LegalizeDAG.cpp revision 071c62fad0b25ad4131e7f984173a796c1e63f61
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the SelectionDAG::Legalize method. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/SelectionDAG.h" 15#include "llvm/CodeGen/MachineFunction.h" 16#include "llvm/CodeGen/MachineFrameInfo.h" 17#include "llvm/CodeGen/MachineJumpTableInfo.h" 18#include "llvm/CodeGen/MachineModuleInfo.h" 19#include "llvm/CodeGen/DwarfWriter.h" 20#include "llvm/Analysis/DebugInfo.h" 21#include "llvm/CodeGen/PseudoSourceValue.h" 22#include "llvm/Target/TargetFrameInfo.h" 23#include "llvm/Target/TargetLowering.h" 24#include "llvm/Target/TargetData.h" 25#include "llvm/Target/TargetMachine.h" 26#include "llvm/Target/TargetOptions.h" 27#include "llvm/Target/TargetSubtarget.h" 28#include "llvm/CallingConv.h" 29#include "llvm/Constants.h" 30#include "llvm/DerivedTypes.h" 31#include "llvm/Function.h" 32#include "llvm/GlobalVariable.h" 33#include "llvm/LLVMContext.h" 34#include "llvm/Support/CommandLine.h" 35#include "llvm/Support/Debug.h" 36#include "llvm/Support/ErrorHandling.h" 37#include "llvm/Support/MathExtras.h" 38#include "llvm/Support/raw_ostream.h" 39#include "llvm/ADT/DenseMap.h" 40#include "llvm/ADT/SmallVector.h" 41#include "llvm/ADT/SmallPtrSet.h" 42#include <map> 43using namespace llvm; 44 45//===----------------------------------------------------------------------===// 46/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and 47/// hacks on it until the target machine can handle it. This involves 48/// eliminating value sizes the machine cannot handle (promoting small sizes to 49/// large sizes or splitting up large values into small values) as well as 50/// eliminating operations the machine cannot handle. 51/// 52/// This code also does a small amount of optimization and recognition of idioms 53/// as part of its processing. For example, if a target does not support a 54/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 55/// will attempt merge setcc and brc instructions into brcc's. 56/// 57namespace { 58class SelectionDAGLegalize { 59 TargetLowering &TLI; 60 SelectionDAG &DAG; 61 CodeGenOpt::Level OptLevel; 62 63 // Libcall insertion helpers. 64 65 /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been 66 /// legalized. We use this to ensure that calls are properly serialized 67 /// against each other, including inserted libcalls. 68 SDValue LastCALLSEQ_END; 69 70 /// IsLegalizingCall - This member is used *only* for purposes of providing 71 /// helpful assertions that a libcall isn't created while another call is 72 /// being legalized (which could lead to non-serialized call sequences). 73 bool IsLegalizingCall; 74 75 enum LegalizeAction { 76 Legal, // The target natively supports this operation. 77 Promote, // This operation should be executed in a larger type. 78 Expand // Try to expand this to other ops, otherwise use a libcall. 79 }; 80 81 /// ValueTypeActions - This is a bitvector that contains two bits for each 82 /// value type, where the two bits correspond to the LegalizeAction enum. 83 /// This can be queried with "getTypeAction(VT)". 84 TargetLowering::ValueTypeActionImpl ValueTypeActions; 85 86 /// LegalizedNodes - For nodes that are of legal width, and that have more 87 /// than one use, this map indicates what regularized operand to use. This 88 /// allows us to avoid legalizing the same thing more than once. 89 DenseMap<SDValue, SDValue> LegalizedNodes; 90 91 void AddLegalizedOperand(SDValue From, SDValue To) { 92 LegalizedNodes.insert(std::make_pair(From, To)); 93 // If someone requests legalization of the new node, return itself. 94 if (From != To) 95 LegalizedNodes.insert(std::make_pair(To, To)); 96 } 97 98public: 99 SelectionDAGLegalize(SelectionDAG &DAG, CodeGenOpt::Level ol); 100 101 /// getTypeAction - Return how we should legalize values of this type, either 102 /// it is already legal or we need to expand it into multiple registers of 103 /// smaller integer type, or we need to promote it to a larger type. 104 LegalizeAction getTypeAction(EVT VT) const { 105 return 106 (LegalizeAction)ValueTypeActions.getTypeAction(*DAG.getContext(), VT); 107 } 108 109 /// isTypeLegal - Return true if this type is legal on this target. 110 /// 111 bool isTypeLegal(EVT VT) const { 112 return getTypeAction(VT) == Legal; 113 } 114 115 void LegalizeDAG(); 116 117private: 118 /// LegalizeOp - We know that the specified value has a legal type. 119 /// Recursively ensure that the operands have legal types, then return the 120 /// result. 121 SDValue LegalizeOp(SDValue O); 122 123 SDValue OptimizeFloatStore(StoreSDNode *ST); 124 125 /// PerformInsertVectorEltInMemory - Some target cannot handle a variable 126 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 127 /// is necessary to spill the vector being inserted into to memory, perform 128 /// the insert there, and then read the result back. 129 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, 130 SDValue Idx, DebugLoc dl); 131 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, 132 SDValue Idx, DebugLoc dl); 133 134 /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which 135 /// performs the same shuffe in terms of order or result bytes, but on a type 136 /// whose vector element type is narrower than the original shuffle type. 137 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 138 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl, 139 SDValue N1, SDValue N2, 140 SmallVectorImpl<int> &Mask) const; 141 142 bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, 143 SmallPtrSet<SDNode*, 32> &NodesLeadingTo); 144 145 void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, 146 DebugLoc dl); 147 148 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 149 SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 150 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 151 RTLIB::Libcall Call_PPCF128); 152 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, 153 RTLIB::Libcall Call_I8, 154 RTLIB::Libcall Call_I16, 155 RTLIB::Libcall Call_I32, 156 RTLIB::Libcall Call_I64, 157 RTLIB::Libcall Call_I128); 158 159 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl); 160 SDValue ExpandBUILD_VECTOR(SDNode *Node); 161 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 162 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 163 SmallVectorImpl<SDValue> &Results); 164 SDValue ExpandFCOPYSIGN(SDNode *Node); 165 SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT, 166 DebugLoc dl); 167 SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned, 168 DebugLoc dl); 169 SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned, 170 DebugLoc dl); 171 172 SDValue ExpandBSWAP(SDValue Op, DebugLoc dl); 173 SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl); 174 175 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 176 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 177 178 void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results); 179 void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results); 180}; 181} 182 183/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which 184/// performs the same shuffe in terms of order or result bytes, but on a type 185/// whose vector element type is narrower than the original shuffle type. 186/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 187SDValue 188SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl, 189 SDValue N1, SDValue N2, 190 SmallVectorImpl<int> &Mask) const { 191 unsigned NumMaskElts = VT.getVectorNumElements(); 192 unsigned NumDestElts = NVT.getVectorNumElements(); 193 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 194 195 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 196 197 if (NumEltsGrowth == 1) 198 return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]); 199 200 SmallVector<int, 8> NewMask; 201 for (unsigned i = 0; i != NumMaskElts; ++i) { 202 int Idx = Mask[i]; 203 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 204 if (Idx < 0) 205 NewMask.push_back(-1); 206 else 207 NewMask.push_back(Idx * NumEltsGrowth + j); 208 } 209 } 210 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 211 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 212 return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]); 213} 214 215SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag, 216 CodeGenOpt::Level ol) 217 : TLI(dag.getTargetLoweringInfo()), DAG(dag), OptLevel(ol), 218 ValueTypeActions(TLI.getValueTypeActions()) { 219 assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE && 220 "Too many value types for ValueTypeActions to hold!"); 221} 222 223void SelectionDAGLegalize::LegalizeDAG() { 224 LastCALLSEQ_END = DAG.getEntryNode(); 225 IsLegalizingCall = false; 226 227 // The legalize process is inherently a bottom-up recursive process (users 228 // legalize their uses before themselves). Given infinite stack space, we 229 // could just start legalizing on the root and traverse the whole graph. In 230 // practice however, this causes us to run out of stack space on large basic 231 // blocks. To avoid this problem, compute an ordering of the nodes where each 232 // node is only legalized after all of its operands are legalized. 233 DAG.AssignTopologicalOrder(); 234 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 235 E = prior(DAG.allnodes_end()); I != llvm::next(E); ++I) 236 LegalizeOp(SDValue(I, 0)); 237 238 // Finally, it's possible the root changed. Get the new root. 239 SDValue OldRoot = DAG.getRoot(); 240 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 241 DAG.setRoot(LegalizedNodes[OldRoot]); 242 243 LegalizedNodes.clear(); 244 245 // Remove dead nodes now. 246 DAG.RemoveDeadNodes(); 247} 248 249 250/// FindCallEndFromCallStart - Given a chained node that is part of a call 251/// sequence, find the CALLSEQ_END node that terminates the call sequence. 252static SDNode *FindCallEndFromCallStart(SDNode *Node) { 253 if (Node->getOpcode() == ISD::CALLSEQ_END) 254 return Node; 255 if (Node->use_empty()) 256 return 0; // No CallSeqEnd 257 258 // The chain is usually at the end. 259 SDValue TheChain(Node, Node->getNumValues()-1); 260 if (TheChain.getValueType() != MVT::Other) { 261 // Sometimes it's at the beginning. 262 TheChain = SDValue(Node, 0); 263 if (TheChain.getValueType() != MVT::Other) { 264 // Otherwise, hunt for it. 265 for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i) 266 if (Node->getValueType(i) == MVT::Other) { 267 TheChain = SDValue(Node, i); 268 break; 269 } 270 271 // Otherwise, we walked into a node without a chain. 272 if (TheChain.getValueType() != MVT::Other) 273 return 0; 274 } 275 } 276 277 for (SDNode::use_iterator UI = Node->use_begin(), 278 E = Node->use_end(); UI != E; ++UI) { 279 280 // Make sure to only follow users of our token chain. 281 SDNode *User = *UI; 282 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) 283 if (User->getOperand(i) == TheChain) 284 if (SDNode *Result = FindCallEndFromCallStart(User)) 285 return Result; 286 } 287 return 0; 288} 289 290/// FindCallStartFromCallEnd - Given a chained node that is part of a call 291/// sequence, find the CALLSEQ_START node that initiates the call sequence. 292static SDNode *FindCallStartFromCallEnd(SDNode *Node) { 293 assert(Node && "Didn't find callseq_start for a call??"); 294 if (Node->getOpcode() == ISD::CALLSEQ_START) return Node; 295 296 assert(Node->getOperand(0).getValueType() == MVT::Other && 297 "Node doesn't have a token chain argument!"); 298 return FindCallStartFromCallEnd(Node->getOperand(0).getNode()); 299} 300 301/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to 302/// see if any uses can reach Dest. If no dest operands can get to dest, 303/// legalize them, legalize ourself, and return false, otherwise, return true. 304/// 305/// Keep track of the nodes we fine that actually do lead to Dest in 306/// NodesLeadingTo. This avoids retraversing them exponential number of times. 307/// 308bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, 309 SmallPtrSet<SDNode*, 32> &NodesLeadingTo) { 310 if (N == Dest) return true; // N certainly leads to Dest :) 311 312 // If we've already processed this node and it does lead to Dest, there is no 313 // need to reprocess it. 314 if (NodesLeadingTo.count(N)) return true; 315 316 // If the first result of this node has been already legalized, then it cannot 317 // reach N. 318 if (LegalizedNodes.count(SDValue(N, 0))) return false; 319 320 // Okay, this node has not already been legalized. Check and legalize all 321 // operands. If none lead to Dest, then we can legalize this node. 322 bool OperandsLeadToDest = false; 323 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 324 OperandsLeadToDest |= // If an operand leads to Dest, so do we. 325 LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest, NodesLeadingTo); 326 327 if (OperandsLeadToDest) { 328 NodesLeadingTo.insert(N); 329 return true; 330 } 331 332 // Okay, this node looks safe, legalize it and return false. 333 LegalizeOp(SDValue(N, 0)); 334 return false; 335} 336 337/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or 338/// a load from the constant pool. 339static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP, 340 SelectionDAG &DAG, const TargetLowering &TLI) { 341 bool Extend = false; 342 DebugLoc dl = CFP->getDebugLoc(); 343 344 // If a FP immediate is precise when represented as a float and if the 345 // target can do an extending load from float to double, we put it into 346 // the constant pool as a float, even if it's is statically typed as a 347 // double. This shrinks FP constants and canonicalizes them for targets where 348 // an FP extending load is the same cost as a normal load (such as on the x87 349 // fp stack or PPC FP unit). 350 EVT VT = CFP->getValueType(0); 351 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 352 if (!UseCP) { 353 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 354 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), 355 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 356 } 357 358 EVT OrigVT = VT; 359 EVT SVT = VT; 360 while (SVT != MVT::f32) { 361 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 362 if (CFP->isValueValidForType(SVT, CFP->getValueAPF()) && 363 // Only do this if the target has a native EXTLOAD instruction from 364 // smaller type. 365 TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) && 366 TLI.ShouldShrinkFPConstant(OrigVT)) { 367 const Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 368 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 369 VT = SVT; 370 Extend = true; 371 } 372 } 373 374 SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy()); 375 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 376 if (Extend) 377 return DAG.getExtLoad(ISD::EXTLOAD, dl, 378 OrigVT, DAG.getEntryNode(), 379 CPIdx, PseudoSourceValue::getConstantPool(), 380 0, VT, false, Alignment); 381 return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx, 382 PseudoSourceValue::getConstantPool(), 0, false, Alignment); 383} 384 385/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores. 386static 387SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG, 388 const TargetLowering &TLI) { 389 SDValue Chain = ST->getChain(); 390 SDValue Ptr = ST->getBasePtr(); 391 SDValue Val = ST->getValue(); 392 EVT VT = Val.getValueType(); 393 int Alignment = ST->getAlignment(); 394 int SVOffset = ST->getSrcValueOffset(); 395 DebugLoc dl = ST->getDebugLoc(); 396 if (ST->getMemoryVT().isFloatingPoint() || 397 ST->getMemoryVT().isVector()) { 398 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 399 if (TLI.isTypeLegal(intVT)) { 400 // Expand to a bitconvert of the value to the integer type of the 401 // same size, then a (misaligned) int store. 402 // FIXME: Does not handle truncating floating point stores! 403 SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, intVT, Val); 404 return DAG.getStore(Chain, dl, Result, Ptr, ST->getSrcValue(), 405 SVOffset, ST->isVolatile(), Alignment); 406 } else { 407 // Do a (aligned) store to a stack slot, then copy from the stack slot 408 // to the final destination using (unaligned) integer loads and stores. 409 EVT StoredVT = ST->getMemoryVT(); 410 EVT RegVT = 411 TLI.getRegisterType(*DAG.getContext(), EVT::getIntegerVT(*DAG.getContext(), StoredVT.getSizeInBits())); 412 unsigned StoredBytes = StoredVT.getSizeInBits() / 8; 413 unsigned RegBytes = RegVT.getSizeInBits() / 8; 414 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 415 416 // Make sure the stack slot is also aligned for the register type. 417 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); 418 419 // Perform the original store, only redirected to the stack slot. 420 SDValue Store = DAG.getTruncStore(Chain, dl, 421 Val, StackPtr, NULL, 0, StoredVT); 422 SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy()); 423 SmallVector<SDValue, 8> Stores; 424 unsigned Offset = 0; 425 426 // Do all but one copies using the full register width. 427 for (unsigned i = 1; i < NumRegs; i++) { 428 // Load one integer register's worth from the stack slot. 429 SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, NULL, 0); 430 // Store it to the final location. Remember the store. 431 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 432 ST->getSrcValue(), SVOffset + Offset, 433 ST->isVolatile(), 434 MinAlign(ST->getAlignment(), Offset))); 435 // Increment the pointers. 436 Offset += RegBytes; 437 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, 438 Increment); 439 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 440 } 441 442 // The last store may be partial. Do a truncating store. On big-endian 443 // machines this requires an extending load from the stack slot to ensure 444 // that the bits are in the right place. 445 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 446 447 // Load from the stack slot. 448 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 449 NULL, 0, MemVT); 450 451 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 452 ST->getSrcValue(), SVOffset + Offset, 453 MemVT, ST->isVolatile(), 454 MinAlign(ST->getAlignment(), Offset))); 455 // The order of the stores doesn't matter - say it with a TokenFactor. 456 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0], 457 Stores.size()); 458 } 459 } 460 assert(ST->getMemoryVT().isInteger() && 461 !ST->getMemoryVT().isVector() && 462 "Unaligned store of unknown type."); 463 // Get the half-size VT 464 EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); 465 int NumBits = NewStoredVT.getSizeInBits(); 466 int IncrementSize = NumBits / 8; 467 468 // Divide the stored value in two parts. 469 SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy()); 470 SDValue Lo = Val; 471 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 472 473 // Store the two parts 474 SDValue Store1, Store2; 475 Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr, 476 ST->getSrcValue(), SVOffset, NewStoredVT, 477 ST->isVolatile(), Alignment); 478 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 479 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 480 Alignment = MinAlign(Alignment, IncrementSize); 481 Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr, 482 ST->getSrcValue(), SVOffset + IncrementSize, 483 NewStoredVT, ST->isVolatile(), Alignment); 484 485 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 486} 487 488/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads. 489static 490SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG, 491 const TargetLowering &TLI) { 492 int SVOffset = LD->getSrcValueOffset(); 493 SDValue Chain = LD->getChain(); 494 SDValue Ptr = LD->getBasePtr(); 495 EVT VT = LD->getValueType(0); 496 EVT LoadedVT = LD->getMemoryVT(); 497 DebugLoc dl = LD->getDebugLoc(); 498 if (VT.isFloatingPoint() || VT.isVector()) { 499 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 500 if (TLI.isTypeLegal(intVT)) { 501 // Expand to a (misaligned) integer load of the same size, 502 // then bitconvert to floating point or vector. 503 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getSrcValue(), 504 SVOffset, LD->isVolatile(), 505 LD->getAlignment()); 506 SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, LoadedVT, newLoad); 507 if (VT.isFloatingPoint() && LoadedVT != VT) 508 Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result); 509 510 SDValue Ops[] = { Result, Chain }; 511 return DAG.getMergeValues(Ops, 2, dl); 512 } else { 513 // Copy the value to a (aligned) stack slot using (unaligned) integer 514 // loads and stores, then do a (aligned) load from the stack slot. 515 EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT); 516 unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8; 517 unsigned RegBytes = RegVT.getSizeInBits() / 8; 518 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 519 520 // Make sure the stack slot is also aligned for the register type. 521 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 522 523 SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy()); 524 SmallVector<SDValue, 8> Stores; 525 SDValue StackPtr = StackBase; 526 unsigned Offset = 0; 527 528 // Do all but one copies using the full register width. 529 for (unsigned i = 1; i < NumRegs; i++) { 530 // Load one integer register's worth from the original location. 531 SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, LD->getSrcValue(), 532 SVOffset + Offset, LD->isVolatile(), 533 MinAlign(LD->getAlignment(), Offset)); 534 // Follow the load with a store to the stack slot. Remember the store. 535 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr, 536 NULL, 0)); 537 // Increment the pointers. 538 Offset += RegBytes; 539 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 540 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, 541 Increment); 542 } 543 544 // The last copy may be partial. Do an extending load. 545 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 8 * (LoadedBytes - Offset)); 546 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 547 LD->getSrcValue(), SVOffset + Offset, 548 MemVT, LD->isVolatile(), 549 MinAlign(LD->getAlignment(), Offset)); 550 // Follow the load with a store to the stack slot. Remember the store. 551 // On big-endian machines this requires a truncating store to ensure 552 // that the bits end up in the right place. 553 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr, 554 NULL, 0, MemVT)); 555 556 // The order of the stores doesn't matter - say it with a TokenFactor. 557 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0], 558 Stores.size()); 559 560 // Finally, perform the original load only redirected to the stack slot. 561 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 562 NULL, 0, LoadedVT); 563 564 // Callers expect a MERGE_VALUES node. 565 SDValue Ops[] = { Load, TF }; 566 return DAG.getMergeValues(Ops, 2, dl); 567 } 568 } 569 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 570 "Unaligned load of unsupported type."); 571 572 // Compute the new VT that is half the size of the old one. This is an 573 // integer MVT. 574 unsigned NumBits = LoadedVT.getSizeInBits(); 575 EVT NewLoadedVT; 576 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 577 NumBits >>= 1; 578 579 unsigned Alignment = LD->getAlignment(); 580 unsigned IncrementSize = NumBits / 8; 581 ISD::LoadExtType HiExtType = LD->getExtensionType(); 582 583 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 584 if (HiExtType == ISD::NON_EXTLOAD) 585 HiExtType = ISD::ZEXTLOAD; 586 587 // Load the value in two parts 588 SDValue Lo, Hi; 589 if (TLI.isLittleEndian()) { 590 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(), 591 SVOffset, NewLoadedVT, LD->isVolatile(), Alignment); 592 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 593 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 594 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(), 595 SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(), 596 MinAlign(Alignment, IncrementSize)); 597 } else { 598 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(), 599 SVOffset, NewLoadedVT, LD->isVolatile(), Alignment); 600 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 601 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 602 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(), 603 SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(), 604 MinAlign(Alignment, IncrementSize)); 605 } 606 607 // aggregate the two parts 608 SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy()); 609 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 610 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 611 612 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 613 Hi.getValue(1)); 614 615 SDValue Ops[] = { Result, TF }; 616 return DAG.getMergeValues(Ops, 2, dl); 617} 618 619/// PerformInsertVectorEltInMemory - Some target cannot handle a variable 620/// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 621/// is necessary to spill the vector being inserted into to memory, perform 622/// the insert there, and then read the result back. 623SDValue SelectionDAGLegalize:: 624PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 625 DebugLoc dl) { 626 SDValue Tmp1 = Vec; 627 SDValue Tmp2 = Val; 628 SDValue Tmp3 = Idx; 629 630 // If the target doesn't support this, we have to spill the input vector 631 // to a temporary stack slot, update the element, then reload it. This is 632 // badness. We could also load the value into a vector register (either 633 // with a "move to register" or "extload into register" instruction, then 634 // permute it into place, if the idx is a constant and if the idx is 635 // supported by the target. 636 EVT VT = Tmp1.getValueType(); 637 EVT EltVT = VT.getVectorElementType(); 638 EVT IdxVT = Tmp3.getValueType(); 639 EVT PtrVT = TLI.getPointerTy(); 640 SDValue StackPtr = DAG.CreateStackTemporary(VT); 641 642 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 643 644 // Store the vector. 645 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr, 646 PseudoSourceValue::getFixedStack(SPFI), 0); 647 648 // Truncate or zero extend offset to target pointer type. 649 unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND; 650 Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3); 651 // Add the offset to the index. 652 unsigned EltSize = EltVT.getSizeInBits()/8; 653 Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT)); 654 SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr); 655 // Store the scalar value. 656 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, 657 PseudoSourceValue::getFixedStack(SPFI), 0, EltVT); 658 // Load the updated vector. 659 return DAG.getLoad(VT, dl, Ch, StackPtr, 660 PseudoSourceValue::getFixedStack(SPFI), 0); 661} 662 663 664SDValue SelectionDAGLegalize:: 665ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) { 666 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 667 // SCALAR_TO_VECTOR requires that the type of the value being inserted 668 // match the element type of the vector being created, except for 669 // integers in which case the inserted value can be over width. 670 EVT EltVT = Vec.getValueType().getVectorElementType(); 671 if (Val.getValueType() == EltVT || 672 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 673 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 674 Vec.getValueType(), Val); 675 676 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 677 // We generate a shuffle of InVec and ScVec, so the shuffle mask 678 // should be 0,1,2,3,4,5... with the appropriate element replaced with 679 // elt 0 of the RHS. 680 SmallVector<int, 8> ShufOps; 681 for (unsigned i = 0; i != NumElts; ++i) 682 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 683 684 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, 685 &ShufOps[0]); 686 } 687 } 688 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); 689} 690 691SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 692 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 693 // FIXME: We shouldn't do this for TargetConstantFP's. 694 // FIXME: move this to the DAG Combiner! Note that we can't regress due 695 // to phase ordering between legalized code and the dag combiner. This 696 // probably means that we need to integrate dag combiner and legalizer 697 // together. 698 // We generally can't do this one for long doubles. 699 SDValue Tmp1 = ST->getChain(); 700 SDValue Tmp2 = ST->getBasePtr(); 701 SDValue Tmp3; 702 int SVOffset = ST->getSrcValueOffset(); 703 unsigned Alignment = ST->getAlignment(); 704 bool isVolatile = ST->isVolatile(); 705 DebugLoc dl = ST->getDebugLoc(); 706 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 707 if (CFP->getValueType(0) == MVT::f32 && 708 getTypeAction(MVT::i32) == Legal) { 709 Tmp3 = DAG.getConstant(CFP->getValueAPF(). 710 bitcastToAPInt().zextOrTrunc(32), 711 MVT::i32); 712 return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), 713 SVOffset, isVolatile, Alignment); 714 } else if (CFP->getValueType(0) == MVT::f64) { 715 // If this target supports 64-bit registers, do a single 64-bit store. 716 if (getTypeAction(MVT::i64) == Legal) { 717 Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 718 zextOrTrunc(64), MVT::i64); 719 return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), 720 SVOffset, isVolatile, Alignment); 721 } else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) { 722 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 723 // stores. If the target supports neither 32- nor 64-bits, this 724 // xform is certainly not worth it. 725 const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt(); 726 SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32); 727 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32); 728 if (TLI.isBigEndian()) std::swap(Lo, Hi); 729 730 Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(), 731 SVOffset, isVolatile, Alignment); 732 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 733 DAG.getIntPtrConstant(4)); 734 Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), SVOffset+4, 735 isVolatile, MinAlign(Alignment, 4U)); 736 737 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 738 } 739 } 740 } 741 return SDValue(); 742} 743 744/// LegalizeOp - We know that the specified value has a legal type, and 745/// that its operands are legal. Now ensure that the operation itself 746/// is legal, recursively ensuring that the operands' operations remain 747/// legal. 748SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) { 749 if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes. 750 return Op; 751 752 SDNode *Node = Op.getNode(); 753 DebugLoc dl = Node->getDebugLoc(); 754 755 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 756 assert(getTypeAction(Node->getValueType(i)) == Legal && 757 "Unexpected illegal type!"); 758 759 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 760 assert((isTypeLegal(Node->getOperand(i).getValueType()) || 761 Node->getOperand(i).getOpcode() == ISD::TargetConstant) && 762 "Unexpected illegal type!"); 763 764 // Note that LegalizeOp may be reentered even from single-use nodes, which 765 // means that we always must cache transformed nodes. 766 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 767 if (I != LegalizedNodes.end()) return I->second; 768 769 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 770 SDValue Result = Op; 771 bool isCustom = false; 772 773 // Figure out the correct action; the way to query this varies by opcode 774 TargetLowering::LegalizeAction Action; 775 bool SimpleFinishLegalizing = true; 776 switch (Node->getOpcode()) { 777 case ISD::INTRINSIC_W_CHAIN: 778 case ISD::INTRINSIC_WO_CHAIN: 779 case ISD::INTRINSIC_VOID: 780 case ISD::VAARG: 781 case ISD::STACKSAVE: 782 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 783 break; 784 case ISD::SINT_TO_FP: 785 case ISD::UINT_TO_FP: 786 case ISD::EXTRACT_VECTOR_ELT: 787 Action = TLI.getOperationAction(Node->getOpcode(), 788 Node->getOperand(0).getValueType()); 789 break; 790 case ISD::FP_ROUND_INREG: 791 case ISD::SIGN_EXTEND_INREG: { 792 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 793 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 794 break; 795 } 796 case ISD::SELECT_CC: 797 case ISD::SETCC: 798 case ISD::BR_CC: { 799 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : 800 Node->getOpcode() == ISD::SETCC ? 2 : 1; 801 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0; 802 EVT OpVT = Node->getOperand(CompareOperand).getValueType(); 803 ISD::CondCode CCCode = 804 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 805 Action = TLI.getCondCodeAction(CCCode, OpVT); 806 if (Action == TargetLowering::Legal) { 807 if (Node->getOpcode() == ISD::SELECT_CC) 808 Action = TLI.getOperationAction(Node->getOpcode(), 809 Node->getValueType(0)); 810 else 811 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 812 } 813 break; 814 } 815 case ISD::LOAD: 816 case ISD::STORE: 817 // FIXME: Model these properly. LOAD and STORE are complicated, and 818 // STORE expects the unlegalized operand in some cases. 819 SimpleFinishLegalizing = false; 820 break; 821 case ISD::CALLSEQ_START: 822 case ISD::CALLSEQ_END: 823 // FIXME: This shouldn't be necessary. These nodes have special properties 824 // dealing with the recursive nature of legalization. Removing this 825 // special case should be done as part of making LegalizeDAG non-recursive. 826 SimpleFinishLegalizing = false; 827 break; 828 case ISD::EXTRACT_ELEMENT: 829 case ISD::FLT_ROUNDS_: 830 case ISD::SADDO: 831 case ISD::SSUBO: 832 case ISD::UADDO: 833 case ISD::USUBO: 834 case ISD::SMULO: 835 case ISD::UMULO: 836 case ISD::FPOWI: 837 case ISD::MERGE_VALUES: 838 case ISD::EH_RETURN: 839 case ISD::FRAME_TO_ARGS_OFFSET: 840 // These operations lie about being legal: when they claim to be legal, 841 // they should actually be expanded. 842 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 843 if (Action == TargetLowering::Legal) 844 Action = TargetLowering::Expand; 845 break; 846 case ISD::TRAMPOLINE: 847 case ISD::FRAMEADDR: 848 case ISD::RETURNADDR: 849 // These operations lie about being legal: when they claim to be legal, 850 // they should actually be custom-lowered. 851 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 852 if (Action == TargetLowering::Legal) 853 Action = TargetLowering::Custom; 854 break; 855 case ISD::BUILD_VECTOR: 856 // A weird case: legalization for BUILD_VECTOR never legalizes the 857 // operands! 858 // FIXME: This really sucks... changing it isn't semantically incorrect, 859 // but it massively pessimizes the code for floating-point BUILD_VECTORs 860 // because ConstantFP operands get legalized into constant pool loads 861 // before the BUILD_VECTOR code can see them. It doesn't usually bite, 862 // though, because BUILD_VECTORS usually get lowered into other nodes 863 // which get legalized properly. 864 SimpleFinishLegalizing = false; 865 break; 866 default: 867 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 868 Action = TargetLowering::Legal; 869 } else { 870 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 871 } 872 break; 873 } 874 875 if (SimpleFinishLegalizing) { 876 SmallVector<SDValue, 8> Ops, ResultVals; 877 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 878 Ops.push_back(LegalizeOp(Node->getOperand(i))); 879 switch (Node->getOpcode()) { 880 default: break; 881 case ISD::BR: 882 case ISD::BRIND: 883 case ISD::BR_JT: 884 case ISD::BR_CC: 885 case ISD::BRCOND: 886 // Branches tweak the chain to include LastCALLSEQ_END 887 Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0], 888 LastCALLSEQ_END); 889 Ops[0] = LegalizeOp(Ops[0]); 890 LastCALLSEQ_END = DAG.getEntryNode(); 891 break; 892 case ISD::SHL: 893 case ISD::SRL: 894 case ISD::SRA: 895 case ISD::ROTL: 896 case ISD::ROTR: 897 // Legalizing shifts/rotates requires adjusting the shift amount 898 // to the appropriate width. 899 if (!Ops[1].getValueType().isVector()) 900 Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[1])); 901 break; 902 case ISD::SRL_PARTS: 903 case ISD::SRA_PARTS: 904 case ISD::SHL_PARTS: 905 // Legalizing shifts/rotates requires adjusting the shift amount 906 // to the appropriate width. 907 if (!Ops[2].getValueType().isVector()) 908 Ops[2] = LegalizeOp(DAG.getShiftAmountOperand(Ops[2])); 909 break; 910 } 911 912 Result = DAG.UpdateNodeOperands(Result.getValue(0), Ops.data(), 913 Ops.size()); 914 switch (Action) { 915 case TargetLowering::Legal: 916 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 917 ResultVals.push_back(Result.getValue(i)); 918 break; 919 case TargetLowering::Custom: 920 // FIXME: The handling for custom lowering with multiple results is 921 // a complete mess. 922 Tmp1 = TLI.LowerOperation(Result, DAG); 923 if (Tmp1.getNode()) { 924 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { 925 if (e == 1) 926 ResultVals.push_back(Tmp1); 927 else 928 ResultVals.push_back(Tmp1.getValue(i)); 929 } 930 break; 931 } 932 933 // FALL THROUGH 934 case TargetLowering::Expand: 935 ExpandNode(Result.getNode(), ResultVals); 936 break; 937 case TargetLowering::Promote: 938 PromoteNode(Result.getNode(), ResultVals); 939 break; 940 } 941 if (!ResultVals.empty()) { 942 for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) { 943 if (ResultVals[i] != SDValue(Node, i)) 944 ResultVals[i] = LegalizeOp(ResultVals[i]); 945 AddLegalizedOperand(SDValue(Node, i), ResultVals[i]); 946 } 947 return ResultVals[Op.getResNo()]; 948 } 949 } 950 951 switch (Node->getOpcode()) { 952 default: 953#ifndef NDEBUG 954 dbgs() << "NODE: "; 955 Node->dump( &DAG); 956 dbgs() << "\n"; 957#endif 958 llvm_unreachable("Do not know how to legalize this operator!"); 959 960 case ISD::BUILD_VECTOR: 961 switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) { 962 default: llvm_unreachable("This action is not supported yet!"); 963 case TargetLowering::Custom: 964 Tmp3 = TLI.LowerOperation(Result, DAG); 965 if (Tmp3.getNode()) { 966 Result = Tmp3; 967 break; 968 } 969 // FALLTHROUGH 970 case TargetLowering::Expand: 971 Result = ExpandBUILD_VECTOR(Result.getNode()); 972 break; 973 } 974 break; 975 case ISD::CALLSEQ_START: { 976 SDNode *CallEnd = FindCallEndFromCallStart(Node); 977 978 // Recursively Legalize all of the inputs of the call end that do not lead 979 // to this call start. This ensures that any libcalls that need be inserted 980 // are inserted *before* the CALLSEQ_START. 981 {SmallPtrSet<SDNode*, 32> NodesLeadingTo; 982 for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i) 983 LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node, 984 NodesLeadingTo); 985 } 986 987 // Now that we legalized all of the inputs (which may have inserted 988 // libcalls) create the new CALLSEQ_START node. 989 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 990 991 // Merge in the last call, to ensure that this call start after the last 992 // call ended. 993 if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) { 994 Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 995 Tmp1, LastCALLSEQ_END); 996 Tmp1 = LegalizeOp(Tmp1); 997 } 998 999 // Do not try to legalize the target-specific arguments (#1+). 1000 if (Tmp1 != Node->getOperand(0)) { 1001 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end()); 1002 Ops[0] = Tmp1; 1003 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1004 } 1005 1006 // Remember that the CALLSEQ_START is legalized. 1007 AddLegalizedOperand(Op.getValue(0), Result); 1008 if (Node->getNumValues() == 2) // If this has a flag result, remember it. 1009 AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); 1010 1011 // Now that the callseq_start and all of the non-call nodes above this call 1012 // sequence have been legalized, legalize the call itself. During this 1013 // process, no libcalls can/will be inserted, guaranteeing that no calls 1014 // can overlap. 1015 assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!"); 1016 // Note that we are selecting this call! 1017 LastCALLSEQ_END = SDValue(CallEnd, 0); 1018 IsLegalizingCall = true; 1019 1020 // Legalize the call, starting from the CALLSEQ_END. 1021 LegalizeOp(LastCALLSEQ_END); 1022 assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!"); 1023 return Result; 1024 } 1025 case ISD::CALLSEQ_END: 1026 // If the CALLSEQ_START node hasn't been legalized first, legalize it. This 1027 // will cause this node to be legalized as well as handling libcalls right. 1028 if (LastCALLSEQ_END.getNode() != Node) { 1029 LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0)); 1030 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 1031 assert(I != LegalizedNodes.end() && 1032 "Legalizing the call start should have legalized this node!"); 1033 return I->second; 1034 } 1035 1036 // Otherwise, the call start has been legalized and everything is going 1037 // according to plan. Just legalize ourselves normally here. 1038 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1039 // Do not try to legalize the target-specific arguments (#1+), except for 1040 // an optional flag input. 1041 if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){ 1042 if (Tmp1 != Node->getOperand(0)) { 1043 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end()); 1044 Ops[0] = Tmp1; 1045 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1046 } 1047 } else { 1048 Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1)); 1049 if (Tmp1 != Node->getOperand(0) || 1050 Tmp2 != Node->getOperand(Node->getNumOperands()-1)) { 1051 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end()); 1052 Ops[0] = Tmp1; 1053 Ops.back() = Tmp2; 1054 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1055 } 1056 } 1057 assert(IsLegalizingCall && "Call sequence imbalance between start/end?"); 1058 // This finishes up call legalization. 1059 IsLegalizingCall = false; 1060 1061 // If the CALLSEQ_END node has a flag, remember that we legalized it. 1062 AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); 1063 if (Node->getNumValues() == 2) 1064 AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); 1065 return Result.getValue(Op.getResNo()); 1066 case ISD::LOAD: { 1067 LoadSDNode *LD = cast<LoadSDNode>(Node); 1068 Tmp1 = LegalizeOp(LD->getChain()); // Legalize the chain. 1069 Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer. 1070 1071 ISD::LoadExtType ExtType = LD->getExtensionType(); 1072 if (ExtType == ISD::NON_EXTLOAD) { 1073 EVT VT = Node->getValueType(0); 1074 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset()); 1075 Tmp3 = Result.getValue(0); 1076 Tmp4 = Result.getValue(1); 1077 1078 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 1079 default: llvm_unreachable("This action is not supported yet!"); 1080 case TargetLowering::Legal: 1081 // If this is an unaligned load and the target doesn't support it, 1082 // expand it. 1083 if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) { 1084 const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext()); 1085 unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty); 1086 if (LD->getAlignment() < ABIAlignment){ 1087 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), 1088 DAG, TLI); 1089 Tmp3 = Result.getOperand(0); 1090 Tmp4 = Result.getOperand(1); 1091 Tmp3 = LegalizeOp(Tmp3); 1092 Tmp4 = LegalizeOp(Tmp4); 1093 } 1094 } 1095 break; 1096 case TargetLowering::Custom: 1097 Tmp1 = TLI.LowerOperation(Tmp3, DAG); 1098 if (Tmp1.getNode()) { 1099 Tmp3 = LegalizeOp(Tmp1); 1100 Tmp4 = LegalizeOp(Tmp1.getValue(1)); 1101 } 1102 break; 1103 case TargetLowering::Promote: { 1104 // Only promote a load of vector type to another. 1105 assert(VT.isVector() && "Cannot promote this load!"); 1106 // Change base type to a different vector type. 1107 EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 1108 1109 Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getSrcValue(), 1110 LD->getSrcValueOffset(), 1111 LD->isVolatile(), LD->getAlignment()); 1112 Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp1)); 1113 Tmp4 = LegalizeOp(Tmp1.getValue(1)); 1114 break; 1115 } 1116 } 1117 // Since loads produce two values, make sure to remember that we 1118 // legalized both of them. 1119 AddLegalizedOperand(SDValue(Node, 0), Tmp3); 1120 AddLegalizedOperand(SDValue(Node, 1), Tmp4); 1121 return Op.getResNo() ? Tmp4 : Tmp3; 1122 } else { 1123 EVT SrcVT = LD->getMemoryVT(); 1124 unsigned SrcWidth = SrcVT.getSizeInBits(); 1125 int SVOffset = LD->getSrcValueOffset(); 1126 unsigned Alignment = LD->getAlignment(); 1127 bool isVolatile = LD->isVolatile(); 1128 1129 if (SrcWidth != SrcVT.getStoreSizeInBits() && 1130 // Some targets pretend to have an i1 loading operation, and actually 1131 // load an i8. This trick is correct for ZEXTLOAD because the top 7 1132 // bits are guaranteed to be zero; it helps the optimizers understand 1133 // that these bits are zero. It is also useful for EXTLOAD, since it 1134 // tells the optimizers that those bits are undefined. It would be 1135 // nice to have an effective generic way of getting these benefits... 1136 // Until such a way is found, don't insist on promoting i1 here. 1137 (SrcVT != MVT::i1 || 1138 TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) { 1139 // Promote to a byte-sized load if not loading an integral number of 1140 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 1141 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 1142 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 1143 SDValue Ch; 1144 1145 // The extra bits are guaranteed to be zero, since we stored them that 1146 // way. A zext load from NVT thus automatically gives zext from SrcVT. 1147 1148 ISD::LoadExtType NewExtType = 1149 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 1150 1151 Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), 1152 Tmp1, Tmp2, LD->getSrcValue(), SVOffset, 1153 NVT, isVolatile, Alignment); 1154 1155 Ch = Result.getValue(1); // The chain. 1156 1157 if (ExtType == ISD::SEXTLOAD) 1158 // Having the top bits zero doesn't help when sign extending. 1159 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 1160 Result.getValueType(), 1161 Result, DAG.getValueType(SrcVT)); 1162 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 1163 // All the top bits are guaranteed to be zero - inform the optimizers. 1164 Result = DAG.getNode(ISD::AssertZext, dl, 1165 Result.getValueType(), Result, 1166 DAG.getValueType(SrcVT)); 1167 1168 Tmp1 = LegalizeOp(Result); 1169 Tmp2 = LegalizeOp(Ch); 1170 } else if (SrcWidth & (SrcWidth - 1)) { 1171 // If not loading a power-of-2 number of bits, expand as two loads. 1172 assert(!SrcVT.isVector() && "Unsupported extload!"); 1173 unsigned RoundWidth = 1 << Log2_32(SrcWidth); 1174 assert(RoundWidth < SrcWidth); 1175 unsigned ExtraWidth = SrcWidth - RoundWidth; 1176 assert(ExtraWidth < RoundWidth); 1177 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 1178 "Load size not an integral number of bytes!"); 1179 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 1180 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 1181 SDValue Lo, Hi, Ch; 1182 unsigned IncrementSize; 1183 1184 if (TLI.isLittleEndian()) { 1185 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 1186 // Load the bottom RoundWidth bits. 1187 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, 1188 Node->getValueType(0), Tmp1, Tmp2, 1189 LD->getSrcValue(), SVOffset, RoundVT, isVolatile, 1190 Alignment); 1191 1192 // Load the remaining ExtraWidth bits. 1193 IncrementSize = RoundWidth / 8; 1194 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 1195 DAG.getIntPtrConstant(IncrementSize)); 1196 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2, 1197 LD->getSrcValue(), SVOffset + IncrementSize, 1198 ExtraVT, isVolatile, 1199 MinAlign(Alignment, IncrementSize)); 1200 1201 // Build a factor node to remember that this load is independent of the 1202 // other one. 1203 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 1204 Hi.getValue(1)); 1205 1206 // Move the top bits to the right place. 1207 Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi, 1208 DAG.getConstant(RoundWidth, TLI.getShiftAmountTy())); 1209 1210 // Join the hi and lo parts. 1211 Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 1212 } else { 1213 // Big endian - avoid unaligned loads. 1214 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 1215 // Load the top RoundWidth bits. 1216 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2, 1217 LD->getSrcValue(), SVOffset, RoundVT, isVolatile, 1218 Alignment); 1219 1220 // Load the remaining ExtraWidth bits. 1221 IncrementSize = RoundWidth / 8; 1222 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 1223 DAG.getIntPtrConstant(IncrementSize)); 1224 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, 1225 Node->getValueType(0), Tmp1, Tmp2, 1226 LD->getSrcValue(), SVOffset + IncrementSize, 1227 ExtraVT, isVolatile, 1228 MinAlign(Alignment, IncrementSize)); 1229 1230 // Build a factor node to remember that this load is independent of the 1231 // other one. 1232 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 1233 Hi.getValue(1)); 1234 1235 // Move the top bits to the right place. 1236 Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi, 1237 DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy())); 1238 1239 // Join the hi and lo parts. 1240 Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 1241 } 1242 1243 Tmp1 = LegalizeOp(Result); 1244 Tmp2 = LegalizeOp(Ch); 1245 } else { 1246 switch (TLI.getLoadExtAction(ExtType, SrcVT)) { 1247 default: llvm_unreachable("This action is not supported yet!"); 1248 case TargetLowering::Custom: 1249 isCustom = true; 1250 // FALLTHROUGH 1251 case TargetLowering::Legal: 1252 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset()); 1253 Tmp1 = Result.getValue(0); 1254 Tmp2 = Result.getValue(1); 1255 1256 if (isCustom) { 1257 Tmp3 = TLI.LowerOperation(Result, DAG); 1258 if (Tmp3.getNode()) { 1259 Tmp1 = LegalizeOp(Tmp3); 1260 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 1261 } 1262 } else { 1263 // If this is an unaligned load and the target doesn't support it, 1264 // expand it. 1265 if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) { 1266 const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext()); 1267 unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty); 1268 if (LD->getAlignment() < ABIAlignment){ 1269 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), 1270 DAG, TLI); 1271 Tmp1 = Result.getOperand(0); 1272 Tmp2 = Result.getOperand(1); 1273 Tmp1 = LegalizeOp(Tmp1); 1274 Tmp2 = LegalizeOp(Tmp2); 1275 } 1276 } 1277 } 1278 break; 1279 case TargetLowering::Expand: 1280 // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND 1281 // f128 = EXTLOAD {f32,f64} too 1282 if ((SrcVT == MVT::f32 && (Node->getValueType(0) == MVT::f64 || 1283 Node->getValueType(0) == MVT::f128)) || 1284 (SrcVT == MVT::f64 && Node->getValueType(0) == MVT::f128)) { 1285 SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, LD->getSrcValue(), 1286 LD->getSrcValueOffset(), 1287 LD->isVolatile(), LD->getAlignment()); 1288 Result = DAG.getNode(ISD::FP_EXTEND, dl, 1289 Node->getValueType(0), Load); 1290 Tmp1 = LegalizeOp(Result); // Relegalize new nodes. 1291 Tmp2 = LegalizeOp(Load.getValue(1)); 1292 break; 1293 } 1294 assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!"); 1295 // Turn the unsupported load into an EXTLOAD followed by an explicit 1296 // zero/sign extend inreg. 1297 Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0), 1298 Tmp1, Tmp2, LD->getSrcValue(), 1299 LD->getSrcValueOffset(), SrcVT, 1300 LD->isVolatile(), LD->getAlignment()); 1301 SDValue ValRes; 1302 if (ExtType == ISD::SEXTLOAD) 1303 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 1304 Result.getValueType(), 1305 Result, DAG.getValueType(SrcVT)); 1306 else 1307 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT); 1308 Tmp1 = LegalizeOp(ValRes); // Relegalize new nodes. 1309 Tmp2 = LegalizeOp(Result.getValue(1)); // Relegalize new nodes. 1310 break; 1311 } 1312 } 1313 1314 // Since loads produce two values, make sure to remember that we legalized 1315 // both of them. 1316 AddLegalizedOperand(SDValue(Node, 0), Tmp1); 1317 AddLegalizedOperand(SDValue(Node, 1), Tmp2); 1318 return Op.getResNo() ? Tmp2 : Tmp1; 1319 } 1320 } 1321 case ISD::STORE: { 1322 StoreSDNode *ST = cast<StoreSDNode>(Node); 1323 Tmp1 = LegalizeOp(ST->getChain()); // Legalize the chain. 1324 Tmp2 = LegalizeOp(ST->getBasePtr()); // Legalize the pointer. 1325 int SVOffset = ST->getSrcValueOffset(); 1326 unsigned Alignment = ST->getAlignment(); 1327 bool isVolatile = ST->isVolatile(); 1328 1329 if (!ST->isTruncatingStore()) { 1330 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 1331 Result = SDValue(OptStore, 0); 1332 break; 1333 } 1334 1335 { 1336 Tmp3 = LegalizeOp(ST->getValue()); 1337 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2, 1338 ST->getOffset()); 1339 1340 EVT VT = Tmp3.getValueType(); 1341 switch (TLI.getOperationAction(ISD::STORE, VT)) { 1342 default: llvm_unreachable("This action is not supported yet!"); 1343 case TargetLowering::Legal: 1344 // If this is an unaligned store and the target doesn't support it, 1345 // expand it. 1346 if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) { 1347 const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext()); 1348 unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty); 1349 if (ST->getAlignment() < ABIAlignment) 1350 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), 1351 DAG, TLI); 1352 } 1353 break; 1354 case TargetLowering::Custom: 1355 Tmp1 = TLI.LowerOperation(Result, DAG); 1356 if (Tmp1.getNode()) Result = Tmp1; 1357 break; 1358 case TargetLowering::Promote: 1359 assert(VT.isVector() && "Unknown legal promote case!"); 1360 Tmp3 = DAG.getNode(ISD::BIT_CONVERT, dl, 1361 TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3); 1362 Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, 1363 ST->getSrcValue(), SVOffset, isVolatile, 1364 Alignment); 1365 break; 1366 } 1367 break; 1368 } 1369 } else { 1370 Tmp3 = LegalizeOp(ST->getValue()); 1371 1372 EVT StVT = ST->getMemoryVT(); 1373 unsigned StWidth = StVT.getSizeInBits(); 1374 1375 if (StWidth != StVT.getStoreSizeInBits()) { 1376 // Promote to a byte-sized store with upper bits zero if not 1377 // storing an integral number of bytes. For example, promote 1378 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 1379 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), StVT.getStoreSizeInBits()); 1380 Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT); 1381 Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), 1382 SVOffset, NVT, isVolatile, Alignment); 1383 } else if (StWidth & (StWidth - 1)) { 1384 // If not storing a power-of-2 number of bits, expand as two stores. 1385 assert(!StVT.isVector() && "Unsupported truncstore!"); 1386 unsigned RoundWidth = 1 << Log2_32(StWidth); 1387 assert(RoundWidth < StWidth); 1388 unsigned ExtraWidth = StWidth - RoundWidth; 1389 assert(ExtraWidth < RoundWidth); 1390 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 1391 "Store size not an integral number of bytes!"); 1392 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 1393 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 1394 SDValue Lo, Hi; 1395 unsigned IncrementSize; 1396 1397 if (TLI.isLittleEndian()) { 1398 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 1399 // Store the bottom RoundWidth bits. 1400 Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), 1401 SVOffset, RoundVT, 1402 isVolatile, Alignment); 1403 1404 // Store the remaining ExtraWidth bits. 1405 IncrementSize = RoundWidth / 8; 1406 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 1407 DAG.getIntPtrConstant(IncrementSize)); 1408 Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3, 1409 DAG.getConstant(RoundWidth, TLI.getShiftAmountTy())); 1410 Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), 1411 SVOffset + IncrementSize, ExtraVT, isVolatile, 1412 MinAlign(Alignment, IncrementSize)); 1413 } else { 1414 // Big endian - avoid unaligned stores. 1415 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 1416 // Store the top RoundWidth bits. 1417 Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3, 1418 DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy())); 1419 Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), 1420 SVOffset, RoundVT, isVolatile, Alignment); 1421 1422 // Store the remaining ExtraWidth bits. 1423 IncrementSize = RoundWidth / 8; 1424 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 1425 DAG.getIntPtrConstant(IncrementSize)); 1426 Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), 1427 SVOffset + IncrementSize, ExtraVT, isVolatile, 1428 MinAlign(Alignment, IncrementSize)); 1429 } 1430 1431 // The order of the stores doesn't matter. 1432 Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 1433 } else { 1434 if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() || 1435 Tmp2 != ST->getBasePtr()) 1436 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2, 1437 ST->getOffset()); 1438 1439 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 1440 default: llvm_unreachable("This action is not supported yet!"); 1441 case TargetLowering::Legal: 1442 // If this is an unaligned store and the target doesn't support it, 1443 // expand it. 1444 if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) { 1445 const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext()); 1446 unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty); 1447 if (ST->getAlignment() < ABIAlignment) 1448 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), 1449 DAG, TLI); 1450 } 1451 break; 1452 case TargetLowering::Custom: 1453 Result = TLI.LowerOperation(Result, DAG); 1454 break; 1455 case Expand: 1456 // TRUNCSTORE:i16 i32 -> STORE i16 1457 assert(isTypeLegal(StVT) && "Do not know how to expand this store!"); 1458 Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3); 1459 Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), 1460 SVOffset, isVolatile, Alignment); 1461 break; 1462 } 1463 } 1464 } 1465 break; 1466 } 1467 } 1468 assert(Result.getValueType() == Op.getValueType() && 1469 "Bad legalization!"); 1470 1471 // Make sure that the generated code is itself legal. 1472 if (Result != Op) 1473 Result = LegalizeOp(Result); 1474 1475 // Note that LegalizeOp may be reentered even from single-use nodes, which 1476 // means that we always must cache transformed nodes. 1477 AddLegalizedOperand(Op, Result); 1478 return Result; 1479} 1480 1481SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1482 SDValue Vec = Op.getOperand(0); 1483 SDValue Idx = Op.getOperand(1); 1484 DebugLoc dl = Op.getDebugLoc(); 1485 // Store the value to a temporary stack slot, then LOAD the returned part. 1486 SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); 1487 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0); 1488 1489 // Add the offset to the index. 1490 unsigned EltSize = 1491 Vec.getValueType().getVectorElementType().getSizeInBits()/8; 1492 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx, 1493 DAG.getConstant(EltSize, Idx.getValueType())); 1494 1495 if (Idx.getValueType().bitsGT(TLI.getPointerTy())) 1496 Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx); 1497 else 1498 Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx); 1499 1500 StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr); 1501 1502 if (Op.getValueType().isVector()) 1503 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, NULL, 0); 1504 else 1505 return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, 1506 NULL, 0, Vec.getValueType().getVectorElementType()); 1507} 1508 1509SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1510 // We can't handle this case efficiently. Allocate a sufficiently 1511 // aligned object on the stack, store each element into it, then load 1512 // the result as a vector. 1513 // Create the stack frame object. 1514 EVT VT = Node->getValueType(0); 1515 EVT OpVT = Node->getOperand(0).getValueType(); 1516 EVT EltVT = VT.getVectorElementType(); 1517 DebugLoc dl = Node->getDebugLoc(); 1518 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1519 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1520 const Value *SV = PseudoSourceValue::getFixedStack(FI); 1521 1522 // Emit a store of each element to the stack slot. 1523 SmallVector<SDValue, 8> Stores; 1524 unsigned TypeByteSize = EltVT.getSizeInBits() / 8; 1525 // Store (in the right endianness) the elements to memory. 1526 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1527 // Ignore undef elements. 1528 if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue; 1529 1530 unsigned Offset = TypeByteSize*i; 1531 1532 SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType()); 1533 Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx); 1534 1535 // If EltVT smaller than OpVT, only store the bits necessary. 1536 if (!OpVT.isVector() && EltVT.bitsLT(OpVT)) { 1537 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1538 Node->getOperand(i), Idx, SV, Offset, EltVT)); 1539 } else 1540 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, 1541 Node->getOperand(i), Idx, SV, Offset)); 1542 } 1543 1544 SDValue StoreChain; 1545 if (!Stores.empty()) // Not all undef elements? 1546 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 1547 &Stores[0], Stores.size()); 1548 else 1549 StoreChain = DAG.getEntryNode(); 1550 1551 // Result is a load from the stack slot. 1552 return DAG.getLoad(VT, dl, StoreChain, FIPtr, SV, 0); 1553} 1554 1555SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) { 1556 DebugLoc dl = Node->getDebugLoc(); 1557 SDValue Tmp1 = Node->getOperand(0); 1558 SDValue Tmp2 = Node->getOperand(1); 1559 assert((Tmp2.getValueType() == MVT::f32 || 1560 Tmp2.getValueType() == MVT::f64) && 1561 "Ugly special-cased code!"); 1562 // Get the sign bit of the RHS. 1563 SDValue SignBit; 1564 EVT IVT = Tmp2.getValueType() == MVT::f64 ? MVT::i64 : MVT::i32; 1565 if (isTypeLegal(IVT)) { 1566 SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2); 1567 } else { 1568 assert(isTypeLegal(TLI.getPointerTy()) && 1569 (TLI.getPointerTy() == MVT::i32 || 1570 TLI.getPointerTy() == MVT::i64) && 1571 "Legal type for load?!"); 1572 SDValue StackPtr = DAG.CreateStackTemporary(Tmp2.getValueType()); 1573 SDValue StorePtr = StackPtr, LoadPtr = StackPtr; 1574 SDValue Ch = 1575 DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StorePtr, NULL, 0); 1576 if (Tmp2.getValueType() == MVT::f64 && TLI.isLittleEndian()) 1577 LoadPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), 1578 LoadPtr, DAG.getIntPtrConstant(4)); 1579 SignBit = DAG.getExtLoad(ISD::SEXTLOAD, dl, TLI.getPointerTy(), 1580 Ch, LoadPtr, NULL, 0, MVT::i32); 1581 } 1582 SignBit = 1583 DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()), 1584 SignBit, DAG.getConstant(0, SignBit.getValueType()), 1585 ISD::SETLT); 1586 // Get the absolute value of the result. 1587 SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1); 1588 // Select between the nabs and abs value based on the sign bit of 1589 // the input. 1590 return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit, 1591 DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal), 1592 AbsVal); 1593} 1594 1595void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1596 SmallVectorImpl<SDValue> &Results) { 1597 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1598 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1599 " not tell us which reg is the stack pointer!"); 1600 DebugLoc dl = Node->getDebugLoc(); 1601 EVT VT = Node->getValueType(0); 1602 SDValue Tmp1 = SDValue(Node, 0); 1603 SDValue Tmp2 = SDValue(Node, 1); 1604 SDValue Tmp3 = Node->getOperand(2); 1605 SDValue Chain = Tmp1.getOperand(0); 1606 1607 // Chain the dynamic stack allocation so that it doesn't modify the stack 1608 // pointer when other instructions are using the stack. 1609 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true)); 1610 1611 SDValue Size = Tmp2.getOperand(1); 1612 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1613 Chain = SP.getValue(1); 1614 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); 1615 unsigned StackAlign = 1616 TLI.getTargetMachine().getFrameInfo()->getStackAlignment(); 1617 if (Align > StackAlign) 1618 SP = DAG.getNode(ISD::AND, dl, VT, SP, 1619 DAG.getConstant(-(uint64_t)Align, VT)); 1620 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value 1621 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1622 1623 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true), 1624 DAG.getIntPtrConstant(0, true), SDValue()); 1625 1626 Results.push_back(Tmp1); 1627 Results.push_back(Tmp2); 1628} 1629 1630/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and 1631/// condition code CC on the current target. This routine expands SETCC with 1632/// illegal condition code into AND / OR of multiple SETCC values. 1633void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT, 1634 SDValue &LHS, SDValue &RHS, 1635 SDValue &CC, 1636 DebugLoc dl) { 1637 EVT OpVT = LHS.getValueType(); 1638 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 1639 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 1640 default: llvm_unreachable("Unknown condition code action!"); 1641 case TargetLowering::Legal: 1642 // Nothing to do. 1643 break; 1644 case TargetLowering::Expand: { 1645 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 1646 unsigned Opc = 0; 1647 switch (CCCode) { 1648 default: llvm_unreachable("Don't know how to expand this condition!"); 1649 case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO; Opc = ISD::AND; break; 1650 case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO; Opc = ISD::AND; break; 1651 case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO; Opc = ISD::AND; break; 1652 case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO; Opc = ISD::AND; break; 1653 case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO; Opc = ISD::AND; break; 1654 case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO; Opc = ISD::AND; break; 1655 case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR; break; 1656 case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR; break; 1657 case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR; break; 1658 case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR; break; 1659 case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR; break; 1660 case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR; break; 1661 // FIXME: Implement more expansions. 1662 } 1663 1664 SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1); 1665 SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2); 1666 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 1667 RHS = SDValue(); 1668 CC = SDValue(); 1669 break; 1670 } 1671 } 1672} 1673 1674/// EmitStackConvert - Emit a store/load combination to the stack. This stores 1675/// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 1676/// a load from the stack slot to DestVT, extending it if needed. 1677/// The resultant code need not be legal. 1678SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, 1679 EVT SlotVT, 1680 EVT DestVT, 1681 DebugLoc dl) { 1682 // Create the stack frame object. 1683 unsigned SrcAlign = 1684 TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType(). 1685 getTypeForEVT(*DAG.getContext())); 1686 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); 1687 1688 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 1689 int SPFI = StackPtrFI->getIndex(); 1690 const Value *SV = PseudoSourceValue::getFixedStack(SPFI); 1691 1692 unsigned SrcSize = SrcOp.getValueType().getSizeInBits(); 1693 unsigned SlotSize = SlotVT.getSizeInBits(); 1694 unsigned DestSize = DestVT.getSizeInBits(); 1695 unsigned DestAlign = 1696 TLI.getTargetData()->getPrefTypeAlignment(DestVT.getTypeForEVT(*DAG.getContext())); 1697 1698 // Emit a store to the stack slot. Use a truncstore if the input value is 1699 // later than DestVT. 1700 SDValue Store; 1701 1702 if (SrcSize > SlotSize) 1703 Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, 1704 SV, 0, SlotVT, false, SrcAlign); 1705 else { 1706 assert(SrcSize == SlotSize && "Invalid store"); 1707 Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, 1708 SV, 0, false, SrcAlign); 1709 } 1710 1711 // Result is a load from the stack slot. 1712 if (SlotSize == DestSize) 1713 return DAG.getLoad(DestVT, dl, Store, FIPtr, SV, 0, false, DestAlign); 1714 1715 assert(SlotSize < DestSize && "Unknown extension!"); 1716 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, SV, 0, SlotVT, 1717 false, DestAlign); 1718} 1719 1720SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 1721 DebugLoc dl = Node->getDebugLoc(); 1722 // Create a vector sized/aligned stack slot, store the value to element #0, 1723 // then load the whole vector back out. 1724 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 1725 1726 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 1727 int SPFI = StackPtrFI->getIndex(); 1728 1729 SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0), 1730 StackPtr, 1731 PseudoSourceValue::getFixedStack(SPFI), 0, 1732 Node->getValueType(0).getVectorElementType()); 1733 return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr, 1734 PseudoSourceValue::getFixedStack(SPFI), 0); 1735} 1736 1737 1738/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't 1739/// support the operation, but do support the resultant vector type. 1740SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 1741 unsigned NumElems = Node->getNumOperands(); 1742 SDValue Value1, Value2; 1743 DebugLoc dl = Node->getDebugLoc(); 1744 EVT VT = Node->getValueType(0); 1745 EVT OpVT = Node->getOperand(0).getValueType(); 1746 EVT EltVT = VT.getVectorElementType(); 1747 1748 // If the only non-undef value is the low element, turn this into a 1749 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 1750 bool isOnlyLowElement = true; 1751 bool MoreThanTwoValues = false; 1752 bool isConstant = true; 1753 for (unsigned i = 0; i < NumElems; ++i) { 1754 SDValue V = Node->getOperand(i); 1755 if (V.getOpcode() == ISD::UNDEF) 1756 continue; 1757 if (i > 0) 1758 isOnlyLowElement = false; 1759 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 1760 isConstant = false; 1761 1762 if (!Value1.getNode()) { 1763 Value1 = V; 1764 } else if (!Value2.getNode()) { 1765 if (V != Value1) 1766 Value2 = V; 1767 } else if (V != Value1 && V != Value2) { 1768 MoreThanTwoValues = true; 1769 } 1770 } 1771 1772 if (!Value1.getNode()) 1773 return DAG.getUNDEF(VT); 1774 1775 if (isOnlyLowElement) 1776 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 1777 1778 // If all elements are constants, create a load from the constant pool. 1779 if (isConstant) { 1780 std::vector<Constant*> CV; 1781 for (unsigned i = 0, e = NumElems; i != e; ++i) { 1782 if (ConstantFPSDNode *V = 1783 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 1784 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 1785 } else if (ConstantSDNode *V = 1786 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 1787 if (OpVT==EltVT) 1788 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 1789 else { 1790 // If OpVT and EltVT don't match, EltVT is not legal and the 1791 // element values have been promoted/truncated earlier. Undo this; 1792 // we don't want a v16i8 to become a v16i32 for example. 1793 const ConstantInt *CI = V->getConstantIntValue(); 1794 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 1795 CI->getZExtValue())); 1796 } 1797 } else { 1798 assert(Node->getOperand(i).getOpcode() == ISD::UNDEF); 1799 const Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 1800 CV.push_back(UndefValue::get(OpNTy)); 1801 } 1802 } 1803 Constant *CP = ConstantVector::get(CV); 1804 SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy()); 1805 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 1806 return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, 1807 PseudoSourceValue::getConstantPool(), 0, 1808 false, Alignment); 1809 } 1810 1811 if (!MoreThanTwoValues) { 1812 SmallVector<int, 8> ShuffleVec(NumElems, -1); 1813 for (unsigned i = 0; i < NumElems; ++i) { 1814 SDValue V = Node->getOperand(i); 1815 if (V.getOpcode() == ISD::UNDEF) 1816 continue; 1817 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 1818 } 1819 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 1820 // Get the splatted value into the low element of a vector register. 1821 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 1822 SDValue Vec2; 1823 if (Value2.getNode()) 1824 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 1825 else 1826 Vec2 = DAG.getUNDEF(VT); 1827 1828 // Return shuffle(LowValVec, undef, <0,0,0,0>) 1829 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data()); 1830 } 1831 } 1832 1833 // Otherwise, we can't handle this case efficiently. 1834 return ExpandVectorBuildThroughStack(Node); 1835} 1836 1837// ExpandLibCall - Expand a node into a call to a libcall. If the result value 1838// does not fit into a register, return the lo part and set the hi part to the 1839// by-reg argument. If it does fit into a single register, return the result 1840// and leave the Hi part unset. 1841SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 1842 bool isSigned) { 1843 assert(!IsLegalizingCall && "Cannot overlap legalization of calls!"); 1844 // The input chain to this libcall is the entry node of the function. 1845 // Legalizing the call will automatically add the previous call to the 1846 // dependence. 1847 SDValue InChain = DAG.getEntryNode(); 1848 1849 TargetLowering::ArgListTy Args; 1850 TargetLowering::ArgListEntry Entry; 1851 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1852 EVT ArgVT = Node->getOperand(i).getValueType(); 1853 const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 1854 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; 1855 Entry.isSExt = isSigned; 1856 Entry.isZExt = !isSigned; 1857 Args.push_back(Entry); 1858 } 1859 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 1860 TLI.getPointerTy()); 1861 1862 // Splice the libcall in wherever FindInputOutputChains tells us to. 1863 const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); 1864 std::pair<SDValue, SDValue> CallInfo = 1865 TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false, 1866 0, TLI.getLibcallCallingConv(LC), false, 1867 /*isReturnValueUsed=*/true, 1868 Callee, Args, DAG, 1869 Node->getDebugLoc(), DAG.GetOrdering(Node)); 1870 1871 // Legalize the call sequence, starting with the chain. This will advance 1872 // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that 1873 // was added by LowerCallTo (guaranteeing proper serialization of calls). 1874 LegalizeOp(CallInfo.second); 1875 return CallInfo.first; 1876} 1877 1878SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 1879 RTLIB::Libcall Call_F32, 1880 RTLIB::Libcall Call_F64, 1881 RTLIB::Libcall Call_F80, 1882 RTLIB::Libcall Call_PPCF128) { 1883 RTLIB::Libcall LC; 1884 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 1885 default: llvm_unreachable("Unexpected request for libcall!"); 1886 case MVT::f32: LC = Call_F32; break; 1887 case MVT::f64: LC = Call_F64; break; 1888 case MVT::f80: LC = Call_F80; break; 1889 case MVT::ppcf128: LC = Call_PPCF128; break; 1890 } 1891 return ExpandLibCall(LC, Node, false); 1892} 1893 1894SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, 1895 RTLIB::Libcall Call_I8, 1896 RTLIB::Libcall Call_I16, 1897 RTLIB::Libcall Call_I32, 1898 RTLIB::Libcall Call_I64, 1899 RTLIB::Libcall Call_I128) { 1900 RTLIB::Libcall LC; 1901 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 1902 default: llvm_unreachable("Unexpected request for libcall!"); 1903 case MVT::i8: LC = Call_I8; break; 1904 case MVT::i16: LC = Call_I16; break; 1905 case MVT::i32: LC = Call_I32; break; 1906 case MVT::i64: LC = Call_I64; break; 1907 case MVT::i128: LC = Call_I128; break; 1908 } 1909 return ExpandLibCall(LC, Node, isSigned); 1910} 1911 1912/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a 1913/// INT_TO_FP operation of the specified operand when the target requests that 1914/// we expand it. At this point, we know that the result and operand types are 1915/// legal for the target. 1916SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, 1917 SDValue Op0, 1918 EVT DestVT, 1919 DebugLoc dl) { 1920 if (Op0.getValueType() == MVT::i32) { 1921 // simple 32-bit [signed|unsigned] integer to float/double expansion 1922 1923 // Get the stack frame index of a 8 byte buffer. 1924 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 1925 1926 // word offset constant for Hi/Lo address computation 1927 SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy()); 1928 // set up Hi and Lo (into buffer) address based on endian 1929 SDValue Hi = StackSlot; 1930 SDValue Lo = DAG.getNode(ISD::ADD, dl, 1931 TLI.getPointerTy(), StackSlot, WordOff); 1932 if (TLI.isLittleEndian()) 1933 std::swap(Hi, Lo); 1934 1935 // if signed map to unsigned space 1936 SDValue Op0Mapped; 1937 if (isSigned) { 1938 // constant used to invert sign bit (signed to unsigned mapping) 1939 SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32); 1940 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit); 1941 } else { 1942 Op0Mapped = Op0; 1943 } 1944 // store the lo of the constructed double - based on integer input 1945 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, 1946 Op0Mapped, Lo, NULL, 0); 1947 // initial hi portion of constructed double 1948 SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32); 1949 // store the hi of the constructed double - biased exponent 1950 SDValue Store2=DAG.getStore(Store1, dl, InitialHi, Hi, NULL, 0); 1951 // load the constructed double 1952 SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, NULL, 0); 1953 // FP constant to bias correct the final result 1954 SDValue Bias = DAG.getConstantFP(isSigned ? 1955 BitsToDouble(0x4330000080000000ULL) : 1956 BitsToDouble(0x4330000000000000ULL), 1957 MVT::f64); 1958 // subtract the bias 1959 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 1960 // final result 1961 SDValue Result; 1962 // handle final rounding 1963 if (DestVT == MVT::f64) { 1964 // do nothing 1965 Result = Sub; 1966 } else if (DestVT.bitsLT(MVT::f64)) { 1967 Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub, 1968 DAG.getIntPtrConstant(0)); 1969 } else if (DestVT.bitsGT(MVT::f64)) { 1970 Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub); 1971 } 1972 return Result; 1973 } 1974 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 1975 SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 1976 1977 SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()), 1978 Op0, DAG.getConstant(0, Op0.getValueType()), 1979 ISD::SETLT); 1980 SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); 1981 SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), 1982 SignSet, Four, Zero); 1983 1984 // If the sign bit of the integer is set, the large number will be treated 1985 // as a negative number. To counteract this, the dynamic code adds an 1986 // offset depending on the data type. 1987 uint64_t FF; 1988 switch (Op0.getValueType().getSimpleVT().SimpleTy) { 1989 default: llvm_unreachable("Unsupported integer type!"); 1990 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 1991 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 1992 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 1993 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 1994 } 1995 if (TLI.isLittleEndian()) FF <<= 32; 1996 Constant *FudgeFactor = ConstantInt::get( 1997 Type::getInt64Ty(*DAG.getContext()), FF); 1998 1999 SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); 2000 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 2001 CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset); 2002 Alignment = std::min(Alignment, 4u); 2003 SDValue FudgeInReg; 2004 if (DestVT == MVT::f32) 2005 FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2006 PseudoSourceValue::getConstantPool(), 0, 2007 false, Alignment); 2008 else { 2009 FudgeInReg = 2010 LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, 2011 DAG.getEntryNode(), CPIdx, 2012 PseudoSourceValue::getConstantPool(), 0, 2013 MVT::f32, false, Alignment)); 2014 } 2015 2016 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2017} 2018 2019/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a 2020/// *INT_TO_FP operation of the specified operand when the target requests that 2021/// we promote it. At this point, we know that the result and operand types are 2022/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2023/// operation that takes a larger input. 2024SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp, 2025 EVT DestVT, 2026 bool isSigned, 2027 DebugLoc dl) { 2028 // First step, figure out the appropriate *INT_TO_FP operation to use. 2029 EVT NewInTy = LegalOp.getValueType(); 2030 2031 unsigned OpToUse = 0; 2032 2033 // Scan for the appropriate larger type to use. 2034 while (1) { 2035 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2036 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2037 2038 // If the target supports SINT_TO_FP of this type, use it. 2039 if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) { 2040 OpToUse = ISD::SINT_TO_FP; 2041 break; 2042 } 2043 if (isSigned) continue; 2044 2045 // If the target supports UINT_TO_FP of this type, use it. 2046 if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) { 2047 OpToUse = ISD::UINT_TO_FP; 2048 break; 2049 } 2050 2051 // Otherwise, try a larger type. 2052 } 2053 2054 // Okay, we found the operation and type to use. Zero extend our input to the 2055 // desired type then run the operation on it. 2056 return DAG.getNode(OpToUse, dl, DestVT, 2057 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2058 dl, NewInTy, LegalOp)); 2059} 2060 2061/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a 2062/// FP_TO_*INT operation of the specified operand when the target requests that 2063/// we promote it. At this point, we know that the result and operand types are 2064/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2065/// operation that returns a larger result. 2066SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, 2067 EVT DestVT, 2068 bool isSigned, 2069 DebugLoc dl) { 2070 // First step, figure out the appropriate FP_TO*INT operation to use. 2071 EVT NewOutTy = DestVT; 2072 2073 unsigned OpToUse = 0; 2074 2075 // Scan for the appropriate larger type to use. 2076 while (1) { 2077 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2078 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2079 2080 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) { 2081 OpToUse = ISD::FP_TO_SINT; 2082 break; 2083 } 2084 2085 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) { 2086 OpToUse = ISD::FP_TO_UINT; 2087 break; 2088 } 2089 2090 // Otherwise, try a larger type. 2091 } 2092 2093 2094 // Okay, we found the operation and type to use. 2095 SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2096 2097 // Truncate the result of the extended FP_TO_*INT operation to the desired 2098 // size. 2099 return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2100} 2101 2102/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation. 2103/// 2104SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) { 2105 EVT VT = Op.getValueType(); 2106 EVT SHVT = TLI.getShiftAmountTy(); 2107 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 2108 switch (VT.getSimpleVT().SimpleTy) { 2109 default: llvm_unreachable("Unhandled Expand type in BSWAP!"); 2110 case MVT::i16: 2111 Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2112 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2113 return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); 2114 case MVT::i32: 2115 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT)); 2116 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2117 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2118 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT)); 2119 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT)); 2120 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT)); 2121 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2122 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2123 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2124 case MVT::i64: 2125 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT)); 2126 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT)); 2127 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT)); 2128 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2129 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2130 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT)); 2131 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT)); 2132 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT)); 2133 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT)); 2134 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT)); 2135 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT)); 2136 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT)); 2137 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT)); 2138 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT)); 2139 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 2140 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 2141 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2142 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2143 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 2144 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2145 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 2146 } 2147} 2148 2149/// ExpandBitCount - Expand the specified bitcount instruction into operations. 2150/// 2151SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op, 2152 DebugLoc dl) { 2153 switch (Opc) { 2154 default: llvm_unreachable("Cannot expand this yet!"); 2155 case ISD::CTPOP: { 2156 static const uint64_t mask[6] = { 2157 0x5555555555555555ULL, 0x3333333333333333ULL, 2158 0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL, 2159 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL 2160 }; 2161 EVT VT = Op.getValueType(); 2162 EVT ShVT = TLI.getShiftAmountTy(); 2163 unsigned len = VT.getSizeInBits(); 2164 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 2165 //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8]) 2166 unsigned EltSize = VT.isVector() ? 2167 VT.getVectorElementType().getSizeInBits() : len; 2168 SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT); 2169 SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT); 2170 Op = DAG.getNode(ISD::ADD, dl, VT, 2171 DAG.getNode(ISD::AND, dl, VT, Op, Tmp2), 2172 DAG.getNode(ISD::AND, dl, VT, 2173 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3), 2174 Tmp2)); 2175 } 2176 return Op; 2177 } 2178 case ISD::CTLZ: { 2179 // for now, we do this: 2180 // x = x | (x >> 1); 2181 // x = x | (x >> 2); 2182 // ... 2183 // x = x | (x >>16); 2184 // x = x | (x >>32); // for 64-bit input 2185 // return popcount(~x); 2186 // 2187 // but see also: http://www.hackersdelight.org/HDcode/nlz.cc 2188 EVT VT = Op.getValueType(); 2189 EVT ShVT = TLI.getShiftAmountTy(); 2190 unsigned len = VT.getSizeInBits(); 2191 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 2192 SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT); 2193 Op = DAG.getNode(ISD::OR, dl, VT, Op, 2194 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3)); 2195 } 2196 Op = DAG.getNOT(dl, Op, VT); 2197 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 2198 } 2199 case ISD::CTTZ: { 2200 // for now, we use: { return popcount(~x & (x - 1)); } 2201 // unless the target has ctlz but not ctpop, in which case we use: 2202 // { return 32 - nlz(~x & (x-1)); } 2203 // see also http://www.hackersdelight.org/HDcode/ntz.cc 2204 EVT VT = Op.getValueType(); 2205 SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT, 2206 DAG.getNOT(dl, Op, VT), 2207 DAG.getNode(ISD::SUB, dl, VT, Op, 2208 DAG.getConstant(1, VT))); 2209 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 2210 if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) && 2211 TLI.isOperationLegalOrCustom(ISD::CTLZ, VT)) 2212 return DAG.getNode(ISD::SUB, dl, VT, 2213 DAG.getConstant(VT.getSizeInBits(), VT), 2214 DAG.getNode(ISD::CTLZ, dl, VT, Tmp3)); 2215 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3); 2216 } 2217 } 2218} 2219 2220void SelectionDAGLegalize::ExpandNode(SDNode *Node, 2221 SmallVectorImpl<SDValue> &Results) { 2222 DebugLoc dl = Node->getDebugLoc(); 2223 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 2224 switch (Node->getOpcode()) { 2225 case ISD::CTPOP: 2226 case ISD::CTLZ: 2227 case ISD::CTTZ: 2228 Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl); 2229 Results.push_back(Tmp1); 2230 break; 2231 case ISD::BSWAP: 2232 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl)); 2233 break; 2234 case ISD::FRAMEADDR: 2235 case ISD::RETURNADDR: 2236 case ISD::FRAME_TO_ARGS_OFFSET: 2237 Results.push_back(DAG.getConstant(0, Node->getValueType(0))); 2238 break; 2239 case ISD::FLT_ROUNDS_: 2240 Results.push_back(DAG.getConstant(1, Node->getValueType(0))); 2241 break; 2242 case ISD::EH_RETURN: 2243 case ISD::EH_LABEL: 2244 case ISD::PREFETCH: 2245 case ISD::MEMBARRIER: 2246 case ISD::VAEND: 2247 Results.push_back(Node->getOperand(0)); 2248 break; 2249 case ISD::DYNAMIC_STACKALLOC: 2250 ExpandDYNAMIC_STACKALLOC(Node, Results); 2251 break; 2252 case ISD::MERGE_VALUES: 2253 for (unsigned i = 0; i < Node->getNumValues(); i++) 2254 Results.push_back(Node->getOperand(i)); 2255 break; 2256 case ISD::UNDEF: { 2257 EVT VT = Node->getValueType(0); 2258 if (VT.isInteger()) 2259 Results.push_back(DAG.getConstant(0, VT)); 2260 else if (VT.isFloatingPoint()) 2261 Results.push_back(DAG.getConstantFP(0, VT)); 2262 else 2263 llvm_unreachable("Unknown value type!"); 2264 break; 2265 } 2266 case ISD::TRAP: { 2267 // If this operation is not supported, lower it to 'abort()' call 2268 TargetLowering::ArgListTy Args; 2269 std::pair<SDValue, SDValue> CallResult = 2270 TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()), 2271 false, false, false, false, 0, CallingConv::C, false, 2272 /*isReturnValueUsed=*/true, 2273 DAG.getExternalSymbol("abort", TLI.getPointerTy()), 2274 Args, DAG, dl, DAG.GetOrdering(Node)); 2275 Results.push_back(CallResult.second); 2276 break; 2277 } 2278 case ISD::FP_ROUND: 2279 case ISD::BIT_CONVERT: 2280 Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 2281 Node->getValueType(0), dl); 2282 Results.push_back(Tmp1); 2283 break; 2284 case ISD::FP_EXTEND: 2285 Tmp1 = EmitStackConvert(Node->getOperand(0), 2286 Node->getOperand(0).getValueType(), 2287 Node->getValueType(0), dl); 2288 Results.push_back(Tmp1); 2289 break; 2290 case ISD::SIGN_EXTEND_INREG: { 2291 // NOTE: we could fall back on load/store here too for targets without 2292 // SAR. However, it is doubtful that any exist. 2293 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2294 EVT VT = Node->getValueType(0); 2295 EVT ShiftAmountTy = TLI.getShiftAmountTy(); 2296 if (VT.isVector()) 2297 ShiftAmountTy = VT; 2298 unsigned BitsDiff = VT.getScalarType().getSizeInBits() - 2299 ExtraVT.getScalarType().getSizeInBits(); 2300 SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy); 2301 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 2302 Node->getOperand(0), ShiftCst); 2303 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 2304 Results.push_back(Tmp1); 2305 break; 2306 } 2307 case ISD::FP_ROUND_INREG: { 2308 // The only way we can lower this is to turn it into a TRUNCSTORE, 2309 // EXTLOAD pair, targetting a temporary location (a stack slot). 2310 2311 // NOTE: there is a choice here between constantly creating new stack 2312 // slots and always reusing the same one. We currently always create 2313 // new ones, as reuse may inhibit scheduling. 2314 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2315 Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT, 2316 Node->getValueType(0), dl); 2317 Results.push_back(Tmp1); 2318 break; 2319 } 2320 case ISD::SINT_TO_FP: 2321 case ISD::UINT_TO_FP: 2322 Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP, 2323 Node->getOperand(0), Node->getValueType(0), dl); 2324 Results.push_back(Tmp1); 2325 break; 2326 case ISD::FP_TO_UINT: { 2327 SDValue True, False; 2328 EVT VT = Node->getOperand(0).getValueType(); 2329 EVT NVT = Node->getValueType(0); 2330 const uint64_t zero[] = {0, 0}; 2331 APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero)); 2332 APInt x = APInt::getSignBit(NVT.getSizeInBits()); 2333 (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven); 2334 Tmp1 = DAG.getConstantFP(apf, VT); 2335 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), 2336 Node->getOperand(0), 2337 Tmp1, ISD::SETLT); 2338 True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0)); 2339 False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, 2340 DAG.getNode(ISD::FSUB, dl, VT, 2341 Node->getOperand(0), Tmp1)); 2342 False = DAG.getNode(ISD::XOR, dl, NVT, False, 2343 DAG.getConstant(x, NVT)); 2344 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False); 2345 Results.push_back(Tmp1); 2346 break; 2347 } 2348 case ISD::VAARG: { 2349 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2350 EVT VT = Node->getValueType(0); 2351 Tmp1 = Node->getOperand(0); 2352 Tmp2 = Node->getOperand(1); 2353 SDValue VAList = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0); 2354 // Increment the pointer, VAList, to the next vaarg 2355 Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList, 2356 DAG.getConstant(TLI.getTargetData()-> 2357 getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())), 2358 TLI.getPointerTy())); 2359 // Store the incremented VAList to the legalized pointer 2360 Tmp3 = DAG.getStore(VAList.getValue(1), dl, Tmp3, Tmp2, V, 0); 2361 // Load the actual argument out of the pointer VAList 2362 Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, NULL, 0)); 2363 Results.push_back(Results[0].getValue(1)); 2364 break; 2365 } 2366 case ISD::VACOPY: { 2367 // This defaults to loading a pointer from the input and storing it to the 2368 // output, returning the chain. 2369 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2370 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2371 Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0), 2372 Node->getOperand(2), VS, 0); 2373 Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), VD, 0); 2374 Results.push_back(Tmp1); 2375 break; 2376 } 2377 case ISD::EXTRACT_VECTOR_ELT: 2378 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) 2379 // This must be an access of the only element. Return it. 2380 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0), 2381 Node->getOperand(0)); 2382 else 2383 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 2384 Results.push_back(Tmp1); 2385 break; 2386 case ISD::EXTRACT_SUBVECTOR: 2387 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 2388 break; 2389 case ISD::CONCAT_VECTORS: { 2390 Results.push_back(ExpandVectorBuildThroughStack(Node)); 2391 break; 2392 } 2393 case ISD::SCALAR_TO_VECTOR: 2394 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 2395 break; 2396 case ISD::INSERT_VECTOR_ELT: 2397 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), 2398 Node->getOperand(1), 2399 Node->getOperand(2), dl)); 2400 break; 2401 case ISD::VECTOR_SHUFFLE: { 2402 SmallVector<int, 8> Mask; 2403 cast<ShuffleVectorSDNode>(Node)->getMask(Mask); 2404 2405 EVT VT = Node->getValueType(0); 2406 EVT EltVT = VT.getVectorElementType(); 2407 unsigned NumElems = VT.getVectorNumElements(); 2408 SmallVector<SDValue, 8> Ops; 2409 for (unsigned i = 0; i != NumElems; ++i) { 2410 if (Mask[i] < 0) { 2411 Ops.push_back(DAG.getUNDEF(EltVT)); 2412 continue; 2413 } 2414 unsigned Idx = Mask[i]; 2415 if (Idx < NumElems) 2416 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, 2417 Node->getOperand(0), 2418 DAG.getIntPtrConstant(Idx))); 2419 else 2420 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, 2421 Node->getOperand(1), 2422 DAG.getIntPtrConstant(Idx - NumElems))); 2423 } 2424 Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size()); 2425 Results.push_back(Tmp1); 2426 break; 2427 } 2428 case ISD::EXTRACT_ELEMENT: { 2429 EVT OpTy = Node->getOperand(0).getValueType(); 2430 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 2431 // 1 -> Hi 2432 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 2433 DAG.getConstant(OpTy.getSizeInBits()/2, 2434 TLI.getShiftAmountTy())); 2435 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 2436 } else { 2437 // 0 -> Lo 2438 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 2439 Node->getOperand(0)); 2440 } 2441 Results.push_back(Tmp1); 2442 break; 2443 } 2444 case ISD::STACKSAVE: 2445 // Expand to CopyFromReg if the target set 2446 // StackPointerRegisterToSaveRestore. 2447 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 2448 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 2449 Node->getValueType(0))); 2450 Results.push_back(Results[0].getValue(1)); 2451 } else { 2452 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 2453 Results.push_back(Node->getOperand(0)); 2454 } 2455 break; 2456 case ISD::STACKRESTORE: 2457 // Expand to CopyToReg if the target set 2458 // StackPointerRegisterToSaveRestore. 2459 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 2460 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 2461 Node->getOperand(1))); 2462 } else { 2463 Results.push_back(Node->getOperand(0)); 2464 } 2465 break; 2466 case ISD::FCOPYSIGN: 2467 Results.push_back(ExpandFCOPYSIGN(Node)); 2468 break; 2469 case ISD::FNEG: 2470 // Expand Y = FNEG(X) -> Y = SUB -0.0, X 2471 Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0)); 2472 Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1, 2473 Node->getOperand(0)); 2474 Results.push_back(Tmp1); 2475 break; 2476 case ISD::FABS: { 2477 // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X). 2478 EVT VT = Node->getValueType(0); 2479 Tmp1 = Node->getOperand(0); 2480 Tmp2 = DAG.getConstantFP(0.0, VT); 2481 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()), 2482 Tmp1, Tmp2, ISD::SETUGT); 2483 Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1); 2484 Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3); 2485 Results.push_back(Tmp1); 2486 break; 2487 } 2488 case ISD::FSQRT: 2489 Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 2490 RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128)); 2491 break; 2492 case ISD::FSIN: 2493 Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 2494 RTLIB::SIN_F80, RTLIB::SIN_PPCF128)); 2495 break; 2496 case ISD::FCOS: 2497 Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 2498 RTLIB::COS_F80, RTLIB::COS_PPCF128)); 2499 break; 2500 case ISD::FLOG: 2501 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, 2502 RTLIB::LOG_F80, RTLIB::LOG_PPCF128)); 2503 break; 2504 case ISD::FLOG2: 2505 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, 2506 RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128)); 2507 break; 2508 case ISD::FLOG10: 2509 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, 2510 RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128)); 2511 break; 2512 case ISD::FEXP: 2513 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, 2514 RTLIB::EXP_F80, RTLIB::EXP_PPCF128)); 2515 break; 2516 case ISD::FEXP2: 2517 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, 2518 RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128)); 2519 break; 2520 case ISD::FTRUNC: 2521 Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 2522 RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128)); 2523 break; 2524 case ISD::FFLOOR: 2525 Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 2526 RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128)); 2527 break; 2528 case ISD::FCEIL: 2529 Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 2530 RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128)); 2531 break; 2532 case ISD::FRINT: 2533 Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 2534 RTLIB::RINT_F80, RTLIB::RINT_PPCF128)); 2535 break; 2536 case ISD::FNEARBYINT: 2537 Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 2538 RTLIB::NEARBYINT_F64, 2539 RTLIB::NEARBYINT_F80, 2540 RTLIB::NEARBYINT_PPCF128)); 2541 break; 2542 case ISD::FPOWI: 2543 Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64, 2544 RTLIB::POWI_F80, RTLIB::POWI_PPCF128)); 2545 break; 2546 case ISD::FPOW: 2547 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, 2548 RTLIB::POW_F80, RTLIB::POW_PPCF128)); 2549 break; 2550 case ISD::FDIV: 2551 Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 2552 RTLIB::DIV_F80, RTLIB::DIV_PPCF128)); 2553 break; 2554 case ISD::FREM: 2555 Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 2556 RTLIB::REM_F80, RTLIB::REM_PPCF128)); 2557 break; 2558 case ISD::ConstantFP: { 2559 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 2560 // Check to see if this FP immediate is already legal. 2561 // If this is a legal constant, turn it into a TargetConstantFP node. 2562 if (TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0))) 2563 Results.push_back(SDValue(Node, 0)); 2564 else 2565 Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI)); 2566 break; 2567 } 2568 case ISD::EHSELECTION: { 2569 unsigned Reg = TLI.getExceptionSelectorRegister(); 2570 assert(Reg && "Can't expand to unknown register!"); 2571 Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg, 2572 Node->getValueType(0))); 2573 Results.push_back(Results[0].getValue(1)); 2574 break; 2575 } 2576 case ISD::EXCEPTIONADDR: { 2577 unsigned Reg = TLI.getExceptionAddressRegister(); 2578 assert(Reg && "Can't expand to unknown register!"); 2579 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg, 2580 Node->getValueType(0))); 2581 Results.push_back(Results[0].getValue(1)); 2582 break; 2583 } 2584 case ISD::SUB: { 2585 EVT VT = Node->getValueType(0); 2586 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 2587 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 2588 "Don't know how to expand this subtraction!"); 2589 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1), 2590 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT)); 2591 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT)); 2592 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 2593 break; 2594 } 2595 case ISD::UREM: 2596 case ISD::SREM: { 2597 EVT VT = Node->getValueType(0); 2598 SDVTList VTs = DAG.getVTList(VT, VT); 2599 bool isSigned = Node->getOpcode() == ISD::SREM; 2600 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 2601 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 2602 Tmp2 = Node->getOperand(0); 2603 Tmp3 = Node->getOperand(1); 2604 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 2605 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1); 2606 } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) { 2607 // X % Y -> X-X/Y*Y 2608 Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3); 2609 Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3); 2610 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1); 2611 } else if (isSigned) { 2612 Tmp1 = ExpandIntLibCall(Node, true, 2613 RTLIB::SREM_I8, 2614 RTLIB::SREM_I16, RTLIB::SREM_I32, 2615 RTLIB::SREM_I64, RTLIB::SREM_I128); 2616 } else { 2617 Tmp1 = ExpandIntLibCall(Node, false, 2618 RTLIB::UREM_I8, 2619 RTLIB::UREM_I16, RTLIB::UREM_I32, 2620 RTLIB::UREM_I64, RTLIB::UREM_I128); 2621 } 2622 Results.push_back(Tmp1); 2623 break; 2624 } 2625 case ISD::UDIV: 2626 case ISD::SDIV: { 2627 bool isSigned = Node->getOpcode() == ISD::SDIV; 2628 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 2629 EVT VT = Node->getValueType(0); 2630 SDVTList VTs = DAG.getVTList(VT, VT); 2631 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) 2632 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 2633 Node->getOperand(1)); 2634 else if (isSigned) 2635 Tmp1 = ExpandIntLibCall(Node, true, 2636 RTLIB::SDIV_I8, 2637 RTLIB::SDIV_I16, RTLIB::SDIV_I32, 2638 RTLIB::SDIV_I64, RTLIB::SDIV_I128); 2639 else 2640 Tmp1 = ExpandIntLibCall(Node, false, 2641 RTLIB::UDIV_I8, 2642 RTLIB::UDIV_I16, RTLIB::UDIV_I32, 2643 RTLIB::UDIV_I64, RTLIB::UDIV_I128); 2644 Results.push_back(Tmp1); 2645 break; 2646 } 2647 case ISD::MULHU: 2648 case ISD::MULHS: { 2649 unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : 2650 ISD::SMUL_LOHI; 2651 EVT VT = Node->getValueType(0); 2652 SDVTList VTs = DAG.getVTList(VT, VT); 2653 assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) && 2654 "If this wasn't legal, it shouldn't have been created!"); 2655 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 2656 Node->getOperand(1)); 2657 Results.push_back(Tmp1.getValue(1)); 2658 break; 2659 } 2660 case ISD::MUL: { 2661 EVT VT = Node->getValueType(0); 2662 SDVTList VTs = DAG.getVTList(VT, VT); 2663 // See if multiply or divide can be lowered using two-result operations. 2664 // We just need the low half of the multiply; try both the signed 2665 // and unsigned forms. If the target supports both SMUL_LOHI and 2666 // UMUL_LOHI, form a preference by checking which forms of plain 2667 // MULH it supports. 2668 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 2669 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 2670 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 2671 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 2672 unsigned OpToUse = 0; 2673 if (HasSMUL_LOHI && !HasMULHS) { 2674 OpToUse = ISD::SMUL_LOHI; 2675 } else if (HasUMUL_LOHI && !HasMULHU) { 2676 OpToUse = ISD::UMUL_LOHI; 2677 } else if (HasSMUL_LOHI) { 2678 OpToUse = ISD::SMUL_LOHI; 2679 } else if (HasUMUL_LOHI) { 2680 OpToUse = ISD::UMUL_LOHI; 2681 } 2682 if (OpToUse) { 2683 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 2684 Node->getOperand(1))); 2685 break; 2686 } 2687 Tmp1 = ExpandIntLibCall(Node, false, 2688 RTLIB::MUL_I8, 2689 RTLIB::MUL_I16, RTLIB::MUL_I32, 2690 RTLIB::MUL_I64, RTLIB::MUL_I128); 2691 Results.push_back(Tmp1); 2692 break; 2693 } 2694 case ISD::SADDO: 2695 case ISD::SSUBO: { 2696 SDValue LHS = Node->getOperand(0); 2697 SDValue RHS = Node->getOperand(1); 2698 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ? 2699 ISD::ADD : ISD::SUB, dl, LHS.getValueType(), 2700 LHS, RHS); 2701 Results.push_back(Sum); 2702 EVT OType = Node->getValueType(1); 2703 2704 SDValue Zero = DAG.getConstant(0, LHS.getValueType()); 2705 2706 // LHSSign -> LHS >= 0 2707 // RHSSign -> RHS >= 0 2708 // SumSign -> Sum >= 0 2709 // 2710 // Add: 2711 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) 2712 // Sub: 2713 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) 2714 // 2715 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE); 2716 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE); 2717 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign, 2718 Node->getOpcode() == ISD::SADDO ? 2719 ISD::SETEQ : ISD::SETNE); 2720 2721 SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE); 2722 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE); 2723 2724 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE); 2725 Results.push_back(Cmp); 2726 break; 2727 } 2728 case ISD::UADDO: 2729 case ISD::USUBO: { 2730 SDValue LHS = Node->getOperand(0); 2731 SDValue RHS = Node->getOperand(1); 2732 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ? 2733 ISD::ADD : ISD::SUB, dl, LHS.getValueType(), 2734 LHS, RHS); 2735 Results.push_back(Sum); 2736 Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS, 2737 Node->getOpcode () == ISD::UADDO ? 2738 ISD::SETULT : ISD::SETUGT)); 2739 break; 2740 } 2741 case ISD::UMULO: 2742 case ISD::SMULO: { 2743 EVT VT = Node->getValueType(0); 2744 SDValue LHS = Node->getOperand(0); 2745 SDValue RHS = Node->getOperand(1); 2746 SDValue BottomHalf; 2747 SDValue TopHalf; 2748 static const unsigned Ops[2][3] = 2749 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 2750 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 2751 bool isSigned = Node->getOpcode() == ISD::SMULO; 2752 if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 2753 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 2754 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 2755 } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 2756 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 2757 RHS); 2758 TopHalf = BottomHalf.getValue(1); 2759 } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2))) { 2760 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2); 2761 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 2762 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 2763 Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 2764 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, 2765 DAG.getIntPtrConstant(0)); 2766 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, 2767 DAG.getIntPtrConstant(1)); 2768 } else { 2769 // FIXME: We should be able to fall back to a libcall with an illegal 2770 // type in some cases cases. 2771 // Also, we can fall back to a division in some cases, but that's a big 2772 // performance hit in the general case. 2773 llvm_unreachable("Don't know how to expand this operation yet!"); 2774 } 2775 if (isSigned) { 2776 Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, TLI.getShiftAmountTy()); 2777 Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1); 2778 TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1, 2779 ISD::SETNE); 2780 } else { 2781 TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, 2782 DAG.getConstant(0, VT), ISD::SETNE); 2783 } 2784 Results.push_back(BottomHalf); 2785 Results.push_back(TopHalf); 2786 break; 2787 } 2788 case ISD::BUILD_PAIR: { 2789 EVT PairTy = Node->getValueType(0); 2790 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 2791 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 2792 Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2, 2793 DAG.getConstant(PairTy.getSizeInBits()/2, 2794 TLI.getShiftAmountTy())); 2795 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 2796 break; 2797 } 2798 case ISD::SELECT: 2799 Tmp1 = Node->getOperand(0); 2800 Tmp2 = Node->getOperand(1); 2801 Tmp3 = Node->getOperand(2); 2802 if (Tmp1.getOpcode() == ISD::SETCC) { 2803 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 2804 Tmp2, Tmp3, 2805 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 2806 } else { 2807 Tmp1 = DAG.getSelectCC(dl, Tmp1, 2808 DAG.getConstant(0, Tmp1.getValueType()), 2809 Tmp2, Tmp3, ISD::SETNE); 2810 } 2811 Results.push_back(Tmp1); 2812 break; 2813 case ISD::BR_JT: { 2814 SDValue Chain = Node->getOperand(0); 2815 SDValue Table = Node->getOperand(1); 2816 SDValue Index = Node->getOperand(2); 2817 2818 EVT PTy = TLI.getPointerTy(); 2819 2820 const TargetData &TD = *TLI.getTargetData(); 2821 unsigned EntrySize = 2822 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 2823 2824 Index = DAG.getNode(ISD::MUL, dl, PTy, 2825 Index, DAG.getConstant(EntrySize, PTy)); 2826 SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table); 2827 2828 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 2829 SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr, 2830 PseudoSourceValue::getJumpTable(), 0, MemVT); 2831 Addr = LD; 2832 if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) { 2833 // For PIC, the sequence is: 2834 // BRIND(load(Jumptable + index) + RelocBase) 2835 // RelocBase can be JumpTable, GOT or some sort of global base. 2836 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 2837 TLI.getPICJumpTableRelocBase(Table, DAG)); 2838 } 2839 Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr); 2840 Results.push_back(Tmp1); 2841 break; 2842 } 2843 case ISD::BRCOND: 2844 // Expand brcond's setcc into its constituent parts and create a BR_CC 2845 // Node. 2846 Tmp1 = Node->getOperand(0); 2847 Tmp2 = Node->getOperand(1); 2848 if (Tmp2.getOpcode() == ISD::SETCC) { 2849 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, 2850 Tmp1, Tmp2.getOperand(2), 2851 Tmp2.getOperand(0), Tmp2.getOperand(1), 2852 Node->getOperand(2)); 2853 } else { 2854 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 2855 DAG.getCondCode(ISD::SETNE), Tmp2, 2856 DAG.getConstant(0, Tmp2.getValueType()), 2857 Node->getOperand(2)); 2858 } 2859 Results.push_back(Tmp1); 2860 break; 2861 case ISD::SETCC: { 2862 Tmp1 = Node->getOperand(0); 2863 Tmp2 = Node->getOperand(1); 2864 Tmp3 = Node->getOperand(2); 2865 LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl); 2866 2867 // If we expanded the SETCC into an AND/OR, return the new node 2868 if (Tmp2.getNode() == 0) { 2869 Results.push_back(Tmp1); 2870 break; 2871 } 2872 2873 // Otherwise, SETCC for the given comparison type must be completely 2874 // illegal; expand it into a SELECT_CC. 2875 EVT VT = Node->getValueType(0); 2876 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 2877 DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3); 2878 Results.push_back(Tmp1); 2879 break; 2880 } 2881 case ISD::SELECT_CC: { 2882 Tmp1 = Node->getOperand(0); // LHS 2883 Tmp2 = Node->getOperand(1); // RHS 2884 Tmp3 = Node->getOperand(2); // True 2885 Tmp4 = Node->getOperand(3); // False 2886 SDValue CC = Node->getOperand(4); 2887 2888 LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()), 2889 Tmp1, Tmp2, CC, dl); 2890 2891 assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!"); 2892 Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); 2893 CC = DAG.getCondCode(ISD::SETNE); 2894 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2, 2895 Tmp3, Tmp4, CC); 2896 Results.push_back(Tmp1); 2897 break; 2898 } 2899 case ISD::BR_CC: { 2900 Tmp1 = Node->getOperand(0); // Chain 2901 Tmp2 = Node->getOperand(2); // LHS 2902 Tmp3 = Node->getOperand(3); // RHS 2903 Tmp4 = Node->getOperand(1); // CC 2904 2905 LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()), 2906 Tmp2, Tmp3, Tmp4, dl); 2907 LastCALLSEQ_END = DAG.getEntryNode(); 2908 2909 assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!"); 2910 Tmp3 = DAG.getConstant(0, Tmp2.getValueType()); 2911 Tmp4 = DAG.getCondCode(ISD::SETNE); 2912 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2, 2913 Tmp3, Node->getOperand(4)); 2914 Results.push_back(Tmp1); 2915 break; 2916 } 2917 case ISD::GLOBAL_OFFSET_TABLE: 2918 case ISD::GlobalAddress: 2919 case ISD::GlobalTLSAddress: 2920 case ISD::ExternalSymbol: 2921 case ISD::ConstantPool: 2922 case ISD::JumpTable: 2923 case ISD::INTRINSIC_W_CHAIN: 2924 case ISD::INTRINSIC_WO_CHAIN: 2925 case ISD::INTRINSIC_VOID: 2926 // FIXME: Custom lowering for these operations shouldn't return null! 2927 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 2928 Results.push_back(SDValue(Node, i)); 2929 break; 2930 } 2931} 2932void SelectionDAGLegalize::PromoteNode(SDNode *Node, 2933 SmallVectorImpl<SDValue> &Results) { 2934 EVT OVT = Node->getValueType(0); 2935 if (Node->getOpcode() == ISD::UINT_TO_FP || 2936 Node->getOpcode() == ISD::SINT_TO_FP || 2937 Node->getOpcode() == ISD::SETCC) { 2938 OVT = Node->getOperand(0).getValueType(); 2939 } 2940 EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 2941 DebugLoc dl = Node->getDebugLoc(); 2942 SDValue Tmp1, Tmp2, Tmp3; 2943 switch (Node->getOpcode()) { 2944 case ISD::CTTZ: 2945 case ISD::CTLZ: 2946 case ISD::CTPOP: 2947 // Zero extend the argument. 2948 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 2949 // Perform the larger operation. 2950 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 2951 if (Node->getOpcode() == ISD::CTTZ) { 2952 //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) 2953 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), 2954 Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT), 2955 ISD::SETEQ); 2956 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, 2957 DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1); 2958 } else if (Node->getOpcode() == ISD::CTLZ) { 2959 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 2960 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 2961 DAG.getConstant(NVT.getSizeInBits() - 2962 OVT.getSizeInBits(), NVT)); 2963 } 2964 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 2965 break; 2966 case ISD::BSWAP: { 2967 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 2968 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 2969 Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1); 2970 Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1, 2971 DAG.getConstant(DiffBits, TLI.getShiftAmountTy())); 2972 Results.push_back(Tmp1); 2973 break; 2974 } 2975 case ISD::FP_TO_UINT: 2976 case ISD::FP_TO_SINT: 2977 Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0), 2978 Node->getOpcode() == ISD::FP_TO_SINT, dl); 2979 Results.push_back(Tmp1); 2980 break; 2981 case ISD::UINT_TO_FP: 2982 case ISD::SINT_TO_FP: 2983 Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0), 2984 Node->getOpcode() == ISD::SINT_TO_FP, dl); 2985 Results.push_back(Tmp1); 2986 break; 2987 case ISD::AND: 2988 case ISD::OR: 2989 case ISD::XOR: { 2990 unsigned ExtOp, TruncOp; 2991 if (OVT.isVector()) { 2992 ExtOp = ISD::BIT_CONVERT; 2993 TruncOp = ISD::BIT_CONVERT; 2994 } else if (OVT.isInteger()) { 2995 ExtOp = ISD::ANY_EXTEND; 2996 TruncOp = ISD::TRUNCATE; 2997 } else { 2998 llvm_report_error("Cannot promote logic operation"); 2999 } 3000 // Promote each of the values to the new type. 3001 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 3002 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 3003 // Perform the larger operation, then convert back 3004 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 3005 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 3006 break; 3007 } 3008 case ISD::SELECT: { 3009 unsigned ExtOp, TruncOp; 3010 if (Node->getValueType(0).isVector()) { 3011 ExtOp = ISD::BIT_CONVERT; 3012 TruncOp = ISD::BIT_CONVERT; 3013 } else if (Node->getValueType(0).isInteger()) { 3014 ExtOp = ISD::ANY_EXTEND; 3015 TruncOp = ISD::TRUNCATE; 3016 } else { 3017 ExtOp = ISD::FP_EXTEND; 3018 TruncOp = ISD::FP_ROUND; 3019 } 3020 Tmp1 = Node->getOperand(0); 3021 // Promote each of the values to the new type. 3022 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 3023 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 3024 // Perform the larger operation, then round down. 3025 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3); 3026 if (TruncOp != ISD::FP_ROUND) 3027 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 3028 else 3029 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 3030 DAG.getIntPtrConstant(0)); 3031 Results.push_back(Tmp1); 3032 break; 3033 } 3034 case ISD::VECTOR_SHUFFLE: { 3035 SmallVector<int, 8> Mask; 3036 cast<ShuffleVectorSDNode>(Node)->getMask(Mask); 3037 3038 // Cast the two input vectors. 3039 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0)); 3040 Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1)); 3041 3042 // Convert the shuffle mask to the right # elements. 3043 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 3044 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1); 3045 Results.push_back(Tmp1); 3046 break; 3047 } 3048 case ISD::SETCC: { 3049 unsigned ExtOp = ISD::FP_EXTEND; 3050 if (NVT.isInteger()) { 3051 ISD::CondCode CCCode = 3052 cast<CondCodeSDNode>(Node->getOperand(2))->get(); 3053 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 3054 } 3055 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 3056 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 3057 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), 3058 Tmp1, Tmp2, Node->getOperand(2))); 3059 break; 3060 } 3061 } 3062} 3063 3064// SelectionDAG::Legalize - This is the entry point for the file. 3065// 3066void SelectionDAG::Legalize(CodeGenOpt::Level OptLevel) { 3067 /// run - This is the main entry point to this class. 3068 /// 3069 SelectionDAGLegalize(*this, OptLevel).LegalizeDAG(); 3070} 3071 3072