LegalizeDAG.cpp revision 0753fc1850a1ca4d17acca854d830d67737fd623
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the SelectionDAG::Legalize method. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/SelectionDAG.h" 15#include "llvm/CodeGen/MachineFunction.h" 16#include "llvm/CodeGen/MachineFrameInfo.h" 17#include "llvm/CodeGen/MachineJumpTableInfo.h" 18#include "llvm/CodeGen/MachineModuleInfo.h" 19#include "llvm/CodeGen/PseudoSourceValue.h" 20#include "llvm/Target/TargetFrameInfo.h" 21#include "llvm/Target/TargetLowering.h" 22#include "llvm/Target/TargetData.h" 23#include "llvm/Target/TargetMachine.h" 24#include "llvm/Target/TargetOptions.h" 25#include "llvm/CallingConv.h" 26#include "llvm/Constants.h" 27#include "llvm/DerivedTypes.h" 28#include "llvm/Support/CommandLine.h" 29#include "llvm/Support/Compiler.h" 30#include "llvm/Support/MathExtras.h" 31#include "llvm/ADT/DenseMap.h" 32#include "llvm/ADT/SmallVector.h" 33#include "llvm/ADT/SmallPtrSet.h" 34#include <map> 35using namespace llvm; 36 37#ifndef NDEBUG 38static cl::opt<bool> 39ViewLegalizeDAGs("view-legalize-dags", cl::Hidden, 40 cl::desc("Pop up a window to show dags before legalize")); 41#else 42static const bool ViewLegalizeDAGs = 0; 43#endif 44 45//===----------------------------------------------------------------------===// 46/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and 47/// hacks on it until the target machine can handle it. This involves 48/// eliminating value sizes the machine cannot handle (promoting small sizes to 49/// large sizes or splitting up large values into small values) as well as 50/// eliminating operations the machine cannot handle. 51/// 52/// This code also does a small amount of optimization and recognition of idioms 53/// as part of its processing. For example, if a target does not support a 54/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 55/// will attempt merge setcc and brc instructions into brcc's. 56/// 57namespace { 58class VISIBILITY_HIDDEN SelectionDAGLegalize { 59 TargetLowering &TLI; 60 SelectionDAG &DAG; 61 62 // Libcall insertion helpers. 63 64 /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been 65 /// legalized. We use this to ensure that calls are properly serialized 66 /// against each other, including inserted libcalls. 67 SDOperand LastCALLSEQ_END; 68 69 /// IsLegalizingCall - This member is used *only* for purposes of providing 70 /// helpful assertions that a libcall isn't created while another call is 71 /// being legalized (which could lead to non-serialized call sequences). 72 bool IsLegalizingCall; 73 74 enum LegalizeAction { 75 Legal, // The target natively supports this operation. 76 Promote, // This operation should be executed in a larger type. 77 Expand // Try to expand this to other ops, otherwise use a libcall. 78 }; 79 80 /// ValueTypeActions - This is a bitvector that contains two bits for each 81 /// value type, where the two bits correspond to the LegalizeAction enum. 82 /// This can be queried with "getTypeAction(VT)". 83 TargetLowering::ValueTypeActionImpl ValueTypeActions; 84 85 /// LegalizedNodes - For nodes that are of legal width, and that have more 86 /// than one use, this map indicates what regularized operand to use. This 87 /// allows us to avoid legalizing the same thing more than once. 88 DenseMap<SDOperand, SDOperand> LegalizedNodes; 89 90 /// PromotedNodes - For nodes that are below legal width, and that have more 91 /// than one use, this map indicates what promoted value to use. This allows 92 /// us to avoid promoting the same thing more than once. 93 DenseMap<SDOperand, SDOperand> PromotedNodes; 94 95 /// ExpandedNodes - For nodes that need to be expanded this map indicates 96 /// which which operands are the expanded version of the input. This allows 97 /// us to avoid expanding the same node more than once. 98 DenseMap<SDOperand, std::pair<SDOperand, SDOperand> > ExpandedNodes; 99 100 /// SplitNodes - For vector nodes that need to be split, this map indicates 101 /// which which operands are the split version of the input. This allows us 102 /// to avoid splitting the same node more than once. 103 std::map<SDOperand, std::pair<SDOperand, SDOperand> > SplitNodes; 104 105 /// ScalarizedNodes - For nodes that need to be converted from vector types to 106 /// scalar types, this contains the mapping of ones we have already 107 /// processed to the result. 108 std::map<SDOperand, SDOperand> ScalarizedNodes; 109 110 void AddLegalizedOperand(SDOperand From, SDOperand To) { 111 LegalizedNodes.insert(std::make_pair(From, To)); 112 // If someone requests legalization of the new node, return itself. 113 if (From != To) 114 LegalizedNodes.insert(std::make_pair(To, To)); 115 } 116 void AddPromotedOperand(SDOperand From, SDOperand To) { 117 bool isNew = PromotedNodes.insert(std::make_pair(From, To)); 118 assert(isNew && "Got into the map somehow?"); 119 // If someone requests legalization of the new node, return itself. 120 LegalizedNodes.insert(std::make_pair(To, To)); 121 } 122 123public: 124 125 SelectionDAGLegalize(SelectionDAG &DAG); 126 127 /// getTypeAction - Return how we should legalize values of this type, either 128 /// it is already legal or we need to expand it into multiple registers of 129 /// smaller integer type, or we need to promote it to a larger type. 130 LegalizeAction getTypeAction(MVT::ValueType VT) const { 131 return (LegalizeAction)ValueTypeActions.getTypeAction(VT); 132 } 133 134 /// isTypeLegal - Return true if this type is legal on this target. 135 /// 136 bool isTypeLegal(MVT::ValueType VT) const { 137 return getTypeAction(VT) == Legal; 138 } 139 140 void LegalizeDAG(); 141 142private: 143 /// HandleOp - Legalize, Promote, or Expand the specified operand as 144 /// appropriate for its type. 145 void HandleOp(SDOperand Op); 146 147 /// LegalizeOp - We know that the specified value has a legal type. 148 /// Recursively ensure that the operands have legal types, then return the 149 /// result. 150 SDOperand LegalizeOp(SDOperand O); 151 152 /// UnrollVectorOp - We know that the given vector has a legal type, however 153 /// the operation it performs is not legal and is an operation that we have 154 /// no way of lowering. "Unroll" the vector, splitting out the scalars and 155 /// operating on each element individually. 156 SDOperand UnrollVectorOp(SDOperand O); 157 158 /// PromoteOp - Given an operation that produces a value in an invalid type, 159 /// promote it to compute the value into a larger type. The produced value 160 /// will have the correct bits for the low portion of the register, but no 161 /// guarantee is made about the top bits: it may be zero, sign-extended, or 162 /// garbage. 163 SDOperand PromoteOp(SDOperand O); 164 165 /// ExpandOp - Expand the specified SDOperand into its two component pieces 166 /// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this, 167 /// the LegalizeNodes map is filled in for any results that are not expanded, 168 /// the ExpandedNodes map is filled in for any results that are expanded, and 169 /// the Lo/Hi values are returned. This applies to integer types and Vector 170 /// types. 171 void ExpandOp(SDOperand O, SDOperand &Lo, SDOperand &Hi); 172 173 /// SplitVectorOp - Given an operand of vector type, break it down into 174 /// two smaller values. 175 void SplitVectorOp(SDOperand O, SDOperand &Lo, SDOperand &Hi); 176 177 /// ScalarizeVectorOp - Given an operand of single-element vector type 178 /// (e.g. v1f32), convert it into the equivalent operation that returns a 179 /// scalar (e.g. f32) value. 180 SDOperand ScalarizeVectorOp(SDOperand O); 181 182 /// isShuffleLegal - Return true if a vector shuffle is legal with the 183 /// specified mask and type. Targets can specify exactly which masks they 184 /// support and the code generator is tasked with not creating illegal masks. 185 /// 186 /// Note that this will also return true for shuffles that are promoted to a 187 /// different type. 188 /// 189 /// If this is a legal shuffle, this method returns the (possibly promoted) 190 /// build_vector Mask. If it's not a legal shuffle, it returns null. 191 SDNode *isShuffleLegal(MVT::ValueType VT, SDOperand Mask) const; 192 193 bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, 194 SmallPtrSet<SDNode*, 32> &NodesLeadingTo); 195 196 void LegalizeSetCCOperands(SDOperand &LHS, SDOperand &RHS, SDOperand &CC); 197 198 SDOperand ExpandLibCall(const char *Name, SDNode *Node, bool isSigned, 199 SDOperand &Hi); 200 SDOperand ExpandIntToFP(bool isSigned, MVT::ValueType DestTy, 201 SDOperand Source); 202 203 SDOperand EmitStackConvert(SDOperand SrcOp, MVT::ValueType SlotVT, 204 MVT::ValueType DestVT); 205 SDOperand ExpandBUILD_VECTOR(SDNode *Node); 206 SDOperand ExpandSCALAR_TO_VECTOR(SDNode *Node); 207 SDOperand ExpandLegalINT_TO_FP(bool isSigned, 208 SDOperand LegalOp, 209 MVT::ValueType DestVT); 210 SDOperand PromoteLegalINT_TO_FP(SDOperand LegalOp, MVT::ValueType DestVT, 211 bool isSigned); 212 SDOperand PromoteLegalFP_TO_INT(SDOperand LegalOp, MVT::ValueType DestVT, 213 bool isSigned); 214 215 SDOperand ExpandBSWAP(SDOperand Op); 216 SDOperand ExpandBitCount(unsigned Opc, SDOperand Op); 217 bool ExpandShift(unsigned Opc, SDOperand Op, SDOperand Amt, 218 SDOperand &Lo, SDOperand &Hi); 219 void ExpandShiftParts(unsigned NodeOp, SDOperand Op, SDOperand Amt, 220 SDOperand &Lo, SDOperand &Hi); 221 222 SDOperand ExpandEXTRACT_SUBVECTOR(SDOperand Op); 223 SDOperand ExpandEXTRACT_VECTOR_ELT(SDOperand Op); 224}; 225} 226 227/// isVectorShuffleLegal - Return true if a vector shuffle is legal with the 228/// specified mask and type. Targets can specify exactly which masks they 229/// support and the code generator is tasked with not creating illegal masks. 230/// 231/// Note that this will also return true for shuffles that are promoted to a 232/// different type. 233SDNode *SelectionDAGLegalize::isShuffleLegal(MVT::ValueType VT, 234 SDOperand Mask) const { 235 switch (TLI.getOperationAction(ISD::VECTOR_SHUFFLE, VT)) { 236 default: return 0; 237 case TargetLowering::Legal: 238 case TargetLowering::Custom: 239 break; 240 case TargetLowering::Promote: { 241 // If this is promoted to a different type, convert the shuffle mask and 242 // ask if it is legal in the promoted type! 243 MVT::ValueType NVT = TLI.getTypeToPromoteTo(ISD::VECTOR_SHUFFLE, VT); 244 245 // If we changed # elements, change the shuffle mask. 246 unsigned NumEltsGrowth = 247 MVT::getVectorNumElements(NVT) / MVT::getVectorNumElements(VT); 248 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 249 if (NumEltsGrowth > 1) { 250 // Renumber the elements. 251 SmallVector<SDOperand, 8> Ops; 252 for (unsigned i = 0, e = Mask.getNumOperands(); i != e; ++i) { 253 SDOperand InOp = Mask.getOperand(i); 254 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 255 if (InOp.getOpcode() == ISD::UNDEF) 256 Ops.push_back(DAG.getNode(ISD::UNDEF, MVT::i32)); 257 else { 258 unsigned InEltNo = cast<ConstantSDNode>(InOp)->getValue(); 259 Ops.push_back(DAG.getConstant(InEltNo*NumEltsGrowth+j, MVT::i32)); 260 } 261 } 262 } 263 Mask = DAG.getNode(ISD::BUILD_VECTOR, NVT, &Ops[0], Ops.size()); 264 } 265 VT = NVT; 266 break; 267 } 268 } 269 return TLI.isShuffleMaskLegal(Mask, VT) ? Mask.Val : 0; 270} 271 272SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag) 273 : TLI(dag.getTargetLoweringInfo()), DAG(dag), 274 ValueTypeActions(TLI.getValueTypeActions()) { 275 assert(MVT::LAST_VALUETYPE <= 32 && 276 "Too many value types for ValueTypeActions to hold!"); 277} 278 279/// ComputeTopDownOrdering - Compute a top-down ordering of the dag, where Order 280/// contains all of a nodes operands before it contains the node. 281static void ComputeTopDownOrdering(SelectionDAG &DAG, 282 SmallVector<SDNode*, 64> &Order) { 283 284 DenseMap<SDNode*, unsigned> Visited; 285 std::vector<SDNode*> Worklist; 286 Worklist.reserve(128); 287 288 // Compute ordering from all of the leaves in the graphs, those (like the 289 // entry node) that have no operands. 290 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 291 E = DAG.allnodes_end(); I != E; ++I) { 292 if (I->getNumOperands() == 0) { 293 Visited[I] = 0 - 1U; 294 Worklist.push_back(I); 295 } 296 } 297 298 while (!Worklist.empty()) { 299 SDNode *N = Worklist.back(); 300 Worklist.pop_back(); 301 302 if (++Visited[N] != N->getNumOperands()) 303 continue; // Haven't visited all operands yet 304 305 Order.push_back(N); 306 307 // Now that we have N in, add anything that uses it if all of their operands 308 // are now done. 309 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 310 UI != E; ++UI) 311 Worklist.push_back(*UI); 312 } 313 314 assert(Order.size() == Visited.size() && 315 Order.size() == 316 (unsigned)std::distance(DAG.allnodes_begin(), DAG.allnodes_end()) && 317 "Error: DAG is cyclic!"); 318} 319 320 321void SelectionDAGLegalize::LegalizeDAG() { 322 LastCALLSEQ_END = DAG.getEntryNode(); 323 IsLegalizingCall = false; 324 325 // The legalize process is inherently a bottom-up recursive process (users 326 // legalize their uses before themselves). Given infinite stack space, we 327 // could just start legalizing on the root and traverse the whole graph. In 328 // practice however, this causes us to run out of stack space on large basic 329 // blocks. To avoid this problem, compute an ordering of the nodes where each 330 // node is only legalized after all of its operands are legalized. 331 SmallVector<SDNode*, 64> Order; 332 ComputeTopDownOrdering(DAG, Order); 333 334 for (unsigned i = 0, e = Order.size(); i != e; ++i) 335 HandleOp(SDOperand(Order[i], 0)); 336 337 // Finally, it's possible the root changed. Get the new root. 338 SDOperand OldRoot = DAG.getRoot(); 339 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 340 DAG.setRoot(LegalizedNodes[OldRoot]); 341 342 ExpandedNodes.clear(); 343 LegalizedNodes.clear(); 344 PromotedNodes.clear(); 345 SplitNodes.clear(); 346 ScalarizedNodes.clear(); 347 348 // Remove dead nodes now. 349 DAG.RemoveDeadNodes(); 350} 351 352 353/// FindCallEndFromCallStart - Given a chained node that is part of a call 354/// sequence, find the CALLSEQ_END node that terminates the call sequence. 355static SDNode *FindCallEndFromCallStart(SDNode *Node) { 356 if (Node->getOpcode() == ISD::CALLSEQ_END) 357 return Node; 358 if (Node->use_empty()) 359 return 0; // No CallSeqEnd 360 361 // The chain is usually at the end. 362 SDOperand TheChain(Node, Node->getNumValues()-1); 363 if (TheChain.getValueType() != MVT::Other) { 364 // Sometimes it's at the beginning. 365 TheChain = SDOperand(Node, 0); 366 if (TheChain.getValueType() != MVT::Other) { 367 // Otherwise, hunt for it. 368 for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i) 369 if (Node->getValueType(i) == MVT::Other) { 370 TheChain = SDOperand(Node, i); 371 break; 372 } 373 374 // Otherwise, we walked into a node without a chain. 375 if (TheChain.getValueType() != MVT::Other) 376 return 0; 377 } 378 } 379 380 for (SDNode::use_iterator UI = Node->use_begin(), 381 E = Node->use_end(); UI != E; ++UI) { 382 383 // Make sure to only follow users of our token chain. 384 SDNode *User = *UI; 385 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) 386 if (User->getOperand(i) == TheChain) 387 if (SDNode *Result = FindCallEndFromCallStart(User)) 388 return Result; 389 } 390 return 0; 391} 392 393/// FindCallStartFromCallEnd - Given a chained node that is part of a call 394/// sequence, find the CALLSEQ_START node that initiates the call sequence. 395static SDNode *FindCallStartFromCallEnd(SDNode *Node) { 396 assert(Node && "Didn't find callseq_start for a call??"); 397 if (Node->getOpcode() == ISD::CALLSEQ_START) return Node; 398 399 assert(Node->getOperand(0).getValueType() == MVT::Other && 400 "Node doesn't have a token chain argument!"); 401 return FindCallStartFromCallEnd(Node->getOperand(0).Val); 402} 403 404/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to 405/// see if any uses can reach Dest. If no dest operands can get to dest, 406/// legalize them, legalize ourself, and return false, otherwise, return true. 407/// 408/// Keep track of the nodes we fine that actually do lead to Dest in 409/// NodesLeadingTo. This avoids retraversing them exponential number of times. 410/// 411bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, 412 SmallPtrSet<SDNode*, 32> &NodesLeadingTo) { 413 if (N == Dest) return true; // N certainly leads to Dest :) 414 415 // If we've already processed this node and it does lead to Dest, there is no 416 // need to reprocess it. 417 if (NodesLeadingTo.count(N)) return true; 418 419 // If the first result of this node has been already legalized, then it cannot 420 // reach N. 421 switch (getTypeAction(N->getValueType(0))) { 422 case Legal: 423 if (LegalizedNodes.count(SDOperand(N, 0))) return false; 424 break; 425 case Promote: 426 if (PromotedNodes.count(SDOperand(N, 0))) return false; 427 break; 428 case Expand: 429 if (ExpandedNodes.count(SDOperand(N, 0))) return false; 430 break; 431 } 432 433 // Okay, this node has not already been legalized. Check and legalize all 434 // operands. If none lead to Dest, then we can legalize this node. 435 bool OperandsLeadToDest = false; 436 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 437 OperandsLeadToDest |= // If an operand leads to Dest, so do we. 438 LegalizeAllNodesNotLeadingTo(N->getOperand(i).Val, Dest, NodesLeadingTo); 439 440 if (OperandsLeadToDest) { 441 NodesLeadingTo.insert(N); 442 return true; 443 } 444 445 // Okay, this node looks safe, legalize it and return false. 446 HandleOp(SDOperand(N, 0)); 447 return false; 448} 449 450/// HandleOp - Legalize, Promote, or Expand the specified operand as 451/// appropriate for its type. 452void SelectionDAGLegalize::HandleOp(SDOperand Op) { 453 MVT::ValueType VT = Op.getValueType(); 454 switch (getTypeAction(VT)) { 455 default: assert(0 && "Bad type action!"); 456 case Legal: (void)LegalizeOp(Op); break; 457 case Promote: (void)PromoteOp(Op); break; 458 case Expand: 459 if (!MVT::isVector(VT)) { 460 // If this is an illegal scalar, expand it into its two component 461 // pieces. 462 SDOperand X, Y; 463 if (Op.getOpcode() == ISD::TargetConstant) 464 break; // Allow illegal target nodes. 465 ExpandOp(Op, X, Y); 466 } else if (MVT::getVectorNumElements(VT) == 1) { 467 // If this is an illegal single element vector, convert it to a 468 // scalar operation. 469 (void)ScalarizeVectorOp(Op); 470 } else { 471 // Otherwise, this is an illegal multiple element vector. 472 // Split it in half and legalize both parts. 473 SDOperand X, Y; 474 SplitVectorOp(Op, X, Y); 475 } 476 break; 477 } 478} 479 480/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or 481/// a load from the constant pool. 482static SDOperand ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP, 483 SelectionDAG &DAG, TargetLowering &TLI) { 484 bool Extend = false; 485 486 // If a FP immediate is precise when represented as a float and if the 487 // target can do an extending load from float to double, we put it into 488 // the constant pool as a float, even if it's is statically typed as a 489 // double. 490 MVT::ValueType VT = CFP->getValueType(0); 491 bool isDouble = VT == MVT::f64; 492 ConstantFP *LLVMC = ConstantFP::get(MVT::getTypeForValueType(VT), 493 CFP->getValueAPF()); 494 if (!UseCP) { 495 if (VT!=MVT::f64 && VT!=MVT::f32) 496 assert(0 && "Invalid type expansion"); 497 return DAG.getConstant(LLVMC->getValueAPF().convertToAPInt().getZExtValue(), 498 isDouble ? MVT::i64 : MVT::i32); 499 } 500 501 if (isDouble && CFP->isValueValidForType(MVT::f32, CFP->getValueAPF()) && 502 // Only do this if the target has a native EXTLOAD instruction from f32. 503 // Do not try to be clever about long doubles (so far) 504 TLI.isLoadXLegal(ISD::EXTLOAD, MVT::f32)) { 505 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC,Type::FloatTy)); 506 VT = MVT::f32; 507 Extend = true; 508 } 509 510 SDOperand CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy()); 511 if (Extend) { 512 return DAG.getExtLoad(ISD::EXTLOAD, MVT::f64, DAG.getEntryNode(), 513 CPIdx, PseudoSourceValue::getConstantPool(), 514 0, MVT::f32); 515 } else { 516 return DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, 517 PseudoSourceValue::getConstantPool(), 0); 518 } 519} 520 521 522/// ExpandFCOPYSIGNToBitwiseOps - Expands fcopysign to a series of bitwise 523/// operations. 524static 525SDOperand ExpandFCOPYSIGNToBitwiseOps(SDNode *Node, MVT::ValueType NVT, 526 SelectionDAG &DAG, TargetLowering &TLI) { 527 MVT::ValueType VT = Node->getValueType(0); 528 MVT::ValueType SrcVT = Node->getOperand(1).getValueType(); 529 assert((SrcVT == MVT::f32 || SrcVT == MVT::f64) && 530 "fcopysign expansion only supported for f32 and f64"); 531 MVT::ValueType SrcNVT = (SrcVT == MVT::f64) ? MVT::i64 : MVT::i32; 532 533 // First get the sign bit of second operand. 534 SDOperand Mask1 = (SrcVT == MVT::f64) 535 ? DAG.getConstantFP(BitsToDouble(1ULL << 63), SrcVT) 536 : DAG.getConstantFP(BitsToFloat(1U << 31), SrcVT); 537 Mask1 = DAG.getNode(ISD::BIT_CONVERT, SrcNVT, Mask1); 538 SDOperand SignBit= DAG.getNode(ISD::BIT_CONVERT, SrcNVT, Node->getOperand(1)); 539 SignBit = DAG.getNode(ISD::AND, SrcNVT, SignBit, Mask1); 540 // Shift right or sign-extend it if the two operands have different types. 541 int SizeDiff = MVT::getSizeInBits(SrcNVT) - MVT::getSizeInBits(NVT); 542 if (SizeDiff > 0) { 543 SignBit = DAG.getNode(ISD::SRL, SrcNVT, SignBit, 544 DAG.getConstant(SizeDiff, TLI.getShiftAmountTy())); 545 SignBit = DAG.getNode(ISD::TRUNCATE, NVT, SignBit); 546 } else if (SizeDiff < 0) 547 SignBit = DAG.getNode(ISD::SIGN_EXTEND, NVT, SignBit); 548 549 // Clear the sign bit of first operand. 550 SDOperand Mask2 = (VT == MVT::f64) 551 ? DAG.getConstantFP(BitsToDouble(~(1ULL << 63)), VT) 552 : DAG.getConstantFP(BitsToFloat(~(1U << 31)), VT); 553 Mask2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask2); 554 SDOperand Result = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 555 Result = DAG.getNode(ISD::AND, NVT, Result, Mask2); 556 557 // Or the value with the sign bit. 558 Result = DAG.getNode(ISD::OR, NVT, Result, SignBit); 559 return Result; 560} 561 562/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores. 563static 564SDOperand ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG, 565 TargetLowering &TLI) { 566 SDOperand Chain = ST->getChain(); 567 SDOperand Ptr = ST->getBasePtr(); 568 SDOperand Val = ST->getValue(); 569 MVT::ValueType VT = Val.getValueType(); 570 int Alignment = ST->getAlignment(); 571 int SVOffset = ST->getSrcValueOffset(); 572 if (MVT::isFloatingPoint(ST->getMemoryVT())) { 573 // Expand to a bitconvert of the value to the integer type of the 574 // same size, then a (misaligned) int store. 575 MVT::ValueType intVT; 576 if (VT==MVT::f64) 577 intVT = MVT::i64; 578 else if (VT==MVT::f32) 579 intVT = MVT::i32; 580 else 581 assert(0 && "Unaligned load of unsupported floating point type"); 582 583 SDOperand Result = DAG.getNode(ISD::BIT_CONVERT, intVT, Val); 584 return DAG.getStore(Chain, Result, Ptr, ST->getSrcValue(), 585 SVOffset, ST->isVolatile(), Alignment); 586 } 587 assert(MVT::isInteger(ST->getMemoryVT()) && 588 "Unaligned store of unknown type."); 589 // Get the half-size VT 590 MVT::ValueType NewStoredVT = ST->getMemoryVT() - 1; 591 int NumBits = MVT::getSizeInBits(NewStoredVT); 592 int IncrementSize = NumBits / 8; 593 594 // Divide the stored value in two parts. 595 SDOperand ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy()); 596 SDOperand Lo = Val; 597 SDOperand Hi = DAG.getNode(ISD::SRL, VT, Val, ShiftAmount); 598 599 // Store the two parts 600 SDOperand Store1, Store2; 601 Store1 = DAG.getTruncStore(Chain, TLI.isLittleEndian()?Lo:Hi, Ptr, 602 ST->getSrcValue(), SVOffset, NewStoredVT, 603 ST->isVolatile(), Alignment); 604 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 605 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 606 Alignment = MinAlign(Alignment, IncrementSize); 607 Store2 = DAG.getTruncStore(Chain, TLI.isLittleEndian()?Hi:Lo, Ptr, 608 ST->getSrcValue(), SVOffset + IncrementSize, 609 NewStoredVT, ST->isVolatile(), Alignment); 610 611 return DAG.getNode(ISD::TokenFactor, MVT::Other, Store1, Store2); 612} 613 614/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads. 615static 616SDOperand ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG, 617 TargetLowering &TLI) { 618 int SVOffset = LD->getSrcValueOffset(); 619 SDOperand Chain = LD->getChain(); 620 SDOperand Ptr = LD->getBasePtr(); 621 MVT::ValueType VT = LD->getValueType(0); 622 MVT::ValueType LoadedVT = LD->getMemoryVT(); 623 if (MVT::isFloatingPoint(VT) && !MVT::isVector(VT)) { 624 // Expand to a (misaligned) integer load of the same size, 625 // then bitconvert to floating point. 626 MVT::ValueType intVT; 627 if (LoadedVT == MVT::f64) 628 intVT = MVT::i64; 629 else if (LoadedVT == MVT::f32) 630 intVT = MVT::i32; 631 else 632 assert(0 && "Unaligned load of unsupported floating point type"); 633 634 SDOperand newLoad = DAG.getLoad(intVT, Chain, Ptr, LD->getSrcValue(), 635 SVOffset, LD->isVolatile(), 636 LD->getAlignment()); 637 SDOperand Result = DAG.getNode(ISD::BIT_CONVERT, LoadedVT, newLoad); 638 if (LoadedVT != VT) 639 Result = DAG.getNode(ISD::FP_EXTEND, VT, Result); 640 641 SDOperand Ops[] = { Result, Chain }; 642 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), 643 Ops, 2); 644 } 645 assert((MVT::isInteger(LoadedVT) || MVT::isVector(LoadedVT)) && 646 "Unaligned load of unsupported type."); 647 648 // Compute the new VT that is half the size of the old one. We either have an 649 // integer MVT or we have a vector MVT. 650 unsigned NumBits = MVT::getSizeInBits(LoadedVT); 651 MVT::ValueType NewLoadedVT; 652 if (!MVT::isVector(LoadedVT)) { 653 NewLoadedVT = MVT::getIntegerType(NumBits/2); 654 } else { 655 // FIXME: This is not right for <1 x anything> it is also not right for 656 // non-power-of-two vectors. 657 NewLoadedVT = MVT::getVectorType(MVT::getVectorElementType(LoadedVT), 658 MVT::getVectorNumElements(LoadedVT)/2); 659 } 660 NumBits >>= 1; 661 662 unsigned Alignment = LD->getAlignment(); 663 unsigned IncrementSize = NumBits / 8; 664 ISD::LoadExtType HiExtType = LD->getExtensionType(); 665 666 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 667 if (HiExtType == ISD::NON_EXTLOAD) 668 HiExtType = ISD::ZEXTLOAD; 669 670 // Load the value in two parts 671 SDOperand Lo, Hi; 672 if (TLI.isLittleEndian()) { 673 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, Chain, Ptr, LD->getSrcValue(), 674 SVOffset, NewLoadedVT, LD->isVolatile(), Alignment); 675 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 676 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 677 Hi = DAG.getExtLoad(HiExtType, VT, Chain, Ptr, LD->getSrcValue(), 678 SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(), 679 MinAlign(Alignment, IncrementSize)); 680 } else { 681 Hi = DAG.getExtLoad(HiExtType, VT, Chain, Ptr, LD->getSrcValue(), SVOffset, 682 NewLoadedVT,LD->isVolatile(), Alignment); 683 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 684 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 685 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, Chain, Ptr, LD->getSrcValue(), 686 SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(), 687 MinAlign(Alignment, IncrementSize)); 688 } 689 690 // aggregate the two parts 691 SDOperand ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy()); 692 SDOperand Result = DAG.getNode(ISD::SHL, VT, Hi, ShiftAmount); 693 Result = DAG.getNode(ISD::OR, VT, Result, Lo); 694 695 SDOperand TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 696 Hi.getValue(1)); 697 698 SDOperand Ops[] = { Result, TF }; 699 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), Ops, 2); 700} 701 702/// UnrollVectorOp - We know that the given vector has a legal type, however 703/// the operation it performs is not legal and is an operation that we have 704/// no way of lowering. "Unroll" the vector, splitting out the scalars and 705/// operating on each element individually. 706SDOperand SelectionDAGLegalize::UnrollVectorOp(SDOperand Op) { 707 MVT::ValueType VT = Op.getValueType(); 708 assert(isTypeLegal(VT) && 709 "Caller should expand or promote operands that are not legal!"); 710 assert(Op.Val->getNumValues() == 1 && 711 "Can't unroll a vector with multiple results!"); 712 unsigned NE = MVT::getVectorNumElements(VT); 713 MVT::ValueType EltVT = MVT::getVectorElementType(VT); 714 715 SmallVector<SDOperand, 8> Scalars; 716 SmallVector<SDOperand, 4> Operands(Op.getNumOperands()); 717 for (unsigned i = 0; i != NE; ++i) { 718 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 719 SDOperand Operand = Op.getOperand(j); 720 MVT::ValueType OperandVT = Operand.getValueType(); 721 if (MVT::isVector(OperandVT)) { 722 // A vector operand; extract a single element. 723 MVT::ValueType OperandEltVT = MVT::getVectorElementType(OperandVT); 724 Operands[j] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, 725 OperandEltVT, 726 Operand, 727 DAG.getConstant(i, MVT::i32)); 728 } else { 729 // A scalar operand; just use it as is. 730 Operands[j] = Operand; 731 } 732 } 733 Scalars.push_back(DAG.getNode(Op.getOpcode(), EltVT, 734 &Operands[0], Operands.size())); 735 } 736 737 return DAG.getNode(ISD::BUILD_VECTOR, VT, &Scalars[0], Scalars.size()); 738} 739 740/// GetFPLibCall - Return the right libcall for the given floating point type. 741static RTLIB::Libcall GetFPLibCall(MVT::ValueType VT, 742 RTLIB::Libcall Call_F32, 743 RTLIB::Libcall Call_F64, 744 RTLIB::Libcall Call_F80, 745 RTLIB::Libcall Call_PPCF128) { 746 return 747 VT == MVT::f32 ? Call_F32 : 748 VT == MVT::f64 ? Call_F64 : 749 VT == MVT::f80 ? Call_F80 : 750 VT == MVT::ppcf128 ? Call_PPCF128 : 751 RTLIB::UNKNOWN_LIBCALL; 752} 753 754/// LegalizeOp - We know that the specified value has a legal type, and 755/// that its operands are legal. Now ensure that the operation itself 756/// is legal, recursively ensuring that the operands' operations remain 757/// legal. 758SDOperand SelectionDAGLegalize::LegalizeOp(SDOperand Op) { 759 if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes. 760 return Op; 761 762 assert(isTypeLegal(Op.getValueType()) && 763 "Caller should expand or promote operands that are not legal!"); 764 SDNode *Node = Op.Val; 765 766 // If this operation defines any values that cannot be represented in a 767 // register on this target, make sure to expand or promote them. 768 if (Node->getNumValues() > 1) { 769 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 770 if (getTypeAction(Node->getValueType(i)) != Legal) { 771 HandleOp(Op.getValue(i)); 772 assert(LegalizedNodes.count(Op) && 773 "Handling didn't add legal operands!"); 774 return LegalizedNodes[Op]; 775 } 776 } 777 778 // Note that LegalizeOp may be reentered even from single-use nodes, which 779 // means that we always must cache transformed nodes. 780 DenseMap<SDOperand, SDOperand>::iterator I = LegalizedNodes.find(Op); 781 if (I != LegalizedNodes.end()) return I->second; 782 783 SDOperand Tmp1, Tmp2, Tmp3, Tmp4; 784 SDOperand Result = Op; 785 bool isCustom = false; 786 787 switch (Node->getOpcode()) { 788 case ISD::FrameIndex: 789 case ISD::EntryToken: 790 case ISD::Register: 791 case ISD::BasicBlock: 792 case ISD::TargetFrameIndex: 793 case ISD::TargetJumpTable: 794 case ISD::TargetConstant: 795 case ISD::TargetConstantFP: 796 case ISD::TargetConstantPool: 797 case ISD::TargetGlobalAddress: 798 case ISD::TargetGlobalTLSAddress: 799 case ISD::TargetExternalSymbol: 800 case ISD::VALUETYPE: 801 case ISD::SRCVALUE: 802 case ISD::MEMOPERAND: 803 case ISD::STRING: 804 case ISD::CONDCODE: 805 // Primitives must all be legal. 806 assert(TLI.isOperationLegal(Node->getOpcode(), Node->getValueType(0)) && 807 "This must be legal!"); 808 break; 809 default: 810 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 811 // If this is a target node, legalize it by legalizing the operands then 812 // passing it through. 813 SmallVector<SDOperand, 8> Ops; 814 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 815 Ops.push_back(LegalizeOp(Node->getOperand(i))); 816 817 Result = DAG.UpdateNodeOperands(Result.getValue(0), &Ops[0], Ops.size()); 818 819 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 820 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 821 return Result.getValue(Op.ResNo); 822 } 823 // Otherwise this is an unhandled builtin node. splat. 824#ifndef NDEBUG 825 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 826#endif 827 assert(0 && "Do not know how to legalize this operator!"); 828 abort(); 829 case ISD::GLOBAL_OFFSET_TABLE: 830 case ISD::GlobalAddress: 831 case ISD::GlobalTLSAddress: 832 case ISD::ExternalSymbol: 833 case ISD::ConstantPool: 834 case ISD::JumpTable: // Nothing to do. 835 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 836 default: assert(0 && "This action is not supported yet!"); 837 case TargetLowering::Custom: 838 Tmp1 = TLI.LowerOperation(Op, DAG); 839 if (Tmp1.Val) Result = Tmp1; 840 // FALLTHROUGH if the target doesn't want to lower this op after all. 841 case TargetLowering::Legal: 842 break; 843 } 844 break; 845 case ISD::FRAMEADDR: 846 case ISD::RETURNADDR: 847 // The only option for these nodes is to custom lower them. If the target 848 // does not custom lower them, then return zero. 849 Tmp1 = TLI.LowerOperation(Op, DAG); 850 if (Tmp1.Val) 851 Result = Tmp1; 852 else 853 Result = DAG.getConstant(0, TLI.getPointerTy()); 854 break; 855 case ISD::FRAME_TO_ARGS_OFFSET: { 856 MVT::ValueType VT = Node->getValueType(0); 857 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 858 default: assert(0 && "This action is not supported yet!"); 859 case TargetLowering::Custom: 860 Result = TLI.LowerOperation(Op, DAG); 861 if (Result.Val) break; 862 // Fall Thru 863 case TargetLowering::Legal: 864 Result = DAG.getConstant(0, VT); 865 break; 866 } 867 } 868 break; 869 case ISD::EXCEPTIONADDR: { 870 Tmp1 = LegalizeOp(Node->getOperand(0)); 871 MVT::ValueType VT = Node->getValueType(0); 872 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 873 default: assert(0 && "This action is not supported yet!"); 874 case TargetLowering::Expand: { 875 unsigned Reg = TLI.getExceptionAddressRegister(); 876 Result = DAG.getCopyFromReg(Tmp1, Reg, VT); 877 } 878 break; 879 case TargetLowering::Custom: 880 Result = TLI.LowerOperation(Op, DAG); 881 if (Result.Val) break; 882 // Fall Thru 883 case TargetLowering::Legal: { 884 SDOperand Ops[] = { DAG.getConstant(0, VT), Tmp1 }; 885 Result = DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), 886 Ops, 2); 887 break; 888 } 889 } 890 } 891 if (Result.Val->getNumValues() == 1) break; 892 893 assert(Result.Val->getNumValues() == 2 && 894 "Cannot return more than two values!"); 895 896 // Since we produced two values, make sure to remember that we 897 // legalized both of them. 898 Tmp1 = LegalizeOp(Result); 899 Tmp2 = LegalizeOp(Result.getValue(1)); 900 AddLegalizedOperand(Op.getValue(0), Tmp1); 901 AddLegalizedOperand(Op.getValue(1), Tmp2); 902 return Op.ResNo ? Tmp2 : Tmp1; 903 case ISD::EHSELECTION: { 904 Tmp1 = LegalizeOp(Node->getOperand(0)); 905 Tmp2 = LegalizeOp(Node->getOperand(1)); 906 MVT::ValueType VT = Node->getValueType(0); 907 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 908 default: assert(0 && "This action is not supported yet!"); 909 case TargetLowering::Expand: { 910 unsigned Reg = TLI.getExceptionSelectorRegister(); 911 Result = DAG.getCopyFromReg(Tmp2, Reg, VT); 912 } 913 break; 914 case TargetLowering::Custom: 915 Result = TLI.LowerOperation(Op, DAG); 916 if (Result.Val) break; 917 // Fall Thru 918 case TargetLowering::Legal: { 919 SDOperand Ops[] = { DAG.getConstant(0, VT), Tmp2 }; 920 Result = DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), 921 Ops, 2); 922 break; 923 } 924 } 925 } 926 if (Result.Val->getNumValues() == 1) break; 927 928 assert(Result.Val->getNumValues() == 2 && 929 "Cannot return more than two values!"); 930 931 // Since we produced two values, make sure to remember that we 932 // legalized both of them. 933 Tmp1 = LegalizeOp(Result); 934 Tmp2 = LegalizeOp(Result.getValue(1)); 935 AddLegalizedOperand(Op.getValue(0), Tmp1); 936 AddLegalizedOperand(Op.getValue(1), Tmp2); 937 return Op.ResNo ? Tmp2 : Tmp1; 938 case ISD::EH_RETURN: { 939 MVT::ValueType VT = Node->getValueType(0); 940 // The only "good" option for this node is to custom lower it. 941 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 942 default: assert(0 && "This action is not supported at all!"); 943 case TargetLowering::Custom: 944 Result = TLI.LowerOperation(Op, DAG); 945 if (Result.Val) break; 946 // Fall Thru 947 case TargetLowering::Legal: 948 // Target does not know, how to lower this, lower to noop 949 Result = LegalizeOp(Node->getOperand(0)); 950 break; 951 } 952 } 953 break; 954 case ISD::AssertSext: 955 case ISD::AssertZext: 956 Tmp1 = LegalizeOp(Node->getOperand(0)); 957 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 958 break; 959 case ISD::MERGE_VALUES: 960 // Legalize eliminates MERGE_VALUES nodes. 961 Result = Node->getOperand(Op.ResNo); 962 break; 963 case ISD::CopyFromReg: 964 Tmp1 = LegalizeOp(Node->getOperand(0)); 965 Result = Op.getValue(0); 966 if (Node->getNumValues() == 2) { 967 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 968 } else { 969 assert(Node->getNumValues() == 3 && "Invalid copyfromreg!"); 970 if (Node->getNumOperands() == 3) { 971 Tmp2 = LegalizeOp(Node->getOperand(2)); 972 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1),Tmp2); 973 } else { 974 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 975 } 976 AddLegalizedOperand(Op.getValue(2), Result.getValue(2)); 977 } 978 // Since CopyFromReg produces two values, make sure to remember that we 979 // legalized both of them. 980 AddLegalizedOperand(Op.getValue(0), Result); 981 AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); 982 return Result.getValue(Op.ResNo); 983 case ISD::UNDEF: { 984 MVT::ValueType VT = Op.getValueType(); 985 switch (TLI.getOperationAction(ISD::UNDEF, VT)) { 986 default: assert(0 && "This action is not supported yet!"); 987 case TargetLowering::Expand: 988 if (MVT::isInteger(VT)) 989 Result = DAG.getConstant(0, VT); 990 else if (MVT::isFloatingPoint(VT)) 991 Result = DAG.getConstantFP(APFloat(APInt(MVT::getSizeInBits(VT), 0)), 992 VT); 993 else 994 assert(0 && "Unknown value type!"); 995 break; 996 case TargetLowering::Legal: 997 break; 998 } 999 break; 1000 } 1001 1002 case ISD::INTRINSIC_W_CHAIN: 1003 case ISD::INTRINSIC_WO_CHAIN: 1004 case ISD::INTRINSIC_VOID: { 1005 SmallVector<SDOperand, 8> Ops; 1006 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 1007 Ops.push_back(LegalizeOp(Node->getOperand(i))); 1008 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1009 1010 // Allow the target to custom lower its intrinsics if it wants to. 1011 if (TLI.getOperationAction(Node->getOpcode(), MVT::Other) == 1012 TargetLowering::Custom) { 1013 Tmp3 = TLI.LowerOperation(Result, DAG); 1014 if (Tmp3.Val) Result = Tmp3; 1015 } 1016 1017 if (Result.Val->getNumValues() == 1) break; 1018 1019 // Must have return value and chain result. 1020 assert(Result.Val->getNumValues() == 2 && 1021 "Cannot return more than two values!"); 1022 1023 // Since loads produce two values, make sure to remember that we 1024 // legalized both of them. 1025 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 1026 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 1027 return Result.getValue(Op.ResNo); 1028 } 1029 1030 case ISD::LOCATION: 1031 assert(Node->getNumOperands() == 5 && "Invalid LOCATION node!"); 1032 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the input chain. 1033 1034 switch (TLI.getOperationAction(ISD::LOCATION, MVT::Other)) { 1035 case TargetLowering::Promote: 1036 default: assert(0 && "This action is not supported yet!"); 1037 case TargetLowering::Expand: { 1038 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 1039 bool useDEBUG_LOC = TLI.isOperationLegal(ISD::DEBUG_LOC, MVT::Other); 1040 bool useLABEL = TLI.isOperationLegal(ISD::LABEL, MVT::Other); 1041 1042 if (MMI && (useDEBUG_LOC || useLABEL)) { 1043 const std::string &FName = 1044 cast<StringSDNode>(Node->getOperand(3))->getValue(); 1045 const std::string &DirName = 1046 cast<StringSDNode>(Node->getOperand(4))->getValue(); 1047 unsigned SrcFile = MMI->RecordSource(DirName, FName); 1048 1049 SmallVector<SDOperand, 8> Ops; 1050 Ops.push_back(Tmp1); // chain 1051 SDOperand LineOp = Node->getOperand(1); 1052 SDOperand ColOp = Node->getOperand(2); 1053 1054 if (useDEBUG_LOC) { 1055 Ops.push_back(LineOp); // line # 1056 Ops.push_back(ColOp); // col # 1057 Ops.push_back(DAG.getConstant(SrcFile, MVT::i32)); // source file id 1058 Result = DAG.getNode(ISD::DEBUG_LOC, MVT::Other, &Ops[0], Ops.size()); 1059 } else { 1060 unsigned Line = cast<ConstantSDNode>(LineOp)->getValue(); 1061 unsigned Col = cast<ConstantSDNode>(ColOp)->getValue(); 1062 unsigned ID = MMI->RecordSourceLine(Line, Col, SrcFile); 1063 Ops.push_back(DAG.getConstant(ID, MVT::i32)); 1064 Ops.push_back(DAG.getConstant(0, MVT::i32)); // a debug label 1065 Result = DAG.getNode(ISD::LABEL, MVT::Other, &Ops[0], Ops.size()); 1066 } 1067 } else { 1068 Result = Tmp1; // chain 1069 } 1070 break; 1071 } 1072 case TargetLowering::Legal: 1073 if (Tmp1 != Node->getOperand(0) || 1074 getTypeAction(Node->getOperand(1).getValueType()) == Promote) { 1075 SmallVector<SDOperand, 8> Ops; 1076 Ops.push_back(Tmp1); 1077 if (getTypeAction(Node->getOperand(1).getValueType()) == Legal) { 1078 Ops.push_back(Node->getOperand(1)); // line # must be legal. 1079 Ops.push_back(Node->getOperand(2)); // col # must be legal. 1080 } else { 1081 // Otherwise promote them. 1082 Ops.push_back(PromoteOp(Node->getOperand(1))); 1083 Ops.push_back(PromoteOp(Node->getOperand(2))); 1084 } 1085 Ops.push_back(Node->getOperand(3)); // filename must be legal. 1086 Ops.push_back(Node->getOperand(4)); // working dir # must be legal. 1087 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1088 } 1089 break; 1090 } 1091 break; 1092 1093 case ISD::DECLARE: 1094 assert(Node->getNumOperands() == 3 && "Invalid DECLARE node!"); 1095 switch (TLI.getOperationAction(ISD::DECLARE, MVT::Other)) { 1096 default: assert(0 && "This action is not supported yet!"); 1097 case TargetLowering::Legal: 1098 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1099 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the address. 1100 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the variable. 1101 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1102 break; 1103 } 1104 break; 1105 1106 case ISD::DEBUG_LOC: 1107 assert(Node->getNumOperands() == 4 && "Invalid DEBUG_LOC node!"); 1108 switch (TLI.getOperationAction(ISD::DEBUG_LOC, MVT::Other)) { 1109 default: assert(0 && "This action is not supported yet!"); 1110 case TargetLowering::Legal: 1111 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1112 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the line #. 1113 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the col #. 1114 Tmp4 = LegalizeOp(Node->getOperand(3)); // Legalize the source file id. 1115 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4); 1116 break; 1117 } 1118 break; 1119 1120 case ISD::LABEL: 1121 assert(Node->getNumOperands() == 3 && "Invalid LABEL node!"); 1122 switch (TLI.getOperationAction(ISD::LABEL, MVT::Other)) { 1123 default: assert(0 && "This action is not supported yet!"); 1124 case TargetLowering::Legal: 1125 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1126 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the label id. 1127 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the "flavor" operand. 1128 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1129 break; 1130 case TargetLowering::Expand: 1131 Result = LegalizeOp(Node->getOperand(0)); 1132 break; 1133 } 1134 break; 1135 1136 case ISD::Constant: { 1137 ConstantSDNode *CN = cast<ConstantSDNode>(Node); 1138 unsigned opAction = 1139 TLI.getOperationAction(ISD::Constant, CN->getValueType(0)); 1140 1141 // We know we don't need to expand constants here, constants only have one 1142 // value and we check that it is fine above. 1143 1144 if (opAction == TargetLowering::Custom) { 1145 Tmp1 = TLI.LowerOperation(Result, DAG); 1146 if (Tmp1.Val) 1147 Result = Tmp1; 1148 } 1149 break; 1150 } 1151 case ISD::ConstantFP: { 1152 // Spill FP immediates to the constant pool if the target cannot directly 1153 // codegen them. Targets often have some immediate values that can be 1154 // efficiently generated into an FP register without a load. We explicitly 1155 // leave these constants as ConstantFP nodes for the target to deal with. 1156 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 1157 1158 // Check to see if this FP immediate is already legal. 1159 bool isLegal = false; 1160 for (TargetLowering::legal_fpimm_iterator I = TLI.legal_fpimm_begin(), 1161 E = TLI.legal_fpimm_end(); I != E; ++I) 1162 if (CFP->isExactlyValue(*I)) { 1163 isLegal = true; 1164 break; 1165 } 1166 1167 // If this is a legal constant, turn it into a TargetConstantFP node. 1168 if (isLegal) { 1169 Result = DAG.getTargetConstantFP(CFP->getValueAPF(), 1170 CFP->getValueType(0)); 1171 break; 1172 } 1173 1174 switch (TLI.getOperationAction(ISD::ConstantFP, CFP->getValueType(0))) { 1175 default: assert(0 && "This action is not supported yet!"); 1176 case TargetLowering::Custom: 1177 Tmp3 = TLI.LowerOperation(Result, DAG); 1178 if (Tmp3.Val) { 1179 Result = Tmp3; 1180 break; 1181 } 1182 // FALLTHROUGH 1183 case TargetLowering::Expand: 1184 Result = ExpandConstantFP(CFP, true, DAG, TLI); 1185 } 1186 break; 1187 } 1188 case ISD::TokenFactor: 1189 if (Node->getNumOperands() == 2) { 1190 Tmp1 = LegalizeOp(Node->getOperand(0)); 1191 Tmp2 = LegalizeOp(Node->getOperand(1)); 1192 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1193 } else if (Node->getNumOperands() == 3) { 1194 Tmp1 = LegalizeOp(Node->getOperand(0)); 1195 Tmp2 = LegalizeOp(Node->getOperand(1)); 1196 Tmp3 = LegalizeOp(Node->getOperand(2)); 1197 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1198 } else { 1199 SmallVector<SDOperand, 8> Ops; 1200 // Legalize the operands. 1201 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 1202 Ops.push_back(LegalizeOp(Node->getOperand(i))); 1203 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1204 } 1205 break; 1206 1207 case ISD::FORMAL_ARGUMENTS: 1208 case ISD::CALL: 1209 // The only option for this is to custom lower it. 1210 Tmp3 = TLI.LowerOperation(Result.getValue(0), DAG); 1211 assert(Tmp3.Val && "Target didn't custom lower this node!"); 1212 1213 // The number of incoming and outgoing values should match; unless the final 1214 // outgoing value is a flag. 1215 assert((Tmp3.Val->getNumValues() == Result.Val->getNumValues() || 1216 (Tmp3.Val->getNumValues() == Result.Val->getNumValues() + 1 && 1217 Tmp3.Val->getValueType(Tmp3.Val->getNumValues() - 1) == 1218 MVT::Flag)) && 1219 "Lowering call/formal_arguments produced unexpected # results!"); 1220 1221 // Since CALL/FORMAL_ARGUMENTS nodes produce multiple values, make sure to 1222 // remember that we legalized all of them, so it doesn't get relegalized. 1223 for (unsigned i = 0, e = Tmp3.Val->getNumValues(); i != e; ++i) { 1224 if (Tmp3.Val->getValueType(i) == MVT::Flag) 1225 continue; 1226 Tmp1 = LegalizeOp(Tmp3.getValue(i)); 1227 if (Op.ResNo == i) 1228 Tmp2 = Tmp1; 1229 AddLegalizedOperand(SDOperand(Node, i), Tmp1); 1230 } 1231 return Tmp2; 1232 case ISD::EXTRACT_SUBREG: { 1233 Tmp1 = LegalizeOp(Node->getOperand(0)); 1234 ConstantSDNode *idx = dyn_cast<ConstantSDNode>(Node->getOperand(1)); 1235 assert(idx && "Operand must be a constant"); 1236 Tmp2 = DAG.getTargetConstant(idx->getValue(), idx->getValueType(0)); 1237 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1238 } 1239 break; 1240 case ISD::INSERT_SUBREG: { 1241 Tmp1 = LegalizeOp(Node->getOperand(0)); 1242 Tmp2 = LegalizeOp(Node->getOperand(1)); 1243 ConstantSDNode *idx = dyn_cast<ConstantSDNode>(Node->getOperand(2)); 1244 assert(idx && "Operand must be a constant"); 1245 Tmp3 = DAG.getTargetConstant(idx->getValue(), idx->getValueType(0)); 1246 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1247 } 1248 break; 1249 case ISD::BUILD_VECTOR: 1250 switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) { 1251 default: assert(0 && "This action is not supported yet!"); 1252 case TargetLowering::Custom: 1253 Tmp3 = TLI.LowerOperation(Result, DAG); 1254 if (Tmp3.Val) { 1255 Result = Tmp3; 1256 break; 1257 } 1258 // FALLTHROUGH 1259 case TargetLowering::Expand: 1260 Result = ExpandBUILD_VECTOR(Result.Val); 1261 break; 1262 } 1263 break; 1264 case ISD::INSERT_VECTOR_ELT: 1265 Tmp1 = LegalizeOp(Node->getOperand(0)); // InVec 1266 Tmp2 = LegalizeOp(Node->getOperand(1)); // InVal 1267 Tmp3 = LegalizeOp(Node->getOperand(2)); // InEltNo 1268 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1269 1270 switch (TLI.getOperationAction(ISD::INSERT_VECTOR_ELT, 1271 Node->getValueType(0))) { 1272 default: assert(0 && "This action is not supported yet!"); 1273 case TargetLowering::Legal: 1274 break; 1275 case TargetLowering::Custom: 1276 Tmp4 = TLI.LowerOperation(Result, DAG); 1277 if (Tmp4.Val) { 1278 Result = Tmp4; 1279 break; 1280 } 1281 // FALLTHROUGH 1282 case TargetLowering::Expand: { 1283 // If the insert index is a constant, codegen this as a scalar_to_vector, 1284 // then a shuffle that inserts it into the right position in the vector. 1285 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Tmp3)) { 1286 SDOperand ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, 1287 Tmp1.getValueType(), Tmp2); 1288 1289 unsigned NumElts = MVT::getVectorNumElements(Tmp1.getValueType()); 1290 MVT::ValueType ShufMaskVT = MVT::getIntVectorWithNumElements(NumElts); 1291 MVT::ValueType ShufMaskEltVT = MVT::getVectorElementType(ShufMaskVT); 1292 1293 // We generate a shuffle of InVec and ScVec, so the shuffle mask should 1294 // be 0,1,2,3,4,5... with the appropriate element replaced with elt 0 of 1295 // the RHS. 1296 SmallVector<SDOperand, 8> ShufOps; 1297 for (unsigned i = 0; i != NumElts; ++i) { 1298 if (i != InsertPos->getValue()) 1299 ShufOps.push_back(DAG.getConstant(i, ShufMaskEltVT)); 1300 else 1301 ShufOps.push_back(DAG.getConstant(NumElts, ShufMaskEltVT)); 1302 } 1303 SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, ShufMaskVT, 1304 &ShufOps[0], ShufOps.size()); 1305 1306 Result = DAG.getNode(ISD::VECTOR_SHUFFLE, Tmp1.getValueType(), 1307 Tmp1, ScVec, ShufMask); 1308 Result = LegalizeOp(Result); 1309 break; 1310 } 1311 1312 // If the target doesn't support this, we have to spill the input vector 1313 // to a temporary stack slot, update the element, then reload it. This is 1314 // badness. We could also load the value into a vector register (either 1315 // with a "move to register" or "extload into register" instruction, then 1316 // permute it into place, if the idx is a constant and if the idx is 1317 // supported by the target. 1318 MVT::ValueType VT = Tmp1.getValueType(); 1319 MVT::ValueType EltVT = Tmp2.getValueType(); 1320 MVT::ValueType IdxVT = Tmp3.getValueType(); 1321 MVT::ValueType PtrVT = TLI.getPointerTy(); 1322 SDOperand StackPtr = DAG.CreateStackTemporary(VT); 1323 1324 FrameIndexSDNode *StackPtrFI = dyn_cast<FrameIndexSDNode>(StackPtr.Val); 1325 assert(StackPtrFI); 1326 int SPFI = StackPtrFI->getIndex(); 1327 1328 // Store the vector. 1329 SDOperand Ch = DAG.getStore(DAG.getEntryNode(), Tmp1, StackPtr, 1330 PseudoSourceValue::getFixedStack(), 1331 SPFI); 1332 1333 // Truncate or zero extend offset to target pointer type. 1334 unsigned CastOpc = (IdxVT > PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND; 1335 Tmp3 = DAG.getNode(CastOpc, PtrVT, Tmp3); 1336 // Add the offset to the index. 1337 unsigned EltSize = MVT::getSizeInBits(EltVT)/8; 1338 Tmp3 = DAG.getNode(ISD::MUL, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT)); 1339 SDOperand StackPtr2 = DAG.getNode(ISD::ADD, IdxVT, Tmp3, StackPtr); 1340 // Store the scalar value. 1341 Ch = DAG.getStore(Ch, Tmp2, StackPtr2, 1342 PseudoSourceValue::getFixedStack(), SPFI); 1343 // Load the updated vector. 1344 Result = DAG.getLoad(VT, Ch, StackPtr, 1345 PseudoSourceValue::getFixedStack(), SPFI); 1346 break; 1347 } 1348 } 1349 break; 1350 case ISD::SCALAR_TO_VECTOR: 1351 if (!TLI.isTypeLegal(Node->getOperand(0).getValueType())) { 1352 Result = LegalizeOp(ExpandSCALAR_TO_VECTOR(Node)); 1353 break; 1354 } 1355 1356 Tmp1 = LegalizeOp(Node->getOperand(0)); // InVal 1357 Result = DAG.UpdateNodeOperands(Result, Tmp1); 1358 switch (TLI.getOperationAction(ISD::SCALAR_TO_VECTOR, 1359 Node->getValueType(0))) { 1360 default: assert(0 && "This action is not supported yet!"); 1361 case TargetLowering::Legal: 1362 break; 1363 case TargetLowering::Custom: 1364 Tmp3 = TLI.LowerOperation(Result, DAG); 1365 if (Tmp3.Val) { 1366 Result = Tmp3; 1367 break; 1368 } 1369 // FALLTHROUGH 1370 case TargetLowering::Expand: 1371 Result = LegalizeOp(ExpandSCALAR_TO_VECTOR(Node)); 1372 break; 1373 } 1374 break; 1375 case ISD::VECTOR_SHUFFLE: 1376 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the input vectors, 1377 Tmp2 = LegalizeOp(Node->getOperand(1)); // but not the shuffle mask. 1378 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 1379 1380 // Allow targets to custom lower the SHUFFLEs they support. 1381 switch (TLI.getOperationAction(ISD::VECTOR_SHUFFLE,Result.getValueType())) { 1382 default: assert(0 && "Unknown operation action!"); 1383 case TargetLowering::Legal: 1384 assert(isShuffleLegal(Result.getValueType(), Node->getOperand(2)) && 1385 "vector shuffle should not be created if not legal!"); 1386 break; 1387 case TargetLowering::Custom: 1388 Tmp3 = TLI.LowerOperation(Result, DAG); 1389 if (Tmp3.Val) { 1390 Result = Tmp3; 1391 break; 1392 } 1393 // FALLTHROUGH 1394 case TargetLowering::Expand: { 1395 MVT::ValueType VT = Node->getValueType(0); 1396 MVT::ValueType EltVT = MVT::getVectorElementType(VT); 1397 MVT::ValueType PtrVT = TLI.getPointerTy(); 1398 SDOperand Mask = Node->getOperand(2); 1399 unsigned NumElems = Mask.getNumOperands(); 1400 SmallVector<SDOperand,8> Ops; 1401 for (unsigned i = 0; i != NumElems; ++i) { 1402 SDOperand Arg = Mask.getOperand(i); 1403 if (Arg.getOpcode() == ISD::UNDEF) { 1404 Ops.push_back(DAG.getNode(ISD::UNDEF, EltVT)); 1405 } else { 1406 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 1407 unsigned Idx = cast<ConstantSDNode>(Arg)->getValue(); 1408 if (Idx < NumElems) 1409 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Tmp1, 1410 DAG.getConstant(Idx, PtrVT))); 1411 else 1412 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Tmp2, 1413 DAG.getConstant(Idx - NumElems, PtrVT))); 1414 } 1415 } 1416 Result = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()); 1417 break; 1418 } 1419 case TargetLowering::Promote: { 1420 // Change base type to a different vector type. 1421 MVT::ValueType OVT = Node->getValueType(0); 1422 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 1423 1424 // Cast the two input vectors. 1425 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp1); 1426 Tmp2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp2); 1427 1428 // Convert the shuffle mask to the right # elements. 1429 Tmp3 = SDOperand(isShuffleLegal(OVT, Node->getOperand(2)), 0); 1430 assert(Tmp3.Val && "Shuffle not legal?"); 1431 Result = DAG.getNode(ISD::VECTOR_SHUFFLE, NVT, Tmp1, Tmp2, Tmp3); 1432 Result = DAG.getNode(ISD::BIT_CONVERT, OVT, Result); 1433 break; 1434 } 1435 } 1436 break; 1437 1438 case ISD::EXTRACT_VECTOR_ELT: 1439 Tmp1 = Node->getOperand(0); 1440 Tmp2 = LegalizeOp(Node->getOperand(1)); 1441 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1442 Result = ExpandEXTRACT_VECTOR_ELT(Result); 1443 break; 1444 1445 case ISD::EXTRACT_SUBVECTOR: 1446 Tmp1 = Node->getOperand(0); 1447 Tmp2 = LegalizeOp(Node->getOperand(1)); 1448 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1449 Result = ExpandEXTRACT_SUBVECTOR(Result); 1450 break; 1451 1452 case ISD::CALLSEQ_START: { 1453 SDNode *CallEnd = FindCallEndFromCallStart(Node); 1454 1455 // Recursively Legalize all of the inputs of the call end that do not lead 1456 // to this call start. This ensures that any libcalls that need be inserted 1457 // are inserted *before* the CALLSEQ_START. 1458 {SmallPtrSet<SDNode*, 32> NodesLeadingTo; 1459 for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i) 1460 LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).Val, Node, 1461 NodesLeadingTo); 1462 } 1463 1464 // Now that we legalized all of the inputs (which may have inserted 1465 // libcalls) create the new CALLSEQ_START node. 1466 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1467 1468 // Merge in the last call, to ensure that this call start after the last 1469 // call ended. 1470 if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) { 1471 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1472 Tmp1 = LegalizeOp(Tmp1); 1473 } 1474 1475 // Do not try to legalize the target-specific arguments (#1+). 1476 if (Tmp1 != Node->getOperand(0)) { 1477 SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end()); 1478 Ops[0] = Tmp1; 1479 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1480 } 1481 1482 // Remember that the CALLSEQ_START is legalized. 1483 AddLegalizedOperand(Op.getValue(0), Result); 1484 if (Node->getNumValues() == 2) // If this has a flag result, remember it. 1485 AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); 1486 1487 // Now that the callseq_start and all of the non-call nodes above this call 1488 // sequence have been legalized, legalize the call itself. During this 1489 // process, no libcalls can/will be inserted, guaranteeing that no calls 1490 // can overlap. 1491 assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!"); 1492 SDOperand InCallSEQ = LastCALLSEQ_END; 1493 // Note that we are selecting this call! 1494 LastCALLSEQ_END = SDOperand(CallEnd, 0); 1495 IsLegalizingCall = true; 1496 1497 // Legalize the call, starting from the CALLSEQ_END. 1498 LegalizeOp(LastCALLSEQ_END); 1499 assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!"); 1500 return Result; 1501 } 1502 case ISD::CALLSEQ_END: 1503 // If the CALLSEQ_START node hasn't been legalized first, legalize it. This 1504 // will cause this node to be legalized as well as handling libcalls right. 1505 if (LastCALLSEQ_END.Val != Node) { 1506 LegalizeOp(SDOperand(FindCallStartFromCallEnd(Node), 0)); 1507 DenseMap<SDOperand, SDOperand>::iterator I = LegalizedNodes.find(Op); 1508 assert(I != LegalizedNodes.end() && 1509 "Legalizing the call start should have legalized this node!"); 1510 return I->second; 1511 } 1512 1513 // Otherwise, the call start has been legalized and everything is going 1514 // according to plan. Just legalize ourselves normally here. 1515 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1516 // Do not try to legalize the target-specific arguments (#1+), except for 1517 // an optional flag input. 1518 if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){ 1519 if (Tmp1 != Node->getOperand(0)) { 1520 SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end()); 1521 Ops[0] = Tmp1; 1522 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1523 } 1524 } else { 1525 Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1)); 1526 if (Tmp1 != Node->getOperand(0) || 1527 Tmp2 != Node->getOperand(Node->getNumOperands()-1)) { 1528 SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end()); 1529 Ops[0] = Tmp1; 1530 Ops.back() = Tmp2; 1531 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1532 } 1533 } 1534 assert(IsLegalizingCall && "Call sequence imbalance between start/end?"); 1535 // This finishes up call legalization. 1536 IsLegalizingCall = false; 1537 1538 // If the CALLSEQ_END node has a flag, remember that we legalized it. 1539 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 1540 if (Node->getNumValues() == 2) 1541 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 1542 return Result.getValue(Op.ResNo); 1543 case ISD::DYNAMIC_STACKALLOC: { 1544 MVT::ValueType VT = Node->getValueType(0); 1545 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1546 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the size. 1547 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the alignment. 1548 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1549 1550 Tmp1 = Result.getValue(0); 1551 Tmp2 = Result.getValue(1); 1552 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 1553 default: assert(0 && "This action is not supported yet!"); 1554 case TargetLowering::Expand: { 1555 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1556 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1557 " not tell us which reg is the stack pointer!"); 1558 SDOperand Chain = Tmp1.getOperand(0); 1559 1560 // Chain the dynamic stack allocation so that it doesn't modify the stack 1561 // pointer when other instructions are using the stack. 1562 Chain = DAG.getCALLSEQ_START(Chain, 1563 DAG.getConstant(0, TLI.getPointerTy())); 1564 1565 SDOperand Size = Tmp2.getOperand(1); 1566 SDOperand SP = DAG.getCopyFromReg(Chain, SPReg, VT); 1567 Chain = SP.getValue(1); 1568 unsigned Align = cast<ConstantSDNode>(Tmp3)->getValue(); 1569 unsigned StackAlign = 1570 TLI.getTargetMachine().getFrameInfo()->getStackAlignment(); 1571 if (Align > StackAlign) 1572 SP = DAG.getNode(ISD::AND, VT, SP, 1573 DAG.getConstant(-(uint64_t)Align, VT)); 1574 Tmp1 = DAG.getNode(ISD::SUB, VT, SP, Size); // Value 1575 Chain = DAG.getCopyToReg(Chain, SPReg, Tmp1); // Output chain 1576 1577 Tmp2 = 1578 DAG.getCALLSEQ_END(Chain, 1579 DAG.getConstant(0, TLI.getPointerTy()), 1580 DAG.getConstant(0, TLI.getPointerTy()), 1581 SDOperand()); 1582 1583 Tmp1 = LegalizeOp(Tmp1); 1584 Tmp2 = LegalizeOp(Tmp2); 1585 break; 1586 } 1587 case TargetLowering::Custom: 1588 Tmp3 = TLI.LowerOperation(Tmp1, DAG); 1589 if (Tmp3.Val) { 1590 Tmp1 = LegalizeOp(Tmp3); 1591 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 1592 } 1593 break; 1594 case TargetLowering::Legal: 1595 break; 1596 } 1597 // Since this op produce two values, make sure to remember that we 1598 // legalized both of them. 1599 AddLegalizedOperand(SDOperand(Node, 0), Tmp1); 1600 AddLegalizedOperand(SDOperand(Node, 1), Tmp2); 1601 return Op.ResNo ? Tmp2 : Tmp1; 1602 } 1603 case ISD::INLINEASM: { 1604 SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end()); 1605 bool Changed = false; 1606 // Legalize all of the operands of the inline asm, in case they are nodes 1607 // that need to be expanded or something. Note we skip the asm string and 1608 // all of the TargetConstant flags. 1609 SDOperand Op = LegalizeOp(Ops[0]); 1610 Changed = Op != Ops[0]; 1611 Ops[0] = Op; 1612 1613 bool HasInFlag = Ops.back().getValueType() == MVT::Flag; 1614 for (unsigned i = 2, e = Ops.size()-HasInFlag; i < e; ) { 1615 unsigned NumVals = cast<ConstantSDNode>(Ops[i])->getValue() >> 3; 1616 for (++i; NumVals; ++i, --NumVals) { 1617 SDOperand Op = LegalizeOp(Ops[i]); 1618 if (Op != Ops[i]) { 1619 Changed = true; 1620 Ops[i] = Op; 1621 } 1622 } 1623 } 1624 1625 if (HasInFlag) { 1626 Op = LegalizeOp(Ops.back()); 1627 Changed |= Op != Ops.back(); 1628 Ops.back() = Op; 1629 } 1630 1631 if (Changed) 1632 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1633 1634 // INLINE asm returns a chain and flag, make sure to add both to the map. 1635 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 1636 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 1637 return Result.getValue(Op.ResNo); 1638 } 1639 case ISD::BR: 1640 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1641 // Ensure that libcalls are emitted before a branch. 1642 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1643 Tmp1 = LegalizeOp(Tmp1); 1644 LastCALLSEQ_END = DAG.getEntryNode(); 1645 1646 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 1647 break; 1648 case ISD::BRIND: 1649 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1650 // Ensure that libcalls are emitted before a branch. 1651 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1652 Tmp1 = LegalizeOp(Tmp1); 1653 LastCALLSEQ_END = DAG.getEntryNode(); 1654 1655 switch (getTypeAction(Node->getOperand(1).getValueType())) { 1656 default: assert(0 && "Indirect target must be legal type (pointer)!"); 1657 case Legal: 1658 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition. 1659 break; 1660 } 1661 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1662 break; 1663 case ISD::BR_JT: 1664 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1665 // Ensure that libcalls are emitted before a branch. 1666 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1667 Tmp1 = LegalizeOp(Tmp1); 1668 LastCALLSEQ_END = DAG.getEntryNode(); 1669 1670 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the jumptable node. 1671 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 1672 1673 switch (TLI.getOperationAction(ISD::BR_JT, MVT::Other)) { 1674 default: assert(0 && "This action is not supported yet!"); 1675 case TargetLowering::Legal: break; 1676 case TargetLowering::Custom: 1677 Tmp1 = TLI.LowerOperation(Result, DAG); 1678 if (Tmp1.Val) Result = Tmp1; 1679 break; 1680 case TargetLowering::Expand: { 1681 SDOperand Chain = Result.getOperand(0); 1682 SDOperand Table = Result.getOperand(1); 1683 SDOperand Index = Result.getOperand(2); 1684 1685 MVT::ValueType PTy = TLI.getPointerTy(); 1686 MachineFunction &MF = DAG.getMachineFunction(); 1687 unsigned EntrySize = MF.getJumpTableInfo()->getEntrySize(); 1688 Index= DAG.getNode(ISD::MUL, PTy, Index, DAG.getConstant(EntrySize, PTy)); 1689 SDOperand Addr = DAG.getNode(ISD::ADD, PTy, Index, Table); 1690 1691 SDOperand LD; 1692 switch (EntrySize) { 1693 default: assert(0 && "Size of jump table not supported yet."); break; 1694 case 4: LD = DAG.getLoad(MVT::i32, Chain, Addr, 1695 PseudoSourceValue::getJumpTable(), 0); break; 1696 case 8: LD = DAG.getLoad(MVT::i64, Chain, Addr, 1697 PseudoSourceValue::getJumpTable(), 0); break; 1698 } 1699 1700 Addr = LD; 1701 if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) { 1702 // For PIC, the sequence is: 1703 // BRIND(load(Jumptable + index) + RelocBase) 1704 // RelocBase can be JumpTable, GOT or some sort of global base. 1705 if (PTy != MVT::i32) 1706 Addr = DAG.getNode(ISD::SIGN_EXTEND, PTy, Addr); 1707 Addr = DAG.getNode(ISD::ADD, PTy, Addr, 1708 TLI.getPICJumpTableRelocBase(Table, DAG)); 1709 } 1710 Result = DAG.getNode(ISD::BRIND, MVT::Other, LD.getValue(1), Addr); 1711 } 1712 } 1713 break; 1714 case ISD::BRCOND: 1715 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1716 // Ensure that libcalls are emitted before a return. 1717 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1718 Tmp1 = LegalizeOp(Tmp1); 1719 LastCALLSEQ_END = DAG.getEntryNode(); 1720 1721 switch (getTypeAction(Node->getOperand(1).getValueType())) { 1722 case Expand: assert(0 && "It's impossible to expand bools"); 1723 case Legal: 1724 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition. 1725 break; 1726 case Promote: 1727 Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the condition. 1728 1729 // The top bits of the promoted condition are not necessarily zero, ensure 1730 // that the value is properly zero extended. 1731 if (!DAG.MaskedValueIsZero(Tmp2, 1732 MVT::getIntVTBitMask(Tmp2.getValueType())^1)) 1733 Tmp2 = DAG.getZeroExtendInReg(Tmp2, MVT::i1); 1734 break; 1735 } 1736 1737 // Basic block destination (Op#2) is always legal. 1738 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 1739 1740 switch (TLI.getOperationAction(ISD::BRCOND, MVT::Other)) { 1741 default: assert(0 && "This action is not supported yet!"); 1742 case TargetLowering::Legal: break; 1743 case TargetLowering::Custom: 1744 Tmp1 = TLI.LowerOperation(Result, DAG); 1745 if (Tmp1.Val) Result = Tmp1; 1746 break; 1747 case TargetLowering::Expand: 1748 // Expand brcond's setcc into its constituent parts and create a BR_CC 1749 // Node. 1750 if (Tmp2.getOpcode() == ISD::SETCC) { 1751 Result = DAG.getNode(ISD::BR_CC, MVT::Other, Tmp1, Tmp2.getOperand(2), 1752 Tmp2.getOperand(0), Tmp2.getOperand(1), 1753 Node->getOperand(2)); 1754 } else { 1755 Result = DAG.getNode(ISD::BR_CC, MVT::Other, Tmp1, 1756 DAG.getCondCode(ISD::SETNE), Tmp2, 1757 DAG.getConstant(0, Tmp2.getValueType()), 1758 Node->getOperand(2)); 1759 } 1760 break; 1761 } 1762 break; 1763 case ISD::BR_CC: 1764 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1765 // Ensure that libcalls are emitted before a branch. 1766 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1767 Tmp1 = LegalizeOp(Tmp1); 1768 Tmp2 = Node->getOperand(2); // LHS 1769 Tmp3 = Node->getOperand(3); // RHS 1770 Tmp4 = Node->getOperand(1); // CC 1771 1772 LegalizeSetCCOperands(Tmp2, Tmp3, Tmp4); 1773 LastCALLSEQ_END = DAG.getEntryNode(); 1774 1775 // If we didn't get both a LHS and RHS back from LegalizeSetCCOperands, 1776 // the LHS is a legal SETCC itself. In this case, we need to compare 1777 // the result against zero to select between true and false values. 1778 if (Tmp3.Val == 0) { 1779 Tmp3 = DAG.getConstant(0, Tmp2.getValueType()); 1780 Tmp4 = DAG.getCondCode(ISD::SETNE); 1781 } 1782 1783 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp4, Tmp2, Tmp3, 1784 Node->getOperand(4)); 1785 1786 switch (TLI.getOperationAction(ISD::BR_CC, Tmp3.getValueType())) { 1787 default: assert(0 && "Unexpected action for BR_CC!"); 1788 case TargetLowering::Legal: break; 1789 case TargetLowering::Custom: 1790 Tmp4 = TLI.LowerOperation(Result, DAG); 1791 if (Tmp4.Val) Result = Tmp4; 1792 break; 1793 } 1794 break; 1795 case ISD::LOAD: { 1796 LoadSDNode *LD = cast<LoadSDNode>(Node); 1797 Tmp1 = LegalizeOp(LD->getChain()); // Legalize the chain. 1798 Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer. 1799 1800 ISD::LoadExtType ExtType = LD->getExtensionType(); 1801 if (ExtType == ISD::NON_EXTLOAD) { 1802 MVT::ValueType VT = Node->getValueType(0); 1803 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset()); 1804 Tmp3 = Result.getValue(0); 1805 Tmp4 = Result.getValue(1); 1806 1807 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 1808 default: assert(0 && "This action is not supported yet!"); 1809 case TargetLowering::Legal: 1810 // If this is an unaligned load and the target doesn't support it, 1811 // expand it. 1812 if (!TLI.allowsUnalignedMemoryAccesses()) { 1813 unsigned ABIAlignment = TLI.getTargetData()-> 1814 getABITypeAlignment(MVT::getTypeForValueType(LD->getMemoryVT())); 1815 if (LD->getAlignment() < ABIAlignment){ 1816 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.Val), DAG, 1817 TLI); 1818 Tmp3 = Result.getOperand(0); 1819 Tmp4 = Result.getOperand(1); 1820 Tmp3 = LegalizeOp(Tmp3); 1821 Tmp4 = LegalizeOp(Tmp4); 1822 } 1823 } 1824 break; 1825 case TargetLowering::Custom: 1826 Tmp1 = TLI.LowerOperation(Tmp3, DAG); 1827 if (Tmp1.Val) { 1828 Tmp3 = LegalizeOp(Tmp1); 1829 Tmp4 = LegalizeOp(Tmp1.getValue(1)); 1830 } 1831 break; 1832 case TargetLowering::Promote: { 1833 // Only promote a load of vector type to another. 1834 assert(MVT::isVector(VT) && "Cannot promote this load!"); 1835 // Change base type to a different vector type. 1836 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 1837 1838 Tmp1 = DAG.getLoad(NVT, Tmp1, Tmp2, LD->getSrcValue(), 1839 LD->getSrcValueOffset(), 1840 LD->isVolatile(), LD->getAlignment()); 1841 Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, VT, Tmp1)); 1842 Tmp4 = LegalizeOp(Tmp1.getValue(1)); 1843 break; 1844 } 1845 } 1846 // Since loads produce two values, make sure to remember that we 1847 // legalized both of them. 1848 AddLegalizedOperand(SDOperand(Node, 0), Tmp3); 1849 AddLegalizedOperand(SDOperand(Node, 1), Tmp4); 1850 return Op.ResNo ? Tmp4 : Tmp3; 1851 } else { 1852 MVT::ValueType SrcVT = LD->getMemoryVT(); 1853 unsigned SrcWidth = MVT::getSizeInBits(SrcVT); 1854 int SVOffset = LD->getSrcValueOffset(); 1855 unsigned Alignment = LD->getAlignment(); 1856 bool isVolatile = LD->isVolatile(); 1857 1858 if (SrcWidth != MVT::getStoreSizeInBits(SrcVT) && 1859 // Some targets pretend to have an i1 loading operation, and actually 1860 // load an i8. This trick is correct for ZEXTLOAD because the top 7 1861 // bits are guaranteed to be zero; it helps the optimizers understand 1862 // that these bits are zero. It is also useful for EXTLOAD, since it 1863 // tells the optimizers that those bits are undefined. It would be 1864 // nice to have an effective generic way of getting these benefits... 1865 // Until such a way is found, don't insist on promoting i1 here. 1866 (SrcVT != MVT::i1 || 1867 TLI.getLoadXAction(ExtType, MVT::i1) == TargetLowering::Promote)) { 1868 // Promote to a byte-sized load if not loading an integral number of 1869 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 1870 unsigned NewWidth = MVT::getStoreSizeInBits(SrcVT); 1871 MVT::ValueType NVT = MVT::getIntegerType(NewWidth); 1872 SDOperand Ch; 1873 1874 // The extra bits are guaranteed to be zero, since we stored them that 1875 // way. A zext load from NVT thus automatically gives zext from SrcVT. 1876 1877 ISD::LoadExtType NewExtType = 1878 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 1879 1880 Result = DAG.getExtLoad(NewExtType, Node->getValueType(0), 1881 Tmp1, Tmp2, LD->getSrcValue(), SVOffset, 1882 NVT, isVolatile, Alignment); 1883 1884 Ch = Result.getValue(1); // The chain. 1885 1886 if (ExtType == ISD::SEXTLOAD) 1887 // Having the top bits zero doesn't help when sign extending. 1888 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), 1889 Result, DAG.getValueType(SrcVT)); 1890 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 1891 // All the top bits are guaranteed to be zero - inform the optimizers. 1892 Result = DAG.getNode(ISD::AssertZext, Result.getValueType(), Result, 1893 DAG.getValueType(SrcVT)); 1894 1895 Tmp1 = LegalizeOp(Result); 1896 Tmp2 = LegalizeOp(Ch); 1897 } else if (SrcWidth & (SrcWidth - 1)) { 1898 // If not loading a power-of-2 number of bits, expand as two loads. 1899 assert(MVT::isExtendedVT(SrcVT) && !MVT::isVector(SrcVT) && 1900 "Unsupported extload!"); 1901 unsigned RoundWidth = 1 << Log2_32(SrcWidth); 1902 assert(RoundWidth < SrcWidth); 1903 unsigned ExtraWidth = SrcWidth - RoundWidth; 1904 assert(ExtraWidth < RoundWidth); 1905 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 1906 "Load size not an integral number of bytes!"); 1907 MVT::ValueType RoundVT = MVT::getIntegerType(RoundWidth); 1908 MVT::ValueType ExtraVT = MVT::getIntegerType(ExtraWidth); 1909 SDOperand Lo, Hi, Ch; 1910 unsigned IncrementSize; 1911 1912 if (TLI.isLittleEndian()) { 1913 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 1914 // Load the bottom RoundWidth bits. 1915 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, Node->getValueType(0), Tmp1, Tmp2, 1916 LD->getSrcValue(), SVOffset, RoundVT, isVolatile, 1917 Alignment); 1918 1919 // Load the remaining ExtraWidth bits. 1920 IncrementSize = RoundWidth / 8; 1921 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 1922 DAG.getIntPtrConstant(IncrementSize)); 1923 Hi = DAG.getExtLoad(ExtType, Node->getValueType(0), Tmp1, Tmp2, 1924 LD->getSrcValue(), SVOffset + IncrementSize, 1925 ExtraVT, isVolatile, 1926 MinAlign(Alignment, IncrementSize)); 1927 1928 // Build a factor node to remember that this load is independent of the 1929 // other one. 1930 Ch = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 1931 Hi.getValue(1)); 1932 1933 // Move the top bits to the right place. 1934 Hi = DAG.getNode(ISD::SHL, Hi.getValueType(), Hi, 1935 DAG.getConstant(RoundWidth, TLI.getShiftAmountTy())); 1936 1937 // Join the hi and lo parts. 1938 Result = DAG.getNode(ISD::OR, Node->getValueType(0), Lo, Hi); 1939 } else { 1940 // Big endian - avoid unaligned loads. 1941 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 1942 // Load the top RoundWidth bits. 1943 Hi = DAG.getExtLoad(ExtType, Node->getValueType(0), Tmp1, Tmp2, 1944 LD->getSrcValue(), SVOffset, RoundVT, isVolatile, 1945 Alignment); 1946 1947 // Load the remaining ExtraWidth bits. 1948 IncrementSize = RoundWidth / 8; 1949 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 1950 DAG.getIntPtrConstant(IncrementSize)); 1951 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, Node->getValueType(0), Tmp1, Tmp2, 1952 LD->getSrcValue(), SVOffset + IncrementSize, 1953 ExtraVT, isVolatile, 1954 MinAlign(Alignment, IncrementSize)); 1955 1956 // Build a factor node to remember that this load is independent of the 1957 // other one. 1958 Ch = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 1959 Hi.getValue(1)); 1960 1961 // Move the top bits to the right place. 1962 Hi = DAG.getNode(ISD::SHL, Hi.getValueType(), Hi, 1963 DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy())); 1964 1965 // Join the hi and lo parts. 1966 Result = DAG.getNode(ISD::OR, Node->getValueType(0), Lo, Hi); 1967 } 1968 1969 Tmp1 = LegalizeOp(Result); 1970 Tmp2 = LegalizeOp(Ch); 1971 } else { 1972 switch (TLI.getLoadXAction(ExtType, SrcVT)) { 1973 default: assert(0 && "This action is not supported yet!"); 1974 case TargetLowering::Custom: 1975 isCustom = true; 1976 // FALLTHROUGH 1977 case TargetLowering::Legal: 1978 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset()); 1979 Tmp1 = Result.getValue(0); 1980 Tmp2 = Result.getValue(1); 1981 1982 if (isCustom) { 1983 Tmp3 = TLI.LowerOperation(Result, DAG); 1984 if (Tmp3.Val) { 1985 Tmp1 = LegalizeOp(Tmp3); 1986 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 1987 } 1988 } else { 1989 // If this is an unaligned load and the target doesn't support it, 1990 // expand it. 1991 if (!TLI.allowsUnalignedMemoryAccesses()) { 1992 unsigned ABIAlignment = TLI.getTargetData()-> 1993 getABITypeAlignment(MVT::getTypeForValueType(LD->getMemoryVT())); 1994 if (LD->getAlignment() < ABIAlignment){ 1995 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.Val), DAG, 1996 TLI); 1997 Tmp1 = Result.getOperand(0); 1998 Tmp2 = Result.getOperand(1); 1999 Tmp1 = LegalizeOp(Tmp1); 2000 Tmp2 = LegalizeOp(Tmp2); 2001 } 2002 } 2003 } 2004 break; 2005 case TargetLowering::Expand: 2006 // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND 2007 if (SrcVT == MVT::f32 && Node->getValueType(0) == MVT::f64) { 2008 SDOperand Load = DAG.getLoad(SrcVT, Tmp1, Tmp2, LD->getSrcValue(), 2009 LD->getSrcValueOffset(), 2010 LD->isVolatile(), LD->getAlignment()); 2011 Result = DAG.getNode(ISD::FP_EXTEND, Node->getValueType(0), Load); 2012 Tmp1 = LegalizeOp(Result); // Relegalize new nodes. 2013 Tmp2 = LegalizeOp(Load.getValue(1)); 2014 break; 2015 } 2016 assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!"); 2017 // Turn the unsupported load into an EXTLOAD followed by an explicit 2018 // zero/sign extend inreg. 2019 Result = DAG.getExtLoad(ISD::EXTLOAD, Node->getValueType(0), 2020 Tmp1, Tmp2, LD->getSrcValue(), 2021 LD->getSrcValueOffset(), SrcVT, 2022 LD->isVolatile(), LD->getAlignment()); 2023 SDOperand ValRes; 2024 if (ExtType == ISD::SEXTLOAD) 2025 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), 2026 Result, DAG.getValueType(SrcVT)); 2027 else 2028 ValRes = DAG.getZeroExtendInReg(Result, SrcVT); 2029 Tmp1 = LegalizeOp(ValRes); // Relegalize new nodes. 2030 Tmp2 = LegalizeOp(Result.getValue(1)); // Relegalize new nodes. 2031 break; 2032 } 2033 } 2034 2035 // Since loads produce two values, make sure to remember that we legalized 2036 // both of them. 2037 AddLegalizedOperand(SDOperand(Node, 0), Tmp1); 2038 AddLegalizedOperand(SDOperand(Node, 1), Tmp2); 2039 return Op.ResNo ? Tmp2 : Tmp1; 2040 } 2041 } 2042 case ISD::EXTRACT_ELEMENT: { 2043 MVT::ValueType OpTy = Node->getOperand(0).getValueType(); 2044 switch (getTypeAction(OpTy)) { 2045 default: assert(0 && "EXTRACT_ELEMENT action for type unimplemented!"); 2046 case Legal: 2047 if (cast<ConstantSDNode>(Node->getOperand(1))->getValue()) { 2048 // 1 -> Hi 2049 Result = DAG.getNode(ISD::SRL, OpTy, Node->getOperand(0), 2050 DAG.getConstant(MVT::getSizeInBits(OpTy)/2, 2051 TLI.getShiftAmountTy())); 2052 Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), Result); 2053 } else { 2054 // 0 -> Lo 2055 Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), 2056 Node->getOperand(0)); 2057 } 2058 break; 2059 case Expand: 2060 // Get both the low and high parts. 2061 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 2062 if (cast<ConstantSDNode>(Node->getOperand(1))->getValue()) 2063 Result = Tmp2; // 1 -> Hi 2064 else 2065 Result = Tmp1; // 0 -> Lo 2066 break; 2067 } 2068 break; 2069 } 2070 2071 case ISD::CopyToReg: 2072 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2073 2074 assert(isTypeLegal(Node->getOperand(2).getValueType()) && 2075 "Register type must be legal!"); 2076 // Legalize the incoming value (must be a legal type). 2077 Tmp2 = LegalizeOp(Node->getOperand(2)); 2078 if (Node->getNumValues() == 1) { 2079 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1), Tmp2); 2080 } else { 2081 assert(Node->getNumValues() == 2 && "Unknown CopyToReg"); 2082 if (Node->getNumOperands() == 4) { 2083 Tmp3 = LegalizeOp(Node->getOperand(3)); 2084 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1), Tmp2, 2085 Tmp3); 2086 } else { 2087 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1),Tmp2); 2088 } 2089 2090 // Since this produces two values, make sure to remember that we legalized 2091 // both of them. 2092 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 2093 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 2094 return Result; 2095 } 2096 break; 2097 2098 case ISD::RET: 2099 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2100 2101 // Ensure that libcalls are emitted before a return. 2102 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 2103 Tmp1 = LegalizeOp(Tmp1); 2104 LastCALLSEQ_END = DAG.getEntryNode(); 2105 2106 switch (Node->getNumOperands()) { 2107 case 3: // ret val 2108 Tmp2 = Node->getOperand(1); 2109 Tmp3 = Node->getOperand(2); // Signness 2110 switch (getTypeAction(Tmp2.getValueType())) { 2111 case Legal: 2112 Result = DAG.UpdateNodeOperands(Result, Tmp1, LegalizeOp(Tmp2), Tmp3); 2113 break; 2114 case Expand: 2115 if (!MVT::isVector(Tmp2.getValueType())) { 2116 SDOperand Lo, Hi; 2117 ExpandOp(Tmp2, Lo, Hi); 2118 2119 // Big endian systems want the hi reg first. 2120 if (TLI.isBigEndian()) 2121 std::swap(Lo, Hi); 2122 2123 if (Hi.Val) 2124 Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3, Hi,Tmp3); 2125 else 2126 Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3); 2127 Result = LegalizeOp(Result); 2128 } else { 2129 SDNode *InVal = Tmp2.Val; 2130 int InIx = Tmp2.ResNo; 2131 unsigned NumElems = MVT::getVectorNumElements(InVal->getValueType(InIx)); 2132 MVT::ValueType EVT = MVT::getVectorElementType(InVal->getValueType(InIx)); 2133 2134 // Figure out if there is a simple type corresponding to this Vector 2135 // type. If so, convert to the vector type. 2136 MVT::ValueType TVT = MVT::getVectorType(EVT, NumElems); 2137 if (TLI.isTypeLegal(TVT)) { 2138 // Turn this into a return of the vector type. 2139 Tmp2 = LegalizeOp(Tmp2); 2140 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2141 } else if (NumElems == 1) { 2142 // Turn this into a return of the scalar type. 2143 Tmp2 = ScalarizeVectorOp(Tmp2); 2144 Tmp2 = LegalizeOp(Tmp2); 2145 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2146 2147 // FIXME: Returns of gcc generic vectors smaller than a legal type 2148 // should be returned in integer registers! 2149 2150 // The scalarized value type may not be legal, e.g. it might require 2151 // promotion or expansion. Relegalize the return. 2152 Result = LegalizeOp(Result); 2153 } else { 2154 // FIXME: Returns of gcc generic vectors larger than a legal vector 2155 // type should be returned by reference! 2156 SDOperand Lo, Hi; 2157 SplitVectorOp(Tmp2, Lo, Hi); 2158 Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3, Hi,Tmp3); 2159 Result = LegalizeOp(Result); 2160 } 2161 } 2162 break; 2163 case Promote: 2164 Tmp2 = PromoteOp(Node->getOperand(1)); 2165 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2166 Result = LegalizeOp(Result); 2167 break; 2168 } 2169 break; 2170 case 1: // ret void 2171 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2172 break; 2173 default: { // ret <values> 2174 SmallVector<SDOperand, 8> NewValues; 2175 NewValues.push_back(Tmp1); 2176 for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2) 2177 switch (getTypeAction(Node->getOperand(i).getValueType())) { 2178 case Legal: 2179 NewValues.push_back(LegalizeOp(Node->getOperand(i))); 2180 NewValues.push_back(Node->getOperand(i+1)); 2181 break; 2182 case Expand: { 2183 SDOperand Lo, Hi; 2184 assert(!MVT::isExtendedVT(Node->getOperand(i).getValueType()) && 2185 "FIXME: TODO: implement returning non-legal vector types!"); 2186 ExpandOp(Node->getOperand(i), Lo, Hi); 2187 NewValues.push_back(Lo); 2188 NewValues.push_back(Node->getOperand(i+1)); 2189 if (Hi.Val) { 2190 NewValues.push_back(Hi); 2191 NewValues.push_back(Node->getOperand(i+1)); 2192 } 2193 break; 2194 } 2195 case Promote: 2196 assert(0 && "Can't promote multiple return value yet!"); 2197 } 2198 2199 if (NewValues.size() == Node->getNumOperands()) 2200 Result = DAG.UpdateNodeOperands(Result, &NewValues[0],NewValues.size()); 2201 else 2202 Result = DAG.getNode(ISD::RET, MVT::Other, 2203 &NewValues[0], NewValues.size()); 2204 break; 2205 } 2206 } 2207 2208 if (Result.getOpcode() == ISD::RET) { 2209 switch (TLI.getOperationAction(Result.getOpcode(), MVT::Other)) { 2210 default: assert(0 && "This action is not supported yet!"); 2211 case TargetLowering::Legal: break; 2212 case TargetLowering::Custom: 2213 Tmp1 = TLI.LowerOperation(Result, DAG); 2214 if (Tmp1.Val) Result = Tmp1; 2215 break; 2216 } 2217 } 2218 break; 2219 case ISD::STORE: { 2220 StoreSDNode *ST = cast<StoreSDNode>(Node); 2221 Tmp1 = LegalizeOp(ST->getChain()); // Legalize the chain. 2222 Tmp2 = LegalizeOp(ST->getBasePtr()); // Legalize the pointer. 2223 int SVOffset = ST->getSrcValueOffset(); 2224 unsigned Alignment = ST->getAlignment(); 2225 bool isVolatile = ST->isVolatile(); 2226 2227 if (!ST->isTruncatingStore()) { 2228 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 2229 // FIXME: We shouldn't do this for TargetConstantFP's. 2230 // FIXME: move this to the DAG Combiner! Note that we can't regress due 2231 // to phase ordering between legalized code and the dag combiner. This 2232 // probably means that we need to integrate dag combiner and legalizer 2233 // together. 2234 // We generally can't do this one for long doubles. 2235 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 2236 if (CFP->getValueType(0) == MVT::f32 && 2237 getTypeAction(MVT::i32) == Legal) { 2238 Tmp3 = DAG.getConstant((uint32_t)CFP->getValueAPF(). 2239 convertToAPInt().getZExtValue(), 2240 MVT::i32); 2241 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2242 SVOffset, isVolatile, Alignment); 2243 break; 2244 } else if (CFP->getValueType(0) == MVT::f64) { 2245 // If this target supports 64-bit registers, do a single 64-bit store. 2246 if (getTypeAction(MVT::i64) == Legal) { 2247 Tmp3 = DAG.getConstant(CFP->getValueAPF().convertToAPInt(). 2248 getZExtValue(), MVT::i64); 2249 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2250 SVOffset, isVolatile, Alignment); 2251 break; 2252 } else if (getTypeAction(MVT::i32) == Legal) { 2253 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 2254 // stores. If the target supports neither 32- nor 64-bits, this 2255 // xform is certainly not worth it. 2256 uint64_t IntVal =CFP->getValueAPF().convertToAPInt().getZExtValue(); 2257 SDOperand Lo = DAG.getConstant(uint32_t(IntVal), MVT::i32); 2258 SDOperand Hi = DAG.getConstant(uint32_t(IntVal >>32), MVT::i32); 2259 if (TLI.isBigEndian()) std::swap(Lo, Hi); 2260 2261 Lo = DAG.getStore(Tmp1, Lo, Tmp2, ST->getSrcValue(), 2262 SVOffset, isVolatile, Alignment); 2263 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 2264 DAG.getIntPtrConstant(4)); 2265 Hi = DAG.getStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), SVOffset+4, 2266 isVolatile, MinAlign(Alignment, 4U)); 2267 2268 Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); 2269 break; 2270 } 2271 } 2272 } 2273 2274 switch (getTypeAction(ST->getMemoryVT())) { 2275 case Legal: { 2276 Tmp3 = LegalizeOp(ST->getValue()); 2277 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2, 2278 ST->getOffset()); 2279 2280 MVT::ValueType VT = Tmp3.getValueType(); 2281 switch (TLI.getOperationAction(ISD::STORE, VT)) { 2282 default: assert(0 && "This action is not supported yet!"); 2283 case TargetLowering::Legal: 2284 // If this is an unaligned store and the target doesn't support it, 2285 // expand it. 2286 if (!TLI.allowsUnalignedMemoryAccesses()) { 2287 unsigned ABIAlignment = TLI.getTargetData()-> 2288 getABITypeAlignment(MVT::getTypeForValueType(ST->getMemoryVT())); 2289 if (ST->getAlignment() < ABIAlignment) 2290 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.Val), DAG, 2291 TLI); 2292 } 2293 break; 2294 case TargetLowering::Custom: 2295 Tmp1 = TLI.LowerOperation(Result, DAG); 2296 if (Tmp1.Val) Result = Tmp1; 2297 break; 2298 case TargetLowering::Promote: 2299 assert(MVT::isVector(VT) && "Unknown legal promote case!"); 2300 Tmp3 = DAG.getNode(ISD::BIT_CONVERT, 2301 TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3); 2302 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, 2303 ST->getSrcValue(), SVOffset, isVolatile, 2304 Alignment); 2305 break; 2306 } 2307 break; 2308 } 2309 case Promote: 2310 // Truncate the value and store the result. 2311 Tmp3 = PromoteOp(ST->getValue()); 2312 Result = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2313 SVOffset, ST->getMemoryVT(), 2314 isVolatile, Alignment); 2315 break; 2316 2317 case Expand: 2318 unsigned IncrementSize = 0; 2319 SDOperand Lo, Hi; 2320 2321 // If this is a vector type, then we have to calculate the increment as 2322 // the product of the element size in bytes, and the number of elements 2323 // in the high half of the vector. 2324 if (MVT::isVector(ST->getValue().getValueType())) { 2325 SDNode *InVal = ST->getValue().Val; 2326 int InIx = ST->getValue().ResNo; 2327 MVT::ValueType InVT = InVal->getValueType(InIx); 2328 unsigned NumElems = MVT::getVectorNumElements(InVT); 2329 MVT::ValueType EVT = MVT::getVectorElementType(InVT); 2330 2331 // Figure out if there is a simple type corresponding to this Vector 2332 // type. If so, convert to the vector type. 2333 MVT::ValueType TVT = MVT::getVectorType(EVT, NumElems); 2334 if (TLI.isTypeLegal(TVT)) { 2335 // Turn this into a normal store of the vector type. 2336 Tmp3 = LegalizeOp(Node->getOperand(1)); 2337 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2338 SVOffset, isVolatile, Alignment); 2339 Result = LegalizeOp(Result); 2340 break; 2341 } else if (NumElems == 1) { 2342 // Turn this into a normal store of the scalar type. 2343 Tmp3 = ScalarizeVectorOp(Node->getOperand(1)); 2344 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2345 SVOffset, isVolatile, Alignment); 2346 // The scalarized value type may not be legal, e.g. it might require 2347 // promotion or expansion. Relegalize the scalar store. 2348 Result = LegalizeOp(Result); 2349 break; 2350 } else { 2351 SplitVectorOp(Node->getOperand(1), Lo, Hi); 2352 IncrementSize = MVT::getVectorNumElements(Lo.Val->getValueType(0)) * 2353 MVT::getSizeInBits(EVT)/8; 2354 } 2355 } else { 2356 ExpandOp(Node->getOperand(1), Lo, Hi); 2357 IncrementSize = Hi.Val ? MVT::getSizeInBits(Hi.getValueType())/8 : 0; 2358 2359 if (TLI.isBigEndian()) 2360 std::swap(Lo, Hi); 2361 } 2362 2363 Lo = DAG.getStore(Tmp1, Lo, Tmp2, ST->getSrcValue(), 2364 SVOffset, isVolatile, Alignment); 2365 2366 if (Hi.Val == NULL) { 2367 // Must be int <-> float one-to-one expansion. 2368 Result = Lo; 2369 break; 2370 } 2371 2372 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 2373 DAG.getIntPtrConstant(IncrementSize)); 2374 assert(isTypeLegal(Tmp2.getValueType()) && 2375 "Pointers must be legal!"); 2376 SVOffset += IncrementSize; 2377 Alignment = MinAlign(Alignment, IncrementSize); 2378 Hi = DAG.getStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), 2379 SVOffset, isVolatile, Alignment); 2380 Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); 2381 break; 2382 } 2383 } else { 2384 switch (getTypeAction(ST->getValue().getValueType())) { 2385 case Legal: 2386 Tmp3 = LegalizeOp(ST->getValue()); 2387 break; 2388 case Promote: 2389 // We can promote the value, the truncstore will still take care of it. 2390 Tmp3 = PromoteOp(ST->getValue()); 2391 break; 2392 case Expand: 2393 // Just store the low part. This may become a non-trunc store, so make 2394 // sure to use getTruncStore, not UpdateNodeOperands below. 2395 ExpandOp(ST->getValue(), Tmp3, Tmp4); 2396 return DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2397 SVOffset, MVT::i8, isVolatile, Alignment); 2398 } 2399 2400 MVT::ValueType StVT = ST->getMemoryVT(); 2401 unsigned StWidth = MVT::getSizeInBits(StVT); 2402 2403 if (StWidth != MVT::getStoreSizeInBits(StVT)) { 2404 // Promote to a byte-sized store with upper bits zero if not 2405 // storing an integral number of bytes. For example, promote 2406 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 2407 MVT::ValueType NVT = MVT::getIntegerType(MVT::getStoreSizeInBits(StVT)); 2408 Tmp3 = DAG.getZeroExtendInReg(Tmp3, StVT); 2409 Result = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2410 SVOffset, NVT, isVolatile, Alignment); 2411 } else if (StWidth & (StWidth - 1)) { 2412 // If not storing a power-of-2 number of bits, expand as two stores. 2413 assert(MVT::isExtendedVT(StVT) && !MVT::isVector(StVT) && 2414 "Unsupported truncstore!"); 2415 unsigned RoundWidth = 1 << Log2_32(StWidth); 2416 assert(RoundWidth < StWidth); 2417 unsigned ExtraWidth = StWidth - RoundWidth; 2418 assert(ExtraWidth < RoundWidth); 2419 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 2420 "Store size not an integral number of bytes!"); 2421 MVT::ValueType RoundVT = MVT::getIntegerType(RoundWidth); 2422 MVT::ValueType ExtraVT = MVT::getIntegerType(ExtraWidth); 2423 SDOperand Lo, Hi; 2424 unsigned IncrementSize; 2425 2426 if (TLI.isLittleEndian()) { 2427 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 2428 // Store the bottom RoundWidth bits. 2429 Lo = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2430 SVOffset, RoundVT, 2431 isVolatile, Alignment); 2432 2433 // Store the remaining ExtraWidth bits. 2434 IncrementSize = RoundWidth / 8; 2435 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 2436 DAG.getIntPtrConstant(IncrementSize)); 2437 Hi = DAG.getNode(ISD::SRL, Tmp3.getValueType(), Tmp3, 2438 DAG.getConstant(RoundWidth, TLI.getShiftAmountTy())); 2439 Hi = DAG.getTruncStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), 2440 SVOffset + IncrementSize, ExtraVT, isVolatile, 2441 MinAlign(Alignment, IncrementSize)); 2442 } else { 2443 // Big endian - avoid unaligned stores. 2444 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 2445 // Store the top RoundWidth bits. 2446 Hi = DAG.getNode(ISD::SRL, Tmp3.getValueType(), Tmp3, 2447 DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy())); 2448 Hi = DAG.getTruncStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), SVOffset, 2449 RoundVT, isVolatile, Alignment); 2450 2451 // Store the remaining ExtraWidth bits. 2452 IncrementSize = RoundWidth / 8; 2453 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 2454 DAG.getIntPtrConstant(IncrementSize)); 2455 Lo = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2456 SVOffset + IncrementSize, ExtraVT, isVolatile, 2457 MinAlign(Alignment, IncrementSize)); 2458 } 2459 2460 // The order of the stores doesn't matter. 2461 Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); 2462 } else { 2463 if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() || 2464 Tmp2 != ST->getBasePtr()) 2465 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2, 2466 ST->getOffset()); 2467 2468 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 2469 default: assert(0 && "This action is not supported yet!"); 2470 case TargetLowering::Legal: 2471 // If this is an unaligned store and the target doesn't support it, 2472 // expand it. 2473 if (!TLI.allowsUnalignedMemoryAccesses()) { 2474 unsigned ABIAlignment = TLI.getTargetData()-> 2475 getABITypeAlignment(MVT::getTypeForValueType(ST->getMemoryVT())); 2476 if (ST->getAlignment() < ABIAlignment) 2477 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.Val), DAG, 2478 TLI); 2479 } 2480 break; 2481 case TargetLowering::Custom: 2482 Result = TLI.LowerOperation(Result, DAG); 2483 break; 2484 case Expand: 2485 // TRUNCSTORE:i16 i32 -> STORE i16 2486 assert(isTypeLegal(StVT) && "Do not know how to expand this store!"); 2487 Tmp3 = DAG.getNode(ISD::TRUNCATE, StVT, Tmp3); 2488 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), SVOffset, 2489 isVolatile, Alignment); 2490 break; 2491 } 2492 } 2493 } 2494 break; 2495 } 2496 case ISD::PCMARKER: 2497 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2498 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 2499 break; 2500 case ISD::STACKSAVE: 2501 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2502 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2503 Tmp1 = Result.getValue(0); 2504 Tmp2 = Result.getValue(1); 2505 2506 switch (TLI.getOperationAction(ISD::STACKSAVE, MVT::Other)) { 2507 default: assert(0 && "This action is not supported yet!"); 2508 case TargetLowering::Legal: break; 2509 case TargetLowering::Custom: 2510 Tmp3 = TLI.LowerOperation(Result, DAG); 2511 if (Tmp3.Val) { 2512 Tmp1 = LegalizeOp(Tmp3); 2513 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 2514 } 2515 break; 2516 case TargetLowering::Expand: 2517 // Expand to CopyFromReg if the target set 2518 // StackPointerRegisterToSaveRestore. 2519 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 2520 Tmp1 = DAG.getCopyFromReg(Result.getOperand(0), SP, 2521 Node->getValueType(0)); 2522 Tmp2 = Tmp1.getValue(1); 2523 } else { 2524 Tmp1 = DAG.getNode(ISD::UNDEF, Node->getValueType(0)); 2525 Tmp2 = Node->getOperand(0); 2526 } 2527 break; 2528 } 2529 2530 // Since stacksave produce two values, make sure to remember that we 2531 // legalized both of them. 2532 AddLegalizedOperand(SDOperand(Node, 0), Tmp1); 2533 AddLegalizedOperand(SDOperand(Node, 1), Tmp2); 2534 return Op.ResNo ? Tmp2 : Tmp1; 2535 2536 case ISD::STACKRESTORE: 2537 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2538 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 2539 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 2540 2541 switch (TLI.getOperationAction(ISD::STACKRESTORE, MVT::Other)) { 2542 default: assert(0 && "This action is not supported yet!"); 2543 case TargetLowering::Legal: break; 2544 case TargetLowering::Custom: 2545 Tmp1 = TLI.LowerOperation(Result, DAG); 2546 if (Tmp1.Val) Result = Tmp1; 2547 break; 2548 case TargetLowering::Expand: 2549 // Expand to CopyToReg if the target set 2550 // StackPointerRegisterToSaveRestore. 2551 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 2552 Result = DAG.getCopyToReg(Tmp1, SP, Tmp2); 2553 } else { 2554 Result = Tmp1; 2555 } 2556 break; 2557 } 2558 break; 2559 2560 case ISD::READCYCLECOUNTER: 2561 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain 2562 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2563 switch (TLI.getOperationAction(ISD::READCYCLECOUNTER, 2564 Node->getValueType(0))) { 2565 default: assert(0 && "This action is not supported yet!"); 2566 case TargetLowering::Legal: 2567 Tmp1 = Result.getValue(0); 2568 Tmp2 = Result.getValue(1); 2569 break; 2570 case TargetLowering::Custom: 2571 Result = TLI.LowerOperation(Result, DAG); 2572 Tmp1 = LegalizeOp(Result.getValue(0)); 2573 Tmp2 = LegalizeOp(Result.getValue(1)); 2574 break; 2575 } 2576 2577 // Since rdcc produce two values, make sure to remember that we legalized 2578 // both of them. 2579 AddLegalizedOperand(SDOperand(Node, 0), Tmp1); 2580 AddLegalizedOperand(SDOperand(Node, 1), Tmp2); 2581 return Result; 2582 2583 case ISD::SELECT: 2584 switch (getTypeAction(Node->getOperand(0).getValueType())) { 2585 case Expand: assert(0 && "It's impossible to expand bools"); 2586 case Legal: 2587 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the condition. 2588 break; 2589 case Promote: 2590 Tmp1 = PromoteOp(Node->getOperand(0)); // Promote the condition. 2591 // Make sure the condition is either zero or one. 2592 if (!DAG.MaskedValueIsZero(Tmp1, 2593 MVT::getIntVTBitMask(Tmp1.getValueType())^1)) 2594 Tmp1 = DAG.getZeroExtendInReg(Tmp1, MVT::i1); 2595 break; 2596 } 2597 Tmp2 = LegalizeOp(Node->getOperand(1)); // TrueVal 2598 Tmp3 = LegalizeOp(Node->getOperand(2)); // FalseVal 2599 2600 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2601 2602 switch (TLI.getOperationAction(ISD::SELECT, Tmp2.getValueType())) { 2603 default: assert(0 && "This action is not supported yet!"); 2604 case TargetLowering::Legal: break; 2605 case TargetLowering::Custom: { 2606 Tmp1 = TLI.LowerOperation(Result, DAG); 2607 if (Tmp1.Val) Result = Tmp1; 2608 break; 2609 } 2610 case TargetLowering::Expand: 2611 if (Tmp1.getOpcode() == ISD::SETCC) { 2612 Result = DAG.getSelectCC(Tmp1.getOperand(0), Tmp1.getOperand(1), 2613 Tmp2, Tmp3, 2614 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 2615 } else { 2616 Result = DAG.getSelectCC(Tmp1, 2617 DAG.getConstant(0, Tmp1.getValueType()), 2618 Tmp2, Tmp3, ISD::SETNE); 2619 } 2620 break; 2621 case TargetLowering::Promote: { 2622 MVT::ValueType NVT = 2623 TLI.getTypeToPromoteTo(ISD::SELECT, Tmp2.getValueType()); 2624 unsigned ExtOp, TruncOp; 2625 if (MVT::isVector(Tmp2.getValueType())) { 2626 ExtOp = ISD::BIT_CONVERT; 2627 TruncOp = ISD::BIT_CONVERT; 2628 } else if (MVT::isInteger(Tmp2.getValueType())) { 2629 ExtOp = ISD::ANY_EXTEND; 2630 TruncOp = ISD::TRUNCATE; 2631 } else { 2632 ExtOp = ISD::FP_EXTEND; 2633 TruncOp = ISD::FP_ROUND; 2634 } 2635 // Promote each of the values to the new type. 2636 Tmp2 = DAG.getNode(ExtOp, NVT, Tmp2); 2637 Tmp3 = DAG.getNode(ExtOp, NVT, Tmp3); 2638 // Perform the larger operation, then round down. 2639 Result = DAG.getNode(ISD::SELECT, NVT, Tmp1, Tmp2,Tmp3); 2640 if (TruncOp != ISD::FP_ROUND) 2641 Result = DAG.getNode(TruncOp, Node->getValueType(0), Result); 2642 else 2643 Result = DAG.getNode(TruncOp, Node->getValueType(0), Result, 2644 DAG.getIntPtrConstant(0)); 2645 break; 2646 } 2647 } 2648 break; 2649 case ISD::SELECT_CC: { 2650 Tmp1 = Node->getOperand(0); // LHS 2651 Tmp2 = Node->getOperand(1); // RHS 2652 Tmp3 = LegalizeOp(Node->getOperand(2)); // True 2653 Tmp4 = LegalizeOp(Node->getOperand(3)); // False 2654 SDOperand CC = Node->getOperand(4); 2655 2656 LegalizeSetCCOperands(Tmp1, Tmp2, CC); 2657 2658 // If we didn't get both a LHS and RHS back from LegalizeSetCCOperands, 2659 // the LHS is a legal SETCC itself. In this case, we need to compare 2660 // the result against zero to select between true and false values. 2661 if (Tmp2.Val == 0) { 2662 Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); 2663 CC = DAG.getCondCode(ISD::SETNE); 2664 } 2665 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4, CC); 2666 2667 // Everything is legal, see if we should expand this op or something. 2668 switch (TLI.getOperationAction(ISD::SELECT_CC, Tmp3.getValueType())) { 2669 default: assert(0 && "This action is not supported yet!"); 2670 case TargetLowering::Legal: break; 2671 case TargetLowering::Custom: 2672 Tmp1 = TLI.LowerOperation(Result, DAG); 2673 if (Tmp1.Val) Result = Tmp1; 2674 break; 2675 } 2676 break; 2677 } 2678 case ISD::SETCC: 2679 Tmp1 = Node->getOperand(0); 2680 Tmp2 = Node->getOperand(1); 2681 Tmp3 = Node->getOperand(2); 2682 LegalizeSetCCOperands(Tmp1, Tmp2, Tmp3); 2683 2684 // If we had to Expand the SetCC operands into a SELECT node, then it may 2685 // not always be possible to return a true LHS & RHS. In this case, just 2686 // return the value we legalized, returned in the LHS 2687 if (Tmp2.Val == 0) { 2688 Result = Tmp1; 2689 break; 2690 } 2691 2692 switch (TLI.getOperationAction(ISD::SETCC, Tmp1.getValueType())) { 2693 default: assert(0 && "Cannot handle this action for SETCC yet!"); 2694 case TargetLowering::Custom: 2695 isCustom = true; 2696 // FALLTHROUGH. 2697 case TargetLowering::Legal: 2698 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2699 if (isCustom) { 2700 Tmp4 = TLI.LowerOperation(Result, DAG); 2701 if (Tmp4.Val) Result = Tmp4; 2702 } 2703 break; 2704 case TargetLowering::Promote: { 2705 // First step, figure out the appropriate operation to use. 2706 // Allow SETCC to not be supported for all legal data types 2707 // Mostly this targets FP 2708 MVT::ValueType NewInTy = Node->getOperand(0).getValueType(); 2709 MVT::ValueType OldVT = NewInTy; OldVT = OldVT; 2710 2711 // Scan for the appropriate larger type to use. 2712 while (1) { 2713 NewInTy = (MVT::ValueType)(NewInTy+1); 2714 2715 assert(MVT::isInteger(NewInTy) == MVT::isInteger(OldVT) && 2716 "Fell off of the edge of the integer world"); 2717 assert(MVT::isFloatingPoint(NewInTy) == MVT::isFloatingPoint(OldVT) && 2718 "Fell off of the edge of the floating point world"); 2719 2720 // If the target supports SETCC of this type, use it. 2721 if (TLI.isOperationLegal(ISD::SETCC, NewInTy)) 2722 break; 2723 } 2724 if (MVT::isInteger(NewInTy)) 2725 assert(0 && "Cannot promote Legal Integer SETCC yet"); 2726 else { 2727 Tmp1 = DAG.getNode(ISD::FP_EXTEND, NewInTy, Tmp1); 2728 Tmp2 = DAG.getNode(ISD::FP_EXTEND, NewInTy, Tmp2); 2729 } 2730 Tmp1 = LegalizeOp(Tmp1); 2731 Tmp2 = LegalizeOp(Tmp2); 2732 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2733 Result = LegalizeOp(Result); 2734 break; 2735 } 2736 case TargetLowering::Expand: 2737 // Expand a setcc node into a select_cc of the same condition, lhs, and 2738 // rhs that selects between const 1 (true) and const 0 (false). 2739 MVT::ValueType VT = Node->getValueType(0); 2740 Result = DAG.getNode(ISD::SELECT_CC, VT, Tmp1, Tmp2, 2741 DAG.getConstant(1, VT), DAG.getConstant(0, VT), 2742 Tmp3); 2743 break; 2744 } 2745 break; 2746 case ISD::MEMSET: 2747 case ISD::MEMCPY: 2748 case ISD::MEMMOVE: { 2749 Tmp1 = LegalizeOp(Node->getOperand(0)); // Chain 2750 Tmp2 = LegalizeOp(Node->getOperand(1)); // Pointer 2751 2752 if (Node->getOpcode() == ISD::MEMSET) { // memset = ubyte 2753 switch (getTypeAction(Node->getOperand(2).getValueType())) { 2754 case Expand: assert(0 && "Cannot expand a byte!"); 2755 case Legal: 2756 Tmp3 = LegalizeOp(Node->getOperand(2)); 2757 break; 2758 case Promote: 2759 Tmp3 = PromoteOp(Node->getOperand(2)); 2760 break; 2761 } 2762 } else { 2763 Tmp3 = LegalizeOp(Node->getOperand(2)); // memcpy/move = pointer, 2764 } 2765 2766 SDOperand Tmp4; 2767 switch (getTypeAction(Node->getOperand(3).getValueType())) { 2768 case Expand: { 2769 // Length is too big, just take the lo-part of the length. 2770 SDOperand HiPart; 2771 ExpandOp(Node->getOperand(3), Tmp4, HiPart); 2772 break; 2773 } 2774 case Legal: 2775 Tmp4 = LegalizeOp(Node->getOperand(3)); 2776 break; 2777 case Promote: 2778 Tmp4 = PromoteOp(Node->getOperand(3)); 2779 break; 2780 } 2781 2782 SDOperand Tmp5; 2783 switch (getTypeAction(Node->getOperand(4).getValueType())) { // uint 2784 case Expand: assert(0 && "Cannot expand this yet!"); 2785 case Legal: 2786 Tmp5 = LegalizeOp(Node->getOperand(4)); 2787 break; 2788 case Promote: 2789 Tmp5 = PromoteOp(Node->getOperand(4)); 2790 break; 2791 } 2792 2793 SDOperand Tmp6; 2794 switch (getTypeAction(Node->getOperand(5).getValueType())) { // bool 2795 case Expand: assert(0 && "Cannot expand this yet!"); 2796 case Legal: 2797 Tmp6 = LegalizeOp(Node->getOperand(5)); 2798 break; 2799 case Promote: 2800 Tmp6 = PromoteOp(Node->getOperand(5)); 2801 break; 2802 } 2803 2804 switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) { 2805 default: assert(0 && "This action not implemented for this operation!"); 2806 case TargetLowering::Custom: 2807 isCustom = true; 2808 // FALLTHROUGH 2809 case TargetLowering::Legal: { 2810 SDOperand Ops[] = { Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6 }; 2811 Result = DAG.UpdateNodeOperands(Result, Ops, 6); 2812 if (isCustom) { 2813 Tmp1 = TLI.LowerOperation(Result, DAG); 2814 if (Tmp1.Val) Result = Tmp1; 2815 } 2816 break; 2817 } 2818 case TargetLowering::Expand: { 2819 // Otherwise, the target does not support this operation. Lower the 2820 // operation to an explicit libcall as appropriate. 2821 MVT::ValueType IntPtr = TLI.getPointerTy(); 2822 const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(); 2823 TargetLowering::ArgListTy Args; 2824 TargetLowering::ArgListEntry Entry; 2825 2826 const char *FnName = 0; 2827 if (Node->getOpcode() == ISD::MEMSET) { 2828 Entry.Node = Tmp2; Entry.Ty = IntPtrTy; 2829 Args.push_back(Entry); 2830 // Extend the (previously legalized) ubyte argument to be an int value 2831 // for the call. 2832 if (Tmp3.getValueType() > MVT::i32) 2833 Tmp3 = DAG.getNode(ISD::TRUNCATE, MVT::i32, Tmp3); 2834 else 2835 Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Tmp3); 2836 Entry.Node = Tmp3; Entry.Ty = Type::Int32Ty; Entry.isSExt = true; 2837 Args.push_back(Entry); 2838 Entry.Node = Tmp4; Entry.Ty = IntPtrTy; Entry.isSExt = false; 2839 Args.push_back(Entry); 2840 2841 FnName = "memset"; 2842 } else if (Node->getOpcode() == ISD::MEMCPY || 2843 Node->getOpcode() == ISD::MEMMOVE) { 2844 Entry.Ty = IntPtrTy; 2845 Entry.Node = Tmp2; Args.push_back(Entry); 2846 Entry.Node = Tmp3; Args.push_back(Entry); 2847 Entry.Node = Tmp4; Args.push_back(Entry); 2848 FnName = Node->getOpcode() == ISD::MEMMOVE ? "memmove" : "memcpy"; 2849 } else { 2850 assert(0 && "Unknown op!"); 2851 } 2852 2853 std::pair<SDOperand,SDOperand> CallResult = 2854 TLI.LowerCallTo(Tmp1, Type::VoidTy, false, false, CallingConv::C, false, 2855 DAG.getExternalSymbol(FnName, IntPtr), Args, DAG); 2856 Result = CallResult.second; 2857 break; 2858 } 2859 } 2860 break; 2861 } 2862 2863 case ISD::SHL_PARTS: 2864 case ISD::SRA_PARTS: 2865 case ISD::SRL_PARTS: { 2866 SmallVector<SDOperand, 8> Ops; 2867 bool Changed = false; 2868 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 2869 Ops.push_back(LegalizeOp(Node->getOperand(i))); 2870 Changed |= Ops.back() != Node->getOperand(i); 2871 } 2872 if (Changed) 2873 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 2874 2875 switch (TLI.getOperationAction(Node->getOpcode(), 2876 Node->getValueType(0))) { 2877 default: assert(0 && "This action is not supported yet!"); 2878 case TargetLowering::Legal: break; 2879 case TargetLowering::Custom: 2880 Tmp1 = TLI.LowerOperation(Result, DAG); 2881 if (Tmp1.Val) { 2882 SDOperand Tmp2, RetVal(0, 0); 2883 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { 2884 Tmp2 = LegalizeOp(Tmp1.getValue(i)); 2885 AddLegalizedOperand(SDOperand(Node, i), Tmp2); 2886 if (i == Op.ResNo) 2887 RetVal = Tmp2; 2888 } 2889 assert(RetVal.Val && "Illegal result number"); 2890 return RetVal; 2891 } 2892 break; 2893 } 2894 2895 // Since these produce multiple values, make sure to remember that we 2896 // legalized all of them. 2897 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 2898 AddLegalizedOperand(SDOperand(Node, i), Result.getValue(i)); 2899 return Result.getValue(Op.ResNo); 2900 } 2901 2902 // Binary operators 2903 case ISD::ADD: 2904 case ISD::SUB: 2905 case ISD::MUL: 2906 case ISD::MULHS: 2907 case ISD::MULHU: 2908 case ISD::UDIV: 2909 case ISD::SDIV: 2910 case ISD::AND: 2911 case ISD::OR: 2912 case ISD::XOR: 2913 case ISD::SHL: 2914 case ISD::SRL: 2915 case ISD::SRA: 2916 case ISD::FADD: 2917 case ISD::FSUB: 2918 case ISD::FMUL: 2919 case ISD::FDIV: 2920 case ISD::FPOW: 2921 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 2922 switch (getTypeAction(Node->getOperand(1).getValueType())) { 2923 case Expand: assert(0 && "Not possible"); 2924 case Legal: 2925 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the RHS. 2926 break; 2927 case Promote: 2928 Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the RHS. 2929 break; 2930 } 2931 2932 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 2933 2934 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 2935 default: assert(0 && "BinOp legalize operation not supported"); 2936 case TargetLowering::Legal: break; 2937 case TargetLowering::Custom: 2938 Tmp1 = TLI.LowerOperation(Result, DAG); 2939 if (Tmp1.Val) Result = Tmp1; 2940 break; 2941 case TargetLowering::Expand: { 2942 MVT::ValueType VT = Op.getValueType(); 2943 2944 // See if multiply or divide can be lowered using two-result operations. 2945 SDVTList VTs = DAG.getVTList(VT, VT); 2946 if (Node->getOpcode() == ISD::MUL) { 2947 // We just need the low half of the multiply; try both the signed 2948 // and unsigned forms. If the target supports both SMUL_LOHI and 2949 // UMUL_LOHI, form a preference by checking which forms of plain 2950 // MULH it supports. 2951 bool HasSMUL_LOHI = TLI.isOperationLegal(ISD::SMUL_LOHI, VT); 2952 bool HasUMUL_LOHI = TLI.isOperationLegal(ISD::UMUL_LOHI, VT); 2953 bool HasMULHS = TLI.isOperationLegal(ISD::MULHS, VT); 2954 bool HasMULHU = TLI.isOperationLegal(ISD::MULHU, VT); 2955 unsigned OpToUse = 0; 2956 if (HasSMUL_LOHI && !HasMULHS) { 2957 OpToUse = ISD::SMUL_LOHI; 2958 } else if (HasUMUL_LOHI && !HasMULHU) { 2959 OpToUse = ISD::UMUL_LOHI; 2960 } else if (HasSMUL_LOHI) { 2961 OpToUse = ISD::SMUL_LOHI; 2962 } else if (HasUMUL_LOHI) { 2963 OpToUse = ISD::UMUL_LOHI; 2964 } 2965 if (OpToUse) { 2966 Result = SDOperand(DAG.getNode(OpToUse, VTs, Tmp1, Tmp2).Val, 0); 2967 break; 2968 } 2969 } 2970 if (Node->getOpcode() == ISD::MULHS && 2971 TLI.isOperationLegal(ISD::SMUL_LOHI, VT)) { 2972 Result = SDOperand(DAG.getNode(ISD::SMUL_LOHI, VTs, Tmp1, Tmp2).Val, 1); 2973 break; 2974 } 2975 if (Node->getOpcode() == ISD::MULHU && 2976 TLI.isOperationLegal(ISD::UMUL_LOHI, VT)) { 2977 Result = SDOperand(DAG.getNode(ISD::UMUL_LOHI, VTs, Tmp1, Tmp2).Val, 1); 2978 break; 2979 } 2980 if (Node->getOpcode() == ISD::SDIV && 2981 TLI.isOperationLegal(ISD::SDIVREM, VT)) { 2982 Result = SDOperand(DAG.getNode(ISD::SDIVREM, VTs, Tmp1, Tmp2).Val, 0); 2983 break; 2984 } 2985 if (Node->getOpcode() == ISD::UDIV && 2986 TLI.isOperationLegal(ISD::UDIVREM, VT)) { 2987 Result = SDOperand(DAG.getNode(ISD::UDIVREM, VTs, Tmp1, Tmp2).Val, 0); 2988 break; 2989 } 2990 2991 // Check to see if we have a libcall for this operator. 2992 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 2993 bool isSigned = false; 2994 switch (Node->getOpcode()) { 2995 case ISD::UDIV: 2996 case ISD::SDIV: 2997 if (VT == MVT::i32) { 2998 LC = Node->getOpcode() == ISD::UDIV 2999 ? RTLIB::UDIV_I32 : RTLIB::SDIV_I32; 3000 isSigned = Node->getOpcode() == ISD::SDIV; 3001 } 3002 break; 3003 case ISD::FPOW: 3004 LC = GetFPLibCall(VT, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, 3005 RTLIB::POW_PPCF128); 3006 break; 3007 default: break; 3008 } 3009 if (LC != RTLIB::UNKNOWN_LIBCALL) { 3010 SDOperand Dummy; 3011 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, isSigned, Dummy); 3012 break; 3013 } 3014 3015 assert(MVT::isVector(Node->getValueType(0)) && 3016 "Cannot expand this binary operator!"); 3017 // Expand the operation into a bunch of nasty scalar code. 3018 Result = LegalizeOp(UnrollVectorOp(Op)); 3019 break; 3020 } 3021 case TargetLowering::Promote: { 3022 switch (Node->getOpcode()) { 3023 default: assert(0 && "Do not know how to promote this BinOp!"); 3024 case ISD::AND: 3025 case ISD::OR: 3026 case ISD::XOR: { 3027 MVT::ValueType OVT = Node->getValueType(0); 3028 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3029 assert(MVT::isVector(OVT) && "Cannot promote this BinOp!"); 3030 // Bit convert each of the values to the new type. 3031 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp1); 3032 Tmp2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp2); 3033 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 3034 // Bit convert the result back the original type. 3035 Result = DAG.getNode(ISD::BIT_CONVERT, OVT, Result); 3036 break; 3037 } 3038 } 3039 } 3040 } 3041 break; 3042 3043 case ISD::SMUL_LOHI: 3044 case ISD::UMUL_LOHI: 3045 case ISD::SDIVREM: 3046 case ISD::UDIVREM: 3047 // These nodes will only be produced by target-specific lowering, so 3048 // they shouldn't be here if they aren't legal. 3049 assert(TLI.isOperationLegal(Node->getOpcode(), Node->getValueType(0)) && 3050 "This must be legal!"); 3051 3052 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3053 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 3054 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3055 break; 3056 3057 case ISD::FCOPYSIGN: // FCOPYSIGN does not require LHS/RHS to match type! 3058 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3059 switch (getTypeAction(Node->getOperand(1).getValueType())) { 3060 case Expand: assert(0 && "Not possible"); 3061 case Legal: 3062 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the RHS. 3063 break; 3064 case Promote: 3065 Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the RHS. 3066 break; 3067 } 3068 3069 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3070 3071 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3072 default: assert(0 && "Operation not supported"); 3073 case TargetLowering::Custom: 3074 Tmp1 = TLI.LowerOperation(Result, DAG); 3075 if (Tmp1.Val) Result = Tmp1; 3076 break; 3077 case TargetLowering::Legal: break; 3078 case TargetLowering::Expand: { 3079 // If this target supports fabs/fneg natively and select is cheap, 3080 // do this efficiently. 3081 if (!TLI.isSelectExpensive() && 3082 TLI.getOperationAction(ISD::FABS, Tmp1.getValueType()) == 3083 TargetLowering::Legal && 3084 TLI.getOperationAction(ISD::FNEG, Tmp1.getValueType()) == 3085 TargetLowering::Legal) { 3086 // Get the sign bit of the RHS. 3087 MVT::ValueType IVT = 3088 Tmp2.getValueType() == MVT::f32 ? MVT::i32 : MVT::i64; 3089 SDOperand SignBit = DAG.getNode(ISD::BIT_CONVERT, IVT, Tmp2); 3090 SignBit = DAG.getSetCC(TLI.getSetCCResultTy(), 3091 SignBit, DAG.getConstant(0, IVT), ISD::SETLT); 3092 // Get the absolute value of the result. 3093 SDOperand AbsVal = DAG.getNode(ISD::FABS, Tmp1.getValueType(), Tmp1); 3094 // Select between the nabs and abs value based on the sign bit of 3095 // the input. 3096 Result = DAG.getNode(ISD::SELECT, AbsVal.getValueType(), SignBit, 3097 DAG.getNode(ISD::FNEG, AbsVal.getValueType(), 3098 AbsVal), 3099 AbsVal); 3100 Result = LegalizeOp(Result); 3101 break; 3102 } 3103 3104 // Otherwise, do bitwise ops! 3105 MVT::ValueType NVT = 3106 Node->getValueType(0) == MVT::f32 ? MVT::i32 : MVT::i64; 3107 Result = ExpandFCOPYSIGNToBitwiseOps(Node, NVT, DAG, TLI); 3108 Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), Result); 3109 Result = LegalizeOp(Result); 3110 break; 3111 } 3112 } 3113 break; 3114 3115 case ISD::ADDC: 3116 case ISD::SUBC: 3117 Tmp1 = LegalizeOp(Node->getOperand(0)); 3118 Tmp2 = LegalizeOp(Node->getOperand(1)); 3119 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3120 // Since this produces two values, make sure to remember that we legalized 3121 // both of them. 3122 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 3123 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 3124 return Result; 3125 3126 case ISD::ADDE: 3127 case ISD::SUBE: 3128 Tmp1 = LegalizeOp(Node->getOperand(0)); 3129 Tmp2 = LegalizeOp(Node->getOperand(1)); 3130 Tmp3 = LegalizeOp(Node->getOperand(2)); 3131 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 3132 // Since this produces two values, make sure to remember that we legalized 3133 // both of them. 3134 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 3135 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 3136 return Result; 3137 3138 case ISD::BUILD_PAIR: { 3139 MVT::ValueType PairTy = Node->getValueType(0); 3140 // TODO: handle the case where the Lo and Hi operands are not of legal type 3141 Tmp1 = LegalizeOp(Node->getOperand(0)); // Lo 3142 Tmp2 = LegalizeOp(Node->getOperand(1)); // Hi 3143 switch (TLI.getOperationAction(ISD::BUILD_PAIR, PairTy)) { 3144 case TargetLowering::Promote: 3145 case TargetLowering::Custom: 3146 assert(0 && "Cannot promote/custom this yet!"); 3147 case TargetLowering::Legal: 3148 if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1)) 3149 Result = DAG.getNode(ISD::BUILD_PAIR, PairTy, Tmp1, Tmp2); 3150 break; 3151 case TargetLowering::Expand: 3152 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, PairTy, Tmp1); 3153 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, PairTy, Tmp2); 3154 Tmp2 = DAG.getNode(ISD::SHL, PairTy, Tmp2, 3155 DAG.getConstant(MVT::getSizeInBits(PairTy)/2, 3156 TLI.getShiftAmountTy())); 3157 Result = DAG.getNode(ISD::OR, PairTy, Tmp1, Tmp2); 3158 break; 3159 } 3160 break; 3161 } 3162 3163 case ISD::UREM: 3164 case ISD::SREM: 3165 case ISD::FREM: 3166 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3167 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 3168 3169 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3170 case TargetLowering::Promote: assert(0 && "Cannot promote this yet!"); 3171 case TargetLowering::Custom: 3172 isCustom = true; 3173 // FALLTHROUGH 3174 case TargetLowering::Legal: 3175 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3176 if (isCustom) { 3177 Tmp1 = TLI.LowerOperation(Result, DAG); 3178 if (Tmp1.Val) Result = Tmp1; 3179 } 3180 break; 3181 case TargetLowering::Expand: { 3182 unsigned DivOpc= (Node->getOpcode() == ISD::UREM) ? ISD::UDIV : ISD::SDIV; 3183 bool isSigned = DivOpc == ISD::SDIV; 3184 MVT::ValueType VT = Node->getValueType(0); 3185 3186 // See if remainder can be lowered using two-result operations. 3187 SDVTList VTs = DAG.getVTList(VT, VT); 3188 if (Node->getOpcode() == ISD::SREM && 3189 TLI.isOperationLegal(ISD::SDIVREM, VT)) { 3190 Result = SDOperand(DAG.getNode(ISD::SDIVREM, VTs, Tmp1, Tmp2).Val, 1); 3191 break; 3192 } 3193 if (Node->getOpcode() == ISD::UREM && 3194 TLI.isOperationLegal(ISD::UDIVREM, VT)) { 3195 Result = SDOperand(DAG.getNode(ISD::UDIVREM, VTs, Tmp1, Tmp2).Val, 1); 3196 break; 3197 } 3198 3199 if (MVT::isInteger(VT)) { 3200 if (TLI.getOperationAction(DivOpc, VT) == 3201 TargetLowering::Legal) { 3202 // X % Y -> X-X/Y*Y 3203 Result = DAG.getNode(DivOpc, VT, Tmp1, Tmp2); 3204 Result = DAG.getNode(ISD::MUL, VT, Result, Tmp2); 3205 Result = DAG.getNode(ISD::SUB, VT, Tmp1, Result); 3206 } else if (MVT::isVector(VT)) { 3207 Result = LegalizeOp(UnrollVectorOp(Op)); 3208 } else { 3209 assert(VT == MVT::i32 && 3210 "Cannot expand this binary operator!"); 3211 RTLIB::Libcall LC = Node->getOpcode() == ISD::UREM 3212 ? RTLIB::UREM_I32 : RTLIB::SREM_I32; 3213 SDOperand Dummy; 3214 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, isSigned, Dummy); 3215 } 3216 } else { 3217 assert(MVT::isFloatingPoint(VT) && 3218 "remainder op must have integer or floating-point type"); 3219 if (MVT::isVector(VT)) { 3220 Result = LegalizeOp(UnrollVectorOp(Op)); 3221 } else { 3222 // Floating point mod -> fmod libcall. 3223 RTLIB::Libcall LC = GetFPLibCall(VT, RTLIB::REM_F32, RTLIB::REM_F64, 3224 RTLIB::REM_F80, RTLIB::REM_PPCF128); 3225 SDOperand Dummy; 3226 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, 3227 false/*sign irrelevant*/, Dummy); 3228 } 3229 } 3230 break; 3231 } 3232 } 3233 break; 3234 case ISD::VAARG: { 3235 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3236 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 3237 3238 MVT::ValueType VT = Node->getValueType(0); 3239 switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) { 3240 default: assert(0 && "This action is not supported yet!"); 3241 case TargetLowering::Custom: 3242 isCustom = true; 3243 // FALLTHROUGH 3244 case TargetLowering::Legal: 3245 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 3246 Result = Result.getValue(0); 3247 Tmp1 = Result.getValue(1); 3248 3249 if (isCustom) { 3250 Tmp2 = TLI.LowerOperation(Result, DAG); 3251 if (Tmp2.Val) { 3252 Result = LegalizeOp(Tmp2); 3253 Tmp1 = LegalizeOp(Tmp2.getValue(1)); 3254 } 3255 } 3256 break; 3257 case TargetLowering::Expand: { 3258 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3259 SDOperand VAList = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp2, V, 0); 3260 // Increment the pointer, VAList, to the next vaarg 3261 Tmp3 = DAG.getNode(ISD::ADD, TLI.getPointerTy(), VAList, 3262 DAG.getConstant(MVT::getSizeInBits(VT)/8, 3263 TLI.getPointerTy())); 3264 // Store the incremented VAList to the legalized pointer 3265 Tmp3 = DAG.getStore(VAList.getValue(1), Tmp3, Tmp2, V, 0); 3266 // Load the actual argument out of the pointer VAList 3267 Result = DAG.getLoad(VT, Tmp3, VAList, NULL, 0); 3268 Tmp1 = LegalizeOp(Result.getValue(1)); 3269 Result = LegalizeOp(Result); 3270 break; 3271 } 3272 } 3273 // Since VAARG produces two values, make sure to remember that we 3274 // legalized both of them. 3275 AddLegalizedOperand(SDOperand(Node, 0), Result); 3276 AddLegalizedOperand(SDOperand(Node, 1), Tmp1); 3277 return Op.ResNo ? Tmp1 : Result; 3278 } 3279 3280 case ISD::VACOPY: 3281 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3282 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the dest pointer. 3283 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the source pointer. 3284 3285 switch (TLI.getOperationAction(ISD::VACOPY, MVT::Other)) { 3286 default: assert(0 && "This action is not supported yet!"); 3287 case TargetLowering::Custom: 3288 isCustom = true; 3289 // FALLTHROUGH 3290 case TargetLowering::Legal: 3291 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, 3292 Node->getOperand(3), Node->getOperand(4)); 3293 if (isCustom) { 3294 Tmp1 = TLI.LowerOperation(Result, DAG); 3295 if (Tmp1.Val) Result = Tmp1; 3296 } 3297 break; 3298 case TargetLowering::Expand: 3299 // This defaults to loading a pointer from the input and storing it to the 3300 // output, returning the chain. 3301 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 3302 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 3303 Tmp4 = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp3, VD, 0); 3304 Result = DAG.getStore(Tmp4.getValue(1), Tmp4, Tmp2, VS, 0); 3305 break; 3306 } 3307 break; 3308 3309 case ISD::VAEND: 3310 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3311 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 3312 3313 switch (TLI.getOperationAction(ISD::VAEND, MVT::Other)) { 3314 default: assert(0 && "This action is not supported yet!"); 3315 case TargetLowering::Custom: 3316 isCustom = true; 3317 // FALLTHROUGH 3318 case TargetLowering::Legal: 3319 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 3320 if (isCustom) { 3321 Tmp1 = TLI.LowerOperation(Tmp1, DAG); 3322 if (Tmp1.Val) Result = Tmp1; 3323 } 3324 break; 3325 case TargetLowering::Expand: 3326 Result = Tmp1; // Default to a no-op, return the chain 3327 break; 3328 } 3329 break; 3330 3331 case ISD::VASTART: 3332 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3333 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 3334 3335 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 3336 3337 switch (TLI.getOperationAction(ISD::VASTART, MVT::Other)) { 3338 default: assert(0 && "This action is not supported yet!"); 3339 case TargetLowering::Legal: break; 3340 case TargetLowering::Custom: 3341 Tmp1 = TLI.LowerOperation(Result, DAG); 3342 if (Tmp1.Val) Result = Tmp1; 3343 break; 3344 } 3345 break; 3346 3347 case ISD::ROTL: 3348 case ISD::ROTR: 3349 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3350 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 3351 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3352 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3353 default: 3354 assert(0 && "ROTL/ROTR legalize operation not supported"); 3355 break; 3356 case TargetLowering::Legal: 3357 break; 3358 case TargetLowering::Custom: 3359 Tmp1 = TLI.LowerOperation(Result, DAG); 3360 if (Tmp1.Val) Result = Tmp1; 3361 break; 3362 case TargetLowering::Promote: 3363 assert(0 && "Do not know how to promote ROTL/ROTR"); 3364 break; 3365 case TargetLowering::Expand: 3366 assert(0 && "Do not know how to expand ROTL/ROTR"); 3367 break; 3368 } 3369 break; 3370 3371 case ISD::BSWAP: 3372 Tmp1 = LegalizeOp(Node->getOperand(0)); // Op 3373 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3374 case TargetLowering::Custom: 3375 assert(0 && "Cannot custom legalize this yet!"); 3376 case TargetLowering::Legal: 3377 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3378 break; 3379 case TargetLowering::Promote: { 3380 MVT::ValueType OVT = Tmp1.getValueType(); 3381 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3382 unsigned DiffBits = MVT::getSizeInBits(NVT) - MVT::getSizeInBits(OVT); 3383 3384 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1); 3385 Tmp1 = DAG.getNode(ISD::BSWAP, NVT, Tmp1); 3386 Result = DAG.getNode(ISD::SRL, NVT, Tmp1, 3387 DAG.getConstant(DiffBits, TLI.getShiftAmountTy())); 3388 break; 3389 } 3390 case TargetLowering::Expand: 3391 Result = ExpandBSWAP(Tmp1); 3392 break; 3393 } 3394 break; 3395 3396 case ISD::CTPOP: 3397 case ISD::CTTZ: 3398 case ISD::CTLZ: 3399 Tmp1 = LegalizeOp(Node->getOperand(0)); // Op 3400 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3401 case TargetLowering::Custom: 3402 case TargetLowering::Legal: 3403 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3404 if (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)) == 3405 TargetLowering::Custom) { 3406 Tmp1 = TLI.LowerOperation(Result, DAG); 3407 if (Tmp1.Val) { 3408 Result = Tmp1; 3409 } 3410 } 3411 break; 3412 case TargetLowering::Promote: { 3413 MVT::ValueType OVT = Tmp1.getValueType(); 3414 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3415 3416 // Zero extend the argument. 3417 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1); 3418 // Perform the larger operation, then subtract if needed. 3419 Tmp1 = DAG.getNode(Node->getOpcode(), Node->getValueType(0), Tmp1); 3420 switch (Node->getOpcode()) { 3421 case ISD::CTPOP: 3422 Result = Tmp1; 3423 break; 3424 case ISD::CTTZ: 3425 //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) 3426 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), Tmp1, 3427 DAG.getConstant(MVT::getSizeInBits(NVT), NVT), 3428 ISD::SETEQ); 3429 Result = DAG.getNode(ISD::SELECT, NVT, Tmp2, 3430 DAG.getConstant(MVT::getSizeInBits(OVT),NVT), Tmp1); 3431 break; 3432 case ISD::CTLZ: 3433 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 3434 Result = DAG.getNode(ISD::SUB, NVT, Tmp1, 3435 DAG.getConstant(MVT::getSizeInBits(NVT) - 3436 MVT::getSizeInBits(OVT), NVT)); 3437 break; 3438 } 3439 break; 3440 } 3441 case TargetLowering::Expand: 3442 Result = ExpandBitCount(Node->getOpcode(), Tmp1); 3443 break; 3444 } 3445 break; 3446 3447 // Unary operators 3448 case ISD::FABS: 3449 case ISD::FNEG: 3450 case ISD::FSQRT: 3451 case ISD::FSIN: 3452 case ISD::FCOS: 3453 Tmp1 = LegalizeOp(Node->getOperand(0)); 3454 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3455 case TargetLowering::Promote: 3456 case TargetLowering::Custom: 3457 isCustom = true; 3458 // FALLTHROUGH 3459 case TargetLowering::Legal: 3460 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3461 if (isCustom) { 3462 Tmp1 = TLI.LowerOperation(Result, DAG); 3463 if (Tmp1.Val) Result = Tmp1; 3464 } 3465 break; 3466 case TargetLowering::Expand: 3467 switch (Node->getOpcode()) { 3468 default: assert(0 && "Unreachable!"); 3469 case ISD::FNEG: 3470 // Expand Y = FNEG(X) -> Y = SUB -0.0, X 3471 Tmp2 = DAG.getConstantFP(-0.0, Node->getValueType(0)); 3472 Result = DAG.getNode(ISD::FSUB, Node->getValueType(0), Tmp2, Tmp1); 3473 break; 3474 case ISD::FABS: { 3475 // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X). 3476 MVT::ValueType VT = Node->getValueType(0); 3477 Tmp2 = DAG.getConstantFP(0.0, VT); 3478 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), Tmp1, Tmp2, ISD::SETUGT); 3479 Tmp3 = DAG.getNode(ISD::FNEG, VT, Tmp1); 3480 Result = DAG.getNode(ISD::SELECT, VT, Tmp2, Tmp1, Tmp3); 3481 break; 3482 } 3483 case ISD::FSQRT: 3484 case ISD::FSIN: 3485 case ISD::FCOS: { 3486 MVT::ValueType VT = Node->getValueType(0); 3487 3488 // Expand unsupported unary vector operators by unrolling them. 3489 if (MVT::isVector(VT)) { 3490 Result = LegalizeOp(UnrollVectorOp(Op)); 3491 break; 3492 } 3493 3494 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3495 switch(Node->getOpcode()) { 3496 case ISD::FSQRT: 3497 LC = GetFPLibCall(VT, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 3498 RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128); 3499 break; 3500 case ISD::FSIN: 3501 LC = GetFPLibCall(VT, RTLIB::SIN_F32, RTLIB::SIN_F64, 3502 RTLIB::SIN_F80, RTLIB::SIN_PPCF128); 3503 break; 3504 case ISD::FCOS: 3505 LC = GetFPLibCall(VT, RTLIB::COS_F32, RTLIB::COS_F64, 3506 RTLIB::COS_F80, RTLIB::COS_PPCF128); 3507 break; 3508 default: assert(0 && "Unreachable!"); 3509 } 3510 SDOperand Dummy; 3511 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, 3512 false/*sign irrelevant*/, Dummy); 3513 break; 3514 } 3515 } 3516 break; 3517 } 3518 break; 3519 case ISD::FPOWI: { 3520 MVT::ValueType VT = Node->getValueType(0); 3521 3522 // Expand unsupported unary vector operators by unrolling them. 3523 if (MVT::isVector(VT)) { 3524 Result = LegalizeOp(UnrollVectorOp(Op)); 3525 break; 3526 } 3527 3528 // We always lower FPOWI into a libcall. No target support for it yet. 3529 RTLIB::Libcall LC = GetFPLibCall(VT, RTLIB::POWI_F32, RTLIB::POWI_F64, 3530 RTLIB::POWI_F80, RTLIB::POWI_PPCF128); 3531 SDOperand Dummy; 3532 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, 3533 false/*sign irrelevant*/, Dummy); 3534 break; 3535 } 3536 case ISD::BIT_CONVERT: 3537 if (!isTypeLegal(Node->getOperand(0).getValueType())) { 3538 Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 3539 Node->getValueType(0)); 3540 } else if (MVT::isVector(Op.getOperand(0).getValueType())) { 3541 // The input has to be a vector type, we have to either scalarize it, pack 3542 // it, or convert it based on whether the input vector type is legal. 3543 SDNode *InVal = Node->getOperand(0).Val; 3544 int InIx = Node->getOperand(0).ResNo; 3545 unsigned NumElems = MVT::getVectorNumElements(InVal->getValueType(InIx)); 3546 MVT::ValueType EVT = MVT::getVectorElementType(InVal->getValueType(InIx)); 3547 3548 // Figure out if there is a simple type corresponding to this Vector 3549 // type. If so, convert to the vector type. 3550 MVT::ValueType TVT = MVT::getVectorType(EVT, NumElems); 3551 if (TLI.isTypeLegal(TVT)) { 3552 // Turn this into a bit convert of the vector input. 3553 Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), 3554 LegalizeOp(Node->getOperand(0))); 3555 break; 3556 } else if (NumElems == 1) { 3557 // Turn this into a bit convert of the scalar input. 3558 Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), 3559 ScalarizeVectorOp(Node->getOperand(0))); 3560 break; 3561 } else { 3562 // FIXME: UNIMP! Store then reload 3563 assert(0 && "Cast from unsupported vector type not implemented yet!"); 3564 } 3565 } else { 3566 switch (TLI.getOperationAction(ISD::BIT_CONVERT, 3567 Node->getOperand(0).getValueType())) { 3568 default: assert(0 && "Unknown operation action!"); 3569 case TargetLowering::Expand: 3570 Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 3571 Node->getValueType(0)); 3572 break; 3573 case TargetLowering::Legal: 3574 Tmp1 = LegalizeOp(Node->getOperand(0)); 3575 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3576 break; 3577 } 3578 } 3579 break; 3580 3581 // Conversion operators. The source and destination have different types. 3582 case ISD::SINT_TO_FP: 3583 case ISD::UINT_TO_FP: { 3584 bool isSigned = Node->getOpcode() == ISD::SINT_TO_FP; 3585 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3586 case Legal: 3587 switch (TLI.getOperationAction(Node->getOpcode(), 3588 Node->getOperand(0).getValueType())) { 3589 default: assert(0 && "Unknown operation action!"); 3590 case TargetLowering::Custom: 3591 isCustom = true; 3592 // FALLTHROUGH 3593 case TargetLowering::Legal: 3594 Tmp1 = LegalizeOp(Node->getOperand(0)); 3595 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3596 if (isCustom) { 3597 Tmp1 = TLI.LowerOperation(Result, DAG); 3598 if (Tmp1.Val) Result = Tmp1; 3599 } 3600 break; 3601 case TargetLowering::Expand: 3602 Result = ExpandLegalINT_TO_FP(isSigned, 3603 LegalizeOp(Node->getOperand(0)), 3604 Node->getValueType(0)); 3605 break; 3606 case TargetLowering::Promote: 3607 Result = PromoteLegalINT_TO_FP(LegalizeOp(Node->getOperand(0)), 3608 Node->getValueType(0), 3609 isSigned); 3610 break; 3611 } 3612 break; 3613 case Expand: 3614 Result = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, 3615 Node->getValueType(0), Node->getOperand(0)); 3616 break; 3617 case Promote: 3618 Tmp1 = PromoteOp(Node->getOperand(0)); 3619 if (isSigned) { 3620 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, Tmp1.getValueType(), 3621 Tmp1, DAG.getValueType(Node->getOperand(0).getValueType())); 3622 } else { 3623 Tmp1 = DAG.getZeroExtendInReg(Tmp1, 3624 Node->getOperand(0).getValueType()); 3625 } 3626 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3627 Result = LegalizeOp(Result); // The 'op' is not necessarily legal! 3628 break; 3629 } 3630 break; 3631 } 3632 case ISD::TRUNCATE: 3633 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3634 case Legal: 3635 Tmp1 = LegalizeOp(Node->getOperand(0)); 3636 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3637 break; 3638 case Expand: 3639 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 3640 3641 // Since the result is legal, we should just be able to truncate the low 3642 // part of the source. 3643 Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), Tmp1); 3644 break; 3645 case Promote: 3646 Result = PromoteOp(Node->getOperand(0)); 3647 Result = DAG.getNode(ISD::TRUNCATE, Op.getValueType(), Result); 3648 break; 3649 } 3650 break; 3651 3652 case ISD::FP_TO_SINT: 3653 case ISD::FP_TO_UINT: 3654 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3655 case Legal: 3656 Tmp1 = LegalizeOp(Node->getOperand(0)); 3657 3658 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))){ 3659 default: assert(0 && "Unknown operation action!"); 3660 case TargetLowering::Custom: 3661 isCustom = true; 3662 // FALLTHROUGH 3663 case TargetLowering::Legal: 3664 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3665 if (isCustom) { 3666 Tmp1 = TLI.LowerOperation(Result, DAG); 3667 if (Tmp1.Val) Result = Tmp1; 3668 } 3669 break; 3670 case TargetLowering::Promote: 3671 Result = PromoteLegalFP_TO_INT(Tmp1, Node->getValueType(0), 3672 Node->getOpcode() == ISD::FP_TO_SINT); 3673 break; 3674 case TargetLowering::Expand: 3675 if (Node->getOpcode() == ISD::FP_TO_UINT) { 3676 SDOperand True, False; 3677 MVT::ValueType VT = Node->getOperand(0).getValueType(); 3678 MVT::ValueType NVT = Node->getValueType(0); 3679 unsigned ShiftAmt = MVT::getSizeInBits(NVT)-1; 3680 const uint64_t zero[] = {0, 0}; 3681 APFloat apf = APFloat(APInt(MVT::getSizeInBits(VT), 2, zero)); 3682 uint64_t x = 1ULL << ShiftAmt; 3683 (void)apf.convertFromZeroExtendedInteger 3684 (&x, MVT::getSizeInBits(NVT), false, APFloat::rmNearestTiesToEven); 3685 Tmp2 = DAG.getConstantFP(apf, VT); 3686 Tmp3 = DAG.getSetCC(TLI.getSetCCResultTy(), 3687 Node->getOperand(0), Tmp2, ISD::SETLT); 3688 True = DAG.getNode(ISD::FP_TO_SINT, NVT, Node->getOperand(0)); 3689 False = DAG.getNode(ISD::FP_TO_SINT, NVT, 3690 DAG.getNode(ISD::FSUB, VT, Node->getOperand(0), 3691 Tmp2)); 3692 False = DAG.getNode(ISD::XOR, NVT, False, 3693 DAG.getConstant(1ULL << ShiftAmt, NVT)); 3694 Result = DAG.getNode(ISD::SELECT, NVT, Tmp3, True, False); 3695 break; 3696 } else { 3697 assert(0 && "Do not know how to expand FP_TO_SINT yet!"); 3698 } 3699 break; 3700 } 3701 break; 3702 case Expand: { 3703 MVT::ValueType VT = Op.getValueType(); 3704 MVT::ValueType OVT = Node->getOperand(0).getValueType(); 3705 // Convert ppcf128 to i32 3706 if (OVT == MVT::ppcf128 && VT == MVT::i32) { 3707 if (Node->getOpcode() == ISD::FP_TO_SINT) { 3708 Result = DAG.getNode(ISD::FP_ROUND_INREG, MVT::ppcf128, 3709 Node->getOperand(0), DAG.getValueType(MVT::f64)); 3710 Result = DAG.getNode(ISD::FP_ROUND, MVT::f64, Result, 3711 DAG.getIntPtrConstant(1)); 3712 Result = DAG.getNode(ISD::FP_TO_SINT, VT, Result); 3713 } else { 3714 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 3715 APFloat apf = APFloat(APInt(128, 2, TwoE31)); 3716 Tmp2 = DAG.getConstantFP(apf, OVT); 3717 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 3718 // FIXME: generated code sucks. 3719 Result = DAG.getNode(ISD::SELECT_CC, VT, Node->getOperand(0), Tmp2, 3720 DAG.getNode(ISD::ADD, MVT::i32, 3721 DAG.getNode(ISD::FP_TO_SINT, VT, 3722 DAG.getNode(ISD::FSUB, OVT, 3723 Node->getOperand(0), Tmp2)), 3724 DAG.getConstant(0x80000000, MVT::i32)), 3725 DAG.getNode(ISD::FP_TO_SINT, VT, 3726 Node->getOperand(0)), 3727 DAG.getCondCode(ISD::SETGE)); 3728 } 3729 break; 3730 } 3731 // Convert f32 / f64 to i32 / i64. 3732 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3733 switch (Node->getOpcode()) { 3734 case ISD::FP_TO_SINT: { 3735 if (OVT == MVT::f32) 3736 LC = (VT == MVT::i32) 3737 ? RTLIB::FPTOSINT_F32_I32 : RTLIB::FPTOSINT_F32_I64; 3738 else if (OVT == MVT::f64) 3739 LC = (VT == MVT::i32) 3740 ? RTLIB::FPTOSINT_F64_I32 : RTLIB::FPTOSINT_F64_I64; 3741 else if (OVT == MVT::f80) { 3742 assert(VT == MVT::i64); 3743 LC = RTLIB::FPTOSINT_F80_I64; 3744 } 3745 else if (OVT == MVT::ppcf128) { 3746 assert(VT == MVT::i64); 3747 LC = RTLIB::FPTOSINT_PPCF128_I64; 3748 } 3749 break; 3750 } 3751 case ISD::FP_TO_UINT: { 3752 if (OVT == MVT::f32) 3753 LC = (VT == MVT::i32) 3754 ? RTLIB::FPTOUINT_F32_I32 : RTLIB::FPTOSINT_F32_I64; 3755 else if (OVT == MVT::f64) 3756 LC = (VT == MVT::i32) 3757 ? RTLIB::FPTOUINT_F64_I32 : RTLIB::FPTOSINT_F64_I64; 3758 else if (OVT == MVT::f80) { 3759 LC = (VT == MVT::i32) 3760 ? RTLIB::FPTOUINT_F80_I32 : RTLIB::FPTOUINT_F80_I64; 3761 } 3762 else if (OVT == MVT::ppcf128) { 3763 assert(VT == MVT::i64); 3764 LC = RTLIB::FPTOUINT_PPCF128_I64; 3765 } 3766 break; 3767 } 3768 default: assert(0 && "Unreachable!"); 3769 } 3770 SDOperand Dummy; 3771 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, 3772 false/*sign irrelevant*/, Dummy); 3773 break; 3774 } 3775 case Promote: 3776 Tmp1 = PromoteOp(Node->getOperand(0)); 3777 Result = DAG.UpdateNodeOperands(Result, LegalizeOp(Tmp1)); 3778 Result = LegalizeOp(Result); 3779 break; 3780 } 3781 break; 3782 3783 case ISD::FP_EXTEND: { 3784 MVT::ValueType DstVT = Op.getValueType(); 3785 MVT::ValueType SrcVT = Op.getOperand(0).getValueType(); 3786 if (TLI.getConvertAction(SrcVT, DstVT) == TargetLowering::Expand) { 3787 // The only other way we can lower this is to turn it into a STORE, 3788 // LOAD pair, targetting a temporary location (a stack slot). 3789 Result = EmitStackConvert(Node->getOperand(0), SrcVT, DstVT); 3790 break; 3791 } 3792 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3793 case Expand: assert(0 && "Shouldn't need to expand other operators here!"); 3794 case Legal: 3795 Tmp1 = LegalizeOp(Node->getOperand(0)); 3796 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3797 break; 3798 case Promote: 3799 Tmp1 = PromoteOp(Node->getOperand(0)); 3800 Result = DAG.getNode(ISD::FP_EXTEND, Op.getValueType(), Tmp1); 3801 break; 3802 } 3803 break; 3804 } 3805 case ISD::FP_ROUND: { 3806 MVT::ValueType DstVT = Op.getValueType(); 3807 MVT::ValueType SrcVT = Op.getOperand(0).getValueType(); 3808 if (TLI.getConvertAction(SrcVT, DstVT) == TargetLowering::Expand) { 3809 if (SrcVT == MVT::ppcf128) { 3810 SDOperand Lo; 3811 ExpandOp(Node->getOperand(0), Lo, Result); 3812 // Round it the rest of the way (e.g. to f32) if needed. 3813 if (DstVT!=MVT::f64) 3814 Result = DAG.getNode(ISD::FP_ROUND, DstVT, Result, Op.getOperand(1)); 3815 break; 3816 } 3817 // The only other way we can lower this is to turn it into a STORE, 3818 // LOAD pair, targetting a temporary location (a stack slot). 3819 Result = EmitStackConvert(Node->getOperand(0), DstVT, DstVT); 3820 break; 3821 } 3822 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3823 case Expand: assert(0 && "Shouldn't need to expand other operators here!"); 3824 case Legal: 3825 Tmp1 = LegalizeOp(Node->getOperand(0)); 3826 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 3827 break; 3828 case Promote: 3829 Tmp1 = PromoteOp(Node->getOperand(0)); 3830 Result = DAG.getNode(ISD::FP_ROUND, Op.getValueType(), Tmp1, 3831 Node->getOperand(1)); 3832 break; 3833 } 3834 break; 3835 } 3836 case ISD::ANY_EXTEND: 3837 case ISD::ZERO_EXTEND: 3838 case ISD::SIGN_EXTEND: 3839 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3840 case Expand: assert(0 && "Shouldn't need to expand other operators here!"); 3841 case Legal: 3842 Tmp1 = LegalizeOp(Node->getOperand(0)); 3843 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3844 break; 3845 case Promote: 3846 switch (Node->getOpcode()) { 3847 case ISD::ANY_EXTEND: 3848 Tmp1 = PromoteOp(Node->getOperand(0)); 3849 Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Tmp1); 3850 break; 3851 case ISD::ZERO_EXTEND: 3852 Result = PromoteOp(Node->getOperand(0)); 3853 Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Result); 3854 Result = DAG.getZeroExtendInReg(Result, 3855 Node->getOperand(0).getValueType()); 3856 break; 3857 case ISD::SIGN_EXTEND: 3858 Result = PromoteOp(Node->getOperand(0)); 3859 Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Result); 3860 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), 3861 Result, 3862 DAG.getValueType(Node->getOperand(0).getValueType())); 3863 break; 3864 } 3865 } 3866 break; 3867 case ISD::FP_ROUND_INREG: 3868 case ISD::SIGN_EXTEND_INREG: { 3869 Tmp1 = LegalizeOp(Node->getOperand(0)); 3870 MVT::ValueType ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 3871 3872 // If this operation is not supported, convert it to a shl/shr or load/store 3873 // pair. 3874 switch (TLI.getOperationAction(Node->getOpcode(), ExtraVT)) { 3875 default: assert(0 && "This action not supported for this op yet!"); 3876 case TargetLowering::Legal: 3877 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 3878 break; 3879 case TargetLowering::Expand: 3880 // If this is an integer extend and shifts are supported, do that. 3881 if (Node->getOpcode() == ISD::SIGN_EXTEND_INREG) { 3882 // NOTE: we could fall back on load/store here too for targets without 3883 // SAR. However, it is doubtful that any exist. 3884 unsigned BitsDiff = MVT::getSizeInBits(Node->getValueType(0)) - 3885 MVT::getSizeInBits(ExtraVT); 3886 SDOperand ShiftCst = DAG.getConstant(BitsDiff, TLI.getShiftAmountTy()); 3887 Result = DAG.getNode(ISD::SHL, Node->getValueType(0), 3888 Node->getOperand(0), ShiftCst); 3889 Result = DAG.getNode(ISD::SRA, Node->getValueType(0), 3890 Result, ShiftCst); 3891 } else if (Node->getOpcode() == ISD::FP_ROUND_INREG) { 3892 // The only way we can lower this is to turn it into a TRUNCSTORE, 3893 // EXTLOAD pair, targetting a temporary location (a stack slot). 3894 3895 // NOTE: there is a choice here between constantly creating new stack 3896 // slots and always reusing the same one. We currently always create 3897 // new ones, as reuse may inhibit scheduling. 3898 Result = EmitStackConvert(Node->getOperand(0), ExtraVT, 3899 Node->getValueType(0)); 3900 } else { 3901 assert(0 && "Unknown op"); 3902 } 3903 break; 3904 } 3905 break; 3906 } 3907 case ISD::TRAMPOLINE: { 3908 SDOperand Ops[6]; 3909 for (unsigned i = 0; i != 6; ++i) 3910 Ops[i] = LegalizeOp(Node->getOperand(i)); 3911 Result = DAG.UpdateNodeOperands(Result, Ops, 6); 3912 // The only option for this node is to custom lower it. 3913 Result = TLI.LowerOperation(Result, DAG); 3914 assert(Result.Val && "Should always custom lower!"); 3915 3916 // Since trampoline produces two values, make sure to remember that we 3917 // legalized both of them. 3918 Tmp1 = LegalizeOp(Result.getValue(1)); 3919 Result = LegalizeOp(Result); 3920 AddLegalizedOperand(SDOperand(Node, 0), Result); 3921 AddLegalizedOperand(SDOperand(Node, 1), Tmp1); 3922 return Op.ResNo ? Tmp1 : Result; 3923 } 3924 case ISD::FLT_ROUNDS_: { 3925 MVT::ValueType VT = Node->getValueType(0); 3926 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 3927 default: assert(0 && "This action not supported for this op yet!"); 3928 case TargetLowering::Custom: 3929 Result = TLI.LowerOperation(Op, DAG); 3930 if (Result.Val) break; 3931 // Fall Thru 3932 case TargetLowering::Legal: 3933 // If this operation is not supported, lower it to constant 1 3934 Result = DAG.getConstant(1, VT); 3935 break; 3936 } 3937 } 3938 case ISD::TRAP: { 3939 MVT::ValueType VT = Node->getValueType(0); 3940 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 3941 default: assert(0 && "This action not supported for this op yet!"); 3942 case TargetLowering::Legal: 3943 Tmp1 = LegalizeOp(Node->getOperand(0)); 3944 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3945 break; 3946 case TargetLowering::Custom: 3947 Result = TLI.LowerOperation(Op, DAG); 3948 if (Result.Val) break; 3949 // Fall Thru 3950 case TargetLowering::Expand: 3951 // If this operation is not supported, lower it to 'abort()' call 3952 Tmp1 = LegalizeOp(Node->getOperand(0)); 3953 TargetLowering::ArgListTy Args; 3954 std::pair<SDOperand,SDOperand> CallResult = 3955 TLI.LowerCallTo(Tmp1, Type::VoidTy, false, false, CallingConv::C, false, 3956 DAG.getExternalSymbol("abort", TLI.getPointerTy()), 3957 Args, DAG); 3958 Result = CallResult.second; 3959 break; 3960 } 3961 break; 3962 } 3963 } 3964 3965 assert(Result.getValueType() == Op.getValueType() && 3966 "Bad legalization!"); 3967 3968 // Make sure that the generated code is itself legal. 3969 if (Result != Op) 3970 Result = LegalizeOp(Result); 3971 3972 // Note that LegalizeOp may be reentered even from single-use nodes, which 3973 // means that we always must cache transformed nodes. 3974 AddLegalizedOperand(Op, Result); 3975 return Result; 3976} 3977 3978/// PromoteOp - Given an operation that produces a value in an invalid type, 3979/// promote it to compute the value into a larger type. The produced value will 3980/// have the correct bits for the low portion of the register, but no guarantee 3981/// is made about the top bits: it may be zero, sign-extended, or garbage. 3982SDOperand SelectionDAGLegalize::PromoteOp(SDOperand Op) { 3983 MVT::ValueType VT = Op.getValueType(); 3984 MVT::ValueType NVT = TLI.getTypeToTransformTo(VT); 3985 assert(getTypeAction(VT) == Promote && 3986 "Caller should expand or legalize operands that are not promotable!"); 3987 assert(NVT > VT && MVT::isInteger(NVT) == MVT::isInteger(VT) && 3988 "Cannot promote to smaller type!"); 3989 3990 SDOperand Tmp1, Tmp2, Tmp3; 3991 SDOperand Result; 3992 SDNode *Node = Op.Val; 3993 3994 DenseMap<SDOperand, SDOperand>::iterator I = PromotedNodes.find(Op); 3995 if (I != PromotedNodes.end()) return I->second; 3996 3997 switch (Node->getOpcode()) { 3998 case ISD::CopyFromReg: 3999 assert(0 && "CopyFromReg must be legal!"); 4000 default: 4001#ifndef NDEBUG 4002 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 4003#endif 4004 assert(0 && "Do not know how to promote this operator!"); 4005 abort(); 4006 case ISD::UNDEF: 4007 Result = DAG.getNode(ISD::UNDEF, NVT); 4008 break; 4009 case ISD::Constant: 4010 if (VT != MVT::i1) 4011 Result = DAG.getNode(ISD::SIGN_EXTEND, NVT, Op); 4012 else 4013 Result = DAG.getNode(ISD::ZERO_EXTEND, NVT, Op); 4014 assert(isa<ConstantSDNode>(Result) && "Didn't constant fold zext?"); 4015 break; 4016 case ISD::ConstantFP: 4017 Result = DAG.getNode(ISD::FP_EXTEND, NVT, Op); 4018 assert(isa<ConstantFPSDNode>(Result) && "Didn't constant fold fp_extend?"); 4019 break; 4020 4021 case ISD::SETCC: 4022 assert(isTypeLegal(TLI.getSetCCResultTy()) && "SetCC type is not legal??"); 4023 Result = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(),Node->getOperand(0), 4024 Node->getOperand(1), Node->getOperand(2)); 4025 break; 4026 4027 case ISD::TRUNCATE: 4028 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4029 case Legal: 4030 Result = LegalizeOp(Node->getOperand(0)); 4031 assert(Result.getValueType() >= NVT && 4032 "This truncation doesn't make sense!"); 4033 if (Result.getValueType() > NVT) // Truncate to NVT instead of VT 4034 Result = DAG.getNode(ISD::TRUNCATE, NVT, Result); 4035 break; 4036 case Promote: 4037 // The truncation is not required, because we don't guarantee anything 4038 // about high bits anyway. 4039 Result = PromoteOp(Node->getOperand(0)); 4040 break; 4041 case Expand: 4042 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 4043 // Truncate the low part of the expanded value to the result type 4044 Result = DAG.getNode(ISD::TRUNCATE, NVT, Tmp1); 4045 } 4046 break; 4047 case ISD::SIGN_EXTEND: 4048 case ISD::ZERO_EXTEND: 4049 case ISD::ANY_EXTEND: 4050 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4051 case Expand: assert(0 && "BUG: Smaller reg should have been promoted!"); 4052 case Legal: 4053 // Input is legal? Just do extend all the way to the larger type. 4054 Result = DAG.getNode(Node->getOpcode(), NVT, Node->getOperand(0)); 4055 break; 4056 case Promote: 4057 // Promote the reg if it's smaller. 4058 Result = PromoteOp(Node->getOperand(0)); 4059 // The high bits are not guaranteed to be anything. Insert an extend. 4060 if (Node->getOpcode() == ISD::SIGN_EXTEND) 4061 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Result, 4062 DAG.getValueType(Node->getOperand(0).getValueType())); 4063 else if (Node->getOpcode() == ISD::ZERO_EXTEND) 4064 Result = DAG.getZeroExtendInReg(Result, 4065 Node->getOperand(0).getValueType()); 4066 break; 4067 } 4068 break; 4069 case ISD::BIT_CONVERT: 4070 Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 4071 Node->getValueType(0)); 4072 Result = PromoteOp(Result); 4073 break; 4074 4075 case ISD::FP_EXTEND: 4076 assert(0 && "Case not implemented. Dynamically dead with 2 FP types!"); 4077 case ISD::FP_ROUND: 4078 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4079 case Expand: assert(0 && "BUG: Cannot expand FP regs!"); 4080 case Promote: assert(0 && "Unreachable with 2 FP types!"); 4081 case Legal: 4082 if (Node->getConstantOperandVal(1) == 0) { 4083 // Input is legal? Do an FP_ROUND_INREG. 4084 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Node->getOperand(0), 4085 DAG.getValueType(VT)); 4086 } else { 4087 // Just remove the truncate, it isn't affecting the value. 4088 Result = DAG.getNode(ISD::FP_ROUND, NVT, Node->getOperand(0), 4089 Node->getOperand(1)); 4090 } 4091 break; 4092 } 4093 break; 4094 case ISD::SINT_TO_FP: 4095 case ISD::UINT_TO_FP: 4096 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4097 case Legal: 4098 // No extra round required here. 4099 Result = DAG.getNode(Node->getOpcode(), NVT, Node->getOperand(0)); 4100 break; 4101 4102 case Promote: 4103 Result = PromoteOp(Node->getOperand(0)); 4104 if (Node->getOpcode() == ISD::SINT_TO_FP) 4105 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), 4106 Result, 4107 DAG.getValueType(Node->getOperand(0).getValueType())); 4108 else 4109 Result = DAG.getZeroExtendInReg(Result, 4110 Node->getOperand(0).getValueType()); 4111 // No extra round required here. 4112 Result = DAG.getNode(Node->getOpcode(), NVT, Result); 4113 break; 4114 case Expand: 4115 Result = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, NVT, 4116 Node->getOperand(0)); 4117 // Round if we cannot tolerate excess precision. 4118 if (NoExcessFPPrecision) 4119 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4120 DAG.getValueType(VT)); 4121 break; 4122 } 4123 break; 4124 4125 case ISD::SIGN_EXTEND_INREG: 4126 Result = PromoteOp(Node->getOperand(0)); 4127 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Result, 4128 Node->getOperand(1)); 4129 break; 4130 case ISD::FP_TO_SINT: 4131 case ISD::FP_TO_UINT: 4132 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4133 case Legal: 4134 case Expand: 4135 Tmp1 = Node->getOperand(0); 4136 break; 4137 case Promote: 4138 // The input result is prerounded, so we don't have to do anything 4139 // special. 4140 Tmp1 = PromoteOp(Node->getOperand(0)); 4141 break; 4142 } 4143 // If we're promoting a UINT to a larger size, check to see if the new node 4144 // will be legal. If it isn't, check to see if FP_TO_SINT is legal, since 4145 // we can use that instead. This allows us to generate better code for 4146 // FP_TO_UINT for small destination sizes on targets where FP_TO_UINT is not 4147 // legal, such as PowerPC. 4148 if (Node->getOpcode() == ISD::FP_TO_UINT && 4149 !TLI.isOperationLegal(ISD::FP_TO_UINT, NVT) && 4150 (TLI.isOperationLegal(ISD::FP_TO_SINT, NVT) || 4151 TLI.getOperationAction(ISD::FP_TO_SINT, NVT)==TargetLowering::Custom)){ 4152 Result = DAG.getNode(ISD::FP_TO_SINT, NVT, Tmp1); 4153 } else { 4154 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 4155 } 4156 break; 4157 4158 case ISD::FABS: 4159 case ISD::FNEG: 4160 Tmp1 = PromoteOp(Node->getOperand(0)); 4161 assert(Tmp1.getValueType() == NVT); 4162 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 4163 // NOTE: we do not have to do any extra rounding here for 4164 // NoExcessFPPrecision, because we know the input will have the appropriate 4165 // precision, and these operations don't modify precision at all. 4166 break; 4167 4168 case ISD::FSQRT: 4169 case ISD::FSIN: 4170 case ISD::FCOS: 4171 Tmp1 = PromoteOp(Node->getOperand(0)); 4172 assert(Tmp1.getValueType() == NVT); 4173 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 4174 if (NoExcessFPPrecision) 4175 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4176 DAG.getValueType(VT)); 4177 break; 4178 4179 case ISD::FPOWI: { 4180 // Promote f32 powi to f64 powi. Note that this could insert a libcall 4181 // directly as well, which may be better. 4182 Tmp1 = PromoteOp(Node->getOperand(0)); 4183 assert(Tmp1.getValueType() == NVT); 4184 Result = DAG.getNode(ISD::FPOWI, NVT, Tmp1, Node->getOperand(1)); 4185 if (NoExcessFPPrecision) 4186 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4187 DAG.getValueType(VT)); 4188 break; 4189 } 4190 4191 case ISD::AND: 4192 case ISD::OR: 4193 case ISD::XOR: 4194 case ISD::ADD: 4195 case ISD::SUB: 4196 case ISD::MUL: 4197 // The input may have strange things in the top bits of the registers, but 4198 // these operations don't care. They may have weird bits going out, but 4199 // that too is okay if they are integer operations. 4200 Tmp1 = PromoteOp(Node->getOperand(0)); 4201 Tmp2 = PromoteOp(Node->getOperand(1)); 4202 assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT); 4203 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 4204 break; 4205 case ISD::FADD: 4206 case ISD::FSUB: 4207 case ISD::FMUL: 4208 Tmp1 = PromoteOp(Node->getOperand(0)); 4209 Tmp2 = PromoteOp(Node->getOperand(1)); 4210 assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT); 4211 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 4212 4213 // Floating point operations will give excess precision that we may not be 4214 // able to tolerate. If we DO allow excess precision, just leave it, 4215 // otherwise excise it. 4216 // FIXME: Why would we need to round FP ops more than integer ones? 4217 // Is Round(Add(Add(A,B),C)) != Round(Add(Round(Add(A,B)), C)) 4218 if (NoExcessFPPrecision) 4219 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4220 DAG.getValueType(VT)); 4221 break; 4222 4223 case ISD::SDIV: 4224 case ISD::SREM: 4225 // These operators require that their input be sign extended. 4226 Tmp1 = PromoteOp(Node->getOperand(0)); 4227 Tmp2 = PromoteOp(Node->getOperand(1)); 4228 if (MVT::isInteger(NVT)) { 4229 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, 4230 DAG.getValueType(VT)); 4231 Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp2, 4232 DAG.getValueType(VT)); 4233 } 4234 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 4235 4236 // Perform FP_ROUND: this is probably overly pessimistic. 4237 if (MVT::isFloatingPoint(NVT) && NoExcessFPPrecision) 4238 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4239 DAG.getValueType(VT)); 4240 break; 4241 case ISD::FDIV: 4242 case ISD::FREM: 4243 case ISD::FCOPYSIGN: 4244 // These operators require that their input be fp extended. 4245 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4246 case Expand: assert(0 && "not implemented"); 4247 case Legal: Tmp1 = LegalizeOp(Node->getOperand(0)); break; 4248 case Promote: Tmp1 = PromoteOp(Node->getOperand(0)); break; 4249 } 4250 switch (getTypeAction(Node->getOperand(1).getValueType())) { 4251 case Expand: assert(0 && "not implemented"); 4252 case Legal: Tmp2 = LegalizeOp(Node->getOperand(1)); break; 4253 case Promote: Tmp2 = PromoteOp(Node->getOperand(1)); break; 4254 } 4255 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 4256 4257 // Perform FP_ROUND: this is probably overly pessimistic. 4258 if (NoExcessFPPrecision && Node->getOpcode() != ISD::FCOPYSIGN) 4259 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4260 DAG.getValueType(VT)); 4261 break; 4262 4263 case ISD::UDIV: 4264 case ISD::UREM: 4265 // These operators require that their input be zero extended. 4266 Tmp1 = PromoteOp(Node->getOperand(0)); 4267 Tmp2 = PromoteOp(Node->getOperand(1)); 4268 assert(MVT::isInteger(NVT) && "Operators don't apply to FP!"); 4269 Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); 4270 Tmp2 = DAG.getZeroExtendInReg(Tmp2, VT); 4271 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 4272 break; 4273 4274 case ISD::SHL: 4275 Tmp1 = PromoteOp(Node->getOperand(0)); 4276 Result = DAG.getNode(ISD::SHL, NVT, Tmp1, Node->getOperand(1)); 4277 break; 4278 case ISD::SRA: 4279 // The input value must be properly sign extended. 4280 Tmp1 = PromoteOp(Node->getOperand(0)); 4281 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, 4282 DAG.getValueType(VT)); 4283 Result = DAG.getNode(ISD::SRA, NVT, Tmp1, Node->getOperand(1)); 4284 break; 4285 case ISD::SRL: 4286 // The input value must be properly zero extended. 4287 Tmp1 = PromoteOp(Node->getOperand(0)); 4288 Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); 4289 Result = DAG.getNode(ISD::SRL, NVT, Tmp1, Node->getOperand(1)); 4290 break; 4291 4292 case ISD::VAARG: 4293 Tmp1 = Node->getOperand(0); // Get the chain. 4294 Tmp2 = Node->getOperand(1); // Get the pointer. 4295 if (TLI.getOperationAction(ISD::VAARG, VT) == TargetLowering::Custom) { 4296 Tmp3 = DAG.getVAArg(VT, Tmp1, Tmp2, Node->getOperand(2)); 4297 Result = TLI.CustomPromoteOperation(Tmp3, DAG); 4298 } else { 4299 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 4300 SDOperand VAList = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp2, V, 0); 4301 // Increment the pointer, VAList, to the next vaarg 4302 Tmp3 = DAG.getNode(ISD::ADD, TLI.getPointerTy(), VAList, 4303 DAG.getConstant(MVT::getSizeInBits(VT)/8, 4304 TLI.getPointerTy())); 4305 // Store the incremented VAList to the legalized pointer 4306 Tmp3 = DAG.getStore(VAList.getValue(1), Tmp3, Tmp2, V, 0); 4307 // Load the actual argument out of the pointer VAList 4308 Result = DAG.getExtLoad(ISD::EXTLOAD, NVT, Tmp3, VAList, NULL, 0, VT); 4309 } 4310 // Remember that we legalized the chain. 4311 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 4312 break; 4313 4314 case ISD::LOAD: { 4315 LoadSDNode *LD = cast<LoadSDNode>(Node); 4316 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(Node) 4317 ? ISD::EXTLOAD : LD->getExtensionType(); 4318 Result = DAG.getExtLoad(ExtType, NVT, 4319 LD->getChain(), LD->getBasePtr(), 4320 LD->getSrcValue(), LD->getSrcValueOffset(), 4321 LD->getMemoryVT(), 4322 LD->isVolatile(), 4323 LD->getAlignment()); 4324 // Remember that we legalized the chain. 4325 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 4326 break; 4327 } 4328 case ISD::SELECT: 4329 Tmp2 = PromoteOp(Node->getOperand(1)); // Legalize the op0 4330 Tmp3 = PromoteOp(Node->getOperand(2)); // Legalize the op1 4331 Result = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), Tmp2, Tmp3); 4332 break; 4333 case ISD::SELECT_CC: 4334 Tmp2 = PromoteOp(Node->getOperand(2)); // True 4335 Tmp3 = PromoteOp(Node->getOperand(3)); // False 4336 Result = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0), 4337 Node->getOperand(1), Tmp2, Tmp3, Node->getOperand(4)); 4338 break; 4339 case ISD::BSWAP: 4340 Tmp1 = Node->getOperand(0); 4341 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1); 4342 Tmp1 = DAG.getNode(ISD::BSWAP, NVT, Tmp1); 4343 Result = DAG.getNode(ISD::SRL, NVT, Tmp1, 4344 DAG.getConstant(MVT::getSizeInBits(NVT) - 4345 MVT::getSizeInBits(VT), 4346 TLI.getShiftAmountTy())); 4347 break; 4348 case ISD::CTPOP: 4349 case ISD::CTTZ: 4350 case ISD::CTLZ: 4351 // Zero extend the argument 4352 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Node->getOperand(0)); 4353 // Perform the larger operation, then subtract if needed. 4354 Tmp1 = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 4355 switch(Node->getOpcode()) { 4356 case ISD::CTPOP: 4357 Result = Tmp1; 4358 break; 4359 case ISD::CTTZ: 4360 // if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) 4361 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), Tmp1, 4362 DAG.getConstant(MVT::getSizeInBits(NVT), NVT), 4363 ISD::SETEQ); 4364 Result = DAG.getNode(ISD::SELECT, NVT, Tmp2, 4365 DAG.getConstant(MVT::getSizeInBits(VT), NVT), Tmp1); 4366 break; 4367 case ISD::CTLZ: 4368 //Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4369 Result = DAG.getNode(ISD::SUB, NVT, Tmp1, 4370 DAG.getConstant(MVT::getSizeInBits(NVT) - 4371 MVT::getSizeInBits(VT), NVT)); 4372 break; 4373 } 4374 break; 4375 case ISD::EXTRACT_SUBVECTOR: 4376 Result = PromoteOp(ExpandEXTRACT_SUBVECTOR(Op)); 4377 break; 4378 case ISD::EXTRACT_VECTOR_ELT: 4379 Result = PromoteOp(ExpandEXTRACT_VECTOR_ELT(Op)); 4380 break; 4381 } 4382 4383 assert(Result.Val && "Didn't set a result!"); 4384 4385 // Make sure the result is itself legal. 4386 Result = LegalizeOp(Result); 4387 4388 // Remember that we promoted this! 4389 AddPromotedOperand(Op, Result); 4390 return Result; 4391} 4392 4393/// ExpandEXTRACT_VECTOR_ELT - Expand an EXTRACT_VECTOR_ELT operation into 4394/// a legal EXTRACT_VECTOR_ELT operation, scalar code, or memory traffic, 4395/// based on the vector type. The return type of this matches the element type 4396/// of the vector, which may not be legal for the target. 4397SDOperand SelectionDAGLegalize::ExpandEXTRACT_VECTOR_ELT(SDOperand Op) { 4398 // We know that operand #0 is the Vec vector. If the index is a constant 4399 // or if the invec is a supported hardware type, we can use it. Otherwise, 4400 // lower to a store then an indexed load. 4401 SDOperand Vec = Op.getOperand(0); 4402 SDOperand Idx = Op.getOperand(1); 4403 4404 MVT::ValueType TVT = Vec.getValueType(); 4405 unsigned NumElems = MVT::getVectorNumElements(TVT); 4406 4407 switch (TLI.getOperationAction(ISD::EXTRACT_VECTOR_ELT, TVT)) { 4408 default: assert(0 && "This action is not supported yet!"); 4409 case TargetLowering::Custom: { 4410 Vec = LegalizeOp(Vec); 4411 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 4412 SDOperand Tmp3 = TLI.LowerOperation(Op, DAG); 4413 if (Tmp3.Val) 4414 return Tmp3; 4415 break; 4416 } 4417 case TargetLowering::Legal: 4418 if (isTypeLegal(TVT)) { 4419 Vec = LegalizeOp(Vec); 4420 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 4421 return Op; 4422 } 4423 break; 4424 case TargetLowering::Expand: 4425 break; 4426 } 4427 4428 if (NumElems == 1) { 4429 // This must be an access of the only element. Return it. 4430 Op = ScalarizeVectorOp(Vec); 4431 } else if (!TLI.isTypeLegal(TVT) && isa<ConstantSDNode>(Idx)) { 4432 unsigned NumLoElts = 1 << Log2_32(NumElems-1); 4433 ConstantSDNode *CIdx = cast<ConstantSDNode>(Idx); 4434 SDOperand Lo, Hi; 4435 SplitVectorOp(Vec, Lo, Hi); 4436 if (CIdx->getValue() < NumLoElts) { 4437 Vec = Lo; 4438 } else { 4439 Vec = Hi; 4440 Idx = DAG.getConstant(CIdx->getValue() - NumLoElts, 4441 Idx.getValueType()); 4442 } 4443 4444 // It's now an extract from the appropriate high or low part. Recurse. 4445 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 4446 Op = ExpandEXTRACT_VECTOR_ELT(Op); 4447 } else { 4448 // Store the value to a temporary stack slot, then LOAD the scalar 4449 // element back out. 4450 SDOperand StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); 4451 SDOperand Ch = DAG.getStore(DAG.getEntryNode(), Vec, StackPtr, NULL, 0); 4452 4453 // Add the offset to the index. 4454 unsigned EltSize = MVT::getSizeInBits(Op.getValueType())/8; 4455 Idx = DAG.getNode(ISD::MUL, Idx.getValueType(), Idx, 4456 DAG.getConstant(EltSize, Idx.getValueType())); 4457 4458 if (MVT::getSizeInBits(Idx.getValueType()) > 4459 MVT::getSizeInBits(TLI.getPointerTy())) 4460 Idx = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), Idx); 4461 else 4462 Idx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), Idx); 4463 4464 StackPtr = DAG.getNode(ISD::ADD, Idx.getValueType(), Idx, StackPtr); 4465 4466 Op = DAG.getLoad(Op.getValueType(), Ch, StackPtr, NULL, 0); 4467 } 4468 return Op; 4469} 4470 4471/// ExpandEXTRACT_SUBVECTOR - Expand a EXTRACT_SUBVECTOR operation. For now 4472/// we assume the operation can be split if it is not already legal. 4473SDOperand SelectionDAGLegalize::ExpandEXTRACT_SUBVECTOR(SDOperand Op) { 4474 // We know that operand #0 is the Vec vector. For now we assume the index 4475 // is a constant and that the extracted result is a supported hardware type. 4476 SDOperand Vec = Op.getOperand(0); 4477 SDOperand Idx = LegalizeOp(Op.getOperand(1)); 4478 4479 unsigned NumElems = MVT::getVectorNumElements(Vec.getValueType()); 4480 4481 if (NumElems == MVT::getVectorNumElements(Op.getValueType())) { 4482 // This must be an access of the desired vector length. Return it. 4483 return Vec; 4484 } 4485 4486 ConstantSDNode *CIdx = cast<ConstantSDNode>(Idx); 4487 SDOperand Lo, Hi; 4488 SplitVectorOp(Vec, Lo, Hi); 4489 if (CIdx->getValue() < NumElems/2) { 4490 Vec = Lo; 4491 } else { 4492 Vec = Hi; 4493 Idx = DAG.getConstant(CIdx->getValue() - NumElems/2, Idx.getValueType()); 4494 } 4495 4496 // It's now an extract from the appropriate high or low part. Recurse. 4497 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 4498 return ExpandEXTRACT_SUBVECTOR(Op); 4499} 4500 4501/// LegalizeSetCCOperands - Attempts to create a legal LHS and RHS for a SETCC 4502/// with condition CC on the current target. This usually involves legalizing 4503/// or promoting the arguments. In the case where LHS and RHS must be expanded, 4504/// there may be no choice but to create a new SetCC node to represent the 4505/// legalized value of setcc lhs, rhs. In this case, the value is returned in 4506/// LHS, and the SDOperand returned in RHS has a nil SDNode value. 4507void SelectionDAGLegalize::LegalizeSetCCOperands(SDOperand &LHS, 4508 SDOperand &RHS, 4509 SDOperand &CC) { 4510 SDOperand Tmp1, Tmp2, Tmp3, Result; 4511 4512 switch (getTypeAction(LHS.getValueType())) { 4513 case Legal: 4514 Tmp1 = LegalizeOp(LHS); // LHS 4515 Tmp2 = LegalizeOp(RHS); // RHS 4516 break; 4517 case Promote: 4518 Tmp1 = PromoteOp(LHS); // LHS 4519 Tmp2 = PromoteOp(RHS); // RHS 4520 4521 // If this is an FP compare, the operands have already been extended. 4522 if (MVT::isInteger(LHS.getValueType())) { 4523 MVT::ValueType VT = LHS.getValueType(); 4524 MVT::ValueType NVT = TLI.getTypeToTransformTo(VT); 4525 4526 // Otherwise, we have to insert explicit sign or zero extends. Note 4527 // that we could insert sign extends for ALL conditions, but zero extend 4528 // is cheaper on many machines (an AND instead of two shifts), so prefer 4529 // it. 4530 switch (cast<CondCodeSDNode>(CC)->get()) { 4531 default: assert(0 && "Unknown integer comparison!"); 4532 case ISD::SETEQ: 4533 case ISD::SETNE: 4534 case ISD::SETUGE: 4535 case ISD::SETUGT: 4536 case ISD::SETULE: 4537 case ISD::SETULT: 4538 // ALL of these operations will work if we either sign or zero extend 4539 // the operands (including the unsigned comparisons!). Zero extend is 4540 // usually a simpler/cheaper operation, so prefer it. 4541 Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); 4542 Tmp2 = DAG.getZeroExtendInReg(Tmp2, VT); 4543 break; 4544 case ISD::SETGE: 4545 case ISD::SETGT: 4546 case ISD::SETLT: 4547 case ISD::SETLE: 4548 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, 4549 DAG.getValueType(VT)); 4550 Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp2, 4551 DAG.getValueType(VT)); 4552 break; 4553 } 4554 } 4555 break; 4556 case Expand: { 4557 MVT::ValueType VT = LHS.getValueType(); 4558 if (VT == MVT::f32 || VT == MVT::f64) { 4559 // Expand into one or more soft-fp libcall(s). 4560 RTLIB::Libcall LC1, LC2 = RTLIB::UNKNOWN_LIBCALL; 4561 switch (cast<CondCodeSDNode>(CC)->get()) { 4562 case ISD::SETEQ: 4563 case ISD::SETOEQ: 4564 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64; 4565 break; 4566 case ISD::SETNE: 4567 case ISD::SETUNE: 4568 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : RTLIB::UNE_F64; 4569 break; 4570 case ISD::SETGE: 4571 case ISD::SETOGE: 4572 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64; 4573 break; 4574 case ISD::SETLT: 4575 case ISD::SETOLT: 4576 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 4577 break; 4578 case ISD::SETLE: 4579 case ISD::SETOLE: 4580 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64; 4581 break; 4582 case ISD::SETGT: 4583 case ISD::SETOGT: 4584 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64; 4585 break; 4586 case ISD::SETUO: 4587 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64; 4588 break; 4589 case ISD::SETO: 4590 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : RTLIB::O_F64; 4591 break; 4592 default: 4593 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64; 4594 switch (cast<CondCodeSDNode>(CC)->get()) { 4595 case ISD::SETONE: 4596 // SETONE = SETOLT | SETOGT 4597 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 4598 // Fallthrough 4599 case ISD::SETUGT: 4600 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64; 4601 break; 4602 case ISD::SETUGE: 4603 LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64; 4604 break; 4605 case ISD::SETULT: 4606 LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 4607 break; 4608 case ISD::SETULE: 4609 LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64; 4610 break; 4611 case ISD::SETUEQ: 4612 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64; 4613 break; 4614 default: assert(0 && "Unsupported FP setcc!"); 4615 } 4616 } 4617 4618 SDOperand Dummy; 4619 Tmp1 = ExpandLibCall(TLI.getLibcallName(LC1), 4620 DAG.getNode(ISD::MERGE_VALUES, VT, LHS, RHS).Val, 4621 false /*sign irrelevant*/, Dummy); 4622 Tmp2 = DAG.getConstant(0, MVT::i32); 4623 CC = DAG.getCondCode(TLI.getCmpLibcallCC(LC1)); 4624 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 4625 Tmp1 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(), Tmp1, Tmp2, CC); 4626 LHS = ExpandLibCall(TLI.getLibcallName(LC2), 4627 DAG.getNode(ISD::MERGE_VALUES, VT, LHS, RHS).Val, 4628 false /*sign irrelevant*/, Dummy); 4629 Tmp2 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(), LHS, Tmp2, 4630 DAG.getCondCode(TLI.getCmpLibcallCC(LC2))); 4631 Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp2); 4632 Tmp2 = SDOperand(); 4633 } 4634 LHS = Tmp1; 4635 RHS = Tmp2; 4636 return; 4637 } 4638 4639 SDOperand LHSLo, LHSHi, RHSLo, RHSHi; 4640 ExpandOp(LHS, LHSLo, LHSHi); 4641 ExpandOp(RHS, RHSLo, RHSHi); 4642 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 4643 4644 if (VT==MVT::ppcf128) { 4645 // FIXME: This generated code sucks. We want to generate 4646 // FCMP crN, hi1, hi2 4647 // BNE crN, L: 4648 // FCMP crN, lo1, lo2 4649 // The following can be improved, but not that much. 4650 Tmp1 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, ISD::SETEQ); 4651 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, CCCode); 4652 Tmp3 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2); 4653 Tmp1 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, ISD::SETNE); 4654 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, CCCode); 4655 Tmp1 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2); 4656 Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp3); 4657 Tmp2 = SDOperand(); 4658 break; 4659 } 4660 4661 switch (CCCode) { 4662 case ISD::SETEQ: 4663 case ISD::SETNE: 4664 if (RHSLo == RHSHi) 4665 if (ConstantSDNode *RHSCST = dyn_cast<ConstantSDNode>(RHSLo)) 4666 if (RHSCST->isAllOnesValue()) { 4667 // Comparison to -1. 4668 Tmp1 = DAG.getNode(ISD::AND, LHSLo.getValueType(), LHSLo, LHSHi); 4669 Tmp2 = RHSLo; 4670 break; 4671 } 4672 4673 Tmp1 = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSLo, RHSLo); 4674 Tmp2 = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSHi, RHSHi); 4675 Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp2); 4676 Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); 4677 break; 4678 default: 4679 // If this is a comparison of the sign bit, just look at the top part. 4680 // X > -1, x < 0 4681 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(RHS)) 4682 if ((cast<CondCodeSDNode>(CC)->get() == ISD::SETLT && 4683 CST->getValue() == 0) || // X < 0 4684 (cast<CondCodeSDNode>(CC)->get() == ISD::SETGT && 4685 CST->isAllOnesValue())) { // X > -1 4686 Tmp1 = LHSHi; 4687 Tmp2 = RHSHi; 4688 break; 4689 } 4690 4691 // FIXME: This generated code sucks. 4692 ISD::CondCode LowCC; 4693 switch (CCCode) { 4694 default: assert(0 && "Unknown integer setcc!"); 4695 case ISD::SETLT: 4696 case ISD::SETULT: LowCC = ISD::SETULT; break; 4697 case ISD::SETGT: 4698 case ISD::SETUGT: LowCC = ISD::SETUGT; break; 4699 case ISD::SETLE: 4700 case ISD::SETULE: LowCC = ISD::SETULE; break; 4701 case ISD::SETGE: 4702 case ISD::SETUGE: LowCC = ISD::SETUGE; break; 4703 } 4704 4705 // Tmp1 = lo(op1) < lo(op2) // Always unsigned comparison 4706 // Tmp2 = hi(op1) < hi(op2) // Signedness depends on operands 4707 // dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2; 4708 4709 // NOTE: on targets without efficient SELECT of bools, we can always use 4710 // this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3) 4711 TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, false, true, NULL); 4712 Tmp1 = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, LowCC, 4713 false, DagCombineInfo); 4714 if (!Tmp1.Val) 4715 Tmp1 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, LowCC); 4716 Tmp2 = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, 4717 CCCode, false, DagCombineInfo); 4718 if (!Tmp2.Val) 4719 Tmp2 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(), LHSHi, RHSHi,CC); 4720 4721 ConstantSDNode *Tmp1C = dyn_cast<ConstantSDNode>(Tmp1.Val); 4722 ConstantSDNode *Tmp2C = dyn_cast<ConstantSDNode>(Tmp2.Val); 4723 if ((Tmp1C && Tmp1C->getValue() == 0) || 4724 (Tmp2C && Tmp2C->getValue() == 0 && 4725 (CCCode == ISD::SETLE || CCCode == ISD::SETGE || 4726 CCCode == ISD::SETUGE || CCCode == ISD::SETULE)) || 4727 (Tmp2C && Tmp2C->getValue() == 1 && 4728 (CCCode == ISD::SETLT || CCCode == ISD::SETGT || 4729 CCCode == ISD::SETUGT || CCCode == ISD::SETULT))) { 4730 // low part is known false, returns high part. 4731 // For LE / GE, if high part is known false, ignore the low part. 4732 // For LT / GT, if high part is known true, ignore the low part. 4733 Tmp1 = Tmp2; 4734 Tmp2 = SDOperand(); 4735 } else { 4736 Result = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, 4737 ISD::SETEQ, false, DagCombineInfo); 4738 if (!Result.Val) 4739 Result=DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, ISD::SETEQ); 4740 Result = LegalizeOp(DAG.getNode(ISD::SELECT, Tmp1.getValueType(), 4741 Result, Tmp1, Tmp2)); 4742 Tmp1 = Result; 4743 Tmp2 = SDOperand(); 4744 } 4745 } 4746 } 4747 } 4748 LHS = Tmp1; 4749 RHS = Tmp2; 4750} 4751 4752/// EmitStackConvert - Emit a store/load combination to the stack. This stores 4753/// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 4754/// a load from the stack slot to DestVT, extending it if needed. 4755/// The resultant code need not be legal. 4756SDOperand SelectionDAGLegalize::EmitStackConvert(SDOperand SrcOp, 4757 MVT::ValueType SlotVT, 4758 MVT::ValueType DestVT) { 4759 // Create the stack frame object. 4760 SDOperand FIPtr = DAG.CreateStackTemporary(SlotVT); 4761 4762 FrameIndexSDNode *StackPtrFI = dyn_cast<FrameIndexSDNode>(FIPtr); 4763 assert(StackPtrFI); 4764 int SPFI = StackPtrFI->getIndex(); 4765 4766 unsigned SrcSize = MVT::getSizeInBits(SrcOp.getValueType()); 4767 unsigned SlotSize = MVT::getSizeInBits(SlotVT); 4768 unsigned DestSize = MVT::getSizeInBits(DestVT); 4769 4770 // Emit a store to the stack slot. Use a truncstore if the input value is 4771 // later than DestVT. 4772 SDOperand Store; 4773 if (SrcSize > SlotSize) 4774 Store = DAG.getTruncStore(DAG.getEntryNode(), SrcOp, FIPtr, 4775 PseudoSourceValue::getFixedStack(), 4776 SPFI, SlotVT); 4777 else { 4778 assert(SrcSize == SlotSize && "Invalid store"); 4779 Store = DAG.getStore(DAG.getEntryNode(), SrcOp, FIPtr, 4780 PseudoSourceValue::getFixedStack(), 4781 SPFI, SlotVT); 4782 } 4783 4784 // Result is a load from the stack slot. 4785 if (SlotSize == DestSize) 4786 return DAG.getLoad(DestVT, Store, FIPtr, NULL, 0); 4787 4788 assert(SlotSize < DestSize && "Unknown extension!"); 4789 return DAG.getExtLoad(ISD::EXTLOAD, DestVT, Store, FIPtr, NULL, 0, SlotVT); 4790} 4791 4792SDOperand SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 4793 // Create a vector sized/aligned stack slot, store the value to element #0, 4794 // then load the whole vector back out. 4795 SDOperand StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 4796 4797 FrameIndexSDNode *StackPtrFI = dyn_cast<FrameIndexSDNode>(StackPtr); 4798 assert(StackPtrFI); 4799 int SPFI = StackPtrFI->getIndex(); 4800 4801 SDOperand Ch = DAG.getStore(DAG.getEntryNode(), Node->getOperand(0), StackPtr, 4802 PseudoSourceValue::getFixedStack(), SPFI); 4803 return DAG.getLoad(Node->getValueType(0), Ch, StackPtr, 4804 PseudoSourceValue::getFixedStack(), SPFI); 4805} 4806 4807 4808/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't 4809/// support the operation, but do support the resultant vector type. 4810SDOperand SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 4811 4812 // If the only non-undef value is the low element, turn this into a 4813 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 4814 unsigned NumElems = Node->getNumOperands(); 4815 bool isOnlyLowElement = true; 4816 SDOperand SplatValue = Node->getOperand(0); 4817 std::map<SDOperand, std::vector<unsigned> > Values; 4818 Values[SplatValue].push_back(0); 4819 bool isConstant = true; 4820 if (!isa<ConstantFPSDNode>(SplatValue) && !isa<ConstantSDNode>(SplatValue) && 4821 SplatValue.getOpcode() != ISD::UNDEF) 4822 isConstant = false; 4823 4824 for (unsigned i = 1; i < NumElems; ++i) { 4825 SDOperand V = Node->getOperand(i); 4826 Values[V].push_back(i); 4827 if (V.getOpcode() != ISD::UNDEF) 4828 isOnlyLowElement = false; 4829 if (SplatValue != V) 4830 SplatValue = SDOperand(0,0); 4831 4832 // If this isn't a constant element or an undef, we can't use a constant 4833 // pool load. 4834 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V) && 4835 V.getOpcode() != ISD::UNDEF) 4836 isConstant = false; 4837 } 4838 4839 if (isOnlyLowElement) { 4840 // If the low element is an undef too, then this whole things is an undef. 4841 if (Node->getOperand(0).getOpcode() == ISD::UNDEF) 4842 return DAG.getNode(ISD::UNDEF, Node->getValueType(0)); 4843 // Otherwise, turn this into a scalar_to_vector node. 4844 return DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), 4845 Node->getOperand(0)); 4846 } 4847 4848 // If all elements are constants, create a load from the constant pool. 4849 if (isConstant) { 4850 MVT::ValueType VT = Node->getValueType(0); 4851 const Type *OpNTy = 4852 MVT::getTypeForValueType(Node->getOperand(0).getValueType()); 4853 std::vector<Constant*> CV; 4854 for (unsigned i = 0, e = NumElems; i != e; ++i) { 4855 if (ConstantFPSDNode *V = 4856 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 4857 CV.push_back(ConstantFP::get(OpNTy, V->getValueAPF())); 4858 } else if (ConstantSDNode *V = 4859 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 4860 CV.push_back(ConstantInt::get(OpNTy, V->getValue())); 4861 } else { 4862 assert(Node->getOperand(i).getOpcode() == ISD::UNDEF); 4863 CV.push_back(UndefValue::get(OpNTy)); 4864 } 4865 } 4866 Constant *CP = ConstantVector::get(CV); 4867 SDOperand CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy()); 4868 return DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, 4869 PseudoSourceValue::getConstantPool(), 0); 4870 } 4871 4872 if (SplatValue.Val) { // Splat of one value? 4873 // Build the shuffle constant vector: <0, 0, 0, 0> 4874 MVT::ValueType MaskVT = 4875 MVT::getIntVectorWithNumElements(NumElems); 4876 SDOperand Zero = DAG.getConstant(0, MVT::getVectorElementType(MaskVT)); 4877 std::vector<SDOperand> ZeroVec(NumElems, Zero); 4878 SDOperand SplatMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 4879 &ZeroVec[0], ZeroVec.size()); 4880 4881 // If the target supports VECTOR_SHUFFLE and this shuffle mask, use it. 4882 if (isShuffleLegal(Node->getValueType(0), SplatMask)) { 4883 // Get the splatted value into the low element of a vector register. 4884 SDOperand LowValVec = 4885 DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), SplatValue); 4886 4887 // Return shuffle(LowValVec, undef, <0,0,0,0>) 4888 return DAG.getNode(ISD::VECTOR_SHUFFLE, Node->getValueType(0), LowValVec, 4889 DAG.getNode(ISD::UNDEF, Node->getValueType(0)), 4890 SplatMask); 4891 } 4892 } 4893 4894 // If there are only two unique elements, we may be able to turn this into a 4895 // vector shuffle. 4896 if (Values.size() == 2) { 4897 // Build the shuffle constant vector: e.g. <0, 4, 0, 4> 4898 MVT::ValueType MaskVT = 4899 MVT::getIntVectorWithNumElements(NumElems); 4900 std::vector<SDOperand> MaskVec(NumElems); 4901 unsigned i = 0; 4902 for (std::map<SDOperand,std::vector<unsigned> >::iterator I=Values.begin(), 4903 E = Values.end(); I != E; ++I) { 4904 for (std::vector<unsigned>::iterator II = I->second.begin(), 4905 EE = I->second.end(); II != EE; ++II) 4906 MaskVec[*II] = DAG.getConstant(i, MVT::getVectorElementType(MaskVT)); 4907 i += NumElems; 4908 } 4909 SDOperand ShuffleMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 4910 &MaskVec[0], MaskVec.size()); 4911 4912 // If the target supports VECTOR_SHUFFLE and this shuffle mask, use it. 4913 if (TLI.isOperationLegal(ISD::SCALAR_TO_VECTOR, Node->getValueType(0)) && 4914 isShuffleLegal(Node->getValueType(0), ShuffleMask)) { 4915 SmallVector<SDOperand, 8> Ops; 4916 for(std::map<SDOperand,std::vector<unsigned> >::iterator I=Values.begin(), 4917 E = Values.end(); I != E; ++I) { 4918 SDOperand Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), 4919 I->first); 4920 Ops.push_back(Op); 4921 } 4922 Ops.push_back(ShuffleMask); 4923 4924 // Return shuffle(LoValVec, HiValVec, <0,1,0,1>) 4925 return DAG.getNode(ISD::VECTOR_SHUFFLE, Node->getValueType(0), 4926 &Ops[0], Ops.size()); 4927 } 4928 } 4929 4930 // Otherwise, we can't handle this case efficiently. Allocate a sufficiently 4931 // aligned object on the stack, store each element into it, then load 4932 // the result as a vector. 4933 MVT::ValueType VT = Node->getValueType(0); 4934 // Create the stack frame object. 4935 SDOperand FIPtr = DAG.CreateStackTemporary(VT); 4936 4937 // Emit a store of each element to the stack slot. 4938 SmallVector<SDOperand, 8> Stores; 4939 unsigned TypeByteSize = 4940 MVT::getSizeInBits(Node->getOperand(0).getValueType())/8; 4941 // Store (in the right endianness) the elements to memory. 4942 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 4943 // Ignore undef elements. 4944 if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue; 4945 4946 unsigned Offset = TypeByteSize*i; 4947 4948 SDOperand Idx = DAG.getConstant(Offset, FIPtr.getValueType()); 4949 Idx = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr, Idx); 4950 4951 Stores.push_back(DAG.getStore(DAG.getEntryNode(), Node->getOperand(i), Idx, 4952 NULL, 0)); 4953 } 4954 4955 SDOperand StoreChain; 4956 if (!Stores.empty()) // Not all undef elements? 4957 StoreChain = DAG.getNode(ISD::TokenFactor, MVT::Other, 4958 &Stores[0], Stores.size()); 4959 else 4960 StoreChain = DAG.getEntryNode(); 4961 4962 // Result is a load from the stack slot. 4963 return DAG.getLoad(VT, StoreChain, FIPtr, NULL, 0); 4964} 4965 4966void SelectionDAGLegalize::ExpandShiftParts(unsigned NodeOp, 4967 SDOperand Op, SDOperand Amt, 4968 SDOperand &Lo, SDOperand &Hi) { 4969 // Expand the subcomponents. 4970 SDOperand LHSL, LHSH; 4971 ExpandOp(Op, LHSL, LHSH); 4972 4973 SDOperand Ops[] = { LHSL, LHSH, Amt }; 4974 MVT::ValueType VT = LHSL.getValueType(); 4975 Lo = DAG.getNode(NodeOp, DAG.getNodeValueTypes(VT, VT), 2, Ops, 3); 4976 Hi = Lo.getValue(1); 4977} 4978 4979 4980/// ExpandShift - Try to find a clever way to expand this shift operation out to 4981/// smaller elements. If we can't find a way that is more efficient than a 4982/// libcall on this target, return false. Otherwise, return true with the 4983/// low-parts expanded into Lo and Hi. 4984bool SelectionDAGLegalize::ExpandShift(unsigned Opc, SDOperand Op,SDOperand Amt, 4985 SDOperand &Lo, SDOperand &Hi) { 4986 assert((Opc == ISD::SHL || Opc == ISD::SRA || Opc == ISD::SRL) && 4987 "This is not a shift!"); 4988 4989 MVT::ValueType NVT = TLI.getTypeToTransformTo(Op.getValueType()); 4990 SDOperand ShAmt = LegalizeOp(Amt); 4991 MVT::ValueType ShTy = ShAmt.getValueType(); 4992 unsigned VTBits = MVT::getSizeInBits(Op.getValueType()); 4993 unsigned NVTBits = MVT::getSizeInBits(NVT); 4994 4995 // Handle the case when Amt is an immediate. 4996 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Amt.Val)) { 4997 unsigned Cst = CN->getValue(); 4998 // Expand the incoming operand to be shifted, so that we have its parts 4999 SDOperand InL, InH; 5000 ExpandOp(Op, InL, InH); 5001 switch(Opc) { 5002 case ISD::SHL: 5003 if (Cst > VTBits) { 5004 Lo = DAG.getConstant(0, NVT); 5005 Hi = DAG.getConstant(0, NVT); 5006 } else if (Cst > NVTBits) { 5007 Lo = DAG.getConstant(0, NVT); 5008 Hi = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Cst-NVTBits,ShTy)); 5009 } else if (Cst == NVTBits) { 5010 Lo = DAG.getConstant(0, NVT); 5011 Hi = InL; 5012 } else { 5013 Lo = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Cst, ShTy)); 5014 Hi = DAG.getNode(ISD::OR, NVT, 5015 DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(Cst, ShTy)), 5016 DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(NVTBits-Cst, ShTy))); 5017 } 5018 return true; 5019 case ISD::SRL: 5020 if (Cst > VTBits) { 5021 Lo = DAG.getConstant(0, NVT); 5022 Hi = DAG.getConstant(0, NVT); 5023 } else if (Cst > NVTBits) { 5024 Lo = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Cst-NVTBits,ShTy)); 5025 Hi = DAG.getConstant(0, NVT); 5026 } else if (Cst == NVTBits) { 5027 Lo = InH; 5028 Hi = DAG.getConstant(0, NVT); 5029 } else { 5030 Lo = DAG.getNode(ISD::OR, NVT, 5031 DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(Cst, ShTy)), 5032 DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(NVTBits-Cst, ShTy))); 5033 Hi = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Cst, ShTy)); 5034 } 5035 return true; 5036 case ISD::SRA: 5037 if (Cst > VTBits) { 5038 Hi = Lo = DAG.getNode(ISD::SRA, NVT, InH, 5039 DAG.getConstant(NVTBits-1, ShTy)); 5040 } else if (Cst > NVTBits) { 5041 Lo = DAG.getNode(ISD::SRA, NVT, InH, 5042 DAG.getConstant(Cst-NVTBits, ShTy)); 5043 Hi = DAG.getNode(ISD::SRA, NVT, InH, 5044 DAG.getConstant(NVTBits-1, ShTy)); 5045 } else if (Cst == NVTBits) { 5046 Lo = InH; 5047 Hi = DAG.getNode(ISD::SRA, NVT, InH, 5048 DAG.getConstant(NVTBits-1, ShTy)); 5049 } else { 5050 Lo = DAG.getNode(ISD::OR, NVT, 5051 DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(Cst, ShTy)), 5052 DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(NVTBits-Cst, ShTy))); 5053 Hi = DAG.getNode(ISD::SRA, NVT, InH, DAG.getConstant(Cst, ShTy)); 5054 } 5055 return true; 5056 } 5057 } 5058 5059 // Okay, the shift amount isn't constant. However, if we can tell that it is 5060 // >= 32 or < 32, we can still simplify it, without knowing the actual value. 5061 uint64_t Mask = NVTBits, KnownZero, KnownOne; 5062 DAG.ComputeMaskedBits(Amt, Mask, KnownZero, KnownOne); 5063 5064 // If we know that the high bit of the shift amount is one, then we can do 5065 // this as a couple of simple shifts. 5066 if (KnownOne & Mask) { 5067 // Mask out the high bit, which we know is set. 5068 Amt = DAG.getNode(ISD::AND, Amt.getValueType(), Amt, 5069 DAG.getConstant(NVTBits-1, Amt.getValueType())); 5070 5071 // Expand the incoming operand to be shifted, so that we have its parts 5072 SDOperand InL, InH; 5073 ExpandOp(Op, InL, InH); 5074 switch(Opc) { 5075 case ISD::SHL: 5076 Lo = DAG.getConstant(0, NVT); // Low part is zero. 5077 Hi = DAG.getNode(ISD::SHL, NVT, InL, Amt); // High part from Lo part. 5078 return true; 5079 case ISD::SRL: 5080 Hi = DAG.getConstant(0, NVT); // Hi part is zero. 5081 Lo = DAG.getNode(ISD::SRL, NVT, InH, Amt); // Lo part from Hi part. 5082 return true; 5083 case ISD::SRA: 5084 Hi = DAG.getNode(ISD::SRA, NVT, InH, // Sign extend high part. 5085 DAG.getConstant(NVTBits-1, Amt.getValueType())); 5086 Lo = DAG.getNode(ISD::SRA, NVT, InH, Amt); // Lo part from Hi part. 5087 return true; 5088 } 5089 } 5090 5091 // If we know that the high bit of the shift amount is zero, then we can do 5092 // this as a couple of simple shifts. 5093 if (KnownZero & Mask) { 5094 // Compute 32-amt. 5095 SDOperand Amt2 = DAG.getNode(ISD::SUB, Amt.getValueType(), 5096 DAG.getConstant(NVTBits, Amt.getValueType()), 5097 Amt); 5098 5099 // Expand the incoming operand to be shifted, so that we have its parts 5100 SDOperand InL, InH; 5101 ExpandOp(Op, InL, InH); 5102 switch(Opc) { 5103 case ISD::SHL: 5104 Lo = DAG.getNode(ISD::SHL, NVT, InL, Amt); 5105 Hi = DAG.getNode(ISD::OR, NVT, 5106 DAG.getNode(ISD::SHL, NVT, InH, Amt), 5107 DAG.getNode(ISD::SRL, NVT, InL, Amt2)); 5108 return true; 5109 case ISD::SRL: 5110 Hi = DAG.getNode(ISD::SRL, NVT, InH, Amt); 5111 Lo = DAG.getNode(ISD::OR, NVT, 5112 DAG.getNode(ISD::SRL, NVT, InL, Amt), 5113 DAG.getNode(ISD::SHL, NVT, InH, Amt2)); 5114 return true; 5115 case ISD::SRA: 5116 Hi = DAG.getNode(ISD::SRA, NVT, InH, Amt); 5117 Lo = DAG.getNode(ISD::OR, NVT, 5118 DAG.getNode(ISD::SRL, NVT, InL, Amt), 5119 DAG.getNode(ISD::SHL, NVT, InH, Amt2)); 5120 return true; 5121 } 5122 } 5123 5124 return false; 5125} 5126 5127 5128// ExpandLibCall - Expand a node into a call to a libcall. If the result value 5129// does not fit into a register, return the lo part and set the hi part to the 5130// by-reg argument. If it does fit into a single register, return the result 5131// and leave the Hi part unset. 5132SDOperand SelectionDAGLegalize::ExpandLibCall(const char *Name, SDNode *Node, 5133 bool isSigned, SDOperand &Hi) { 5134 assert(!IsLegalizingCall && "Cannot overlap legalization of calls!"); 5135 // The input chain to this libcall is the entry node of the function. 5136 // Legalizing the call will automatically add the previous call to the 5137 // dependence. 5138 SDOperand InChain = DAG.getEntryNode(); 5139 5140 TargetLowering::ArgListTy Args; 5141 TargetLowering::ArgListEntry Entry; 5142 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 5143 MVT::ValueType ArgVT = Node->getOperand(i).getValueType(); 5144 const Type *ArgTy = MVT::getTypeForValueType(ArgVT); 5145 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; 5146 Entry.isSExt = isSigned; 5147 Args.push_back(Entry); 5148 } 5149 SDOperand Callee = DAG.getExternalSymbol(Name, TLI.getPointerTy()); 5150 5151 // Splice the libcall in wherever FindInputOutputChains tells us to. 5152 const Type *RetTy = MVT::getTypeForValueType(Node->getValueType(0)); 5153 std::pair<SDOperand,SDOperand> CallInfo = 5154 TLI.LowerCallTo(InChain, RetTy, isSigned, false, CallingConv::C, false, 5155 Callee, Args, DAG); 5156 5157 // Legalize the call sequence, starting with the chain. This will advance 5158 // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that 5159 // was added by LowerCallTo (guaranteeing proper serialization of calls). 5160 LegalizeOp(CallInfo.second); 5161 SDOperand Result; 5162 switch (getTypeAction(CallInfo.first.getValueType())) { 5163 default: assert(0 && "Unknown thing"); 5164 case Legal: 5165 Result = CallInfo.first; 5166 break; 5167 case Expand: 5168 ExpandOp(CallInfo.first, Result, Hi); 5169 break; 5170 } 5171 return Result; 5172} 5173 5174 5175/// ExpandIntToFP - Expand a [US]INT_TO_FP operation. 5176/// 5177SDOperand SelectionDAGLegalize:: 5178ExpandIntToFP(bool isSigned, MVT::ValueType DestTy, SDOperand Source) { 5179 assert(getTypeAction(Source.getValueType()) == Expand && 5180 "This is not an expansion!"); 5181 assert(Source.getValueType() == MVT::i64 && "Only handle expand from i64!"); 5182 5183 if (!isSigned) { 5184 assert(Source.getValueType() == MVT::i64 && 5185 "This only works for 64-bit -> FP"); 5186 // The 64-bit value loaded will be incorrectly if the 'sign bit' of the 5187 // incoming integer is set. To handle this, we dynamically test to see if 5188 // it is set, and, if so, add a fudge factor. 5189 SDOperand Lo, Hi; 5190 ExpandOp(Source, Lo, Hi); 5191 5192 // If this is unsigned, and not supported, first perform the conversion to 5193 // signed, then adjust the result if the sign bit is set. 5194 SDOperand SignedConv = ExpandIntToFP(true, DestTy, 5195 DAG.getNode(ISD::BUILD_PAIR, Source.getValueType(), Lo, Hi)); 5196 5197 SDOperand SignSet = DAG.getSetCC(TLI.getSetCCResultTy(), Hi, 5198 DAG.getConstant(0, Hi.getValueType()), 5199 ISD::SETLT); 5200 SDOperand Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); 5201 SDOperand CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(), 5202 SignSet, Four, Zero); 5203 uint64_t FF = 0x5f800000ULL; 5204 if (TLI.isLittleEndian()) FF <<= 32; 5205 static Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF); 5206 5207 SDOperand CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); 5208 CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset); 5209 SDOperand FudgeInReg; 5210 if (DestTy == MVT::f32) 5211 FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx, 5212 PseudoSourceValue::getConstantPool(), 0); 5213 else if (MVT::getSizeInBits(DestTy) > MVT::getSizeInBits(MVT::f32)) 5214 // FIXME: Avoid the extend by construction the right constantpool? 5215 FudgeInReg = DAG.getExtLoad(ISD::EXTLOAD, DestTy, DAG.getEntryNode(), 5216 CPIdx, 5217 PseudoSourceValue::getConstantPool(), 0, 5218 MVT::f32); 5219 else 5220 assert(0 && "Unexpected conversion"); 5221 5222 MVT::ValueType SCVT = SignedConv.getValueType(); 5223 if (SCVT != DestTy) { 5224 // Destination type needs to be expanded as well. The FADD now we are 5225 // constructing will be expanded into a libcall. 5226 if (MVT::getSizeInBits(SCVT) != MVT::getSizeInBits(DestTy)) { 5227 assert(SCVT == MVT::i32 && DestTy == MVT::f64); 5228 SignedConv = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, 5229 SignedConv, SignedConv.getValue(1)); 5230 } 5231 SignedConv = DAG.getNode(ISD::BIT_CONVERT, DestTy, SignedConv); 5232 } 5233 return DAG.getNode(ISD::FADD, DestTy, SignedConv, FudgeInReg); 5234 } 5235 5236 // Check to see if the target has a custom way to lower this. If so, use it. 5237 switch (TLI.getOperationAction(ISD::SINT_TO_FP, Source.getValueType())) { 5238 default: assert(0 && "This action not implemented for this operation!"); 5239 case TargetLowering::Legal: 5240 case TargetLowering::Expand: 5241 break; // This case is handled below. 5242 case TargetLowering::Custom: { 5243 SDOperand NV = TLI.LowerOperation(DAG.getNode(ISD::SINT_TO_FP, DestTy, 5244 Source), DAG); 5245 if (NV.Val) 5246 return LegalizeOp(NV); 5247 break; // The target decided this was legal after all 5248 } 5249 } 5250 5251 // Expand the source, then glue it back together for the call. We must expand 5252 // the source in case it is shared (this pass of legalize must traverse it). 5253 SDOperand SrcLo, SrcHi; 5254 ExpandOp(Source, SrcLo, SrcHi); 5255 Source = DAG.getNode(ISD::BUILD_PAIR, Source.getValueType(), SrcLo, SrcHi); 5256 5257 RTLIB::Libcall LC; 5258 if (DestTy == MVT::f32) 5259 LC = RTLIB::SINTTOFP_I64_F32; 5260 else { 5261 assert(DestTy == MVT::f64 && "Unknown fp value type!"); 5262 LC = RTLIB::SINTTOFP_I64_F64; 5263 } 5264 5265 assert(TLI.getLibcallName(LC) && "Don't know how to expand this SINT_TO_FP!"); 5266 Source = DAG.getNode(ISD::SINT_TO_FP, DestTy, Source); 5267 SDOperand UnusedHiPart; 5268 return ExpandLibCall(TLI.getLibcallName(LC), Source.Val, isSigned, 5269 UnusedHiPart); 5270} 5271 5272/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a 5273/// INT_TO_FP operation of the specified operand when the target requests that 5274/// we expand it. At this point, we know that the result and operand types are 5275/// legal for the target. 5276SDOperand SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, 5277 SDOperand Op0, 5278 MVT::ValueType DestVT) { 5279 if (Op0.getValueType() == MVT::i32) { 5280 // simple 32-bit [signed|unsigned] integer to float/double expansion 5281 5282 // Get the stack frame index of a 8 byte buffer. 5283 SDOperand StackSlot = DAG.CreateStackTemporary(MVT::f64); 5284 5285 // word offset constant for Hi/Lo address computation 5286 SDOperand WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy()); 5287 // set up Hi and Lo (into buffer) address based on endian 5288 SDOperand Hi = StackSlot; 5289 SDOperand Lo = DAG.getNode(ISD::ADD, TLI.getPointerTy(), StackSlot,WordOff); 5290 if (TLI.isLittleEndian()) 5291 std::swap(Hi, Lo); 5292 5293 // if signed map to unsigned space 5294 SDOperand Op0Mapped; 5295 if (isSigned) { 5296 // constant used to invert sign bit (signed to unsigned mapping) 5297 SDOperand SignBit = DAG.getConstant(0x80000000u, MVT::i32); 5298 Op0Mapped = DAG.getNode(ISD::XOR, MVT::i32, Op0, SignBit); 5299 } else { 5300 Op0Mapped = Op0; 5301 } 5302 // store the lo of the constructed double - based on integer input 5303 SDOperand Store1 = DAG.getStore(DAG.getEntryNode(), 5304 Op0Mapped, Lo, NULL, 0); 5305 // initial hi portion of constructed double 5306 SDOperand InitialHi = DAG.getConstant(0x43300000u, MVT::i32); 5307 // store the hi of the constructed double - biased exponent 5308 SDOperand Store2=DAG.getStore(Store1, InitialHi, Hi, NULL, 0); 5309 // load the constructed double 5310 SDOperand Load = DAG.getLoad(MVT::f64, Store2, StackSlot, NULL, 0); 5311 // FP constant to bias correct the final result 5312 SDOperand Bias = DAG.getConstantFP(isSigned ? 5313 BitsToDouble(0x4330000080000000ULL) 5314 : BitsToDouble(0x4330000000000000ULL), 5315 MVT::f64); 5316 // subtract the bias 5317 SDOperand Sub = DAG.getNode(ISD::FSUB, MVT::f64, Load, Bias); 5318 // final result 5319 SDOperand Result; 5320 // handle final rounding 5321 if (DestVT == MVT::f64) { 5322 // do nothing 5323 Result = Sub; 5324 } else if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(MVT::f64)) { 5325 Result = DAG.getNode(ISD::FP_ROUND, DestVT, Sub, 5326 DAG.getIntPtrConstant(0)); 5327 } else if (MVT::getSizeInBits(DestVT) > MVT::getSizeInBits(MVT::f64)) { 5328 Result = DAG.getNode(ISD::FP_EXTEND, DestVT, Sub); 5329 } 5330 return Result; 5331 } 5332 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 5333 SDOperand Tmp1 = DAG.getNode(ISD::SINT_TO_FP, DestVT, Op0); 5334 5335 SDOperand SignSet = DAG.getSetCC(TLI.getSetCCResultTy(), Op0, 5336 DAG.getConstant(0, Op0.getValueType()), 5337 ISD::SETLT); 5338 SDOperand Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); 5339 SDOperand CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(), 5340 SignSet, Four, Zero); 5341 5342 // If the sign bit of the integer is set, the large number will be treated 5343 // as a negative number. To counteract this, the dynamic code adds an 5344 // offset depending on the data type. 5345 uint64_t FF; 5346 switch (Op0.getValueType()) { 5347 default: assert(0 && "Unsupported integer type!"); 5348 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 5349 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 5350 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 5351 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 5352 } 5353 if (TLI.isLittleEndian()) FF <<= 32; 5354 static Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF); 5355 5356 SDOperand CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); 5357 CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset); 5358 SDOperand FudgeInReg; 5359 if (DestVT == MVT::f32) 5360 FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx, 5361 PseudoSourceValue::getConstantPool(), 0); 5362 else { 5363 FudgeInReg = 5364 LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, DestVT, 5365 DAG.getEntryNode(), CPIdx, 5366 PseudoSourceValue::getConstantPool(), 0, 5367 MVT::f32)); 5368 } 5369 5370 return DAG.getNode(ISD::FADD, DestVT, Tmp1, FudgeInReg); 5371} 5372 5373/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a 5374/// *INT_TO_FP operation of the specified operand when the target requests that 5375/// we promote it. At this point, we know that the result and operand types are 5376/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 5377/// operation that takes a larger input. 5378SDOperand SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDOperand LegalOp, 5379 MVT::ValueType DestVT, 5380 bool isSigned) { 5381 // First step, figure out the appropriate *INT_TO_FP operation to use. 5382 MVT::ValueType NewInTy = LegalOp.getValueType(); 5383 5384 unsigned OpToUse = 0; 5385 5386 // Scan for the appropriate larger type to use. 5387 while (1) { 5388 NewInTy = (MVT::ValueType)(NewInTy+1); 5389 assert(MVT::isInteger(NewInTy) && "Ran out of possibilities!"); 5390 5391 // If the target supports SINT_TO_FP of this type, use it. 5392 switch (TLI.getOperationAction(ISD::SINT_TO_FP, NewInTy)) { 5393 default: break; 5394 case TargetLowering::Legal: 5395 if (!TLI.isTypeLegal(NewInTy)) 5396 break; // Can't use this datatype. 5397 // FALL THROUGH. 5398 case TargetLowering::Custom: 5399 OpToUse = ISD::SINT_TO_FP; 5400 break; 5401 } 5402 if (OpToUse) break; 5403 if (isSigned) continue; 5404 5405 // If the target supports UINT_TO_FP of this type, use it. 5406 switch (TLI.getOperationAction(ISD::UINT_TO_FP, NewInTy)) { 5407 default: break; 5408 case TargetLowering::Legal: 5409 if (!TLI.isTypeLegal(NewInTy)) 5410 break; // Can't use this datatype. 5411 // FALL THROUGH. 5412 case TargetLowering::Custom: 5413 OpToUse = ISD::UINT_TO_FP; 5414 break; 5415 } 5416 if (OpToUse) break; 5417 5418 // Otherwise, try a larger type. 5419 } 5420 5421 // Okay, we found the operation and type to use. Zero extend our input to the 5422 // desired type then run the operation on it. 5423 return DAG.getNode(OpToUse, DestVT, 5424 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5425 NewInTy, LegalOp)); 5426} 5427 5428/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a 5429/// FP_TO_*INT operation of the specified operand when the target requests that 5430/// we promote it. At this point, we know that the result and operand types are 5431/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 5432/// operation that returns a larger result. 5433SDOperand SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDOperand LegalOp, 5434 MVT::ValueType DestVT, 5435 bool isSigned) { 5436 // First step, figure out the appropriate FP_TO*INT operation to use. 5437 MVT::ValueType NewOutTy = DestVT; 5438 5439 unsigned OpToUse = 0; 5440 5441 // Scan for the appropriate larger type to use. 5442 while (1) { 5443 NewOutTy = (MVT::ValueType)(NewOutTy+1); 5444 assert(MVT::isInteger(NewOutTy) && "Ran out of possibilities!"); 5445 5446 // If the target supports FP_TO_SINT returning this type, use it. 5447 switch (TLI.getOperationAction(ISD::FP_TO_SINT, NewOutTy)) { 5448 default: break; 5449 case TargetLowering::Legal: 5450 if (!TLI.isTypeLegal(NewOutTy)) 5451 break; // Can't use this datatype. 5452 // FALL THROUGH. 5453 case TargetLowering::Custom: 5454 OpToUse = ISD::FP_TO_SINT; 5455 break; 5456 } 5457 if (OpToUse) break; 5458 5459 // If the target supports FP_TO_UINT of this type, use it. 5460 switch (TLI.getOperationAction(ISD::FP_TO_UINT, NewOutTy)) { 5461 default: break; 5462 case TargetLowering::Legal: 5463 if (!TLI.isTypeLegal(NewOutTy)) 5464 break; // Can't use this datatype. 5465 // FALL THROUGH. 5466 case TargetLowering::Custom: 5467 OpToUse = ISD::FP_TO_UINT; 5468 break; 5469 } 5470 if (OpToUse) break; 5471 5472 // Otherwise, try a larger type. 5473 } 5474 5475 5476 // Okay, we found the operation and type to use. 5477 SDOperand Operation = DAG.getNode(OpToUse, NewOutTy, LegalOp); 5478 5479 // If the operation produces an invalid type, it must be custom lowered. Use 5480 // the target lowering hooks to expand it. Just keep the low part of the 5481 // expanded operation, we know that we're truncating anyway. 5482 if (getTypeAction(NewOutTy) == Expand) { 5483 Operation = SDOperand(TLI.ExpandOperationResult(Operation.Val, DAG), 0); 5484 assert(Operation.Val && "Didn't return anything"); 5485 } 5486 5487 // Truncate the result of the extended FP_TO_*INT operation to the desired 5488 // size. 5489 return DAG.getNode(ISD::TRUNCATE, DestVT, Operation); 5490} 5491 5492/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation. 5493/// 5494SDOperand SelectionDAGLegalize::ExpandBSWAP(SDOperand Op) { 5495 MVT::ValueType VT = Op.getValueType(); 5496 MVT::ValueType SHVT = TLI.getShiftAmountTy(); 5497 SDOperand Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 5498 switch (VT) { 5499 default: assert(0 && "Unhandled Expand type in BSWAP!"); abort(); 5500 case MVT::i16: 5501 Tmp2 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT)); 5502 Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT)); 5503 return DAG.getNode(ISD::OR, VT, Tmp1, Tmp2); 5504 case MVT::i32: 5505 Tmp4 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(24, SHVT)); 5506 Tmp3 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT)); 5507 Tmp2 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT)); 5508 Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(24, SHVT)); 5509 Tmp3 = DAG.getNode(ISD::AND, VT, Tmp3, DAG.getConstant(0xFF0000, VT)); 5510 Tmp2 = DAG.getNode(ISD::AND, VT, Tmp2, DAG.getConstant(0xFF00, VT)); 5511 Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp3); 5512 Tmp2 = DAG.getNode(ISD::OR, VT, Tmp2, Tmp1); 5513 return DAG.getNode(ISD::OR, VT, Tmp4, Tmp2); 5514 case MVT::i64: 5515 Tmp8 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(56, SHVT)); 5516 Tmp7 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(40, SHVT)); 5517 Tmp6 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(24, SHVT)); 5518 Tmp5 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT)); 5519 Tmp4 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT)); 5520 Tmp3 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(24, SHVT)); 5521 Tmp2 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(40, SHVT)); 5522 Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(56, SHVT)); 5523 Tmp7 = DAG.getNode(ISD::AND, VT, Tmp7, DAG.getConstant(255ULL<<48, VT)); 5524 Tmp6 = DAG.getNode(ISD::AND, VT, Tmp6, DAG.getConstant(255ULL<<40, VT)); 5525 Tmp5 = DAG.getNode(ISD::AND, VT, Tmp5, DAG.getConstant(255ULL<<32, VT)); 5526 Tmp4 = DAG.getNode(ISD::AND, VT, Tmp4, DAG.getConstant(255ULL<<24, VT)); 5527 Tmp3 = DAG.getNode(ISD::AND, VT, Tmp3, DAG.getConstant(255ULL<<16, VT)); 5528 Tmp2 = DAG.getNode(ISD::AND, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT)); 5529 Tmp8 = DAG.getNode(ISD::OR, VT, Tmp8, Tmp7); 5530 Tmp6 = DAG.getNode(ISD::OR, VT, Tmp6, Tmp5); 5531 Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp3); 5532 Tmp2 = DAG.getNode(ISD::OR, VT, Tmp2, Tmp1); 5533 Tmp8 = DAG.getNode(ISD::OR, VT, Tmp8, Tmp6); 5534 Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp2); 5535 return DAG.getNode(ISD::OR, VT, Tmp8, Tmp4); 5536 } 5537} 5538 5539/// ExpandBitCount - Expand the specified bitcount instruction into operations. 5540/// 5541SDOperand SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDOperand Op) { 5542 switch (Opc) { 5543 default: assert(0 && "Cannot expand this yet!"); 5544 case ISD::CTPOP: { 5545 static const uint64_t mask[6] = { 5546 0x5555555555555555ULL, 0x3333333333333333ULL, 5547 0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL, 5548 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL 5549 }; 5550 MVT::ValueType VT = Op.getValueType(); 5551 MVT::ValueType ShVT = TLI.getShiftAmountTy(); 5552 unsigned len = MVT::getSizeInBits(VT); 5553 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 5554 //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8]) 5555 SDOperand Tmp2 = DAG.getConstant(mask[i], VT); 5556 SDOperand Tmp3 = DAG.getConstant(1ULL << i, ShVT); 5557 Op = DAG.getNode(ISD::ADD, VT, DAG.getNode(ISD::AND, VT, Op, Tmp2), 5558 DAG.getNode(ISD::AND, VT, 5559 DAG.getNode(ISD::SRL, VT, Op, Tmp3),Tmp2)); 5560 } 5561 return Op; 5562 } 5563 case ISD::CTLZ: { 5564 // for now, we do this: 5565 // x = x | (x >> 1); 5566 // x = x | (x >> 2); 5567 // ... 5568 // x = x | (x >>16); 5569 // x = x | (x >>32); // for 64-bit input 5570 // return popcount(~x); 5571 // 5572 // but see also: http://www.hackersdelight.org/HDcode/nlz.cc 5573 MVT::ValueType VT = Op.getValueType(); 5574 MVT::ValueType ShVT = TLI.getShiftAmountTy(); 5575 unsigned len = MVT::getSizeInBits(VT); 5576 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 5577 SDOperand Tmp3 = DAG.getConstant(1ULL << i, ShVT); 5578 Op = DAG.getNode(ISD::OR, VT, Op, DAG.getNode(ISD::SRL, VT, Op, Tmp3)); 5579 } 5580 Op = DAG.getNode(ISD::XOR, VT, Op, DAG.getConstant(~0ULL, VT)); 5581 return DAG.getNode(ISD::CTPOP, VT, Op); 5582 } 5583 case ISD::CTTZ: { 5584 // for now, we use: { return popcount(~x & (x - 1)); } 5585 // unless the target has ctlz but not ctpop, in which case we use: 5586 // { return 32 - nlz(~x & (x-1)); } 5587 // see also http://www.hackersdelight.org/HDcode/ntz.cc 5588 MVT::ValueType VT = Op.getValueType(); 5589 SDOperand Tmp2 = DAG.getConstant(~0ULL, VT); 5590 SDOperand Tmp3 = DAG.getNode(ISD::AND, VT, 5591 DAG.getNode(ISD::XOR, VT, Op, Tmp2), 5592 DAG.getNode(ISD::SUB, VT, Op, DAG.getConstant(1, VT))); 5593 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 5594 if (!TLI.isOperationLegal(ISD::CTPOP, VT) && 5595 TLI.isOperationLegal(ISD::CTLZ, VT)) 5596 return DAG.getNode(ISD::SUB, VT, 5597 DAG.getConstant(MVT::getSizeInBits(VT), VT), 5598 DAG.getNode(ISD::CTLZ, VT, Tmp3)); 5599 return DAG.getNode(ISD::CTPOP, VT, Tmp3); 5600 } 5601 } 5602} 5603 5604/// ExpandOp - Expand the specified SDOperand into its two component pieces 5605/// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this, the 5606/// LegalizeNodes map is filled in for any results that are not expanded, the 5607/// ExpandedNodes map is filled in for any results that are expanded, and the 5608/// Lo/Hi values are returned. 5609void SelectionDAGLegalize::ExpandOp(SDOperand Op, SDOperand &Lo, SDOperand &Hi){ 5610 MVT::ValueType VT = Op.getValueType(); 5611 MVT::ValueType NVT = TLI.getTypeToTransformTo(VT); 5612 SDNode *Node = Op.Val; 5613 assert(getTypeAction(VT) == Expand && "Not an expanded type!"); 5614 assert(((MVT::isInteger(NVT) && NVT < VT) || MVT::isFloatingPoint(VT) || 5615 MVT::isVector(VT)) && 5616 "Cannot expand to FP value or to larger int value!"); 5617 5618 // See if we already expanded it. 5619 DenseMap<SDOperand, std::pair<SDOperand, SDOperand> >::iterator I 5620 = ExpandedNodes.find(Op); 5621 if (I != ExpandedNodes.end()) { 5622 Lo = I->second.first; 5623 Hi = I->second.second; 5624 return; 5625 } 5626 5627 switch (Node->getOpcode()) { 5628 case ISD::CopyFromReg: 5629 assert(0 && "CopyFromReg must be legal!"); 5630 case ISD::FP_ROUND_INREG: 5631 if (VT == MVT::ppcf128 && 5632 TLI.getOperationAction(ISD::FP_ROUND_INREG, VT) == 5633 TargetLowering::Custom) { 5634 SDOperand SrcLo, SrcHi, Src; 5635 ExpandOp(Op.getOperand(0), SrcLo, SrcHi); 5636 Src = DAG.getNode(ISD::BUILD_PAIR, VT, SrcLo, SrcHi); 5637 SDOperand Result = TLI.LowerOperation( 5638 DAG.getNode(ISD::FP_ROUND_INREG, VT, Src, Op.getOperand(1)), DAG); 5639 assert(Result.Val->getOpcode() == ISD::BUILD_PAIR); 5640 Lo = Result.Val->getOperand(0); 5641 Hi = Result.Val->getOperand(1); 5642 break; 5643 } 5644 // fall through 5645 default: 5646#ifndef NDEBUG 5647 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 5648#endif 5649 assert(0 && "Do not know how to expand this operator!"); 5650 abort(); 5651 case ISD::EXTRACT_VECTOR_ELT: 5652 assert(VT==MVT::i64 && "Do not know how to expand this operator!"); 5653 // ExpandEXTRACT_VECTOR_ELT tolerates invalid result types. 5654 Lo = ExpandEXTRACT_VECTOR_ELT(Op); 5655 return ExpandOp(Lo, Lo, Hi); 5656 case ISD::UNDEF: 5657 NVT = TLI.getTypeToExpandTo(VT); 5658 Lo = DAG.getNode(ISD::UNDEF, NVT); 5659 Hi = DAG.getNode(ISD::UNDEF, NVT); 5660 break; 5661 case ISD::Constant: { 5662 uint64_t Cst = cast<ConstantSDNode>(Node)->getValue(); 5663 Lo = DAG.getConstant(Cst, NVT); 5664 Hi = DAG.getConstant(Cst >> MVT::getSizeInBits(NVT), NVT); 5665 break; 5666 } 5667 case ISD::ConstantFP: { 5668 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 5669 if (CFP->getValueType(0) == MVT::ppcf128) { 5670 APInt api = CFP->getValueAPF().convertToAPInt(); 5671 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &api.getRawData()[1])), 5672 MVT::f64); 5673 Hi = DAG.getConstantFP(APFloat(APInt(64, 1, &api.getRawData()[0])), 5674 MVT::f64); 5675 break; 5676 } 5677 Lo = ExpandConstantFP(CFP, false, DAG, TLI); 5678 if (getTypeAction(Lo.getValueType()) == Expand) 5679 ExpandOp(Lo, Lo, Hi); 5680 break; 5681 } 5682 case ISD::BUILD_PAIR: 5683 // Return the operands. 5684 Lo = Node->getOperand(0); 5685 Hi = Node->getOperand(1); 5686 break; 5687 5688 case ISD::MERGE_VALUES: 5689 if (Node->getNumValues() == 1) { 5690 ExpandOp(Op.getOperand(0), Lo, Hi); 5691 break; 5692 } 5693 // FIXME: For now only expand i64,chain = MERGE_VALUES (x, y) 5694 assert(Op.ResNo == 0 && Node->getNumValues() == 2 && 5695 Op.getValue(1).getValueType() == MVT::Other && 5696 "unhandled MERGE_VALUES"); 5697 ExpandOp(Op.getOperand(0), Lo, Hi); 5698 // Remember that we legalized the chain. 5699 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Op.getOperand(1))); 5700 break; 5701 5702 case ISD::SIGN_EXTEND_INREG: 5703 ExpandOp(Node->getOperand(0), Lo, Hi); 5704 // sext_inreg the low part if needed. 5705 Lo = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Lo, Node->getOperand(1)); 5706 5707 // The high part gets the sign extension from the lo-part. This handles 5708 // things like sextinreg V:i64 from i8. 5709 Hi = DAG.getNode(ISD::SRA, NVT, Lo, 5710 DAG.getConstant(MVT::getSizeInBits(NVT)-1, 5711 TLI.getShiftAmountTy())); 5712 break; 5713 5714 case ISD::BSWAP: { 5715 ExpandOp(Node->getOperand(0), Lo, Hi); 5716 SDOperand TempLo = DAG.getNode(ISD::BSWAP, NVT, Hi); 5717 Hi = DAG.getNode(ISD::BSWAP, NVT, Lo); 5718 Lo = TempLo; 5719 break; 5720 } 5721 5722 case ISD::CTPOP: 5723 ExpandOp(Node->getOperand(0), Lo, Hi); 5724 Lo = DAG.getNode(ISD::ADD, NVT, // ctpop(HL) -> ctpop(H)+ctpop(L) 5725 DAG.getNode(ISD::CTPOP, NVT, Lo), 5726 DAG.getNode(ISD::CTPOP, NVT, Hi)); 5727 Hi = DAG.getConstant(0, NVT); 5728 break; 5729 5730 case ISD::CTLZ: { 5731 // ctlz (HL) -> ctlz(H) != 32 ? ctlz(H) : (ctlz(L)+32) 5732 ExpandOp(Node->getOperand(0), Lo, Hi); 5733 SDOperand BitsC = DAG.getConstant(MVT::getSizeInBits(NVT), NVT); 5734 SDOperand HLZ = DAG.getNode(ISD::CTLZ, NVT, Hi); 5735 SDOperand TopNotZero = DAG.getSetCC(TLI.getSetCCResultTy(), HLZ, BitsC, 5736 ISD::SETNE); 5737 SDOperand LowPart = DAG.getNode(ISD::CTLZ, NVT, Lo); 5738 LowPart = DAG.getNode(ISD::ADD, NVT, LowPart, BitsC); 5739 5740 Lo = DAG.getNode(ISD::SELECT, NVT, TopNotZero, HLZ, LowPart); 5741 Hi = DAG.getConstant(0, NVT); 5742 break; 5743 } 5744 5745 case ISD::CTTZ: { 5746 // cttz (HL) -> cttz(L) != 32 ? cttz(L) : (cttz(H)+32) 5747 ExpandOp(Node->getOperand(0), Lo, Hi); 5748 SDOperand BitsC = DAG.getConstant(MVT::getSizeInBits(NVT), NVT); 5749 SDOperand LTZ = DAG.getNode(ISD::CTTZ, NVT, Lo); 5750 SDOperand BotNotZero = DAG.getSetCC(TLI.getSetCCResultTy(), LTZ, BitsC, 5751 ISD::SETNE); 5752 SDOperand HiPart = DAG.getNode(ISD::CTTZ, NVT, Hi); 5753 HiPart = DAG.getNode(ISD::ADD, NVT, HiPart, BitsC); 5754 5755 Lo = DAG.getNode(ISD::SELECT, NVT, BotNotZero, LTZ, HiPart); 5756 Hi = DAG.getConstant(0, NVT); 5757 break; 5758 } 5759 5760 case ISD::VAARG: { 5761 SDOperand Ch = Node->getOperand(0); // Legalize the chain. 5762 SDOperand Ptr = Node->getOperand(1); // Legalize the pointer. 5763 Lo = DAG.getVAArg(NVT, Ch, Ptr, Node->getOperand(2)); 5764 Hi = DAG.getVAArg(NVT, Lo.getValue(1), Ptr, Node->getOperand(2)); 5765 5766 // Remember that we legalized the chain. 5767 Hi = LegalizeOp(Hi); 5768 AddLegalizedOperand(Op.getValue(1), Hi.getValue(1)); 5769 if (TLI.isBigEndian()) 5770 std::swap(Lo, Hi); 5771 break; 5772 } 5773 5774 case ISD::LOAD: { 5775 LoadSDNode *LD = cast<LoadSDNode>(Node); 5776 SDOperand Ch = LD->getChain(); // Legalize the chain. 5777 SDOperand Ptr = LD->getBasePtr(); // Legalize the pointer. 5778 ISD::LoadExtType ExtType = LD->getExtensionType(); 5779 int SVOffset = LD->getSrcValueOffset(); 5780 unsigned Alignment = LD->getAlignment(); 5781 bool isVolatile = LD->isVolatile(); 5782 5783 if (ExtType == ISD::NON_EXTLOAD) { 5784 Lo = DAG.getLoad(NVT, Ch, Ptr, LD->getSrcValue(), SVOffset, 5785 isVolatile, Alignment); 5786 if (VT == MVT::f32 || VT == MVT::f64) { 5787 // f32->i32 or f64->i64 one to one expansion. 5788 // Remember that we legalized the chain. 5789 AddLegalizedOperand(SDOperand(Node, 1), LegalizeOp(Lo.getValue(1))); 5790 // Recursively expand the new load. 5791 if (getTypeAction(NVT) == Expand) 5792 ExpandOp(Lo, Lo, Hi); 5793 break; 5794 } 5795 5796 // Increment the pointer to the other half. 5797 unsigned IncrementSize = MVT::getSizeInBits(Lo.getValueType())/8; 5798 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 5799 DAG.getIntPtrConstant(IncrementSize)); 5800 SVOffset += IncrementSize; 5801 Alignment = MinAlign(Alignment, IncrementSize); 5802 Hi = DAG.getLoad(NVT, Ch, Ptr, LD->getSrcValue(), SVOffset, 5803 isVolatile, Alignment); 5804 5805 // Build a factor node to remember that this load is independent of the 5806 // other one. 5807 SDOperand TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 5808 Hi.getValue(1)); 5809 5810 // Remember that we legalized the chain. 5811 AddLegalizedOperand(Op.getValue(1), LegalizeOp(TF)); 5812 if (TLI.isBigEndian()) 5813 std::swap(Lo, Hi); 5814 } else { 5815 MVT::ValueType EVT = LD->getMemoryVT(); 5816 5817 if ((VT == MVT::f64 && EVT == MVT::f32) || 5818 (VT == MVT::ppcf128 && (EVT==MVT::f64 || EVT==MVT::f32))) { 5819 // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND 5820 SDOperand Load = DAG.getLoad(EVT, Ch, Ptr, LD->getSrcValue(), 5821 SVOffset, isVolatile, Alignment); 5822 // Remember that we legalized the chain. 5823 AddLegalizedOperand(SDOperand(Node, 1), LegalizeOp(Load.getValue(1))); 5824 ExpandOp(DAG.getNode(ISD::FP_EXTEND, VT, Load), Lo, Hi); 5825 break; 5826 } 5827 5828 if (EVT == NVT) 5829 Lo = DAG.getLoad(NVT, Ch, Ptr, LD->getSrcValue(), 5830 SVOffset, isVolatile, Alignment); 5831 else 5832 Lo = DAG.getExtLoad(ExtType, NVT, Ch, Ptr, LD->getSrcValue(), 5833 SVOffset, EVT, isVolatile, 5834 Alignment); 5835 5836 // Remember that we legalized the chain. 5837 AddLegalizedOperand(SDOperand(Node, 1), LegalizeOp(Lo.getValue(1))); 5838 5839 if (ExtType == ISD::SEXTLOAD) { 5840 // The high part is obtained by SRA'ing all but one of the bits of the 5841 // lo part. 5842 unsigned LoSize = MVT::getSizeInBits(Lo.getValueType()); 5843 Hi = DAG.getNode(ISD::SRA, NVT, Lo, 5844 DAG.getConstant(LoSize-1, TLI.getShiftAmountTy())); 5845 } else if (ExtType == ISD::ZEXTLOAD) { 5846 // The high part is just a zero. 5847 Hi = DAG.getConstant(0, NVT); 5848 } else /* if (ExtType == ISD::EXTLOAD) */ { 5849 // The high part is undefined. 5850 Hi = DAG.getNode(ISD::UNDEF, NVT); 5851 } 5852 } 5853 break; 5854 } 5855 case ISD::AND: 5856 case ISD::OR: 5857 case ISD::XOR: { // Simple logical operators -> two trivial pieces. 5858 SDOperand LL, LH, RL, RH; 5859 ExpandOp(Node->getOperand(0), LL, LH); 5860 ExpandOp(Node->getOperand(1), RL, RH); 5861 Lo = DAG.getNode(Node->getOpcode(), NVT, LL, RL); 5862 Hi = DAG.getNode(Node->getOpcode(), NVT, LH, RH); 5863 break; 5864 } 5865 case ISD::SELECT: { 5866 SDOperand LL, LH, RL, RH; 5867 ExpandOp(Node->getOperand(1), LL, LH); 5868 ExpandOp(Node->getOperand(2), RL, RH); 5869 if (getTypeAction(NVT) == Expand) 5870 NVT = TLI.getTypeToExpandTo(NVT); 5871 Lo = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), LL, RL); 5872 if (VT != MVT::f32) 5873 Hi = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), LH, RH); 5874 break; 5875 } 5876 case ISD::SELECT_CC: { 5877 SDOperand TL, TH, FL, FH; 5878 ExpandOp(Node->getOperand(2), TL, TH); 5879 ExpandOp(Node->getOperand(3), FL, FH); 5880 if (getTypeAction(NVT) == Expand) 5881 NVT = TLI.getTypeToExpandTo(NVT); 5882 Lo = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0), 5883 Node->getOperand(1), TL, FL, Node->getOperand(4)); 5884 if (VT != MVT::f32) 5885 Hi = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0), 5886 Node->getOperand(1), TH, FH, Node->getOperand(4)); 5887 break; 5888 } 5889 case ISD::ANY_EXTEND: 5890 // The low part is any extension of the input (which degenerates to a copy). 5891 Lo = DAG.getNode(ISD::ANY_EXTEND, NVT, Node->getOperand(0)); 5892 // The high part is undefined. 5893 Hi = DAG.getNode(ISD::UNDEF, NVT); 5894 break; 5895 case ISD::SIGN_EXTEND: { 5896 // The low part is just a sign extension of the input (which degenerates to 5897 // a copy). 5898 Lo = DAG.getNode(ISD::SIGN_EXTEND, NVT, Node->getOperand(0)); 5899 5900 // The high part is obtained by SRA'ing all but one of the bits of the lo 5901 // part. 5902 unsigned LoSize = MVT::getSizeInBits(Lo.getValueType()); 5903 Hi = DAG.getNode(ISD::SRA, NVT, Lo, 5904 DAG.getConstant(LoSize-1, TLI.getShiftAmountTy())); 5905 break; 5906 } 5907 case ISD::ZERO_EXTEND: 5908 // The low part is just a zero extension of the input (which degenerates to 5909 // a copy). 5910 Lo = DAG.getNode(ISD::ZERO_EXTEND, NVT, Node->getOperand(0)); 5911 5912 // The high part is just a zero. 5913 Hi = DAG.getConstant(0, NVT); 5914 break; 5915 5916 case ISD::TRUNCATE: { 5917 // The input value must be larger than this value. Expand *it*. 5918 SDOperand NewLo; 5919 ExpandOp(Node->getOperand(0), NewLo, Hi); 5920 5921 // The low part is now either the right size, or it is closer. If not the 5922 // right size, make an illegal truncate so we recursively expand it. 5923 if (NewLo.getValueType() != Node->getValueType(0)) 5924 NewLo = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), NewLo); 5925 ExpandOp(NewLo, Lo, Hi); 5926 break; 5927 } 5928 5929 case ISD::BIT_CONVERT: { 5930 SDOperand Tmp; 5931 if (TLI.getOperationAction(ISD::BIT_CONVERT, VT) == TargetLowering::Custom){ 5932 // If the target wants to, allow it to lower this itself. 5933 switch (getTypeAction(Node->getOperand(0).getValueType())) { 5934 case Expand: assert(0 && "cannot expand FP!"); 5935 case Legal: Tmp = LegalizeOp(Node->getOperand(0)); break; 5936 case Promote: Tmp = PromoteOp (Node->getOperand(0)); break; 5937 } 5938 Tmp = TLI.LowerOperation(DAG.getNode(ISD::BIT_CONVERT, VT, Tmp), DAG); 5939 } 5940 5941 // f32 / f64 must be expanded to i32 / i64. 5942 if (VT == MVT::f32 || VT == MVT::f64) { 5943 Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 5944 if (getTypeAction(NVT) == Expand) 5945 ExpandOp(Lo, Lo, Hi); 5946 break; 5947 } 5948 5949 // If source operand will be expanded to the same type as VT, i.e. 5950 // i64 <- f64, i32 <- f32, expand the source operand instead. 5951 MVT::ValueType VT0 = Node->getOperand(0).getValueType(); 5952 if (getTypeAction(VT0) == Expand && TLI.getTypeToTransformTo(VT0) == VT) { 5953 ExpandOp(Node->getOperand(0), Lo, Hi); 5954 break; 5955 } 5956 5957 // Turn this into a load/store pair by default. 5958 if (Tmp.Val == 0) 5959 Tmp = EmitStackConvert(Node->getOperand(0), VT, VT); 5960 5961 ExpandOp(Tmp, Lo, Hi); 5962 break; 5963 } 5964 5965 case ISD::READCYCLECOUNTER: { 5966 assert(TLI.getOperationAction(ISD::READCYCLECOUNTER, VT) == 5967 TargetLowering::Custom && 5968 "Must custom expand ReadCycleCounter"); 5969 SDOperand Tmp = TLI.LowerOperation(Op, DAG); 5970 assert(Tmp.Val && "Node must be custom expanded!"); 5971 ExpandOp(Tmp.getValue(0), Lo, Hi); 5972 AddLegalizedOperand(SDOperand(Node, 1), // Remember we legalized the chain. 5973 LegalizeOp(Tmp.getValue(1))); 5974 break; 5975 } 5976 5977 // These operators cannot be expanded directly, emit them as calls to 5978 // library functions. 5979 case ISD::FP_TO_SINT: { 5980 if (TLI.getOperationAction(ISD::FP_TO_SINT, VT) == TargetLowering::Custom) { 5981 SDOperand Op; 5982 switch (getTypeAction(Node->getOperand(0).getValueType())) { 5983 case Expand: assert(0 && "cannot expand FP!"); 5984 case Legal: Op = LegalizeOp(Node->getOperand(0)); break; 5985 case Promote: Op = PromoteOp (Node->getOperand(0)); break; 5986 } 5987 5988 Op = TLI.LowerOperation(DAG.getNode(ISD::FP_TO_SINT, VT, Op), DAG); 5989 5990 // Now that the custom expander is done, expand the result, which is still 5991 // VT. 5992 if (Op.Val) { 5993 ExpandOp(Op, Lo, Hi); 5994 break; 5995 } 5996 } 5997 5998 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 5999 if (Node->getOperand(0).getValueType() == MVT::f32) 6000 LC = RTLIB::FPTOSINT_F32_I64; 6001 else if (Node->getOperand(0).getValueType() == MVT::f64) 6002 LC = RTLIB::FPTOSINT_F64_I64; 6003 else if (Node->getOperand(0).getValueType() == MVT::f80) 6004 LC = RTLIB::FPTOSINT_F80_I64; 6005 else if (Node->getOperand(0).getValueType() == MVT::ppcf128) 6006 LC = RTLIB::FPTOSINT_PPCF128_I64; 6007 Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, 6008 false/*sign irrelevant*/, Hi); 6009 break; 6010 } 6011 6012 case ISD::FP_TO_UINT: { 6013 if (TLI.getOperationAction(ISD::FP_TO_UINT, VT) == TargetLowering::Custom) { 6014 SDOperand Op; 6015 switch (getTypeAction(Node->getOperand(0).getValueType())) { 6016 case Expand: assert(0 && "cannot expand FP!"); 6017 case Legal: Op = LegalizeOp(Node->getOperand(0)); break; 6018 case Promote: Op = PromoteOp (Node->getOperand(0)); break; 6019 } 6020 6021 Op = TLI.LowerOperation(DAG.getNode(ISD::FP_TO_UINT, VT, Op), DAG); 6022 6023 // Now that the custom expander is done, expand the result. 6024 if (Op.Val) { 6025 ExpandOp(Op, Lo, Hi); 6026 break; 6027 } 6028 } 6029 6030 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 6031 if (Node->getOperand(0).getValueType() == MVT::f32) 6032 LC = RTLIB::FPTOUINT_F32_I64; 6033 else if (Node->getOperand(0).getValueType() == MVT::f64) 6034 LC = RTLIB::FPTOUINT_F64_I64; 6035 else if (Node->getOperand(0).getValueType() == MVT::f80) 6036 LC = RTLIB::FPTOUINT_F80_I64; 6037 else if (Node->getOperand(0).getValueType() == MVT::ppcf128) 6038 LC = RTLIB::FPTOUINT_PPCF128_I64; 6039 Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, 6040 false/*sign irrelevant*/, Hi); 6041 break; 6042 } 6043 6044 case ISD::SHL: { 6045 // If the target wants custom lowering, do so. 6046 SDOperand ShiftAmt = LegalizeOp(Node->getOperand(1)); 6047 if (TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Custom) { 6048 SDOperand Op = DAG.getNode(ISD::SHL, VT, Node->getOperand(0), ShiftAmt); 6049 Op = TLI.LowerOperation(Op, DAG); 6050 if (Op.Val) { 6051 // Now that the custom expander is done, expand the result, which is 6052 // still VT. 6053 ExpandOp(Op, Lo, Hi); 6054 break; 6055 } 6056 } 6057 6058 // If ADDC/ADDE are supported and if the shift amount is a constant 1, emit 6059 // this X << 1 as X+X. 6060 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(ShiftAmt)) { 6061 if (ShAmt->getValue() == 1 && TLI.isOperationLegal(ISD::ADDC, NVT) && 6062 TLI.isOperationLegal(ISD::ADDE, NVT)) { 6063 SDOperand LoOps[2], HiOps[3]; 6064 ExpandOp(Node->getOperand(0), LoOps[0], HiOps[0]); 6065 SDVTList VTList = DAG.getVTList(LoOps[0].getValueType(), MVT::Flag); 6066 LoOps[1] = LoOps[0]; 6067 Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); 6068 6069 HiOps[1] = HiOps[0]; 6070 HiOps[2] = Lo.getValue(1); 6071 Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); 6072 break; 6073 } 6074 } 6075 6076 // If we can emit an efficient shift operation, do so now. 6077 if (ExpandShift(ISD::SHL, Node->getOperand(0), ShiftAmt, Lo, Hi)) 6078 break; 6079 6080 // If this target supports SHL_PARTS, use it. 6081 TargetLowering::LegalizeAction Action = 6082 TLI.getOperationAction(ISD::SHL_PARTS, NVT); 6083 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 6084 Action == TargetLowering::Custom) { 6085 ExpandShiftParts(ISD::SHL_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi); 6086 break; 6087 } 6088 6089 // Otherwise, emit a libcall. 6090 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SHL_I64), Node, 6091 false/*left shift=unsigned*/, Hi); 6092 break; 6093 } 6094 6095 case ISD::SRA: { 6096 // If the target wants custom lowering, do so. 6097 SDOperand ShiftAmt = LegalizeOp(Node->getOperand(1)); 6098 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Custom) { 6099 SDOperand Op = DAG.getNode(ISD::SRA, VT, Node->getOperand(0), ShiftAmt); 6100 Op = TLI.LowerOperation(Op, DAG); 6101 if (Op.Val) { 6102 // Now that the custom expander is done, expand the result, which is 6103 // still VT. 6104 ExpandOp(Op, Lo, Hi); 6105 break; 6106 } 6107 } 6108 6109 // If we can emit an efficient shift operation, do so now. 6110 if (ExpandShift(ISD::SRA, Node->getOperand(0), ShiftAmt, Lo, Hi)) 6111 break; 6112 6113 // If this target supports SRA_PARTS, use it. 6114 TargetLowering::LegalizeAction Action = 6115 TLI.getOperationAction(ISD::SRA_PARTS, NVT); 6116 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 6117 Action == TargetLowering::Custom) { 6118 ExpandShiftParts(ISD::SRA_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi); 6119 break; 6120 } 6121 6122 // Otherwise, emit a libcall. 6123 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SRA_I64), Node, 6124 true/*ashr is signed*/, Hi); 6125 break; 6126 } 6127 6128 case ISD::SRL: { 6129 // If the target wants custom lowering, do so. 6130 SDOperand ShiftAmt = LegalizeOp(Node->getOperand(1)); 6131 if (TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Custom) { 6132 SDOperand Op = DAG.getNode(ISD::SRL, VT, Node->getOperand(0), ShiftAmt); 6133 Op = TLI.LowerOperation(Op, DAG); 6134 if (Op.Val) { 6135 // Now that the custom expander is done, expand the result, which is 6136 // still VT. 6137 ExpandOp(Op, Lo, Hi); 6138 break; 6139 } 6140 } 6141 6142 // If we can emit an efficient shift operation, do so now. 6143 if (ExpandShift(ISD::SRL, Node->getOperand(0), ShiftAmt, Lo, Hi)) 6144 break; 6145 6146 // If this target supports SRL_PARTS, use it. 6147 TargetLowering::LegalizeAction Action = 6148 TLI.getOperationAction(ISD::SRL_PARTS, NVT); 6149 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 6150 Action == TargetLowering::Custom) { 6151 ExpandShiftParts(ISD::SRL_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi); 6152 break; 6153 } 6154 6155 // Otherwise, emit a libcall. 6156 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SRL_I64), Node, 6157 false/*lshr is unsigned*/, Hi); 6158 break; 6159 } 6160 6161 case ISD::ADD: 6162 case ISD::SUB: { 6163 // If the target wants to custom expand this, let them. 6164 if (TLI.getOperationAction(Node->getOpcode(), VT) == 6165 TargetLowering::Custom) { 6166 Op = TLI.LowerOperation(Op, DAG); 6167 if (Op.Val) { 6168 ExpandOp(Op, Lo, Hi); 6169 break; 6170 } 6171 } 6172 6173 // Expand the subcomponents. 6174 SDOperand LHSL, LHSH, RHSL, RHSH; 6175 ExpandOp(Node->getOperand(0), LHSL, LHSH); 6176 ExpandOp(Node->getOperand(1), RHSL, RHSH); 6177 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 6178 SDOperand LoOps[2], HiOps[3]; 6179 LoOps[0] = LHSL; 6180 LoOps[1] = RHSL; 6181 HiOps[0] = LHSH; 6182 HiOps[1] = RHSH; 6183 if (Node->getOpcode() == ISD::ADD) { 6184 Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); 6185 HiOps[2] = Lo.getValue(1); 6186 Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); 6187 } else { 6188 Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2); 6189 HiOps[2] = Lo.getValue(1); 6190 Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3); 6191 } 6192 break; 6193 } 6194 6195 case ISD::ADDC: 6196 case ISD::SUBC: { 6197 // Expand the subcomponents. 6198 SDOperand LHSL, LHSH, RHSL, RHSH; 6199 ExpandOp(Node->getOperand(0), LHSL, LHSH); 6200 ExpandOp(Node->getOperand(1), RHSL, RHSH); 6201 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 6202 SDOperand LoOps[2] = { LHSL, RHSL }; 6203 SDOperand HiOps[3] = { LHSH, RHSH }; 6204 6205 if (Node->getOpcode() == ISD::ADDC) { 6206 Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); 6207 HiOps[2] = Lo.getValue(1); 6208 Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); 6209 } else { 6210 Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2); 6211 HiOps[2] = Lo.getValue(1); 6212 Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3); 6213 } 6214 // Remember that we legalized the flag. 6215 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Hi.getValue(1))); 6216 break; 6217 } 6218 case ISD::ADDE: 6219 case ISD::SUBE: { 6220 // Expand the subcomponents. 6221 SDOperand LHSL, LHSH, RHSL, RHSH; 6222 ExpandOp(Node->getOperand(0), LHSL, LHSH); 6223 ExpandOp(Node->getOperand(1), RHSL, RHSH); 6224 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 6225 SDOperand LoOps[3] = { LHSL, RHSL, Node->getOperand(2) }; 6226 SDOperand HiOps[3] = { LHSH, RHSH }; 6227 6228 Lo = DAG.getNode(Node->getOpcode(), VTList, LoOps, 3); 6229 HiOps[2] = Lo.getValue(1); 6230 Hi = DAG.getNode(Node->getOpcode(), VTList, HiOps, 3); 6231 6232 // Remember that we legalized the flag. 6233 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Hi.getValue(1))); 6234 break; 6235 } 6236 case ISD::MUL: { 6237 // If the target wants to custom expand this, let them. 6238 if (TLI.getOperationAction(ISD::MUL, VT) == TargetLowering::Custom) { 6239 SDOperand New = TLI.LowerOperation(Op, DAG); 6240 if (New.Val) { 6241 ExpandOp(New, Lo, Hi); 6242 break; 6243 } 6244 } 6245 6246 bool HasMULHS = TLI.isOperationLegal(ISD::MULHS, NVT); 6247 bool HasMULHU = TLI.isOperationLegal(ISD::MULHU, NVT); 6248 bool HasSMUL_LOHI = TLI.isOperationLegal(ISD::SMUL_LOHI, NVT); 6249 bool HasUMUL_LOHI = TLI.isOperationLegal(ISD::UMUL_LOHI, NVT); 6250 if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) { 6251 SDOperand LL, LH, RL, RH; 6252 ExpandOp(Node->getOperand(0), LL, LH); 6253 ExpandOp(Node->getOperand(1), RL, RH); 6254 unsigned BitSize = MVT::getSizeInBits(RH.getValueType()); 6255 unsigned LHSSB = DAG.ComputeNumSignBits(Op.getOperand(0)); 6256 unsigned RHSSB = DAG.ComputeNumSignBits(Op.getOperand(1)); 6257 // FIXME: generalize this to handle other bit sizes 6258 if (LHSSB == 32 && RHSSB == 32 && 6259 DAG.MaskedValueIsZero(Op.getOperand(0), 0xFFFFFFFF00000000ULL) && 6260 DAG.MaskedValueIsZero(Op.getOperand(1), 0xFFFFFFFF00000000ULL)) { 6261 // The inputs are both zero-extended. 6262 if (HasUMUL_LOHI) { 6263 // We can emit a umul_lohi. 6264 Lo = DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL); 6265 Hi = SDOperand(Lo.Val, 1); 6266 break; 6267 } 6268 if (HasMULHU) { 6269 // We can emit a mulhu+mul. 6270 Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); 6271 Hi = DAG.getNode(ISD::MULHU, NVT, LL, RL); 6272 break; 6273 } 6274 } 6275 if (LHSSB > BitSize && RHSSB > BitSize) { 6276 // The input values are both sign-extended. 6277 if (HasSMUL_LOHI) { 6278 // We can emit a smul_lohi. 6279 Lo = DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL); 6280 Hi = SDOperand(Lo.Val, 1); 6281 break; 6282 } 6283 if (HasMULHS) { 6284 // We can emit a mulhs+mul. 6285 Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); 6286 Hi = DAG.getNode(ISD::MULHS, NVT, LL, RL); 6287 break; 6288 } 6289 } 6290 if (HasUMUL_LOHI) { 6291 // Lo,Hi = umul LHS, RHS. 6292 SDOperand UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, 6293 DAG.getVTList(NVT, NVT), LL, RL); 6294 Lo = UMulLOHI; 6295 Hi = UMulLOHI.getValue(1); 6296 RH = DAG.getNode(ISD::MUL, NVT, LL, RH); 6297 LH = DAG.getNode(ISD::MUL, NVT, LH, RL); 6298 Hi = DAG.getNode(ISD::ADD, NVT, Hi, RH); 6299 Hi = DAG.getNode(ISD::ADD, NVT, Hi, LH); 6300 break; 6301 } 6302 if (HasMULHU) { 6303 Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); 6304 Hi = DAG.getNode(ISD::MULHU, NVT, LL, RL); 6305 RH = DAG.getNode(ISD::MUL, NVT, LL, RH); 6306 LH = DAG.getNode(ISD::MUL, NVT, LH, RL); 6307 Hi = DAG.getNode(ISD::ADD, NVT, Hi, RH); 6308 Hi = DAG.getNode(ISD::ADD, NVT, Hi, LH); 6309 break; 6310 } 6311 } 6312 6313 // If nothing else, we can make a libcall. 6314 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::MUL_I64), Node, 6315 false/*sign irrelevant*/, Hi); 6316 break; 6317 } 6318 case ISD::SDIV: 6319 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SDIV_I64), Node, true, Hi); 6320 break; 6321 case ISD::UDIV: 6322 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::UDIV_I64), Node, true, Hi); 6323 break; 6324 case ISD::SREM: 6325 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SREM_I64), Node, true, Hi); 6326 break; 6327 case ISD::UREM: 6328 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::UREM_I64), Node, true, Hi); 6329 break; 6330 6331 case ISD::FADD: 6332 Lo = ExpandLibCall(TLI.getLibcallName(GetFPLibCall(VT, RTLIB::ADD_F32, 6333 RTLIB::ADD_F64, 6334 RTLIB::ADD_F80, 6335 RTLIB::ADD_PPCF128)), 6336 Node, false, Hi); 6337 break; 6338 case ISD::FSUB: 6339 Lo = ExpandLibCall(TLI.getLibcallName(GetFPLibCall(VT, RTLIB::SUB_F32, 6340 RTLIB::SUB_F64, 6341 RTLIB::SUB_F80, 6342 RTLIB::SUB_PPCF128)), 6343 Node, false, Hi); 6344 break; 6345 case ISD::FMUL: 6346 Lo = ExpandLibCall(TLI.getLibcallName(GetFPLibCall(VT, RTLIB::MUL_F32, 6347 RTLIB::MUL_F64, 6348 RTLIB::MUL_F80, 6349 RTLIB::MUL_PPCF128)), 6350 Node, false, Hi); 6351 break; 6352 case ISD::FDIV: 6353 Lo = ExpandLibCall(TLI.getLibcallName(GetFPLibCall(VT, RTLIB::DIV_F32, 6354 RTLIB::DIV_F64, 6355 RTLIB::DIV_F80, 6356 RTLIB::DIV_PPCF128)), 6357 Node, false, Hi); 6358 break; 6359 case ISD::FP_EXTEND: 6360 if (VT == MVT::ppcf128) { 6361 assert(Node->getOperand(0).getValueType()==MVT::f32 || 6362 Node->getOperand(0).getValueType()==MVT::f64); 6363 const uint64_t zero = 0; 6364 if (Node->getOperand(0).getValueType()==MVT::f32) 6365 Hi = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Node->getOperand(0)); 6366 else 6367 Hi = Node->getOperand(0); 6368 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); 6369 break; 6370 } 6371 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::FPEXT_F32_F64), Node, true,Hi); 6372 break; 6373 case ISD::FP_ROUND: 6374 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::FPROUND_F64_F32),Node,true,Hi); 6375 break; 6376 case ISD::FPOWI: 6377 Lo = ExpandLibCall(TLI.getLibcallName(GetFPLibCall(VT, RTLIB::POWI_F32, 6378 RTLIB::POWI_F64, 6379 RTLIB::POWI_F80, 6380 RTLIB::POWI_PPCF128)), 6381 Node, false, Hi); 6382 break; 6383 case ISD::FSQRT: 6384 case ISD::FSIN: 6385 case ISD::FCOS: { 6386 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 6387 switch(Node->getOpcode()) { 6388 case ISD::FSQRT: 6389 LC = GetFPLibCall(VT, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 6390 RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128); 6391 break; 6392 case ISD::FSIN: 6393 LC = GetFPLibCall(VT, RTLIB::SIN_F32, RTLIB::SIN_F64, 6394 RTLIB::SIN_F80, RTLIB::SIN_PPCF128); 6395 break; 6396 case ISD::FCOS: 6397 LC = GetFPLibCall(VT, RTLIB::COS_F32, RTLIB::COS_F64, 6398 RTLIB::COS_F80, RTLIB::COS_PPCF128); 6399 break; 6400 default: assert(0 && "Unreachable!"); 6401 } 6402 Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, false, Hi); 6403 break; 6404 } 6405 case ISD::FABS: { 6406 if (VT == MVT::ppcf128) { 6407 SDOperand Tmp; 6408 ExpandOp(Node->getOperand(0), Lo, Tmp); 6409 Hi = DAG.getNode(ISD::FABS, NVT, Tmp); 6410 // lo = hi==fabs(hi) ? lo : -lo; 6411 Lo = DAG.getNode(ISD::SELECT_CC, NVT, Hi, Tmp, 6412 Lo, DAG.getNode(ISD::FNEG, NVT, Lo), 6413 DAG.getCondCode(ISD::SETEQ)); 6414 break; 6415 } 6416 SDOperand Mask = (VT == MVT::f64) 6417 ? DAG.getConstantFP(BitsToDouble(~(1ULL << 63)), VT) 6418 : DAG.getConstantFP(BitsToFloat(~(1U << 31)), VT); 6419 Mask = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask); 6420 Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 6421 Lo = DAG.getNode(ISD::AND, NVT, Lo, Mask); 6422 if (getTypeAction(NVT) == Expand) 6423 ExpandOp(Lo, Lo, Hi); 6424 break; 6425 } 6426 case ISD::FNEG: { 6427 if (VT == MVT::ppcf128) { 6428 ExpandOp(Node->getOperand(0), Lo, Hi); 6429 Lo = DAG.getNode(ISD::FNEG, MVT::f64, Lo); 6430 Hi = DAG.getNode(ISD::FNEG, MVT::f64, Hi); 6431 break; 6432 } 6433 SDOperand Mask = (VT == MVT::f64) 6434 ? DAG.getConstantFP(BitsToDouble(1ULL << 63), VT) 6435 : DAG.getConstantFP(BitsToFloat(1U << 31), VT); 6436 Mask = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask); 6437 Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 6438 Lo = DAG.getNode(ISD::XOR, NVT, Lo, Mask); 6439 if (getTypeAction(NVT) == Expand) 6440 ExpandOp(Lo, Lo, Hi); 6441 break; 6442 } 6443 case ISD::FCOPYSIGN: { 6444 Lo = ExpandFCOPYSIGNToBitwiseOps(Node, NVT, DAG, TLI); 6445 if (getTypeAction(NVT) == Expand) 6446 ExpandOp(Lo, Lo, Hi); 6447 break; 6448 } 6449 case ISD::SINT_TO_FP: 6450 case ISD::UINT_TO_FP: { 6451 bool isSigned = Node->getOpcode() == ISD::SINT_TO_FP; 6452 MVT::ValueType SrcVT = Node->getOperand(0).getValueType(); 6453 if (VT == MVT::ppcf128 && SrcVT != MVT::i64) { 6454 static uint64_t zero = 0; 6455 if (isSigned) { 6456 Hi = LegalizeOp(DAG.getNode(ISD::SINT_TO_FP, MVT::f64, 6457 Node->getOperand(0))); 6458 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); 6459 } else { 6460 static uint64_t TwoE32[] = { 0x41f0000000000000LL, 0 }; 6461 Hi = LegalizeOp(DAG.getNode(ISD::SINT_TO_FP, MVT::f64, 6462 Node->getOperand(0))); 6463 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); 6464 Hi = DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi); 6465 // X>=0 ? {(f64)x, 0} : {(f64)x, 0} + 2^32 6466 ExpandOp(DAG.getNode(ISD::SELECT_CC, MVT::ppcf128, Node->getOperand(0), 6467 DAG.getConstant(0, MVT::i32), 6468 DAG.getNode(ISD::FADD, MVT::ppcf128, Hi, 6469 DAG.getConstantFP( 6470 APFloat(APInt(128, 2, TwoE32)), 6471 MVT::ppcf128)), 6472 Hi, 6473 DAG.getCondCode(ISD::SETLT)), 6474 Lo, Hi); 6475 } 6476 break; 6477 } 6478 if (VT == MVT::ppcf128 && SrcVT == MVT::i64 && !isSigned) { 6479 // si64->ppcf128 done by libcall, below 6480 static uint64_t TwoE64[] = { 0x43f0000000000000LL, 0 }; 6481 ExpandOp(DAG.getNode(ISD::SINT_TO_FP, MVT::ppcf128, Node->getOperand(0)), 6482 Lo, Hi); 6483 Hi = DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi); 6484 // x>=0 ? (ppcf128)(i64)x : (ppcf128)(i64)x + 2^64 6485 ExpandOp(DAG.getNode(ISD::SELECT_CC, MVT::ppcf128, Node->getOperand(0), 6486 DAG.getConstant(0, MVT::i64), 6487 DAG.getNode(ISD::FADD, MVT::ppcf128, Hi, 6488 DAG.getConstantFP( 6489 APFloat(APInt(128, 2, TwoE64)), 6490 MVT::ppcf128)), 6491 Hi, 6492 DAG.getCondCode(ISD::SETLT)), 6493 Lo, Hi); 6494 break; 6495 } 6496 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 6497 if (Node->getOperand(0).getValueType() == MVT::i64) { 6498 if (VT == MVT::f32) 6499 LC = isSigned ? RTLIB::SINTTOFP_I64_F32 : RTLIB::UINTTOFP_I64_F32; 6500 else if (VT == MVT::f64) 6501 LC = isSigned ? RTLIB::SINTTOFP_I64_F64 : RTLIB::UINTTOFP_I64_F64; 6502 else if (VT == MVT::f80) { 6503 assert(isSigned); 6504 LC = RTLIB::SINTTOFP_I64_F80; 6505 } 6506 else if (VT == MVT::ppcf128) { 6507 assert(isSigned); 6508 LC = RTLIB::SINTTOFP_I64_PPCF128; 6509 } 6510 } else { 6511 if (VT == MVT::f32) 6512 LC = isSigned ? RTLIB::SINTTOFP_I32_F32 : RTLIB::UINTTOFP_I32_F32; 6513 else 6514 LC = isSigned ? RTLIB::SINTTOFP_I32_F64 : RTLIB::UINTTOFP_I32_F64; 6515 } 6516 6517 // Promote the operand if needed. 6518 if (getTypeAction(SrcVT) == Promote) { 6519 SDOperand Tmp = PromoteOp(Node->getOperand(0)); 6520 Tmp = isSigned 6521 ? DAG.getNode(ISD::SIGN_EXTEND_INREG, Tmp.getValueType(), Tmp, 6522 DAG.getValueType(SrcVT)) 6523 : DAG.getZeroExtendInReg(Tmp, SrcVT); 6524 Node = DAG.UpdateNodeOperands(Op, Tmp).Val; 6525 } 6526 6527 const char *LibCall = TLI.getLibcallName(LC); 6528 if (LibCall) 6529 Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, isSigned, Hi); 6530 else { 6531 Lo = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, VT, 6532 Node->getOperand(0)); 6533 if (getTypeAction(Lo.getValueType()) == Expand) 6534 ExpandOp(Lo, Lo, Hi); 6535 } 6536 break; 6537 } 6538 } 6539 6540 // Make sure the resultant values have been legalized themselves, unless this 6541 // is a type that requires multi-step expansion. 6542 if (getTypeAction(NVT) != Expand && NVT != MVT::isVoid) { 6543 Lo = LegalizeOp(Lo); 6544 if (Hi.Val) 6545 // Don't legalize the high part if it is expanded to a single node. 6546 Hi = LegalizeOp(Hi); 6547 } 6548 6549 // Remember in a map if the values will be reused later. 6550 bool isNew = ExpandedNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi))); 6551 assert(isNew && "Value already expanded?!?"); 6552} 6553 6554/// SplitVectorOp - Given an operand of vector type, break it down into 6555/// two smaller values, still of vector type. 6556void SelectionDAGLegalize::SplitVectorOp(SDOperand Op, SDOperand &Lo, 6557 SDOperand &Hi) { 6558 assert(MVT::isVector(Op.getValueType()) && "Cannot split non-vector type!"); 6559 SDNode *Node = Op.Val; 6560 unsigned NumElements = MVT::getVectorNumElements(Op.getValueType()); 6561 assert(NumElements > 1 && "Cannot split a single element vector!"); 6562 6563 MVT::ValueType NewEltVT = MVT::getVectorElementType(Op.getValueType()); 6564 6565 unsigned NewNumElts_Lo = 1 << Log2_32(NumElements-1); 6566 unsigned NewNumElts_Hi = NumElements - NewNumElts_Lo; 6567 6568 MVT::ValueType NewVT_Lo = MVT::getVectorType(NewEltVT, NewNumElts_Lo); 6569 MVT::ValueType NewVT_Hi = MVT::getVectorType(NewEltVT, NewNumElts_Hi); 6570 6571 // See if we already split it. 6572 std::map<SDOperand, std::pair<SDOperand, SDOperand> >::iterator I 6573 = SplitNodes.find(Op); 6574 if (I != SplitNodes.end()) { 6575 Lo = I->second.first; 6576 Hi = I->second.second; 6577 return; 6578 } 6579 6580 switch (Node->getOpcode()) { 6581 default: 6582#ifndef NDEBUG 6583 Node->dump(&DAG); 6584#endif 6585 assert(0 && "Unhandled operation in SplitVectorOp!"); 6586 case ISD::UNDEF: 6587 Lo = DAG.getNode(ISD::UNDEF, NewVT_Lo); 6588 Hi = DAG.getNode(ISD::UNDEF, NewVT_Hi); 6589 break; 6590 case ISD::BUILD_PAIR: 6591 Lo = Node->getOperand(0); 6592 Hi = Node->getOperand(1); 6593 break; 6594 case ISD::INSERT_VECTOR_ELT: { 6595 SplitVectorOp(Node->getOperand(0), Lo, Hi); 6596 unsigned Index = cast<ConstantSDNode>(Node->getOperand(2))->getValue(); 6597 SDOperand ScalarOp = Node->getOperand(1); 6598 if (Index < NewNumElts_Lo) 6599 Lo = DAG.getNode(ISD::INSERT_VECTOR_ELT, NewVT_Lo, Lo, ScalarOp, 6600 DAG.getConstant(Index, TLI.getPointerTy())); 6601 else 6602 Hi = DAG.getNode(ISD::INSERT_VECTOR_ELT, NewVT_Hi, Hi, ScalarOp, 6603 DAG.getConstant(Index - NewNumElts_Lo, 6604 TLI.getPointerTy())); 6605 break; 6606 } 6607 case ISD::VECTOR_SHUFFLE: { 6608 // Build the low part. 6609 SDOperand Mask = Node->getOperand(2); 6610 SmallVector<SDOperand, 8> Ops; 6611 MVT::ValueType PtrVT = TLI.getPointerTy(); 6612 6613 // Insert all of the elements from the input that are needed. We use 6614 // buildvector of extractelement here because the input vectors will have 6615 // to be legalized, so this makes the code simpler. 6616 for (unsigned i = 0; i != NewNumElts_Lo; ++i) { 6617 unsigned Idx = cast<ConstantSDNode>(Mask.getOperand(i))->getValue(); 6618 SDOperand InVec = Node->getOperand(0); 6619 if (Idx >= NumElements) { 6620 InVec = Node->getOperand(1); 6621 Idx -= NumElements; 6622 } 6623 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, NewEltVT, InVec, 6624 DAG.getConstant(Idx, PtrVT))); 6625 } 6626 Lo = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Lo, &Ops[0], Ops.size()); 6627 Ops.clear(); 6628 6629 for (unsigned i = NewNumElts_Lo; i != NumElements; ++i) { 6630 unsigned Idx = cast<ConstantSDNode>(Mask.getOperand(i))->getValue(); 6631 SDOperand InVec = Node->getOperand(0); 6632 if (Idx >= NumElements) { 6633 InVec = Node->getOperand(1); 6634 Idx -= NumElements; 6635 } 6636 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, NewEltVT, InVec, 6637 DAG.getConstant(Idx, PtrVT))); 6638 } 6639 Hi = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Lo, &Ops[0], Ops.size()); 6640 break; 6641 } 6642 case ISD::BUILD_VECTOR: { 6643 SmallVector<SDOperand, 8> LoOps(Node->op_begin(), 6644 Node->op_begin()+NewNumElts_Lo); 6645 Lo = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Lo, &LoOps[0], LoOps.size()); 6646 6647 SmallVector<SDOperand, 8> HiOps(Node->op_begin()+NewNumElts_Lo, 6648 Node->op_end()); 6649 Hi = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Hi, &HiOps[0], HiOps.size()); 6650 break; 6651 } 6652 case ISD::CONCAT_VECTORS: { 6653 // FIXME: Handle non-power-of-two vectors? 6654 unsigned NewNumSubvectors = Node->getNumOperands() / 2; 6655 if (NewNumSubvectors == 1) { 6656 Lo = Node->getOperand(0); 6657 Hi = Node->getOperand(1); 6658 } else { 6659 SmallVector<SDOperand, 8> LoOps(Node->op_begin(), 6660 Node->op_begin()+NewNumSubvectors); 6661 Lo = DAG.getNode(ISD::CONCAT_VECTORS, NewVT_Lo, &LoOps[0], LoOps.size()); 6662 6663 SmallVector<SDOperand, 8> HiOps(Node->op_begin()+NewNumSubvectors, 6664 Node->op_end()); 6665 Hi = DAG.getNode(ISD::CONCAT_VECTORS, NewVT_Hi, &HiOps[0], HiOps.size()); 6666 } 6667 break; 6668 } 6669 case ISD::SELECT: { 6670 SDOperand Cond = Node->getOperand(0); 6671 6672 SDOperand LL, LH, RL, RH; 6673 SplitVectorOp(Node->getOperand(1), LL, LH); 6674 SplitVectorOp(Node->getOperand(2), RL, RH); 6675 6676 if (MVT::isVector(Cond.getValueType())) { 6677 // Handle a vector merge. 6678 SDOperand CL, CH; 6679 SplitVectorOp(Cond, CL, CH); 6680 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, CL, LL, RL); 6681 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, CH, LH, RH); 6682 } else { 6683 // Handle a simple select with vector operands. 6684 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, Cond, LL, RL); 6685 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, Cond, LH, RH); 6686 } 6687 break; 6688 } 6689 case ISD::ADD: 6690 case ISD::SUB: 6691 case ISD::MUL: 6692 case ISD::FADD: 6693 case ISD::FSUB: 6694 case ISD::FMUL: 6695 case ISD::SDIV: 6696 case ISD::UDIV: 6697 case ISD::FDIV: 6698 case ISD::FPOW: 6699 case ISD::AND: 6700 case ISD::OR: 6701 case ISD::XOR: 6702 case ISD::UREM: 6703 case ISD::SREM: 6704 case ISD::FREM: { 6705 SDOperand LL, LH, RL, RH; 6706 SplitVectorOp(Node->getOperand(0), LL, LH); 6707 SplitVectorOp(Node->getOperand(1), RL, RH); 6708 6709 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, LL, RL); 6710 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, LH, RH); 6711 break; 6712 } 6713 case ISD::FPOWI: { 6714 SDOperand L, H; 6715 SplitVectorOp(Node->getOperand(0), L, H); 6716 6717 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, L, Node->getOperand(1)); 6718 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, H, Node->getOperand(1)); 6719 break; 6720 } 6721 case ISD::CTTZ: 6722 case ISD::CTLZ: 6723 case ISD::CTPOP: 6724 case ISD::FNEG: 6725 case ISD::FABS: 6726 case ISD::FSQRT: 6727 case ISD::FSIN: 6728 case ISD::FCOS: 6729 case ISD::FP_TO_SINT: 6730 case ISD::FP_TO_UINT: 6731 case ISD::SINT_TO_FP: 6732 case ISD::UINT_TO_FP: { 6733 SDOperand L, H; 6734 SplitVectorOp(Node->getOperand(0), L, H); 6735 6736 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, L); 6737 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, H); 6738 break; 6739 } 6740 case ISD::LOAD: { 6741 LoadSDNode *LD = cast<LoadSDNode>(Node); 6742 SDOperand Ch = LD->getChain(); 6743 SDOperand Ptr = LD->getBasePtr(); 6744 const Value *SV = LD->getSrcValue(); 6745 int SVOffset = LD->getSrcValueOffset(); 6746 unsigned Alignment = LD->getAlignment(); 6747 bool isVolatile = LD->isVolatile(); 6748 6749 Lo = DAG.getLoad(NewVT_Lo, Ch, Ptr, SV, SVOffset, isVolatile, Alignment); 6750 unsigned IncrementSize = NewNumElts_Lo * MVT::getSizeInBits(NewEltVT)/8; 6751 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 6752 DAG.getIntPtrConstant(IncrementSize)); 6753 SVOffset += IncrementSize; 6754 Alignment = MinAlign(Alignment, IncrementSize); 6755 Hi = DAG.getLoad(NewVT_Hi, Ch, Ptr, SV, SVOffset, isVolatile, Alignment); 6756 6757 // Build a factor node to remember that this load is independent of the 6758 // other one. 6759 SDOperand TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 6760 Hi.getValue(1)); 6761 6762 // Remember that we legalized the chain. 6763 AddLegalizedOperand(Op.getValue(1), LegalizeOp(TF)); 6764 break; 6765 } 6766 case ISD::BIT_CONVERT: { 6767 // We know the result is a vector. The input may be either a vector or a 6768 // scalar value. 6769 SDOperand InOp = Node->getOperand(0); 6770 if (!MVT::isVector(InOp.getValueType()) || 6771 MVT::getVectorNumElements(InOp.getValueType()) == 1) { 6772 // The input is a scalar or single-element vector. 6773 // Lower to a store/load so that it can be split. 6774 // FIXME: this could be improved probably. 6775 SDOperand Ptr = DAG.CreateStackTemporary(InOp.getValueType()); 6776 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr.Val); 6777 assert(FI && "Expecting CreateStackTemporary to return a frame index.\n"); 6778 6779 SDOperand St = DAG.getStore(DAG.getEntryNode(), 6780 InOp, Ptr, 6781 PseudoSourceValue::getFixedStack(), 6782 FI->getIndex()); 6783 InOp = DAG.getLoad(Op.getValueType(), St, Ptr, 6784 PseudoSourceValue::getFixedStack(), 6785 FI->getIndex()); 6786 } 6787 // Split the vector and convert each of the pieces now. 6788 SplitVectorOp(InOp, Lo, Hi); 6789 Lo = DAG.getNode(ISD::BIT_CONVERT, NewVT_Lo, Lo); 6790 Hi = DAG.getNode(ISD::BIT_CONVERT, NewVT_Hi, Hi); 6791 break; 6792 } 6793 } 6794 6795 // Remember in a map if the values will be reused later. 6796 bool isNew = 6797 SplitNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi))).second; 6798 assert(isNew && "Value already split?!?"); 6799} 6800 6801 6802/// ScalarizeVectorOp - Given an operand of single-element vector type 6803/// (e.g. v1f32), convert it into the equivalent operation that returns a 6804/// scalar (e.g. f32) value. 6805SDOperand SelectionDAGLegalize::ScalarizeVectorOp(SDOperand Op) { 6806 assert(MVT::isVector(Op.getValueType()) && 6807 "Bad ScalarizeVectorOp invocation!"); 6808 SDNode *Node = Op.Val; 6809 MVT::ValueType NewVT = MVT::getVectorElementType(Op.getValueType()); 6810 assert(MVT::getVectorNumElements(Op.getValueType()) == 1); 6811 6812 // See if we already scalarized it. 6813 std::map<SDOperand, SDOperand>::iterator I = ScalarizedNodes.find(Op); 6814 if (I != ScalarizedNodes.end()) return I->second; 6815 6816 SDOperand Result; 6817 switch (Node->getOpcode()) { 6818 default: 6819#ifndef NDEBUG 6820 Node->dump(&DAG); cerr << "\n"; 6821#endif 6822 assert(0 && "Unknown vector operation in ScalarizeVectorOp!"); 6823 case ISD::ADD: 6824 case ISD::FADD: 6825 case ISD::SUB: 6826 case ISD::FSUB: 6827 case ISD::MUL: 6828 case ISD::FMUL: 6829 case ISD::SDIV: 6830 case ISD::UDIV: 6831 case ISD::FDIV: 6832 case ISD::SREM: 6833 case ISD::UREM: 6834 case ISD::FREM: 6835 case ISD::FPOW: 6836 case ISD::AND: 6837 case ISD::OR: 6838 case ISD::XOR: 6839 Result = DAG.getNode(Node->getOpcode(), 6840 NewVT, 6841 ScalarizeVectorOp(Node->getOperand(0)), 6842 ScalarizeVectorOp(Node->getOperand(1))); 6843 break; 6844 case ISD::FNEG: 6845 case ISD::FABS: 6846 case ISD::FSQRT: 6847 case ISD::FSIN: 6848 case ISD::FCOS: 6849 Result = DAG.getNode(Node->getOpcode(), 6850 NewVT, 6851 ScalarizeVectorOp(Node->getOperand(0))); 6852 break; 6853 case ISD::FPOWI: 6854 Result = DAG.getNode(Node->getOpcode(), 6855 NewVT, 6856 ScalarizeVectorOp(Node->getOperand(0)), 6857 Node->getOperand(1)); 6858 break; 6859 case ISD::LOAD: { 6860 LoadSDNode *LD = cast<LoadSDNode>(Node); 6861 SDOperand Ch = LegalizeOp(LD->getChain()); // Legalize the chain. 6862 SDOperand Ptr = LegalizeOp(LD->getBasePtr()); // Legalize the pointer. 6863 6864 const Value *SV = LD->getSrcValue(); 6865 int SVOffset = LD->getSrcValueOffset(); 6866 Result = DAG.getLoad(NewVT, Ch, Ptr, SV, SVOffset, 6867 LD->isVolatile(), LD->getAlignment()); 6868 6869 // Remember that we legalized the chain. 6870 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 6871 break; 6872 } 6873 case ISD::BUILD_VECTOR: 6874 Result = Node->getOperand(0); 6875 break; 6876 case ISD::INSERT_VECTOR_ELT: 6877 // Returning the inserted scalar element. 6878 Result = Node->getOperand(1); 6879 break; 6880 case ISD::CONCAT_VECTORS: 6881 assert(Node->getOperand(0).getValueType() == NewVT && 6882 "Concat of non-legal vectors not yet supported!"); 6883 Result = Node->getOperand(0); 6884 break; 6885 case ISD::VECTOR_SHUFFLE: { 6886 // Figure out if the scalar is the LHS or RHS and return it. 6887 SDOperand EltNum = Node->getOperand(2).getOperand(0); 6888 if (cast<ConstantSDNode>(EltNum)->getValue()) 6889 Result = ScalarizeVectorOp(Node->getOperand(1)); 6890 else 6891 Result = ScalarizeVectorOp(Node->getOperand(0)); 6892 break; 6893 } 6894 case ISD::EXTRACT_SUBVECTOR: 6895 Result = Node->getOperand(0); 6896 assert(Result.getValueType() == NewVT); 6897 break; 6898 case ISD::BIT_CONVERT: 6899 Result = DAG.getNode(ISD::BIT_CONVERT, NewVT, Op.getOperand(0)); 6900 break; 6901 case ISD::SELECT: 6902 Result = DAG.getNode(ISD::SELECT, NewVT, Op.getOperand(0), 6903 ScalarizeVectorOp(Op.getOperand(1)), 6904 ScalarizeVectorOp(Op.getOperand(2))); 6905 break; 6906 } 6907 6908 if (TLI.isTypeLegal(NewVT)) 6909 Result = LegalizeOp(Result); 6910 bool isNew = ScalarizedNodes.insert(std::make_pair(Op, Result)).second; 6911 assert(isNew && "Value already scalarized?"); 6912 return Result; 6913} 6914 6915 6916// SelectionDAG::Legalize - This is the entry point for the file. 6917// 6918void SelectionDAG::Legalize() { 6919 if (ViewLegalizeDAGs) viewGraph(); 6920 6921 /// run - This is the main entry point to this class. 6922 /// 6923 SelectionDAGLegalize(*this).LegalizeDAG(); 6924} 6925 6926