSUBO: {
2696    SDValue LHS = Node->getOperand(0);
2697    SDValue RHS = Node->getOperand(1);
2698    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
2699                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2700                              LHS, RHS);
2701    Results.push_back(Sum);
2702    EVT OType = Node->getValueType(1);
2703
2704    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
2705
2706    //   LHSSign -> LHS >= 0
2707    //   RHSSign -> RHS >= 0
2708    //   SumSign -> Sum >= 0
2709    //
2710    //   Add:
2711    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
2712    //   Sub:
2713    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
2714    //
2715    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
2716    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
2717    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
2718                                      Node->getOpcode() == ISD::SADDO ?
2719                                      ISD::SETEQ : ISD::SETNE);
2720
2721    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
2722    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
2723
2724    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
2725    Results.push_back(Cmp);
2726    break;
2727  }
2728  case ISD::UADDO:
2729  case ISD::USUBO: {
2730    SDValue LHS = Node->getOperand(0);
2731    SDValue RHS = Node->getOperand(1);
2732    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
2733                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2734                              LHS, RHS);
2735    Results.push_back(Sum);
2736    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
2737                                   Node->getOpcode () == ISD::UADDO ?
2738                                   ISD::SETULT : ISD::SETUGT));
2739    break;
2740  }
2741  case ISD::UMULO:
2742  case ISD::SMULO: {
2743    EVT VT = Node->getValueType(0);
2744    SDValue LHS = Node->getOperand(0);
2745    SDValue RHS = Node->getOperand(1);
2746    SDValue BottomHalf;
2747    SDValue TopHalf;
2748    static const unsigned Ops[2][3] =
2749        { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
2750          { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
2751    bool isSigned = Node->getOpcode() == ISD::SMULO;
2752    if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
2753      BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
2754      TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
2755    } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
2756      BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
2757                               RHS);
2758      TopHalf = BottomHalf.getValue(1);
2759    } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2))) {
2760      EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
2761      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
2762      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
2763      Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
2764      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
2765                               DAG.getIntPtrConstant(0));
2766      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
2767                            DAG.getIntPtrConstant(1));
2768    } else {
2769      // FIXME: We should be able to fall back to a libcall with an illegal
2770      // type in some cases cases.
2771      // Also, we can fall back to a division in some cases, but that's a big
2772      // performance hit in the general case.
2773      llvm_unreachable("Don't know how to expand this operation yet!");
2774    }
2775    if (isSigned) {
2776      Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, TLI.getShiftAmountTy());
2777      Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
2778      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
2779                             ISD::SETNE);
2780    } else {
2781      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
2782                             DAG.getConstant(0, VT), ISD::SETNE);
2783    }
2784    Results.push_back(BottomHalf);
2785    Results.push_back(TopHalf);
2786    break;
2787  }
2788  case ISD::BUILD_PAIR: {
2789    EVT PairTy = Node->getValueType(0);
2790    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
2791    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
2792    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
2793                       DAG.getConstant(PairTy.getSizeInBits()/2,
2794                                       TLI.getShiftAmountTy()));
2795    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
2796    break;
2797  }
2798  case ISD::SELECT:
2799    Tmp1 = Node->getOperand(0);
2800    Tmp2 = Node->getOperand(1);
2801    Tmp3 = Node->getOperand(2);
2802    if (Tmp1.getOpcode() == ISD::SETCC) {
2803      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
2804                             Tmp2, Tmp3,
2805                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
2806    } else {
2807      Tmp1 = DAG.getSelectCC(dl, Tmp1,
2808                             DAG.getConstant(0, Tmp1.getValueType()),
2809                             Tmp2, Tmp3, ISD::SETNE);
2810    }
2811    Results.push_back(Tmp1);
2812    break;
2813  case ISD::BR_JT: {
2814    SDValue Chain = Node->getOperand(0);
2815    SDValue Table = Node->getOperand(1);
2816    SDValue Index = Node->getOperand(2);
2817
2818    EVT PTy = TLI.getPointerTy();
2819
2820    const TargetData &TD = *TLI.getTargetData();
2821    unsigned EntrySize =
2822      DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
2823
2824    Index = DAG.getNode(ISD::MUL, dl, PTy,
2825                        Index, DAG.getConstant(EntrySize, PTy));
2826    SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2827
2828    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
2829    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
2830                                PseudoSourceValue::getJumpTable(), 0, MemVT);
2831    Addr = LD;
2832    if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2833      // For PIC, the sequence is:
2834      // BRIND(load(Jumptable + index) + RelocBase)
2835      // RelocBase can be JumpTable, GOT or some sort of global base.
2836      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
2837                          TLI.getPICJumpTableRelocBase(Table, DAG));
2838    }
2839    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
2840    Results.push_back(Tmp1);
2841    break;
2842  }
2843  case ISD::BRCOND:
2844    // Expand brcond's setcc into its constituent parts and create a BR_CC
2845    // Node.
2846    Tmp1 = Node->getOperand(0);
2847    Tmp2 = Node->getOperand(1);
2848    if (Tmp2.getOpcode() == ISD::SETCC) {
2849      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
2850                         Tmp1, Tmp2.getOperand(2),
2851                         Tmp2.getOperand(0), Tmp2.getOperand(1),
2852                         Node->getOperand(2));
2853    } else {
2854      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
2855                         DAG.getCondCode(ISD::SETNE), Tmp2,
2856                         DAG.getConstant(0, Tmp2.getValueType()),
2857                         Node->getOperand(2));
2858    }
2859    Results.push_back(Tmp1);
2860    break;
2861  case ISD::SETCC: {
2862    Tmp1 = Node->getOperand(0);
2863    Tmp2 = Node->getOperand(1);
2864    Tmp3 = Node->getOperand(2);
2865    LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
2866
2867    // If we expanded the SETCC into an AND/OR, return the new node
2868    if (Tmp2.getNode() == 0) {
2869      Results.push_back(Tmp1);
2870      break;
2871    }
2872
2873    // Otherwise, SETCC for the given comparison type must be completely
2874    // illegal; expand it into a SELECT_CC.
2875    EVT VT = Node->getValueType(0);
2876    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
2877                       DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
2878    Results.push_back(Tmp1);
2879    break;
2880  }
2881  case ISD::SELECT_CC: {
2882    Tmp1 = Node->getOperand(0);   // LHS
2883    Tmp2 = Node->getOperand(1);   // RHS
2884    Tmp3 = Node->getOperand(2);   // True
2885    Tmp4 = Node->getOperand(3);   // False
2886    SDValue CC = Node->getOperand(4);
2887
2888    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
2889                          Tmp1, Tmp2, CC, dl);
2890
2891    assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
2892    Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
2893    CC = DAG.getCondCode(ISD::SETNE);
2894    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
2895                       Tmp3, Tmp4, CC);
2896    Results.push_back(Tmp1);
2897    break;
2898  }
2899  case ISD::BR_CC: {
2900    Tmp1 = Node->getOperand(0);              // Chain
2901    Tmp2 = Node->getOperand(2);              // LHS
2902    Tmp3 = Node->getOperand(3);              // RHS
2903    Tmp4 = Node->getOperand(1);              // CC
2904
2905    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
2906                          Tmp2, Tmp3, Tmp4, dl);
2907    LastCALLSEQ_END = DAG.getEntryNode();
2908
2909    assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
2910    Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
2911    Tmp4 = DAG.getCondCode(ISD::SETNE);
2912    Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
2913                       Tmp3, Node->getOperand(4));
2914    Results.push_back(Tmp1);
2915    break;
2916  }
2917  case ISD::GLOBAL_OFFSET_TABLE:
2918  case ISD::GlobalAddress:
2919  case ISD::GlobalTLSAddress:
2920  case ISD::ExternalSymbol:
2921  case ISD::ConstantPool:
2922  case ISD::JumpTable:
2923  case ISD::INTRINSIC_W_CHAIN:
2924  case ISD::INTRINSIC_WO_CHAIN:
2925  case ISD::INTRINSIC_VOID:
2926    // FIXME: Custom lowering for these operations shouldn't return null!
2927    for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
2928      Results.push_back(SDValue(Node, i));
2929    break;
2930  }
2931}
2932void SelectionDAGLegalize::PromoteNode(SDNode *Node,
2933                                       SmallVectorImpl<SDValue> &Results) {
2934  EVT OVT = Node->getValueType(0);
2935  if (Node->getOpcode() == ISD::UINT_TO_FP ||
2936      Node->getOpcode() == ISD::SINT_TO_FP ||
2937      Node->getOpcode() == ISD::SETCC) {
2938    OVT = Node->getOperand(0).getValueType();
2939  }
2940  EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
2941  DebugLoc dl = Node->getDebugLoc();
2942  SDValue Tmp1, Tmp2, Tmp3;
2943  switch (Node->getOpcode()) {
2944  case ISD::CTTZ:
2945  case ISD::CTLZ:
2946  case ISD::CTPOP:
2947    // Zero extend the argument.
2948    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
2949    // Perform the larger operation.
2950    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
2951    if (Node->getOpcode() == ISD::CTTZ) {
2952      //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
2953      Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
2954                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
2955                          ISD::SETEQ);
2956      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
2957                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
2958    } else if (Node->getOpcode() == ISD::CTLZ) {
2959      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
2960      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
2961                          DAG.getConstant(NVT.getSizeInBits() -
2962                                          OVT.getSizeInBits(), NVT));
2963    }
2964    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
2965    break;
2966  case ISD::BSWAP: {
2967    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
2968    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
2969    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
2970    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
2971                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy()));
2972    Results.push_back(Tmp1);
2973    break;
2974  }
2975  case ISD::FP_TO_UINT:
2976  case ISD::FP_TO_SINT:
2977    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
2978                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
2979    Results.push_back(Tmp1);
2980    break;
2981  case ISD::UINT_TO_FP:
2982  case ISD::SINT_TO_FP:
2983    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
2984                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
2985    Results.push_back(Tmp1);
2986    break;
2987  case ISD::AND:
2988  case ISD::OR:
2989  case ISD::XOR: {
2990    unsigned ExtOp, TruncOp;
2991    if (OVT.isVector()) {
2992      ExtOp   = ISD::BIT_CONVERT;
2993      TruncOp = ISD::BIT_CONVERT;
2994    } else if (OVT.isInteger()) {
2995      ExtOp   = ISD::ANY_EXTEND;
2996      TruncOp = ISD::TRUNCATE;
2997    } else {
2998      llvm_report_error("Cannot promote logic operation");
2999    }
3000    // Promote each of the values to the new type.
3001    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3002    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3003    // Perform the larger operation, then convert back
3004    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3005    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3006    break;
3007  }
3008  case ISD::SELECT: {
3009    unsigned ExtOp, TruncOp;
3010    if (Node->getValueType(0).isVector()) {
3011      ExtOp   = ISD::BIT_CONVERT;
3012      TruncOp = ISD::BIT_CONVERT;
3013    } else if (Node->getValueType(0).isInteger()) {
3014      ExtOp   = ISD::ANY_EXTEND;
3015      TruncOp = ISD::TRUNCATE;
3016    } else {
3017      ExtOp   = ISD::FP_EXTEND;
3018      TruncOp = ISD::FP_ROUND;
3019    }
3020    Tmp1 = Node->getOperand(0);
3021    // Promote each of the values to the new type.
3022    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3023    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3024    // Perform the larger operation, then round down.
3025    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3026    if (TruncOp != ISD::FP_ROUND)
3027      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3028    else
3029      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3030                         DAG.getIntPtrConstant(0));
3031    Results.push_back(Tmp1);
3032    break;
3033  }
3034  case ISD::VECTOR_SHUFFLE: {
3035    SmallVector<int, 8> Mask;
3036    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3037
3038    // Cast the two input vectors.
3039    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
3040    Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1));
3041
3042    // Convert the shuffle mask to the right # elements.
3043    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3044    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1);
3045    Results.push_back(Tmp1);
3046    break;
3047  }
3048  case ISD::SETCC: {
3049    unsigned ExtOp = ISD::FP_EXTEND;
3050    if (NVT.isInteger()) {
3051      ISD::CondCode CCCode =
3052        cast<CondCodeSDNode>(Node->getOperand(2))->get();
3053      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3054    }
3055    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3056    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3057    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3058                                  Tmp1, Tmp2, Node->getOperand(2)));
3059    break;
3060  }
3061  }
3062}
3063
3064// SelectionDAG::Legalize - This is the entry point for the file.
3065//
3066void SelectionDAG::Legalize(CodeGenOpt::Level OptLevel) {
3067  /// run - This is the main entry point to this class.
3068  ///
3069  SelectionDAGLegalize(*this, OptLevel).LegalizeDAG();
3070}
3071
3072